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Summary

Conversational agents also known as chatbots are more than ever part of our
everyday life from some years. Depending on the application’s environment it is
possible to find those kinds of agents more or less involved to aid the user. Their
spreading has led to a continuous research to improve even more their utility and
to help the automation of more complex tasks. The major objective of this work
is to analyze the capabilities of the chatbots inside a different and less common
environment and to understand if there is some potential application for the future.
Specifically, during this thesis work a prototype of a chatbot, named Veronica,
has been created. Its purpose is to help the programmers, on a daily basis, to
improve their quality of life in tasks such as code development and keeping track
of reasoning documentation. The tool implemented consist of a conversational
agent integrated as an extension for Visual Studio Code. The core components
of Veronica are the following: the Visual Studio Code IDE in which the chatbot
resides, a small headless google chrome browser to perform Speech Recognition and
Speech Synthesis and a small google chrome extension to track the user navigation.
First, a literature review has been done to understand the existing proposals that
rely on conversational agents to support code development without much success.
Because of that scarce adoption of conversational agent on that environment, we
decided to think about useful tasks that could have been performed for our use
case. Then, a second wave of researches has been done concerning the general
users preferences when using conversational agents and the best type of chatbot
that could have fit for our needs. Follow the reasoning behind the design of the
prototype and the relative implementation. Both has been performed by following
the most significant insights from the previous step. Subsequently, the description
of the evaluation phase performed on the tool is presented. It has been conducted
on a group of university students with the final objective to evaluate the capabilities
and usefulness of the chatbot abilities and to listen to possible new implementations
to improve it even more in future. The thesis work is concluded with a discussion
on the results obtained from the evaluation phase.
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Chapter 1

Introduction

Conversational agents have been gaining prominence in the past years. The improve-
ments in Natural Language understanding and Speech Recognition have enabled
their use in several and different scenarios. Those technological progresses, made
especially in entertainment and educational environments allowed to provide the
user with an increasingly customized and interactive experience. This phenomenon
has probably to be addressed to the needs to offer a more qualitative and relevant
content to the users. The goal is to augment the user engagement and improve their
experience (in case of entertainment) and their commitment (in case of educational
topics). It was not common to find conversational agents around us during the
past decade.

In recent years, instead, with the commodification and the increase of computa-
tional power and the sharing of open source technologies and frameworks, chatbots
implementations have become increasingly common [1]. Now they are way more
involved into our life and a lot of people use them in a wide number of ways.

In fact, it is possible to see conversational agents used as simple clocks or
more complex chatbot that reminds appointments and helps the users to manage
their daily routine. Conversational agents such as Siri or Cortana are some of
the most used and well-known, but still there are a lot of different ways in which
a conversational agent can be used that are yet to be discovered, discussed or
improved.

The main limitation in relying on rules and pattern matching in chatbots is
they are domain dependent, which makes them inflexible as they rely on manually
written rules for specific domains [1].

By today, the amount of researches and data generated, related to the chatbots
and the conversational agents for different applicational topics is very wide. The
advances in AI, Machine Learning and Natural Language Processing tools previously
mentioned, are now combined with the availability of an improved computational
power. Thanks to that, the possibility to implement “advanced” chatbots which are
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not relying so heavily as before on rules and pattern matching techniques is greatly
increased. Despite that, the journey to be able to ensure that a single chatbot is
able to fulfill different tasks on many different domains without an heavy human
presence behind it is still long. Yet, the interest is still raising 1.1 and because of
that it is possible to find online a lot of essays or documentation related to different
domains or environments in which are discussed the possible implementation for
future use of conversational agents. Is important to notice that there is a strong
correlation between the chatbot evolution and the improvement of the technologies.

Figure 1.1: Search results by year for “chatbot” or “conversation agent” or
“conversational interface” as keywords from 2000 to 2020 made by Scopus.

Some research has explored the suitability of these agents for developing pro-
grams. However, despite the great number of papers related to that topic, the
documentation related to conversational agents aimed to help the programmer
is really poor. We consider that a conversational agent might help programmers
seamlessly and quickly document the problem-solving strategy associated with
their code while implementing it. Moreover, since their usefulness to support the
documentation of the code has not been explored yet. Our idea is to analyze the
internal mechanisms that are retrievable by observing the users in contact with the
prototype itself.

It is important to point out that this is an exploratory work and will follow
these guidelines:

• A deep dive in the topic after the initial analysis.

2



Introduction

• Evaluate it in terms of design and the conversational interface of the chatbot
within the environment in which is placed.

• Define the usability and usefulness of the chatbot with the functionalities
implemented to understand if it’s possible to improve it even more for future
applications and further studies.

1.1 Thesis goals
The final objective of this thesis work is to propose a prototype of a chatbot. The
main purpose will be focused on the improvement of the programmer’s proficiency
related to the documentation production, by aiding him on some small tasks and
by interacting with him directly during the programming session.

We want to identify, based on the literature, the features that a tool of this kind
should offer, design and implement it, and evaluate the usability of its first version.
The following main steps has been followed:

• Conduct a literature review to understand the existing proposals that rely on
conversational agents to support code development and documentation and
investigate whether these prior tools have already exploited concepts related
to the “documenting the reasoning” subject.

• Design and implementation of the tool following the most significant insights
from the previous step. The tool consist of a conversational agent integrated
into Visual Studio Code as an extension, devoted to a given domain and
programming language(s).

• Evaluation of the tool’s usability and assess to what extent it effectively
supports programmers documenting their reasoning and looking for past used
strategies

Talking briefly about the application, it is a chatbot, named Veronica, developed
as an extension for Visual Studio Code. Its purpose is to help and assist the users
that want to program, with different skill levels, with some built in functionalities.

The result is a usable prototype, working on computers, that eventually could
be published on the Visual Studio Code market place if defined stable.

Then, we want to define if it’s possible to make some progresses in the context
between conversational agents and the world of programmers. Specifically, if the
actual technologies allow us to proceed even further in that direction to evolve from
a small prototype to an actual application (even multi-platform) that is able to aid
the programmers in different coding languages and at different layers of knowledge.

Talking about the prototype itself, the main functionalities of the extension to
help the programmers that we are going to see are the following:
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• The possibility to take customized memo that are natively merged into the
code. The memos are usually underutilized by the programmers, the possibility
to write or dictate them faster and to find them in an easier way increase the
order of the code and the efficiency of the user.

• The tracking of the navigation done by the user online to allow him to
remember important pages. The possibility to have a link of an important
page related to a portion of code is incredibly important. Especially if the
programmer had trouble to resolve it the first time.

• The change of the interface to be as much intuitive as possible to be used. The
design itself has to be taken into account, since it should be understandable
at a first glance and allow the user to focus on his work and not on how to
make it works.

1.2 Thesis structure
The thesis is structured as it follows:

In the chapter 2 there is a description of the State of Art. Specifically, it contains
the story of the conversational agents, the different evolution and paths that
has been generated during their development and a brief description of the
different types that can be found by now. Moreover, there will be some data
regarding the growth of interest related to the topic and some important
definitions. There will also be some examples of famous conversational agents
that is possible to find around and that can be taken as example.

Inside the chapter 3 is possible to see the Design of the application and the
elements related to the visual compartment. Additionally, it will be explained
in general how the extensions was made on Visual Studio Code and how the
integration appears inside the environment. After that, there will be an high
level description regarding the application and how every piece is connected
to make Veronica work.

The chapter 4 will be focused on the implementation, inside it there will be the
technical explanations about how every piece of the engine work, and we will
dive deeper into the code and how each element is connected to each other.

The chapter number 5 contains all the information related to the usability testing
performed in the laboratory, such as the kind of users, the metrics used, the
setup of the environment and so on.
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During the chapter number 6 we are going to discuss about the results of the
usability testing, the attended and desired ones. The final thoughts of every
user gained after an exit interview will be taken into account to understand
their feeling about the prototype and the topic itself.

The last chapter is dedicated to the conclusion and future improvements that
could be applied to the application, together with some personal thoughts.

5



Chapter 2

Background and State of Art

In this chapter the story of the conversational agents will be discussed, from their
origin to the present days. Moreover, the essential concepts related to this topic
will be deepen to have a better understanding of how each kind of chatbot works.
Subsequently, the different type of chatbots will be described to understand their
functionalities and fields of application based on their capabilities.

2.1 Chatbot

2.1.1 History of chatbots
Chatbots, surprisingly, have been around since the mid-1960s. The English com-
puter scientist and pioneer Alan Turing, known as the father of computer science,
which was also a crypt analyst, mathematician and logician gave us the first ev-
idence of this kind of computer programs. In 1950, with his famous publication
“Computing Machinery and Intelligence (Turing 1995)” [2] he cemented the basis
around the computer intelligence. Specifically, he posed the question of whether
a computer program could talk to a group of people without realizing that their
interlocutor was artificial by proposing a criteria to determine if a computer pro-
gram was able to have thought or not [3]. This is know as the "Turing Test", which
highly depends on the capability of a machine to impersonate a human being in a
conversation with at least another human interlocutor. As long as the human that
is judging cannot distinguish, reliably on the basis of the conversational content
alone, between the program and a real human. This essentially would be the genesis
of chatbot technology [4].

The history of chatbots can be divided into several stages:

• Early beginnings (1960s-1980s): The first chatbot, ELIZA [5], was created
in the 1960s and used simple pattern matching to respond to user inputs. In
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the 1980s, chatbots such as PARRY [6] simulated conversations with people
suffering from schizophrenia.

• Rise of the Internet (1990s-2000s): With the rise of the Internet, chat-
bots became more widespread (i.e.:A.L.I.C.E.) and started to be used for
customer service and online shopping. In 1997, the first commercial chatbot,
SmarterChild [7], was launched.

• Advancements in AI (2010s-present): With advancements in machine
learning and AI, chatbots became more sophisticated and capable of under-
standing and processing natural language. Today, chatbots are used in a
variety of industries, including healthcare, finance, and education, to provide
quick and convenient assistance to users.

• The Future of Chatbots: Chatbots continue to evolve and new developments
are being made all the time. In the future, chatbots are expected to become
even more intelligent and capable of carrying out complex tasks, such as
booking appointments and providing personalized recommendations.

Early beginnings (1960s-1980s)

The Turing Test of Alan Turing inspired the German-American computer scientist
Joseph Weizenbaum, which was a professor at Massachusetts Institute of Technology
(MIT). In 1966, Weizenbaum created in the Artificial Intelligence (AI) laboratory
of the MIT a program called ELIZA 2.1 [5].

The program ELIZA was named after Eliza Doolittle, which was one of the
main characters from Pygmalion. ELIZA was built with the purpose to simulate
human conversations, to give to the other interlocutor an illusion to think they
were interacting with a real human. His algorithm, which would be used by all
the chatbot makers in the near future, examined the keywords received as user
input and then triggered it’s pre-programmed output. Then it would pair those
output with a list of possible scripted responses. ELIZA, however, did not possess
a framework to understand intents and contexts of a conversation like the modern
chatbots do. The scripted responses were designed to simulate a psychotherapist.

The script proved to be a significant impact on natural language processing and
unnatural intelligence, with copies and variants protruding up at academies around
the country.

For instance, after receiving a specific sentence ELIZA would perform the
following steps:

• Receive the input and save them in the memory for additional analysis.

• Search for specific keywords in the input sentence.

7
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Figure 2.1: Example of a conversation with ELIZA

• Return back the scripted response in case a keyword is matched.

• Give back a default fallback answer if there isn’t a match with the expected
input.

Although the simplicity of the algorithm, those steps were already enough to
make a human judge interlocutor think that they were talking with an intelligent
being. Even so, the AI in ELIZA was rudimentary at best yet.

It was until six years later, in 1972 when the natural language program PARRY,
constructed by the American psychiatrist Kenneth Mark Colby at Stanford Uni-
versity, became the first program to pass the Turing Test. PARRY was designed
to simulate the conversation of a paranoid individual and study the behavior and
language patterns of people with mental illness. The chatbot used a rule-based
system and a limited knowledge base to respond to user input in a somewhat
coherent manner. PARRY marked a significant step forward in the development of
artificial intelligence and natural language processing, and it remains an influential
work in the field today.
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Rise of the Internet (1990s-2000s)

The 1995 marks the development of the first chatterbot that worked with an XML
schema also know as artificial intelligence markup language (AIML) [8]. The
chatterbot, known under the name of A.L.I.C.E. (Artificial Linguistic Internet
Computer Entity) [9] was developed by the computer scientist Richard Wallace
which was inspired by the previously cited work of Weizenbaum [5]. The chatbot
was designed to simulate human conversation and can respond to a wide range of
topics and questions. The idea behind it was to mimic the chat with a real person
over the Internet. A.L.I.C.E. is a young-looking woman in human years and tells a
user her age, hobbies and other fascinating facts, as well as answering to the user’s
dialog 2.2.

Figure 2.2: Example of a conversation with A.L.I.C.E.

Thanks to its implementation, A.L.I.C.E. won the Loebner prize three times
because it was considered the most human-like conversational agent of its time.
However, it never passed the Turing test of being able to think such as humans.
It’s important to point out that A.L.I.C.E. was a open-source chatbot and because
of that the program evolved during the years also thank to the wide community
behind the project. In 1998, the program was edited in Java, and in 2001 Wallace
printed an AIML specification of it. From there, other developers drafted free and
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open sources of ALICE in different programming languages and a variety of foreign
languages. [10]

The introduction of artificial intelligence in the field of conversational agents,
attracted the attention of the big companies of the IT world, which have started to
release commercial products that use this technology. However, right before the
big companies, a good example of a chatbot powered by artificial intelligence was
given by Cleverbot in 2008. Cleverbot is the evolution of the Jabbewacky chatbot.
It uses machine learning algorithms and a large database of previous conversations
to generate responses to user inputs 2.3. This means that the chatbot can learn
from its interactions with users and improve its responses over time. Cleverbot has
been praised for its ability to simulate human conversation, and many users have
reported having long and engaging conversations with the chatbot. The chatbot
itself has also been the subject of academic research, and has been used to study
the nature of human-AI interaction and the development of more advanced AI
systems. Today, Cleverbot continues to be used by a large community of users, and
has been integrated into a variety of applications and platforms, including mobile
apps and virtual assistants. Despite its age, Cleverbot is still considered one of
the most advanced and innovative AI chatbots available, and continues to be used
as a platform for research and development in the field of artificial intelligence.
Moreover, Cleverbot has reached a score of 59.3% to the Turing Test, compared to
the rating of 63.3% human achieved by human participants. A score of 50.05% or
higher is often considered to be a passing grade [11].

Advancements in AI (2010s-present)

In this range falls almost all the most famous and known chatbot. In 2010 Apple
developed the well-known Siri for iOS. Despite its development has been completed
in 2010, it was actually first introduced as an app in 2011 for the iPhone 4S. Siri is a
personal assistant and navigator that uses a natural language user interface. It uses
natural language processing (NLP) and machine learning algorithms to understand
and respond to users’ voice commands and questions and to continuously learn from
each discussion done. Moreover, studies towards the deep learning has been made
to upgrade even further the voice of the assistant to make her voices in different
languages to sound more natural, smoother, and allow Siri’s personality to shine
through [12]. It is possible to say that Siri opened the way for the development of
all the subsequent personal assistants (PAs) chatbot made from other companies.

Another one worth to be cited is ChatGPT, a large language model trained by
OpenAI and founded in the early 2021. The model is trained on a massive amount
of data that enable it to generate human-like text based on the input request.

The ability to range with ease from such a wide number of topics, together with
the human-like text based that the bot is able to output had also a massive impact
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Figure 2.3: Example of a conversation with Cleverbot

on the general way in which the normal user sees the chatbot.
Some of the world’s biggest academic journal publishers have banned their

authors from using the advanced chatbot. Since the bot uses information taken
from the internet 2.4, there is a general consensus on the idea that that inaccurate
or plagiarized work could enter the pages of academic literature [13]. Several times
already the chatbot has been entitled as co-author on academic studies. Another
recent study [14], has shown that ChatGPT could be used to write a finance paper
that would be accepted for an academic journal. Although the bot performed
better in some areas than in others, accordingly to the study.

The capabilities of the bot highlighted some clear ethical implications [13].
In short there is a division between two different line of thought. There is who
thinks that the problem of plagiarism and faking news might be worsened by the
application of these kind of chatbots. On the other hand, there is who thinks
that with a human input each research can be improved even more and output
acceptable researches.

As we were able to see, the chatbots have come a long way from their first
developed to our days.
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Figure 2.4: Example of a discussion with ChatGPT

2.1.2 Essential concepts
Here are explained some important concepts related to the chatbot technology to
understand better how they work. Specifically, the following are going to be seen:

• Pattern Matching.

• Artificial Intelligence Markup Language.

• Natural Language Processing

• Natural Language Understanding

• Intent

• Entity

• Context

12



Background and State of Art

Pattern Matching

The Pattern Matching is a method that allows to identify some patterns in the
text inputs and to match them with a list of predefined outputs (responses) which
are consistent with the user input. Usually, the scripted or Rule-based chatbots
fall under this category. Most of the early chatbots used this method, for instance
ELIZA and A.L.I.C.E. were the first ones developed using this pattern. Clearly,
the ease of development with this method is counterbalanced by the predictability
and repetition of the responses, which leads to a lack of credibility. Moreover, the
previous discussions are not stored and there is an high chance to have looping
conversations [15].

Artificial Intelligence Markup Language

The Artificial Intelligence Markup Language (AIML) it’s based on the concepts of
Pattern Recognition or Pattern Matching technique. It is one of the main technique
that uses markup language, which was created by Dr. Richard S. Wallace. Those
kind of chatbots start from a predefined knowledge base which is composed by
documents or files that define a particular category. A category is part of the
chatbot’s knowledge base divided into small sections [16]. These categories contain
two tags: patterns and templates 2.5.

Figure 2.5: Example of a AIML code

The patterns are rules that helps the chatbot to understand what its response
should be, while the templates represents how the output should look like. The way
these rules are built varies depending on the size and complexity of the knowledge
base. Once the chatbot receives a matching input with the pattern, select one
of the messages stored as a template and sends out the response. To perform a
better Pattern matching, the use of Regular Expressions (regex) is often involved
to identify a specific input given by the user. This allows chatbots to handle a wide
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range of user inputs and respond in a more natural and conversational manner.
For example, if the chatbot receives as an input “Hello”, by using pattern matching
it would recognize the message as a greeting and answer back with “Hi! How are
you?” 2.5. Based on that, if the questions made by the user don’t fall in line with
the manual programming of the chatbot, they won’t be able to find a predefined
pattern to match for a template and will respond with fallback phrases. AIML
does not require a deep knowledge or skill in a specific programming language.
Because of that, it is pretty common to find chatbots that uses this technique,
since it facilitates a lot their development.

Natural Language Processing

The Natural Language Processing (NLP) is a sub-field of Artificial Intelligence and
Computer Science that studies the way in which the machines can manipulate the
natural language, both written and spoken. The knowledge about the understanding
and use of human language is gathered to develop algorithms that make computers
understand and manipulate natural expressions to perform the desired tasks. NLP’s
aim is to extract the meaning from a text, primarily the grammars that specify
relationship between parts of a phrase such as verbs, nouns and adjectives. It is also
possible to extend the grammar to address natural-language semantics, for example
with additional constraints or rules (i.e.: “drink” applies only to drinkable nouns).
Unfortunately, the vastly large size and possibilities lead to an unmanageable
numerous of rules, often interacting unpredictably, with more frequent ambiguous
parses. In general, any kind of NLP algorithm converts words or phrases (which
are usually called “tokens”) into vectors of real numbers so that they can be used
to train a deep learning algorithm to recognize text patterns [17]. Most NLP
techniques are based on machine learning.

Natural Language Understanding

The Natural Language Understanding (NLU) is a subset of NLP that is focused on
the task to understand the meaning of the human language inputs. It’s the core of
any NLP task. By performing NLU to a sample a data, we basically analyze the
human language, which may be unstructured, as text or speech and extract some
meaningful insights, ranging from the intention of the speaker to the named entities
mentioned till the sentiment expressed by the user [18]. Then, the output should
be a reply appropriate accordingly to the original user intention. All the various
algorithms used by NLU, such as semantic analysis, syntactic analysis, and word
sense disambiguation, are meant to determine the meaning of human language
inputs. These algorithms can then classify the inputs into various categories, such
as questions, statements, or commands, and extract relevant information, such
as named entities and sentiment. NLU is a crucial component in every topic
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concerning any conversational AI systems such as chatbots or voice assistants. Not
only it allows these systems to understand the meaning behind the users’ requests,
but also enables them to respond in a way that is relevant and useful. It’s also
important to point out that NLU is also used in different environments in which
can be useful to improve the accuracy of various devices used for text classification,
machine translation sentiment analysis.

Intent

Two fundamental concepts of NLU are intent and entity recognition. The Intent
recognition is defined by the process of identification thanks to the user’s intentions
based on their inputs to determine their objective. It is the first and most important
part of NLU because it establishes the meaning of the text. An Intent represents
the correlation between what a user says in a sentence and which action the chatbot
should take accordingly. An Action correspond to the sequence of steps that the
chatbot will take when a specific intent is triggered by a user input. Each sentence
of a user may have parameters for specifying detailed information about the steps
to be performed. During the Intent detection, single or multiple intent are labels
are predicted for each sentence given by the user. Subsequently, from the user
intent is possible to extract domain-specific entities.

Entity

The Entity recognition is the other fundamental concept of NLU that focuses on
identifying the entities in a message, then extracting the most important information
about those same entities. Exists two types of entities divided in “named” and
“numeric”. The named ones are grouped as categories (i.e.: Food, locations, cars,
etc.). Differently, the numeric entities are recognized as numbers, percentages
or currencies. When the Entity recognition is performed, the final outcome is
to extract some parameters in form of values from the inputs obtained from the
Natural language 2.6.

From what we can see in the figure 2.6, the user intent is to inform the interlocutor
about a future fact. The entity values are the one highlighted 2.6. Therefore,
the user is trying to tell us that the person “Tim Cook”, on the date of “15th
September” the organization “Apple” wants to acquire the organization “ABC
Group” for a money amount of “One billion dollars”. There can be entities both
system-defined or developer-defined based on the topic in which we want to specialize
our conversational agent.

Domain entity extraction usually referred to as a slot-filling problem, is formu-
lated as a sequential tagging problem where parts of a sentence are extracted and
tagged with domain entities [3].
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Figure 2.6: Example of Entity recognition of a sentence

Context

In the end we have the contexts, which are strings that store the context of the
object the user is referring to or talking about. For example, the user could refer to
a previously cited element in the following sentence. He may input a sentence such
as “I would like to order a pizza”. Here the context to be saved is the pizza, so that
when another sentence such as “I would like to place mushrooms on it” is given
as an input, the intent “place mushrooms on it” can be invoked on the context
“pizza”.

2.1.3 Types of chatbot
When talking about chatbots, a lot of different criteria for categorizing them exists:
the way in which they can communicate, their capabilities, the domain or application
in which they operates and finally the way in which they are implemented [19]. We
are going to focus our attention on the way in which they are implemented and
how they works. Before that a brief insight on the other categories will be given.
The first subdivision of conversational agents is based on the mode in which they
communicate with the human user 2.7. The communication methods in which a
conversation can happens are the following:

• Text-based: The text-based CA interacts with the user only by text, usually
from a chat, and it doesn’t utilize any other communication method.

• Voice-based: The voice-based virtual agents are CAs that interact with the
users by voice and don’t utilize any other kind of communication method.

• Graphic-based embodied: Graphic-based embodied agents are all the virtual
agents that have a virtual body in addition to some voice understanding and
speech generation capabilities. The addition of the virtual body enables them
to improve the communication with gestures and visual kind of emotions.
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Figure 2.7: Chatbot subdivision based on mode of communication

• Physical-based embodied: Physical-based embodied agents are all the conver-
sational agents that have a physical and tangible body. A good example is
given by social robots.

Figure 2.8: Chatbot subdivision according to action capabilities

Another way to distinct the chatbots is given by their capabilities to perform some
actions 2.8. Some of them merely communicate with the users and do not perform
any action, usually those kind of chatbot are there to answer questions. The virtual
or personal assistants, instead, are capable to perform a variety of actions, ranging
from turning on something to booking appointments.

Another way in which CAs are often classified according to the applicational
purpose 2.9:

• Open domain or general purpose: Those CAs are mainly used to answer

17



Background and State of Art

questions ranging in many different domain, usually those are communication-
only agents.

• Goal-oriented: Specialized chatbots that assist the users in completing complex
tasks that requires multiple steps and decisions in a specific topic. These
agents may be used both in the business domain or as personal assistants.

• Social-supporting: Agents that can support the users in various topic in
which they need to improve, for example patients that have a specific medical
condition or students that are in a learning process.

• Social-network: Those chatbots are also known as influence agents, they are
distinct by their intelligence around social media to advertise a product or to
influence opinions.

Figure 2.9: Chatbot subdivision based on applicational purpose

Finally, chatbots can be distinguished by the logic of their backend that defines
their intelligence level and capabilities.

Rule-based chatbots

The rule-based chatbots follow a set of previously defined rules that enable them
to respond to each user’s input. They can only follow the rules programmed into
it and respond accordingly, leading to some severe and limited conversational
capabilities. Those bots, were able to identify some keywords from a given input
sentence and be able to match them against a collection of previously defined rules
in order to respond with an adequate sentence 2.10. Moreover, the bots of this
type abide by the rule-based orientation, in which an algorithm processes every
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Figure 2.10: Example of the response selection of a Rule-based chatbot

user’s utterance and pass them by a defined set of rules. Essentially, after that
the scan is completed, those conversational systems proceed to setup a reply with
the matching or most similar wording pattern, taken from a linked database or
hard coded [20]. In this category falls most of the early developed chatbots such
as: ELIZA [5] and PARRY [6]. This kind of chatbot typing allow us to understand
that they may not necessarily have to understand human speech, but can also rely
on pattern recognition, abiding by the rule-based approach to output acceptable
responses. Chatbots have now began understanding human speech as it is spoken,
although the technology itself had not turned mainstream. The benefit of such
rules is that they are precise, and allow developers to create and remove rules to
handle new situations and address bugs with certainty [21].

Retrieval-based chatbots

The mechanism behind the Retrieval-based chatbots is similar, yet different from
the rule-based ones. Retrieval-based chatbots work on the principle of graphs or
directed flows. The chatbot is trained to provide the best possible response from a
database of predefined responses which are based on existing information [22]. The
different techniques used by this kind of chatbots to identify the most appropriate
response are: keywords matching, machine learning and deep learning. Regardless
of the technique, only previously defined responses can be provided by these
chatbots and new output can’t be generated. Retrieval-based chatbots can have
more flexibility in terms of responses compared to the rule-based chatbots, since
they can select their responses from a larger pool of entries. However, they are still
limited by the previously defined responses in the database.

Generative chatbots

Chatbots that use generative methods, differs from the previously cited Retrieval-
based ones because they are not limited to predefined responses. In fact, they can
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generate new responses that are given as an output from a large amounts of training
data. Generative chatbots use a combination of supervised learning, unsupervised
learning and reinforcement learning for multi-step training [22]. Thanks to that,
Generative chatbots can also understand the context of a conversation and generate
responses that are more appropriate for the given context. The reason to use a
combination of the aforementioned techniques is to improve the stability of a human
conversation without repeating the same sentences. Alone, the supervised learning
mapping of a user inputs to a generated response tends to prioritize high-probability
responses such as “I know”.

Intent-based chatbots

These types of chatbots do not relies upon a match between patterns and templates
as the previous ones. As the name suggest, they are heavily oriented on the intent
recognition and can handle better any kind of text. The result is that any sentence
can be used as input by the user and the bot will understand the commands behind
it. The way in which the sentence is understood is divided in two part, similar to
how it was described previously:

• Intent Recognition: Identification of the intention of the user and the action
that has to be performed by the bot.

• Entity Recognition: A drill down on the details of the Intent.

For instance, if the user says to the chatbot that he wants to “Watch an Horror”,
the request has to be divided in the aforementioned steps; First the agent have to
understand that the user wants to watch a film and then it must catch that he
wants to watch an Horror ones. Thanks to the Natural Language Processing (NLP)
algorithms, as we have seen before, the Intents can be recognized [17]. A typical
implementation is given by a model that consists of an encoder and a decoder
that are implemented using recurrent neural networks. The encoder takes a set of
tokens as an input and gives as an output a vector. The vector is then given as
input into the decoder which generates a set of tokens. Once the decoder generates
a stop symbol the process terminate.

The behavior used by those kind of chatbots is often used in language translation.
There are a lot of open source engines available online. One NLP/NLU engine

that is also available for free is Dialogflow, it is owned by Google and has been
used as a core component inside this project.

Conversational Agents

The Conversational Agents can be considered as an upgrade from the Intent-based
agents thanks to the addition of multi-turn dialogue. This is accomplished by
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monitoring of the progresses during a conversation and by recognizing when the
user wants to switch to another topic. A good example of how to put this idea
into practice is given by the RavenClaw framework [23], which makes use of a
dialog stack and an expectation agenda. The conversation stack maintains track
of everything the chatbot wishes to discuss. The expectation agenda is a data
structure that is used by the chatbot to keep track of what input it should receive
before hearing it. For example, the expectation agenda is filled with the response
“White” when the chatbot asks “What color are the clouds?”. However, if the user
responds with “I want to buy food” the bot needs to change the context of the
conversation. As a result, the dialog stack is pushed with “Order groceries” and the
expectation agenda is updated with potential responses and queries about placing
an order for food. A study demonstrates that also reinforcement learning combined
with machine learning is another implementation option that is feasible [24]. Briefly,
the concept is that the chatbot has states made up of what it knows (questions it
has responded to), what it just said, and what the user just said. The objective of
the agent is to use a rule given to him that gives the best outcome for being in a
specific state. In this case, the problem is related to the rule’s learning, because
it requires a lot of training and is often hard to know exactly in which state the
agent is.
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Chapter 3

Design

This chapter is devoted to outline the architectural work that has been done prior
to the chatbot’s actual implementation. A first high-level perspective is given,
demonstrating how components are linked together to function and communicate,
before diving into the specifics of each individual component, including their
description, function, and justification for selection.

3.1 Design choices
The design and development of a chatbot involve a variety of techniques [25].

Figure 3.1: Example of a general chatbot architecture
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Understanding what the chatbot should be able to perform and, in what category
falls into, was important to help us pick the right choices and tools to build it [26].
Usually, the main requirements to design a chatbot involves [27]:

• A good strategy for answer generation.

• A set of predefined answers, usually neutral, to utilize when an user’s utterance
is not caught by any conversational path.

• The selection of the right typology of chatbot.

• The focus on the topic that this specific bot should cover.

• Who controls the direction of the interaction, the user or the conversational
agent?

• What freedoms do users have through the interface and what must be prevented
from being done.

• How to handle synonymous expressions.

The first step while designing any prototype is to divide it into modules. Each
module should have is own task to be performed. In 3.1, a general chatbot
architecture is introduced.

3.1.1 Interest around Conversational Agents
To decide the design of the prototype a literature review has been done to find
the best fitting options for our use case. First, a study to understand the interest
around conversational agents has been conducted. Some studies [28] highlighted the
increase of the interest of the conversational agents in many domains. This interest
grown was highly correlated with the technology improvement that overcame the
previous limitations and difficulties. The use of chatbots seems to be highly focused
on specific environments [28]3.1.
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Domain Chatbot Role Reference

Education

• An intelligent tutor for a university level course.
• Providing education system information and services

on behalf of the academic staff.
• Improving the security and automation of a lab by the

voice-based agent

Prasad et al. [29]

Finance

• Providing financial-product sales.
• Online customer support in banking industry.
• Answering a question about customers account, bill

payment, credit card payments, and schedule meetings.

Khan et al. [30]

Healthcare

• Providing guidance for consumers or their carers when
they have medical problems.

• Providing diabetics with diets and information regard-
ing foods to be avoided.

• Providing information for preventing COVID-19 pan-
demic.

Martin et al.
[31]

Tourism

• Providing information or services through conversation-
like interactions for tourism and travel.

• Consumers use travel chatbots to book a trip, plan a va-
cation, discover new experiences, and make reservations
at hotels.

Alotaibi et al.
[32]

E-commerce

• Offering features to brands, such as sending adver-
tisement messages, asking for customer feedback, and
collecting customers’ preferences.

• Providing an online experience and customer service
through social media sites.

Zarouali et al.
[33]

Table 3.1: The main domains in which chatbots are used and their main roles.
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Because of that, the information about conversational agents that support the
programmer were really scarce. That led us to find different sources to make our
architectural decisions, such as inter-domain best practices and users preferences.

3.1.2 Conversational Agent type and logic
Then, we moved on to see the best chatbot type to implement the prototype. The
choice was to lend toward the Intent-based chatbot, to handle extended discus-
sions and to allow for mimicking context switching and unstructured conversation
dialogues of a human-to-human dialogue. Moreover, unlike other chatbot types,
with this one is possible to utilize the power of AI in order to respond. We took
advantage of the fact that the visual structure adopted is similar to the common
chat-like interfaces of which almost every user is used to.
Subsequently, we decided if the chatbot should have been able to support a 1-to-1
scenario or a collaborative one with many users involved [34] [35].
Each conversational agent can be used to support a 1-to-1 scenario in which the
parties involved in the discussion are just the user and the agent. The collaborative
scenario is way different, cause it requires from the agent to be able to carry on a
conversation in which many users can be involved. The ease of implementation
of the first one, compared to the latter, was a key factor that influenced our
decision to pick the 1-to-1 scenario. Moreover, we assumed that both parties would
alternate during the conversation, in that way there won’t be mistakes related to
comprehension very often.
Another important aspect to consider was related to the ability of the bot to
process user utterances only when the agent is in the input phase or constantly
monitor user interaction and perform interventions when necessary. To support
the programmer’s reasoning we opted for the constant monitoring of the user
interaction.

3.1.3 User preferences
During this phase the focus was mainly on the communication channel that had to
be adopted by the agent. Conversational Agents can be divided in three categories:

• Text-based: the conversational agent is only able to communicate by text,
usually from a chat.

• Voice-based: the conversational agent is only able to communicate by voice.

• Multi-Channel: the conversational agent is able to communicate both by text
and voice, allowing the user to use his favorite channel.
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By gathering some studies [34] [35] [36] we discovered that the results obtained
after a user testing were similar despite the different kind of conversational agent
used and the different domains. The most relevant aspects that we discovered were:

• Novice users highly prefer to use the voice over text in general.

• Expert users prefer to stick to the text and use the voice to improve what
they already can do.

• A voice-only conversational agent seems to be unfeasible and more frustrating.
For example, both expert and novice users relied on text to overcome harder
problems or when the voice recognition was not working well.

• The hybrid setup seems to be the most appreciated even when using voice,
a visual text feedback after or during an action decrease dramatically the
cognitive load and difficulty of utilization.

• It is wise to explain to the users how to talk or interact with the application
when they use it for the very first time, an on boarding design that influence
first-time interaction with users is a critical factor that affects user experience.

• It’s important to see if the number of channels of communication has an
influence on the user. Cognitive theory says that the human mind can process
different information concurrently form different channels, such as visually
and verbally.

• A step-by-step interaction could be good, where the chatbot takes the role of
the educator or another one, leading to the final objective gradually.

• The use of a conversational agent maintains the users engaged in conversation
for prolonged time.

• Every agent that adopts a natural language system can free the user eyes from
the phone or the computer, common examples are given by those agents that
integrates elements for navigation and exploration options.

• Dialogue is considered a medium through which nearly all learners are familiar.
Also, familiarity with chatting media seems to be a feasible tool since everyone
is familiar with that kind of communication.

Moreover, Nielsen’s heuristic could be applied also to conversational agent interface,
a lot of usability problems and interaction design failures can be discovered thanks
to them.
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Following the results of those studies we decided to opt for a multi-channel
conversational agent. In this way it is able to interact both textually from
the chat and verbally with the user to allow him to choose for his favorite
communication channel.

Moreover, the chat is used to show also the verbal interaction, in this way it
is possible to give a feedback and to track the history of the conversation.
Another important aspect of the chat design is that almost all the users are
used to the chatting application, in this way we give them a sense of familiarity
with the tool.

A step-by-step interaction has been implemented, our intention was to help the
user to unstuck in case of wrong inputs and to make the bot able to suggest
what he expected in specific scenarios.

An interactive tutorial has not been implemented in this phase, however it is
possible to ask to the conversational agent what he is able to do thanks to
some specific commands.

3.1.4 Conversational Agent and programming
As we previously said, this domain is still a niche in terms of conversational agent
application. Some studies has been found in the later phases of our research.
Specifically, a conversational agent used to help the programmers to interact with
GitHub [37] and another one used to help during the programming phase with an
embodied human-like representation of the chatbot [38]. However, despite being
studies aligned with our domain, the final goal was slightly different. The most
relevant info gathered about that topic are the following:

• Programming by voice takes a huge training time, usually 1 to 2 months,
during this time it can be frustrating. After the initial learning curve, users
often create new custom prompts for commonly used commands following
their needs [39].

• It is useful to rest hands and have a good alternative to the normal text
programming. You are not forced to sit close to the table. You think more
about what to say, improving the code overall [39].

• On the other hand, you can’t listen music or be in a crowd place, silence is
required.

• The use of the English language is often tricky, because some words are part of
the code, so it’s impossible to use them to dictate something and it’s required
to find shortcuts or alternatives to that.
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• A constrained natural language is good to reduce the ambiguity of the normal
language and improve the understanding of the programming system. However
it increases the cognitive load of the user that must think about precise
commands [34].

• A continuous conversation helps on the debugging part, allowing to have a more
solid structure of the code even before the termination of the program [36].

• The conversational agent prevents the user from doing logical errors by notifi-
cation.

Because of that, we decided to pick functionalities to help the programmers that
wouldn’t collide with the code. In this way the training time related to the coding
is nullified and at the same time we are able to receive a fast feedback from the
usability testing done in the later phase of the thesis. Moreover, the chatbot is
able to listen continuously to the users to support their reasoning.

3.2 Design Goals
Given the previous analysis, we decided to define three goals that Veronica should
be able to perform, relieving the programmers to actively thinking about those
tasks. Here are presented the main goals that we wanted to achieve with the
Veronica’s prototype:

• Support in real time user’s documentation management directly from
Visual Studio Code: The goal of Veronica is to inspire the programmers
to record their development process while writing code as fluidly as possible.
Because of that we have chosen to keep a graphical interface visible next to
the code 3.6. In that way, the user can activate Veronica by clicking on a
button to the right of the Visual Studio Code status Bar. Once Veronica is
activated, the conversation appears on the right sidebar. A recording icon
is also added next to the label “Veronica listening”, meaning that starting
from that very moment, Veronica will continuously listen to the microphone
and type everything into the chat. In addition, the text color changes to red
3.8. In a similar way, the user can click the same button to stop the listening.
Moreover, there are three ways to make a memo, which will be described later
on in this chapter. In the same way it is possible to delete a memo in some
different ways 3.9. The multiple ways in which is possible to manage the
documentation, together with the visual hints given by the interface, makes
Veronica very important to lighten up and stimulate the user’s to generate
more data on their reasoning.
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• Automatic information retrieval from the web browser and subse-
quent integration into the code: In order to obtain documentation and
solutions to the problems that can be encountered during the development
process, programmers frequently switch between the IDE and the browser. As
a result, each time the programmer opens the browser and returns to Visual
Studio Code, Veronica automatically collects the URL of the most recent
websites visited and prompts the developers to link those URL to specific
sections of the code. The focal point that serves this purpose is that the
proposal to save the URL is given by Veronica. In that way the user can focus
totally on his work, while this task is relieved by the chatbot itself that takes
the initiative to advise the user. Thanks to this functionality that we wanted
to achieve, the programmer is prevented from forgetting which documentation
served as the source of their solution. In this way, also if another developer
would access the code, the reasons behind the implementation choices would
be clear. As a result, a memo is attached to a particular line of code or block
of code, and it contains self-explanatory annotations and, eventually, links to
the consulted documentation 3.13.

• Visualize and navigate across the memos created in all the files: To
enable the developers to navigate through the memos they created, we decided
to add a panel listing all the memos in the file currently opened in the editor,
as shown in 3.14. In this manner, the developer has a consolidated view of the
self-explanatory comments. Naturally, these memos do not aim at replacing
the comments on the code file. While the comments in the code commonly
follow some conventions and intend to provide technical explanations of how
the code works, the memos account for explanations, in the developers’ words,
regarding why they implemented a given function in a certain way and which
documentation inspired their decision.

3.3 General Architecture
Starting from the analysis conducted in the previous sections we identified all the
design choices to be used in the tool to support the programmers’ reasoning. The
proposed solution is the chatbot Veronica, developed specifically for this thesis
work. Citing the title of the thesis, Veronica is a multi-channel conversational agent
developed to support the programmers and their reasoning. Multi-channel, because
just like the property itself, the chatbot is able to communicate by the means of
different channels through text or voice. The second part, conversational agent,
denotes the nature of the application. This aspect is covered in part by the chatbot
builder Dialogflow for routing user requests to correct responses thus allowing to
perform the right conversational path. The bot architecture is the following 3.2:
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• The core is given by the extension on Visual Studio Code, which contains all
the code and the bigger part of the logic that the chatbot follows, together
with the graphical settings.

• A middleware, in this case also known as Chatbot Builder that can handle
both conversational logic and the multi-channel aspect.

• A Google Chrome extension that runs in background and is used to enable
one of the functionalities of the chatbot.

• A local headless server that is functional to connect all the components and
to enable the use of the Web API to perform the Speech Recognition.

Figure 3.2: The high-level architecture of Veronica

Depending on how the user decides to give any input, the process followed by
the tool varies a little. Just to give a brief description of the figure 3.2 and what
each arrow means.

When a user writes a sentence in the chat, the process to generate a response is
started from the Visual Studio Code extension. Specifically, the input is sent
as a query to Dialogflow using its APIs. Then, inside Dialogflow a research
is done to understand the intent of the user and to perform the associated
action, if any, otherwise a default fallback intent is triggered. Once a response
is selected, it is sent back and stored into the extension. Finally, the answer is
reproduced vocally by the bot thanks to the Speech Synthesis library given
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by the Web Speech API and concurrently printed in the chat inside the IDE
to show a visual feedback.

If a vocal input is given from the user, the command is intercepted by the local
headless server that starts the process to produce an output. Specifically,
the server is listening continuously to the user and is able to translate every
utterance into a “text” format thanks to the Speech Recognition library given
by the Web Speech API. Then, the text is sent to the Visual Studio Code
extension through a socket.io connection that has been established during the
start of the components. Once the utterance is received inside the extension,
the result is sent to Dialogflow like in the previous case through the APIs.
Subsequently, the intent of the user is matched and the related response is
sent back to the extension. Finally, the output from Veronica is reproduced
both vocally and textually as before.

If the user that is using Veronica goes online using Google Chrome, his navigation
is tracked by the extension, which has been created specifically for that browser.
Each time a new URL is reached, the link is sent through socket.io to the
local headless server that is continuously listening for new values. Once a new
URL is received, the server takes it and then forwards it to the Visual Studio
Code extension. When the user gets back to the extension, by opening it, it is
notified by Veronica that subsequently asks him if he wants to save the last
URL to any memo.

Talking about the functionalities included in Veronica, we opted for the ones
described in the table 3.2. Those functionalities has been decided taking into
account the difficulty of the implementation and the actual usefulness that we
wanted to test in the last phase of the thesis, during the user evaluation.

Functionality Description

Memo creation It allows to create a new memo inside
the interface on the actual file.

Memo deletion Delete a previously created memo
from the file.

URL tracking
Track the user navigation and asks
if he wants to save the URL inside a
memo.

Memo navigation
Move directly to one of the existing
memo, by selecting it on a specific
panel in which are all tracked.

Table 3.2: Proposed functionalities in the chatbot Veronica.
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3.4 Graphical Interface
An important aspect that has gone through many phases is the graphical interface of
Veronica. At the beginning, a draft of the interface has been drawn on Balsamiq [40].
In the draft were shown all the functionalities thought for the prototype together
with a graphical example 3.3 3.5. However, most of the designed drafts had to
be changed during the actual implementation. The environment of Visual Studio
Code has a lot of constraints in terms of item creation and graphic freedom, so
the design of our drafts changed accordingly to those constraints. In general, the
developer has to adapt to what already exists or ask for a new implementation
in the community page [41]. If the new request in the community post receives a
lot of feedback from other users, the idea is taken into account from the Visual
Studio Code developers to be implemented inside the environment. Given the
specific functionalities that we wanted to implement and the time span of this
thesis work, we couldn’t afford to wait for a new implementation after one of our
request. Hence, we decided to change the outcome of our initial draft and use what
was already present. The first decision was related to the chat position inside the
tool 3.4. The default icons and layouts weren’t fitting enough to our idea, so we
decided to implement a Webview to customize the chat interface. The available
spots where the following in figure 3.4:

1. Primary sidebar This is the default place where every new webview is placed.
The most common and used sidebar, however it is usually used to display tree
structures such as directories or Github Branches. Usually is closed or kept
small by the users, so we decided to not pick this place.

2. Panel The common place where the terminal and the debug console are placed.
Usually the panel section is used for those addons that have a supportive
feature. Also in this case the decided to not use this part of the IDE, mainly
because of its graphical structure.

3. Secondary sidebar This part of the IDE is usually underutilized unless the
user moves something there manually. The dimension is closer to what we
imagined for a chat-like interface, moreover it is possible to close it whenever
we want. In the end we opted for this place for our interface.

It is also important to point out that, in any case, the chat can be manually
moved by the user where he wants to. However, the graphic is designed specifically
for the secondary sidebar and the outcome in case of a movement could be different
from the attended result. The final result is given by the figure 3.6, here we decided
to opt for a combination of colors that recall the main Visual Studio Code palette
together with a mobile chat-like design.
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Figure 3.3: Initial draft of the interface when starting Veronica

Figure 3.4: Positions in which the chat can be placed

The second important decision to take was concerning the display of the bot
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Figure 3.5: Draft of the memo creation by chatting with Veronica

Figure 3.6: GUI after the extension is started

state. As stated before, Veronica can be in a state of active and continuous listening.
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However, it is also possible to disable the listening. Differently from our starting
draft, where a floating button where designed, we had to opt for another solution.
We placed a small button in the bottom bar, together with a text describing the
actual state of Veronica. The result can be seen in the figures 3.7 3.8.

Figure 3.7: Veronica’s status button that notifies that the listening is disabled

Figure 3.8: Veronica’s status button that notifies that the listening is enabled

3.5 Veronica’s functionalities
In this section we will go through all the functionalities implemented, together
with some images to show how they are designed inside Visual Studio Code. The
functionalities available in the tool are the following:

• The possibility to create a memo directly from the interface or using the
chatbot, both via text and voice (Design goal number 1).

• Deletion of the memos created with the tool, also in this case is possible to
delete them manually from the graphical user interface or thanks to the help
of the chatbot (Design goal number 1).

• Tracking of the user navigation to enable the chatbot to be aware of when the
user goes online to search for specific information while he is programming
(Design goal number 2).

• A feature that enables the navigation through the memo created in the code,
it is possible to click on each entry and the correlated file will be opened and
focused on the selected memo (Design goal number 3).

The objective of the the tool is to improve the quality of life of the programmers
and their reasoning concerning the creation of documentation with the application
of the functionalities implemented. Moreover, being this an exploratory work, we
would like to understand if the tool can be taken into consideration for future
applications or further improvements.
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3.5.1 Memo creation

This is the first functionality designed for Veronica. The initial idea was to help
the programmer on taking a new annotation of the code that he was writing by
the means of the chatbot. However, after our researches the decision was to enable
that feature and all the following ones both from the conversational agent and
the graphical user interface. During the creation of a new annotation, Veronica
guides the user over each step that needs to be performed, in order to gain enough
information to complete the task. A scaffolding strategy has been adopted like in
the educational domain [35]. Thanks to that approach, it is possible to retrieve
each information without giving to the user a bad feeling during the conversation.
Each step has a specific goal and some default fallback answers has been defined
to help the user to not get stuck inside a conversational pattern. Let’s analyze
three possible scenarios that could happen during a memo creation with the help
of Veronica:

The user says:“I want to create a memo on the line number fifteen”, in this case
Veronica understands that the memo has to be created on a “line”, specifically
the number “fifteen”.

The user says:“I want to create a memo”, from that simple utterance Veronica is
not able to understand where the memo should be created, so it starts to help
the users to fill those missing data. At that point Veronica would say:“You
want to attach it to a line or a block of code?” to induct the user to specify
where this memo should be placed. Finally, after the user’s answer, Veronica
would ask “To which line (or block of code)”, to understand the exact location
of the memo 3.9.

The user says again “I want to create a memo”, but this time, instead of following
the rest of the conversation without problem, it answers in an unexpected
way to Veronica’s questions. Since the scaffolding pattern fails, a fallback
answer like:“I didn’t get what you mean, could you please say that again?” is
given by Veronica to the users. Then, if the users gives as a new input what
Veronica expects to receive, then the conversation can continue, otherwise
some keywords such as “exit” or “quit” are given to the user to quit the
conversation and get unstuck.

Finally, if the user doesn’t want to create the memo with the help of Veronica,
there is always a secondary way, which is given by the graphical user interface
(GUI) itself 3.10. In this way it is possible to make a new annotation without
having to comment manually inside the code.
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Figure 3.9: Example of the creation of a memo thanks to Veronica

Figure 3.10: Example of the creation of a memo from the GUI

37



Design

3.5.2 Memo deletion
This functionality is the complementary of the previous one. Like before, initially
the programmer could only delete his annotations only by using the voice or the
text channel with Veronica. Similarly to the complementary functionality, Veronica
guides the user over each step for which is requested a specific element in order to
complete the task smoothly. The scaffolding strategy has been used also in this
case. However, differently from the creation of a memo, in this case the importance
to retrieve the intent and the entities pointed by the user was more sensitive. For
example, a user could try to delete a memo in an empty position or in a wrong
file. Because of that we implemented these functionalities by keeping in mind a
possible human error. Let’s analyze the possible conversational pattern that could
happen during a memo deletion with the help of Veronica:

The user says:“I want to delete the memo on the block of code between number
eleven and seventeen”, in this case Veronica understands that the memo has to
be deleted on a “block of code”, specifically the one between the lines “eleven
and seventeen”.

The user says:“I want to delete a memo”, from that simple command Veronica
is not able to locate the memo that has to be deleted, so it starts to help
the users to fill those missing data. At that point Veronica would say:“On
which line does the memo starts?” to induct the user to specify where is the
annotation that has to be removed. Lastly, after the user’s input, Veronica is
able to understand the location of the memo to be deleted and can perform
the removal 3.11.

The user performs the same actions from before, the only difference is given by the
input of the location of the memo. The location given by the user is empty,
hence no memo are available there. In this case, Veronica answers that “There
are non memo available to delete on that line” 3.12.

It is important to notice that, independently from the scenario, Veronica is
designed to always give a feedback to the user. The utilization of a continuous
feedback is crucial, both to help the user in certain situation in which it might get
stuck or to notify him about the success of a defined operation.
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Figure 3.11: Example of the deletion of a memo performed by Veronica

Figure 3.12: Example of a memo deletion failed
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3.5.3 URL tracking
This functionality has been implemented to enable Veronica to take the initiative
and ask a user’s feedback after his navigation online. From what has been shown
in the figure 3.2, the tracking is made from the Google Chrome extension, outside
of the Visual Studio Code extension itself. This functionality is triggered when a
user decides to navigate online. The steps executed are the following 3.13:

• The user open Google Chrome, navigates to a specific page in search for
something.

• Once he finds it, he gets back to the programming IDE.

• Veronica detects that the user searched something and after his return to the
IDE says something like:“I saw that you navigated online, do you want to save
your last URL?”, by sending in the chat also the URL she is talking about.

• At that point, the user can choose to save it, leading to the memo creation
functionality. Instead, if he doesn’t want to save it, the conversation is closed
with an ending feedback and the choice memorized.

In this sense, if another developer opens the code file, he would understand the
reasoning behind the implementation decisions just by checking the memo or the
associated URL. Therefore, a memo is pinned to a specific line or portion of code,
and its content consists of self-explanatory annotations and, eventually, links to
the consulted documentation.

3.5.4 Memo navigation
The navigation has been implemented to allow whoever gets his hands on the code
to see immediately all the documentation that has been generated and reach them
without difficulties. It consists of a panel, placed at the same level of the terminal
and the debug console. Inside the panel are inserted all the memo created and it
is organized with a tree-like configuration 3.14. All the memo are divided by file,
and for each one is shown the start of the text contained and the line (or block
of code) in which is placed. By clicking on a specific entry is possible to navigate
directly on the file containing it and have a view of the opened comment. The
decision to implement this comment panel, was mainly to ease the tracking of all
the documentation inside a single source. Moreover, if another programmer works
on the same project, he could be able to gather fast all the reasoning of another
person or where did his implementations came from.
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Figure 3.13: Snapshot of a memo creation after that a navigation online has been
detected

Figure 3.14: The panel in which all the documentation created is stored, it is
possible to navigate through the memo by clicking on each entry.
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Implementation

This chapter contains the details of how the application works from a technical
perspective. The description follows the flow of a typical user experience. Moreover,
a in-depth description of the various components is given.

4.1 Components
Here we give a brief introduction to the components that have been used in the
tool, that will be analyzed later on in this chapter:

• Visual Studio Code: This is the IDE chosen in which we developed the
conversational agent. This is the component in which most of the work has
been done.

• Dialogflow: The natural language understanding platform that we imple-
mented for Veronica. This is the key component to understand the user
intents.

• Google Chrome extension: A Google Chrome extension that runs in
background and is used to enable one of the functionalities of the chatbot
(URL tracking).

• Local server: A local headless server that is functional to connect all the
components and allow communication between them.

The whole project has been managed through Visual Studio Code. Ideally, the
goal is to find a way to condense every component inside the Visual Studio Code
extension if this exploratory works returns good feedback in terms of interest and
utility. At the moment of the writing, to make the tool work is necessary to install
separately the Local server, the Google Chrome extension and the Visual Studio
Code extension. By doing so, the tool will work locally inside the user’s computer.
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In the figure 4.1 is possible to see more in detail how each component is connected
and from which portion of code. Each file will be then described further in its own
subsection.

Figure 4.1: Veronica’s detailed architecture

4.1.1 Visual Studio Code
Visual Studio Code (VS Code) is a lightweight, cross-platform source code editor
developed by Microsoft. It has become increasingly popular among developers due
to its flexibility and powerful features. VS Code is designed to be user-friendly and
highly customizable. It includes features like syntax highlighting, code completion,
debugging, version control, and code refactoring. One of the main features that sets
VS Code apart from other editors is its extensions library. This allows developers
to customize their editor with add-ons that add new functionality, themes, and
language support. There are thousands of extensions available for VS Code, ranging
from hinters and debuggers to snippets and icons. Veronica has been designed has
an extension for VS Code.

Visual Studio Code is the core component used to implement Veronica and in
which the most part of the code is located.

Extension Anatomy

Here is given a brief explanation of how a Visual Studio Code extension should
be implemented. Let’s take a closer look at a sample’s source code and see how a
general extension is structured.
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.vscode
launch.json
tasks.json

.gitignore
README.md
src

extension.ts
package.json
tscongif.json

From the tree, the most important files are:

• Package.json: This is the extension manifest file. Each VS Code extension
must have a “package.json” as its Extension Manifest. The “package.json”
contains a mix of NodeJS fields such as scripts and “devDependencies” and VS
Code specific fields such as “publisher”, “activationEvents” and “contributes”.

• Extension.ts: This is the extension entry file. The extension entry file
exports two functions, “activate” and “deactivate”. The function “activate”
is executed when a registered Activation Event happens. “deactivate” gives
a chance to clean up before the extension becomes deactivated. For many
extensions, explicit cleanup may not be required, and the deactivate method
can be removed. However, if an extension needs to perform an operation when
VS Code is shutting down or the extension is disabled or uninstalled, this is
the method to do so. In our specific case, the “deactivate” function has not
been used, while the “activate” one has been used largely.

Most of the other files are either configuration files to adjust the setup or files
to define dependencies and version control.

Extension capabilities utilized

Here the core functions and capabilities used for Veronica will be analyzed more
in-depth. All the portions of code that will be used are part of the “extension.js”
file unless specified differently.

• The first function, from where everything is created, is the “activate” one as
previously cited. Inside this function all the elements of the extension are
initialized, which are the status bar button to activate Veronica 3.7 3.8, the
comment controller to manage the memo creation and deletion, the chat view
provider that manages the interface of Veronica and all the commands that are
triggered during the use of the agent. Moreover, the array “context.globalState”
that contains all the existing memos is checked and every annotation is placed
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in the right file and line. The format of the element inside the array is
composed by an object containing all the needed data to recreate the memo.
The main quality of this array is that it maintains the data stored inside it
even when the extension is closed, in this way we were able to not utilize any
database. From the code it is possible to see how the comments are settled
back up when a user restart the program. As said previously, this portion of
code is inside the “active” function which is ran at the beginning of the code
and everytime a new command is executed. At the beginning the boolean
“threadLoad” is checked to run this code only at the first activation each time.
Then, all the values stored in the array are taken for each entry to repopulate
the memos thread. The variables refers to the starting and ending line of the
memo, the file in which they are contained, the context of the message and the
reference to the comment controller in which the memos have to be placed.

if(!threadLoad){
nElement = context.globalState.get<number>("nElement", 0);
for(i=0; i<context.globalState.get<number>("nElement");i++){

newPos1 = vscode.Position(context.globalState.get<any>
(context.globalState.keys()[i]).newPos1, 0);

newPos2 = ...

range = new vscode.Range(newPos1, newPos2);

userUri = context.globalState.get<any>
(context.globalState.keys()[i]).userUri;

body = context.globalState.get<any>
(context.globalState.keys()[i]).body;

thread = commentController.createCommentThread
(vscode.Uri.file(userUri), range, []);

newComment = new NoteComment(body, vscode.CommentMode.Preview, { name: ’You’ }, thread, thread.comments.length ? ’canDelete’ : undefined);

thread.comments = [...thread.comments, newComment];

myThreads.set(thread.range.start.line, thread);
}

threadLoad = true;
}
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• Talking about the comment controller, it is utilized to create inside the
IDE the interface to manually generate the memos. Moreover, it’s called
by all the commands defined in the “activate” function to generate all the
annotations that are not created manually. The commands related to the
comments are four: create a note, delete a note, save the created note to the
“context.globalState” array and the one to remove them from the array once
deleted as last.

• The “chatViewProvider” is utilized to manage the functionalities related to
the chat interface, specifically to retrieve the inputs given by the user to
forward them through the Dialogflow API to the identify the user’s intent.
Additionally, the HTML structure of the chat is defined here. It’s important
to notice that to let communicate the “chat.js” file which is the one that
manages the chat itself with the “chatViewProvider” some specific API given
by VS Code have to be used.

• The most used function related to the direct communication user-Veronica
is the one that has been utilized to send the input text given by the user to
Dialogflow. Thank to that function it is possible to analyze the user intent
and answer accordingly, since the result is returned in a text format to be
printed on the chat subsequently. In the portion of code below, the main pieces
have been highlighted, Specifically, the text input is inserted into a JSON
format variable, then the Dialogflow API is called to request the detection of
the intent. As it is possible to see, the function is asynchronous, in this way
annoying behaviors related to the communication with the bot, that otherwise
should await for a response, are reduced.

async function userInput(projectId = ’project-name’,value: text)
{

const request = {
session: sessionPath,
queryInput: {

text: {
text: value,
languageCode: ’en-US’,

},
},

};
const responses = await sessionClient.detectIntent(request);
const result = responses[0];
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return result;
}

• Once the intent detection returns a result from the previous function, an
answer from Veronica is received. Depending on the type of intent there are
different tasks to be performed within the code. As it is possible to see from
the code below, for each different case a unique action is performed. There
are way more cases inside this function, for ease of reading just some of them
have been included.

public async actionToDo(result: any){
if(result.queryResult.cancelsSlotFilling){

return;
}
switch(result.queryResult.intent.displayName){

case’Memo Creation’:
{
if(result.queryResult.allRequiredParamsPresent){

...
if(this.elem === "Block"){

...
}else{

...
}

}
break;

}
case’Memo Context’:
{

this.userText = result.queryResult.queryText;
this.caUserMessage(result);
break;

}
case’Memo Confirm’:
{

vscode.command.executeCommand("saveCommentState", ...);
break;

}
...
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• All the graphical and live updates of the chat interface are managed from
a different file, which is the “chat.js”. Depending on the way in which the
input is generated (from the user or from the chatbot), the listener receives a
different input that defines the origin of the message. Given the origin, the
right class name between two different “iDiv” is chosen, generating the message
in the right color and position in the chat. This is the default behavior of
the chat, which covers most of the possible interactions. Some exceptions are
made from specific messages that has to be shown from Veronica to the user
(i.e.: the input given for a memo or the URL during the navigation), in those
cases the origin is different from the format that the message should have,
hence different functions manages those cases. Finally, in the file is present
a small function to update automatically the scroll bar, to always show the
most recent messages.

The core functions has been analyzed in the previous list. However, it is
important to point out that many others are present in Veronica’s code. Those
are used to manage specific cases or define the agent behavior depending on the
biggest possible scenarios (that diverge from the common use-case defined) that we
tried to handle.

4.1.2 Dialogflow
Dialogflow is a natural language understanding platform that makes it easy to
design and integrate a conversational user interface into your mobile app, web
application, device, bot, interactive voice response system, and so on. Dialogflow
can analyze multiple types of input from the user, including text or audio inputs
(like from a phone or voice recording). It can also respond in a couple of ways, either
through text or with synthetic speech [42]. There are two versions of Dialogflow,
the essential one (ES) which is the one used for Veronica and the CX one, which is
the premium version and has way more capabilities used for more complex agents.
Dialogflow has been the middleware used to handle both conversational logic and
the multi-channel aspect. From the main page it is possible to use the Graphical
User Interface (GUI) to setup all the intents needed.
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Figure 4.2: The list of intents defined for Veronica

Intent Description

CA Welcome This intent is triggered at the start of the extension. Veronica briefly
introduces itself and explains on an high-level what it is able to do.

Memo Creation
Started when the will to create a new memo is detected. It contains
intermediate questions to fill the required fields and other fallback
intents to proceed with the conversation.

Memo Delete
Similar to the previous one, it is activated when a user wants to delete
and existing memo. Also here are given some intermediate scaffolding
questions mandatory to locate the memo to delete.

Memo Confirm

Once the memo that has to be created is typed or dictated, Veronica
shows it in the chat and asks for a confirmation. Depending on the
user’s answer this intent is triggered to give a visual feedback about
the creation by inheriting the values previously given to the chatbot.

Veronica Help
Simple intent enabled by a request of help from a user. Veronica
explains more in detail what she can do and tries to hint better how
each functionality can be performed.

URL Request

Proactive intent which is activated thanks to the communication
between the Google Chrome extension and the Visual Studio Code
one. When a user navigation is detected, once he gets back to the IDE,
the Google Chrome extension instantly sends an hard-coded message
to trigger this intent and proceed with the conversation to save the
last URL visited.

Table 4.1: Description of the main intents.
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From the figure 4.2 and the table 4.1 it is possible to see the list of intent
designed for Veronica, together with their priority (the colored dots) and the
initially discarded ones. All the intents are defined to catch a specific intention of
the user, ranging from the needs of help to the creation of a new memo. Going
more in depth, inside a single intent we can see all its structure 4.3 4.4:

• First, we have the Contexts field, which is divided into input and output
contexts. The input ones are used to define a sort of “entry rule” to the intent,
meaning that this conversational pattern will be opened after certain action
(i.e.: another intent that has the same context as an output one is triggered
before). On the other hand, the output context defines the conversational
background in which the user and Veronica are, together with the context also
the entities and stored values are carried on. The small number near to the
context defines its “time to live”, meaning that if the number is “x”, after “x”
interactions the context will be removed from the stack 4.3.

• Then there is the Events entry. Here it is possible to define alternative
ways to trigger the intent without textual or vocal inputs. For example, if
the “Welcome” event is settled up, every time that Veronica is executed the
correlated intent will be triggered without any user’s utterance detected 4.3.

• The Training phrases is an important field. It is where all the trigger phrases
are defined by the developer. While there is no limit to the amount of phrases
that can be inserted inside it, we decided to insert a small amount of them
to test the agent and the self-training feature, meaning that Veronica can be
improved further with more phrases in the future. Once a user’s utterance is
detected, Veronica researches the matching intent by watching at the training
phrases or by filtering the important keywords. Usually, the most valuable
keywords are the recurring ones in most phrases or the ones associated to
entities (the colored words) 4.3.

• Thanks to the use of Action and parameters it is possible to define a
scaffolding procedure to fill some data that are required after that a specific
intent is triggered. From the figure 4.4 it is possible to see that each value,
related to a specific entity, can be defined as required or not. If a value is
required and at the same time is missing from the phrase that triggered the
intent, the associated prompt is executed. In that way Veronica tries in a
more specific way to receive that value from the user. Once all the required
parameters have been provided, Veronica proceeds with the final response.

• from the Responses field it is possible to define the final answer given by
Veronica. To increase the interactivity and reduce the redundancy of the
conversations, it is also allowed to setup multiple answers that are randomly
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selected by the agent. Moreover, it is possible to define this interaction as the
end of the conversation, in that way most of the resources stored such as the
context can be deleted 4.4.

• Finally, we can see the fulfillment options in which is possible to decide if
we want to enable the webhook calls for slot filling or for the intent 4.4.

By mixing all those functionalities together, we were able to define specific conver-
sational pattern to manage and implement the functionalities defined in the Design
chapter.

Figure 4.3: The list of intents defined for Veronica
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Figure 4.4: The list of intents defined for Veronica

4.1.3 Local Node.js Server
This is the local server that has been utilized to take advantage of the WebSpeech
API, which by default are not utilizable inside the Visual Studio Code extension
since it has no internal connection. Since the main functionality of the server is to
be a bridge between the other components and to perform the SpeechRecognition,
the implementation is quite simple. The server has been developed in Node.js. The
component is composed by the following elements:

• A server.js file in which the server itself is started. At the start all the needed
dependencies are executed synchronously. The port on which the server awaits
is defined manually.

const port1 = 3001;
const server = app.listen(process.env.PORT || port1, () =>
{console.log(’Server listening on port %d in %s mode’,
server.address().port, app.settings.env);
});
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Then with Selenium a local headless Chrome instance is started.

(async function headlessCreation() {
let driver = await new Builder()
.forBrowser(’chrome’)
.setChromeOptions(new chrome.Options().setUserPreferences({
"profile.default_content_setting_values.media_stream_mic":1
})
.addArguments("--headless=chrome")
)
.build();
await driver.get(’http://localhost:3001’);
}())

From the function is possible to see that we decide the type of browser
(Chrome), that it has to be headless, the URL and port in which it listens
(localhost:3001) and that by default the microphone of the PC is enabled. An
headless instance represents a normal browser (like Google Chrome), the main
difference is that no pages are shown, since it works in background. In that
way the SpeechRecognition described in the file below is in place without the
necessity to have a permanent page on the browser opened.

• A package.json file in which all the dependencies user are installed, specifically
we used express to start the server, selenium to run the headless browser and
socket.io to have a communication channel between the components.

• A script.js file in which all the SpeechRecognition is implemented. Here a
brief portion of the code:

const SpeechRecognition = window.SpeechRecognition ||
window.webkitSpeechRecognition;

const recognition = new SpeechRecognition();
recognition.lang = ’en-EN’;
recognition.continuous = true;
recognition.interimResults = false;
const socket = io();
recognition.start();
recognition.addEventListener(’result’, (e) => {

let last = e.results.length - 1;
let text = e.results[last][0].transcript;
socket.emit(’chat message’, text);
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});

...

recognition.addEventListener(’end’, (e) => {
recognition.start();

});

As we can see from that snapshot of the code, the SpeechRecognition APIs,
which are part of the WebSpeech API library is started inside the window.
The SpeechRecognition works only within a window, that’s the reason that
led us to start the headless browser. Once started it is possible to decide
the language to detect, if the recognition has to be continuous or not and if
we want to store interim results. Then a list of event listener are present to
define what to do in specific cases, we included in the snapshot the two most
important. The “result” one is the event listener that transcribes the user’s
utterance and after converting it into a text, send it via socket to the Visual
Studio Code extension. The other one is the “end” event listener that had to
be added to ensure the permanent listening of the bot. By default in Google
Chrome the listening of the microphone is designed to be interrupted after
some minutes of silence, so we defined this event to restart the listening in
case of prolonged silence by the user. All the other events are less important
or have been implemented to manage some specific cases.

4.1.4 Google Chrome Extension
Google Chrome as browser has been chosen for two specific reasons. First, because
it is the most utilized accordingly to the latest revelations made in January 2023 [43],
having 66,39% of the users utilizing it. Second, we decided to remain in the same
domain used for the other components such as Dialogflow.

Usually, a Google Chrome extension is composed by three different categories of
script:

• Content Script: This kind of script is utilized to modify directly the web
pages.

• Background script: Also known as service worker (depending on the manifest
version utilized). As the name suggests, this type of script is opened in
background and doesn’t require a graphical interface. Its main role is to
manage all the events in the browser that are external to the extension.
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• Options script: A Google Chrome extension that runs in background and is
used to enable one of the functionalities of the chatbot.

The extension of Google Chrome for Veronica is really small. It is composed by
a manifest file in which the service worker is defined together with some permissions
related to the web navigation and the Chrome tabs. The other important file is
the one concerning the service worker itself. We can see from this brief extract of
code the main functionality of the “background.js” file:

chrome.webNavigation.onCompleted.addListener(function(details){
if(details.url != "about:blank"){

if(details.frameId==0){
socket.emit("Url", details.url);

}
}

});

It is shown a function that with a listener that is triggered after the loading of a
new page in the browser is completed. The first “if” is needed to avoid the sending
of the “about:blank” URL, which is saved on the first opening of the browser.
Instead, the second “if” is needed to take the data regarding the main frame which
is the one loaded at the beginning of the navigation. In the end, the URL is sent
through socket to the local server that serves the purpose of forwarding it to the
Visual Studio Code extension.

4.2 Libraries
Inside the extension, some important open source libraries has been utilized to
make every component work smoothly. Those libraries has been chosen thanks
to their capabilities compared to other ones which were lacking some important
functions.

4.2.1 Selenium
Selenium is an open-source framework that enables automated testing of web
applications. It provides a suite of tools that allow developers to write tests in
various programming languages, and simulate user interactions with web browsers.
Selenium consists of several components that work together to automate web testing.
The most important component is the WebDriver, which is a browser automation
API that allows you to programmatically control a web browser and simulate user
interactions. WebDriver supports multiple browsers including Chrome, Firefox,
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Safari, Edge, and Internet Explorer. In general, Selenium is a powerful tool when
talking about testing of web applications.

Selenium was used to start a local headless server to enable the use of the
WebSpeech API described below. Without Selenium the user should have kept a
Google Chrome instance opened continuously during the use of Veronica. Instead,
in that way it is possible to use Veronica without having to rely on an open tab,
keeping the general interface and requirements simpler.

4.2.2 WebSpeech API
The goal of the Web Speech API is to make it possible for web developers to offer
speech-input and text-to-speech output functions in web browsers that are generally
unavailable when using screen reader or regular speech recognition software. The
API itself supports both server-based and client-based/embedded recognition and
synthesis and is independent of the underlying speech recognition and synthesis
implementation. Both quick (one-shot) speech input and ongoing speech input are
supported by the API. The web page receives speech recognition results as a list of
hypotheses, along with other pertinent data for each hypothesis. For our tool we
used both the SpeechRecognition API to understand the user utterances and the
SpeechSynthesis API to reproduce by voice the output given by Veronica from the
chat.

4.2.3 Socket.io
It has always been quite difficult to create a chat application using well-known
web application stacks. Because of that, the majority of real-time chat systems
have historically been built using sockets. The sockets offer a bi-directional com-
munication channel between one or more clients and a server. In other words, the
server is able to push messages to clients and concurrently to receive them. Usually,
the principle behind a chat is that whenever you write a message, the server will
receive it and send it to every other client who is connected. However, in our case
we used sockets only to implement the real-time communication, while having a
uni-directional communication from the server to the Visual Studio Code client.
At the same time another uni-directional communication has been implemented
from the Google Chrome extension client to the server.
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Experimental Evaluation

This chapter contains an initial description of the evaluation phase of this thesis
work.

5.1 Description
The test phase of the extension had the final objective to understand the utility of
the functionalities proposed for Veronica to support the programmers. Given the
context of this exploratory work, a simpler analysis has been conducted. Because
of that, the final decision to perform an usability testing instead of a more complex
A/B testing was taken. The test has been guided by the following questions:

1. Are the functionalities designed to complete the tasks useful or they need to
be revisited/improved?

2. Does the experience of the user in the programming environment affects the
final results of the test?

3. If a user is more experienced with a conversational agent, will he adapt to the
tool in a easier way?

To answer these questions, we provided to the testers a survey both at the
beginning and at the end of the test. Moreover, the screen has been registered
during the testing to analyze afterward the behavior of each user and a brief
interview has been done at the end to retrieve important thought right after the
usage of Veronica. In this way it is possible to gain important data both from the
user perspective and from the analysis of the exercises performed.
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5.1.1 Participants
The choice about the type of user to perform the usability testing was straightfor-
ward. We opted for a group of university students, because they are easier to find
for the testing purpose. Moreover, Veronica has been thought for programmers
of different expertise, which are easy to find within the same university, based of
their years. In fact, the students from these kinds of courses passes most of their
time on the computer, usually to study or for entertainment. It is hard to find
a computer engineer student that is not familiar with Visual Studio Code or a
chatbot of any type. All the participants selected are between 21 and 28 years
old and has been contacted mainly from the teacher’s courses or within personal
contacts. We defined 3 levels of expertise: beginner, intermediate and expert. The
number of participants wanted was based on an equal division of these expertise
ranks, hence a number multiple of 3 (i.e.: 3 3 3 or 4 4 4). During the selection
we tried to select the users from different courses based on the year of the course,
without any specific attention to other elements. In the end, 9 participants were
recruited. Eight of them self-identified as male, and one self-identified as female.
Their average age was 22.7 years (min = 21, max = 27).

The study has been described to each participant as an experiment to verify
the usefulness of the chatbot as a valid supportive tool for the programmer.

In the table 5.1 is shown the entry survey together with the answers from the
participants. Here a brief explanation of the reasoning behind each question:

• Q-01: Question to understand the background of the user, programmatically
talking. We wanted to understand if the perceived knowledge of the user
could have some impact on the usability of the prototype. For example, we
thought that if a user had to focus more on the code he could have found the
functionalities less intuitive. Most of the participants self-evaluated themselves
as “intermediate”, even if part of three different academic years with a different
amount of time of experience.

• Q-02: This one was asked to know if each user was comfortable with the
chosen IDE. In this way we could understand from the usability testing if
some difficulties could also have been linked to the inexperience of the user
with the environment (and not related to a specific functionality directly). As
expected, all the users knew VS Code and utilized it at least once.

• Q-03: For the users that used Visual Studio Code, we asked additionally
if they ever used any kind of extension within the IDE. Most of them were
familiar with background extensions (55%), the 33% used both background
and active extensions and one user never used any. By asking this question we
wanted to understand the familiarity of the students with the different types of
extensions. A user that is used to addons with a different graphical interface,
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for instance, should likely be less prone to errors compared to another one
that has never seen them.

• Q-04: With this question we wanted to understand the users knowledge about
any kind of interaction with a chatbot. In fact, a conversation can be totally
different depending on the user’s experience, because the logic behind most
of the conversational agents is similar despite the different environments of
application. From the answers it appears that the knowledge of conversa-
tional agents is still not too popular in this environment (44% had previous
experience).

• Q-05: Since the language that Veronica understands is constrained to the
English at the moment, and the voice recognition is quite precise on the
mother language accent, this question was important to have a forecast of
the outcome of the conversations. We did not want to test users that could
have been blocked by a language barrier, since this was not the aim of the
usability testing. Hence, it was important to select the right users for the
purpose. Overall all the users had at least the B1 level.

• Q-06: The question around the programming language was used to provide the
best possible code language for the user to perform the tasks. The knowledge
of the coding language should have not increased the cognitive load of the user,
so to pick a familiar language we followed also the answers to this question.
In the end, all the users selected Python as known language, so all the tests
have been made on a Python code.

• Q-07: The browser question was made to understand which browser the
user uses usually. It was important to notify immediately at the start of the
usability testing to use Google Chrome because one of Veronica’s functionalities
was based on a Chrome extension. The decision to choose Google Chrome
was lead by the decision to stay within the same domain with part of the
other components (i.e.:Google Dialogflow). Moreover, as the site [43] states,
the predominance of users is already accommodate to use Chrome ( 66,39%),
while the rest is evenly divided between the other browsers.
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ID Questions Answers

Q-01 How would you assess your level of program-
ming?

beginner (1) - intermediate (4) - expert
(4)

Q-02 Have you ever used Visual Studio Code? no (0) - sometimes (3) - yes, I use it often
(6)

Q-03

If yes to the previous question, have you ever
used an extension on Visual Studio Code? Did
any of the extensions you used have a graphical
interface?

no (1) - yes, someone in background (5)
- yes, someone with visible graphical in-
terface (0) - yes, both types (3)

Q-04 Have you ever interacted with a chatbot? yes (4) - no (5)
Q-05 What is your level of English? A1/A2 (0) - B1/B2 (6) - C1/C2 (3)

Q-06 What programming languages do you know, at
least at a basic level?

Python (9) - C (8) - JavaScript (6) - C++
(4) - Java (2) - Assembly (2) - Bash (1) -
HTML (2) - Kotlin (2) - PHP (2)

Q-07 What browser do you usually use?
Google Chrome (5) - Microsoft Edge (2)
- Brave (1) - Mozilla Firefox - (1) Safari
(0)

Table 5.1: Answers to the entry survey.

5.1.2 Preparation and Setup
Before performing any test, we thought about the best approach to analyze the
prototype. The main decisions were related to: Which type of test (“A/B” or
usability testing), how to perform it (live from a single computer or asynchronously
by giving to each user a guide to install the tools). Regarding the type, the A/B
testing was thought at the beginning thanks to its usefulness. However, given its
time consumption compared to a usability testing and that the functionalities of the
prototype would have not differ a lot the two configurations, it has been discarded.
Moreover, the usability testing seemed to fit better our case, where we wanted to
validate the functionalities in general and the overall usability. Concerning the
performance of the tests, we opted for a live session, both to leverage the users from
all the passages to install the various components and to follow them closely during
the tasks execution. The usability testing has been performed in the university
laboratory. To haste the setup process and avoid users’ problems related to the
installation, a previously configured computer has been used to perform all the
tasks. In the computer were installed the following tools: Visual Studio Code with
the extension ready to be started, the local headless server to enable the WebSpeech
API and the Google Chrome extension. Moreover, OBS Studio has been installed
to record the screen and the audio to analyze subsequently the users tests and
personal thoughts. Together with the entry survey shown on 5.1, a debriefing
questionnaire (the SUS) has been provided as well. The System Usability Scale
(SUS) [44] provides a “quick and dirty”, reliable tool for measuring the usability. It
consists of a 10 item questionnaire with five response options for each entry; from
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Strongly agree to Strongly disagree. The question are shown on the table 5.2. As
it is possible to see, all the questions positioned on odd numbers are the “positive”
ones, meaning that an higher vote would result in a better score for the SUS survey.
On the other hand, all the even questions are the “negative” ones, meaning that a
lower vote would improve the final score obtained.

ID Questions

S-01 I think that I would like to use this system
frequently

S-02 I found the system unnecessarily complex
S-03 I thought the system was easy to use

S-04 I think that I would need the support of a
technical person to be able to use this system

S-05 I found the various functions in this system
were well integrated

S-06 I thought there was too much inconsistency in
this system

S-07 I would imagine that most people would learn
to use this system very quickly

S-08 I found the system very cumbersome to use
S-09 I felt very confident using the system

S-10 I needed to learn a lot of things before I could
get going with this system

Table 5.2: Questions of the SUS questionnaire

Additionally, in the Visual Studio Code were presents some files written in
different coding languages (to match the skills defined by each user during the
entry survey) where the tasks should have been performed. The code provided
was intentionally easy to understand, since any level of user should have been able
to understand it and focus mainly on the tasks. Each file contained 3 functions
defined to perform different sorting algorithms: “bubbleSort”, “insertionSort” and
“selectionSort”. In the end, as previously stated, only the Python one was enough
since all the users were confident with that coding language. Talking about the tasks
defined 5.3 to be performed, those has been decided to analyze the intuitiveness of
the prototype and the ease of utilization. Each task was designed to be as much
as possible independent from the others, so that it could have been possible to
proceed without remaining stuck during the test.
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ID Assigned Task Success Criteria Max
Time

T-01 Start Veronica and ask for help Veronica has been started and the
“help intent” has been triggered 5 min

T-02 Create a memo attached to the func-
tion “bubbleSort”

The memo has been created (manu-
ally or with the bot) 8 min

T-03
Search online the algorithms com-
putational complexity and save the
page in a memo

The URL related to the page found
has been saved by the bot (not man-
ually)

8 min

T-04
Delete the memo that contains a
wrong description of the attached
code

The memo has been found and
deleted with success (manually or
with the bot)

8 min

T-05 Disable Veronica listening
The listening has been disabled,
leaving the rest of the functional-
ities online

5 min

Table 5.3: Answers to the entry survey.

To better understand the aim of each task, they will be briefly described one by
one:

• T-01: The objective of the first task is to understand if Veronica is easy to
activate from the designed button. Moreover, it is also required to ask for help,
in this way after the activation it is possible to trigger the intent correlated
and understand all the functionalities available.

• T-02: With the second task the information collected are useful for different
feedback. First, we can understand if the defined ways to create a new element
of documentation in the code is easy or too complex. Second, it is interesting
to see if the users, depending on a common factor (the skill level for example),
prefer to create them manually from the comment controller or thanks to the
help of Veronica.

• T-03: In the third task it is request to search for the computational complexity.
The idea is to force the user to search it online since knowing the computational
complexity might not be banal. In this way it is possible to trigger the URL
tracking functionality.

• T-04: Similarly to the second task, here we want to understand the user
approach and the difficulty of the task based on the functionalities given.
Moreover, the wrong memo has been attached to a different and closed file, in
this way also the comment navigation from the bottom panel is tested.

• T-05: Since Veronica listens continuously to the user, it is important that is
clear how her listening can be disabled. There are many reasons to disable
the listening, for example the user could be in a crowd place or wants to listen
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to some music. Here we want to test the difficulty related to disabling the
listening and understand if there could be better ways to implement it.

5.1.3 Execution
Talking about the execution of the test itself. The following process has been
followed and has been the same for every user that tested the prototype:

Initially, a brief introduction was given to explain the function of the usability
testing.

Right after, the entry survey was submitted to gather some data about the user
5.1.

Then, a paper containing the tasks was provided to the user 5.3 without any
explanation of each of them.

Then the user was left with the computer to perform all the task given in order.
As mentioned in the previous section, we decided to record each user, because
we left during their testing. In this way they would not be tempted to ask
for hints and we were able to evaluate the functionalities without bias. The
only interruption by our side was to unlock the users on specific task after a
certain time threshold specified on the table 5.3.

Once the testing was finished, the SUS questionnaire 5.2 has been provided to
each user to evaluate with another tool the usability of Veronica.

In the end, a final interview has been conducted to listen the users’ thought, ask
for a personal feedback regarding the tool and possible further improvements
that they would have liked to see. We opted for the final interview to allow
each user to describe more freely their own ideas, without having to rely on a
written open question that could constrain all their thoughts.

5.2 Results
Thanks to the usability testing we were able to collect some important data related
to the functionalities implemented and contextually to the graphical interface of
the tool. Before starting to watch the recorded video for each user, we defined some
metrics to understand the actual usability of each functionality. Those metrics can
be applied to each task and the final result is shown in the table 5.4.

The metrics taken into account are:
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ID Critical errors Non-critical errors Completion rate Error-free rate

T-01 0 7 55% 22%
T-02 0 6 100% 66%
T-03 1 1 88% 88%
T-04 0 1 100% 88%
T-05 0 6 88% 44%

Table 5.4: Tasks’ metrics and results

• Critical Errors: Those are the errors that prevent the completion of the
task. Meaning that if the user makes this kind of error, he won’t be able to
fulfill the task anymore. For each task has been inserted the total amount of
errors done by the users.

• Non-critical errors: Mistakes that enable the fulfillment of the task but
incompletely or erroneously. Moreover, has been inserted under this category
all the errors made by the users during the accomplishment of a task. Also in
this case, each number represents the total amount of errors done.

• Completion rate: Percentage of the students that did nor make any critical
errors. In this category falls all the users that completed a specific tasks
(both with or without errors). Differently from the previous metrics, here the
value represents the % of users that managed to complete a task, where “1”
represents the 100% (9 users).

• Error-free rate: Percentage of students that did not make any mistake. This
is a subset of the previous category, meaning that the results here are always
minor or equal to the Completion rate metric.

• Task completed in time: This metric is defined behind a “on/off” logic.
Meaning that we analyzed if each user was able to perform each task within a
predefined maximum time defined in the table 5.1. This time was defined by
calculating and rounding the times of two additional users that were aware of
the functionalities and performed the tasks with some help by our side. In
the table the % is equal to the “Completion rate” metric.

By analyzing this table, is already possible to make some assumptions on the
various functionalities. While the table 5.3 can be used as a reference to see the
description of each task. Here the results from the table 5.4 are discussed and
integrated with the information gathered from the video recording:
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T-01: From the Completion rate and the Error-free rate it is instantly possible
to see that this task was the hardest to complete. Although there were no
critical errors, only 5 of the participants were able to complete it without our
help. All the non-critical errors are related to different attempts of activation
without success. Most of the users tried to activate it through a command in
the integrated terminal or by using the normal terminal in the panel section.
Some of them tried to activate it vocally trying some kind of verbal commands.
Additionally, just 2 participants completed it smoothly, while the other 3
completed it almost at the end of the maximum time that we defined. For
sure this was the least understandable task, the button was hard to find and
did not stand out within the environment. The constraints given from the VS
Code IDE made the button position design and hard task to be accomplished.

T-02: In the second task, 6 users managed to complete it without errors. It is
interesting to see that, 4 of them used directly the interface given from the
comment controller to create new memo. The other 2, instead used the chat
directly given in the interface. The rest of the users made some non-critical
errors, concerning attempts to create the memo with commands that were
not understandable by Veronica. Then, they completed it manually from
the comment controller as a backup plan. The behavior of one user was
quite interesting, he tried to use the vocal function to create the memo, when
Veronica didn’t recognize some of his utterances he swapped to the chat to
complete the sentences. Despite of some small errors, all the participants
managed to complete the assigned exercise.

T-03: The task related to the online research was the most successful in terms of
error-free rate. All the users were able to complete it without problems thanks
to the proactivity of Veronica. The critical error happened when Veronica
asked the participant if he wanted to save the URL and by mistake he answered
negatively. After trying to get back to the browser and then again to Visual
Studio Code, Veronica did not ask him again if he wanted to save it because
the choice had already been saved. Apart from this case, all the participants
completed the task successfully. The high success rate seems to be addressable
to the starting input given from the agent, instead of coming from the user.

T-04: Similarly to the second task, all the users were able to complete it without
incurring in critical-errors. One participant made one non-critical error because
instead of deleting the memo, he manually deleted the content. However, he
noticed his mistake and deleted the memo afterwards. 6 users deleted the memo
manually from the comment controller, without interacting with Veronica. The
rest exploited the bot to perform the task, switching to the manual deletion
in case of difficulties during the conversation. Overall, probably because of
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the similitude with the memo creation task, all the user performed this one
smoothly.

T-05: Finally, no critical errors were made to disable Veronica’s listening. However,
participants made six non-critical errors, all related to trying to disable
Veronica by writing a command in the chat instead of clicking the same
button that was used to activate the extension. Nevertheless, 8 out of the 9
participants succeeded in disabling Veronica without many problems. The
key aspect is that, even if the majority of the users managed to succeed in the
task, all of them tried to deactivate the listening in other ways, before using
the implemented one.

From the task analysis already it was possible to identify valid improvements for
the functionalities implemented and understand what was working fine by itself.
The second element used to define the quality of the prototype was the SUS
questionnaire that helped us to rank its usability. Interpreting the SUS scoring
can be complex. The participant’s scores for each question are converted to a
new number, added together and then multiplied by 2.5 to convert the original
scores of 0-40 to 0-100. Though the scores are ranged from 0 to 100, these are not
percentages and should be considered only in terms of their percentile ranking [44].

Based on the research [45], a SUS score above 68 would be considered above
average and anything below 68 is below average. In the table 5.6 it is possible
to see the correlation between the SUS score obtained and the adjective rating.
Regarding the results, the scores that has been obtained from the users can be
seen in the table 5.5.

User Score User Perceived level
U-01 67.5 Intermediate
U-02 80 Intermediate
U-03 57.5 Intermediate
U-04 72.5 Beginner
U-05 65 Intermediate
U-06 75 Expert
U-07 40 Expert
U-08 75 Expert
U-09 82 Expert

Table 5.5: SUS scores obtained by the users

From the list it is possible to see that the scores were not affected by the expertise
of each user (Guiding question 2). One score of 40 is present, meaning that for
that user the usability of the tool has been “awful”. Then, 2 other results fell into
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the “poor” rating while a third one was borderline between the “poor” and the
“okay” tier. Only one user SUS questionnaire returned an “excellent” score and the
remaining 4 corresponded to the “Good” one. Despite the expertise of the users
was not a key factor during the testing, it is clear from the results that there is
margin to improve Veronica.

SUS Score Grade Adjective Rating

> 80.3 A Excellent
68 – 80.3 B Good

68 C Okay
51 – 68 D Poor
< 51 E Awful

Table 5.6: SUS score meaning

To give a brief recap of the results collected:

• The expertise of the users does not appreciably affect the utilization of
the prototype. As it is possible to see from the table 5.7 the average SUS
score is similar for the “Intermediate” and the “Expert” users. While the
“Beginner” is slightly higher, it has to be taken into account that only one
user self-identified himself as beginner.

Expertise level Average SUS score

Beginner 72.5
Intermediate 67.5

Expert 68

Table 5.7: Average SUS score for expertise level

• The 4 users that had already interaction experience with a chatbot
scored the higher SUS scores, meaning that a previous experience could
improve the intuitiveness of the tool.

• Concerning the functionalities, there is margin for improvements, especially
for the ones used in the first and last task of the usability testing. The possible
changes are discussed in the following chapter.
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Chapter 6

Conclusions and Future
improvements

6.1 Conclusions

The goal of this thesis work was to experiment the usage of a multi-channel
conversational agent as an extension for a programming IDE to support the
programmer’s reasoning. The first step made was to understand if similar projects
have been explored in this domain. However, despite the great amount of researches
related to conversational agents in different domain, the findings concerning the
programmers and a way to help them were really scarce. Because of that, the
decision was to develop this as an exploratory work, to understand if there could
be a future for this kind of chatbot in this environment.

Then, a study to outline the components to define an high-level architecture
has been performed. The individual components that best suited the solution
defined were: Dialogflow, a conversational agent builder designed by Google for the
chatbot to take on charge the logic management and multi-channel deployment.
Visual Studio Code was used as the IDE in which implement the extension, the
language used was Typescript by guideline suggestion. For the speech recognition
and synthesis the WebSpeechAPI has been used together with a local headless
server written in JavaScript. Moreover, a small Google Chrome extension has been
utilized to track the user navigation on internet.

The bot validation was done with a usability test made in laboratory. The
usability test taken was composed by four different elements to gather useful
data: an entry survey, the list of tasks performed itself, a SUS questionnaire and a
debriefing interview. Test results have revealed the chatbot strength and weaknesses
together with important feedback and appreciation from the user.

In conclusion, chatbots interest is growing year after year and are starting to
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represent a good alternative in many domains. They can be flexible enough to
be used in conjunction with artificial intelligence, data science, natural language
understanding and other fields of technology. They find their place in a wide
variety of applications, from entertainment to customer care, from e-commerce
to even psychotherapy. Yet, there is still a great margin of improvement in the
programming field, both to write directly the code and to help the quality of life
of every programmer. The chatbot developed for this thesis project has aroused
interest between the users that used it for the test. Yet there is still some work to
do so that it can be considered a valid and reliable tool to be used extensively in
the field, both in terms of technology progress and general interest in this specific
domain.

6.2 Future improvements
The developed chatbot lends itself to a variety of future improvements. In regards
of that, we collected a series of possible upgrades and mandatory steps to be
done to make Veronica more user friendly and at the same time less frustrating
to interact with. From what was stated, Veronica is working locally by the time
being. However, the first step to be done before publishing the extension would
be to implement an online database to synchronize in real-time the data of all the
users connected. A good candidate could be Google Firebase, since it is easy to
exploit his API to be merged together with the others Google tools used in this
project.

Some important changes concerns the further enhancement of the already
existing features which at the moment presented some margin of improvement
after what had been seen during the usability testing. Talking about those possible
improvements, some of them were thought already during the usability testing.
The button to start the extension, given the constraints of the VS Code IDE

in relation to the visual changes, was hard to detect almost by every user. So,
the best idea would be to highlight even more the existing button. Moreover,
it could be possible to add a related command from the terminal to perform
the same action. The last possible improvement for the activation, based
on the users behavior, would be to have a vocal command to activate the
extension (but in this case the listening should be enabled from the beginning
and triggered only by the right commands or keywords).

The method to deactivate the listening could be improved aswell. While
the button was easy to find after the first task, many users tried to use the
chat or a vocal command to order to the agent this action. The most natural
implementation could be to add an intent that matches the will of the user to
disable the listening.
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Another important aspect that became way more prominent during the testing was
the needs to have better defined fallback answers from Veronica. Some
output should define better what the agent is expecting without distorting
the feel of the conversation. Moreover, there should be additional controls all
over the conversational patterns, to prevent the user from being stuck also on
easier situations.

However, it is important to point out that many fallback has been defined on
purpose simpler, since it is possible to add a lot of phrases to match the user
utterances. The management of the unexpected input was not the main focus of
this study, hence it is advisable to improve it for a possible use in the field.

Beside the natural upgrades that we thought by watching the usability testing, a
debriefing interview has been performed to listen the participants impressions and
gather possible good idea to be implemented. Some of those ideas seemed worth to
be mentioned because of the recurrence in many users’ interviews or because of
their suitability with this kind of chatbot:

Many users expressed the need of a more descriptive help command, speci-
fying that only knowing that Veronica can do, without an explanation on how
to proceed isn’t enough for a newbie. A similar request was to adapt more
detailed help commands for each feature, in order to allow the chatbot to
cover a specific functionality in a broader way. Another user asked to provide
a sort of menu in the chat after the activation (similar to the menus present
in the telegram’s bot) listing all the commands. While this feature could be
very helpful, at the same time is distant from the idea of this conversational
agent, because it would make the interaction feeling different from the one
that we tried to achieve.

Another highly requested feature was to enable the activation of Veronica
thanks to a specific keyword. This is also covered by our assumptions
after the usability testing as expected. While it wasn’t initially implemented,
we also think this feature could be useful, especially if the users are not too
confident on where the button could be the first times.

A subgroup of users suggested some graphical adjustment. The most recurring
one was to add a microphone icon in the activation button, to help its
detection easily and because some of them did not linked the deactivation task
to this button logically. One change worth to mention is also the addition
of a setting icon in the chat to allow a sort of customization of the interface,
together with the possibility to activate/deactivate the bot or the listening.

The need to edit each comment directly also came up, without having to delete
them and then recreate it in the same place.
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Conclusions and Future improvements

Finally, a user suggested a new feature in line with the philosophy of the chatbot,
which is to understand what the user is searching online and provide a
prototype of it directly in the code together with the URL. While the request
seems to be useful, it has to overcome the constraints given by the Visual
Studio Code IDE and a deeper level of Machine learning should be involved.

Given all our assumptions and the ideas given by the users, there is a great
margin to improve even more Veronica.
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