
POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Toward a methodology for malware
analysis and characterization for
Machine Learning application

Supervisor
prof. Antonio Lioy
prof. Andrea Atzeni

Candidate

Andrea Sindoni

April 2023





Summary

In the last decades malware has been one of the major threats for IT systems, targeting both end
users and organizations. Year after year malware samples evolve, showing new mechanisms to
take advantage of their victims and developing new techniques to avoid detection. The analysis
process is a fundamental task needed to perform both identification, i.e. labelling a program
as benign or malicious, and family characterization, which means understanding which family
a certain sample belongs to. A malware family is a group of samples that share very common
characteristics or that have been developed by the same malicious actor. Being able to correctly
characterize a sample will provide useful information to victims of malware attacks, since there
could be known countermeasures to the actions a certain family performs as well as understand-
ing which is the malicious actor behind the attack. This thesis focuses on the development of an
analysis and characterization methodology, trying to leverage on already developed tools that are
able to extract representative information, i.e. features, from samples and trying to automate the
extraction process as much as possible. Features could later be used to perform characterization
by preparing it to become a valid input for a Machine Learning system.
In a first phase I tried to get an overview of the current threat landscape, examining reports
of various Antivirus companies, such as Kaspersky, in order to understand which are the most
widespread families and what Operating Systems are mostly affected by malware. After having
collected this information, I selected a pool of families that target Windows and Android Oper-
ating Systems, which are the ones mostly used on desktop and mobile devices.
Then, I performed a study on the state-of-the-art techniques and tools that nowadays are used
to perform malware analysis, both to become able to build a safe analysis environment and to
perform a selection of tools that can be used to carry the analysis process. I focused both on static
and dynamic techniques trying different tools, both manual ones and fully automated, such as
automatic online sandboxes, selecting those that were capable of extracting relevant information
as well as being suitable for automation.
Once this selection was made, I started collecting samples belonging to the selected families,
looking for available malware datasets and repositories, like VirusShare and MalwareBazaar, and
combining them together to create my own collection. Two different collections were built: a
Windows one, consisting of ten thousand executables from eight families, and an Android one,
consisting of six hundred applications from six different families.
Later, I focused on the development of an analysis methodology, building a system that is capable
of automatically extract features from samples, applying both static and dynamic analysis tech-
niques studied in the previous steps. Despite there are many frameworks that already provide a
safe environment, fully equipped with tools to perform analysis, they are often intended to be used
manually, studying each sample one by one, meanwhile I wanted automate their usage as much
as possible since they had to be applied on a large number of samples. To this end, I decided to
build my analysis system with a static and a dynamic analyzer. The former has been developed
using two Python libraries: Pefile and Droidlysis, which are employed to extract static features.
The latter has been built using the Cuckoo sandbox and automating its functionalities. I was able
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to extract many kinds of information contained into my samples, but I had to discard some types
of features, such as strings and IP addresses, since they were not perfectly suitable for a Machine
Learning system. In the end, I selected four kind of features for the Windows environment: sec-
tions’ bytes, imported APIs, sections’ entropy and API calls count. Three features were selected
for Android: permissions, code properties, API calls count.
Each sample has been processed in order to extract the selected features and then prepare them
in a series of datasets that could be later used as input for training a ML system. The extracted
information has also been reviewed to find any similarities and differences between the features
extracted from samples. Overall, every feature from the ones we selected showed significant dif-
ferences between samples belonging to different families. Looking at the Windows environment,
sections’ entropy and the number of API calls seem to be the two features that mostly characterize
each family. The latter in particular, showed how some families heavily stress the OS, making
a huge number of API calls (i.e. Virlock family averages four thousands calls per minute on
some APIs). On the other side, the features extracted from Android samples showed interesting
differences on the kind of actions that each family tries to perform. The selected features give a
general description of what are the potential actions performed by samples. I focused on harmful
actions, and the results showed how some of them are shared among every family (i.e. almost 65%
of samples of each family collects device’s information), while others are more specific to some
particular family (i.e. 85% of Svpeng samples writes system settings and disables the lock screen
mechanism).
For what concerns future developments, this system could be extended, adding more complex
types of features that could require a proper encoding in order to be handled, or by extending
the file formats supported, since supporting only Android Packages (APKs) and Portable Exe-
cutables (PEs) is a strong limitation, considering the many possible flavours in which malware
usually appears.
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Chapter 1

Introduction

Year after year IT technologies keep evolving, becoming more powerful and offering more features
to their users, infusing into our lives and becoming a crucial part of any kind of environment,
from complex systems to simple things that surround us every day. As the technology improves,
its threats evolve as well, stressing every possible system and trying to find the most subtle
vulnerability. The term malware, a short for malicious software, refers to any kind of software
that tries to perform malicious activities once running on a system. Possible examples of such
activities could be: spying, take control of a system or stealing credentials. Malware can cause
huge damages, having a significant impact not only on individuals but also on organizations. In
the last year, more than 5.5 billion malware attacks have been detected [1]. Fig. 1.1 reports the
global volume of malware samples for each month of the years 2021-2022.

Figure 1.1. Global malware volume comparison between 2021 and 2022. Image
taken from SonicWall report [1].

As time passes, malware samples continue to evolve, constantly showing new mechanisms to ex-
ploit vulnerable systems and to prevent detection. This means that defense systems that are
in charge of preventing malware infections need to be up to date in order to keep the pace of
such a menace. To this end, the ability to perform identification and characterization assumes a
crucial role. Identification means being able to assert whether a sample is malicious or benign.
For example, identification is always performed by the Google Play Store when a new application
is published, since that application can be downloaded by billion of devices therefore it must be
checked before it becomes available to anyone. Characterization refers to the ability of distin-
guish between samples belonging to different families. A malware family is defined as a group
of samples which shares very common characteristics, being probably developed and spread by
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the same threat actor. Characterization can provide useful information, revealing who is the
actor behind an attack and maybe, in some particular cases, it gives the chance to take proper
countermeasures against the actions that a malware has performed. In order to become able to
identify characterize, analysis must be performed, since it is needed to investigate on malicious
behaviors and understand how to distinguish between benign and malicious actions, as well as to
find peculiar characteristics that may be common for a certain families. Analysis can be carried
out through different techniques, depending on its purpose and the way it is performed, hence
what the analyst is looking for and how it achieves it. Generally speaking, there are two main
approaches: static analysis and dynamic analysis. Static analysis techniques are usually faster
and less expensive, both in the time and the amount of resources required, but they are easily
counterable and malware may hide some aspects that will be revealed only upon execution. On
the contrary, dynamic techniques require a substantial amount of resources, both computational
and in time, but any static countermeasure will be bypassed since the sample is actually executed
and monitored. Of course, dynamic analysis can be countered as well, since the analysis environ-
ment can be detected and the sample will suspend any suspicious activity.
As of the day of this writing, various tools and techniques have been already developed to study
malware samples, from simple manual tools such as Ghidra [2], which is a disassembler/decom-
piler that allows to reverse engineering executables, to more sophisticated instruments such as
Remnux [3], which is a Linux distribution fully equipped with many kinds of analysis tools. These
instruments allows to investigate on many malware-related aspects. Some of them are just prop-
erty extractors (i.e. they parse the provided file to extract static information), meanwhile some
others can trace actions on the system, like monitoring opened files, function calls and so on.
For example Autoruns [4] permits to check for programs that runs at boot, revealing mechanisms
that malware may use to obtain persistence. Such tools are suitable for the contest of manual
analysis, that can be particularly useful when studying single samples which may belong to new
families or just be a new variant of an already known family. Manual analysis requires the analyst
to be highly skilled, since it has to deal with many tools such as decompilers and debuggers to
study any possible behavior of the sample under analysis, as well as requiring deep knowledge of
the Operating System for which the sample has been created. Manual analysis takes definitely a
considerable amount of time, in some cases reversing a single sample could require even a week of
work. This means that if the analysis has to be applied to a large scale of samples, for example
if we want to provide training data to a Machine Learning (ML) system, which has been built
to fulfill the task of characterization/identification, a manual approach becomes unfeasible and it
is necessary to automate as much as possible the analysis process. Machine Learning allows to
perform classification on a large number of samples in a very short time, but in order to build a
valid classifier, this has to be trained using a proper dataset of samples. Delivering a dataset of
actual executables is quite risky though, since if samples are mistakenly executed the whole en-
vironment will be compromised. Other than that, providing only samples just as they are, leaves
the duty of feature extraction (i.e. information that can be used to perform classification) to the
ML system which shall be equipped with a property extractor. Fig. 1.2 reports an high-level view
of the structure of a classification system.
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Figure 1.2. General structure of a classification system.

Previous researches have developed ML systems in charge of performing identification through
malware features [5, 6], or characterization using one single feature such as system calls [7]. These
systems use as sources, pre-built datasets of features, or they provide a complete system composed
of analyzer and classifier. Our work wants to focus on the first part (i.e. the analyzer) in order
to develop an analysis methodology that aims to extract different types of features, which can
be used one by one or combined, providing more flexibility compared to those systems developed
in previous researches. In addition to that, most of these systems points on identification rather
than characterization, which still is an open problem.
This research focuses on the design of an analysis methodology, developing an automatic analysis
system which, leveraging on well-known malware analysis tools, is capable of extracting represen-
tative information from malware samples, giving the possibility to customize the kind of features
that will be extracted and also to apply analysis on large datasets. Once these features are ex-
tracted, the systems prepares them into packages that can be used as input for a ML system.
Chapter two will introduce some background concepts, which are needed to understand the topics
covered in this thesis. It gives some definitions of what is malware and what are common malware
types as well as some general behavioral characteristics, such as how malware obtains persistence
and some examples of anti-analysis techniques. Last sections of this chapter will also introduce
some Operating Systems elements that are commonly involved when studying malware’s actions.
The third chapter illustrates the state-of-the-art of malware analysis, presenting various tools and
analysis techniques that are employed to carry the analysis process, covering both manual and
automatic tools. Chapter four will present our two malware collections, containing Windows and
Android samples respectively, explaining how these have been built, from the selection of families
contained, to the sources that have been used to collect desired samples. Chapter five, which can
be considered the core of this research, will introduce the analysis methodology design, presenting
our own analysis system, which is depicted in Fig. 1.3, explaining how each of its components
works as well as reporting the information that the systems is able to extract.
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Figure 1.3. High-level view of the analysis system.

Chapter six will present the obtained results, providing insights on the datasets of features
that have been created by submitting our collections to the analysis system. Other than that, this
chapter contains a series of statistics regarding these features, outlining similarities and differences
between families.
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Chapter 2

Background

2.1 What is malware?

Malware stands for “malicious software”, referring to any kind of software that aims to perform
malicious activity such as spying, steal information or take control of a system. Various companies
and organizations have given more specific definitions:

A program that is inserted into a system, usually covertly, with the intent of compromising the
confidentiality, integrity, or availability of the victim’s data, applications, or operating system or

of otherwise annoying or disrupting the victim. - NIST [8]

A type of computer program designed to infect a legitimate user’s computer and inflict harm on
it in multiple ways. - Kaspersky [9]

Any intrusive software developed by cybercriminals to steal data and damage or destroy
computers and computer systems. - CISCO [10]

2.1.1 Why is malware used?

Malicious actors use malware for different purposes. Usually the most attractive targets are
large companies, but often single users are attacked as well, especially with the spread of mobile
malware. The main reasons that lead to the use of malware are [11]:

• Mining cryptocurrencies: victim’s computer resources are abused to generate or mine
cryptocurrencies.

• Data theft: data is stolen to sell it to other criminals or to commit identity theft.

• Asking for ransom: access to victim’s data is denied and a payment is demanded to have
it back.

• Espionage: this can be done even by companies to collect secrets from their competitors.

• Law enforcement: government authorities may use malware to investigate and collect
data on suspects and use it later for their investigation.

• DDOS attack: malware can be deployed to create a botnet and coordinate it to perform
a DDOS attack.
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2.1.2 Malware types

Malware can be classified in different typologies. This distinction is mainly based on the malware
behavior, hence what it tries to achieve once it is running on the infected system.
The main known types are [12]:

• Virus: it injects its code into other files and tries to spread to other hosts. Viruses may
even modify the copies that will be attached to other files or hosts. There are different
spreading vectors such as email attachments, network files, etc.

• Trojan: generally it looks like a benign application like a game, while performing malicious
tasks in the background. Trojans are mainly employed to steal victim’s sensitive data (i.e.
banking credentials). Another variant is the RAT (Remote Access Trojan) which enables a
backdoor to provide remote access on the compromised system.

• Ransomware: denies access to user’s files, demanding payment to have them back. The
denial can be done through file encryption (Crypto ransomware) or blocking system func-
tionalities (Locker ransomware) [13].

• Worm: it replicates itself, trying to saturate victim’s resources (i.e. bandwidth, disk space)
and then spreading to other systems over the network.

• Rootkit: provides a set of tools that can be used to harm the system. It is usually used
by other malwares. Rootkits employ several techniques in order to conceal their existence
to the system (DLL injection, system table hooking etc.) and there are different typologies,
depending on which privilege level they operate [14].

• Spyware: it spies the user, keeping track of whatever she does and sends reports to the
attacker. The information that a spyware collects is very various: password, browser activity,
credit card details etc.

• Scareware: generally it does not harm the system but just informs the user that is device
has been infected, then it tries to sell an antivirus to remove itself.

• Cryptominers: they use computer resources to mine cryptocurrencies for the attacker.

• Adware: shows advertisements to the user, usually it is not harmful for the system.

2.1.3 Malware families

Another important distinction that has been made is the one between families. A malware family
is a group of malware samples which shares a large portion of code, showing a very similar
behavior, and that have been probably developed by the same author. Samples belonging to
the same family may have some differences, thus leading to a mismatch when comparing file
hashes, but the overall behavior will be the same. Family classification is not an easy job, since
it requires to understand what are the important features that remains similar across multiple
samples. There are many famous families that have been in the wild for quite a long time, such
as Zeus (2007), Emotet (2014), WannaCry (2017) and that can still be found today, as well as
new families that have made their name in the recent years, for example the Lockbit family, for
which a new version was deployed in June 2022 [15].

2.2 Malware behaviors

Generally speaking, malware employs several techniques in order to achieve its purpose. There
are some aspects that are common even to different typologies and some that are more specific
and tend to be exclusive to some types. Some of these are shown in Table 2.1.
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Common actions Specific actions

Gaining persistence
Stealing information
(Trojan, Ransomware)

Privilege escalation
Denying service

(Worm, Ransomware)
Communication with a C&C server Stealing resources (Miners)

Anti-analysis techniques

Spreading (Virus, worm)
Deceiving the user
(Trojan, Scareware)

Annoying the user (Adware)

Table 2.1. Common and specific malware actions.

2.2.1 Gaining persistence

Obtaining persistence on the infected system is an important step for the malware, probably the
most important for some typologies. It means obtaining access to a system across restarts or
other kind of interruptions. Often it requires high privileges since the malware has to change
configuration settings. It is usually achieved using OS’s internal structures like the registry on
Windows or, in the case of a ransomware, by deleting backups, preventing the user from restoring
the system to a point where the malware wasn’t there.

2.2.2 Privilege escalation

Obtaining the highest privilege on the system is a crucial task for malware since it allows to
perform any kind of operation without asking its victim. It is usually done by using software
or system vulnerabilities or by annoying the user until she grants it. Many malware families
have been known for using famous expoloits such as EternalBlue[16], used by WannaCry and
Trickbot families, or the SpoolFool[17] used by the Lockbit family [18]. As previously mentioned,
sometimes the malware uses an external C&C server to obtain these exploits, since it could be
running on an outdated versions of an OS that contains known vulnerabilities and for which there
are exploits available, so it do not even require much work in those cases, malware authors just
grabs what is available online. Obtaining high priviliges can be very trivial sometimes [19].

2.2.3 Communication with a C&C server

Communication with a C&C server serves for multiple purpose. The client (the malware) generally
sends reports containing useful information about the system (location, OS version, installed
programs etc.). The server may use this information to send specific payloads to the malware. For
example, if the malware is running on a OS version that contains a known vulnerability, the server
might sends the payload to exploit it. The server can also send whole modules or components
that the malware needs to run. In some cases (i.e. WannaCry), the server may also act as a kill
switch sending a command to the malware that will stop its activities. Communication is usually
encrypted and to avoid detection some families use a DGA (Domain Generation Algorithm). This
is used to generate a large number of domains that will be contacted until one of them actually
responds. The domain generation is based on three elements: a seed, an element that changes
over time and some top level domains [20]. The domains must be predictable on both client and
server side.

2.2.4 Anti-analysis techniques

Malware authors employs different countermeasure to protect their samples. These countermea-
sures aim at complicating the analysis process, hence making the detection of such samples more
difficult. These techniques will be discussed deeply in Sec. 2.4
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2.3 Malware analysis

The process of malware analysis is the main focus of this thesis. It is a fundamental task that
aims to understand what are the peculiarities of the sample that is being analyzed. It is a time
consuming activities, since malware authors don’t want their samples to be easily analyzable,
employing many countermeasures to make this process as complex as possible. Of course this
task cannot always be performed manually, considering that in some cases analyzing even a singe
sample could require days. To help with this there are many tools that come to hand, which are
able to automatically extract useful information, saving a considerable amount of time.
When we want to perform software analysis there are three strategies: white-box, black-box and
grey-box. White-box means that we would have full knowledge of the software under analysis,
having full access to any resource. Black-box is the complete opposite, we are examining a
program without knowing anything about it. Grey-box is a combination of the previous two, we
have a partial knowledge. When speaking about malware analysis, the only approach available is
of course black box.
Generally malware analysis, or maybe it would be better to say software analysis, can be carried
on using two approaches: static and dynamic [21, 22]. This section will briefly describe what
these methods actually mean and how they are usually performed, leaving a deeper insight on
what is used for malware analysis for the next chapter.

2.3.1 Static analysis

Static analysis consists in analyzing the software without running it, trying to extract meaningful
information that could give hints on what the program does. Usually it is carried on by using
automatic tools such as disassemblers, that extract the assembly code from the binary, or decom-
pilers, which try to reconstruct the original source code. These tools require lots of manual work,
since the software analyst has to understand what the decompiled (or disassembled) code means.
Since this task can become a cumbersome in some situations, there are static analysis tools such
as Ghidra or IDA that provides also a CFG (Control Flow Graph) extractor, String extractor and
other useful instruments.

2.3.2 Dynamic analysis

Dynamic analysis, also known as behavioral analysis, is based upon examining the software while
it is running, monitoring and observing its behavior. When the software under analysis is a
malware it is also suggested to perform the analysis in an isolated environment to avoid any
damage. Details on how to properly isolate the malware will be discussed later. There are
different approaches that are commonly used such as function calls monitoring, taint analysis etc.

2.3.3 Static and dynamic analysis tools

Performing software analysis could require a considerable amount of time, especially when the
software under analysis is a malware, whose authors do not want to be easily analyzable, taking
any kind of countermeasure to complicate this task. Luckily, over time a wide range of tools
have been developed. Most of these tools provides nice features that are able to extract useful
information from the software, speeding up the whole analysis process.
Some of the most famous tools are listed in Tab. 2.2, they are not especially meant for malware
analysis but for more generic black-box software analysis. The tools that have been explicitely
designed for the analysis of malware will be covered in the next chapter.
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Tool Features Platform
Ghidra Decompiler, Disassembler, CFG, etc. Any
IDA Pro Decompiler, Disassembler, CFG, etc. Any

Binary ninja Decompiler, Disassembler etc. Any
Apktool Decompiler, Debugger, Resource extractor Android
OllyDBG Debugger Windows
GDB Debugger Linux

Radare2 Disassembler, Debugger, Hexeditor Linux

Table 2.2. Software analysis tools.

2.3.4 Static vs Dynamic

When performing analysis both approaches are needed since each of them covers aspects that
are fundamental to understand what a malware does. For example a malware may contain some
hidden code or module that will not be detected when using only static analysis. Generally
speaking, static analysis is a much faster approach that is able, by the means of some tools, to
extract useful information in a very short time, giving a first insight on what the malware does,
so it is usually performed as first step. On the other side, dynamic analysis takes a considerable
amount of time to be performed and also require to setup a strong isolated environment to avoid
any damage to the analysis environment, but it grants the possibility of really understanding
what is being executed and what the malware, or more generically the software, is doing. Each
of these two techniques has its own advantages and disadvantages, the main ones are reported in
Table 2.3.

Static Dynamic
Requires less resources CPU expensive

Fast Slow
Examines malware without

Malware gets executed
executing it

All the static information can be
Only what is executed is analyzed

extracted and analyzed

Ineffective against packed malware
Once ran the packed code is

extracted and it can be analyzed

Table 2.3. Differences between static and dynamic analysis.

2.4 Countering Analysis

Malware uses various techniques to make the analysis process as complex as possible. These
techniques are used not only by malicious actors, but also by legitimate ones with the purpose of
protecting intellectual property. The process of countering analysis is very common in malware.
Older studies [23] already showed how, even back then, almost 90% of malware uses at least one
anti-analysis technique.
There are several methods that are commonly used and that have already been widely described
[21, 24, 22, 25], these are presented in the following sections.

2.4.1 Countering static analysis

1. Dead code insertion
It consists in inserting instructions that won’t be actually executed, so this are ineffective on its
behavior but they will change its appearance, making the control flow more complex, thus leading
to a waste of time when the malware will be analyzed. In practical terms, this is done by inserting
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extra push operations followed by a pop or by adding the so-called opaque predicates which are if
statements with a complicate condition that will always be either true or false.

Figure 2.1. Opaque predicate example.

2. Equivalent Code Replacement
This techniques substitutes the original instructions with semantically equivalent ones. For exam-
ple a mov can be replaced with a push/pop operation or by xoring the value with itself and then
perform an add. This brings two advantages: a simple instruction may be changed in multiple
ones and also it becomes easy to generate several variants of the same malware.
3. Code transposition
Instruction sequences are reordered without having any impact on the malware behavior, this can
be achieved in two ways:
1. Using unconditional branches to jump across the shuffled sequences.
2. Only independent instructions are reordered. These are actually quite difficult to find but is
the hardest to detect.
4. Code integration
The malware integrates itself into another program, this technique is also called process injection
the methods on how to achieve it are gonna be explained better later in Sec. 2.5.1. Basically it
is not longer the main executable that runs the malicious code, but this is attached to benign
processes (i.e. by means of a library) that will execute it.
5. Packing
This is probably the most advanced and sophisticated obfuscation technique. A packed malware
is compressed or encrypted, hence hiding its functionalities. Once executed it unpacks itself and
executes the unpacked code. The process of packing can be done or by a simple encryption of the
payload or by using some packer such as UPX, UPAC etc.. Other than being a counter analysis
technique, packing is mainly used to avoid detection by automatic detector (i.e. AVs).
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Figure 2.2. Packing example

The main packing techniques are:

• Encryption: the malware comes with encryption/decryption module. Usually encryption
is performed each time with a different key, but the decryptor remains the same.

• Oligomorphism: it overcomes the limit of a single decryptor, gaining the ability to produce
different variants which are all semantically equivalent. The main drawback is that only a
limited number of decryptors can be made so a detection system can be instructed to detect
every possible variant.

• Polymorphism: it is an advanced version of oligomorphism. This time unlimited decryp-
tors can be created, hence producing a an unlimited number of variants. In some cases
multiple layers of decryption are used. This can still be detecting applying a signature
matching at runtime.

• Metamorphism: there is no more a constant body or decryptor since there is no more
packing and encryption but the code is transformed dynamically while the malware is run-
ning.

2.4.2 Countering dynamic analysis

Most of the malwares are capable of detecting if they are running in a virtualized environment,
which will probably mean that they are being analyzed. If the analysis environment is detected,
malware will try to hide itself, by avoiding any suspicious activity or by not running at all. Some
example of how the environment is detected are [26, 21]:

1. Detecting analysis tool’s traces
Some analysis tools leave fingerprints on the system they are being run. This are searched by
malware. [27] reports a code snippet from a malware sample that checks if it is running in
VMware:

MOV EAX, 564D5868 #VMXh

MOV EBX, 0

MOV ECX, 0A
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MOV EDX, 5658 #VX

IN EAX, DX # Check for VMWare

CMP EBX, 564D5868

The value 0x0A tells VMware that a version check wants to be performed. The “VX” value refers
to a VMware port and the IN instruction is used to read data from a specific hardware device
(VMware has extended its usage to implement communication channels). If running in the virtual
machine, this instruction will return the value “VMXh”.
2. Detecting debuggers
The presence of a debugger is always a sign that the sample is being analyzed. For example, one
common way to perform this check is to invoke the ptrace function that won’t work if a debugger
is already attached. Analogously, on Windows, there are different API calls that can be used
to detect the presence of a debugger such as CheckRemoteDebuggeRpresent or by checking the
BeingDebugged flag.
3. Time-based detection
Dynamic analysis brings an overhead, malware can measure how it takes to execute some portions
of code.
4. Detect traces of user activities
Traces of user’s activities: analysis environment are often wiped before testing and studying a
sample. Thus the malware looks for data that is usually generated when a real user is using the
system such as browser history, recent documents, mouse movement etc.

2.5 OS features

All the well known operating systems are targeted by malware. Looking at the desktop environ-
ment, Windows results to be both the most common OS worldwide [28] and the preferred malware
target [29]. Taking a look at the mobile environment, Android takes the lead as most popular
mobile OS (over 70% of the global mobile market) [30], and as reported by Kaspersky: “Over
98% of mobile banking attacks target Android devices” [31].

2.5.1 Windows

Windows is a complex desktop OS. Malware targets many of its internal structures, trying to
achieve persistence or to exploit known vulnerabilities and escalate.
Malwares may come on the system in different formats: PE (Portable Executable), office docu-
ments, pdf etc., usually delivered through spam emails or dropped by another malware. They
use intensively some of the Windows functionalities, these are briefly explained in the following
paragraphs.

Windows API

The Windows API is an extensive set of functionalities that are provided to interact with the
Windows OS. This can be directly used when writing C or C++ programs. The set of functional-
ities offered spans through different categories, from base services such as file handling to security,
networking, graphics and so on. The amount of functionalities is so high that programmers rarely
need to use third party libraries. For what concerns types and notation, Windows program usu-
ally differs from standard C, C++ programs. C standard types such as int, double, long etc. are
not very common. They are replaced by DWORD and WORD which represent respectively 32
and 16 bit integers. The main Windows types are listed in Tab 2.4 [32].
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Type Description
WORD (w) 16 bit unsigned value

DWORD (dw) 32 bit unsigned value

Handles (H)
Reference to an object.

This should be manipulated only by Windows API

Long Pointer (LP)
Pointer to another type.

(i.e. LPSTRING, LPBYTE etc.)
Callback A function that will be called by the Windows API

Table 2.4. Common Windows types.

Registry

It is a system hierarchical database used to store configuration information (settings, options etc.).
In old Windows versions these information was stored in .ini files, the registry was created to
provide better performances [32]. Malware mainly uses it to achieve persistence, adding autorun
programs (the malware itself). The information stored in the registry is organized in keys, which
can be intended as folders. There are five root keys, which contain subkeys, containing values
entry (a pair name-value). The two most commonly used root keys are:

• HKEY LOCAL MACHINE (HKLM): global machine settings.

• HKEY LOCAL CURRENT USER (HKCU): setting specific to the current logged on user.

The registry can be modified through the Windows API, using the Registry Editor or by .reg files.

Listing 2.1. .reg file example.

[HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]

"MaliciousValue"="C:\Windows\malicious.exe"

DLLs

Dynamic link libraries are used to share code among multiple applications. A DLL is basically an
executable that exports functions. This brings an improvement in terms of memory usage since
static libraries would require to be allocated by each process that uses them. Another advantage
is that when writing a Windows application (both a benign or a malicious one) we can leverage
on DLLs that are by default on a Windows system and avoid to provide them. Generally malware
authors use DLLs for three purposes [32]:

1. Store malicious code: the malware gets on the system as a DLL, trying to load itself into
other processes.

2. Using Windows DLLs: they contain functionalities needed to interact with the system
and malwares will abuse those functionalities. Looking at the imports could give a good
insight on what the malware intends to do.

3. Using third party DLLs: they are used to avoid the Windows API. For example a
malware can use the Mozilla DLL to perform network operations. A malware can also drop
custom DLLs that contain extra functionalities such as encryption.

System Tables: SSDT, IDT and IAT

System tables are heavily used by rootkits to conceal their existence. The purpose of this table
is explained in the Table 2.5:
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Table Purpose
SSDT Maps syscalls to kernel function addresses
IAT Contains address of functions belonging to a DLL
IDT Contains address of interrupt routines

Table 2.5. Common and specific malware actions.

The main way to exploit the functionalities offered by these three tables is by using hooking
techniques. Hooking is a process of altering system (or API) calls, redirecting them to malicious
code. This can be done in both user space (IAT, IDT) and kernel space (SSDT). Hooking tech-
niques are widely used by rootkits.
Hooks on the IDT are the simplest to detect since all the interrupt routines must point to a
precise memory location (the one allocated to ntoskrnl.exe DLL). The main techniques [33] can
be summarized as follows:

IAT.
Each process as its own IAT, hence an hook on this table targets a single process. Hooking the
IAT means that when the process calls an API the malicious code will be called instead, this can
be done by replacing the address of the legitimate function with the malicious one or by using
inline hooking. The latter option consists in modifying the actual function by creating a jump to
the malicious code, leaving the table unmodified.

SSDT.
It holds kernel function addresses and, being in the kernel, a modification of this table will affect
every process. In modern versions of Windows there are two tables: one for generic routines and
one for graphical ones. Hooking this table is more tricky compared to the IAT since it requires
the modification of the Registry and other structures. Inline hooking can be used in this context
as well, but it is important to execute also the original syscall to preserve kernel integrity.

Stealth Mechanisms

Malware authors always try to find new tactics and techniques to bypass the checks that are per-
formed both from malware analysis and from automatic detectors (i.e. AVs). A malware needs to
perform its operation in the most stealthy way in order to avoid detection. This is usually done
by injecting the malware into other legitimate processes. There are various techniques that are
commonly employed [24]. We can summarize the stealth techniques in three main categories:

Process Injection. Malware hides its code into the memory space of benign processes. This can
be performed in various ways such as:

• Classical DLL injection: the malicious DLL path is written in the virtual address space of
the target process and another thread is created to ensure its execution.

• Reflective DLL injection: the malicious DLL is loaded from memory, not from the disk

• Process hollowing: instead of loading malicious code, the legitimate one is unmapped from
memory and filled by the malicious executable.

• Portable Execute injection: CreateRemoteThread API is used to to copy some shellocode
(or a whole PE) into an open process. The malware has to find the relocation table of the
target first.

• APC injection: Asynchronous Procedure Calls are used to execute malicious code by at-
taching it to the APC queue of the target thread.

• Thread execution hijacking: thread execution is hijacked by modifying the EIP register of
the target to execute malicious shellcode.
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DLL hijacking. This mechanism is used to get a target process execute a malicious DLL
leveraging the DLL search order.

• DLL search order hijacking: Windows searches for DLL in specific paths. Malware tries to
place its DLL, with the same name of a legitimate one, in a place that will be examined
before its real location.

• Adaptive DLL hijacking: it is used to execute an external library or PE that is not intended
to be ran. The module loader provides the DLL’s origin point. This is hijacked to execute
the malicious DLL and is achieved in four steps as shown in the image below.
Insert image here

File-less. Sometimes malwares are capable of executing in memory without leaving any disk
traces. A file-less malware has to drop some files at first but then it may use some forensic
tool (e.g. SDelete) to wipe them out. This is done to minimize the amount of artifacts on the
system, making analysis way more complex. It is usually done by malwares that do not care
about persistence.

2.5.2 Android

Being a mobile Operating system, Android presents a different architecture, providing several
functionalities to make applications work. Hence also the attacks that malware authors implement
are different. Applications are sandboxed, they have their own user ID and run in separate
processes. Each time an application is installed a new Linux user and a private directory are
created. Application are usually distributed via the app stores; the main one is the Google Play
store, but there are also third party markets where apps can be found.

Permissions

An interesting part when looking at an Android application, that could give hints on what the
app wants to do once installed and running are the permissions it requires. For example, if an
app wants to send SMSs it has to declare the SEND SMS permission. Permission are organized
in groups (i.e. the SMS permission groups). A complete list can be found on (insert link here).
There are five types of permissions, which are [34]:

• install-time: automatically granted when installed, usually they are prompted to the user
before installing.

• normal: allow access to data and actions that present very little risk to user’s privacy or
other apps.

• signature: an application may define a permission and that can be used by another app,
but they must be signed by the same certificate.

• runtime: also known as dangerous permissions, the request is prompted on the screen.

• special: defined by the platform or the OEMs.

In older versions of Android (up to version 6) runtime permissions where asked at install time
as well and they cannot be disabled. There are two important permissions that are worth of
mention, being intensively used by malwares:

• RECEIVE BOOT COMPLETED: starts an application at each reboot (after it is man-
ually ran a first time)

• SYSTEM ALERT WINDOW: it allows to draw arbitrary windows on top of other apps.
This is not used only by malicious apps. Usually it is used to create floating widgets (i.e.
Facebook Messenger, music players etc.).
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• BIND ACCESSIBILITY SERVICE: this enables Accessibility Service, which is a mech-
anism created to assist users with disabilities. It enables the capability of performing pow-
erful actions on the device such as clicks, scrolls, lock/unlock the phone and so on. It must
be explicitly enabled by the user. It can also perform operation while the screen is off as
discovered by [35].

Having the last two permissions, an application would be able to perform any kind of activity on
the device such as install another application and grant this one admin privileges.

Attacks

There are various ways in which malware authors exploit Android functionalities. Most of the
attacks aim to deceive and mislead the user, trying to steal its sensitive data (i.e. passwords)
without her noticing it. Some of these attacks have been explained, and actually improved, by
[35], and can be summarized in:

A. Clickjacking
The idea is to “steal” clicks. Basically another page is prompted on the screen but when the user
clicks on it the click goes below that page. This is partially countered by some OS security mech-
anisms that prevents the attacker from knowing when and where the user clicks. To overcome
this obstacle this attack was improved in the Context Aware Clickjacking where the overlay
page is covering everything but the button that the attacker wants to be pushed.

Figure 2.3. Simple clickjacking example, image taken from [36].

A. Invisible grid
This attack aims to intercept keystrokes. Several small overlays are created (one for each key on
the keyboard). It uses obscured flag FLAG WATCH OUTSIDE TOUCH as a side channel to
understand which key is being pressed. This is done by placing overlays one on top of the others,
so when the i-th key is pressed the (i-1) previous keys will have this flag set to 1.
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Chapter 3

State of the art

The analysis process is a fundamental task for the characterization and identification of malware.
Despite nowadays most approaches go towards the direction of a Machine Learning (ML) driven
method, the manual work is still necessary either to understand what features are important to
a ML system or to perform incident response. As previously said, the analysis process can be
performed in two ways: static and dynamic. Both approaches have their pros and cons but they
are necessary to have a complete knowledge of what is being analyzed. It is important to note
that malware authors employ various techniques to counter both methods and these can make
the analysis completely useless if not bypassed in some way.
This chapter will report a series of techniques and tools that are commonly used nowadays to
analyse malicious software. These will not be divided into static and dynamic since most tools
combine both approaches.

3.1 Malware repositories

First of all, before talking about what is actually used to properly analyze malware, we can ask
ourselves a simple question: where do we get malware samples?
There are many online resources that provide access to malware samples. For a ML approach,
where a huge amount of sample is often required, the best option is to look for an already made
dataset. Two example of famous datasets are SOREL [37] and MICROSOFT[38].
If the main purpose is to manually analyze a sample, having a whole dataset could be excessive;
in this case a more suitable choice is to download single samples. There are many sites and
platforms which offer this service and in most of the cases they also offer an API to perform
query automatically. Some of these sources are listed below. The ones marked as private needs
an account which can only be obtained upon invitation.

• MalwareBazaar (Public): contains a big collection of samples, these can be searched by
their hash, family name, signature, file type etc. It offers an API which does not require an
account to be queried [39].

• VirusShare (Private): offers a huge collection of samples, these can be searched only by
their hashes, and optionally it provides useful information such as a description of the
samples and how they have been classified by many AVs. Access to the API is granted only
to authenticated user and the number of request per minute is limited [40].

• VX-Underground (Public): it is the largest collection of malware source code, samples,
and papers on the internet. It was created in May, 2019 [41].

• Malpedia (Private): contains many resources (articles, books etc.) regarding malware. It
offers an API with some public endpoints which can be used to obtain information about
a specific family or threat actor and some private endpoint to perform further actions such
as downloading samples, collecting YARA rules etc [42].
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3.2 Malware execution

Despite most information can be extracted from the malware without having it running, examining
the malicious software while it is executing is necessary in most cases. In fact there are lots of
techniques that make static approaches too much complex to be carried on, or in some cases,
completely useless. An example could be a malware that uses a C&C server to receive a malicious
module that will not be available until the malware is executed. Another, less specific, example
could simply be the usage of obfuscation techniques or the insertion by the malware authors of
useless code that will lead to a waste of time for the analyst.
Running a malware is not something that an analyst can do on its main device without taking
any precautions, but it is important to set up an analysis environment. The environment must
respect some properties [43] such as:

• Reliability: the malware must not be capable of compromise the analysis data or gain
control of the system.

• Undetectable: if the malware can detect the environment probably it won’t perform any
malicious activity making the analysis useless.

• Isolation: an environment not properly isolated (i.e. internet connection available, shared
folders etc.) could lead to the spreading of the malicious software to other systems.

An isolated analysis environment is commonly referred as a sandbox.

3.2.1 Sandboxing

There are various practical ways to build a sandbox for dynamic analysis [43]. When talking
about malware analysis, the most usual choice is a Virtual Machine. The main benefit of a VM is
the strong isolation that if properly configured it guarantees and, on top of that, the possibility
to easily revert the virtual system to a previous state by taking snapshots, nullifying any harmful
activity done by the malware. The main disadvantage is that it requires a considerable amount
of resources, especially in the case where there are multiple sandboxes running at the same time.
Once a VM is set up there are two option to perform analysis:
- Monitoring from the VM itself. Analysis tools are installed in the same VM where the
malware runs, this approach is limited to analyze malware that operates only in the user-land.
- Monitoring from the Host OS. Tools required for the analysis are installed outside of
the VM. The malware is tracked from the host OS. This technique is referred as Virtual Machine
Introspection (VMI). The monitoring is performed through a component, usually a driver, installed
in the VM. This approach gains the possibility to monitor also kernel actions but the injected
driver can be detected by the malware.
These two layouts are illustrated in Fig. 3.1.

Figure 3.1. Virtual Machine layouts: VM introspection (left), Monitoring from the VM itself (right)
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There are a lot of tools that are commonly used for the creation of a VM such as VirtualBox,
VMWare and in the case of a Windows host there is also the Windows Sandbox [44]. Another
option that is becoming more popular is the usage of containers. This approach in not yet
widespread since it is still not clear how secure it is. Containers share the hardware with the
OS so if the malware escapes the container the whole system is compromised. Agarwal et al.
[45] propose a containerized environment for malware analysis. Another more popular example is
REMnux [3], a linux distribution explicitly designed for malware analysis which comes with some
analysis tools already installed. These tools run inside containers.

3.2.2 Analysis techniques and tools

There is not a standard approach to analyze malware. Each sample may come in a different
format and have different layers of obfuscation, so it could require sophisticated techniques to
extract useful information. Some of the most notorious techniques [46, 43] are explained in the
paragraphs down below.

Function call analysis

Function calls can often give a good overview of the malware behavior. Despite this technique may
not be really good for family classification, it often works with identification [5, 47, 48] or with
type classification [49]. When it comes to analysing function calls, the main technique employed is
hooking, which consist in a manipulation of the program behavior to intercept each function. The
function hooked can be of various type: APIs, system calls or system specific APIs (i.e. Windows
native API).
Tools. An example of programs that can be used to fulfill this task are ltrace, strace and APIMon-
itor [50]. The first two are available on Linux and they trace library and system calls respectively,
meanwhile APImonitor works on Windows and traces Win32 APIs reporting function arguments
and return values as well.

Controlling the execution

Taking control of the malware while it is running can prevent it from harm the system while still
keeping tracks of its actions. There are many methods to achieve this task [43, 51] such as:

• Debugging: opcode instruction are trapped, allowing the analyst to insert breakpoints in
specific places, observe the memory of the analyzed process and so on. This technique is
easily detectable by malware.

• Dynamic Binary Instrumentation (DBI): it consists in the insertion of instrumentation
code while the malware is running. The instrumentation is usually achieved using a Just In
Time (JIT) compiler. Intel PIN [52] and DynamoRIO [53] are examples of DBI frameworks.
This technique is not immune to detection since it leaves traces on the system as well as
debuggers and VMs do. Polino et al. [54] have developed Arancino, a tool that can be used
to masquerade DBI traces.

Tab. 3.1 below reports some examples of tools commonly used to monitor the execution of a
process with a brief description for each of them.
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Technique Tool Description
Debugging x64dbg Debugger for PE files [55].
Debugging WinDbg Debugger for PE files [56].

Debugging APKtool
Android reverse engineering tool,
it offers a debugger as well [57].

Debugging Android Studio
IDE for Android apps, provide a

debugger also for pre-built APKs [58].
DBI Drltrace Function call tracer based on DynamoRIO [59].
DBI Sniper Function call tracer based on Intel PIN [60].

Table 3.1. Example of tools for execution control.

Trigger analysis

The goal is to understand what are the conditions that make the malware perform malicious
activity. An example of such conditions can be listening for commands from a C&C server and
not performing malicious actions until something valid is received, or checking the presence of a
virtual environment to avoid detection. Having knowledge of these triggers can be very important
in some situations: for example, a malware which has detected the analysis environment will result
as a benign and legitimate software.
Automating this type of analysis is not an easy task, since approaches like fuzzing a malware
sample can be useless. Tirenna P. [61] has developed a tool called Symba which uses angr, a
symbolic analysis framework, to find triggers.

3.3 Manual analysis

When it comes to manually analyze a sample there are several tools that come to hand. As
explained in the previous chapter in Section 2.2, there are many aspects that play an important
role in malware analysis (i.e. persistence mechanisms, network communication etc.). This section
will present a series of tools that are commonly adopted to investigate on those facets, reporting
some usage examples as well.

3.3.1 Reverse engineering malware

The first approach that may come to mind is to try to get the malware code and navigate through
it to understand what will be its behavior. In order to do so, there are many tools that offer
disassemblers, decompilers and other useful features (i.e. CFG generator). In the context of
malware analysis, IDA Pro [62] seems the most used tool, supporting a variety of file types, from
simple executables to DLLs and so on. Being that famous, malware researchers have developed
useful extension that may be helpful during the analysis of samples [63, 64].
Another similar tool, this time an open source one, is Ghidra [2].
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Figure 3.2. An example of CFG generated by Ghidra.

It is important to underline that understanding the complete behavior of a malware only
by its decompiled/disassembled code is really hard, it could require a huge amount of time in
the majority of the cases. Usually, the best option is to combine these kind of tools with other
analysis softwares, which may extract automatically useful information, and then go back to the
code having already partial knowledge of the malware sample. Ghidra and IDA can be used for
Android applications as well, but there are tool that are more specific and designed for them:
- Apktool: This tool can be used to reverse engineer Android applications, it also allows to
rebuild the application after it has been modified. It also offers a debugger [57].
- dex2jar: It can be used to work with .dex and .class files. It converts these kind of files to
ASM or to smali [65].

3.3.2 Analysing malware with Sysinternal suite

For what concerns Windows malware there are specific tools that suite very well to perform anal-
ysis [4]. These kind of tool explicitly aim to extract specific information, such as the processes
created, operations performed on the OS and so on. This troubleshooting programs where orig-
inally thought to help system administrators, but some of them have become particularly useful
in the context of malware analysis :

• Process Explorer & Process Monitor: These two tools show running processes, like
the native task manager, but with much more detailed information. Process Explorer show
which handles and DLLs a process have opened. Process Monitor logs every activity done
on the system by processes, allowing to filter results in order to find specific actions. This
utility becomes really useful to investigate on the traces left by a sample (i.e. file dropped,
registry keys written etc.).

• Sysmon: System Monitor is a system service that will persist across reboots to collect
system events such as network connections, process and thread creations, drivers loading
etc.
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• Autoruns: This program adapts very well when the objective is to find persistence mech-
anism. It basically displays every service, process or task that will automatically run once
the device is booted. It allows to insert filters to speed up the research.

• Strings: it can be used to extract embedded strings from a file. In some case this can give
precious insight on what is being analyzed, for example in the case of a ransomware the
ransom note could be found.

Figure 3.3. List of actions in Process Monitor, image taken from [66].

3.3.3 Dealing with APKs

APKs have a totally different structure compared to Windows applications, hence it is not possible
to use the tools mentioned in Sec. 3.3.2 which are compatible only with the Windows OS. In order
to deal and interact with Android applications, and more specifically, with Android malware, there
are various tool that come to hand.

Device emulation and interaction

Differently from Windows application, which can run directly on the analysis environment, or in
a VM on top of it, APKs run on mobile device which has to be emulated. There are different
device emulators that are freely available such as Anbox and Android-86. Once an emulator has
been properly set up the analyst needs to interact with it. It can be done by using Android Debug
Bridge (adb) [67] that is a command line utility through which is possible to install debug apps
and have a Unix shell to execute commands.
Once a device is being emulated an analyst could want to perform actions that are similar to
the ones a real user would perform. MonkeyRunner is a tool which lets us to perform this kind
of actions. It permits to send keystrokes, take screenshots, simulate clicks etc. from outside the
device. Below is reported an usage example, taken and re-elaborated from [68]:

Listing 3.1. Monkeyrunner script example

from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice

device = MonkeyRunner.waitForConnection()

package = ’com.example.android.maliciousapp’

activity = ’com.example.android.maliciousapp.MainActivity’

# sets the name of the component to start
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runComponent = package + ’/’ + activity

# Runs the component

device.startActivity(component=runComponent)

# Presses the Menu button

device.press(’KEYCODE_MENU’, MonkeyDevice.DOWN_AND_UP)

# Takes a screenshot

result = device.takeSnapshot()

# Writes the screenshot to a file

result.writeToFile(’myproject/shot1.png’,’png’)

3.4 Automated analysis

Even if manual analysis is in many cases necessary (i.e. to perform forensics investigation after a
malware attack) it consumes a considerable amount of time and apply “manual” techniques to a
large number of samples is unfeasible, so it becomes necessary to employ an automated approach.
This section will dive into the usage of tools that automates the analysis process, running a sample
in a secure environment and generating a report which describes the malware activities.

3.4.1 Cuckoo Sandbox

The Cuckoo sandbox [69] is an open source tool employable for the analysis of software. It basically
uses a VM as a sandbox where suspicious files are executed and collects any useful information
that has been generated during execution. There are various works that have used the Cuckoo
Sandbox [70, 71, 6]. This tool is able to perform various actions such as:

• Analyze different types of files: executables, DLLs, office documents, Android APKs etc.

• Trace API calls: returns a list of all the API called as well as their return value.

• Dump network traffic: network packets can be captured and analyzed.

• Memory analysis: uses Volatility combined with YARA rules.

Architecture

Cuckoo is made of at least 3 basic components: a central host, an analysis environment and
a virtual network. The central host is the one in charge of submitting samples to the analysis
environment and generate reports. The environment (or guest) is the actual sandbox where the
samples will be ran, here a cuckoo agent runs and it is the component that communicates with
the host. The virtual network is an isolated link through which the the host and the guest
communicates. Cuckoo grants the possibility to launch multiple analysis in parallel by running
multiple guests at the same time. Each guest may have its own configuration. Network setting
can be customized as well, these are the available options:

• None: host is not connected to the internet, so there will be no packet captured.

• Drop: only the cuckoo messages are allowed, anything else is just dropped.

• Internet: guest has full access to the Internet, this option is the most dangerous.

• InetSim: it uses InetSim, a network utilities emulator, that will return custom responses
when the guest tries to access Internet.

• TOR: traffic is routed through TOR.

• VPN: traffic is routed through one or multiple VPN endpoints.
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Figure 3.4. Cuckoo’s architecture.

On top of these components Cuckoo offers various utilities. Some of them are described below.
Web interface. It is based on a Mongo database, it allows to submit files, analyze reports and
view previous analysis.
Submission utility. This is used to submit a sample to cuckoo, can be used through the Web
interface, the API or the CLI.
Community utility. It downloads signatures that can be later used to automatically classify
files.

Reports

After an analysis is successfully completed, a report will be generated. This report will contain
various kind of information, that differs based on what the malware has performed and how the
whole sandbox was configured. Figures 3.5 and 3.6 below show an example of such reports.

Figure 3.5. Cuckoo analysis summary.
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Figure 3.6. Cuckoo behavioral analysis results.

Cuckoo Droid

It is an extension of Cuckoo to handle analysis of Android applications [72]. Differently from
before, now the guest runs a Linux OS with an android emulator within. Different tools are
installed both on the guest OS and the emulator to perform the analysis, these are reported in
Tab. 3.2. Fig. 3.7 shows a representation of Cuckoo Droid’s architecture.

Tool Guest OS/Emulator Description

AAPT Guest OS
Extracts the main activity and

the package name from the APK.

ADB Guest OS
Bridge to communicate

with the emulator.

Xposed Emulator
Framework to change the behavior

of system and apps.
Droidmon Emulator API call monitor.
Superuser Emulator App that grants Superuser rights.

Content generator Emulator
Generates content on the device

to make it more realistic.
Emulator anti-detection Emulator Collection of anti-detection techniques.

Table 3.2. Cuckoo Droid requirements.

Figure 3.7. Cuckoo droid architecture, image taken from its documentation [72].
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As in the standard Cuckoo sandbox there is a web interface to provide easier interaction, where it
is possible to submit samples and customise the analysis. Once an analysis is completed a report
will be generated, containing information about what happened during execution as well as some
static information (i.e. permission the app requires).

3.4.2 Online analysis

Another way to automate the analysis process is by using online sandboxes. These are of course
the simplest to use, since they do not require any kind of setup or resources to run the analysis.
So from the analyst’s point of view the whole analysis is reduced to a simple upload of the sample
and the analysis of a generated report, having, in most cases, no idea of what is happening beyond.
The main advantage of this approach is undoubtedly the avoidance of having enough resources to
setup an environment. On the other side, the main disadvantage is that these services are often
expensive, being suited for large companies or professional analysts. Generally they offer a free
version which raises limits in the number of analysis or requests available.
There are various options to perform analysis by the means of online sandboxes, these usually
offer similar functionalities: they provide an environment where the malware will be launched and
then an analysis report which describes what is happened during the execution will be generated.
Depending on the sandbox the environment may be more or less customized (i.e. selecting a
specific OS, a preferred network configuration etc.). The reports generated by these sandbox are
usually very similar as well, containing a trace of the API called, the operation performed on the
system, network activity etc.
Some examples of such sandboxes are Any.Run [73] and Triage [74].

Any.Run

It is an analysis platform, it offers some services for free (but with limitations). Basically it pro-
vides a Windows sandbox where the malware will be injected and run for at most five minutes.
After that a report is generated, this will contain: static information (i.e. number of sections,
imports etc.), a process graph, network and files activities, operations performed on the Win-
dows registry and some screenshots. There is also the possibility to download a file containing
the sample’s Indicators Of Compromise (IOCs), the network packets capture and the attack ma-
trix which is a report of known attack used by the sample. Figures 3.8 and 3.9 below report an
example of the process graph and the attack matrix for a sample belonging to the Trickbot family.

Figure 3.8. Process graph.
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Figure 3.9. Attack matrix.

Tria.ge

It is another popular sandbox, it allows to submit different types of files and customize the
execution environment, from the OS version to the Internet connection and the analysis duration.
Once the analysis is started, there is also the possibility to extend is duration and interact with
the machine. After that, a report will be generated which will contain insights on the malware
activities, such as file and registry operations, process created, network traffic and so on. It allows
also to download memory dumps and network captures (i.e. pcap files). It also generate an attack
matrix.
By upgrading to a researcher account it is also possible to use the sandbox programmatically
thanks to its API, by which the analyst can submit samples and retrieve reports and generated
files. The Fig. 3.10 below shows an example of a report for a sample of the Trickbot family.

Figure 3.10. Triage report for a Trickbot sample.

3.5 Extracting features

During the analysis process the relevant information can be extracted not only to be further
analyzed but also to become input to a machine learning system, which will be trained to automate
the classification process. These features can be of many kinds, from simple strings to actual pieces
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of code. Generally speaking, on the basis of the analysis that has been performed, there are two
kinds of features: static and dynamic. Tables 3.3 and 3.4 report some examples of such features.

Feature Description

Strings
All printable strings contained

in a sample, can contain URLs, paths etc.

API calls
Certain API calls are index of suspicious activity,

and the usage of some of them can lead to a proper classification.

OPcode
Code bytes can be collected in sequences called n-grams,

useful since there is some code reuse between samples of the same family.

Table 3.3. Example of static features.

Feature Description

Registry operations
Registry is often modified to achieve persistence

or avoid detection.

Network operations
Malware often tries to interact with a C&C server,

hence the packets transmitted and the list of
IP contacted can be a good clue of the family it belongs to.

File operations
Malware often open specific files or copies itself

in other location and with specific names, these behavior
are often preserved within a family

Table 3.4. Example of dynamic features.
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Chapter 4

Building a malware collection

The first step in our research was to obtain knowledge about malware families, trying to under-
stand what are the peculiarities that define a family and which ones are more common nowadays.
After acquiring this information, the next step was to find how to get malware samples. Ul-
timately, all these sources were combined to produce our own collection containing only those
families which are more widespread today, if samples are available. This chapter will describe
which are the selected families, explaining what are the reasons that led to such selection and
which are the malware sources used to collect the desired samples, reporting all the difficulties
encountered during this process as well.

4.1 Family selection

Before talking about the families that were selected, it is important to note that malware authors
generally develop samples targeting one precise operating system so it was necessary to select
which OS should be considered. Among all the possible candidates, statistics show thatWindows
and Android are both the most common and the most targeted by malware. Figures 4.1, 4.2
report these statistics.

Figure 4.1. Mobile OS market share worldwide, image taken from Statista [75].
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Figure 4.2. Desktop OS market share worldwide, image taken from Statista [76].

4.1.1 Types

Once the operating systems were selected we tried to find out if there are particular types which
are more common or more dangerous than others. As already explained in Sec. 2.1.2 malware
can be categorized into different types depending on what its purpose is and how it is achieved.
Antivirus companies such as Kaspersky and MalwareBytes periodically publish reports [77, 78]
that describe the current landscape. Tab. 4.1.1 reports some of the statistics extracted from these
reports.

Windows Android
Malware type Share Malware type Share

Trojan 20% Adware 42%
Adware 13% RiskTool 35%

Riskware Tool 12% Trojan 15%

Table 4.1. Malware types statistics for Android and Windows OSs.

Another important aspect that was taken into consideration to perform a type selection, was how
dangerous some types can be for some targets. This led to the inclusion of another typology:
ransomware. This category doesn’t appear to be as common as the others, probably because
ransomware groups are moving their interests into attacking entire organizations rather than
single users [78]. Figures 4.3, 4.4 show the percentage of organizations that have been hit by
ransomware in the last year. As can be evinced from the chart, more than half of each category
of companies have suffered from a ransomware attack. With all this information in mind, we
decided to put our focus on the following types:

• Windows OS : Trojan and Ransomware

• Android OS : Trojan, Risktool and Adware
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Figure 4.3. Percentage of organization hit by ransomware, by country. Image taken from Sophos [79].

Figure 4.4. Percentage of organization hit by ransomware, by type. Image taken from Sophos [79].

4.1.2 Families

In order to perform a family selection we examined some of the Kaspersky quarterly reports.
These reports describe the current threat landscape, reporting the number of malware detected
and the family they belong to. Figures 4.5, 4.6 illustrate the top families for the selected types
on both desktop and mobile systems.
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Ramnit - 33.2 %

Zbot - 15.2 %

IcedId - 10.0 %

CliptoShuffler - 5.8 %

Trickbot - 5.8 %

SpyEye - 2.1 %

RTM - 1.9 %

Gozi - 1.4 %

Other - 24.6 %

Encoder - 14.76 %

WannaCry - 12.12 %

Gen - 11.68 %

Stop - 6.59 %

Phny - 6.53 %

Crypmod - 6.53 %

Magniber - 4.93 %

VirLock - 4.84 %

Other - 32.02 %

Figure 4.5. Top families for trojan and ransomware on Windows.

Agent - 26.13 %

Svpeng - 16.56 %

Anubis - 14.93 %

Asacub - 5.05 %

Bian - 4.48 %

Hqwar - 3.08 %

Other - 29.77 %

SMSreg - 90.96 %

Dnotua - 4.07 %

Resharer - 1.14 %

Robtes - 1.06 %

Agent - 0.79 %

Wapron - 0.53 %

Other - 1.45 %

Ewind - 53.66 %

HiddenAd - 18.48 %

FakeAdBlocker - 13.34 %

MobiDash - 3.54 %

Adlo - 1.89 %

Kuguo - 0.63 %

Other - 8.46 %

Figure 4.6. Top families for trojan, risktool and adware on Android.
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These statistics have been used to decide which families we should focus on, in order to create
a collection that would contain samples that are not “out of date” and still represent a serious
menace today. With that being said, there is another important point that cannot be overlooked:
the availability of samples for those families. In fact, as it will be explained in the next section,
despite our desire was to include in our collection the most widespread families, this was not
possible for some of them, mainly the Android ones, given the lack of a consistent number of
samples on the web.

4.2 Collecting samples

The next step, after having depicted an initial idea of what the collection should contain, was to
find reliable sources of malware samples and collect them. This resulted to be not an easy task
mainly for two reasons:

• Samples availability: since for some of the families reported in Tabs. 4.5, 4.6 there were no
samples available it was not possible to include them in our collection.

• Family naming: malware naming is not a well defined process, there is not a common
standard. Back in the 1991 Caro attempted to create a naming convection [80] which has
become outdated though. Today almost each Anti-virus company uses its own convection
when performing identification of a sample and other than that there are various families
which are known by multiple names. Tab. 4.2 reports some examples of families known by
multiple names.

Family main name Alternative names
Zeus Zbot, Wsnpoem, Citadel

Trickbot Trickster, Trick, TrickB
RTM Redaman

Ramnit Nimnul
REvil Sodinokibi, Sodin

PolyRansom Virlock
Anubis Bankbot, Bankspy
Gozi Papras, Snifula, Ursnif, CRM

Table 4.2. Some examples of malware alternative family names.

4.2.1 Malware sources

There are many malware collections available online, some of them require to have an account
which can be obtained only upon invitation. In order to overcome the naming problem we used
Malpedia [42] which offers a family name search engine which will return a list of technical articles
and reports about the specified family, along with its alternative names and, if registered, some
samples as well.

VirusShare

Among all the collections available the most rich and valuable is VirusShare [40], which right now
contains more than 56,000,000 samples. The archive is organized in files containing the hashes of
the available samples. Then it is possible to use the API to perform queries about specific samples
and to download them. The main complication we had when parsing this huge archive was that the
available samples are specified only by their hash, so for each of them we should have performed
an initial request to obtain information about that sample (i.e. how AVs have identified it) and
then download it only if it belongs to one of our selected families. Since the number of request
is limited to 4 per minute, performing this task for the whole archive was unfeasible. Luckily we
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managed to get around this, thanks to VX-underground [41] which contains a collection of text
files, named VirusShare IOC Listings, where for each VirusShare’s sample the relative family is
given. Hence we parsed these files instead of the VirusShare’s ones.

MalwareBazaar

Another famous malware database is MalwareBazaar [39], which does not contain a collection as
big as VirusShare’s one (613,363 samples) but offers the possibility to perform queries directly by
using family names. To enrich our collection we queried also MB and merged their samples with
the ones obtained from VirusShare.

Datasets

In addition to the two famous malware collections mentioned above, we took samples from some
already made datasets. The reason that led to the usage of these datasets is that, especially for
Android, no samples were found for some of the families mentioned in Tabs. 4.5, 4.6. The dataset
used are:

• MalRadar [81]: this dataset contains 4,534 Android malware samples scattered across 121
families. Samples have been collected by crawling the mobile security reports published by
ten leading security companies and samples have been manually verified to ensure reliability.

• Argus APK Collection: unfortunately the main webpage where this dataset was hosted
is no longer available but the entire collection can be found on VX-underground [82]. It
contains a total of 24,553 Android samples divided into 71 families.

• CIC-AndMal2017 [83]: it contains both benign and malicious Android applications. The
number of malware samples is 426, categorized into 42 families which belong to four types:
Adware, Ransomware, Scareware and SMS malware.

• DikeDataset [84]: it is a labeled dataset which contains both benign and maliciuous PE
and OLE files. The dataset has been built to perform identification (i.e. being able to assert
wheter a given file is malicious or benign).

4.2.2 How to collect samples

The creation of a large collection which shall contain thousands of samples is not something that
could be done by hand. In order to fulfill this task programmatically we used, when available, the
API services offered by the malware collections mentioned above. By using these APIs is possible
to query a specific hash in order to obtain information about the relative sample or, in the case of
MalwareBazaar, to use the family name to get all the available samples. In order to communicate
easily with VirusShare’s API they also provide a Python client that can be installed by running:

1 pip install PyVirusShare

In order to use this client the user should have a valid API key. The client gives the possibility to
query a specific hash, either to check if VirusShare has it or to get some information or to download
it. Listing 4.1 shows how to query a sample, the result will be a JSON which contains: the scan
results from several AVs showing how that sample has been classified and some information about
the file such as the type, entry point, timestamps, hashes and so on. An example of such report
is shown in Listings 4.2 and 4.3.

1 from virusshare import VirusShare

2 v = VirusShare("apikey")

3 #result will contain the JSON report

4 result = v.info(’a1ac533baaf7de1dae53cf5b465aeca28a7f20bdfc79e5a0a39437dd728c231f’)

5

6 #If we wish to download the sample

7 v.download(’a1ac533baaf7de1dae53cf5b465aeca28a7f20bdfc79e5a0a39437dd728c231f’)

Listing 4.1. VirusShare client usage example.
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1 "scans": {
2 "TotalDefense": {
3 "result": "Win32/Zbot.HII"

4 },
5 "CAT-QuickHeal": {
6 "result": "TrojanPWS.Zbot"

7 },
8 "AhnLab-V3": {
9 "result": "Trojan/Win32.Zbot"

10 },
Listing 4.2. Section of a VirusShare’s JSON JSON reporting how the sample has
been classified by AVs.

1 "exif": {
2 "CharacterSet": "Unicode",

3 "CodeSize": 29696,

4 "CompanyName": "Piececoast Corporation.",

5 "EntryPoint": "0x2ca9",

6 "FileDescription": "Piececoast Locate",

7 "FileFlags": "(none)",

8 "FileFlagsMask": "0x0000",

9 "FileOS": "Win32",

10 "FileSize": "446 kB",

11 "FileSubtype": 0,

12 "FileType": "Win32 EXE",

13 "FileTypeExtension": "exe",

14 "FileVersionNumber": "6.2.49985.2",

15 "ImageVersion": 0,

16 "InitializedDataSize": 577536,

17 "InternalName": "Seat.exe",

18 "LanguageCode": "English (U.S.)",

Listing 4.3. Section of a VirusShare’s JSON reporting some file information.

In order to interact with MalwareBazaar API we didn’t used any already made tool or library
since MB offers many more endpoints compared to VirusShare and we just needed a couple of
them. This endpoints can be contacted through GET/POST request. Listing 4.4 shows the
python code used to contact MB and perform two actions: retrieve information for a specific hash
and download the relative sample. Listings 4.5, 4.6 report some sections of the JSON returned
upon the first request.

1 import requests

2 MB_api = "https://mb-api.abuse.ch/api/v1/"

3 data = {

4 "query": "get_info",

5 "hash": "e7456c57dba442a7e63f2bd45ff5be6c8168f2fcfd15c5e405536fb3bb212dcb"

6 }

7 #issue a post request and retrieve the json contained in the response

8 res = requests.post(MB_api, data=data, timeout=10, allow_redirects=True).json()

9 #check if the sample was found on MB

10 if res[’query_status’] == "ok":

11 #print out all the info

12 print(res[’data’])

13

14 #If we wish to download a specific sample

15 data = {

16 "query": "get_file",

17 "sha256_hash": "e7456c57dba442a7e63f2bd45ff5be6c8168f2fcfd15c5e405536fb3bb212dcb"

18 }

19 res = requests.post(MB_api, data=data, timeout=10, allow_redirects=True).json()

20 #now check if the file was found

21 if res["query_status"] != "file_not_found":
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22 print("Sample successfully downloaded")

Listing 4.4. Code used to contact MB endpoints.

1 "data": [

2 {
3 "sha256_hash": "e7456c57dba442a7e63f2bd45ff5be6c8168f2fcfd15c5e405536fb3

bb212dcb",

4 "sha3_384_hash": "ec210365723b02ba6fedcd33ca6ca0b67a0d18d9045a322af81a57

bf9980c41b15e898b30dfa462a4eb7ef3089463b06",

5 "sha1_hash": "a2ce7a730e96bf6c8f9cd512993fd67cf0c10767",

6 "md5_hash": "e8b61b099af93918a7d59477334471e0",

7 "first_seen": "2023-01-10 09:00:40",

8 "last_seen": null,

9 "file_name": "49136 E2K 610622871149136E2K 6106228711.exe",

10 "file_size": 823691,

11 "file_type_mime": "application/x-dosexec",

12 "file_type": "exe",

13 "reporter": "cocaman",

14 "origin_country": null,

15 "anonymous": 0,

16 "signature": "TrickBot",

Listing 4.5. Section of a MalwareBazaar’s JSON reporting some file information.

1 "data": [

2 {
3 "sha256_hash": "e7456c57dba442a7e63f2bd45ff5be6c8168f2fcfd15c5e405536fb3

bb212dcb",

4 "sha3_384_hash": "ec210365723b02ba6fedcd33ca6ca0b67a0d18d9045a322af81a57

bf9980c41b15e898b30dfa462a4eb7ef3089463b06",

5 "sha1_hash": "a2ce7a730e96bf6c8f9cd512993fd67cf0c10767",

6 "md5_hash": "e8b61b099af93918a7d59477334471e0",

7 "first_seen": "2023-01-10 09:00:40",

8 "last_seen": null,

9 "file_name": "49136 E2K 610622871149136E2K 6106228711.exe",

10 "file_size": 823691,

11 "file_type_mime": "application/x-dosexec",

12 "file_type": "exe",

13 "reporter": "cocaman",

14 "origin_country": null,

15 "anonymous": 0,

16 "signature": "TrickBot",

Listing 4.6. Section of a MalwareBazaar’s JSON reporting AVs classification.

4.2.3 Collecting Windows samples

For what concerns Windows malware the main source of samples used have been VirusShare and
MalwareBazaar. The first step was to collect only hashes for valid samples. A Windows sample
is valid if it meets two conditions:

• It belongs to one of the selected families.

• It is a Portable Executable (PE).

The second condition, which may sound a little restrictive, was chosen to simplify the analy-
sis process avoiding to handle different formats such as dlls, office documents and so on. As
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already mentioned above in Sec. 4.2.1, we used the VirusShare IOC Listings collection from
VX-underground to have a prior classification of VS samples. We downloaded every file from
this collection, parsed each of them and when a sample belonging to our families was found we
contacted VirusShare to check the file type (i.e. if it is a PE). At first we just did an enumeration
of samples, in order to have a complete view of how many samples were available for each family.
We started considering all the families reported in Kaspersky’s reports, cutting out the ones for
which no samples, or too few, were available. We performed the same query on MalwareBazaar
and merged the results. Tab. 4.2.3 shows a list of families for which at least 100 samples was
found.

Family name Number of available samples Type
Ramnit 2528 Trojan
Zbot 2827 Trojan
IcedId 1672 Trojan

Trickbot 1100 Trojan
SpyEye 2505 Trojan
Danabot 1083 Trojan
Tinba 571 Trojan
Gozi 2863 Trojan
Stop 1477 Ransomware

Virlock 2520 Ransomware

Table 4.3. Number of samples available for some of the selected Windows families.

As it can be inferred by this list, there are just two Ransomware families for which a consistent
number of samples is available. Since our wish was to have this dataset balanced both in the
number of samples per family and in the number of samples per type, it was necessary to look for
other sources of samples. We found a considerable amount of samples for Wannacry and Magniber
families on VX-underground in their In The Wild Collection, so we extracted them manually and
added to our initial collection [85].

4.2.4 Collecting Android samples

Finding Android samples was not as easy as for Windows’ ones. We enforced two conditions to
retain a sample as valid:

• It belongs to one of the selected families.

• It is an Android Package (APK).

We could have also considered .dex files as well, but APKs contain more information about the
application so it would probably be better for analysis. Other than just VirusShare and Malware-
Bazaar, some dataset have been partially used since they seemed to be the only available sources
for some families. Obviously these dataset didn’t offer any kind of API, each of them specifies
the contained samples in its own way, hence the collection process could not be automatized as
in the previous case and we needed to download the whole datasets and extract only what was
needed. Tab. 4.4 reports the number of samples found for a subset of the selected families.

4.3 Putting all together

Once all the samples available for the families were enumerated, we were ready to proceeded
with the actual creation of the collection. Before doing that, it was necessary to define how big
this collection should be and how many families it should contain. To this regard, we took the
following considerations:
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Family name Number of available samples Type Source used
Ewind 10 Adware CICAndMalDataset

MobiDash 10 Adware CICAndMalDataset
HiddenAd 288 Adware MalRadar Dataset
Kuguo 100 Adware Argus Collection
Hqwar 179 Trojan VirusShare & MalwareBazaar
Anubis 46 Trojan VirusShare & MalwareBazaar
Svpeng 23 Trojan VirusShare & MalwareBazaar
Asacub 29 Trojan VirusShare & MalwareBazaar

Table 4.4. Number of samples available for some of the selected Android families.

• First of all, we decided to separate Microsoft samples from Android ones. The main reason is
that they are completely different file types, hence the kind of features that will be extracted
will be different as well.

• Since the number of available Android’s samples was definitely smaller than Microsoft’s,
we decided to build the Android collection with the only purpose to be analyzed by using
different techniques (i.e. static and/or dynamic), meanwhile the Microsoft collection will be
a dataset that can also be used in a Machine Learning system to perform both identification
and characterization.

• For what concerns the dataset the number of samples of different classes should be balanced
since it will affect the Machine Learning precision. Furthermore, it would be even better if
the number of samples reflects what the reality actually is, which basically means: the more
common a family is the more samples the dasaset shall have. This affects also the number
of classes since we had to discard those families for which there were not enough sample in
order to preserve this balance.

4.3.1 ST-WinMal dataset

The ST-WinMal dataset contains a total of 8 classes of Windows malware (i.e. families) plus
another class of only benign files which has been inserted in order to perform both characterization
(distinguish a certain family from another one) and identification (defining a sample as malicious
or benign). The total number of sample for each class is:

• Benign class: 961 not malicious executables. These files have been taken from DikeDataset
[84].

• 4 Trojan classes containing the following families: Ramnit - 1500 samples, Zbot - 1200
samples, IcedId - 1000 samples and Trickbot - 800 samples.

• 4 Ransomware classes containing the following families: Virlock - 800 samples, Stop - 1000
samples, Magniber - 800 samples and Wannacry - 1500 samples.

Figure 4.7 illustrates each of these value for each family.
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Figure 4.7. Number of samples per families contained in the ST-WinMal dataset.

4.3.2 ST-AndMal collection

Building an Android collection resulted to be more difficult than theWindows one, since VirusShare
and MalwareBazaar seem to contain mostly Windows malware and they do not have enough An-
droid samples for the selected families. Even the datasets mentioned in Section 4.2.1 are not well
balanced in the number of samples per family and this could lead to a non-reliable classification
if used in a ML system, hence we decided to keep this as a simple collection that will be later
used to test the feature extraction by static and dynamic techniques. This collection contains:

• 4 Adware families: Ewind - 10 samples, MobiDash - 10 samples, HiddenAd - 288 samples,
Kuguo - 200 samples.

• 4 Trojan families: Hqwar - 179 samples, Anubis - 46 samples, Svpeng - 23 samples, Asacub
- 29 samples.

Unfortunately, even if 10 families of RiskTool type have been considered, there were not available
samples on the sources used. Figure 4.8 illustrates the number of samples collected for each family.
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Figure 4.8. Number of samples per families contained in the ST-AndMal collection.

46



Building a malware collection

4.4 Comparison with other datasets

Despite many other datasets have already been created and made accessible in the past, such as
the ones mentioned in Sec. 4.2.1, they were not perfectly suitable for our purposes, hence some of
them had to be discarded or just partially used for the creation of our collections. This is due to
the fact that most of the well known datasets, such as the one used for the Microsoft classification
challenge [38], have been published to be used directly in a ML environment, hence containing
only already extracted features or, as in the Microsoft’s case, they contain samples that have been
manipulated, removing their headers, to prevent execution. Our interest was to obtain samples
that could have been ran and analyzed, leaving to us the task of extracting information. Other
than that, we wanted to focus on families that are currently widespread and to collect samples
that are in specific file formats (PE32 and APK), avoiding to take into consideration samples
belonging to families that are not so common anymore or that comes in other formats and that
should be treated in different ways.
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Chapter 5

Analysis design

The next phase of this research, after having obtained samples of different families from the
available sources, is to investigate them through static and dynamic analysis techniques in order
to find common and different characteristics that could help in the characterization process.
Rather than doing this through manual analysis, we preferred to take a more automatic approach,
performing analysis on the collections described in the previous chapter with the goal of identifying
meaningful information (i.e. features) and extract it. Once this information has been extracted
it will be further analyzed to find similarities and differences and then prepared to become the
input of a Machine Learning system to perform automatic characterization.
This chapter will present the analysis design, showing what has been used to investigate on the
many behaviors each family could present, giving at first an initial presentation of the analysis
system’s workflow and structure. Then a more detailed description of the actual implementation
of our system will be presented along with the features that have been selected for extraction.

5.1 Family study

Before starting an actual development of an analysis methodology, we decided to take some time
to study malware behaviors, focusing on the families that were selected by consulting AV reports,
in order to get an initial understanding of how malicious action could be performed and use that
knowledge to model our system. During this process, we looked for detailed information on what a
particular sample of a specific family does, by reading general family descriptions provided by AVs
as well as reading technical reports of analyses performed on specific samples. We tried to collect
as much information as possible on every family we had selected but, for some of them, there
was not much information and it is also important to underline that during the writing of these
thesis the statistics used to perform a selection change a little, hence some of the families that
were studied in the first phase were not included in the dataset, leaving space to more “current
ones”.
The following sections will present a detailed description about the behavior of some samples
which belong to the families contained in the dataset, trying to emphasize those actions that are
used to perform and achieve persistence, communication with a Command&Control server
(C&C) and obfuscation.

5.1.1 Zbot

Zbot can be installed by other malware families such as Cutwail, Dofoil etc, but usually it is re-
ceived by spam emails. Once running on a system, it looks for the Remote Desktop Service (RDS)
and tries to run a process for every RDS session, creating a copy of itself in the startup folder.
There are some variants which also drop copies on the system folder as well as some encrypted
files containing stolen data. Zbot tries to perform code injection into every running process which
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matches the privilege level of the current logged user. It also performs API hooking of some Win-
dows APIs to intercept sensitive data. In order to perform malicious actions undetected, it also
tries to lower Internet Explorer and Firefox security (i.e. disabling warnings for insecure pages).
It communicates with C&C servers that can send configuration files used to customise its behavior.
For example, these configuration files can contain [86]:

• Locations from which to download updates for the malware.

• Online financial institution that shall be targeted.

• JavaScript payload that can be used to steal data.

• Targeted browsers.

5.1.2 Trickbot

Trickbot samples are usually small in size (less than 500KB) and it does not use any additional
packaging or encryption for the main body. It receives a list of commands from a C&C server,
which are contained in an AES-encrypted file. When it is launched for the first time it creates
an array of encrypted functions on the stack that will be decrypted at run-time, executed and
encrypted again. It tries to perform UAC bypass to obtain admin privileges on the system. One
particular technique that is used to achieve stealthiness is the Heaven’s gate [87] which permits
to switch from 32-bit to 64-bit code without issuing a proper system call that would let the OS
handle this transition. Trickbot uses scheduled tasks to achieve persistence, which is usually
called AudibleFree. It establishes TLS connections with C&C servers to which it sends collected
information [88, 89]

5.1.3 Ramnit

This trojan tries to perform code injection into some processes by loading a device driver. Some
example of targeted processes are winlogon.exe and iexplore.exe. It also connects to remote servers
in order to be instructed on commands and actions that should be executed [90]. It is capable of
performing many malicious actions such as [91]:

• MITM attacks.

• Domain Generation Algorithm (DGA) used to find the C&C server.

• Privilege escalation.

• Lower AntiVirus security by adding exceptions.

• Uploading screenshots containing sensitive information.

The main binary is packed using UPX compression and custom packing. Once unpacked it mainly
consists of three general functions:

1. ApplyExploit: it is used to perform privilege escalation exploiting some known vulnerabil-
ity such as CVE-2013-3660 and CVE-2014-4113; after checking it out the system is actually
affected by those vulnerabilities.

2. CheckBypassed: once checked that, the binary is running with admin privileges, adding
registry keys to avoid detection (i.e. obfuscation/evasion).

3. start: it is a routine that coordinates the two previous functions and, once they have been
executed succesfully, it creates two svchost.exe processes and writes two dlls.

49



Analysis design

5.1.4 Anubis

Anubis is an Android banking trojan which is capable of stealing information performing Overlay
attacks and intercepting Calls/SMSs. It can also act as a keylogger. It is generally delivered
through third-party sites but some variant have also been found on the official Play Store. It is
composed by two modules: a downloader and a payload. The latter is obtained from a C&C server.
This malware family achieves persistence using the permission RECEIVE BOOT COMPLETED
which allows to open the app each time the mobile device is restarted. It also avoid deletion by
showing error messages when the user tries to uninstall it by intercepting clicks and monitoring
events. It sends device information to the C2 server: this information includes the list of installed
applications, which is used by the server to send customized payloads and pages that will be used
to perform overlay attack and steal sensitive data. It also intercepts SMSs, which allows it to
steal OTP codes. It requests to become the default SMS app on the device which will allow to
also remove received messages and hide malicious actions from the user. Other than SMS, phone
calls can be intercepted and redirected as well [92].

5.1.5 Svpeng

This trojan exploits accessibility services, which are meant to provide UI enhancements for user
that cannot interact fully with a device. By abusing this feature, the trojan will be able both to
steal user data and gin higher privileges, obtaining administrative permissions that will permit it
to prevent being deleted. It takes screenshots of pages containing sensitive data or it performs an
overlay attack if this action is denied by the target application. It receives commands from C&C
server. It is generally distributed by malicious third party sites as a fake flash player [93].

5.1.6 Asacub

Asacub has been detected for the first time in 2015. Back then it was a spyware family, known
as Smaps, and it evolved later into a banking trojan [94]. It communicates with C2 servers,
the communication is encrypted with RC4, meanwhile its ancestor spyware version used to send
everything in clear. This malware family propagates by sending SMSs containing a link to a
web-page where the malware can be downloaded. It stresses the user by prompting access request
pages for Accessibility services until these are given and then it will set itself as the default app and
disappears from the main screen. C&C server sends commands which may differ between the many
flavors of this family. It heavily employs obfuscation techniques, such as string concatenation,
classes and methods renaming to implement functions in native code (C/C++) which would
require the analyst to use different tools able to deal with those files [95].

5.1.7 Hqwar

Firstly appeared in 2016 [96], Hqwar is a banking trojan which mainly acts as a dropper for other
families. It contains a .dex file encrypted with RC4. Actually, it does not drop any application,
but it loads it, thus avoiding to ask for the victim’s permissions.

5.1.8 Stop

This Windows ransomware family usually spreads through pdf files attached in spam e-mails. It
implements two persistence mechanisms: an AutoRun registry key and a scheduled task created
using COM objects. It also downloads other malicious files. Encryption targets both local drives
and network shares, and it uses the Salsa20 algorithm. It droppes copies of itself in other locations,
tries to connect to the internet to obtain localization data. Once the encryption process has been
completed, it drops a ransom note with instructions on how to pay the ransom [97].
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5.1.9 Wannacry

This famous ransomware family spreads throgh a worm component, exploiting a well-known
vulnerability called EternalBlue [16]. Once running on the victim’s system, it starts a three-
stage attack:

1. Contacts a kill witch domain, if it does not receive a response it will drop its worm component
which will replace the executable tasksche.exe. If the kill switch responds, the malware will
stop its actions.

2. Drops some files (dlls and executables) that are needed to perform encryption.

3. Creates multiple threads dedicated to encrypt victim’s files.

It obtain persistence by running a service named mssecsvc.exe and adding a registry key named
WannaCrypt0r. In order to avoid the restoring of the system to a previous state, it deletes backups
and tries to prevent the system to being booted in safe mode [98].

5.1.10 Comparison between families characteristics

Tables 5.1.10, 5.1.10 and 5.1.10 summarize the descriptions provided above in the previous sec-
tions.

Zbot Trickbot Ramnit

Persistence Copies itself in Scheduled task Registry keys,
other locations Autorun task

Techniques API hooking UAC bypass, Heaven’s gate MITM, DGA,
privilege escalation

Spreading Spam emails, installed ? Email attachments
by other families

C&C server Receives configuration files Receives commands Receive commands

Table 5.1. Common and different characteristics for Windows Trojan families.

Stop Wannacry

Persistence Registry keys, Registry keys,
background task deletes shadow copies

Techniques Encrypts with Salsa20 Encrypts with AES,
EternalBlue exploit

Spreading Email attachments Worm component

C&C server ? Kill switch

Table 5.2. Common and different characteristics for Windows Ransomware families.

51



Analysis design

Anubis Svpeng Asacub Hqwar

Persistence Permission to Prevents ? ?
start on boot uninstalling

Techniques Keylogging, Steals SMSs and Installs as Dynamically loads
overlay attack calls, screenshots SMS app its modules

Spreading Third party sites, Fake flash player Phishing SMSs ?
Play store on malicious sites

C&C Receives payloads Receives Receives ?
server commands commands

Table 5.3. Common and different characteristics for Android Trojan families.

5.2 System architecture

In order to fulfill our purposes, we designed an analysis system which leverages on well-known
tools to extract meaningful information from each sample of our collections. Fig. 5.1 depicts its
structure. The system is divided into an Android and a Windows part which takes samples from
the relative datasets and extract some features. The following sections will dive into the workflow
and the implementation of each component, showing which tools have been used and which are
the features that this system aims to extract.

Figure 5.1. Overall architecture.

5.2.1 Windows analyzer

The Windows analyzer is in charge of applying analysis techniques to obtain useful information
from samples. Even if dynamic techniques could produce more meaningful and representative
information, since the malware is actually executed and its behavior is monitored, it requires a
consistent amount of computational resources in order to be applied to a large number of samples.
Running dynamic analysis on a large collection of samples basically requires two prerequisites:

1. Enough computational resources: the analyst should setup an isolated and monitored sys-
tem, usually known as a sandbox, where the malware can be ran and its behavior tracked.
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2. Enough time: generally speaking, the more a sample can be monitored while executing,
more information will be generated. In order to test thousand of samples in a feasible
amount of time the best option is to have more sandboxes running concurrently which, once
again, requires resources.

For these reasons the analyzer combines both static and dynamic approaches on samples, applying
the latter only to a subset of the dataset and the first to the whole collection.

Static analyzer

This component of the Windows analyzer is in charge of parsing a sample and, without executing
it, extract the information that is contained inside. It mainly relies upon the pefile Python library
which extracts information from PE headers and sections. Fig. 5.2 depicts its structure. It aims
to extract three types of information from each sample:

Figure 5.2. Windows static analyzer structure.

• Bytes: the Bytes Extractor is in charge of removing PE headers and just dumping all the
section bytes in a .bytes file. This files can be used to perform n-gram analysis and it
also makes the sample sterile, since it cannot run anymore, preserving all the information
contained in its sections.

• APIs: the APIs Extractor extracts all the imported APIs. These are retrieved by looking
at the Import Address Table (IAT), if available.

• Entropy: the Entropy extractor takes all the PE’s sections and calculate their entropy. This
is done both for standard sections such as .text .data etc. and for non-standard sections
(i.e. sections that may have been defined by the malware author himself, these may include
additional code and data).

Dynamic analyzer

As already mentioned before, dynamic analysis requires to setup an isolated and monitored envi-
ronment where a malware sample can run freely. We sat up such an environment using the Cuckoo
Sandbox [69]. This sandbox basically consist of an Host where the main Cuckoo components run,
and an Agent which runs inside a virtual machine (VM). The agent environment was prepared
by creating a Windows 7 VM running on VirtualBox. This machine was configured to use the
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Host-only network mode, which allows only communication between guest and host. In addi-
tion to that, we added InetSim, a network services simulator, which is used to further deceive
samples into thinking that they are running with a working connection. Fig. 5.3 illustrates the
environment structure.

Figure 5.3. Windows dynamic analyzer structure.

The Windows 7 VM runs the Cuckoo agent, which practically is a Python program that once
launched listens for commands from the host. The host will send the sample that will be injected
and ran inside the VM, meanwhile many Cuckoo components will be monitoring its actions.
Once the analysis is completed (i.e. the time specified is expired or some error has occurred) all
this information will be saved on the host and the VM will be restored to a previous snapshot
where the sample was not yet injected. In order to automate such an activity we developed the
Cuckoo Monitor which is a Python program that stands between our collection of samples and
the Cuckoo host instance, interacting with the latter using Cuckoo API. This is another feature
offered by Cuckoo which makes the host listening for commands on specific endpoints, giving
the possibility to distribute the whole environment since the API can be placed on an endpoint
reachable from the outside. The Monitor does the following actions:

1. Submission phase: for each family in our collection, a prefixed number of samples is taken
and submitted to the Host, for each successful submission a taskId is returned that will be
saved. Then the monitor sleeps for two minutes.

2. Waiting phase: once awaken the monitor will ask for the reports relative to the submitted
tasks, going back to sleep for 10 seconds if none is available.

3. Parsing phase: when an analysis is completed its report is retrieved (which is a JSON
document). From this report the API trace is extracted; this contains the API used by the
sample during execution along with the number of usages.

4. Cleaning phase: every file generated by Cuckoo is deleted. This is done to prevent memory
saturation.

This process is repeated until a desired amount of result is achieved. For each sample that has
produced valid result (i.e. the dynamic report has useful information and it is not empty) a counter

54



Analysis design

is updated. It may happen that some samples don’t produce any results (i.e. the malware has
detected it is being analyzed or a generic Cuckoo error happened), in this case the counter will
not be increased, hence more samples will be submitted until the desired amount of result has
been reached or there are no more samples available. Figure 5.4 depicts the monitor components
used in the four phases described above.

Figure 5.4. Cuckoo Monitor’s structure.

The monitor basically consist of three Python modules:

• cuckooAPIs.py : it is the point of access to the Cuckoo’s API. It implements the methods
needed to perform some basic actions such as submitting a sample, retrieving and deleting
a report and so on.

• extractFeatures.py : this module implements the extraction of APIs from the report. Actually
this file also contains method which belongs to the static analyzer to extract static features,
but these methods can work with Cuckoo as well if the analyst wants to retrieve also static
information from the generated report.

• analyzer.py : this is the core component of the monitor which implements the four phases
described before by interacting with the other two modules.

5.2.2 Android analyzer

The Android analyzer presents a similar structure to the Windows one, being composed of a static
and a dynamic part that are meant to extract different count of features. Since the number of
samples contained in the Android collection is smaller compared to the Windows’ one, here both
static and dynamic analysis are performed on the whole collection, differently from the Windows
analyzer, where the dynamic part was used only on a subset of the dataset.

Static analyzer

The Android static analyzer relies upon Droidlysis [99] to extract information from APKs. It
tries to extract three types of features from each sample. Fig. 5.5 illustrates its structure.
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Figure 5.5. Android static analyzer structure.

• Activities: they are basically the windows where the application draw its UI and they are
one of the main components of an application.

• Permissions: they basically tell what the application intends to do, asking access to par-
ticular features and/or resources of the system.

• Smali properties: these are inferred from droidlysis, they are a description of what the
Dalvik code (the one contained in the .dex files) tries to do, such as sending sms, intercepting
phone calls etc.).

Dynamic analyzer

In order to perform dynamic analysis, we used CuckooDroid, which is an extension of Cuckoo
that can be used to analyze Android applications. Once again the Cuckoo agent will be placed
inside a VM, a Linux one this time, where an Android emulator will be in charge of emulating an
Android device where applications will be ran. Fig. 5.6 depicts the analyzer architecture.

Figure 5.6. Android dynamic analyzer structure.
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Since CuckooDroid is just an extension of Cuckoo, the basic functionalities used for Windows are
still available, hence it was not necessary to write a complete new system but only some functions
were added (the ones to handle the reports, which are obviously different). The workflow of the
Cuckoo’s monitor is the same of the Windows’ one (it goes cthrough the same four phases) and
also the Monitor structure remains the one depicted in Fig. 5.4.

5.3 Tools

Each component of the system described above relies on some well-known analysis tool to achieve
its goal. The following section will give more specific details on what are the tools that have been
used by each component to fulfill the task of feature extraction and how these have been actually
used, providing some usage examples as well.

5.3.1 Windows static analyzer

The static analyzer for Windows samples, which are only executables (no dll, documents etc.),
aims to extract three kind of features: entropy of each section, bytes of the executable (headers
excluded) and APIs imported. All these kinds of information are embedded inside the executable
and are extracted using pefile [100], which is a Python module able to parse Windows executable
and inspect the information they contain.

Extracting bytes

This feature is the easiest to extract, since it can be done by just reading the file bytes. This
would have left each sample as it is so to guarantee sterility, headers are removed. This is done
by obtaining the address of the first section of the executable. Listing 5.1 reports the code used
to obtain this address.

1 import pefile

2 def readBytes(source):

3 f = open("source", "r")

4 pe = pefile.PE(source, fast_load=True)

5 #get address of the first section

6 addr = pe.sections[0].PointerToRawData

7 if addr == 0:

8 print("Address not found")

9 return -1

10 pe.close()

11 f.seek(addr)

12 readBytes(f)

Listing 5.1. Code used to obtain a pointer to the first section.

Extracting entropy

Each executable may come with different sections, in fact, apart from the standard ones, malware
authors can insert custom sections. This can be done to hide some portion of the code or of data
that will be later used. Using pefile it is possible to get a list of all section and obtain their entropy.
Listing 5.2 shows an example of code which extracts the entropy of all the sections contained in
a PE.

1 import pefile

2 def extractSectionEntropy(source):

3 #dictionary where the pair <key,value> is <section, entropy>

4 e_d = {}

5 pe = pefile.PE(source, fast_load=True)

6 for entry in pe.sections:

7 e_d[str(entry.Name.strip(b"\x00"))] = entry.get_entropy()

8 return e_d

Listing 5.2. Code used to obtain entropy of each section.
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Extracting APIs

Except for some particular case, each executable carries with it a list of imported functions that
will be used during execution. This functions can be found inside the Import Access Table
(IAT), which can be accessed with pefile by the attribute DIRECTORY ENTRY IMPORT. Once
extracted, the analyzer saves them in a file named “hash.apis”, where “hash” is the sha256 or md5
of the sample. Listing 5.3 shows an usage example where the IAT is accessed to obtain imported
APIs.

1 import pefile

2

3 def extractStaticAPIs(source):

4 imports = []

5 pe = pefile.PE(source)

6 for entry in pe.DIRECTORY_ENTRY_IMPORT:

7 for imp in entry.imports:

8 if imp != None:

9 imports.append(imp.name.decode())

10 return imports

Listing 5.3. Code used to extract APIs from the IAT.

5.3.2 Windows dynamic analyzer

Dynamic analysis is performed through the Cuckoo sandbox [69], with the goal of obtaining the
APIs used by the sample during execution as well as the number of times each of them is called.
As already mentioned previously, Cuckoo works by running its main component on an host system
and an agent which runs inside a VM where the sample will run. These two components talk to
each other using the XMLRPC protocol. In our analysis system Cuckoo’s host is placed on an
Ubuntu 20.02 operating system, meanwhile the agent runs inside a Windows 7 VM. Tab. 5.3.2
reports VM’s configuration. The Windows VM has been created using VirtualBox.

Windows 7 VM
Name cuckoo1-win7

Guest OS Windows 7 (64 bit)
Memory size 4096 MB

Number of CPUs 2
Shared folders None
Network type Host-only

Table 5.4. Configuration of the Windows 7 Virtual Machine.

Cuckoo can use different tools to perform analysis. Once installed it is possible to customise the
analysis through some configuration files. In order to get behavioral analysis, which will capture
any API used, the processing.conf file needs to be modified, enabling the behavior section. In some
initial attempts we also enabled the memory dump, which requires the installation of Volatility,
but this generated huge reports (3-4 GB each) therefore we decided to turn this option off. After
filling the configuration files there are three component of Cuckoo that needs to be launched:

• Cuckoo: it is the central component, it will look for declared machines and then it waits
until an analysis is submitted.

• Rooter: it is required to perform some additional commands on Cuckoo such as using
InetSim to simulate working network services.

• Api: it creates some endpoints that can be contacted to send commands to the central
component. These API only accepts packets which contain a token in the header, which
can be found in the configuration files.
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Once these components are running it is possible to perform analysis. This can be done by
submitting a sample (by the api or the cuckoo submit command). When a sample is submitted
Cuckoo returns a taskId which is a number identifying the analysis. This id can be later used to
retrieve the report or get the task state. Each task goes through four states:

1. Submitted: the sample is put in a queue until Cuckoo is ready to inject it inside the VM.

2. Running: the sample is running inside the monitored VM.

3. Completed: analysis is finished and the report files are being generated.

4. Reported: the report is finally available.

When the analysis is complete (i.e. task is in the reported state), Cuckoo generates a result
folder in the .cuckoo/storage/analyses directory. The only interesting file for our purposes is the
report.json which contains a summary of the analysis and a description of various actions the
sample has performed. Listing 5.4 shows a section of a report obtained on a Wannacry sample,
which reports commands executed through command line.

1 {
2 "families": [],

3 "description": "Command line console output was observed",

4 "severity": 1,

5 "ttp": {},
6 "markcount": 3,

7 "references": [],

8 "marks": [

9 {
10 "families": [],

11 "description": "Tries to locate where the browsers are installed",

12 "severity": 1,

13 "ttp": {},
14 "markcount": 1,

15 "references": [],

16 "marks": [

17 {
18 "category": "file",

19 "ioc": "c:\\program files\\mozilla firefox\\firefox.exe",

20 "type": "ioc",

21 "description": null

22 }
23 ],

24 "name": "locates_browser"

25 },
26 {
27 "families": [],

28 "description": "Checks amount of memory in system, this can be used

to detect virtual machines that have a low amount of memory

available",

29 "severity": 1,

30 "ttp": {
31 "T1082": {
32 "short": "System Information Discovery",

33 "long": "An adversary may attempt to get detailed

information about the operating system and hardware,

including version, patches, hotfixes, service packs, and

architecture."

34 }
35 }
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Listing 5.4. Section of a Cuckoo report.

5.3.3 Android static analyzer

The static analyzer uses Droidlysis [99], which is a property extractor for Android applications,
that is able to extract properties from APK as well as disassembling application’s code and
retrieve some information about what it does. Droidlysis leverages on other tools to extract more
information, these can be specified by editing a configuration file, named droidconfig.py. We
configured it to use:

• Apktool: it can unpack and repack android packages, it is used to extract resources from
samples.

• Baksmali: it is a disassembler for the dex files, which are the ones containing the applica-
tion’s code.

• Dex2Jar: can convert dex files to class files, it also has a disassembler but with a different
implementation from baksmali.

When droidlysis is launched it prints out the extracted information as well as producing a more
detailed report in a specific folder, which can be specified when launching the analysis. Analyses
can be start in two ways: by executing the central Python script (droidlysis.py) or by importing
droidlysis as a library in a Python program. Listing 5.5 shows how to launch an analysis, mean-
while Figs. 5.7 and 5.8 show an example of the output generated by Droidlysis on a sample which
belongs to the Anubis family. From these it is possible to see that this tools provides some basic
information such as file’s hash, its size, class number and so on, as well as more useful information,
such as the features we are looking for.

1 import droidlysis3

2

3 droidlysis3.process_file(sample, outdir="tmp/")

Listing 5.5. Code used to launch droidlysis from Python.

Figure 5.7. Output of Droidlysis.
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Figure 5.8. Output of Droidlysis.

5.3.4 Android dynamic analyzer

Dynamic analysis on Android samples is performed through CuckooDroid, an extension of the
Cuckoo sandbox which allows to submit android applications and analyze them. Once again,
CuckooDroid uses one central component and an agent which communicates to each other through
the XMLRPC protocol. In this case it is needed to emulate and Android device in order to run
applications. CuckooDroid offers three implementation choices:

• Android on Linux machine: both the agent and the emulator run on a Linux VM. After
an analysis the system is restored to its previous state by the means of snapshots, in the
same way as it is done for the standard Cuckoo Sandbox.

• Android emulator: host, agent and emulator run simultaneously on the same system.
Each time an analysis is performed the emulated device is duplicated to have a clean state
(i.e. snapshots only on the emulator, not the entire system).

• Android device cross-platform: here the android device is virtualized (there is not a VM
which runs an emulator) and the agent is not a python program anymore, but it becomes
an APK which runs inside the virtualized device.

Among these three choices we choose the first one since it is more similar to the Windows’
implementation and it was easier to configure. Tab. 5.3.4 reports the details of the Linux VM.

Linux VM
Name cuckoodroid-14-aol

Guest OS Ubuntu 14.04 (64 bit)
Memory size 16384 MB

Number of CPUs 8
Shared folders None
Network type Host-only

Table 5.5. Configuration of the Linux Virtual Machine.
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Once the VM and the emulator are running there are some applications that need to be installed,
these will prevent malware samples from knowing that they are running inside an emulator as
well as capturing actions that the sample will perform while it is running. These applications
are provided with CuckooDroid and the documentation explains how to correctly install them.
Samples can be submitted more or less in the same way as per Cuckoo, using the submit command
or by running the API service and contacting the proper endpoint. Differently from the Windows
analyzer, here the Cuckoo rooter is not needed (it was necessary in the Windows case since we
were using InetSim). Everything else remains unchanged: each submission generates a taskId,
each task will go through four states and once the analysis is completed a json and an html report
are generated. These reports have both static and dynamic information as can be seen in Listings
5.6, 5.7 that show two sections of a report generated from an Anubis sample.

1 {
2 "families": [],

3 "description": "Application Asks For Dangerous Permissions (Static)",

4 "severity": 3,

5 "references": [],

6 "alert": false,

7 "data": [

8 {
9 "process": null,

10 "signs": [

11 {
12 "type": "android.permission.ACCESS_FINE_LOCATION",

13 "value": "Access fine location sources, such as the

Global Positioning System on the phone, where

available. Malicious applications can use this to

determine where you are and may consume additional

battery power."

14 }
15 ]

16 }

Listing 5.6. Example of a CuckooDroid report’s section which shows some static information.

1 "droidmon": {
2 "api": {
3 "android_telephony_TelephonyManager_getLine1Number": 4,

4 "android_util_Base64_encode": 12,

5 "android_app_SharedPreferencesImpl_EditorImpl_putString": 218,

6 "android_app_ActivityThread_handleReceiver": 29,

7 "android_content_ContextWrapper_startActivity": 396,

8 "android_util_Base64_encodeToString": 6,

9 "java_net_URL_openConnection": 9,

10 "android_telephony_TelephonyManager_getNetworkOperatorName": 4,

11 "android_util_Base64_decode": 444,

12 "java_io_File_exists": 306,

13 "android_app_ApplicationPackageManager_setComponentEnabledSetting": 1,

14 "java_net_ProxySelectorImpl_select": 10,

15 "android_telephony_TelephonyManager_getNetworkCountryIso": 4,

16 "libcore_io_IoBridge_open": 78,

17 "android_app_Activity_startActivity": 2,

18 "android_content_ContextWrapper_startService": 145,

19 "java_lang_reflect_Method_invoke": 1,

20 "android_os_SystemProperties_get": 24

21 }

Listing 5.7. Example of a CuckooDroid report’s section which shows some dynamic properties.
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5.4 Malware features

Previous researches [101, 102] have shown how malware may contain different kinds of information
that can be used to identify and characterize them. Despite we were able to extract most of them
for most of the samples, some of them have been discarded because they should be later used as
input for a ML system, hence they should be suitable for this purpose. Some features, as strings,
IP addresses contacted or the process tree, would require an appropriate encoding in order to
become a valid input, which in some case could be quite complex and there is no guarantee that it
would lead to better results. Having considered this, we performed a selection of features that our
analysis system should extract, taking into consideration the ones that better suit our purposes.
These are reported in Tabs. 5.6 and 5.7.

Windows features
Feature Extracted through Description

Bytes Static analysis
The actual bytes that composes the executable,

can be used to perform n-gram analysis.

APIs Static analysis
List of imported APIs.

They are declared in the IAT.

Section entropy Static analysis
Entropy of each section that
composes the executable.

API count Dynamic analysis
List of APIs actually used during

execution, along with the number of usages.

Table 5.6. List of selected features to be extracted from Windows samples.

Android features
Feature Extracted through Description

Activities Static analysis
The list of Activities that constitute

the application.

Permission list Static analysis
The list of permissions required by the app
to run, they are declared in the manifest.

Smali properties Static analysis
Properties of the smali code (i.e.

what it tries to do).

API count Dynamic analysis
APIs that are actually used, along

with the number of usages.

Table 5.7. List of selected features to be extracted from Android samples.

5.5 Comparison with other analysis tools

There are many researches focused on malware identification and characterization, which describe
the development of systems comprehensive of both an analyzer and an ML classifier [5, 6, 7],
where they perform identification or characterization, but using only a single type of features.
R. B. Hadiprakoso et al. [103] have developed an Android malware detection system that uses
combination of features, but they focused only upon identification (i.e. labelling a sample as
benign or malicious). In comparison to these systems, we tried to build something that would
give more flexibility to the analyst, allowing him to choose between different types of features,
deciding whether to apply static and/or dynamic analysis. It is also important to outline that this
research is not focusing at all on the creation of a ML classifier, but rather on the development of
an analysis methodology that could aid the process of characterization, by understanding which
kind of information can represent the behavior of a family, and extracting it.
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Chapter 6

Results

6.1 Features Datasets

Starting from the Windows malware dataset described in Chapter 4 4.3.1, which contains only
benign and malicious executables, we built other datasets that do not contain samples, but their
features. These features can be used as a source of data to train a ML system, using each one
of them one by one or combining them together. The whole dataset has been subjected to static
analysis, while only a smaller subset has been processed through dynamic approaches.

6.1.1 Static features dataset

Each sample which belongs to our dataset has been processed with the Windows Static analyzer
extracting three kind of features: section bytes, imported APIs and section entropy. Figs. 6.1, 6.2
and 6.3 show the number of features available for each class. This number may differ from the
original number of samples processed since some samples had to be discarded when they did not
contain valid results (i.e. an empty Import Access Table).
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Figure 6.1. Number of samples per family for the bytes dataset.
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Figure 6.2. Number of samples per family for the APIs dataset.
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Figure 6.3. Number of samples per family for the entropy dataset.

Having to exclude some samples, these datasets required an additional revision in order to be
combined. We prepared another dataset of combined features, where only those samples that
have produced valid results for all the three selected features were included. Fig. 6.4 reports the
number of sample for each class in this dataset.
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Figure 6.4. Number of samples per family when features are combined.

6.1.2 Dynamic features dataset

For what concerns dynamic features, only a smaller portion of the dataset has been subjected
to dynamic analysis, since it was not possible to process the whole collection in an acceptable
amount of time. For each class of the dataset, 200 samples were taken and analyzed.

6.2 Windows statistics

The following sections will give some insights on the data that has been extracted during the anal-
ysis of Windows samples, trying to emphasize differences and similarities that could be meaningful
for both identification and characterization purposes. Each section is dedicated to one particular
feature from the ones that have been obtained: imported APIs, sections’ entropy and dynamic
APIs (i.e. number of usages of APIs called by each sample).

6.2.1 Identification through APIs

Through our system, we have collected APIs contained in the Import Access Table (IAT) of each
sample. We have counted, for each API, the number of times it appears in the IAT of benign
and malicious samples, in order to compare it and check if this feature can be a good mean of
identification. Figs. 6.5 and 6.6 depict, for benign and malicious samples respectively, the ten APIs
that have been found most frequently. These two charts share some APIs, such as GetLastError
and Sleep, but the majority of them differs, as well as the percentage values of the common ones.
82.2% of malware samples contain the GetProcAddress function, which can be used to retrieve the
address of a precise procedure (i.e. a function) or a variable contained in a DLL. There are two
other APIs that are meant to work with DLL: GetModuleHandleA and LoadLibraryA. Comparing
the two charts, only four APIs out of twenty are shared, but with different percentage values.
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6.2.2 Characterization through APIs

Other than using APIs for identification, we would like to test this feature also for characterization.
This section will present the distribution of some APIs on the various families we have collected,
pointing out what are the main differences in this distribution.
We scanned the Import Access Table (IAT) of each sample counting, for each family, how many
times each API has appeared. Then, we selected the five APIs that each family has mostly used
and plotted all this information on the heat map depicted in Fig. 6.7. As can be noticed, most
of the boxes are not present; this is due to the fact that the percentage of appearances was less
than 1%. Despite we selected five APIs per family, the chart reports only 21 functions since some
of them were common to more families. This map shows how some API functions are almost
exclusive to a subset of the families, such as TerminateProcess, LoadLibraryA as well as some
other such as VirtualProtect, VirtualAlloc are exclusive to a specific family. This is indeed a good
sign that this feature could be used as a mean of characterization.
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6.2.3 Identification through sections’ entropy average

Let’s now discuss another feature: sections’ entropy. We extracted the entropy of every section
contained in each executable, considering both standard and non-standard ones. The latter refers
to those “custom” sections that are defined by the authors of the executable and they usually
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contain hidden data and code. Figure 6.8 reports the average of the entropy value for the standard
section of benign and malicious samples. We did not included in this chart every possible standard
section, since most of them were not likely to be found, hence we inserted only those that are
usually more common. As can be seen from this chart, .data, .idata, .pdata, .rsrc and .xdata are
the sections where the entropy values have a difference greater than one, while the other sections
present values that are relatively close to each other.
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Figure 6.8. Sections’ entropy average of malicious and benign executables.

Number of “weird” sections

Other than considering just standard sections, we decided to take a look also to non-standard
ones. We counted, for each family, how many times a “weird” section appears and calculated the
average of this occurrence, which is shown in the bar chart depicted in Fig. 6.9. Ramnit family
is the one that takes the lead, presenting almost two non-standard sections on each sample we
have collected and examined, followed by Zbot with an average value of 0.79. On the opposite,
Trickbot has very few samples that contain this kind of sections, showing an average value of 0.04
occurrences. IcedId, Virlock and Stop report similar values, ranging from 0.4 to 0.45 as well as
Magniber and Wannacry with 0.19 and 0.23 respectively.
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Figure 6.9. Average of weird sections found for each family.

“Weird” sections entropy average

Other than considering just the number of times a non-standard section appears, we also decided
to evaluate separately their entropy value. By looking at the bar chart depicted in Fig. 6.10, we
can immediately notice that Ramnit has the highest entropy value which, compared to those of
the standard sections (Fig. 6.8) is near to the .text section, which is usually meant for storing
code. Other families, such as Stop, Magnhiber and Wannacry present lower values that are closer
to .rsrc, .data and .rdata, which are standard sections meant for resources and data. The closeness
of these values can be a good index of what these “weird” sections may contain, thus their content
should always be considered when examining a sample.
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Figure 6.10. Average of weird sections’ entropy found for each family.
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6.2.4 Characterization through sections’ entropy average.

Moving back to the entropy of standard sections, let’s now discuss these values family by family.
The map depicted in Fig. 6.11, shows the entropy average of each standard section for each family.
White boxes represent value that had an average value between 0.00 and 0.01. When calculating
the average and a standard section did not appear in the executable, we assigned it the value 0.0.
By looking at this heat map we can immediately see how all the families but Zbot have high
values of entropy on the .text section, ranging from 6.14 (Wannacry) to 7.88 (Virlock). Sections
.edata, .idata, .pdata and .xdata seem to have not meaningful differences in their values, since
each family has low entropy that stands between 0.0 and 0.25, except for Trickbot which has a
slightly higher value on the .idata section (1.0). The remaining sections definitely show higher
values and in each of them there is at least one family that distinguishes: Zbot has the lowest
rate in each of these sections except for .rsrc and .reloc.
These results show how not every standard section has to be considered and probably, only .data,
.rdata, .reloc, .rsrc and .text would be enough for characterization purposes. Tab 6.1 summarizes,
for each of these sections, what is the family that has the highest and the lowest value. It clearly
shows how in these five sections all the families except Trickbot distinguishes itself for having the
highest or the lowest value.
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Figure 6.11. Average of sections’ entropy for each family.
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Section Highest entropy family Lowest entropy family
.data IcedId Zbot
.rdata Magniber Zbot
.reloc Ramnit Wannacry
.rsrc Magniber IcedId
.text Virlock Zbot

Table 6.1. Sum up of the most meaningful sections.

6.2.5 Identification through dynamic APIs

After having considered the previous static features, it is time to move onto the dynamic one:
API counts. These have been captured by executing 200 samples of each family inside a sandbox
and monitoring each call they made. This section will discuss identification, by comparing the
APIs that were called mostly by benign and malicious samples respectively. Fig. 6.12 reports the
ten top APIs for benign executable, while fig. 6.13 shows the malicious ones. Both charts have
NtClose and LdrGetProcedureAddress as the two most used APIs but the real interesting difference
is in the number of calls, and this looks huge. Despite both benign and malicious samples were
ran for five minutes, malicious ones present a more intense usage of the system capabilities, which
could probably be considered as a stand-alone feature, without actually considering which are the
functions that have been actually called.
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Figure 6.12. Average of number of calls for benign samples.
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Figure 6.13. Average of number of calls for malicious samples.

6.2.6 Characterization through dynamic APIs

After having discussed those APIs that are mostly used by malicious samples, it is now time to
take a deeper look on what each family actually does. Figs. 6.14, 6.15 show the average number
of calls performed by each family for a subgroup of APIs. These two charts report a total of 28
functions, which have been selected by grabbing the top five used APIs of each family. These
two maps reveal that the numbers reported in the previous section, in Fig. 6.13, do not describe
correctly the behavior of some families. The two APIs that appeared before as the mostly used,
are actually heavily used by only two families: Virlock and Stop. Among our families, Virlock is
the one that has performed the highest number of function calls, reporting the highest values in
half of the selected functions. On the contrary, other families seem to have only a few functions
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were they take the lead in the number of calls. The first map, depicted in Fig. 6.14, also shows
that some APIs were not even found on every family, such as FindResourceExA, SizeOfResources
and OutputDebugString.A, with the last one that has appeared only on Zbot samples.
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Figure 6.14. Average of number of calls for benign samples.

The second chart, depicted in Fig. 6.15, shows a more homogeneous situation, since all the 14
APIs are used by at least six families out of eight, but with substantial differences in the number
of calls performed. As already said, Virlock presents the highest number in the majority of these
function calls, but we can find interesting values in other families as well. For example, Ramnit
samples seem to have extensively used the ReadProcessMemory function, showing an average
of 4109.3 calls, which is quite an outstanding value not only in comparison to other families,
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but even when comparing to other API calls of this family. Similar situations occur for other
families as well: IcedId with NtDelayExecution (854.2 calls), Zbot with LdrGetProcedureAddress
and NtMapViewOfSections (5675 and 6797.5 calls respectively).
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Figure 6.15. Average of number of calls for malicious samples.

6.3 Android Statistics

This section will describe, in the same manner as for the Windows part, the features that have been
extracted from Android samples. Differently from before, the following sections will just discuss
and describe these results for characterization purposes, not identification, since the Android
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collection does not include a benign class, but only seven malware families. As already discussed
in chapter four, the Android collection is not well-balanced as the Windows’ one, since we were
not able to find a substantial number of samples for some families, but we though their results
still deserve to be discussed and reviewed.

6.3.1 Characterization through permissions

The permission that an application requires in order to run, can often portray very clearly what
it is going to perform, or at least, what it will be capable to perform. There are many kinds of
permission in the Android ecosystem. While analyzing our samples we came across 253 different
permissions,. Some of them were present almost in each analyzed sample, while some others rarely
appear and only a small subset of sample requires them. This section will report some statistics
about some of this permissions, covering only 15 out of the 253 found. These 15 samples were
selected mainly for two reasons:

1. Percentage of samples containing them. This should be greater than 1%.

2. Potential danger of such permissions. For example the SYSTEM ALERT WINDOW can
be required to perform an overlay attack. Some other permissions such as READ SMS and
PROCESS OUTGOING CALLS can represent a menace to user’s privacy.

Tables 6.2, 6.3 and 6.4 describes the permission reported in the three charts below. These de-
scription are provided by the Android Developer Manual [104].

Permission Description
RECEIVE BOOT COMPLETED Allows an application to start at each boot.

ACCESS FINE LOCATION Allows an app to access precise location.
ACCESS COARSE LOCATION Allows an app to access approximate location.

READ SMS Allows an application to read SMS messages.
SEND SMS Allows an application to send SMS messages.

Table 6.2. Description of some of the selected android permissions.

Permission Description

PROCESS OUTGOING CALLS

Allows an application to see the number being
dialed during an outgoing call

with the option to redirect the call
to a different number or abort the call altogether.

CALL PHONE
Allows an application to initiate a

phone call without going through the
Dialer user interface for the user to confirm the call.

READ PHONE STATE
Allows read only access to phone state,

including the current cellular network information
and the status of any ongoing calls.

KILL BACKGROUND PROCESSES
Allows an application to request an install

killing of one or more processes.
WRITE SETTINGS Allows an application to write the system settings.

Table 6.3. Description of some of the selected android permissions.
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Permission Description
RECORD AUDIO Allows an application to record audio.
READ CONTACTS Allows an application to read the user’s contacts data.

CAMERA Required to be able to access the camera device.
DISABLE KEYGUARD Allows applications to disable the keyguard.

SYSTEM ALERT WINDOW Allows an app to create windows on top of all other apps.

Table 6.4. Description of some of the selected android permissions.

Figures 6.16, 6.17 and 6.18 portrait, for each family, the percentage of samples that contain these
permissions in their Manifest. These charts show interesting results, since:

• There is a lack of some permissions in some families. For example, Ewind samples do
not have any of the permissions listed in Tab. 6.4, as can be seen in Fig. 6.18. In
the first chart depicted in Fig. 6.16 can be seen how Svpeng does not have neither AC-
CESS FINE LOCATION nor ACCESS COARSE LOCATION. In Fig. 6.18 Anubis does
not show any tracks of PROCESS OUTGOING CALLS and WRITE SETTINGS permis-
sions.

• Some permissions are mainly used by a single family: we can notice in the chart of Fig.
6.18 that the 60% of Spveng samples require the permission DISABLE KEYGUARD, while
all the other families do not exceed the 10%. Another example is in Fig. 6.17 where the
permissionn WRITE SETTINGS is mainly used, again, by Svpeng for which almost 90%
of samples have it, followed by HiddenAd with a value close to 20%.

There are also some permissions there are very common between the selected families, such as:
RECEIVE BOOT COMLPETED and READ PHONE STATE.
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Figure 6.16. Percentage of samples containing some specific permissions.
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Figure 6.17. Percentage of samples containing some specific permissions.
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Figure 6.18. Percentage of samples containing some specific permissions.

6.3.2 Characterization through code properties

Using Droidlysis [99], we extracted also the application code properties. These properties, simi-
larly to permissions, gives a general description of what the application’s code does. Once again,
we did a selection among the properties encountered, since some of them did not provide more
information than permissions, so this section will report results meant to describe different kinds
of behaviors. Tables 6.5, 6.6 describe the selected code properties. These description are provided
by the Droidlysis documentation [99].
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Property Description
Obfuscation Obvious traces of code obfuscation.

Accessibility services Work with accessibility settings (use, or implement a service).
Encryption Uses encryption.

Set component Might be trying to hide the application icon.
Tasks Lists running tasks.

Table 6.5. Some of the selected code properties.

Property Description
Reflection Uses Java Reflection.

Device admin Creates or uses a device administrator app.
Base64 Uses Base64 encoder/decoder.

Stacktrace Get stack traces. Can be used as Anti Frida technique.
Execute native Executes shell or native executables.

Table 6.6. Some of the selected code properties.

The two charts below, depicted in Figs. 6.19, 6.20 report, for each one of the selected properties,
the percentage of samples of each family that have that property. As can be seen, there are
some which are shared, with different percentages, between families: obfuscation, accessibility
services, set component, tasks, reflection and stacktrace. Kuguo seems to be the one that often
uses obfuscation techniques, presenting the highest value for the obfuscation property as well as
the execute native which can be an index of hidden payloads that are lately loaded by the malware.
Asacub appears to be the only family that never uses encryption. All these families have at least
the 20% of their samples that try to install an accessibility service, which as already discussed
before, is a quite popular technique employed by malware to perform malicious actions.
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Figure 6.19. Percentage of samples containing specific smali properties.
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Figure 6.20. Percentage of samples containing specific smali properties.

6.3.3 Considerations on the “Activities” feature

Among the selected feature for Android samples, we also considered, in the first place, the names
of the Activities declared by each analyzed application. Unfortunately, we had to discard this
feature since these activities were often declared with random or encrypted/encoded names, hence
there were no relations between samples of the same families and using just their name would
be useless for Machine Learning purposes. They should probably be taken in consideration in a
different way, not grabbing just their name but taking a deeper look on what they contain.

6.3.4 Characterization through dynamic APIs

Android samples have been dynamically analyzed as well, executing them inside an emulator and
monitoring them through CuckooDroid [72]. Among the various information that CuckooDroid
is able to provide, we selected the API count (i.e. number of times that each function is actually
called). Each malware sample has been ran for five minutes on the emulator. Unfortunately,
Cuckoo is not able to interact with an emulator that runs a modern version of Android OS and
we had to emulate a device with Android 7.0 on it. The main drawback of this limitation is
that if an application requires a newer OS version, it will not be ran and the analysis will fail.
Luckily, the majority of the samples we collected worked with no troubles. Figure 6.21 illustrates
the average of the number of calls for some APIs done by each family. Overall, we encountered
65 different APIs across different samples. The ones reported in this chart have been selected
by taking the 5 functions that were mostly called by each family. The first two values that can
immediately be noticed are those of Anubis and Asacub on the two APIs Base64.decode and
ActivityManager.getRunningTasks. These two functions are intensely used, reporting values that
are significantly higher than those reported by other families.

81



Results

Anu
bi

s

Sv
pen

g

Asa
cu

b

Hqw
ar

Ewin
d

Hid
de

nA
d

K
ug

uo

Families

ContentValues.put

File.exists

ContextImpl.registerReceiver

EditorImpl.putString

ContextWrapper.startService

IoBridge.open

ActivityManager.getRunningTasks

ContextWrapper.startActivity

Method.invoke

Base64.decode

ActivityThread.handleReceiver

SystemProperties.get

A
P

Is

inf inf 3.5 2.6 inf 65.1 106.4

193.5 65.3 5.5 37.4 20.0 233.7 128.7

inf inf 1.8 1.1 8.0 35.2 4.2

122.9 4.6 inf 6.0 1.0 22.6 17.0

67.7 3.9 214.0 34.6 7.0 1.2 1.3

63.1 33.3 inf 13.6 6.0 76.9 19.7

inf 344.6 4570.2 137.4 4.0 1.7 107.0

220.3 55.2 3.6 4.6 1.0 inf inf

1.4 1.0 inf 10.7 inf 146.3 1.8

5265.9 53.9 118.2 2.4 inf 108.8 inf

11.2 11.5 106.6 18.9 4.0 inf inf

25.9 41.9 5.6 16.5 18.0 36.8 13.3

0

1000

2000

3000

4000

5000

Figure 6.21. Average of number of calls for malicious samples.

Ewind samples are the ones which performed the lowest number of function calls, since their
values range from 0 to 20 (File.exists). All the other families seem to have at least one or two
functions that have used the most. For example, most of the calls of Svpeng and Hqwar are on
the ActivityManager.getRunningTasks, while Kuguo concentrates its calls on ContentValues.put,
File.exists and ActivityManager.getRunningTasks with 106.4, 128.7 and 107.7 calls respectively.
According to these values, this feature can provide a good representation of the family’s behavior,
since it is possible to outline differences.
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Chapter 7

Conclusions

The main objective of this work was to define a methodology for malware analysis, in order to out-
line what are those factors that could play a significant role in the characterization process. This
was done by designing an analysis system which, applying both static and dynamic techniques, is
able to extract meaningful information, also called features, from samples. The extracted infor-
mation has later been packed and prepared to be served as training input for a Machine Learning
(ML) system.
In order to achieve this task, we started from a first outline of the research scopes (i.e. which
Operating System to cover, which types of malware etc.). This was done by collecting as much
information as possible on the current malware landscape, to gain knowledge on which families are
more common nowadays as well as looking at the state-of-the-art of malware analysis techniques
and tools. Once these scopes were defined, we moved to a more deep and technical study of
malware behaviors by collecting technical analyses of samples belonging to a selection of families,
in order to gain more knowledge on how the analysis process can be carried on and what are the
tools and techniques that are commonly employed.
Before to actually develop our analysis system, we needed to harvest some samples. To this end,
we used different malware sources, combining them together to create our own collections. Despite
there were already some collection available in the wild, we wanted to improve some aspects, such
as having a balanced number of samples per class (i.e. family) and including only those families
that are, at least in these days, common.
Using all the knowledge gained in the previous steps, we started building our own analysis system,
made of a static and a dynamic analyzer capable of extracting some types of features from the two
collections mentioned above. We designed this system starting from some well-known analysis
tools, such as the Cuckoo sandbox [69], automating their functionalities in order to apply them
to a large collection. As results of our analysis, we created a series of datasets containing only
wanted features, which have been described and reviewed in Chapter 6.
These features have been carefully reviewed, in order to check if they actually revealed some dif-
ferences in the behavior of the selected families. Overall, every feature from the ones we selected
showed significant differences between samples belonging to different families. Looking at the
Windows environment, the entropy of non-standard sections and the number of API calls seem to
be the two features that mostly characterize each family, but the latter requires definitely more
time to be collected, since samples have to be ran and monitored. On the other side, the features
extracted from Android samples showed interesting differences on the kind of actions that each
family tries to perform. We tried to focus on those actions that can actually be harmful, such
as permissions and code properties that are required to perform specific attacks or to access to
privileged data. Among these features, we had to discard the Activities’ names, since they were
often random or encoded in some manner, being not adequate for our purposes.
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7.1 Future works

The analysis system developed, could potentially be of great help if we want to extract represen-
tative information from a batch of samples. Our system could be extended, adding more types of
features that will be extracted or integrating other tools to analyze samples. There are two main
limitations that we recognize:

1. Supported file formats: these should be definitely extended, since malware may come
in many different flavours (i.e. office documents, pdf etc.). Supporting different kind of file
types would also make easier to create a suitable malware collection to test, since when we
created our two collections we found many samples which where in different formats (mainly
dlls for Windows, and dex files for Android).

2. Extracted features: the features we were able to extract are quite general and simple.
These could be extended by integrating, for example, more specific aspects (i.e. look for
APIs that perform access to the Windows registry only instead of each possible API). There
were many features that we thought of, but did not have the time to integrate, such as the
dimension of non-standard sections or the system calls done by Android APKs.

For what concerns dynamic analysis, these definitely require a substantial amount of time and
resources in order to be performed. Cuckoo offers the possibility to configure a distributed envi-
ronment, which would be a nice feature to integrate in our system, adding the chance to apply
dynamic analysis to a larger amount of samples, in a feasible amount of time.
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Appendix A

User manual

Our analysis system consists of two main parts: a Windows and an Android analyzer. These
require the installation and configuration of some tools in order to run. The code repository
consists of the following files:

• analyzer.py: this is the core of the analyzer, it contains a series of functions that are in charge
of grabbing samples and process them, extracting wanted features and packing them.

• android static.py: it contains the code needed for the Android static analyzer.

• clientAPI.py: it contains functions that interact with Cuckoo’s API component.

• conf.py: this file needs to be modified to adapt it to your evenironment and customize the
analysis.

• extractFeatures.py: it retrieves features from the results produced during the analysis.

• mysecrets.py: it contains the Cuckoo API’s key that is needed in order to interact with the
sandbox. This is actually not contained in the repository, should be added manually.

• requirements.txt: list of libraries that are required to run the system.

• cdrequirements.txt: list of CuckooDroid’s required libraries.

Once the repository has been downloaded, the required libraries can be installed with the following
command:

Listing A.1. Installing required libraries.

pip install -r requirements.txt

This command installs some basic libraries, however there are some more complicated components
that require some steps in order to be properly configured. These will be explained in the following
sections.

A.1 Configuring the Android Static analyzer

The static component of the Android analyzer only uses DroidLysis to perform analysis. Luckily
it is pretty straight forward to configure by following the instruction on its Github page.
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User manual

A.2 Installing and configuring the Cuckoo sandbox

Cuckoo provides and automatic sandbox, that once a sample is submitted, it will be sent to a
Virtual Machine and ran, monitoring various kind of actions. It can be installed following its
Documentation, however we faced some troubles by following the standard configuration, so this
section will provide all the useful steps that we took to make it work properly with our system.
Cuckoo requires many prerequisites before actually starting using it. First of all, we need to install
some libraries, with the following commands:

Listing A.2. Installing Cuckoo requirements.

sudo apt-get install python python-pip python-dev libffi-dev libssl-dev

sudo apt-get install python-virtualenv python-setuptools

sudo apt-get install libjpeg-dev zlib1g-dev swig

sudo apt-get install mongodb

sudo apt-get install tcpdump apparmor-utils

sudo aa-disable /usr/sbin/tcpdump

sudo groupadd pcap

sudo usermod -a -G pcap cuckoo

sudo chgrp pcap /usr/sbin/tcpdump

sudo setcap cap_net_raw,cap_net_admin=eip /usr/sbin/tcpdump

sudo apt-get install swig

Once all these package are installed we can move to download and install Cuckoo. It is suggested
to install its Python dependacies inside a virtual environment. This can be done by running:

Listing A.3. Installing Cuckoo requirements.

sudo adduser cuckoo

sudo usermod -a -G vboxusers cuckoo

virtualenv venv

. venv/bin/activate

pip install -U pip setuptools

pip install -U cuckoo

After these commands we need to run Cuckoo to make it prepare its working directory, which
will be placed in our home directory. Cuckoo can be launched with:

cuckoo -d

A.2.1 Configuring the Virtual Machine

It is now time to configure the guest component, which is the actual sandbox where samples
will be executed. We used VirtualBox to set up this Virtual Machine, creating a VM with the
specifications reported in Tab. A.2.1

Windows 7 VM
Name cuckoo1-win7

Guest OS Windows 7 (64 bit)
Memory size 4096 MB

Number of CPUs 2
Shared folders None
Network type Host-only

Table A.1. Configuration information of the Windows 7 Virtual Machine.

Once the VM is configured and ready to be used, we can start customizing it to make it
interact with Cuckoo. First of all we need to install Python on it. During this customization
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part, we will set the Network to NAT mode, enabling Internet access. Python can be installed
from the official website.
Then, we need to modify Windows settings to disable both Firewall and Automatic updates, since
these two may affect samples behavior. This can be done from the control panel. Now we can set
the network back to Host-only mode, which needs an adapter named vboxnet0 (default name).
The adapter can be created from VirtualBox from File-Host Network Manager.

A.2.2 Configuring the network

Cuckoo offers various types of network modes, from complete isolation to full internet access
(which is obviously not suggested). Since there are some malware that will not run if access to
the internet is not provided, we decided to use the InetSim routing, which simulates some network
services, hoping that this will be enough to trick our samples.
InetSim can be installed from its main page. It requires Perl, which can be obtained by running:

sudo apt install perl

It also requires some specific libraries, these are listed on the website. In order to install a library,
it has to be downloaded and installed from the main website (the previous link provides pointer
to those libraries), unpacked and then, once inside its folder:

perl Makefile.pl

make

make test

make install

Now we just need to configure InetSim and the Windows VM to work together. We need to modify
InetSim’s configuration file, named inetsim.conf, which can be found inside the conf folder. This
file needs to be modified adding the following lines:

service_run_as_user cuckoo

dns_default_ip 192.168.56.1

For what concerns the Windows7 VM, we need to configure the DNS address. This can be set
from the control panel, as explained by this guide. The DNS address must be 192.168.56.1, which
is the one inserted in the InetSim configuration file. Then we just need to run, from the inetsim
folder:

sudo ./inetsim

A.2.3 Final steps

Once all the prerequisites have been installed, we just need to configure Cuckoo before running
it. The official documentation clearly explains how these should be modified. We followed the
standard configuration, changing only the routing mode in routing.conf to select InetSim as
routing option. After filling those files, we need to move back to the VM, take the file agent.py
contained in the Cuckoo folder and run it with Python. The file can be moved to the VM with
shared folders or downloading it from Github (just remember to disable shared folders or to switch
back to Host-only mode). Then, we take a snapshot of the VM, running on a terminal:

VBoxManage snapshot "<Name␣of␣VM>" take "<Name␣of␣snapshot>" --pause

VBoxManage controlvm "<Name␣of␣VM>" poweroff

VBoxManage snapshot "<Name␣of␣VM>" restorecurrent

In our case, the VM was named cuckoo1-win7 and the snapshot clean. Now Cuckoo should be
correctly configured and ready to be ran.
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A.2.4 Some possible caveats

During our experience with Cuckoo we faced some problems that are not covered by the standard
documentations. This section will contain some solutions to possible troubles an user may face
while using our system.

• Cuckoo offers a Web interface to interact with it, unfortunately we did not manage to make
it work on modern versions of Ubuntu (i.e. 20-22) but only on older ones, such as the 17.

• Cuckoo API did not work at first. It requires a precise version of a Werkzeug (a Python
package). This can be installed by running:

pip install werkzeug==0.16.1

• Always start Inetsim before Cuckoo.

• Inetsim will not work if an address is not assigned to the vboxnet0 interface, which may
happen if you have not open a VM after the boot of your system. You can assign an address
manually with the command:

sudo ifconfig vboxnet0 192.158.56.1/24

• Always take VM snapshots using the command line, never from the VirtualBox GUI.

However, for any problem not mentioned here, there is an issue page that contains many possible
problems with some solutions.

A.2.5 Running Cuckoo

Once all the setup part is completed, we are ready to launch Cuckoo. We need four terminal
windows, since we need different components in order to use our analysis system. There are four
commands that need to be launched, in the following order:

sudo ./inetsim

cuckoo rooter --sudo

cuckoo

cuckoo api

Now, if everything worked smoothly, you have a Cuckoo instance running which is ready to receive
commands from its API service. By default the API service runs on localhost on port 8090.

A.3 Installing and configuring the CuckooDroid sandbox

Let’s now move onto the Android part. This time the Virtual Machine will be a Linux one,
configured as the one reported in Tab. A.3

Linux VM
Name cuckoodroid-14-aol

Guest OS Ubuntu 14.04 (64 bit)
Memory size 16384 MB

Number of CPUs 8
Shared folders None
Network type Host-only

Table A.2. Configuration of the Linux Virtual Machine.
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Differently from the standard Cuckoo, here we can download CuckooDroid from its Github
page. We need to substitute the requirements file, which is the one specifying the Python depen-
dencies, with the one provided in our repository, named cuckoodroidrequirements.txt. After that,
we can proceed to modify the configuration files as specified on the Cuckoodroid documentation.

A.3.1 Configuring the Linux VM

Once you have a VM configured as the one specified in Tab. A.3, you can start adding the proper
software to make it work with Cuckoo. Firstly, we need to install some Linux dependencies. These
can be done through the following command:

sudo apt-get install libstdc++6:i386 libgcc1:i386 zlib1g:i386 libncurses5:i386

Now we need to add some Java dependencies. Unfortunately Ubuntu did not manage to find
them by default, so we need to modify the file /etc/apt/sources.list, adding the following lines:

deb http://archive.ubuntu.com/ubuntu/ trusty main restricted universe

multiverse

deb http://archive.ubuntu.com/ubuntu/ trusty-security main restricted

universe multiverse

deb http://archive.ubuntu.com/ubuntu/ trusty-updates main restricted universe

multiverse

deb http://archive.ubuntu.com/ubuntu/ trusty-proposed main restricted

universe multiverse

deb http://archive.ubuntu.com/ubuntu/ trusty-backports main restricted

universe multiverse

Then, get back to a terminal and type:

sudo apt-get update

sudo apt-get install openjdk-7-jre

This will probably not work on the first attempt, it will require some additional libraries. Just
copy the name of those libraries and run an apt-get install until you get them all.
The next step is to download Android SDK. This can be done by following the instruction on
CuckooDroid’s manual (we did not follow it in the previous steps since it was needed a workaround
to overcome the dependencies problem). All the subsequent steps can be done by simply following
the manual, starting from the previous link.

A.3.2 Running CuckooDroid

In order to launch Cuckoodroid you just need to open a pair of terminals and launch, from the
cuckoo folder, the following commands:

python cuckoo.py

python utils/api.py

A.4 Filling customization files

It is now time to configure our analysis system to perform the kind of analysis that you want.
Among the files provided in the code repository, there is a config.py which contains some config-
uration variables that needs to be modified before starting the analysis. Let’s see what each of
them mean:

• PLATFORM: it tells the system if we want to analyze Windows or Android malware
samples.
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• MODE: it tells if we want to extract static or dynamic features.

• MACHINE: name of the Cuckoo machine. In our case it could be either cuckoo1-win7
and cuckoodroid-14-aol, but the user must insert the ones it used when configured Cuckoo.

• FAMILIES: it is a Python list of strings, containing the names of the families that will be
analyzed. These names must be exactly the same as the ones used in the dataset folder.

• D SOURCE: path to the dataset folder.

• MAX SAMPLES DW: this is used only for dynamic analysis on Windows samples.
When we used the system on our dataset we processed pools of 100 samples and this is
the default value, but you can change it through this variable.

The last thing to insert is the Cuckoo API key, which can be found inside the configuration
file placed in cuckoo/conf/cuckoo.conf under the voice api token. This must be placed inside the
file mysecrets.py. It is needed to communicate with Cuckoo’s API.

A.4.1 Customizing Cuckoo

It is also possible to customize the sandbox environment. This can be done through Cuckoo’s
configuration files, which are located in the conf directory (under the Cuckoo main folder). You
can follow Cuckoo and CuckooDroid documentation to know what is possible to modify through
these files (some settings require additional tools).

A.5 Samples format

Our analysis systems supports two kinds of files: Portable Executable (PE) and Android Package
(APK). These may be also contained inside a ZIP archive. You can use our datasets, which can
be requested, or your own samples. This should be contained inside a single folder, which will be
specified in the config.py, and then there should be a folder for each family you want to analyze.

A.6 Launching an analysis

Once all the previous steps have been completed, hence you have all the required tools properly
running and the analysis system properly configured, you can launch an analysis. This can be
started by just typing, in the main repository:

python3 analyzer.py

The analyzer will start grabbing samples from the provided folders, submit them to cuckoo and
start waiting for results to be produced. Once an analysis is completed, its related files are
removed (to avoid memory saturation) and only the relevant parts (i.e. features) will be saved
in proper files. These files are located inside the results folder, where there will be one folder for
each family and inside of that, one folder for each wanted feature.
The analyzer will keep submitting samples to Cuckoo until they have been depleted or the desired
amount of results have been obtained. This is done because some samples may not work properly,
being rejected by Cuckoo, or simply they will not provide any useful result. By default, the
analyzer uses all the samples found in the family’s folder, but we can specify one if we want to
analyze only a subset of our samples.
If, for any reason, you need to stop the analyzer you can send a SIGINT (through the kill command,
or simply a CTRL+C) and some log data will be written in a dump.out file, so it is possible to
check how many samples have been processed and restart from where you break (rewriting the
configuration file).
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A.6.1 Run example

Let’s say we want to run dynamic analysis on some Android samples which belong to two different
families such as Anubis and HiddenAd. We will set the config.py file as follows:

PLATFORM = "ANDROID"

MODE = "DYNAMIC"

MACHINE = "cuckoodroid-14-aol"

FAMILIES = ["Anubis", "HiddenAd"]

D_SOURCE = "/home/andrea/Desktop/dataset/android/"

MAX_SAMPLES_DW = -1

Then we start CuckooDroid, running the two commands mentioned in Sec. A.3.2. Now we just
have to open a terminal and launch, using Python, the analyzer.py script. This will create a result
folder with all the extracted features. Then the submission phase will start and every application
found in the D SOURCE folder will be subjected to analysis. Now cuckoo will start spawning
and shutting down the cuckoodroid-14-aol VM, until every sample has been processed. Figs. A.1
and A.2 show two VMs while they are executing a sample.

Figure A.1. Linux VM executing an Anubis sample.

Figure A.2. Linux VM executing an HiddenAd sample.

91



Appendix B

Developer manual

The code repository consists of various files, which have been briefly described in the user manual.
Let’s take a deeper look to those files that contains actual code:

• analyzer.py: this mainly contains functions that are in charge of grabbing samples from the
dataset directory and start the analysis.

• clientAPI.py: it implements some methods to contact Cuckoo API’s endpoints.

• android static.py: this file contains the code to interact with Droidlysis (static analysis of
android samples).

• extractFeatures.py: it contains the code used by the static analyzer as well as some utility
methods, which can be used to extract features from reports that Cuckoo generates.

• conf.py: it contains configuration variables which have been described in the user manual.

• mysecrets.py: here it is placed the Cuckoo’s API key.

Let’s now see the methods implemented in each of these files.

analyzer.py

• log(msg):
writes a specific message to the logfile.
:param msg: message to be written.

• getAvailable(tag):
returns the number of samples available for a specific family.
:param tag: family’s name.

• waitForReport(taskId):
puts the system to sleep while waiting for a report to be produced.
:param taskId: id of the analysis’ task.

• parseReportDynamic(taskId):
read API’s counts from a report.
:param taskId: id of the analysis’ task.

• saveResults(res, tag, sample, type):
saves features on the results directory.
:param res: feature’s dictionary.
:param tag: family’s name.
:param sample: sample’s name.
:param type: selected feature.
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• sendToCuckoo(source, tag, analyses, samples, limit=50, start=0, ext=””):
takes a sample from the dataset directory and sends it to Cuckoo.
:param source: path to sample.
:param tag: family’s name.
:param analyses: list of completed analyses.
:param samples: list of analyzed samples.
:param limit: limit of samples to be taken from the dataset folder.
:param start: index of the dataset folder from which to start grabbing samples.
:param ext: file extension.

• analyzeWithCuckoo(tag, limit, start, analyses, samples):
iterates the previous function until every sample has been processed.
:param tag: family’s name.
:param limit: limit of samples to be taken from the dataset folder.
:param start: index of the dataset folder from which to start grabbing samples.
:param analyses: list of completed analyses.
:param samples: list of analyzed samples.

• analyzeWithCuckooDroid(tag, analyses, samples):
iterates the sendToCuckoo function on each sample of the Android collection.
:param tag: family’s name.
:param analyses: list of completed analyses.
:param samples: list of analyzed samples.

• analyzeStatic(tag):
extract static features from a family.
:param tag: family’s name.

• getCollected(tag):
returns a list of all the samples analyzed (their file name).
:param tag: family’s name.

• analyzeW():
wrapper for the analyzeWithCuckoo function.

• analyzeA():
wrapper for the analyzeWithCuckooDroid function.

• prepareDyn():
creates the result folder.

clientAPI.py

• submitSample(path, machineId, timeout=””, package=”exe”):
contacts the endpoint tasks/create/file to submit a sample.
:param path: sample’s path. Returns the task identifier. :param machineId: Virtual Ma-
chine’s identifier.
:param timeout: duration of the analysis.
:param package: sample’s file format.

• getTaskState(taskId):
returns the state of a task.
:param taskId: task’s identifier.

• getCuckooStatus():
returns the status of Cuckoo (i.e. number of connected VM, their status etc.).

• retrieveReport(taskId):
returns an analysis’ report in JSON format.
:param taskId: task’s identifier.
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• cleanData(taskId):
cleans every data generated by Cuckoo for a specific task.
:param taskId: task’s identifier.

• shutdownServer():
shuts down Cuckoo.

android static.py

• saveResults(sample, feats, tag):
saves extracted features in proper files under the results folder.
:param sample: sample’s name.
:param feats: list of extracted features.
:param tag: family’s name.

• extractStaticFeatures(res, feat, sample, tag):
extracts static features from the Droidlysis report.
:param res: report (python dictionary).
:param feat: list of extracted features.
:param sample: sample’s name.
:param tag: family’s name.

• prepareStatic():
creates the results folder.

• analyzeStatic(sample, tag, features):
launches Droidlysis and extracts features.
:param sample: sample’s name.
:param tag: family’s name.
:param features: list of extracted features.

• parseCollection(tag, features):
iterates the analysis on each sample of a specific family.
:param tag: family’s name.
:param features: list of extracted features.

• runAndroidStatic():
launches static analysis on each Android family.

extractFeatures.py

• extractArchive(source, ext=””):
extracts samples from the dataset directory. It can handles .zip, .7z, .apk, .exe files. It
returns the sample’s name.
:param source: sample’s path.
:param ext: extension of the file, it is used only if the sample’s name does not contain its
extension.

• extractStaticAPIs(source, exe=True):
extracts APIs declared in the Import Access Table of Windows executables. Returns them
into a list.
:param source: sample’s path.
:param exe: tells if the features are going to be extracted from the original sample or from
the Cuckoo report.

• extractSectionEntropy(source, exe=True):
extracts sections’ entropy from Windows executables. Returns them into a dictionary.
:param source: sample’s path.
:param exe: tells if the features are going to be extracted from the original sample or from
the Cuckoo report.
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• extractDynamicAPIs(report):
returns a dictionary with the number of calls performed for each API.
:param report: portion of the Cuckoo report containing the APIs.

• trimHead(sample):
removes headers from PEs and writes the remaining bytes into a file. Returns the name of
that file.
:param sample: sample’s path.

• prepareStaticW():
creates the folder for static features.
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