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Summary

Nowadays, one of the most important threats that needs to be addressed is malware. Malicious
programs have evolved over time, becoming more numerous and complex. Zero-day malwares are
the new malware that are already widespread on the Internet but have not yet been identified.
Traditional signature-based malware detection systems fail to detect these new malicious files
because they have not yet been analyzed, so the systems will not have a valid signature with
which to identify them and will cause false negatives when placed under examination. To identify
and classify malware without the need of the malware signatures, I tried using different machine
learning techniques to understand which algorithm was best suited for the task.

First, datasets were sought that were suitable for my task, and then the available malware
had to be analyzed to see what features could be extracted. These features were then adapted to
build sensible data structures to be given as input to the selected algorithms. Then four machine
learning algorithms were selected to be used for testing. In order to choose the algorithms, a
study of the state of the art was made, the results obtained from the different research already
done on this type of search were compared, and it was determined which four algorithms were
the most promising. During the state-of-the-art study, it was noted that there were few features
extracted from the datasets per search. Usually, in fact, the authors were going to extract one or
two features from the malware to be used with a single machine learning algorithm. I therefore
decided to use a different approach. I set as my goal to extract as many available features as
possible from my dataset and try to employ them with my chosen algorithms. In this way, I was
able to conclude what was the best algorithm to use in malware detection and classification for
each feature.

The features chosen were binary file size, n-grams of bytes, n-grams of opcodes, count of oc-
currences of each individual opcode, entropy, n-grams of APIs, and the check for the presence of
each individual API function. The algorithms chosen were Random Forest, K-nearest neighbors,
Support Vector Machine and Gradient Boosting Classifier. The results showed that Random For-
est and Gradient Boosting Classifier algorithms perform better in terms of accuracy. In addition,
SVMs by performing a training phase for each class in the dataset take a long time to be ready to
perform for the learning phase. The n-grams of bytes was the feature with which the algorithms
performed most promisingly, having said that the n-grams of opcodes also performed excellently.
To confirm that everything was generalizable for any dataset, the same procedure was tried again
with another dataset, obtaining very similar results. The results are very significant, leading one
to think that the use of machine learning algorithms in malware identification and classification
may be a solution to one of the biggest threats in the modern world.
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Chapter 1

Introduction

In recent years, the number of users on the Internet has grown exponentially. As of January 2023,
there were 5.16 billion (about 64% of the world’s population) users connected to the Internet
[1]. The rapid growth of the Internet has made the development of cybersecurity threats possible
and thus a new difficult challenge to be faced. Software with malicious intentions such as spying,
damaging etc. is called malware.

Malware first appeared in the 1960s, initially created for fun inside laboratories. One of the first
malware in history was Creeper (1971); it would pop up the following message on the screen: “I’M
THE CREEPER : CATCH ME IF YOU CAN”. It was a worm, a type of malware that reproduces
itself by going on to infect other devices connected to the same network. Subsequently, malware
slowly became more numerous, beginning to infect even more specific devices or operating systems.
The first malware to emerge from a laboratory environment was Elk Cloner, it was created in
1982 by a 15-year-old initially as a joke. He inserted the malicious code inside a game disk, a
floppy disk to be precise. This malware attacked devices running the Apple II operating system,
in fact the 50th time the game was started inside the device, instead of starting the game a blank
screen was shown with a poem about the malware itself. Subsequently, the first malware against
IBM devices, Brain, was born. Brain infects a PC by replacing the boot sector of a floppy disk
with a copy of the virus (a type of malware). The real boot sector is moved to another part of the
disk’s memory and marked as bad. Infected disks have five kilobytes of malicious memory. Also
for the following malware, a particular message created by the authors was shown on the screen.

After a few years malware began to have much more damaging effects, malware capable of
spying on the victim’s device, stealing information, damaging industrial machinery began to
spread, a real threat was created. In recent decades, an exponential growth of malware recorded
on the Internet could be observed. To be precise, the AV-Test Institute records more than 450,000
malware and potentially unwanted applications (PUA) under Windows every day. As you can see
from the graph in figure 1.1 malware affecting Windows is continuously growing, just think that
from 2012 to 2022 we went from 82.8 million (approximately) to 1 billion malware registered on
the internet.

The graph obviously shows the total amount of malware found on the Internet, so one column
contains malware from the previous year as well. If you want to view only the malware that is
detected each year you have to look at the graph in figure 1.2. Of course, it should also be noted
that some of the malware spread on the Internet after a certain period is no longer a threat since
patches are found to the vulnerabilities that they exploit to damage the victim’s device. Moreover,
malware is not only more numerous but also more complex; in fact, malicious software authors
use obfuscation and/or other sophisticated techniques such as polymorphism or metamorphism
to evolve the code structure, making malware identification difficult if not impossible.

For all these reasons, the signature-based detection techniques typically used by most com-
mercial antivirus solutions (such as manually crafted Yara rules) are rendered ineffective in the
current scenario. To date, it is impossible for cyber security analysts to go and analyze every sin-
gle malware variant that can be found on the Internet. Nor is it certain that once a new malware
family is sufficiently identified and analyzed, the generated signature employed in anti-viruses is
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Figure 1.1: Total amount of malware and PUA

Figure 1.2: Annual growth of malware and PUAs

capable of detecting all new malware variants of the same family. The use of obfuscation tech-
niques can go a long way toward rendering useless all the effort it would take to go into creating a
signature to be used for malware identification and classification. Indeed, signature-based systems
are geared more towards an “identify and then respond” approach, an approach that might have
been acceptable as long as zero-day malware was a manageable number. Today, this approach is
no longer acceptable, with the development of the World Wide Web we have moved on to putting
a lot of data on the Internet or locally on our personal devices. Security is therefore sought
that is capable of responding to attacks even before they occur. Machine learning can address
these problems. Indeed, much current research has proven that machine learning has promising
results in the field of malware identification and classification. Many researchers have succeeded
in realising tools that can excellently classify malware belonging to certain data sets searchable
on the Internet. These solutions are still under development, but many papers have already been
produced trying to support this thesis concerning the use of machine learning in this type of work.

This thesis addresses a topic that has been much discussed recently in the field of cyber
security, namely going to employ machine learning algorithms in the field of malware detection
and classification. Machine learning in recent years has developed a great deal in the field of
classification, in so many areas. This is precisely why many researchers have also begun to use it
in the field of cyber security. In particular, this thesis seeks to better explore what information
that can be gleaned from malware can best be exploited by machine learning algorithms in order to
fully accomplish the task previously described. In addition, the machine learning algorithm to be
used has also been extensively researched, through various experiments with different algorithms.
The ultimate goal, then, is to figure out which is the best algorithm to use along with the best
features that can be extracted from malware.

The development process can be divided into 4 stages (as shown in Figure 1.3): there is the
choice of the dataset, the definition of the features to be extracted from the malware,
the definition of the machine learning algorithms to be used, and finally the evaluation
of the various algorithms.

In the first phase we tried to understand what was the best dataset available on the Internet for

9
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Figure 1.3: Development process

our work. Different datasets such as EMBER, SOREL-20M, MalwareBazaar etc. were compared
but in the end we chose to use the dataset used in the Microsoft Malware Classification Challenge
and the ST-WinMal dataset created by a colleague of mine at the Politecnico di Torino. In Chapter
4 can be found all the considerations regarding the datasets evaluated during my research, there is
a precise description of their characteristics and the reasons why they were evaluated as suitable
or unsuitable for my type of work.

The second phase was the part where choices were made not only about the performance of my
machine learning tool but also with respect to the time available. In the initial stages where the
state of the art of this subject was studied, I realized that the features that can be extracted from
executable files that are useful for malware recognition and classification are numerous. Therefore,
a critical choice had to be made based on the dataset available and the time required to perform
the extraction. In addition, for some features it is necessary to have specific tools (sometimes
for a fee) to perform the extraction. In the initial part of Chapter 5, the rationale behind the
choice of features to be used and the reasoning performed to extract them from the dataset can
be found.

In the final part of Chapter 5, on the other hand, the third stage of the development process
of this thesis was described. Indeed, this step involved studying which algorithms were most
widely used in the field of this research and understanding which had the most potential for
my type of study. Four algorithms were chosen to compare: Random Forest, K-NN, SVM and
Gradient boosting. These algorithms have already been used and reported excellent results, so
they were chosen to be used with other types of features, namely those extracted by me from
the two datasets mentioned above. Obviously the previous two steps were not performed totally
sequentially, there were in fact times when after extracting two/three features we would already
try some of the algorithms mentioned above, so as to see if they had potential or were totally
unsuitable for our field of research.

In the concluding part of the thesis, the results were recorded. To optimize the classification,
techniques such as k-fold cross validation were used to make the results as accurate as possible.
Obviously, the datasets contain only a few malware families so the results can only be generalized
in part but these are compromises that must be taken into account. In Chapter 6 you can find all
the discussions regarding the results of the research while in Chapter 7 you can find the conclusions
I came to once I finished the study.

10



Chapter 2

Background

2.1 Malware

Malware, short for “malicious software”, refers to any intrusive software developed by cybercrim-
inals (so called “hackers”) to steal data and damage or destroy computers and computer systems
[2]. The purposes that malware can have are varied, such as disrupting the normal computer op-
erations, gathering sensitive and confidential information from an unwitting user, gaining access
to private computer networks and/or showing unwanted advertisements or spam [3].

Malware attacks can crack weak passwords, bore deep into systems, spread through networks,
and disrupt the daily operations of an organization or business. Other types of malware can lock
up important files, spam you with ads, slow down your computer, or redirect you to malicious
websites.

Malicious software is at the root of most cyberattacks, including the large-scale data breaches
that lead to widespread identity theft and fraud. Malware is also behind the ransomware attacks
that result in millions of dollars in damages. Hackers aim malware attacks against individuals,
companies, and even governments [4].

2.1.1 Why are malware used?

Cybercriminals use malware for different purposes, the common goal is to obtain an economic
gain or cause consequences from which they can profit [4]:

• Data theft: Cybercriminals can steal data stored in databases, servers or personal devices
and use it to commit identity theft or sell them on the dark web to other cybercriminals or
people interested in them.

• Corporate espionage: Data theft on a corporate scale is known as corporate espionage.
Companies can steal classified and sensitive information from their competitors, and gov-
ernments often target large corporations as well.

• Cyberwarfare and international espionage: Governments use cyber attacks against
another nation, with the aim of disrupting activities of a nation without getting caught.

• Sabotage: One possible purpose of an attacker is to cause harm to an organization. At-
tackers can delete files, wipe records, or shut down entire organizations to cause millions of
dollars of damage.

• Extortion: Some types of malware encrypts a victim’s files or device and demands payment
for the decryption key. The purpose is to get the victim - a person, institution, or government
- to pay the ransom. It is not certain that the victim after paying the ransom will not be
blackmailed in the future.

11
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• Law enforcement: Police and other government authorities can use spyware to monitor
suspects and harvest information to use in their investigations.

• Entrepreneurship: Hackers can sell the malware they have written. The developer licenses
their malware in exchange for an up-front payment or a subscription payment.

• DDoS attacks: Hackers can use malicious software to create botnets - linked networks of
“zombie computers” under the attacker’s control. The botnet is then used to overload a
server in a distributed denial of service (DDoS) attack.

• Mining cryptocurrency: Cryptominers force a victim’s computer to generate, or mine,
bitcoin or other cryptocurrency for the attacker.

2.1.2 Classification of malware

Malware is commonly divided into a number of classes, depending on the way in which it is
introduced into the target system and the sort of policy breach caused [5]:

• Virus: Malware which spreads from one computer to another by embedding copies of itself
into files, which by some means or another are transported to the target. The means of
transport is often known as the vector of the virus. The transport may be initiated by the
virus itself (for example, it may send the infected file as an e-mail attachment) or rely on an
unsuspecting human user (who for example transports a CD-ROM containing the infected
file).

• Worm: This is a self-replicating and active malicious program that can spread over the
network by exploiting various system vulnerabilities. It uses targeting vulnerabilities in
the operating system or installed software. It contains harmful routines but can be used
to open communication channels which serve as active carriers. The Worm consumes a
lot of bandwidth and processing resource through continuous scanning and makes the host
unstable which can sometimes cause the system to crash. It may also contain a payload that
are pieces of code written to affect the computer by stealing data, deleting files or create a
bot that can lead the infected system being part of a botnet. While viruses require human
activity to spread, worms have the ability spread and replicate independently [6].

• Trojan horse: Malware which is embedded in a piece of software which has an apparently
useful effect. The useful effect is often known as the overt effect, as it is made apparent to
the receiver, while the effect of the malware, known as the covert effect, is kept hidden from
the receiver. Trojan horses usually are used to give remote access to the attacker, in this
way the attacker could perform any malicious activity that is inters to him.

• Logic bomb: Malware which is triggered by some external event, such as a specific date
or time, or the creation or deletion of a specific data item such as a file or a database entry.

• Rabbit: Malware which uses up all of a particular class of resource, such as message buffers,
file space or process control blocks, on a computer system.

• Backdoor: Malware that when it reach the target device permits to the attacker to gain
access to system resources. Usually the attacker sends the malware to multiple devices to
create a botnet to perform a DDoS attack.

• Spyware: This is a malicious program that uses functions of an operating system with
the intention of spying on user’s activity. They sometimes have additional capabilities like
interfering with network connections to modify security settings on the infected system.
They spread by attaching themselves to legitimate software, through a Trojan horse or even
taking by exploiting known software vulnerabilities. Spyware can monitor user behaviour,
collect keystrokes, internet usage habits and send the information to the program author
[6].
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• Ransomware: Ransomware is a program that infects a host or network and holds the
system captive while requesting a ransom from the system/network users. The program
normally encrypts the files on the infected system or locks down the system so that the
users have no access. It then displays messages that force the users to pay to have access
to their systems again. Ransomware use the same propagation means as a computer worm
to spread and therefore user awareness [6].

There are many different definitions of malware classes. It is in fact possible to find other
types of classes because the dividing line between different classes of malware is very thin. The
classes are obviously not exclusive, for example, a virus can contain logic bomb functionality, if
its malicious effect is not triggered until a certain date or time is reached. Or a trojan horse may
contain ransomware functionality, and so on [5].

2.2 Malware analysis

The process of extracting information about their behavior from malware is called malware analy-
sis. When a malicious sample is discovered in the wild or on a machine, it is usually an executable
which has been compiled and therefore presented in machine language. The main goal of malware
analysis is to extract as much information from the discovered sample to understand the threat
associated [6]. Malware analysis is used to develop effective detection techniques for malicious
code [7]. Malware analysis can be grouped roughly into two categories:

• Static analysis

• Dynamic analysis

2.2.1 Static analysis

Static analysis is a simple and quick analysis technique. In this analysis, the malware is decompiled
and its source code is examined using several tools, like Pestudio, IDA Pro, etc. [8].The executable
has to be unpacked and decrypted before doing static analysis. The disassembler/debugger and
memory dumper tools can be used to reverse compile executables [9]. When compiling the source
code of a program into a binary executable, some information gets lost. This loss of information
further complicates the task of analyzing the code.

Static malware analysis is commonly done by hand for various reasons, for example, if the
source code is available several interesting information, such as data structures and used functions
can be extracted. This information gets lost once the source code has been compiled into a binary
executable and thus impedes further analysis [7].

The detection patterns used in static analysis include string signature, byte-sequence n-grams,
syntactic library call, control flow graph and opcode (operational code) frequency distribution etc
[9].

There are different techniques used for static malware analysis. Some of are described below
[7].

• File fingerprinting: Beside examining obvious external features of the binary this includes
operations on the file level such as computation of a cryptographic hash (e.g., md5) of the
binary in order to distinguish it from others and to verify that it has not been modified.

• File format: By leveraging metadata of a given file format additional, useful information can
be gathered. This includes the magic number on UNIX systems to determine the file type.
For example from a Windows binary, which is typically in PE format (portable executable)
a lot of information can be extracted, such as compilation time, imported and exported
functions as well as strings, menus and icons.
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• AV scanning: If the examined binary is well-known malware it is highly likely to be detected
by one or more AV scanners. To use one or more AV scanner is time consuming but it
becomes necessity sometimes.

• Packer detection: Nowadays malware is mostly distributed in an obfuscated form e.g., en-
crypted or compressed. This is achieved using a packer, whereas arbitrary algorithms can be
used for modification. After packing the program looks much different from a static analysis
perspective and its logic as well as other metadata is thus hard to recover. While there are
certain unpackers, such as PEiD2, there is accordingly no generic unpacker, making this a
major challenge of static malware analysis.

• Disassembly: The major part of static analysis is typically the disassembly of a given binary.
This is conducted utilizing tools, which are capable of reversing the machine code to assembly
language, such as IDA Pro. Based on the reconstructed assembly code an analyst can then
inspect the program logic and thus examine its intention.

The main advantage of static malware analysis is that it allows a comprehensive analysis of a
given binary. That is, it can cover all possible execution paths of a malware sample. Additionally,
static analysis is generally safer than dynamic analysis as the source code is not actually executed.
However, it can be extremely time-consuming and thus requires expertise.

Limitations: Generally, the source code of malware samples is not readily available. That
reduces the applicable static analysis techniques for malware analysis to those that retrieve the
information from the binary representation of the malware [7]. In addition, cybercriminals some-
times use obfuscation or encryption techniques to make static malware analysis very complex.

2.2.2 Dynamic analysis

Dynamic malware analysis consists in extracting information about the behavior of the sample
during its execution. To do this, you need to create an isolated environment in which you can try
to run the malware without having to worry about the consequences.

Dynamic malware analysis manages to overcome the limit of static analysis regarding malware
obfuscation techniques, extracting information not from the binary file but from the execution
of the malware itself. However, this technique also has limitations, such as the possibility for
the attacker to have introduced in the code a check on the environment in which the malware
is executed. In this way, the attacker can insert a command into the code that terminates the
execution in case the malware is not in the desired environment.

There are two basic approaches for dynamic malware analysis which are as below [7]:

• Analyzing the difference between defined points: A given malware sample is executed for a
certain period of time and afterwards the modifications made to the system are analyzed by
comparison to the initial system state. In this approach, Comparison report states behavior
of malware.

• Observing runtime-behavior: In this approach, malicious activities launched by the mali-
cious application are monitored during runtime using a specialized tool

There are different approaches and techniques that can be applied to perform dynamic analysis
[10]:

• Function Call Monitoring: the property that makes functions interesting for program
analysis is that they are commonly used to abstract from implementation details to a seman-
tically richer representation. For example, the particular algorithm which a sort function
implements might not be important as long as the result corresponds to the sorted input.
When it comes to analyzing code, such abstractions help gain an overview of the behavior
of the program.
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• Function Parameter Analysis: dynamic function parameter analysis focuses on the
actual values that are passed when a function is invoked. The tracking of parameters and
function return values enables the correlation of individual function calls that operate on
the same object. For example, if the return value (a file-handle) of a CreateFile system
call is used in a subsequent WriteFile call, such a correlation is obviously given.

• Information Flow Tracking: The goal of information flow tracking is to shed light on
the propagation of “interesting” data throughout the system while a program manipulating
this data is executed. In general, the data that should be monitored is specifically marked
(tainted) with a corresponding label. Whenever the data is processed by the application,
its taint-label is propagated. Assignment statements, for example, usually propagate the
taint-label of the source operand to the target.

• Instruction trace: A valuable source of information for an analyst to understand the
behavior of an analyzed sample is the instruction trace. That is, the sequence of machine
instructions that the sample executed while it was analyzed.

There are different dynamic analysis tool like Anubis, GFISandbox etc. These tools permit to
create sandbox where analyst could perform analysis operation end extract the information they
want. Sandboxes can be used in several ways. It can act as a real machine with some limitation:
for example with limited network access or with no network access at all.

2.3 Detection evasion

To understand how is made malware detection and malware analysis is strongly recommended
to study how malware try to avoid detection techniques. Cybercriminals try to camouflage their
malware with different techniques, to be certain that when they send the malware to the target
the victim device could not identify the malicious software and stop his execution.

Initially, the malware code was not protected because attackers knew that the defenses used
today had not yet been developed. This, however, allowed security analysts to be able to analyze
malware without any difficulty and to be able to create the first malware identification systems.
One of the first pieces of information that was used to identify malware, for example, is the
sequence of opcodes present in the code. The sequence was used to understand if one file could
be malicious or not.

After the advent of the first defense systems, the attackers decided to develop techniques to
disguise their malware. Today’s malware in fact use various techniques to not be identifiable by
antivirus and other identification systems.

Cybercriminals do not just want to prevent malware from being detected by the security
system owned by the target device. They also want to avoid that, in case it is identified and
captured by security analysts, they cannot analyze it to understand its functioning and extract
information to be able to it stop in the future.

Hackers are also interested in using obfuscation techniques for another reason: in addition to
not wanting to be able to detect and analyze malware, they want to keep the algorithms used
by them to create malicious software confidential. They basically want to keep the “intellectual
property” behind the malware confidential.

Obfuscation techniques can be divided into two categories anti-static and anti-dynamic analysis
techniques [11]. The techniques are described in the following sections.

2.3.1 Anti-static analysis techniques

Malware authors tried to create techniques to counter static analysis tools to prevent their ma-
licious software from being investigated. The static analysis tools, as explained in section 2.2.1,
look in binary files or assembly files for information in order to understand the behavior of the
software under analysis. Below can be find the most used techniques.
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for i=1 to size of(body)
decrypt(byte(i));

jump to Body;

Encrypted body

Before decryption

Decryptor

Malware body

for i=1 to size of(body)
decrypt(byte(i));

jump to Body;

Payload();
...
...
...
...

After decryption

Figure 2.1: Encrypted malware.

Packing the code

Early malware only use encryption to evade detection and analysis. The encrypted malware is
mainly composed of two parts: the decryption and encrypted code body. When code is executed,
two parts are loaded into memory simultaneously. The decryption first obtains the executive
power to decrypt the encrypted code, and then performs the actual function code. Compression
and encryption together are referred to as packers [12].

• Encrypted Malware

The first approach to evade the signature based antivirus scanners is to use encryption.
In this approach, an encrypted malware is typically composed of the decryptor and the
encrypted main body (as shown in Figure 2.1) [13]. Usually the body is XORed with a key
to make it difficult to detect. For each infection, encrypted malware makes the body unique
by using different key to hide the signature. However, the decryption routine remain same,
hence it can be detected by analyzing the decryptor [14].

In this method when the malware code executes; first the decryption part is executed to
decrypt the body of the malware and then the code is executed for the action. The main
purpose of this technique is to avoid antivirus detection and static code analysis. This
method also delay the process of investigation [15]. However, the main problem of this
approach is that the decryptor remains constant from generation to generation.

• Oligomorphic Malware

The short comings of the encrypted malware led to the development of different occultation
techniques. In Oligomorphic malware decryptors are mutated from one variant to other.
A different key is used when encrypting and decrypting malware payload, in this way a
malware could contain few hundred different decryptors. Although oligiomorphism provides
different decryptor from a list of decryption for each new attack, still there are chance to
caught by antivirus by checking all the decryptor [15] even if it is not a simple process [14].
For overcoming the limitation, the malware authors developed the polymorphic malware.

• Polymorphic Malware

Malware of this type is equipped with the same evasion technique as the other malware
discussed previously; however, it contains an encrypted body with several copies of the de-
cryptor (polymorphic decryptor) [16]. The encrypted portion of the payload contains several
copies of the decryptor and can be encrypted at multiple levels. Therefore, polymorphic mal-
ware is more difficult to detect than oligomorphic malware. Also, some polymorphic viruses
apply obfuscation techniques to only their decryptor to evade detection. For instance, the
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mov dx, msg

mov ah, 9

int 0x21

jmp C

A: mov ah, 0x4c

int 0x21

B: mov dl, 0x0a

mov ah, 2

int 0x21

jmp A

C: mov dl, 0x0d

mov ah, 2

int 0x21

jmp B

Figure 2.2: Code Transportation example.

decryptor code may be reordered by placing jump instructions or inserting garbage code to
change the malware signature whilst preserving its semantics [16].

• Metamorphic Malware

Metamorphic malware are the first types of malware that don’t use encryption techniques
to avoid detection. In order to further evade detection, malware writers have extended the
above mentioned malware types by applying code obfuscation to the entire malware body
[16]. It also implements a mutation engine like polymorphism but it change its whole body
rather by only altering the decryptor [15]. The basic idea is the syntax change on each new
copy while semantics remains the same i.e. the apparently virus change on each infection
but the meaning or working remains the same. It is very difficult to detect such malware
because each new copy has a completely different signature.

Code Transportation

Code Transportation change the order of the instructions of the original code without change the
behavior of the malware. To make this, there are 2 techniques.

The first technique shuffle in a random way the sequence of instruction and recover the original
execution thanks to unconditional branches or jumps instructions. Clearly, it is not difficult to
defeat this method because the original program can be easily restored by removing the uncondi-
tional branches or jumps [13]. The second technique reorders independent instructions. As it is
difficult to find independent functions, this method is difficult to implement, but it guarantees a
high level of protection. An example is shown in Figure 2.2

Dead-Code Insertion

This obfuscation technique inserts dead code into the sequence of instructions to change the
appearance of the program without altering its behavior. This approach can evade the signature-
based detection systems. When the redundant code is inserted then the different signature is
generated [11].

This technique slows down the work of malware analysts as they have to waste time figuring
out which instruction is really useful to the program and which one was inserted only for distur-
bance. An example of an instruction widely used for this purpose is the NOP (Not operation like
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mov dx, msg

mov ah, 9

int 0x21

jmp A

mov edx,len ;useless code

mov ecx,msg

mov ebx,1

mov eax,4

int 0x80

A: mov dl, 0x0d

mov ah, 2

int 0x21

mov dl, 0x0a

mov ah, 2

int 0x21

mov ah, 0x4c

int 0x21

Figure 2.3: Code Transportation example.

mov dx, msg

mov bh, 9

int 0x21

mov cl, 0x0d

mov bh, 2

int 0x21

mov cl, 0x0a

mov bh, 2

int 0x21

mov bh, 0x4c

int 0x21

Figure 2.4: Register reassignment example.

instruction in x86). Another way to implement this technique is to insert a jump instruction to
an x number of successive lines by inserting useless code in the middle as in the example shown
in Figure 2.3

Register reassignment

This technique replaces the use of a register in an instruction with another unused instruction.
Register replacement requires that no register dependencies in control flow are affected [17]. How-
ever, it is expensive obfuscation approach because it requires manual transformation of identifiers
of constants, registers, and variables [11].

An example is shown in Figure 2.4 (The original code is shown in Figure 2.2 and registers ah
and dl are reassigned to bh and cl respectively)
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mov dx, msg

mov bh, 5

add bh, 4

int 0x21

mov cl, 0x0d

mov bh, 7

sub bh, 2

int 0x21

mov cl, 0x0a

mov bh, 2

int 0x21

mov bh, 0x4c

int 0x21

Figure 2.5: Instruction substitution example.

Subroutine reordering

Subroutine reordering obfuscates an original code by changing the order of its subroutines in a
random way [18]. This technique can generate n! different variants, where n is the number of
subroutines. For example, Win32/Ghost had ten subroutines, leading to 10! = 3628800 different
generations [18].

Instruction substitution

Instruction substitution is a technique that allow to change instructions with other equivalents.
Every sequence of original instructions can be replaced by some arbitrary instructions.

Thereby, numbers of variants of same malware files can be created. To handle this problem for
every possible variant of same malware the unique signatures is required to detect these variants
as well. It is not an impossible task but with the face of increasing new variants of same malware
is not an easy task [11].

An example is shown in Figure 2.5 (The original code is shown in Figure 2.2)

2.3.2 Anti-dynamic analysis techniques

The analysis technique could overcome the limits of static analysis, not being influenced by anti-
static analysis techniques. Anti-dynamic analysis mainly detects the fingerprint information of
the current environment and finds analysis tools. The anti-dynamic analysis method commonly
used includes detection of debuggers and virtual machines [12].

Detection of virtual machine

It is not likely to execute the malware files onto the host computer as such because the malware
files can harm the host computer. Normally for analysis we setup the virtual environment [11].
Malware authors sometimes use anti-virtual machine (anti-VM) techniques to thwart attempts at
analysis. With these techniques, the malware attempts to detect whether it is being run inside a
virtual machine. If a virtual machine is detected, it can act differently or simply not run. This
can, of course, cause problems for the analyst [19]. With these techniques, a malware attempts

19



Background

to detect whether it is being run inside a VM or on a real machine. If the VM is detected, it can
act differently or simply does not run [20].

The popularity of anti-VM malware has been going down recently, and this can be attributed
to the great increase in the usage of virtualization. Traditionally, malware authors have used anti-
VM techniques because they thought only analysts would be running the malware in a virtual
machine. However, today both administrators and users use virtual machines in order to make
it easy to rebuild a machine (rebuilding had been a tedious process, but virtual machines save
time by allowing you to go back to a snapshot). Malware authors are starting to realize that just
because a machine is a virtual machine does not necessarily mean that it isn’t a valuable victim.
As virtualization continues to grow, anti-VM techniques will probably become even less common
[19].

There are different anti-VM techniques, but typically they target VMware because it’s the
most used VM. Below can be found the various techniques used:

• Hardware fingerprinting: Hardware fingerprinting consists in looking for special virtu-
alized hardware patterns unique to VMs [20]. For example, The first three bytes of a MAC
address are typically specific to the vendor, and MAC addresses starting with 00:0C:29 are
associated with VMware. VMware MAC addresses typically change from version to version,
but all that a malware author needs to do is to check the virtual machine’s MAC address
for VMware values [19].

• Registry check: The registry contains system configuration information of the OS in the
machine. Usually the information are stored hierarchically in key/value pairs and contains
information like: Windows version number, build number, and registered users, the com-
puter processor type, number of processors, memory and so on;

Registry contains also VM specific key/value pair. Some tools, like for example ScoopyNG
search for a certain keys within the Windows registry to determine whether the machine is
virtual or not [21].

• Memory check: This technique involves looking at the values of specific memory loca-
tions after the execution of instructions such as store interrupt descriptor table (SIDT),
store local descriptor table, store global descriptor table, or store task register [20]. Some
hypervisors, such as VMware, leave artifacts in memory that cybercriminals can exploit
to prevent malware from running in a controlled environment. Some are critical processor
structures, which, because they are either moved or changed on a virtual machine, leave
recognizable footprints [19]. VMware create dedicated registers for each VM. These regis-
ters have different address than the one used by the host system, and by checking the value
of this address, the virtual systems’ existence can be detected [20]. This technique does not
work on multicore processors as each process has its own interrupt descriptor table.

Detection of debuggers

Debuggers are key tools for malware analysis, enabling the study of the software dynamically
fashion, through a step-by-step execution of the code to examine its internals and impact [22].

Anti-debugging is a popular anti-analysis technique used by malware to recognize when it is
under the control of a debugger or to thwart debuggers. Malware authors know that malware
analysts use debuggers to figure out how malware operates, and the authors use anti-debugging
techniques in an attempt to slow down the analyst as much as possible [19]. Debuggers may
also manipulate the execution environment by altering, for instance, memory, registers, values of
variables, configurations, among others [22]. Through debuggers, analysts can check the binary
code much more thoroughly. This is because debuggers offer the opportunity to manipulate the
low-level behavior of the malware. However, even though it is possible to perform very thorough
analysis with debuggers, malware authors have developed several anti-debugging techniques.

• Detection of API: Windows operating systems have many API functions that can be used
to determine if the running program is debugged. Some of these functions were designed for
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DWORD errorValue = 12345;

SetLastError(errorValue);

// try outputting string on debugger;

// if no debugger is present, it will set

// the last-error code to a new value

OutputDebugString(Test for Debugger");

if(GetLastError() == errorValue)

{

ExitProcess();

}

else

{

RunMaliciousPayload();

}

Figure 2.6: OutputDebugString anti-debugging technique example.

debugger detection; others were designed for different purposes but can be repurposed to de-
tect a debugger [19]. The following Windows API functions can be used for anti-debugging:
IsDebuggerPresent, CheckRemoteDebuggerPresent, NtQueryInformationProcess and
OutputDebugString.

• Manually Checking Structures: Using the Windows API may be the most obvious
method for detecting the presence of a debugger, but manually checking structures is the
most common method used by malware authors [19]. Malware authors have various reasons
for not trusting API functions to check for a debugger. For example, if an analyst runs a
rootkit on their operating system, this software can return false information to API calls
made by the malware, such as the absence of a debugger. For these reasons, malware authors
choose to perform the functional equivalent of the API call manually, rather the rely on the
Windows API. There are several flags that are checked for information about the presence
of debuggers:

– BeingDebugged flag: For each process running on Windows, a structure called
the Process Environment Block (PEB) is created by the operating system. In the
following structure there is a flag called BeingDebugged, which indicates whether the
related process is connected to a debugger or not. By checking the value within this
parameter, you can figure out whether to stop or change the behavior of the malware
or let it run.

– ProcessHeap flag: The ProcessHeap parameter present in the PEB structure collects
information about the heap allocated for that particular process. Within this parameter
you can find out whether the heap was created by a debugger or by the normal execution
of the operating system.

– NTGlobalFlag: Processes started within a debugger run slightly differently than
others, therefore they create memory heaps differently. The information needed to
determine how to create heap structures is stored at an undocumented location in the
PEB.

• Checking for System Residue: When analyzing malware, we typically use debugging
tools, which leave residue on the system. Malware can search for this residue in order
to determine when you are attempting to analyze it, such as by searching registry keys
for references to debuggers. Malware can also search the system for files and directories,
such as common debugger program executables, which are typically present during malware
analysis [19].
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The techniques presented up to here allow to identify the debuggers used on Windows. In
addition to these techniques that exploit the functionality of the operating system, there are
others that recognize the presence of a debugger thanks to its behavior. Several anti-debugging
techniques are used by malware to detect this sort of debugger behavior: INT scanning, checksum
checks, and timing checks.

• INT scanning INT 3 is the software interrupt used by debuggers to temporarily replace an
instruction in a running program and to call the debug exception handler a basic mechanism
to set a breakpoint. The opcode for INT 3 is 0xCC. Whenever you use a debugger to set
a breakpoint, it modifies the code by inserting a 0xCC. This technique can be overcome by
using hardware breakpoints instead of software breakpoints [19].

• Performing code checksum Malware can calculate a checksum on a section of its code
to accomplish the same goal as scanning for interrupts. Instead of scanning for 0xCC, this
check simply performs a cyclic redundancy check (CRC) or a MD5 checksum of the opcodes
in the malware. This technique can be overcome by using hardware breakpoints or by
manually modifying the execution path with the debugger at runtime.

• Timing checks There are a couple of ways to use timing checks to detect a debugger [19]:

– Record a timestamp, perform a couple of operations, take another timestamp, and
then compare the two timestamps. If there is a lag, you can assume the presence of a
debugger.

– Take a timestamp before and after raising an exception. If a process is not being
debugged, the exception will be handled really quickly; a debugger will handle the
exception much more slowly
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Chapter 3

Detection and Classification of
malware

A Malware detector ’D’ is defined as a function whose domain and range are the set of executable
program ’P’ and the set malicious, benign [17]. The general malware detection function can be
defined as [15]

D(s) =


malicious if s contains malicious code

benign if s is a normal program

undecidable if D fails to determine s

(3.1)

D is the function that checks whether certain software (s) is malicious or not. It may happen
that function D cannot decide if the program is malicious or not, in these cases D must be able
to give as much information as possible to the analyst so that he can go and analyze by hand if
the software under analysis is malicious or not.

It is difficult to identify malware since numerous approaches have been developed throughout
time to get beyond the barriers that the malware’s developers erected as they produced new
harmful software. We can also consider how challenging it is to find new malware before using
analysis tools on a sample that has already been intercepted. Indeed, zero-day malware is currently
the biggest challenge facing cybersecurity analysts.

Nowadays, malware detectors are an endpoint protection, that is, antivirus. These software
are used to analyze the files that arrive on the system in which they are installed, and to recognize
whether the subjects analyzed are malware or not. Furthermore, antivirus usually provide other
information in addition to the one mentioned above. In fact, they must classify the malware and
update information (such as the number of detections) in special databases. The general malware
classification function C can be defined as

C(s) =


Trojan if s contains specific trojan features

Keylogger if s contains specific keylogger features

...

undecidable if C fails to classify s

(3.2)

The malware detector detects the malware based on signatures of malware.The binary pattern
of the machine code of a particular virus is called as signature. Antivirus programs compare their
database of virus signatures with the files on the hard disk and removable media (including the
boot sectors of the disks) as well as within RAM [17]. The signatures are generated by security
analysts after an analysis phase executed with specific tools. Obviously antivirus are not perfect,
like any other testing tools there is the possibility that it returns false positives and false negatives.
Below you can understand how we can find ourselves in front of errors during the test phase of a
sample:

23



Detection and Classification of malware

• False positive: A false positive occurs when a virus scanner erroneously detects a ’malware’
in a non-infected file. False positives result when the signature used to detect a particular
malware is not unique to the malware - i.e. the same signature appears in legitimate,
non-infected software [17].

• False negative: A false negative occurs when a virus scanner fails to detect a virus in an
infected file. The antivirus scanner may fail to detect the virus because the virus is new
and no signature is yet available, or it may fail to detect because of configuration settings
or even faulty signatures.

Malware detection is the process of investigating the content of the program and deciding
whether the analyzed program malware or benign. The malware detection process includes 3
stages: Malware analysis, feature extraction, and classification.

The malware analysis phase has already been extensively discussed in section 2.2 so now the
feature extraction phase will be addressed.

3.1 Malware Feature extraction

The information that can be extracted from a malware through the analysis phase are called
malware features, they can be divided into two main groups: static features and dynamic features.

Static features are those features that can be extracted without the execution of malware.
Such features are extracted by studying binaries of malware. While dynamic features are those
which are extracted after executing a binary file. These features are extracted through dynamic
analysis [23].

3.1.1 Static features

Static features are extracted from executable binaries or assembly source files. In Android appli-
cations, on the other hand, you have to disassemble the APKs. To do these operations there are
tools created specifically for this purpose such as IDA Pro or Radare 2. Below you will find a
description of the most important static feature.

Bytes and opcode N-Grams

The most common feature for identifying and classifying malware is the N-gram. An N-gram
is a contiguous sub-sequence of n elements placed one in a row to the other in a sequence, for
example if we take a sequence of letters of the alphabet such as a, b, c and d, if we are talking
about 2-gram we obtain some sub-sequences which are: a-b, b-c and c-d. In the malware field,
N-grams are extracted from a sequence of bytes from the malware binary. By treating a file as
a sequence of bytes, the n-grams are extracted by looking at the unique combination of each n
consecutive bytes as an individual feature of the malware type. In the case of assembly files, the
elements used as grams are not bytes but instructions such as “ADD”, “MUL”, “PUSH” etc., for
this reason they are defined not as bytes N-grams but as Opcode N-grams.

String Analysis

String analysis refers to the extraction of each printable string within an executable or program.
Searching for strings is the simplest way to get clues about a program’s functionality. The in-
formation that can be found in the strings can be, for example, the URLs to which the program
connects, or the paths of the files that are accessed and that change during the execution of the
malware, etc.

24



Detection and Classification of malware

Figure 3.1: Gray scale representation of the binary content of malware samples belonging to the
Ramnit and the Lollipop families [24].

API function calls

Application Programming Interfaces (API) and their function calls are regarded as very discrim-
inative features [24]. APIs are the functions that must be called by a malware in order to access
system information such as networking, security, file management, and so on. By studying which
APIs are called by various malware, it is possible to identify which family they belong to as a com-
mon feature. As there is no other way for software to access the system resources without using
API functions, the invocation of particular API functions provides key information to represent
the behavior of malware [24].

Entropy

As described in section 2.3.1, malware authors use various encryption and packaging techniques to
obfuscate malware from malicious software detectors on victims’ computer systems. Consequently,
it is of great interest for the information security industry to be able to detect the presence of
encrypted or compressed segments of code within executable files [24]. This is why the study of
the entropy present in the analyzed executables was born. In fact, it has been noted that the
entropy in the native code is much higher when the files are compressed or encrypted. In the
context of information theory, the entropy of a bytes sequence reflects its statistical variation. In
particular, zero entropy would mean that the same character has been repeated over the analyzed
segment [24]. On the contrary, if a block of bytes all different is found, it means that the entropy
of that block is very high.

Malware representation as a grey scale image

An interesting approach to viewing malware was first introduced in 2011, where an attempt was
made to convert a binary to a gray scale image. These images are obtained by interpreting each
byte as a pixel of an image, where the values range from 0 to 255 (0: black, 255: white). Finally,
the resulting array is transformed into a matrix.

As can be seen from Figure 3.1 two malware from different families create 2 totally different
images, while 2 malware from the same family are very similar. This similarity stems from the
fact that many malware have pieces of code copied from other malware.

However, this feature also has flaws. The disadvantages are:

• To construct an image you need to select an image width which adds a new hyper-parameter
to tune. Notice that selecting the width consequently determines the height on the image
depending of the size of the binary [24].

25



Detection and Classification of malware

• Forces a spatial correlation between two pixels of different lines even if it does not exist in
the code.

• It suffers from code obfuscation techniques like all static features.

Function call graphs

A Function Call Graph (FCG) is a directed graph whose vertices represent the functions of which a
software program is composed, and the edges symbolize function calls [24]. The call graph doesn’t
give information on how control of program flows instead it provides information on calling of
various procedures. A node vertex in the graph can represent two different types of functions:

• Local functions, implemented by the software publisher to perform a specific function.

• An external function, obtained from the operating system or from an external library.

One particularity of the graph is that only local functions can invoke external functions, not
the other way around [24].

Control Flow Graph

A Control Flow Graph (CFG) is the graphical representation of control flow or computation
during the execution of programs or applications [25]. A Control Flow Graph (CFG) is a directed
graph in which the nodes represent basic blocks and the edges represent control flow paths [24].
Each block in the graph represents a linear sequence of instructions having an entry point (the
first executed instruction of the block) and an exit point (the last executed instruction of the
block). When an instruction allows to have two different flows of execution, two exit points are
inserted which thus allow the reader to understand the different execution paths that the program
can have.

3.1.2 Dynamic features

Dynamic feature extraction consists of running the executable usually in an insulated environment
which can be a virtual machine (VM) or an emulator and then extract features from the memory
image of the executable or from its behaviors [26]. Dynamic Malware Analysis monitors the
behavior of malicious software by observing the actual sequence of instructions executed. It reveals
process creation, file and registry manipulation and modifications of memory values, registers and
variables [24].

Memory and Register’s usage

The behavior of a program can be represented by the values that are assumed by some portions
of the memory during the execution of the malware. In other words, the values stored in the logs
while the program is running can tell us whether this is malware or not.

Instruction traces

The instruction trace is the sequence of processor instructions called during the execution of a
software. Unlike the static version, this trace does not respect the order of how they are written
on the binary file but the order in which they are executed. The trace collected through dynamic
methods, in fact, allows for a more robust measure that also avoids the obfuscation techniques
used by the authors of the malware. It, respecting the call order, allows the reconstruction of the
execution flow, even if the instructions of the malware are interchanged in the binary file. The
cause of this advantage is that the control flow graph is built during a fake execution going to see
the real call order.
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Network traffic

Malware can not only interact with the operating system and its data, but also with the network,
infecting multiple machines connected to the same router for example. A targeted study of
network traffic can be used to extract features from various malware. All this first requires a
thorough analysis of the “normal” behavior of the network without ongoing attacks. As soon
as malware infects a host machine, it may establish communication with an external server to
obtain the commands to execute on the victim or to download updates, other malware or to leak
private and sensitive information of the user/device. Approaches in the literature extract events
at several abstraction levels, from raw packets to network flows, detailed protocol decoding such
as HTTP and DNS requests, to host-based events and metadata such as IP addresses, ports and
packet counts [24].

API call traces

Software programmers use the Windows API to access basic resources available to a Windows
system including, but not limited to, file systems, devices, processes, threads and error handling,
and also to access functions beyond the kernel such as the Windows registry, start/stop/create a
Windows service, manage user accounts and so on [24]. Obviously all the advantages that can be
obtained from the static feature are also inherited from the extraction performed dynamically.

3.2 Malware detection approaches

The features seen in the previous section are all information that is used by malware detectors to
understand if they are analyzing malicious software or not. In recent years, many researchers have
tried to find a solution that would be able to detect any malware that comes into their analysis.
In this section we will deal with the already existing solutions that have been used up to now and
that continue to be present in antivirus. In the early days, signature-based detection method was
widely used. This method works fast and efficiently against the known malware, but does not
perform well against the zero-day malware [27].

Subsequently, researchers to try to solve the signature-based problem have developed new
techniques such as behavior-based, heuristic-based and model-checking based. Today the most
widespread research is on identification techniques through deep learning or ML algorithms. These
two new techniques will be addressed in a specific section. In each approach, feature extracting
method is different one from another. It could not have been proven one detection method works
better than another because each method has its own advantages and disadvantages. By using
behavior-, heuristic-, and model checking-based detection approaches; huge number of malware
can be detected with a few behaviors and specifications. In addition, new malware can be detected
by using these approaches as well. However, they cannot detect all malware [27].

3.2.1 Signature-based malware detection

Signature is a malware feature which encapsulates the program structure and identifies each
malware uniquely [27]. The signature is nothing more than a sequence of bits generated by
the malware binary. This technique consists in the generation of this signature from the file
under analysis, followed by a comparison phase with the signatures of the already known malware
present in a database. As you can guess if a malware has already been analyzed and recognized
this technique will be very effective against its replicas, if instead there were to identify and classify
a new malware (zero-day malware for example) this technique would be insufficient.

Signature generation process

Antivirus have a database in which all the signatures of malware already scanned are collected. In
fact, during the analysis phase some features are extracted from the executables, which are then
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Figure 3.2: Signature-based malware detection schema.

rule ExampleRule

{

strings:

$signature: {90 FF 16 83 EE 04 83 EB 01 75 F6}

condition:

$signature
}

Figure 3.3: Byte signature in Yara format [27].

used to generate the signature. When sample program needs to be marked as malware or benign,
signature of the related sample is extracted as the same way before and compared with signatures
on the database (General view of signature based detection schema can be seen in Figure 3.2)
[27]. It has the advantage of accurately identifying known malware instances and requiring fewer
resources to do so. The disadvantage is that it cannot detect the new and unknown malware
instances because we cannot find the signatures for those types of malware [28].

There are many different techniques to create a signature such as string scanning, top-and-tail
scanning, entry point scanning, and integrity checking [27]:

• String Scanning: This technique involves comparing a sequence of bytes in the scanned file
with the byte sequences of known malware previously saved in a database. String scanning
was used a lot by the first antivirus released on the market as it was very fast and effective
when few families of malware were widespread. This technique could be accompanied by
the use of the Yara rules. In fact, these rules could be saved in the database to keep track
of all malicious sequences (Example of Yara rule in Figure 3.3 referring to malware example
in Figure 3.4).

• Top-and-Tail Scanning: To generate the signature, only the initial and final part of the
file under examination are taken. In this way it is easy to identify all types of malware that
to remain hidden are attached to the beginning or end of other harmless files.
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Start: 0x401A2E length: 0xC

90 nop

FF 16 call dword ptr [esi]

83 EE 04 sub esi, 4

83 EB 01 sub ebx, 1

75 F6 jnz short loc_401A30

Figure 3.4: Example byte sequence of a malware [27].

• Entry Point Scanning: The entry point is the point in a program, module or function
where the code begins; specifically, the memory address where it begins. Specifically, in a
file the entry point indicates where is the first instruction that must be execution when the
file starts to run. Therefore, certain malware can be detected by extracting the signature
from the sequences at the program entry points [27].

• Integrity Checking: The integrity check is nothing more than the generation of the file
hash. In fact, a hash is generated using algorithms such as SHA-256 or MD5 to create a
unique identifier for each malware, to be kept in a database for future comparisons.

As shown, there are several techniques for generating malware signatures. All of the ones
shown are very fast and efficient but are not resistant to obfuscation techniques. For example,
malware can easily change the strings and program entry point in its instruction set. By this,
generated signature may mislead the detecting schema [27]. Some researchers have tried to create
new techniques to generate more effective signatures but still have to admit some limitations. The
limits may be, for example, techniques that were applicable only to specific classes of malware, or
the tests they carried out covered only a small slice of malware existing on the web.

Evaluation of signature-based detection

As analyzed in this section, signature-based detection is a very fast and effective technique with
malware belonging to the same family. It has in fact been used for many years by the antivirus
on the market. Unfortunately, however, it is not effective against zero-day malware, malware that
uses obfuscation techniques or polymorphic malware. Furthermore, it is very easy to get false
positives if the rules are ineffective. This problem arises from the fact that extracting signatures
is a long and complex process and it is easy to make mistakes during the feature extraction phase.
Despite these limitations, it is still a very widespread technique, in fact, in order to be effective,
rules have been defined to be taken into consideration [27]:

• Signature should be as short as possible and can represent many malware with single sig-
nature,

• Effective automatic signature generation mechanism must be built,

• During the signature generation, data mining and ML techniques need to be used more,

• Signature should be resistant to packing and obfuscation techniques

3.2.2 Behavior-based malware detection

Behavior-based malware detection approach observes the program behaviors with monitoring
tools and determines whether the program is malware or benign [27]. This technique is based
on the assumption that two malware belonging to the same family will have similar behavior. It
is therefore easy to understand that once the behaviors of known malware families are analyzed,
even new malware will be easy to detect. This is not entirely true as some new malware are not
yet detectable through behavioral methods. For example, all malware that uses anti-VM and anti
sandbox techniques cannot be detected because to extract the behavior of a malware, it must first
be run in a controlled environment. It is therefore possible to obtain false negatives.
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Behavior detection process

In section 3.1 was discussed the various feature extraction techniques and which ones are most
used in the field of malware detection and classification. Among these techniques there are some
that have been used extensively in the field of malware detection based on their behavior. When
establishing a behavior-based detection system, behaviors are obtained by using one the following
procedure [27]:

• Automatic analysis by using sandbox;

• Monitoring of system calls;

• Monitoring of file changes;

• Comparison of registry snapshot;

• Monitoring network activities;

• Process monitoring.

In behavior-based detection, first, behaviors are determined by using one of the technique used
above and the dataset is created by subtracting the features using data mining. Then, specific
features from the dataset are obtained and classification done by using ML algorithms [27]. After
the training and testing phase with the ML tool, the decision maker is developed which will be
the final product installed on the endpoints to detect potential malware.

Evaluation of Behavior based detection

The scheme of Behavior-based detection techniques can be divided into 3 phases:

• Determine behaviors (data mining can be used),

• Extract features from behaviors (data mining is used),

• Apply classification (machine learning is used).

When extracting features in ML models, it is also necessary to find a way to transform the
extracted values (which can be strings, registers, etc.) into values that can be understood by an
ML tool and therefore into numbers. To build the similarities between different features there are
different techniques such as the Hellinger distance, the cosine coefficient etc.

The difficulties in defining a behavior, the large number of extracted features (when using n-
grams, etc.), and the difficulties in identifying the similarities and differences among the extracted
properties have prevented the creation of an effective detection system [27]. In addition, there are
several obfuscation techniques that prevent malware from running in a monitored environment.
Only today, as ML is starting to spread in the field of cybersecureity, this technique is starting to
develop and to be studied by several researchers.

3.2.3 Heuristic-based malware detection

As has been shown, signature-based and behavior-based malware detection have some drawbacks.
Hence, heuristic malware detection methods are proposed to overcome these disadvantages [29].
It is a complex detection method which uses experiences and different techniques such as rules
and ML techniques. Although it has a high accuracy rate to detect zero-day malware to a certain
degree, it cannot detect complicated malware [27]. The heuristic detector developed by cyber
analysts is based on several features:

• File based: can be use the path of files opened and/or wrote from malware.
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• Weight based: the weight of the file can be useful information to understand if the suspi-
cious file can belong to a specific family of malware.

• Generic signature: It is also possible to integrate the use of the signatures seen in the
signature-based detection.

• Rule based: rules created by behavior-based detection can also be included.

Evaluation of heuristic-based detection

Heuristic-based schema can use both strings and some behaviors to generate rules, and based on
that rules it generates signature. It uses API calls, CFG, n-grams, Opcode, and hybrid features
when generates a signature. Although the heuristic-based detection can detect various forms
of known and unknown malware, it is insufficient to detect all new generation of malware. In
addition, heuristic-based approaches are prone to high false positive rate [27].

3.2.4 Model checking-based malware detection

Although model checking is originally developed to verify the correctness of system against spec-
ifications, it has been used to detect malware as well [27]. With this detection technique, the
behavior of the malware is extracted thanks to the use of malware analysis tools (static and/or
dynamic). These features are encoded using the logic applied in model checking such as linear
temporal logic, compute tree logic etc.

The behavior of the sample under study is created by looking for the flow of execution of the
system calls for example, or other properties such as the values of the registers. Model checking-
based detection can detect some new malware to a certain degree, but cannot detect all new
generation of malware [27]. These features are then used to build the model checker which, unlike
detection based on heuristic methods, does not use machine learning or data mining.

Evaluation of model checking-based detection

This approach is generally used for program verification and not used sufficiently for malware
detection. Although it is effective to detect some new malware variants, it is still insufficient to
detect all complex malware [27]. Furthermore, it is a long and complex process as the extraction
of features and transformation into models understandable by the model checker must be done
manually.

3.3 Malware detection and classification using Machine
Learning and Deep Learning

In the last decade or so, the use of machine learning as a solution to the problem of malware
detection and classification has increased exponentially. The problem of zero-day malware has led
scholars to find new solutions as those shown above are not very effective against this threat.

The success and consolidation of machine learning approaches would not have been possible
without the confluence of three recent developments [24]:

• The first development concerns the growing spread of labeled malware available on the
web. As of today, it is no longer just the security community that has possession of the
malware binary files with labels that catalog the malware, but also the research community.
This implies that more people can try their hand at creating their own ML tool to achieve
promising results for the future. An example of what has just been said is the dataset
distributed by Microsoft for the Big Data Innovators Gathering Anti-Malware Prediction
Challenge [30] or the VirusShare [31] site which gives access to many malware.
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Figure 3.5: Schematic workflow of Malware Detection System using Machine Learning.

• The second development is the increase in computational power that has occurred in recent
years. The rapid growth in computational power has also lowered hardware costs and
this has led to powerful computers in the hands of researchers. Consequently, it allowed
researchers to speed-up in the iterative training process and to fit larger and more complex
models to the ever increasing data [24].

• Third, the machine learning field has evolved at an increased pace during the last decades,
achieving breakthrough success in terms of accuracy and scalability on a wide range of tasks,
such as computer vision, speech recognition and natural language processing [24].

Machine learning algorithms provide more option and space for developing a more accurate
model by considering more features of malware and benign samples. ML has a very wide scope in
the field of computer security like for malicious URL detection, intrusion detection and malware
detection [32].

If you want to understand the complete scheme of the workflow you can look at the Figure 3.5.
As in many machine learning researches, the first step is to find or create a dataset that can contain
as many samples as possible and that is as representative of reality as possible. The second phase
occurs if there are no features already in the dataset obtained during the previous step. In fact, if
the dataset contains only binary files, it will be necessary to analyze them in order to decide which
features to extract and how to do it. Then we look for an automatic way to extract the features
if they are not already available. Finally comes the main phase in which the tool is trained and
subsequently tested to check that the training phase has been carried out correctly. At this point,
if the tool has reached acceptable levels, you can decide to use it to classify future unknown files.

As it has been said several times, a major benefit of using machine learning in malware
detection is that it can develop a model to detect unknown malware. The reason is that it
consists of several algorithms which can be applied to the wide variety of malware features set
and produces better malware detection results [32]. Besides, there are many other advantages:

• Existing anti-virus and sandbox techniques can be subverted. As mentioned several times,
these techniques are very complicated to use

• Automates extracting insight from malware samples.

• Can better generalize at identifying unknown variations.
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• It can reduce human effort and time for analyzing the malware.

• Research work has been done by many researchers which shown the significant confidence
in the malware detection.

3.3.1 Challenges to implement ML in malware detection

These solutions seem to bring many benefits but obviously there are obstacles to overcome. In
particular, these limitations stem from the physical limitations of today’s computers and the
ability of attackers to continuously improve their products. There are five challenges in particular
that are still a problem.

Class imbalance

Obtaining good training data is one of the most challenging aspects of any machine learning
problem. Machine learning classifiers are only as good as the data used to train them, and
reliable labeled data is especially important for the task of malware detection, where the process
of labeling a file can be a very time-consuming process [24].

Another problem is the proportionality of the samples. It is possible that in your dataset
there are a number of benign samples not equal to the number of malicious samples, or that in a
dataset there are more samples of a certain class than samples of another. This is known as the
class imbalance problem. A concrete example can be seen in the Microsoft dataset [30] in which
there are 2478 samples of the Lollipop family and only 42 samples of the Simda family. This kind
of distribution, where one class much larger than the other(s) can lead to a model that predicts
the value of the majority classes for all predictions and still achieve high classification accuracy
while lacking predictive power [24].

In other words, the classifier might be biased towards the majority classes and achieve very
poor classification rates on the minority classes. It might happen that the classifier predicts
everything as the major class and ends up ignoring the minor classes. This is called the accuracy
paradox [24].

Open and public dataset

The task of malware detection and classification has not received the same attention in the research
community as other applications, where rich benchmark datasets exist [24]. This situation is got
worse thanks to the legal restrictions that are around benign binaries. Copyright laws prevent
the free sharing of software produced by official companies, such as all Adobe, Microsoft, etc.
software. Malicious binaries instead can be found on some sites, like VirusShare. Nevertheless,
both benign and malicious binaries may be obtained in volume for internal use only through
services such as VirusTotal, but subsequent sharing is prohibited [24]. If one looks what is being
shared by VirusShare (or other source like it), it can be seen that only binaries are easy to
obtain. In fact, sites like VirusTotal that provide data detected by anti-malware software about a
certain malicious file have many restrictions on their use. For example, data about malware and
information obtained about them cannot be shared. Also, trying to manually extract data from
malware takes a long time.

All this has led to a lot of research in this field but all very difficult to compare. Since everyone
develops their own method for extracting features, it is not easy to evaluate only the machine
learning solution used. For example, if a researcher extracts the features using a certain tool, he
will be able to obtain excellent results on his samples but if he will carry out the same test on other
datasets used by other researchers he will be able to obtain poor results. At the present time,
the only standard benchmark available to the research community regarding Windows Portable
Executables is the one provided by Microsoft for the Big Data Innovators Gathering Anti-Malware
Prediction Challenge [24]. Unfortunately, this dataset also has limitations. To neutralize them,
binaries without headers have been inserted, in this way those who download them should not
run into danger on their computer. In consequence, researchers are constrained to using only the
provided byte code and disassembly files (generated with the IDA Pro disassembler) [24].
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Concept drift

In the machine learning literature, the term “concept drift” has been used to describe the problem
of the changing underlying relationships in the data [24]. In machine learning, the output is
mapped starting from samples given as input to the algorithm. There is therefore a mapping
function that, received at the input of the data, predicts the output values. In machine learning
(especially in digit classification, text categorization or speech recognition) it is assumed that
the training data are a good representation of reality and who therefore once the model has
been sufficiently trained it will no longer have to be updated. In other words, they assume that
the mapping learning from historical data will be valid for new data in the future and that the
relationships between input and output do not change over time. This is not true for the problem
of malware detection and classification [24].

As software updates, the malware that exploits their vulnerabilities also evolves accordingly.
During the life phase of a software, many updates are carried out, usually just to fix bugs that can
lead cyber criminals to exploit them in order to damage or steal information from the software.
This can therefore lead to an obsolete mapping function that needs to be updated according to
the new standards. Obviously it must be said that this change is very slow. With an update you
change a few lines of code, the behavior remains very similar so a system based for example on
API function calls will continue to work. But in the long run it can be a big problem. Thus,
in order to build high-quality models for malware detection and classification, it is important to
identify when the model shows signs of degradation and thereby it fails to recognize new malware
[24].

Cybercriminals have also understood the dangers of this malware identification and classifica-
tion technique, so they have begun to develop techniques to counter it. They also started using
machine learning to increase the threat of their malware.

Adversarial machine learning

Adversarial machine learning is a big problem in machine-based malware classifiers. Adversarial
machine learning means when malware developer uses the tactics of ML to bypass the malware
detector [32]. To put it in the machine learning context, an attacker’s aim is to fool the machine
learning detector by camouflaging a piece of malware in feature space by inducing a feature
representation highly correlated to benign behavior [24].

Defenders therefore find themselves having malware that possess the ability to understand if
there is a detection system in the targeted device or if it does not have one. This is an undeniable
fact that there is no other way except machine learning to detect the present malware which is
highly complex. Also, the pace of malware development is very high. Now the thing is how we
tackle these challenges to implement ML in the cybersecurity domain [32].

Attacker ML systems require knowledge of the identification and classification system on the
target computer. For instance, consider a machine learning approach that relies on the program’s
invocations of API functions or the DLLs dynamically loaded by the executable. An attacker
might use this information to conceal the usage of any suspicious API function by packing the
executable and leaving only the stub of the import table or perhaps even no import table at all.
These modifications to the feature space can be manually performed or not.

Defenders in turn have found ways to combat these malware. The first way is to decrease the
number of data samples used for training. If you use too many samples paradoxically our defensive
system will be much more specific, so changes like the ones mentioned in the previous example
will work very well. Only this is not enough, it is also necessary to use hybrid systems, that is,
using both static and dynamic features. Malware detector based on a single ML algorithm can be
bypassed however the ensemble malware detector can be more resilient to handle the adversarial
machine learning [32].
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Interpretability of the models

The interpretation of machine learning models is a new and open challenge. Most of the models
used at the present time are treated as a black box [24]. In the field of cybersecurity we might
think that it is a good way for cyber criminals not to have access to the functioning of detection
and classification systems but in reality they do not. This could pose a problem in cybersecurity
applications when a false alarm occurs as analysts would like to understand why it happened.
The interpretability of the model determines how easily the analysts can manage and assess the
quality and correct the operation of a given model [24].

3.4 Machine learning classification algorithms

In the literature, various machine learning algorithms have been used to train malware classifiers
such as Naive Bayes (NB), k-Nearest Neighbours (k-NN), Support Vector Machine (SVM), Deci-
sion Tree (DT), Random Forest (RF) and Artificial Neural Network (ANN). This section presents
a brief description of how they work, their advantages and disadvantages.

3.4.1 Naive Bayes

Naive Bayes classifiers are a family of classifiers which work on probability and are based on the
Bayes theorem [23]. They assume that the set of features used as input to the algorithm are
independent of each other. Bayes’ theorem (from which the classifiers take their name) is used to
calculate the probabilities:

P (Ai|E) =
P (E|Ai)P (Ai)

P (E)
=

P (E|Ai)P (Ai)Pn
j=1 P (E|Aj)P (Aj)

(3.3)

As shown by the equation above, the probability of each class and the conditional probability
of each data instance with class are calculated. Then, the prediction of a class is done with
cumulative probability which is calculated by multiplying the class probability and conditional
probability of each contributing data instance [32].

Advantages

Implementing Naive Bayes classifiers is very simple, and they are also simple to understand if
someone needs to study examples that have already been created. It can perform well with
irrelevant dataset. Also, the classifier can be trained using the small size of the dataset [32].

Disadvantages

The main limitation of NB classifier is that it does not perform well if the data features in trained
data are correlated to each other [32]. In fact, as previously mentioned, independent features
must be used. For example, using API function calls in conjunction with register values will yield
poor results as the register values are extracted immediately after an API function call

3.4.2 K-Nearest Neighbour

K-Nearest Neighbour (K-NN) classification algorithm classifies the input instance by considering
the class label of k nearest training instances [32]. The basic fundamental behind this algorithm is
that two objects which belong to the same class have some commonalities which can be detected
based on some distance metric [23]. The class of input instance is predicted as of the class
of majority instances. Distance measures Euclidean, Manhattan, Hamming and Minkowski are
used to find the class label of an input instance from nearest K nearest instances [32]. K here
represents the number of nearest neighbors which is the main factor and its value is generally
small odd numbers like 1, 3, 5, or 7 [23]. An example is shown in the Figure 3.6.
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Figure 3.6: Example of K-NN with k = 3 with the contiguous line or k = 5 with the dashed line .

Figure 3.7: Linear (A) and polynomial (B) SVM.

Advantages

Implementation of K-NN is very simple and can be updated at a very low cost as new instances
with known class labels. K-NN algorithm does not make any assumption about the dataset. It is
more robust to search space means do not need to be linear separable dataset [32].

Disadvantages

The main drawback of the K-NN algorithm is that it does not perform well if a dataset is unevenly
distributed. Also the selecting the appropriate value of K is unpredictable [32]. t it becomes
significantly slow when there is a large number of entries [12].

3.4.3 Support Vector Machine

The support vector machine is an ensemble that tries to create a hyperplane to create a clear
separation in space between the various different classes. There are 2 types of SVM (Figure 3.7):
linear SVM and polynomial SVM transforming the polynomial problem into a linear problem.
The first type uses linear hyperplanes to divide the space into 2 different classes, while the second
type uses polynomial hyperplanes.

For binary classification, a vector of points on two-dimensional input space can be visualized
which separate the input data instance into two different classes benign class and malware class
[32]. In the case of malware classification, it is very difficult to use linear SVMs because the
samples are very dispersed in the sampling space.

Advantages

SVM is the most promising Classification algorithm which produces good accuracy in classifica-
tion. It can perform well with high dimensional dataset and can classify the non-linear separable
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Figure 3.8: Example of decision tree.

data as well. Selection of the regularization parameter varies from problem to problem [32].

Disadvantages

Training time is getting large in SVM with a large value of penalty parameter (Penalty parameter
of the error term. Can be considered as the degree of correct classification that the algorithm has
to meet or the degree of optimization the the SVM has to meet). Also, choosing the value of C
is a trade-off between testing and training error.

3.4.4 Decision Tree

This classifier is represented as a tree in which the internal nodes are represented as conditions to
be evaluated, while the leaves represent the class to which to assign the sample (Figure 3.8). In
decision tree classification, a decision tree is created by computing the info gain of each attribute
in datasets. The attribute has maximum info gain becomes the root. Then other becomes a leaf
of the root. Then, the created decision tree is used for making class predictions [32].

This tree structure helps a lot in making decisions using the divide and conquer technique.
We consider an unknown variable A1 whose class must be assigned, starting from the root node,
one must choose the path according to the characteristics of A1 and go down the tree until a leaf
node is encountered and upon reaching the leaf node assign the ’label’ of the class corresponding
to A1.

Advantages

Decision Tree classifiers can perform well with high dimensional dataset also with noisy data.
Unlike K-NN and SVM classifiers, it works as a white box. The interpretation of trained can be
done. Because of this analysis of the trained model can be elaborated. Training speed of Decision
Tree classifiers is also fast [32].
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Figure 3.9: Example of random forest decision process.

Disadvantages

A small change in the dataset can cause a large change in the structure of the decision tree which
causes instability of the model. It does not perform well with the small number of data features
[32].

3.4.5 Random Forest

It is an updated version of the decision tree in which instead of creating a single tree, a certain
number are created, creating a collection of decision trees. There are two types of randomness,
the selection of input variables and the bootstrap of samples. In fact, the selected variables will
not be the same for all trees but a certain amount of samples will be assigned to each tree.

Advantages

RF machine learning algorithm is immune to variation in the dataset because selects the multiple
subsets randomly which reduce the risk of over fitting that why It gives the best classification
results. Unlike the decision tree, it can provide good results if there is a change in the dataset
[32].

Disadvantages

Training speed is slow. It is directly dependent on the number of classifiers which are trained to
build the strong classifier. It is not transparent as decision tree because of the number of decision
trees are computed to builds a strong modal. That is why it becomes difficult to interpret the
results [32].

3.4.6 Artificial Neural Network

Artificial Neural Networks are the process models which mimics the human brains working to
facilitate for finding the decision boundaries by minimizing error rate [32]. Neural networks have
a layered structure, including an input layer and an output layer, plus other intermediate layers
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called hidden layers. A neural network, therefore, obtains input information that is transmitted
to all neurons (the individual nodes of the neural network) by training the network for the testing
phase. These neurons are divided into levels, the first level contains the input nodes, the interme-
diate levels contain the nodes where the input is transformed and processed and the output level
contains the nodes in which the answers are provided.

There are several types of neural networks, in the malware classification mainly 2 are used
(other techniques have never been successful):

• Recurrent Neural Network (RNN): It is a class of neural networks in which information
from the past remains in the memory of the nodes, creating a kind of effect similar to
feedback. Obviously this increases the accuracy of the neural network, however, increasing
the performance cost.

• Convolutional Neural Network (CNN): Widely used in the field of image classification,
in fact in the field of malware classification it is mainly used with the use of malware
transformed into images. Filters are used to search patterns in images taking into account
different areas of the picture in order to find a common factor between the various samples
of the same class. This type of neural network uses a certain number of resources based on
the size of the images given as input. For this, techniques to reduce the resolution of the
images are used.

Advantages

Artificial Neural Network can model the non-linear dataset of large number of input features.
The Artificial Neural Network can be used almost every kind of problem specially for the optimal
problem [32].

Disadvantages

Artificial Neural Network might be lead to over-fitting, the weights established for the training
data may not be generalize the other datasets, even from the same populations. In the end, this
technique is computationally expensive [32].
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Chapter 4

Dataset

This chapter will introduce the main datasets that have been evaluated to carry out this research
and which ones have actually been used. The datasets most commonly used in this type of research
were evaluated, in addition an attempt was made to use another dataset created specifically by
another thesis student of the Politecnico di Torino called ST-WinMal. Finding a dataset was not
a trivial operation, since the goal was to find one that could provide as many features as possible
having already calculated labels. Furthermore, we wanted to look for a dataset that also provided
the binaries, so that we could also try to manually extract some features such as byte ngrams. In
summary, the goals were:

• Own the binaries and if possible the disassemblies of malicious and benign files

• Have access to features extracted using tools like IDA Pro

• Have a large number of files available.

The datasets evaluated with all their characteristics, advantages and disadvantages will be
listed below.

4.1 SOREL-20M

SOREL-20M (Sophos/ReversingLabs-20 Million) dataset is a large-scale dataset consisting of
nearly 20 million files with pre-extracted features and metadata [33]. Labels derived from multiple
sources are also provided, i.e. from different vendors of antivirus or malware detection tools. The
complete dataset counts 12,699,013 training samples, 2,396,822 validation samples and 4,195,042
test samples, more than enough numbers to be able to carry out many types of analyzes on them.
Unfortunately, not all of these samples have their respective binary file associated. However, the
authors of the dataset managed to solve this problem by providing 9,919,251 samples of malware
binaries. The distribution of benign and malware files can be viewed in Table 4.1.

The samples are identified by hashes, calculated with sha256 to be precise. In fact, the primary
key in the database is the hash. The data was collected from January 1, 2017 to April 10, 2019
[33].

Unfortunately this dataset had a problem that should not be underestimated for this type of
research. In fact, the labels associated with the malware were not the families as I researched,
but the type of malware (for example, adware, ransomware, etc.). The malware present in this
dataset are in fact part of the following types of malware: adware, flooder, ransomware, dropper,
spyware, packed, crypto miner, file infector, installer worm and downloader.

In summary, the advantages of this dataset are its size and the presence of already extracted
features which, however, were not the ones that interested me the most. In fact, the disadvantages
I found are the lack of labels on the malware families and the features regarding API or ngram i
opcode. I have therefore decided not to use this dataset.
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Set Malicious Benign
Training set 1,360,622 5,102,606
Validation set 962,222 1,533,579
Test set 1,360,622 2,834,441

Table 4.1: Distribution of malware and benign samples across SOREL-20M dataset

4.2 VirusShare

VirusShare is a repository of malware samples to provide security researchers, incident responders,
forensic analysts, and the morbidly curious access to samples of live malicious code [31]. For
safety reasons, access to the site is granted by invitation only. To request access, it is therefore
necessary to write an email to the site administrators explaining the reasons why you want to
access. The administrators will check the request and decide whether to send you the credentials
to be able to access. All samples are delivered in password-protected zip-files for safety (For
example, VirusShare 00000.zip).

Inside each zip are 131,072 samples if the number in the zip name is between 0 and 148, while
there are 65,536 in zips numbered 149 and up. Virus share then provides many malware run them
samples to download via torrent. Higher-numbered zips contain newer samples, so you can study
new and old malware.

Even with this dataset, therefore, you have access to a large number of malware, such as for
SOREL-20M but unfortunately there is no label on which malware is inside the zip and which
family it belongs to. To be able to tag malware, you need external support, specifically the help
of vx-underground. On this site it is possible to access the txt files associated with the individual
VirusShare zips. Inside the text file there are as many lines as the malware present inside the
zip, and in each line there is the corresponding hash of the malware and the family it belongs to,
together with other useful information such as the size of the malware.

The main disadvantage of this dataset is the prohibition of creating scripts to quickly download
the malware needed to compose a dataset. In fact, it is necessary to try to choose families in
advance to compose a dataset that can be used later in the research. The site therefore forbids
launching scripts for the automatic download of malware and this means that the construction
of the dataset takes too much time. Furthermore, the features are to be extracted later, this
requiring other work outside the scope of this thesis. It was therefore chosen not to use this
dataset, but the information was useful for the creation of the ST-WinMal dataset mentioned in
the introduction of this chapter.

4.3 VirusTotal

VirusTotal [34] is not a real dataset, but a site used for the analysis and study of malware. On
their web page, in fact, it is possible to upload files to obtain a report on their danger. The site
also provides a very large dataset of malware samples. In order to access the VirusTotal dataset,
you must contact the administrators through the appropriate section, and motivate your request.
For research reasons it is easy to obtain their approval.

VirusTotal provides information that has been extracted from different antivirus vendors, such
as Kaspersky, Avg etc. After making a request they give access to a Google Drive Folder with
different malware cataloged in different zip files. A significant advantage is the possibility of
having direct access to the malware code, therefore to C files, java etc.

Here the main disadvantage is the number of samples and the fact that you have to request a
form on the site in order to know the family of a particular malware by entering its hash. This
disadvantage led me not to use this dataset as there was a limit on the possible requests to be
made on a daily basis.
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Family Name Number Train Samples Type
Ramnit 1,541 Worm
Lollipop 2,478 Adware
Kelihos ver3 2,942 Backdoor
Vundo 475 Trojan
Simda 42 Backdoor
Tracur 751 Trojan Downloader
Kelihos ver1 398 Backdoor
Obfuscator.ACY 1,228 Any kind of obfuscated malware
Gatak 1,013 Backdoor

Table 4.2: Malware families in Microsoft Malware dataset

Figure 4.1: Example of bytes file of Microsoft Malware dataset.

4.4 Microsoft Malware Classification Challenge

Microsoft announced in 2015 the Microsoft Malware Classification Challenge, with which it pub-
lished a dataset of the size of 0.5 terabytes, containing different malware belonging to 9 families.
In addition to being used in the competition, this dataset was also used by various researchers,
in fact in 2018 the papers that cited this dataset were more than 50 [30].

The dataset consists of a set of known malware files belonging to 9 different families. Each
malware file has a unique identifier, namely a 20-character hash value, along with a tag (an integer
between 1 and 9) that identifies the family of that malware. Unfortunately, since it was designed
for a competition, the test set does not have labels so that the participants did not have the
solution and had to insert a document that associated each malware of the test set which family
had been predicted.

Because of this, only the train set is available and you have to split it in your code into train,
validation and test sets. There was an attempt to request access to the test set labels but there
was no response from the authors of the paper [30] that described this dataset. The distribution
among the 9 families of available already tagged malware can be seen in the Table 4.2

For each malware two files are given, one contains the hexadecimal representation of the
content of the binary file (see Figure 4.1) of the malware without header (to make it harmless),
the other contains instead the disassembled extracted using the IDA disassembler tool [35] (see
Figure 4.2). The disassembled file contains various metadata such as function calls, strings etc.

As you can already see this dataset offers a lot of versatility as you can extract many features
such as ngrams of bytes, opcodes and function calls, entropy can be calculated and also the
grayscale graphical representation. It is also easily downloadable from the Kaggle website [36]
and being designed for a classification competition it was created specifically for the purpose of
this thesis.

The main disadvantages of this dataset are the uneven distribution of malware among the
various families, in fact having only 42 samples of the Simda family against 2,942 of Kelihos
version 3 is certainly not a real representation of the malware world.
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Figure 4.2: Example of asm file of Microsoft Malware dataset.

However, this disadvantage did not make me take the decision to continue the search for
another dataset since the advantages it offered me were many and it met all the objectives that I
had set myself in the search for a dataset. However, another dataset was used in addition to this
one created, as written in the introduction to this chapter, by a thesis student at the Politecnico
di Torino.

4.5 Image dataset

In addition to the malware binary datasets, in my research I found a grayscale representation
malware dataset called MalImg. It contains images representing malware from 25 families, for a
total of 9,435 samples. However, the malware executables have been converted to 32 x 32 images
using the nearest neighbor interpolation from Kaggle website. In thee Vision ResearchLab website
[37] there are the original converted images before compression [38].

To create this type of dataset, the files must be read by bytes, creating a byte vector. Subse-
quently each byte is interpreted as a black or white pixel. Finally the vector is clipped to create a
2D image. A summary of the binary to grayscale image conversion process can be seen in Figure
4.3.

Malware
sample

Binary file
01101010
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1010....

Each 8-bit
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array is
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Figure 4.3: Grayscale image conversion process.

4.6 DikeDataset

DikeDataset is a labeled dataset containing benign and malicious PE and OLE files [39]. Since
the Microsoft dataset doesn’t contain benign files and one of my goals is the identification of
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Figure 4.4: Distribution of classes.

malware through Machine Learning algorithms, I looked for a dataset containing the binaries and
disassembled files of benign samples. The goal is to find a dataset containing a number of samples
approximately equal to 1,000, in order to have a distribution similar to the number of malware
samples in the different families. Unfortunately I was not able to find the disassembled files of
the benevolent files but I managed to find some benign files together with my colleague Andrea
Sindoni of the Politecnico di Torino, author of ST-WinMal described in the following section.

This dataset contains 982 benign PE files, which I add to the Microsoft Malware dataset to
perform malware classification as well as identification. Following the union of these samples to
the previous dataset, I obtained a data distribution as in Figure 4.4

4.7 ST-WinMal

This dataset contains malware targeting one precise operating system: Windows. Samples inside
this dataset are selected from most common families on the internet. The author examined the
most recent Kaspersky reports to understand which families are most common and dangerous
[40]. He concluded that Trojans and ransomware are the most dangerous and common malware
threats affecting Windows. From these two types of malware, it selected four families of Trojans
and four families of ransomware. The malware sources used to create this dataset were varied,
from malware collections such as VirusShare to datasets already created by other authors.

To be precise, the sources were:

• VirusShare

• MalwareBazaar

• DikeDataset

From the dataset I was able to receive three types of files for each malware:

• A file containing the binary, transformed into a file containing the byte sequence in hex-
adecimal format (like Microsoft’s dataset for its challenge).
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Trojan Ransomware
Family Name Number of Samples Family Name Number of Samples
Ramnit 1,500 Virlock 800
Zbot 1,200 Stop 1,000
IceId 1,000 Magniber 808
Trickbot 800 Wannacry 1,533
Benign 961

Table 4.3: Malware families in ST-WinMal

• A file containing the entropy calculated for each section of the malware (entropy for .text,
.data etc.)

• A file containing calls to API functions within the malware, extracted by static analysis.
For this, the file contains a list of APIs that are called at least once.

The number of samples per family can be seen in Table 4.3

This dataset like all others has advantages and disadvantages. The dataset has a very balanced
balance, there are no families that are too numerous than others. At the same time, reading the
author’s thesis, we can see that the malware is very recent, which means that the results are also
more reliable and lead to a much more up-to-date study of malware. Of course, as with all others
(apart from SOREL-20M), the number of samples is much smaller than in reality. SOREL in
this respect remains the only dataset with a very high number of samples. This problem arises
from the fact that malware is not so easy to find on the web and moreover that it belongs to the
same families. In addition, malware naming is not a well defined process, there is not a common
standard. If you search for malwares on the Internet, they might be catalogued under different
family names among several collections of malwares.

This dataset was used because it was a great way to compare the performance of my system
with families from different times. The malware belonging to the dataset created by Microsoft for
its challenge was released in 2015 so it contains malware collected up to that year, this dataset
on the other hand has much more recent malware.

4.8 Summary

In general, searching for the dataset to be used in this thesis was not an easy task. Each dataset
has its disadvantages and advantages, and to date there is no dataset that is superior to the others.
For instance, there are datasets that are numerous but do not provide the desired information, or
that do not even contain malware executables. Others are rich in information but have problems
with class imbalance and also only provide some information. Some have tried to create their own
datasets with VirusShare, a promising but time-consuming way of obtaining executables.

The availability of malware is not very high and it is not only necessary to make an effort to
obtain the executables, but also to find a way to extract features from them, as described in the
chapter on the state of the art. To solve this problem, my colleague tried to create a dataset to
be used both for malware analysis using static and dynamic methods and for identification and
classification using machine learning tools. Certainly, however, there is still room for improvement,
which will be addressed in the conclusion chapter.
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Chapter 5

Proposed Method

The main purpose of this thesis is to try to find one good machine learning algorithm to use for
malware identification and classification. To do this it is necessary to use different techniques
(Naive Bayes, SVM, etc.) in order to have a complete comparison between them. All this has
been considered necessary but not sufficient, in fact we must also try to compare the various
techniques with different combinations of features. There is no evidence that determines that a
certain algorithm does not work with all the malware features available, it is also possible that
changing inputs will give better results.

There was therefore a very specific workflow aimed at understanding what was the best
methodology for the task entrusted to me. The first step was to study the files present in the
dataset to understand what information could be extracted. Once this was done, I tried to find
an efficient way to extract these malware features and save them in files to be able to later use
them as input to the algorithms. Thanks to the study of the state of the art, I was already aware
of the most used algorithms and therefore the next step was to use the inputs described above in
the various known machine learning algorithms. The experiments were initially performed with
a single malware feature at a time as input. If a feature gave poor results, it was verified that
there was no different way to extract that specific information, in order to improve the input of
the machine learning algorithms. Once definitive results were obtained, comparisons were made
between the different experiments. Finally, experiments were made with the various combinations
of features. A summary of the workflow can be seen in Figure 5.1

In this chapter I will describe which algorithms I used for each of the phases previously
described. To be precise, the first section will discuss the motivations that led me to choose which
features to extract from the datasets at my disposal, while the second section will talk about
the implementation details of my tool, going on to specify which was the working environment in
which all the extractions and tests were carried out, the support libraries I used and the algorithms
implemented to extract the features from the datasets. Finally, the last section will deal with the
machine learning algorithms used to identify and classify malware.
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Figure 5.1: Workflow.
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5.1 Extracted features: motivations behind the choices

To begin designing the tool to be used, the first step is to choose which information to extract
from the files in the dataset. There is then to perform a preliminary analysis on the dataset in
order to decide which features to extract to build the input of the machine learning algorithms.

Obviously, one first needs to find out whether it is possible to extract static features and/or
dynamic features. Remember that static features involve analysing the program’s executable with
the possibility of extracting other files as disassembled files using tools such as IDA Pro, so they
do not require anything to be run locally, but they do not allow us to get all the information if
the author of the executable has used encryption or obfuscation techniques. Dynamic features,
on the other hand, solve the problem of static features but involve running the malware inside a
virtual machine called a sandbox, which means more work and a much longer analysis time. In
addition, there are techniques to detect the use of a virtual machine.

I then carried out an analysis of my dataset, understanding which information could be ex-
tracted and which could not. If you had the malware executables available, it would be a good
solution to try setting up a dynamic analysis tool so that it would create a virtual machine in
which to execute the files in the dataset and monitor the operating system in order to be able
to access, for instance, which API functions were called during the execution of the malware.
Obviously in this case it will take a long time if the samples in the dataset are more than a few
thousand files. If, like me, you have a dataset with which you can only extract static features,
then you have to perform a process of selecting the features to be extracted. One must first try
to hypothesise what information can lead to better results; studying the state of the art can be
very helpful in this regard.

Static features can be obtained from the Microsoft Malware Classification Challenge dataset
because there are non-executable text files available to the user. For each malware there are 2
files, the binary translated into hexadecimal characters and the corresponding disassembled file.
In addition, the files were rendered harmless by removing the header from the binary, so that the
user of the dataset runs no risk during the malware analysis process.

In the next subsections I will list the features I used and explain the reason behind my choice.

5.1.1 Binary file sizes

To start, I wanted to use a malware feature that was simple to extract and could already provide
some indication of malware families: the size of the binaries. The idea behind the extraction of
this feature is very simple: malware, as written in the introduction, are nowadays very numerous,
one of the causes is the easy re-use of a given malware in a different sector thanks to simple
changes in the code. Most malware belonging to one family is nothing more than code copied
from its own kind, adapted for a different purpose. Thanks to this it is possible that two malware
of the same family can have very similar dimensions.

5.1.2 Bytes n-grams

After extracting the size of the dataset’s .bytes files I thought I’d try to get a feature that gave
more information on a single malware. After studying the state of the art of this type of research
I concluded that a good solution could be to extract n-grams of bytes. As already explained in
chapter 2, an n-gram (sometimes also called Q-gram) is a contiguous sequence of n items from
a given sample of text or speech, where each item can be a word, a letter, etc. In our case we
choose to adopt a byte of the binary file as a single element.

Reflecting on the meaning of a file executable, it is merely the translation of assembly language
into machine language, so extracting contiguous byte elements could be compared to extracting
instructions one after the other. Of course, this statement is not entirely true as there is the
possible use of obfuscation techniques to consider.

It should be remembered that byte n-grams and opcode n-grams are not poarithetic since
assembly instructions can have different sizes. An example would be the following comparison:
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• 83 EC 20 corresponds to the assembly operation sub esp, 20h

• 8B C8 corresponds to the assembly operation mov ecx, eax

This feature therefore brings advantages and disadvantages, the latter of which could be elim-
inated through the combination of other features to be given as input to the machine learning
algorithm.

5.1.3 Entropy

File entropy measures the randomness of the data in a file and is used to determine whether a
file contains hidden data or suspicious scripts. The scale of randomness is from 0, not random,
to 8, totally random, such as an encrypted file [41]. The entropy value is larger when the sys-
tem uncertainty greater. Compared with native code, packed and compressed segments tend to
have larger entropy values, thus, entropy analysis can be used to quickly and efficiently identify
packaged and encrypted samples [42].

Entropy can be calculated either over the whole file or for each section of the executable (.data,
.text etc.). In my case both modes were tried, the first mode in one dataset, the other in the
second dataset.

This technique can be seen as an alternative solution to the problems arising from the use
of obfuscation techniques by malware authors. I say partial because in any case the result of an
encryption or obfuscation algorithm is non-deterministic. I have found several papers that have
nevertheless led to good results.

5.1.4 Opcode n-grams

As specified in the subsection describing n-gram byte extraction, there are differences between
these 2 features. Opcodes do not coincide with a predefined byte sequence as the x8086 instruction
set has assembly functions that have variable hexadecimal encoding, e.g. there are functions that
are encoded to be 3 bytes long, others that are 6 bytes long. This made me take the decision
to extract both features in order to try and see if there were any differences in performance and
results. For opcode it was decided to consider only the assembly instruction, not the registers
that were being modified by the individual functions. For example, if the complete operation is
mov ecx, eax it was decided to extract only the string mov.

This decision was made to go against some obfuscation techniques (it should be remembered
that one of the 9 families of malware is precisely the obfuscated malware family). There is in
fact an obfuscation technique called register reassignment. It goes to change the registers used,
going to replace the registers without changing the logic of the program. This would obviously
affect our classifier in a negative way. The sequence of instructions in case this technique is used
does not change since if an addition is to be done between two registers, the register reassignment
will change the name of the operands but the function will remain the add. Of course in case
techniques are used that create extra operations in the code that will never be executed, these
will be taken into account since the analysis performed is static.

5.1.5 Opcode counter

The previous interpretation of the employment of opcodes in the study of malware is not the only
one that can be used. Since it is possible to construct loops within the assembly code via jump
functions, it is not certain that the sequence of n-grams extracted from the disassembled are the
correct sequence of instructions during its execution. There are also many obfuscation techniques
that go into inserting “useless” instructions for program execution but which are never actually
executed because they are ignored through the use of jump functions.

One possible option is then to count the number of appearances of each individual assembly
function, so the number of times the add function, sub function etc. appears. This figure is much
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less influential since it considers opcodes individually and not as sequences. Certainly, it does not
completely solve the problem as a dynamic analysis of the opcodes used would. Obviously, such
an analysis would take much more time.

5.1.6 API n-gram

As addressed in the chapter on the state of the art, calls to functions offered by the operating
system can give us very important information on how a file works. How many files are opened,
the number of times an attempt is made to allocate or deallocate memory, and so on, are all pieces
of information that can tell us whether a particular file is part of a family or something else. It
is precisely for this reason that we aimed to exploit this information provided by the dataset to
extract such a feature.

Initially, it was not planned to use the n-grams of API as there was no such feature found in
the state-of-the-art study, but I wanted to try to emulate a dynamic feature extraction system.
The n-grams actually give a sense of dynamism as they collect a sequence of function calls (in my
case 4 elements).

This feature is also very good for preventing obfuscation techniques from going against our
malware identification and classification system. In fact, calls to API functions touch predefined
memory addresses that are provided by the operating system. Even if a malware wanted to make
an API call silently, it would somehow have to access a functionality external to it, i.e. the victim’s
operating system.

5.1.7 API check

Exactly as with opcodes, I decided to try to use a feature describing the number of times an API
function is called. Also for this feature, I wondered whether the sequence of API function calls
in the file was in the same order as in the execution of the malware. Here, too, the answer was
uncertain as it is not certain that a subroutine was written at the beginning of the code section
and then called from elsewhere.

Here the discussion does not deviate much from the concept of opcodes. The comparison of
opcode n-gram and opcode counter is totally parallelizable to API n-gram and API counter.

5.2 Work environment and tools used in the implementa-
tion of the ML tool

This short section will introduce the working environment used to make the machine learning tool
and the libraries used to derive the algorithms. In fact, it was not in the purpose of the thesis to
create its own version of the algorithms used in machine learning identification and classification;
instead, it was decided to employ algorithms that had already been implemented, had already
been tested, and had obtained good results. In this way it was also possible to have a good
comparison with the current state of the art.

5.2.1 Work environment: Legion

HPC@POLITO is a supercomputing initiative managed by DAUIN (Department of Automation
and Informatics of the Politecnico di Torino) that provides high-performance computing resources
and technical support for academic research and teaching activities [43]. It is not only addressed
to research groups within the university but also to those outside the Politecnico di Torino. Of the
three clusters made available by the HPC group, I used LEGION. It was designed to be modular;
it is an InfiniBand cluster with the characteristics summarised in Table 5.1

All function tests and experiments were carried out on this cluster.
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Architecture Linux Infiniband-EDR MIMD Distributed Shared-Memory Cluster
Node Interconnect Infiniband EDR 100 Gb/s
Service Network Gigabit Ethernet 1 Gb/s

CPU Model 2x Intel Xeon Scalable Processors Gold 6130 2.10 GHz 16 cores
GPU Model 4x nVidia Tesla V100 SXM2 - 32 GB - 5120 cuda cores (on 6 nodes)
Performance 90 TFLOPS (last update: july 2020)

Computing Cores 1824
Number of Nodes 57

Total RAM Memory 22 TB DDR4 REGISTERED ECC
OS Centos 7.6 - OpenHPC 1.3.8.1

Scheduler SLURM 18.08.8

Table 5.1: Legion - Technical specifications

5.2.2 Support library used in the realisation of the ML tool: Scikit-
learn

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learning
algorithms for medium-scale supervised and unsupervised problems. This package focuses on
bringing machine learning to non-specialists using a general-purpose high-level language [44].

The library has been designed to tie in with the set of numeric and scientific packages centered
around the NumPy and SciPy libraries. NumPy augments Python with a contiguous numeric
array datatype and fast array computing primitives, while SciPy extends it further with common
numerical operations, either by implementing these in Python/NumPy or by wrapping existing
C/C++/Fortran implementations.

Other libraries were looked at before making the following choice, but scikit-learn seemed the
easiest to use and achieved excellent results. Implementing their own algorithms was ruled out for
reasons of time and knowledge. In fact, it was not even the main purpose of this thesis to write
a machine learning algorithm from scratch, rather it was decided from the outset to use existing
libraries.

The classes and functions belonging to this library, which were used during the realisation of
the malware identification and classification tool, will be addressed in the following chapters in
the sections in which they were utilised.

5.3 Malware feature extraction from Microsoft Malware
Classification Challenge dataset

The first step is to extract the malware features to be used as input for our Machine Learning
algorithms, finding a way to memorize them for all future experiments. Each sample of the dataset
is represented by a vector of hand-crafted features, and together, all these vectors create a matrix
S × F in which S represents the number of samples and F the number of features extracted.

Obviously, based on which malware features were extracted, the matrix changed size, for
example in the case of the simple extraction of the size of the binary files this involved a one-
column matrix (a vector per column), while in the case of n-grams of bytes we find many more
columns, so much so that their dimensionality has to be reduced.

This section will deal with the methods by which the malware features were extracted from
the malware samples, precisely from the bytes file containing the hexadecimal representation of
the binary files and from the asm files containing the assembly code of the malware

To save all the matrices in which the malware features were loaded, the npz files were used. In
fact, these files were created by the numpy library to be able to save several numpy arrays together
in these archives. It is possible to read the pseudocode of the standard procedure (subsequently
adapted for each feature) into Algorithm 1
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Algorithm 1 Malware Feature Extraction

1: procedure malware feature extraction
2: for all samples do
3: feature matrix.append(extract feature function(sample))
4: end for
5: feature to save← feature matrix.to np array()
6: save npz(feature to save)
7: end procedure

5.3.1 Binary file sizes

To extract this information, the use of the python os library was enough, thanks to the getsize
function. This extraction was performed on the entire dataset, from both benign and malware
files. Once the feature was extracted, it was possible to view the boxplot of the distribution of
binary file size. The distribution can be seen in Figure 5.2.

From the graph it is possible to see that the hypothesis mentioned in section 5.1.1 is correct
for some families while not for others. For example, if we look at the samples of Kelihos ver1
(family number 7 in the graph) we can see that they almost all have a size between 5 and 6
MB. If instead we observe the Lollipop samples (family number 2) we notice that this rule is not
respected, covering a larger range of dimensions.

The extraction of the following feature is very fast. In the working environment used by me
described in section 5.1, it took 1.246 seconds. The results of the experiments carried out on this
malware feature can be read in the next chapter, as well as all other attempts carried out with
the other malware features.

5.3.2 Bytes 3-grams

The first step was to think about which n to choose, the possibilities were 2, 3 or 4. Respectively,
matrices with 65,280, 16,581,120 or 4,195,023,360 columns would come out. Tests were carried
out for all 3 possible choices and it was concluded that with 4 the time to extract the features
and the required memory were too high. Subsequently it was tested which brought the best

Figure 5.2: Distribution of binary file size.
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Algorithm 2 Malware Feature Extraction

1: function extract entropy(id)
2: data← read file(id)
3: for byte in data do
4: possible[int(byte, 16)] += 1
5: end for
6: data len← len(data)
7: entropy ← 0.0
8: for i in possible do
9: if possible[i] == 0 then

10: continue
11: end if
12: p← possible[i]/data len
13: entropy -= p× log(p, 2)
14: end for
15: return entropy
16: end function

results between grams of 2 or 3 elements. The results led to choose grams of 3 bytes. Being a
feature that can only be obtained from the binaries, it was possible to extract from the complete
dataset, i.e. from the malware files taken from the Microsoft dataset and from the benign files
from DikeDataset. The time to extract this feature from the entire dataset (Micoroft Malware
dataset plus DikeDataset) was 7 hours, 11 minutes and 55 seconds. The matrix obtained from
this extraction had dimension S × N where SrepresentsthesamplenumberandN the number of
different n-grams. In a cell [s, n] therefore it could be observed how many times the n-gram n
appeared (example: 01 C3 48) in the sample s.

After carrying out the extraction it was possible to notice that the training phase of the
algorithms required a very high calculation time. Precisely for this reason we wanted to apply a
reduction in dimensionality, also in view of when the various matrices containing different features
could have been merged. It was therefore decided to keep only 5,000 columns. This number was
decided after various experiments discussed in the next chapter.

Columns that had n-grams appearing many times in the dataset were kept. To execute con-
struct a vector as long as the columns of the matrix obtained and containing in each cell the sum
of the corresponding column (index i of the vector contains the sum of the values in column i of
the matrix). Then the indexes of the vector were sorted according to its content, only the first
5,000 were kept from the array of indexes obtained. Finally, only the columns having the index
contained in the previous vector were traced.

5.3.3 Entropy

The last feature extracted only from .bytes files is entropy. File entropy can be calculated thanks
to some libraries by giving the binary file to be analyzed as input, but it must be remembered
that the files in the dataset were binary converted into hexadecimal. It was not possible for me
to use these libraries but I had to search the internet for the formula used to calculate this value
and then transform it into an executable algorithm. This procedure can be seen in pseudo code
Algorithm 2

From the algorithm, one can see why the entropy file is a number between 0 and 8. To calculate
this value, the occurrences of each individual byte in the file must first be counted, then the ratio
of the occurrences of each individual byte to the size of the file is calculated. Finally, the entropy
is the sum of all these ratios, each multiplied by the base two logarithm of itself. So if we had
entropy of 0, it would mean that the file is composed of the same byte repeated for the length
of the sample. If, on the other hand, we obtain 8, it would mean that the file is composed of an
even number of all 256 possible bytes.
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Figure 5.3: Distribution of entropy file.

Also for this malware feature, the boxplot. The boxplot can also be plotted for this malware
feature. You can see it in Figure 5.3. In contrast to the size distribution of the binaries, we
can see that the spaces are much smaller, based on the classes Kelihos ver3, Vundo and Simda.
Once I visualised the following graph, however, I could see that entropy cannot be used as a
single feature to train a machine learning tool. It does not have a well-defined uniqueness for
each family. If we see the samples of Lollipop and Gatak, we can deduce that they are files with
a very similar entropy, which will disturb the classification work. However, this malware feature
has been retained and experiments carried out.

The time taken to extract the entropy from the complete dataset was 6 hours, 16 minutes and
20 seconds. The results of these experiments can be read in the next chapter.

5.3.4 Opcode 4-grams

After extracting the previous features from the .bytes files in the dataset, the decision was made
to read the information in the .asm files. Obviously, this excluded the use of the benign files. All
features from the one described in this subsection and the next are features that can only be used
in malware classification and not in identification. This applies to this specific dataset, if time
permitted it would also have been possible to extract the disassembled files from the samples in
DikeDataset. This note will be better addressed in the chapter on conclusions and future work.

A class from the scikit learn library [44] was used to extract the n-grams. This class allowed
me to automate the process of extracting n-grams by giving as input only a list containing the
sequence of assembly instructions in the file and specifying the length of each gram. This class
proceeds to count all the occurrences of each individual n-gram returning in output the matrix
we required in order to train and test the machine learning tool.

The time taken to extract the 4-grams opcodes was 2 hours, 16 minutes and 35 seconds. Di-
mensionality reduction was performed as for the bytes 3-gram since the matrix had an excessive
number of columns (773,874), worsening the performance of our tool. The dimensionality reduc-
tion policy was the same, the 5,000 columns of the most counted n-grams in the various samples
were kept. A trade off between performance and accuracy was therefore made here as well.
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5.3.5 Opcode counter

The next step was to find all the opcodes that were present in the .asm files, and then create a
S ×N matrix where S is the number of samples and N is the number of opcodes found. The cell
(s, n) will then contain the number of occurrences of that single opcode in the sample assembly
code s.

To extract this information from the malware, a list was previously created containing all
the opcodes present in the samples of the dataset. The correctness of this list was verified by
checking the Microsoft [45]. In addition, what are called pseudo-instructions (db, dd etc.) were
added. Pseudo-instructions are things which, though not real x86 machine instructions, are used
in the instruction field anyway because that’s the most convenient place to put them. These
are simple assembly language instructions that do not have a direct machine language equivalent.
The assembler translates each pseudo-instruction into one or more machine language instructions.
The current pseudo-instructions are DB, DW, DD, DQ, DT, DDQ, DO, their uninitialized
counterparts RESB, RESW, RESD, RESQ, REST, RESDDQ, and RESO, the INCBIN
command, the EQU command, and the TIMES prefix.

The extracted matrix has dimension 10868 × 93. The time to extract this matrix was 7 hours,
39 minutes and 48 seconds. The results of experiments performed with this matrix can be found
in the next chapter.

5.3.6 API 4-gram

In addition to the opcodes, the assembly code provided by Microsoft contains calls to the API
functions of the operating system. Of course, the analysis provided by Microsoft is a static
analysis, so API calls are inserted into the code, e.g. the following line can be found in the code
of a malware:

• .text:1000122D 8B 3D 04 20 00 10 mov edi, ds:GetProcAddress

From rows like this, an end-of-line function extraction had to be performed. This extraction
was carried out by means of a regular expression. After extracting these functions, it was necessary
to create a list of them to give as input to the class already mentioned a few sections ago,
CountVectorizer. It was useful for us to construct the n-grams of API calls.

More than 10,000 API function calls were found within the dataset, so the matrix obtained by
extraction of the n-grams had a very large size, to be precise 10,868 rows and 402,972 columns.
For this reason, it was decided to carry out dimensionality reduction in the same way as for the
n-grams of bytes and opcodes. The computation time for extraction and dimensionality reduction
was 1 hour, 27 minutes and 59 seconds. As with the other features, the results with the following
feature can be found in the next chapter.

5.3.7 API check

After the previous feature extraction, I thought I would find all the API calls that were present in
the .asm files and create an S × N matrix where S is the number of samples and N is the number
of API function calls found. The cell (s, n) will contain 0 if the API function n is never called
within sample s, 1 if it has been called at least once.

Before the actual extraction was carried out, a text file was created containing the syscalls
in each line. This file was created to later create the columns of the matrix. Each API is in
fact present once and only once in the text file. I did not use a hard-coded list in the code
as for opcodes because we are talking about more than 10,000 APIs, this has a big impact on
memory performance. Since the extraction and classification times were too long, it was decided
to carry out dimensionality reduction. Again, the 5,000 columns with the highest sum of values
within were kept. From the experiments, it was noted that accuracy did not change much while
extraction and classification times improved greatly. The extraction time for this feature was
much longer than the corresponding time for opcodes. In fact, it took 9 hours, 25 minutes and
59 seconds.
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Feature name Extraction
Time

Dataset Dimension File used

Binary File Size 00:00:01.246 Malign +
Benign Files

1 .bytes

Bytes 3-gram 07:11:55.393 Malign +
Benign Files

16,777,216 → 5,000 .bytes

Entropy 06:16:20.259 Malign +
Benign Files

1 .bytes

Opcode 4-grams 02:16:35.774 Only Malign
Files

773,874 → 5,000 .asm

Opcode counter 07:39:48.787 Only Malign
Files

93 .asm

API 4-gram 01:27:59.114 Only Malign
Files

402,972 → 5,000 .asm

API check 10:41:22.843 Only Malign
Files

13,516 ← 5,000 .asm

Table 5.2: Summary malware extraction

5.3.8 Summary

In this subsection, we can find summarised extraction times for each feature, divided by individual
dataset. The times can be viewed in Table 5.2.

As was easy to predict, the file size had a very fast extraction time compared to all other
features. Entropy even though it provides a very small matrix took a long time to extract,
probably because calculating it over the entire file can take a lot of computational resources.
In fact, many papers based on similar research calculated entropy on blocks of the binary, thus
creating a sequence of values per sample that represented the entropy value at different points
in the malware. Counting opcode recurrences was also a time-consuming operation. As far as
n-grams are concerned, on the other hand, we find ourselves with higher performance. The scikit-
learn Count Vetorizer class, made available to find the n-grams of elements in a sequence of text,
bytes, opcodes or other, is very efficient, giving very good results. As far as bytes are concerned,
the size of the array and thus the allocation of a large amount of memory probably played a role.

5.4 Malware feature extraction from ST-WinMal

Fewer features were extracted from the second dataset at my disposal than the previous one. The
techniques used were the same: we tried to extract information from the available files and then
save this data in matrices to be given as input to machine learning algorithms. With the following
dataset, it was much easier to obtain the information as it had already been extracted by the
author and made available in text files:

• files with the extension .bytes containing the binary (in hexadecimal format).

• files with the extension .entropy with the entropy calculated for each section of the malware
(.text, .data etc.).

• files with the extension .apis containing the API functions called in the malware at least
once.

Since files with the required information were provided, the features used were entropy, API
function calls and n-grams of bytes. These three features had already been used with the previous
dataset, so the same techniques were used. Since they have already been addressed, they will be
briefly summarised in the following subsections.
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5.4.1 Bytes 3-gram

The extraction of the n-gram of bytes was carried out with the same algorithm used with the
previous dataset, only parts of the code had to be adapted to read the file differently. Here too, as
with the dataset created by Microsoft, a dimensionality reduction was carried out. The number
of columns was increased to 5,000, keeping the columns with the highest sum of values inside.

5.4.2 Entropy

The extraction of this feature was slightly different from the entropy of the files in the previous
dataset. In this dataset, in fact, we have the entropy for each section of the disassembled file
(section .text, .data etc.), which is why we can create a matrix where each row represents a
sample and each column a section of the file. The matrix cell will then contain the entropy value
of a section if present, otherwise a default value to indicate that a particular section is not present
in the malware.

In malware, however, there were sometimes non-default sections. In fact, it is possible to
create a customised section when creating a program and this created the possibility of making
a choice: either take all sections into account or only the default ones. It was decided to go for
the second option as it is possible for a section to be created only for one malware and not for
the others. This avoids the possibility of overfitting, as the default sections are always used in
executable programs.

To construct the matrix, I first searched the microsoft site [46] for a list of all Windows
executable sections. The list was useful for us to construct the matrix with the entropy of the
malware sections.

5.4.3 API check

The extraction of the presence of API function calls in malware was performed in a mirror-image
manner to what was done with the previous dataset. First, the list of all API functions called by
the samples in ST-WinMal dataset was constructed, which turned out to be more than 10,000,
and then this list was used to go on to create the matrix to be used as input for the machine
learning algorithms. In fact, each column represents a single API function; if there is a call to
any API function in a sample, the cell in the relevant row and column is set to 1.

As with the other dataset, dimensionality reduction was performed since the matrix was found
to be too large. The reduction technique was identical to the old dataset; in fact, the 5,000 columns
with higher sum of values within were kept. Indeed, in the experiments it was noticed that the
results did not vary too much after reducing the number of columns, while the classification speed
improved quite a bit.

5.5 ML tools used for Malware Identification and Classifi-
cation

This section will discuss the algorithms used to identify and classify malware. While studying the
state of the art of this type of research, I tried to find out which algorithms were most commonly
used. It must be emphasised that each algorithm then has slightly different implementations
among the different libraries available. In my case, I used scikit-learn as already explained in
section 5.2.

In my case, I used scikit-learn as already explained in section 5.2. This library offers many
classifiers such as random forest, support vector machine, gradient boost etc. A typical use of the
algorithms provided by scikit can be seen in Algorithm 3

As can be seen from the algorithm, the first step involves dividing the dataset into 2 parts,
the training and test set. Scikit provides a special function so that the separation of the samples
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Algorithm 3 Typical use of scikit-learn algorithms

1: procedure classification procedure(X, labels)
2: X train,X test, y train, y test← train test split(X, labels)
3: clf ← Classifier()
4: clf .fit(X train, y train)
5: clf prediction← clf .predict(X test)
6: score← calculate score(y test, clf prediction)
7: end procedure

can also be randomised. Obviously, the ratios between the various families remain the same. In
my case, it was decided to divide the dataset in the following way: 80% of the samples were
used for the training set, and 20% for the test set. The training set in turn must be divided into
two sets. During the training phase, it is indeed important to carry out training and evaluation
in order to prevent overfitting. This phenomenon occurs when the model becomes very good at
classifying the samples in the training set but fails to generalise and make accurate classification
of the unseen data. This is the main reason why we end up with 3 sets: training set, validation
set and test set.

A division into such percentages was then obtained:

• 64% train set

• 16% validation test

• 20% test set

In addition, cross-validation was performed, a technique used in machine learning, but in
general in statistics, to divide the data set into k parts of equal numerosity, and at each step, the
k part is used for the validation phase, while the remaining k-1 parts are used for training. It
is in fact called k-fold cross-validation. This technique is used to reduce overfitting as much as
possible, so that all samples are used at least once in the evaluation phase.

Below I list all the algorithms I have used, specifying mode of use and configuration.

Random Forest

While studying the state of the art, I found a lot of positive feedback on the use of this type
of algorithm in the identification and classification of malware. It was therefore impossible for
me not to use it in my research, as it was focused on comparing many algorithms with different
features in order to compare their performance.

The Random Forest was set up with 100 trees (estimators), and no maximum depth was
entered as the training and testing times did not need to be decreased. Since the ratio of the
number of samples per household in the dataset is not representative of reality, the weight of the
classes was left at 1 by default.

K-Nearest neighbors

The k-Nearest Neighbour is another machine learning algorithm widely used in machine learning
identification and classification. It involves constructing the classification space during the training
phase and inserting samples into this space. Then during the evaluation phase, the samples are
classified according to which class is the most present in the k nearest neighbour.

In scikit-learn there is a special class, KNeighborsClassifier. In my case it was initialised with
k = 5. I also tried using 3 and 7 as values for k, but they led to results with lower precision, so I
decided to use 5.
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Support Vector Machine

Along with the Random Forest and K-Nearest Neighbors, the Support Vector Machine algorithm
was used as a classifier in many searches. This algorithm was created for binary classification,
since as specified in Chapter 2, it creates a division in the dataset space and then labels the
samples according to where they are inserted during the execution of the algorithm.

In the scikit-learn library, there is a class called SVC, i.e. Support Vector Classifier, specifically
created to use this algorithm in the field of multi-classification. Multi-class support is managed
through the one-vs-one scheme. This type of scheme involves a number of tool trainings equal to
the number of classes in the dataset. At each training session, the algorithm attempts to create
a division in the space between elements that belong to a class and those that do not.

The kernel function chosen was the radial basis function (RBF). It is a function for which the
result depends solely on the distance between the function argument x and a fixed point c of the
domain. For the type of problem addressed in this thesis, linear functions, sigmoid functions or
polynomial functions did not perform well.

Gradient Boosting Classifier

Since the most cited algorithms in the state of the art have been used so far, I decided to adopt an
algorithm that has not been commonly used. I therefore decided to adopt the Gradient Boosting
classifier. This type of algorithm has not yet been addressed in this thesis, so I will first give a
brief explanation of its general operation and then explain how I used it.

Gradient boosting is a popular machine learning algorithm in the field of classification, which
has achieved excellent results. They are highly customizable to the particular needs of the appli-
cation, like being learned with respect to different loss functions [47].

The loss function is the function used to map an event or values of one or more variables onto
a real number intuitively representing some “cost” associated with the event. We usually try to
optimise a model, so the goal most of the time is to reduce this function as much as possible. In
the other pure machine learning algorithms, an attempt is made to achieve the same goal, but as
we have seen, each time a different approach is tried.

Gradient boosting is an algorithm with an operation very similar to random forest. It creates
a function that tries to best classify the samples in the dataset and then calculates the loss. It
then creates another function that tries to improve on the defects of the first, aiming to decrease
the loss. Several functions are then created that are nothing more than decision trees. When
we have built enough trees to have reached our target then those trees are used in the predictive
phase. The similarities with the random forest are many, but as we can see, the difference lies in
the creation time of the trees. In gradient boosting, they are not created in parallel as they are
in the random forest. We can therefore conclude that there is a trade off between accuracy and
training time.

In my case, I applied the HistGradientBoostingClassifier class from scikit-learn. I did not use
the GradientBostingClassifier class because the library itself for datasets with more than 10,000
samples recommends not using it because the training times are too high. The values inside are
left the default ones, as for the other classes, in order to have a fairer comparison.
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Results

This chapter will show the results of experiments carried out for each individual feature and
subsequently with different combinations that yielded promising results. The working environment
was the same as described in the previous chapter (refer to the table 5.1). For each experiment,
the same resources were required from the cluster, namely a single 8-core CPU (2.10 GHz) and
10 GB of RAM.

During the training phase, k-fold cross validation was used, a technique widely used in the
statistical field, especially when trying to build a predictive model such as ours. The training
data set was then divided into 5 subsets (k = 5), and the training process was performed 5
times, changing the training and evaluation subset at each stage. This technique is used to be
able to understand whether the results obtained depend greatly on how you divide the dataset
or not. 20% of the dataset was left for the testing phase while 80% of the dataset was used in
the training and evaluation phase following the previously described technique. Statistics will
be shown for each individual feature, including a comparison of all 4 algorithms used through
histograms created through the use of the mathplotlib [48] and seaborn [49] libraries.

Before addressing the results of all experiments, it is good to define what metrics were used
and what values are acceptable. It should be remembered, however, that the data should be
examined along with the confounding matrices since they may lead to a poor understanding of
the model under investigation.

The first metric is accuracy. It is a widely used metric for evaluating classification models and
represents the part of the prediction that our model performed correctly. Formally, accuracy has
the following definition:

Accuracy = Numberofcorrectpredictions
Totalnumberofpredictions .

In an unbalanced dataset, however, this measure is not optimal since in case we had a dataset
consisting of 100 samples, 90 of class A and 10 of class B in case the model only predicted class A
it would obtain an accuracy of 0.90 (90%). This model would be very fallible as you can read so
it cannot be studied alone. To evaluate problems with unbalanced datasets there are 2 different
metrics: precision and recall.

Precision seeks to answer the following question: What proportion of positive identifiers is
actually correct? Precision in fact is defined as follows:

Precision = TP
TP+FP

In our case this measure works reasonably well. Since true positives make up the bulk of the
dataset (there are many more malware in the dataset than non-malicious files), it is not possible
to get really low precision, at least if our model does not include many malware as benign files.

Instead, the recall answers the question: What proportion of actual positives has been correctly
identified? Its mathematical definition is as follows:

Recall = TP
TP+FN
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These two metrics need to be studied together to understand whether a model works well or
not, but there are still drawbacks here as well. Recall and precision in fact tend to be in tension,
that is, when one improves the other gets worse. In the case of an excellent model, however, this
is not the case.

Another metric used is the F1 score. Its definition is much more complex in that it is a har-
monic mean, that is, the reciprocal of the arithmetic mean of the reciprocals. The mathematical
definition is much simpler. It is as follows:

F1 = 2 · precision·recall
precision+recall

F1 score is very useful when accuracy, precision and recall individually are not enough (as in
our case).It is very useful in 2 situations:

• When there are weight differences between false positives or false negatives. In our case,
a malicious file predicted incorrectly is much more serious than a benevolent file predicted
equally incorrectly.

• When you have an unbalanced dataset. In our case we totally re-enter.

Finally, the ROC curve was used. It is a function that shows the performance of a model at
all thresholds of the classification. It plots two parameters, the percentage of true positives and
the percentage of false positives. The area under this curve provides an aggregate measure of
the performance of all possible classification thresholds. Generally, this metric is widely used in
binary classification and less so in multi-class classification. In fact, as we shall see, this will also
be the case in our case.

In the case of multi-classification, accuracy, precision and recall will have macro and weighted
notation. Their meanings are as follows:

• Macro: each class’s contribution equally to the final averaged metric

• Weighted: each classes’ contribution to the average is weighted by its size

Micro notation also exists but has been unused since it considers each sample to be of equal
weight but with an unbalanced dataset like ours this measure is not applicable. The weighted
notation we can claim is the most suitable for our needs.

We will first analyze the results on the Microsoft malware classification challenge dataset and
after that the results on ST-WinMal dataset.

6.1 Malware detection results with Microsoft Malware Clas-
sification Challenge Dataset

This section will discuss the results of the four algorithms with features related to the identification
of the Microsoft challenge dataset(binary file size, bytes 3-gram and entropy). I will show and
discuss some statistics such as accuracy, recall, precision and F1 score. Confusion matrix and
related ROC curves will also be shown.

The models taken into account will be as specified in section 5.5 the Random Forest, K-Nearest
Neighbours, SVM and Gradient Boosting.

6.1.1 Comments

As shown in Table 6.1, the two algorithms with the highest AUC-ROC are random forest and
gradient boosting. In general, it can be seen that there is a clear gap between two groups of
algorithms, the first one less performing consisting of K-NN and SVM, and the second one with
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Algorithms Feature
Binary Size Bytes 3-gram Entropy All features

AUC-ROC
RF 0,9073± 0,0151 0.9997± 0,0003 0,7488± 0,0238 0,9999± 0,0000

K-NN 0,9041± 0,0199 0,9345± 0,0107 0,7472± 0,0327 0,9026± 0,0119
SVM 0.8928± 0,0130 0,8889± 0,0116 0,8517± 0,0158 0,9139± 0,0109
GB 0,9328± 0,0122 0,9997± 0,0004 0,8625± 0,0166 0,9999± 0,0001

Accuracy
RF 0,9820± 0,0021 0,9951± 0,0008 0,8824± 0,0021 0,9962± 0,0007

K-NN 0,9749± 0,0029 0,9703± 0,0047 0,9093± 0,0044 0,9702± 0,0030
SVM 0,8094± 0,0135 0,7382± 0,0110 0,6822± 0,0377 0,7501± 0,0068
GB 0,9653± 0,0031 0,9967± 0,0008 0,9165± 0,0027 0,9982± 0,0002

Recall
RF 0,9980± 0,0007 0,9997± 0,0006 0.9354± 0,0047 1.0000± 0,0000

K-NN 0,9977± 0,0005 0,9934± 0,0036 0.9738± 0,0033 0,9969± 0,0007
SVM 0,8079± 0,0146 0.7209± 0,0110 0.6622± 0,0430 0.7446± 0,0051
GB 0,9932± 0,0046 0.9998± 0,0003 0.9946± 0,0033 0,9998± 0,0003

Precision
RF 0,9826± 0,0021 0,9950± 0,0014 0,9365± 0,0028 0,9959± 0,0008

K-NN 0,9756± 0,0031 0,9747± 0,0021 0,9307± 0,0018 0,9713± 0,0037
SVM 0,9814± 0,0015 0,9920± 0,0017 0,9880± 0,0027 0,9782± 0,0033
GB 0,9697± 0,0020 0,9968± 0,0008 0,9208± 0,0013 0,9982± 0,0000

F1 Score
RF 0,9902± 0,0011 0,9973± 0,0005 0,9359± 0,0013 0,9979± 0,0004

K-NN 0,9865± 0,0016 0,9839± 0,0026 0,9517± 0,0024 0,9840± 0,0016
SVM 0,8862± 0,0090 0,8350± 0,0079 0,7924± 0,0297 0,8455± 0,0044
GB 0,9813± 0,0017 0,9982± 0,0005 0,9563± 0,0015 0,9990± 0,0001

Table 6.1: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware identification task with
different features. Results were aggregated over 3 training runs. Best results for feature are shown
in bold.

Figure 6.1: ROC curve and AUC-ROC for binary size.

higher results consisting of the two algorithms mentioned above. This figure can be read in parallel
with the graphs shown in Figures 6.1, 6.2, 6.3 and 6.4, they in fact show the ROC curves created
after the identification of files in the dataset with the four algorithms for each individual feature.
One can immediately see that the ROC curves of the random forest and gradient boosting with
the bytes 3-gram and with all features together are very close to the ideal function (a function
touching the point (0, 1)). However instead through the study of the graphs we can see that
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Figure 6.2: ROC curve and AUC-ROC for bytes 3-gram.

Figure 6.3: ROC curve and AUC-ROC for entropy.

the ROC curves of all four algorithms on entropy are very unpromising, indeed they provide
the immediate given that entropy cannot be considered a reliable feature for malware detection.
Obviously this phenomenon was expected since the entropy extracted from the files was calculated
not on the small sections but on the whole sample taken under examination. To confirm that
such a feature is not valid we must first wait to perform an analysis on the other dataset, where
instead the entropy was extracted by section.

Table 6.1 also included all data regarding precision, recall, accuracy, and F1 score. These
data should be observed together with the confusion matrices. They in fact show how some data
could be misinterpreted if read without first seeing the results for each individual class (benign
or malicious file).

Of course, there are also cases where the data get confirmation from what we observe from
the confusion matrix. For example, if we look at SVM precision with entropy we would expect
an excellent confusion matrix (precision = TP

TP+FP ) instead we observe that the result is so high
because few benign files were predicted as malware, but conversely many malicious files were
predicted as benign (this would be the worst situation if we were in an antivirus environment).

Instead, there are cases in which the data obtain confirmation from the confusion matrices,
and fortunately for us, these cases correspond with the best results. In fact, if we look at the
random forest using all features, we observe how all the data (accuracy, recall, etc.) are all very
promising (even the ROC curve in the image 6.4 has a very good trend), and this is confirmed
by the matrix. Indeed, it shows that all malware were correctly identified (which is much more
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Figure 6.4: ROC curve and AUC-ROC for all feature.

(a) Random Forest with binary size (b) K-NN with binary size

(c) SVM with binary size (d) Gradient boosting with binary size

Figure 6.5: Confusion Matrix of each algorithm with binary size(0: not malware, 1: malware).
Confusion matrix from the last training.
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(a) Random Forest with bytes 3-gram (b) K-NN with bytes 3-gram

(c) SVM with bytes 3-gram (d) Gradient boosting with bytes 3-gram

Figure 6.6: Confusion Matrix of each algorithm with bytes 3-gram feature (0: not malware, 1:
malware). Confusion matrix from the last training.

important than correctly predicting only all benign files) and only ten non-malware files were
predicted as malicious.

We can therefore finally decree how random forest and gradient boosting are the best algorithm
for this kind of work, while k-NN and SVM did not lead to noteworthy results. K-NN manages
to keep up with the other 2 algorithms only with binary file cutting, in fact in that case it has
both a good confusion matrix and a very promising ROC curve.

Looking at the graphs of the curves, I noticed how gradient boosting is generally more adaptive
since it gets a better graph to the random forest in more cases. It does however take much longer
to train so in case there are limitations on the training timings it is better to employ random
forest, otherwise gradient boosting remains in my opinion the best solution to employ in this area.

6.2 Malware classification results with Microsoft Malware
Classification Challenge Dataset

This section will show the results of classifying malware into families according to different algo-
rithms. The results will be divided by feature extracted from the samples but since some did not
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(a) Random Forest with entropy (b) K-NN with entropy

(c) SVM with entropy (d) Gradient boosting with entropy

Figure 6.7: Confusion Matrix of each algorithm with entropy feature(0: not malware, 1: malware).
Confusion matrix from the last training.

lead to the desired results only the most significant features will be reported. Therefore, I had to
determine which metric was the most appropriate to use as a filter to decide which features were
acceptable and which were not. After some study on the subject and after reviewing my results
and the confusion matrices produced, I decided to employ the weighted F1 score. It reported the
truest results in the form of a number. Therefore, in Table 6.2 I report all the weighted F1 scores
of all the features.

As you can see there were three features that led to very encouraging results, these are the
bytes 3-gram, the opcode 4-gram, and the opcode counter. The other four, however, led to
disappointing results. Regarding entropy we know that the extraction method was already not
optimal, with the second dataset we will be able to confirm whether this hypothesis is true or
whether it is the feature itself that is not appropriate for this work. The 4-gram of API functions
had the worst result, so we can conclude that a static API function extraction that makes dynamic
sense, i.e., inserts the concept of sequence, cannot work. On the other hand, API check did not
bring the desired results. Through the second dataset, as with entropy, we will be able to find
out whether it is this extraction was performed correctly or not.

Once these results were obtained, 3 more experiments were tried, namely merging the features
extracted from the .bytes files, the features extracted from the .asm files, and finally merging the
3 most promising features to see if more features together could lead to better results.
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(a) Random Forest with all features (b) K-NN with all features

(c) SVM with all features (d) Gradient boosting with all features

Figure 6.8: Confusion Matrix of each algorithm with all feature together (0: not malware, 1:
malware). Confusion matrix from the last training.

F1-score weighted RF K-NN SVM GB
Binary File Size 0.7582± 0.0015 0.7372± 0.0046 0.4493± 0.0030 0.6882± 0.0070
Bytes 3-gram 0.9898± 0.0032 0.9142± 0.0082 0.6593± 0.0122 0.9929± 0.0023

Entropy 0.6374± 0.0199 0.6851± 0.0147 0.5357± 0.0172 0.6457± 0.0059
Opcode 4-gram 0.9904± 0.0014 0.9386± 0.0046 0.2802± 0.0064 0.9944± 0.0013
Opcode counter 0.9928± 0.0007 0.9640± 0.0069 0.3169± 0.0097 0.9949± 0.0017
API 4-gram 0.5270± 0.0078 0.4515± 0.1299 0.2631± 0.1122 0.3941± 0.0048
API check 0.7310± 0.0129 0.6571± 0.0288 0.7355± 0.0108 0.7454± 0.0089

Table 6.2: Mean and standard deviation of family classifier F1 score. The models are Random
Forest (RF), K-Nearest Neighbour (K-NN), Support Vector Machine (SVM) and Gradient Boost-
ing (GB). The results are from three different simulations, and the best result for each feature is
shown in bold.

Below you can find all the tables divided by feature or combination of features with associated
confusion matrices. In the confusion matrices for readability issues, numbers were inserted to
identify the classes instead of their names. A legend of the families can be found in the table 6.3
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Number Family
0 Ramnit
1 Lollipop
2 Kelihos ver3
3 Vundo
4 Simda
5 Tracur
6 Kelihos ver1
7 Obfuscator.ACY
8 Gatak

Table 6.3: family legend

Bytes 3-gram RF K-NN SVM GB
Accuracy 0.9900± 0.0031 0.9127± 0.0086 0.6328± 0.0117 0.9930± 0.0022

Macro-Precision 0.9884± 0.0032 0.8026± 0.0291 0.5861± 0.0102 0.9920± 0.0013
Weighted-Precision 0.9901± 0.0030 0.9208± 0.0072 0.7769± 0.0165 0.9930± 0.0021

Marco-Recall 0.9464± 0.0171 0.8200± 0.0257 0.5723± 0.0389 0.9671± 0.0156
Weighted-Recall 0.9900± 0.0031 0.9127± 0.0086 0.6328± 0.0117 0.9930± 0.0022
Macro-F1 Score 0.9619± 0.0134 0.8085± 0.0272 0.4974± 0.0148 0.9775± 0.0106

Weighted-F1 Score 0.9898± 0.0032 0.9142± 0.0082 0.6593± 0.0122 0.9929± 0.0023
Micro-AUC ROC 0.9996± 0.0005 0.9809± 0.0027 0.9660± 0.0026 0.9999± 0.0001
Marco-AUC ROC 0.9968± 0.0050 0.9506± 0.0109 0.9330± 0.0108 0.9998± 0.0002

Weighted- AUC ROC 0.9996± 0.0005 0.9805± 0.0027 0.9585± 0.0032 0.9999± 0.0001

Table 6.4: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
bytes 3-gram. Results were aggregated over 3 training runs. Best results for feature are shown in
bold.

6.2.1 Comments Bytes 3-gram

From the table 6.4 it can be immediately understood that even for classification the two best
algorithms are random forest and gradient boosting. These two algorithms often achieve 99%
accuracy. The confusion matrices in Figure 6.9 confirm the reading of the results in the table.

An interesting note falls on the area under the ROC curve (AUC-ROC). It is consistently high
even though the other metrics report very disappointing results. As we can deduce then, the
theory expressed in the introduction of this chapter is not wrong at all. This metric is very useful
in case we are talking about binary classification but when it comes to multi-class classification
we end up with an unclear metric. F1 score, precision, and recall come to our aid by helping us
better understand what the situation is.

From the confusion matrices, we can see how few errors are made by the two best models.
To be precise, the random forest incorrectly classifies ten malware, while gradient boosting incor-
rectly classifies only seven. We can therefore point out that this feature is suitable for both the
classification and identification of malware for this task. This is a very promising result as it is
not very difficult to extract such a feature, the only difficulty being the time taken to create a
matrix that can then be given as input to the selected ML model.

I conclude by pointing out the results of the SVM. This algorithm is in fact widely used for
binary classification, and in fact brought acceptable results in the field of malware identification
with the following feature. In the field of classification, however, we can see that even with this
feature it still fails to bring acceptable results.
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(a) Random Forest with bytes 3-gram (b) K-NN with bytes 3-gram

(c) SVM with bytes 3-gram (d) Gradient Boosting with bytes 3-gram

Figure 6.9: Confusion Matrix of each algorithm with bytes 3-gram. Confusion matrix from the
last training.

Opcode 4-gram RF K-NN SVM GB
Accuracy 0.9905± 0.0014 0.9384± 0.0045 0.3579± 0.0108 0.9945± 0.0012

Macro-Precision 0.9903± 0.0018 0.8899± 0.0190 0.2655± 0.0034 0.9941± 0.0005
Weighted-Precision 0.9907± 0.0013 0.9400± 0.0048 0.3006± 0.0033 0.9946± 0.0012

Marco-Recall 0.9671± 0.0080 0.8981± 0.0283 0.3360± 0.0184 0.9767± 0.0079
Weighted-Recall 0.9905± 0.0014 0.9384± 0.0045 0.3579± 0.0108 0.9945± 0.0012
Macro-F1 Score 0.9772± 0.0050 0.8921± 0.0223 0.2376± 0.0037 0.9844± 0.0050

Weighted-F1 Score 0.9904± 0.0014 0.9386± 0.0046 0.2802± 0.0064 0.9944± 0.0013
Micro-AUC ROC 0.9994± 0.0002 0.9862± 0.0018 0.8970± 0.0011 1.0000± 0.0001
Marco-AUC ROC 0.9990± 0.0002 0.9733± 0.0099 0.8496± 0.0075 0.9999± 0.0000

Weighted- AUC ROC 0.9993± 0.0002 0.9857± 0.0019 0.8725± 0.0026 0.9999± 0.0000

Table 6.5: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
opcode 4-gram. Results were aggregated over 3 training runs. Best results for feature are shown
in bold.
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(a) Random Forest with opcode 4-gram (b) K-NN with opcode 4-gram

(c) SVM with opcode 4-gram (d) Gradient Boosting with opcode 4-gram

Figure 6.10: Confusion Matrix of each algorithm with opcode 4-gram. Confusion matrix from the
last training.

6.2.2 Comments Opcode 4-gram

With the use of the opcode 4-gram, we can see that the situation remains almost unchanged.
In fact, we find ourselves with the model using Gradient Boosting obtaining excellent results,
the random forest following very closely behind, the K-NN obtaining discrete results without
particularly excelling in anything, and the SVM obtaining poor results. The confusion matrices
in Figure 6.10 confirm the data and also show that K-NN does not actually perform that badly.
Obviously it cannot be compared with the two best algorithms, but it is still a good solution that
with a few improvements could achieve the results of Random Forest and Gradient Boosting.

SVM in particular we can see that it is greatly influenced by the unbalance of the dataset
but does not predict many samples in the largest class. This behaviour is very unexpected. Of
course, all kernel functions were tried, but none yielded better results. With K-NN as well, several
experiments were carried out with different values of K, but 5 was the number that brought the
most results.

From the table, we can see that the weighted results are generally higher than the macro
results. As I have already mentioned, for me the weighted results bring a better view of the
situation being studied as we are dealing with a very unbalanced dataset and therefore the results
must also be weighted between the various classes.
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Opcode counter RF K-NN SVM GB
Accuracy 0.9928± 0.0007 0.9640± 0.0069 0.3704± 0.0146 0.9949± 0.0017

Macro-Precision 0.9926± 0.0018 0.9230± 0.0230 0.3561± 0.0141 0.9940± 0.0022
Weighted-Precision 0.9929± 0.0007 0.9645± 0.0065 0.4173± 0.0239 0.9950± 0.0016

Marco-Recall 0.9816± 0.0159 0.9257± 0.0151 0.3970± 0.0219 0.9892± 0.0099
Weighted-Recall 0.9928± 0.0007 0.9640± 0.0069 0.3704± 0.0146 0.9949± 0.0017
Macro-F1 Score 0.9863± 0.0092 0.9232± 0.0181 0.2827± 0.0007 0.9914± 0.0063

Weighted-F1 Score 0.9928± 0.0007 0.9640± 0.0069 0.3169± 0.0097 0.9949± 0.0017
Micro-AUC ROC 0.9998± 0.0002 0.9916± 0.0027 0.9275± 0.0032 1.0000± 0.0001
Marco-AUC ROC 0.9997± 0.0002 0.9819± 0.0055 0.9142± 0.0075 0.9999± 0.0001

Weighted- AUC ROC 0.9997± 0.0002 0.9914± 0.0027 0.9251± 0.0054 0.9999± 0.0001

Table 6.6: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
opcode counter. Results were aggregated over 3 training runs. Best results for feature are shown
in bold.

(a) Random Forest with opcode counter (b) K-NN with opcode counter

(c) SVM with opcode counter (d) Gradient Boosting with opcode counter

Figure 6.11: Confusion Matrix of each algorithm with opcode counter. Confusion matrix from
the last training.
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Bytes features RF K-NN SVM GB
Accuracy 0.9939± 0.0033 0.8761± 0.0057 0.4928± 0.0046 0.9960± 0.0017

Macro-Precision 0.9931± 0.0051 0.7683± 0.0213 0.3056± 0.0059 0.9950± 0.0039
Weighted-Precision 0.9939± 0.0032 0.8756± 0.0059 0.5178± 0.0134 0.9961± 0.0017

Marco-Recall 0.9532± 0.0160 0.7722± 0.0139 0.4026± 0.0042 0.9599± 0.0088
Weighted-Recall 0.9939± 0.0033 0.8761± 0.0057 0.4928± 0.0046 0.9960± 0.0017
Macro-F1 Score 0.9678± 0.0139 0.7690± 0.0164 0.2803± 0.0020 0.9736± 0.0074

Weighted-F1 Score 0.9937± 0.0033 0.8754± 0.0058 0.4211± 0.0088 0.9959± 0.0018
Micro-AUC ROC 0.9998± 0.0004 0.9758± 0.0009 0.9155± 0.0021 1.0000± 0.0000
Marco-AUC ROC 0.9995± 0.0004 0.9241± 0.0008 0.8383± 0.0148 1.0000± 0.0001

Weighted- AUC ROC 0.9998± 0.0004 0.9728± 0.0010 0.8386± 0.0076 1.0000± 0.0000

Table 6.7: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
bytes features. Results were aggregated over 3 training runs. Best results for feature are shown
in bold.

6.2.3 Comments Opcode counter

On this feature, I was not sure what results it would report as it had not been found during the
state-of-the-art study of this research. My reasoning was that in an assembly code it is very likely
to find a recurrence of certain functions over others depending on which malware family is being
studied. In the study of static malware analysis, this type of procedure was carried out to create
signatures of certain malware in signature-based identification systems, so I decided to study their
behaviour with machine learning algorithms.

Far beyond my expectations, it led to excellent results, comparable to byte and opcode grams
(which in the state of the art were the features that were used most along with API function calls.
We end up with the same situation as in previous features, i.e. a very efficient Gradient Boosting
and Random Forest, a good but not excellent K-NN and finally a poor SVM.

However, we can see from the confusion matrices (Figure 6.11) that the SVM is much more
balanced in its decision-making than the opcode 4-gram. In fact, this feature is a better match
for this algorithm, which is not entirely taken for granted.

As can be seen from Table 6.6, the results of the metrics on SVM did not lead to notice this
marked improvement, this is because the results are always negative but this time the decisions are
made following reasoning constructed during the training phase. In the previous situation, on the
other hand, during training the algorithm learned very little besides the unbalanced distribution
of the dataset.

6.2.4 Comments Bytes features

Bringing together the features extracted from the bytes files led, as one might have expected, to
very good results. This statement comes from the fact that among the three features extracted
from the bytes files were the bytes 3-gram, which as we know led to excellent results. Since the
results were already excellent in themselves, it is difficult for there to be a marked improvement,
and in fact the accuracy increased not by much for Random Forest and Gradient Boosting. If we
compare table 6.4 with table 6.7, we can see that there are two things that stand out the most:
the deterioration of K-NN and SVM.

The Random forest and Gradient Boosting algorithms learned more by having more infor-
mation at their disposal, such behaviour was what all four of us expected. In fact, if we reflect,
having in addition to grams of bytes additional information about the size of the binary file and
the total entropy of the file, we should be better able to classify files. SVM and K-NN, on the
other hand, do not reflect such behaviour. As to the reasons behind this phenomenon, I can only
speculate, and my first thought was an excess of information for these two algorithms. Since they
are algorithms that make decisions based on the positioning of samples in the classification space
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(a) Random Forest with bytes features (b) K-NN with bytes features

(c) SVM with bytes features (d) Gradient Boosting with bytes features

Figure 6.12: Confusion Matrix of each algorithm with bytes features. Confusion matrix from the
last training.

created by the algorithms, having an excess of dimensions can lead to having more difficulty in
creating a clear separation between the various classes. Having said this, I continue to emphasise
that if the entropy were extracted differently, as in the case of ST-WinMal dataset, we would
obtain totally different results.

I conclude by stating that the study of the confusion matrices in figure 6.12 confirm the
correlation of the data between the metrics and the actual classification of samples. The only
particular note on the confusion matrices is the poor ability of the SVM to understand the unequal
distribution of samples between the various classes in the dataset.

6.2.5 Comments Asm features

As can be seen from the table 6.8, the combination of the four features extracted from the .asm files
leads to excellent results. The Random Forest and Gradient Boosting once again find themselves
competing for the place of best algorithm for malware classification, while K-NN improves greatly
on the previously reported results. SVM, on the other hand, still tends to have very low results in
general. The ROC curve again shows us that it is not a good metric in the field of classification,
in fact it easily reaches high numbers even with poor results.
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Asm features RF K-NN SVM GB
Accuracy 0.9916± 0.0007 0.9546± 0.0030 0.3635± 0.0021 0.9952± 0.0014

Macro-Precision 0.9914± 0.0001 0.8944± 0.0135 0.3804± 0.0129 0.9900± 0.0084
Weighted-Precision 0.9917± 0.0008 0.9553± 0.0030 0.4297± 0.0253 0.9953± 0.0014

Marco-Recall 0.9820± 0.0146 0.8823± 0.0131 0.3859± 0.0094 0.9854± 0.0134
Weighted-Recall 0.9916± 0.0007 0.9546± 0.0030 0.3635± 0.0021 0.9952± 0.0014
Macro-F1 Score 0.9860± 0.0084 0.8832± 0.0045 0.2891± 0.0039 0.9869± 0.0057

Weighted-F1 Score 0.9916± 0.0007 0.9544± 0.0029 0.3138± 0.0018 0.9952± 0.0014
Micro-AUC ROC 0.9997± 0.0003 0.9870± 0.0011 0.9201± 0.0014 1.0000± 0.0001
Marco-AUC ROC 0.9996± 0.0003 0.9665± 0.0144 0.8880± 0.0009 0.9999± 0.0001

Weighted- AUC ROC 0.9996± 0.0003 0.9867± 0.0011 0.9060± 0.0008 1.0000± 0.0001

Table 6.8: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
asm features. Results were aggregated over 3 training runs. Best results for feature are shown in
bold.

(a) Random Forest with asm features (b) K-NN with asm features

(c) SVM with asm features (d) Gradient Boosting with asm features

Figure 6.13: Confusion Matrix of each algorithm with asm features. Confusion matrix from the
last training.

The motivation behind these excellent results is the inclusion of the opcode counter and the
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3 Best features RF K-NN SVM GB
Accuracy 0.9962± 0.0014 0.9621± 0.0015 0.6357± 0.0112 0.9979± 0.0006

Macro-Precision 0.9964± 0.0011 0.8984± 0.0043 0.6396± 0.0149 0.9932± 0.0080
Weighted-Precision 0.9962± 0.0014 0.9626± 0.0016 0.7404± 0.0124 0.9979± 0.0006

Marco-Recall 0.9912± 0.0083 0.9056± 0.0042 0.5181± 0.0141 0.9932± 0.0072
Weighted-Recall 0.9962± 0.0014 0.9621± 0.0015 0.6357± 0.0223 0.9979± 0.0006
Macro-F1 Score 0.9936± 0.0046 0.9017± 0.0032 0.4620± 0.0032 0.9929± 0.0043

Weighted-F1 Score 0.9962± 0.0014 0.9621± 0.0015 0.6136± 0.0067 0.9979± 0.0005
Micro-AUC ROC 0.9999± 0.0001 0.9917± 0.0006 0.9426± 0.0045 1.0000± 0.0000
Marco-AUC ROC 0.9999± 0.0001 0.9796± 0.0101 0.8991± 0.0045 1.0000± 0.0000

Weighted- AUC ROC 0.9999± 0.0001 0.9915± 0.0006 0.9338± 0.0024 1.0000± 0.0000

Table 6.9: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
the three best features. Results were aggregated over 3 training runs. Best results for feature are
shown in bold.

opcode 4-gram. Together they manage to overcome the classifier’s difficulties in using the API
check and the 4-gram of API, which alone brought poor results.

The confusion matrices in figure 6.13 confirm the correlation with the data. Here, the SVM
heavily favours the Obfuscator.ACY class, probably because it cannot overcome the difficulties
imposed by malware authors with obfuscation and/or encryption techniques.

6.2.6 Comments Best features

In this section, no feature or combination of them led to higher results. As was easy to imagine,
SVM and K-NN have also improved, to be precise K-NN is a very good algorithm with this
feature, not at the level of Random Forest or Gradient Boosting but it exceeds 95% which was an
important threshold for me to reach. SVM still remains poor but manages to reach 60% score,
not so trivial given previous experiments.

This time the algorithms also learn from the addition of the new information. Obviously
already with the use of the individual features, very good results were obtained, but combining
them made it possible to extract the maximum from all 4 models. Therefore, it can be concluded
that this is the best possible combination if we were to generalise for any algorithm the input to
be extracted from the dataset.

From the table 6.9 we can see that in some metrics the Random Forest manages to outperform
(always by a little) Gradient Boosting. This event allows us to understand how Random Forest
is still a very good algorithm to use for this task.

The confusion matrices in figure 6.14 confirm the goodness of this input, in fact the SVM
also learns much more egregiously than with previous inputs. It succeeds first of all in not only
predicting the usual 2/3 classes, but it succeeds in distributing its decisions better. It still fails
to have noteworthy accuracy.

6.2.7 Summary

After the previous analysis, we can confirm that there are better algorithms and features for this
type of task. In fact, we confirm that SVM is an imprecise algorithm with this dataset, which runs
into many difficulties. With regard to the other algorithms, however, we note that they perform
exceptionally well. K-NN even though it does not bring the results of the other algorithms with
some features manages to behave quite adequately. I am convinced that with a little more work
it can easily reach the level of Random Forest and Gradient Boosting.

About the latter two algorithms there is not much to say, they are in fact very precise, tend to
have a high recall, which is very positive, and very good precision, another factor in their favour.
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(a) Random Forest with the three best features (b) K-NN with the three best features

(c) SVM with the three best features (d) Gradient Boosting with the three best features

Figure 6.14: Confusion Matrix of each algorithm with the three best features. Confusion matrix
from the last training.

The F1 score sums up very well how excellent these two algorithms are for this research. In
summary, we can therefore say that opcode or byte grams are the best source of information that
can be extracted from this dataset, along with the assembly function count within the disassembled
file.

6.3 Malware detection results with ST-WinMal dataset

From here on, the results of the experiments performed with ST-WinMal dataset will be addressed.
Before starting to present the results, it is worth pointing out the differences with the first dataset.
Here we are testing a dataset created from scratch by collecting several samples from different
sources. We therefore have much more heterogeneity of samples. Moreover, ST-WinMal dataset
is much more balanced than the official Microsoft dataset. Here each class also has malware inside
that employs obfuscation techniques, so it is easier for the malware detector or classifier to learn
more about it during the training phase.

The dataset consists of executables, but because we use features as input that were not ex-
tractable for some samples, the number of malware is slightly reduced. In the table 6.10 we can
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Trojan Ransomware
Family Name Number of Samples Family Name Number of Samples
Ramnit 1,499 Virlock 744
Zbot 1,159 Stop 1,000
IceId 860 Magniber 804
Trickbot 725 Wannacry 1,444
Benign 955

Table 6.10: Malware families in ST-WinMal dataset combined

Algorithms Feature
Bytes 3-gram Entropy API check All features

AUC-ROC
RF 0.9984± 0.0002 0.9931± 0.0012 0.9921± 0.0014 0.9978± 0.0004

K-NN 0.9229± 0.0004 0.9725± 0.0057 0.9418± 0.0036 0.9318± 0.0120
SVM 0.9853± 0.0025 0.9726± 0.0121 0.9693± 0.0271 0.9890± 0.0015
GB 0.9992± 0.0004 0.9950± 0.0014 0.9893± 0.0022 0.9989± 0.0002

Accuracy
RF 0.9873± 0.0019 0.9839± 0.0026 0.9819± 0.0025 0.9888± 0.0091

K-NN 0.9554± 0.0029 0.9783± 0.0038 0.8943± 0.0036 0.9626± 0.0051
SVM 0.9545± 0.0016 0.9708± 0.0039 0.9616± 0.0049 0.9714± 0.0014
GB 0.9949± 0.0003 0.9850± 0.0031 0.9788± 0.0034 0.9940± 0.0011

Recall
RF 0.9968± 0.0016 0.9966± 0.0010 0.9901± 0.0017 0.9964± 0.0016

K-NN 0.9866± 0.0032 0.9925± 0.0046 0.9014± 0.0052 0.9897± 0.0016
SVM 0.9980± 0.0020 0.9897± 0.0012 0.9933± 0.0043 0.9968± 0.0013
GB 0.9978± 0.0009 0.9961± 0.0013 0.9877± 0.0043 0.9976± 0.0016

Precision
RF 0.9891± 0.0016 0.9856± 0.0036 0.9897± 0.0010 0.9911± 0.0018

K-NN 0.9644± 0.0001 0.9834± 0.0038 0.9790± 0.0095 0.9693± 0.0042
SVM 0.9534± 0.0028 0.9780± 0.0047 0.9649± 0.0085 0.9720± 0.0017
GB 0.9966± 0.0007 0.9872± 0.0029 0.9887± 0.0018 0.9958± 0.0006

F1 Score
RF 0.9929± 0.0011 0.9910± 0.0014 0.9899± 0.0014 0.9937± 0.0017

K-NN 0.9754± 0.0016 0.9879± 0.0021 0.9386± 0.0017 0.9318± 0.0120
SVM 0.9752± 0.0009 0.9838± 0.0021 0.9789± 0.0026 0.9890± 0.0015
GB 0.9972± 0.0002 0.9916± 0.0017 0.9882± 0.0019 0.9989± 0.0002

Table 6.11: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware identification task with
different features. Results were aggregated over 3 training runs. Best results for feature are shown
in bold.

see the distribution of the dataset composed of all features (binary file, file containing the API
and file containing the entropy divided by section)

The metrics used will be the same as those used with the Microsoft dataset, their description
can be found at the beginning of this chapter.

6.3.1 Comments

The table 6.11 shows all results obtained with the ST-WinMal dataset, showing the area under
the ROC curve, accuracy, recall, precision and F1 score. As already mentioned, the ROC curve
is an excellent metric to analyse in the field of binary classification, which is why, as in the last
dataset, they have all been reported in figures 6.15, 6.16, 6.17 and 6.18. By changing the dataset,
the results changed a lot with regard to entropy. In fact we can confirm my hypothesis already
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Figure 6.15: ROC curve and AUC-ROC for bytes 3-gram.

Figure 6.16: ROC curve and AUC-ROC for entropy.

explained several times above, namely the importance of how they are extracted and features. We
can see that the entropy extracted over the whole file did not lead to exciting results with the last
dataset, whereas now with ST-WinMal we have achieved excellent results. In terms of the feature
in common between the two datasets, we can see that the bytes 3-gram had very little difference
from the last dataset. Precision dropped slightly but not so much as to assume a problem in
feature extraction (order 10−3).

With the introduction of the use of APIs to identify malware, very promising results were
achieved. It is the feature with the lowest but still very high results with some algorithms. The
Random Forest, which achieves the best results with this feature, achieves an AUC-ROC and
recall of over 0.99. Indeed, recall is a very important metric for us as the higher it is, the more
likely it is that our model does not predict many malware as benign files (a worse situation than
predicting benign files as malware).

As far as accuracy is concerned, the model that brought the highest results was gradient
boosting using bytes gram, confirming that they are the most suitable feature for this type of
task. Joining the features together, it can be seen that the metrics receive a slight lowering
compared to the use of grams of bytes. This phenomenon had already occurred with the last
dataset, demonstrating how putting in too much information does not necessarily lead to better
results.

As with the last dataset, confusion matrices were also reported here. The best results can be
seen in the matrices 6.6d and 6.8d where the two error classes have less than ten predictions each.
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Figure 6.17: ROC curve and AUC-ROC for API check.

Figure 6.18: ROC curve and AUC-ROC for all feature.

In general, all the matrices performed very well, as already shown in the table, only the only one
we can define as a failure is in figure 6.21b. This matrix reports that 170 malware were predicted
as benign files, a very poor result that leads us to exclude this model as a possible choice for the
work.

We can finally conclude how Random Forest and Gradient boosting remain the two best
algorithms even with this dataset, SVM on the other hand becoming a much more desirable
model for this type of task, and K-NN taking the role of the worst algorithm. So it can be argued
that the choice of dataset is also very important in order to understand which algorithm to choose.
In fact, SVM previously seemed an option to be immediately discarded a priori, whereas with the
use of the ST-WinMal dataset, it achieved very encouraging results.

6.4 Malware classification results with ST-WinMal dataset

This section will show the results achieved with the three available features together with the
use of all three integrated into one input. In contrast to section 6.2, all results will be shown as
they achieved very similar results and there are only four different characteristics to the seven
extracted from the previous dataset.

As specified in the section with the experiments on malware classification with Microsoft’s
dataset, the best metric for comparison is the F1 score, it best specifies whether the model works
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(a) Random Forest with bytes 3-gram (b) K-NN with bytes 3-gram

(c) SVM with bytes 3-gram (d) Gradient boosting with bytes 3-gram

Figure 6.19: Confusion Matrix of each algorithm with bytes 3-gram feature (0: not malware, 1:
malware). Confusion matrix from the last training.

Number Family
0 Ramnit
1 Zbot
2 IcedId
3 Trickbot
4 Virlock
5 Stop
6 Magniber
7 Wannacry

Table 6.12: family legend

correctly or not, as it summarises accuracy and recall in a single metric.

In addition to the numerical results, the confusion matrices have been reported in order to
confirm that the data shown in the tables have a practical match. In the confusion matrices for
readability issues, numbers were inserted to identify the classes instead of their names. A legend
of the families can be found in the table 6.12.
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(a) Random Forest with entropy (b) K-NN with entropy

(c) SVM with entropy (d) Gradient boosting with entropy

Figure 6.20: Confusion Matrix of each algorithm with entropy feature (0: not malware, 1: mal-
ware). Confusion matrix from the last training.

Bytes 3-gram RF K-NN SVM GB
Accuracy 0.9769± 0.0012 0.8676± 0.0016 0.7282± 0.0129 0.9850± 0.0017

Macro-Precision 0.9768± 0.0026 0.8764± 0.0041 0.7406± 0.0068 0.9837± 0.0025
Weighted-Precision 0.9773± 0.0012 0.8715± 0.0003 0.7651± 0.0062 0.9852± 0.0017

Marco-Recall 0.9760± 0.0006 0.8658± 0.0019 0.6833± 0.0130 0.9842± 0.0025
Weighted-Recall 0.9769± 0.0012 0.8677± 0.0016 0.7282± 0.0129 0.9850± 0.0017
Macro-F1 Score 0.9762± 0.0016 0.8688± 0.0010 0.6666± 0.0146 0.9839± 0.0025

Weighted-F1 Score 0.9769± 0.0012 0.8670± 0.0015 0.7044± 0.0138 0.9850± 0.0018
Micro-AUC ROC 0.9991± 0.0004 0.9672± 0.0038 0.9876± 0.0004 0.9997± 0.0002
Marco-AUC ROC 0.9991± 0.0002 0.9647± 0.0029 0.9835± 0.0008 0.9996± 0.0001

Weighted- AUC ROC 0.9990± 0.0003 0.9679± 0.0039 0.9838± 0.0005 0.9996± 0.0002

Table 6.13: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
bytes 3-gram. Results were aggregated over 3 training runs. Best results for feature are shown in
bold.
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(a) Random Forest with API check (b) K-NN with API check

(c) SVM with API check (d) Gradient boosting with API check

Figure 6.21: Confusion Matrix of each algorithm with API check feature (0: not malware, 1:
malware). Confusion matrix from the last training.

6.4.1 Comments Bytes 3-gram

The first feature under analysis is the bytes 3-gram. They reported the best results in the field
of identification, and proved to be the best feature to use in this task as well. The reported data
(Table 6.13 show a clear superiority of the Gradient Boosting algorithm, which achieves almost 99
per cent accuracy, ranking all eight classes of the dataset very well, without having any imbalance
problems.

Another noteworthy algorithm is the Random Forest, which achieves excellent results in this
area as well. We can then reconfirm the same situation seen with the Microsoft dataset. In fact
even here the K-NN and SVM fail to bring noteworthy results, the K-NN actually gets worse than
the experiments done with the previous dataset, while the SVM improves a lot but still fails to
achieve results comparable to the K-NN.

Here again we can see that the area under the ROC curve is not a very reliable metric. It
achieves excellent numbers even with the two algorithms that have just been described as not
accurate enough for this type of research, going to not give a clear representation of the situation
shown by the other metrics.

The confusion matrices in Figure 6.23 graphically confirm the results described in Table 6.13.
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(a) Random Forest with all features (b) K-NN with all features

(c) SVM with all features (d) Gradient boosting with all features

Figure 6.22: Confusion Matrix of each algorithm with all features (0: not malware, 1: malware).
Confusion matrix from the last training.

Worth noting are the matrices 6.23a and 6.23d which show that Random Forest and Gradient
Boosting are by far the best algorithms to use in this research. In contrast, the SVM (figure
6.23c) again shows a problem in identifying all eight classes in a balanced way. The Zbot family
has too high a prediction rate compared to all the other classes. This in fact is the source of many
classification problems for this algorithm, which is therefore not suitable for this type of work.

6.4.2 Comments Entropy

To analyze the results with entropy, it is very useful to compare the results obtained with the
preceding dataset and those obtained with the ST-WinMal detaset. Since the results obtained
with the preceding dataset were not outstanding a table corresponding to the table 6.14 is not
present in this thesis but it is possible to compare the F1 scores. They are in fact given in the
table 6.2.

It is immediately noticeable that the situation has definitely improved; in fact, f1 scores above
0.9 are now obtained with 3 algorithms. The SVM still reports some problems but it can be
confirmed how with this algorithm it is so far the best feature to input. This phenomenon allows
us to understand what the general problem is that this algorithm had not yet worked well with
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(a) Random Forest with bytes 3-gram (b) K-NN with bytes 3-gram

(c) SVM with bytes 3-gram (d) Gradient boosting with bytes 3-gram

Figure 6.23: Confusion Matrix of each algorithm with bytes 3-gram feature (0: not malware, 1:
malware). Confusion matrix from the last training.

Entropy RF K-NN SVM GB
Accuracy 0.9534± 0.0055 0.9142± 0.0034 0.8178± 0.0189 0.9514± 0.0046

Macro-Precision 0.9532± 0.0060 0.9110± 0.0034 0.8338± 0.0151 0.9492± 0.0040
Weighted-Precision 0.9538± 0.0053 0.9138± 0.0034 0.8278± 0.0143 0.9521± 0.0045

Marco-Recall 0.9528± 0.0049 0.9137± 0.0035 0.8108± 0.0138 0.9513± 0.0051
Weighted-Recall 0.9534± 0.0055 0.9142± 0.0034 0.8235± 0.0142 0.9514± 0.0046
Macro-F1 Score 0.9528± 0.0055 0.9121± 0.0034 0.8150± 0.0149 0.9501± 0.0045

Weighted-F1 Score 0.9534± 0.0056 0.9137± 0.0034 0.8195± 0.0145 0.9516± 0.0046
Micro-AUC ROC 0.9962± 0.0004 0.9797± 0.0010 0.9726± 0.0032 0.9977± 0.0003
Marco-AUC ROC 0.9956± 0.0001 0.9798± 0.0017 0.9652± 0.0027 0.9971± 0.0003

Weighted- AUC ROC 0.9955± 0.0002 0.9788± 0.0011 0.9667± 0.0027 0.9971± 0.0002

Table 6.14: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
entropy. Results were aggregated over 3 training runs. Best results for feature are shown in bold.

any kind of input. That is, the number of dimensions of the input data. Grams of bytes for
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(a) Random Forest with entropy (b) K-NN with entropy

(c) SVM with entropy (d) Gradient boosting with entropy

Figure 6.24: Confusion Matrix of each algorithm with entropy feature (0: not malware, 1: mal-
ware). Confusion matrix from the last training.

example are 5000 different pieces of information that each become a different dimension in the
space created for malware classification. So it is very difficult for excellent results to be achieved
with so many dimensions. On the other hand, with the previous dataset, with the size of the
binaries and the entropy, poor results had been achieved since it was very difficult that with only
one dimension some noteworthy results could be achieved. By using the entropy extracted for
each individual section of a malware instead, noteworthy results can finally be achieved. In fact,
the number of dimensions is now only 24, which makes it easier for the SVM to be able to better
fit the samples in the dataset into space.

For the other algorithms we get the usual situation, in fact Random Forest and Gradient
Boosting are the two models that perform best, but without reaching perfect results, while K-NN
still manages to achieve an F1 score of 0.9.

The confusion matrices in Figure 6.24 confirm the above, especially on the SVM.

6.4.3 Comments API check

As mentioned in the previous section, it is also worthwhile here to make a comparison between
the F1 scores obtained with the same feature in the previous dataset (in table 6.2) and the F1
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API Check RF K-NN SVM GB
Accuracy 0.9573± 0.0047 0.9146± 0.0046 0.9370± 0.0073 0.9605± 0.0021

Macro-Precision 0.9606± 0.0049 0.9212± 0.0058 0.9374± 0.0066 0.9619± 0.0005
Weighted-Precision 0.9578± 0.0048 0.9165± 0.0056 0.9404± 0.0060 0.9606± 0.0021

Marco-Recall 0.9577± 0.0039 0.9119± 0.0038 0.9378± 0.0086 0.9623± 0.0034
Weighted-Recall 0.9573± 0.0047 0.9146± 0.0046 0.9370± 0.0073 0.9605± 0.0021
Macro-F1 Score 0.9588± 0.0044 0.9152± 0.0034 0.9359± 0.0084 0.9621± 0.0019

Weighted-F1 Score 0.9573± 0.0047 0.9141± 0.0048 0.9373± 0.0073 0.9605± 0.0021
Micro-AUC ROC 0.9966± 0.0011 0.9817± 0.0028 0.9961± 0.0010 0.9982± 0.0005
Marco-AUC ROC 0.9957± 0.0013 0.9813± 0.0024 0.9944± 0.0016 0.9976± 0.0003

Weighted- AUC ROC 0.9958± 0.0012 0.9808± 0.0031 0.9945± 0.0013 0.9975± 0.0003

Table 6.15: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
API check. Results were aggregated over 3 training runs. Best results for feature are shown in
bold.

(a) Random Forest with API check (b) K-NN with API check

(c) SVM with API check (d) Gradient boosting with API check

Figure 6.25: Confusion Matrix of each algorithm with API check feature (0: not malware, 1:
malware). Confusion matrix from the last training.

scores obtained with ST-WinMal (table 6.15). It can be seen that the situation has improved
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All features RF K-NN SVM GB
Accuracy 0.9759± 0.0050 0.8644± 0.0082 0.9178± 0.0076 0.9873± 0.0016

Macro-Precision 0.9766± 0.0055 0.8739± 0.0073 0.9309± 0.0067 0.9866± 0.0022
Weighted-Precision 0.9762± 0.0047 0.8656± 0.0080 0.9248± 0.0068 0.9873± 0.0015

Marco-Recall 0.9754± 0.0056 0.8625± 0.0092 0.9162± 0.0090 0.9868± 0.0021
Weighted-Recall 0.9759± 0.0050 0.8644± 0.0082 0.9178± 0.0076 0.9873± 0.0016
Macro-F1 Score 0.9759± 0.0057 0.8666± 0.0085 0.9212± 0.0080 0.9866± 0.0021

Weighted-F1 Score 0.9760± 0.0049 0.8636± 0.0083 0.9187± 0.0073 0.9873± 0.0016
Micro-AUC ROC 0.9987± 0.0007 0.9658± 0.0072 0.9959± 0.0010 0.9996± 0.0003
Marco-AUC ROC 0.9984± 0.0006 0.9629± 0.0069 0.9951± 0.0010 0.9994± 0.0004

Weighted- AUC ROC 0.9984± 0.0006 0.9629± 0.0072 0.9947± 0.0010 0.9995± 0.0003

Table 6.16: Results of the different models (RF: Random Forest, K-NN: K-Nearest Neighbors,
SVM: Support Vector Machine, GB: Gradient Boosting) in the malware classification task with
all features. Results were aggregated over 3 training runs. Best results for feature are shown in
bold.

a lot here as well, in fact, all algorithms exceed 0.9 as F1 score while in the previous dataset
they never exceeded 0.7. Definitely the motivation is the extraction method. In the Microsoft
dataset, the APIs were extracted from the disassembled when called via the call function, while
in the ST-WinMal dataset, the APIs were extracted from the executable header. The headers
were removed from the malware in the Microsoft dataset to render the malicious files harmless.
For this reason, it can be ascertained that in addition to evaluating dataset, input, and algorithm,
it would also be appropriate to evaluate the extraction methods. Entropy and API are the clear
demonstration of the above.

Gradient Boosting and Random Forest achieve the best results, but unlike before, K-NN and
SVM are not that far off, and in fact can be considered good algorithms to use for classifying
malware with the following characteristic.

Confusion matrices confirm the above, showing the goodness of this feature in the field of
malware classification.

6.4.4 Comments All Features

Experiments with all the characteristics used as input together did not lead to the desired results.
SVM is the only algorithm worth mentioning, in fact it achieved the same results as with entropy
but using all other dimensions. In the table 6.16, it is clear that Gradient Boosting is again the
best algorithm, along with Random Forest. Confusion matrices (in Figure 6.26) can confirm the
goodness of this experiment but also show how no data excel and reach a 99% accuracy, a target
that was thought to be easily achieved. The reasons for this have not been found, so it can only
be assumed that the dataset cannot lead to the same results as the Microsoft dataset.

One might also think that it is also due to the families chosen, in this case we are in fact
only with two classes of malware, namely Trojans and Ransomware, whereas Microsoft had no
less than five different classes: Worm, Adware, Backdoor, Trojan and TrojanDownloader. Even
if there are several families in a class, it is very likely that there are many more common features
than with different classes, as the purpose is much more similar between different families of the
same class than between different families of different classes.

6.4.5 Summary

With this analysis, one can confirm what has already been said to exist with the previous dataset,
namely that there are better algorithms and features for this type of task, but not as clearly as
seen with the Microsoft dataset. SVM and K-NN do not carry the results of the other algorithms
with almost all features, they manage to perform quite adequately. I am convinced that with a
little more work it can easily reach the level of Random Forest and Gradient Boosting.
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(a) Random Forest with all features (b) K-NN with all features

(c) SVM with all features (d) Gradient boosting with all features

Figure 6.26: Confusion Matrix of each algorithm with all features (0: not malware, 1: malware).
Confusion matrix from the last training.

On the latter two algorithms there is not much to say, they are in fact very precise, they tend
to have a high recall, which is very good, and a very good precision, another factor in their favour.

The F1 score sums up very well the excellence of these two algorithms for this research. To
summarise, we can say that all the available features led to very good results with Random Forest
and Gradient Boosting, and fair results with the remaining 2 algorithms.

6.5 Summary

After this careful analysis of all the results obtained, it is good to summarise the concepts learned.
First of all, we have seen how changing the methods of feature extraction can have a very important
influence on the results that can be obtained with the classification of samples (whether binary
or multi-class). The entropy and presence control of API function calls are tangible proof of this.
The results obtained with the ST-WinMal dataset lead us to conclude that they are both two
excellent solutions to propose for this type of work. On the contrary, with the tests carried out
on the first dataset, this statement is no longer valid. For any future research, it is therefore
important to check how the data was extracted in the dataset and how this may affect all the
experiments carried out during the final part of the work.
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Algorithm Feature(s) Weighted-F1 Score
Microsoft Malware Classification Challenge Dataset

Gradient Boosting All features 0.9979
Random Forest All features 0.9962

Gradient Boosting Bytes features 0.9959
ST-WinMal

Gradient Boosting All features 0.9873
Gradient Boosting Bytes 3-gram 0.9850
Random Forest Bytes 3-gram 0.9769

Table 6.17: Summary best results

A second concept learnt is the confirmation of the success of the grams of bytes and opcodes.
As already mentioned during the study of the state of the art of this subject, this feature that
can be extracted from binary and disassembled files has wide success in the field of malware iden-
tification, both with machine learning techniques and without. Even in the presence of malware
with obfuscation and/or encryption techniques, we find ourselves with a high success rate, which
is why it is good to keep these features, perhaps supplementing them with other extractable in-
formation from malware that has little size. The motivation behind this success is probably their
simplicity. Even if obfuscation techniques are used, it is impossible for the entire code to be ren-
dered unreadable, in which case there would still be the possibility of dynamic feature extraction
(slower but more effective). If the code contains some ’real’ parts of the malware, a classifier will
be able to realise that that part is more relevant than others in order to be able to go and create
a general rule. Obviously, having a large number of samples helps to obtain excellent results.

Finally, the last very important notion learnt during this analysis is the ability of the Random
Forest and Gradient Boosting algorithms to adapt to each feature and each dataset. They turned
out to be the best algorithms, without any kind of doubt. They are certainly the algorithms that
also have the highest growth rate and can achieve an accuracy close to 100 per cent. The other
two paths, namely K-NN and SVM, led to decent results with some features but bad with others.
The table 6.17 summarises which were the three best patterns found in the field of malware
classificationfor each dataset.

Limitations of static API extraction

The API never managed to bring the desired results. In the background, this feature was described
as very positive in the field of malware identification and classification, but after reading the
results of this analysis, it may seem that this is not true. Actually, the reasons are very simple,
in fact we are dealing with the phenomenon of name mangling. It is a technique used to solve
various problems caused by the need to uniquely identify different programming entities in modern
programming languages. Compilers in fact need to have their own methods to identify these
entities. An example is the overloading of two C++ functions that can be called void fun(int)

and void fun(double) For the programmer, these functions have the same name, but for the
compiler, they must have two different identifiers. Each compiler has different ways, for example
GCC 8 would create two identifiers such as _Z3funi and _Z3fund where the final i and d would
stand for int and double. For this reason, perhaps two very similar malware written in two
different languages would produce totally different results. One solution would be to match the
names given by the compiler to those given by the programmer, but this is almost impossible,
if not very difficult to do for every compiler in existence. Moreover, some compilers have never
provided details of their inner workings.

Reason for SVM’s failure

To better understand why the SVM sometimes misclassified malware, one must study the various
families in the dataset in more detail. Below is a description of the malware families in Microsoft’s
dataset:
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• The Ramnit family has numerous variants, which can be classified individually as trojans,
viruses or worms. Microsoft’s dataset contains the category of worms. This family of
malware steals sensitive information, such as usernames and passwords of bank accounts. It
can also give a malicious hacker remote access, so that he can control the victim’s PC and
stop the security software installed on the affected device [50].

• Malware belonging to the Lollipop family displays advertisements when the victim surfs
the web. These programs redirect search engine results, monitor what is happening on the
PC and send the collected information to the attacker. This malware can be downloaded
from the web or bounded with some third-party software installation programs [51].

• Kelihos is a family of malware that distributes spam e-mail messages that may contain web
links to installers of itself. It may also contain executables that can control the victim’s PC
to change configuration data and download other arbitrary files [52]. Version 3 added the
possibility of creating botnets with the computers of victims affected by the malware.

• The Vundo family is part of the Trojan category, which allows the attacker to perform any
number of actions of his choice on the victim’s PC [53].

• Malware of the Simda family are Trojans designed to steal users’ passwords, in order to give
a malicious hacker backdoor access, so that he can control your PC and perform malicious
actions [54].

• Tracur is a family of trojans that can redirect your web searches. The attacker can thus
make money by placing fraudulent advertisements [55].

• Malware of the Obfuscator.ACY family are obfuscated, i.e. they try to hide their purpose
from the antivirus so that it cannot identify them. The malware itself can have quite different
purposes, depending on the attacker’s wishes [56].

• Gatak: This trojan gathers information about your PC and sends it to a hacker. It can
arrive on your PC as part of a key generator application, or by appearing to be an update
for a legitimate application[57].

After this brief description of each family, one can better understand some of the situations
we encountered earlier. Looking at the SVM confusion matrix when all the features extracted
from the .asm files were used (Figure 6.13c), we can understand why many malware fall into
the category of obfuscated malware. As they are a mixture of many malware with different
behaviours, it is very easy for other malware to be confused for this category. There is therefore
an explanation behind some of the SVM failures. Another similar situation is found in the SVM
used with opcode counters. Certainly the assembly functions will contain similar functions, in the
same order, as they will be the micro-functions of the same API called by similar malware or for
the same purpose.

If we were to analyse the ST-WinMal dataset, I am sure we would come into the same case.
Certainly less than the Microsoft dataset given the excellent results anyway. This can therefore
be considered the main reason for the failure behind SVM.
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Chapter 7

Conclusions

The aim of this thesis was to create a tool that could identify and classify malware using machine
learning algorithms. In the case of malware identification, the aim was to have a high recall
and low false-positive rate, while for classification, we determined that the F1 score was the best
metric to take into account and that it managed to be as high as possible. The aim was to not
only identify malware from a single dataset, but also to be able to recognise different families and
thus be usable with multiple datasets.

To achieve this, an attempt was made to use four different algorithms, namely Random Forest,
K-Nearest Neighbours, Support Vector Machine and Gradient Boosting, with different character-
istics extracted from malware. The first step was therefore to decide what information could be
extracted from the selected datasets, the Microsoft Malware Classification Challenge dataset and
St-WinMal, and then to create a tool that was able to automate the extraction for a large number
of malware. After that, the second step was to test the aforementioned algorithms to see which
ones worked best with the different features available in order to understand which tools had the
most potential in this field.

In the results shown in Chapter 6, it can be seen that in the field of identification, the al-
gorithms tend to perform very well, effectively understanding which samples were malware and
which were not, and more than correctly labelling as many samples as possible. The Random
Forest and Gradient Boosting were confirmed as the two algorithms with the highest accuracy,
precision and recall, the former algorithm being confirmed as the fastest of the two in the training
phase, slightly lacking in precision.During the classification tests, on the other hand, the differ-
ence between the algorithms was more pronounced, with an SVM unable to replicate the results
obtained during the malware identification tests and a K-NN with discrete results. The Random
Forest and Gradient Boosting also achieved excellent results in this field, reaching high precision
especially with the gram of bytes and opcode, and with the assembly function counter.

Compared to traditional malware analysis techniques, machine learning provides a fast and
accurate classifier. It does not need to understand the code and if placed in a context where
information is extracted in an automated manner, it can perform training much faster. This
approach cannot give an insight into the detailed behaviour of malware, as it does not output any
kind of additional information other than the label of the malware family to which the sample
belongs. To perform a deeper analysis, more features are required together, as shown in Chapter
6.

7.1 Future Works

The models described and tested in this thesis have the potential to become very useful in the
field of computer security in the near future. They can be used to identify and classify malware in
an infected system, without envying current systems. The current implementation of the models
with Random Forest and Gradient Boosting achieved excellent results in the field of malware
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detection and malware classification by means of static features, also considering the number of
samples available on which they were trained.

However, there are also limitations, especially with the use of certain features with which all 4
models failed to learn enough. As specified in section 6.5, there are problems with the extraction
of APIs due to the Name Mangling phenomenon. Furthermore, it is not guaranteed that malware
can be correctly classified among the various families, because as described in the same section
above, it is possible that several families with the same purpose use the same features in order
to achieve the intended goal. Listed below are suggestions that can be taken against them to
overcome the limitations described above:

• The problem arising from Name Mangling arises from the existence of a large number of
C/C++ compilers, leading to many variants of the same functions, which perhaps only
change the type of parameters or the type of return value. In reality, however, the compilers
used are not so many as some have been developed but never used on a large scale. An
attempt could therefore be made to develop a tool that would be able to rename all the
APIs created with Name Mangling according to a convention decided a priori.

• The datasets used were very useful in the development of this thesis, but unfortunately they
have one major limitation, namely the number of samples is not large enough. In order to
be able to carry out more precise tests, it is necessary to increase the number of samples,
while still being able to keep the samples balanced against each other as in the ST-WinMal
dataset.

• The technique used to perform dimensionality reduction is an improvable one, in fact there
are techniques created specifically for this purpose, such as PCA (Principal Component
Analysis) and LDA (Linear Discriminant Analysis). These techniques could open up many
avenues for new dimensionality reduction methods. Other customised techniques can be
created by going deeper into the individual malware families in the dataset in order to
understand which APIs are the most significant, opcode grams, etc.

• Another suggestion would be to study a method for dynamic extraction of malware, or
to find a tool that can be automated through some programming language, to try to cre-
ate a machine learning system that employs the models realised in this thesis, but uses
dynamically extracted features.

• Finally, a somewhat heavier but potentially interesting piece of work would be to adapt the
code to work with malware datasets that target operating systems other than Windows,
such as Linux or Android.
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User Manual

The program is independent of the operating system on which it runs, you need to have python
3.10 and the following dependencies installed:

• NumPy 1.24.2

• SciPy 1.10.0

• scikit-learn 1.2.2

• matplotlib 3.7.0

• seaborn 0.12.2

• pandas 1.5.3

To install all dependencies, use the command pip install <library>. All libraries have
their own official page with documentation included; should you need more libraries, they will
automatically be downloaded using the command described above. Packages are also available on
conda.

A.1 Instructions

The matrices with the extracted features have already been created and placed in the .npz files
in the pre-extract folder. To run the program, clone the project from the following link https:

//github.com/saci98/ML_Malware_Classification with the following command:

git clone https://github.com/saci98/ML Malware Classification.git

To run the program, the following command must be executed from the project folder:

python main.py [-h] --dataset {benign, malign, ST-WinMal-benign, ST-WinMal-malign} --
features {binary size, 3 gram bytes, 4 gram opcode, 4 gram API, entropy,opcode counter, API check}
[{binary size, 3 gram bytes, 4 gram opcode, 4 gram API, entropy,opcode counter, API check} ...]

options:

• -h, --help show this help message and exit

• --dataset {benign, malign, ST-WinMal-benign, ST-WinMal-malign} benign for microsoft
dataset with benign file or malign for microsoft dataset without benign file, ST-WinMal-
benign for second dataset with benign file or ST-WinMal-malign for second dataset with
malign file
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• --features {binary size, 3 gram bytes, 4 gram opcode, 4 gram API, entropy, opcode counter,
API check} [{binary size, 3 gram bytes, 4 gram opcode, 4 gram API, entropy, opcode counter,
API check} ...] insert feature(s) to use

Execution time varies from feature to feature, it is recommended to run on a programming
environment with high performance capabilities. To make the execution lighter, individual algo-
rithms can be tried out; to do this, the following instructions on main.py must be followed:

• If you only wish to use Random Forest you must comment on lines 382-398 and lines 407-415.

• If you only want to use K-NN you must comment on lines 378-380, lines 386-398, lines
404-406 and lines 410-415.

• If you only wish to use SVM you must comment on lines 378-384, lines 393-398, lines 404-409
and lines 413-415.

• If you only wish to use Gradient Boosting, comment on lines 378-391 and lines 404-412.

The output will show the numerical results described in Chapter 6 and also save the confusion
matrices in the results folder. The file will be saved with the following name:

Confusion Matrix of <algorithm> <dataset> <features>.svg

ROC Curve <dataset> <features>.svg

The execution time without feature extraction can vary from seconds up to hours depending
on the selected feature, in case extraction is performed this time could be longer than a day.
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Programmer Manual

The code consists of a main and several files that provide the functions needed to extract features
and model them for training. In addition, there are several folders with different functions:

• data: Folder where there are datasets (not reported on GitHub) and csvs to allow sample-
label association.

• pre-extract: Contains pre-extracted arrays in files .npz

• results: Contains images of confusion matrices and ROC curves.

• Utils: It contains all the files .py created to support the main.

In the Utils folder there are several files with different functions. The functions have been
divided into the files in the following way:

• CSVReader.py : It contains functions for reading and saving csv files.

• Extract feature.py : It contains functions that work with the dataset to extract selected
features from it.

• Integrate features.py : It contains the functions for integrating features with each other to
allow several features to be used together.

• ReadFile.py : It contains the functions for reading the files in the dataset.

There are several functions in each file, all adequately commented so that they can be used
for future work. Below are the functions divided by file and their description.

CSVReader.py

Class CSVReader: Manage the saving and loading of a .csv file.

• init (self, name file):
create object CSVReader
:param name file: Name of file CSV.

• save(self, data):
Save a DataFrame as CSV file
:param data: Dataframe to save in file CSV.

• load(self):
Load into a DataFrame the contents of a CSV
:return: DataFrame with the contents of a CSV

94



Programmer Manual

Extract features.py

• extract binary sizes(id):
Extracts the size of a binary file passed the id
:param id: binary file id
:return: binary file size.

• extract ngrams(ids, seq reader, n):
Extracts the n-grams of a specific object, which may be bytes, opcodes or APIs
:param ids: id of files from which to extract n-grams
:param seq reader: function to be used to extract the sequence of the specified object (bytes,
opcode or API)
:param n: gram size
:return: The CountVectorizer object with a matrix in which the occurrences of n-grams and
found n-grams are counted.

• extract bytes sequence(id):
Extracts the sequence of bytes from a specified file
:param id: file id
:return: Sequence of file bytes.

• extract opcode sequence(id):
Extracts the sequence of opcode from a specified file
:param id: file id
:return: Sequence of file opcodes.

• count asm opcode(id):
Counts the occurrences of each assembly function within a specified asm file
:param id: file id
:return: array with the occurrences of each opcode.

• extract syscall(id):
Inserts in the list of all syscalls those found in a specified file
:param id: file id.

• save syscall():
Saves the syscalls entered up to that point in the global list within the syscall.txt file

• load syscall():
Load the syscalls into the syscall.txt file in the global list.

• check syscall(id):
Checks for the presence of syscalls within a specified asm file
:param id: file id
:return: Array with a 0 in the columns of syscalls not found and 1 in those found.

• extract syscall sequence(id):
Extracts the syscall sequence within an asm file
:param id: file id
:return: syscall sequence of the file.

• extract entropy(id): Calculates the entropy of a binary file
:param id: file id
:return: file entropy.

• extract apis(id):
Extracts APIs from a sample of the ST-WinMal dataset
:param id: file id.

• save apis():
Save the API in the global list within the apis.txt file.
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• load apis():
Load the API within the apis.txt file into the global list.

• check apis(id):
Checks for the presence of apis within a sample of the ST-WinMal dataset
:param id: file id
:return: Array with a 0 in the columns of API not found and 1 in those found.

• extract entropy section(id):
Extracts entropy from the .entropy files of the ST-WinMal dataset
:param id: file id
:return: Array with entropy for each section.

• extract bytes microsoft(id):
Extracts the byte sequence from a sample of the ST-WinMal dataset
:param id: file id
:return: Sequence of bytes.

Integrate features.py

• integrated features(features, dataset):
Integrates several features together
:param features: Deature to be integrated
:param dataset: Dataset used
:return: DataFrame with several features together.

ReadFile.py

class ReadFile: Read different kinds of content from a sample file.

• bytes reader(id):
Reads the bytes within a Microsoft dataset .bytes file
:param id: file id
:return: Byte sequence.

• asm(id):
Returns the entire .asm file in string format
:param id: file id
:return: .asm files in string format.

• asm lines(id):
It reads an .asm file from the Microsoft dataset and returns the contents in the form of a
list of strings, each containing a line from the asm file
:param id: file id
:return: List with lines in the file.

• apis(id):
Reads the api functions present in a sample of the ST-WinMal dataset
:param id: file id
:return: List of api functions found.

• entropy(id):
Returns a list of containing each element the name of the section and its entropy
:param id: file id
:return: Entropy per section.

• bytes microsoft(id):
Reads the bytes within a ST-WinMal dataset .bytes file
:param id: file id
:return: Byte sequence.
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main.py

It contains the main body of code that creates the tool for identifying and classifying malware.
The code contains an initial part in which the dataset is loaded, followed by feature extraction
and finally the tests to obtain the results.

97



Bibliography

[1] Statista - Number of internet and social media users worldwide as of January 2023, https:
//www.statista.com/statistics/617136/digital-population-worldwide/

[2] Cisco definition of malware, https://www.cisco.com/c/en/us/products/security/

advanced-malware-protection/what-is-malware.html

[3] A. Ray and A. Nath, “Introduction to Malware and Malware Analysis: A brief overview”,
International Journal of Advance Research in Computer Science and Management Studies,
vol. 4, October 2016, pp. 22–30

[4] What is malware? AVG, https://www.avg.com/en/signal/what-is-malware
[5] R. Sharp, “An introduction to malware”, Spring, 2017
[6] A. P. Namanya, A. Cullen, I. U. Awan, and J. P. Disso, “The world of malware: An overview”,

2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud),
Barcelona (Spain), August 6-8, 2018, pp. 420–427, DOI 10.1109/FiCloud.2018.00067

[7] N. Bhojani, “Malware analysis”, Ethical Hacking, Ahmedabad (India), October, 2014, pp. 1–
5, DOI 10.13140/2.1.4750.6889

[8] S. Sibi Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A Survey on malware analysis
and mitigation techniques”, Computer Science Review, vol. 32, May 2019, pp. 1–23, DOI
10.1016/j.cosrev.2019.01.002

[9] E. Gandotra, D. Bansal, and S. Sofat, “Malware Analysis and Classification: A Survey”,
Journal of Information Security, vol. 5, January 2014, pp. 56–64, DOI 10.4236/jis.2014.52006

[10] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated dynamic malware-
analysis techniques and tools”, ACM computing surveys (CSUR), vol. 44, February 2008,
pp. 1–42, DOI 10.1145/2089125.2089126

[11] J. Singh and J. Singh, “Challenges of Malware Analysis: Obfuscation Techniques”, Interna-
tional Journal of Information Security Science, vol. 7, September 2018, pp. 100–110

[12] Y. Gao, Z. Lu, and Y. Luo, “Survey on malware anti-analysis”, Fifth International Confer-
ence on Intelligent Control and Information Processing, Dalian (China), August 18-20, 2014,
pp. 270–275, DOI 10.1109/ICICIP.2014.7010353

[13] I. You and K. Yim, “Malware obfuscation techniques: A brief survey”, 2010 International
conference on broadband, wireless computing, communication and applications, Fukuoka
(Japan), November 04-06, 2010, pp. 297–300, DOI 10.1109/BWCCA.2010.85

[14] A. Sharma and S. K. Sahay, “Evolution and Detection of Polymorphic and Metamorphic
Malwares: A Survey”, International Journal of Computer Applications, vol. 90, March 2014,
pp. 7–11, DOI 10.5120/15544-4098

[15] R. Tahir, “A Study on Malware and Malware Detection Techniques”, International Journal
of Education and Management Engineering, vol. 8, March 2018, pp. 20–30, DOI 10.5815/i-
jeme.2018.02.03

[16] K. Alzarooni, “Malware variant detection”. PhD thesis, UCL (University College London),
2012

[17] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, “Survey on malware detection methods”, Pro-
ceedings of the 3rd Hackers’ Workshop on computer and internet security (IITKHACK’09),
Kanpur (India), March 17-19, 2009, pp. 74–79

[18] W. Wong and M. Stamp, “Hunting for Metamorphic Engines”, Journal in Computer Virology,
vol. 2, November 2006, pp. 211–229, DOI 10.1007/s11416-006-0028-7

[19] M. Sikorski and A. Honig, “Practical malware analysis: The hands-on guide to dissecting
malicious software”, No Starch Press, 2012

98

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-malware.html
https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/what-is-malware.html
https://www.avg.com/en/signal/what-is-malware
https://doi.org/10.1109/FiCloud.2018.00067
https://doi.org/10.13140/2.1.4750.6889
https://doi.org/10.1016/j.cosrev.2019.01.002
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1109/ICICIP.2014.7010353
https://doi.org/10.1109/BWCCA.2010.85
https://doi.org/10.5120/15544-4098
https://doi.org/10.5815/ijeme.2018.02.03
https://doi.org/10.5815/ijeme.2018.02.03
https://doi.org/10.1007/s11416-006-0028-7


Bibliography
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