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Summary

ContrattiPubblici is a search engine and business intelligence tool for pro-
curement contracts issued by the Italian public administration. Few contracts
contain typographical errors, where their amount or duration are abnormal,
either excessive or insufficient for the supply object of the contract.

Contracts contaminated with errors spoil the quality of the information
displayed by ContrattiPubblici. Even if rare, any information derived by
aggregating contracts will eventually be biased by such errors. Here arises
the need of identifying and removing contracts having typographical errors.
A collateral objective to find contracts showing errors is to score how reliable
the information displayed by the contracts is.

The task is to develop an unsupervised anomaly detector able to indentify
which contracts display wrong information with regards to their amount and
duration.

After the removal of missing values, the data set consists of a table of
755660 rows. Each row is a contract issued by a contracting authority in the
Veneto region from 2016 to 2018. The data set is not annotated, hence the
task is unsupervised. The features characterize the contracts identifying the
contracting authority that issued the contract, the firm to whom the contract
is awarded, the so-called business entity, the value of the supply, the object
of the supply, the start date of the contract and its termination, the type of
awarding procedures, i.e. how to contractor chooses the supplier.

The lack of an annotated data set impedes the evaluation of the effective-
ness of outlier detectors. Thus we opted for developing a baseline model with
which compare more advanced ones.

The baseline model is an ensemble of a set of heuristics developed with
the aid of a domain expert, named rule model and a statistical model that
detect which contracts lie in the tails of their variable probabilistic distribu-
tions, thus the name tail model.

The rule model heuristics find anomalous contracts that 1. have amount
values bigger than both the annual expenditure of the contracting authority
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and the annual specific revenue of the supplier firm; 2. are direct assignments
or assignment under framework agreement and their contract duration lasts
longer than ten years; 3. have an amount value bigger than twenty-five times
the annual specific revenue of the business entity.

The tail model embodies the idea that anomalous contracts reside in the
upper or lower tails of a distribution of contracts grouped by contracting
authority or business entity. The distributions of the amount variable and
the duration variable are not known. For this reason, the model applies
the Chebyshev’s inequality that does not assume any distribution of the
data. The contracts flagged as outliers by the rule model and the tail model
comprise the ground truth with which compare the next models.

The data preparation step consisted in removing of all contracting au-
thorities and business entities having less than ten contracts. Then, Con-
tracts are grouped by contracting party and to each group is applied the
following pipeline: normalization, Box Cox transformation, normalization.
Afterwards, each contract is enriched with the mean, variance and skewness
computed on the group the contract belongs to.

The advanced models are a kernel density estimator (KDE), a Gaussian
mixtures model (GMM) and a one-class support vector machine (OCSVM).
The multivariate nature of these models overcome the limitation of the base-
line model of searching outlier considering one feature at a time. On the one
hand, KDE and GMM assume that typographical errors seldom appear. If
the contract probability density is know, then contracts have a lower prob-
ability. On the other hand, OCSVM assumes that anomalous contracts are
well separated in the feature space the model projects the contracts onto,
distinguishing them by means of euclidean distance. The reason behind the
choice of shallow learners in place deep learners resides in necessity of having
an outlier detector that does not requires a vast statistical background to
interpret their results and it is easy to implement in a production setting.

The KDE parameter that affects the most the resulting probability density
estimate is the bandwidth. The optimization of the KDE’s bandwidth
paratemer is carried out by minimizing the mean integrated squared error
(MISE). Its optimization is carried out by minimizing the mean integrated
squared error (MISE). In the literature there are three alternative ways. The
first assumes that the data distribution is normal. The second minimizes the
asymptotic mean integral squared error with an iterative process that would
require an infinite number of steps unless the assumption of normality of
the data distribution "plugged in" at a given step; in our experiments is the
second step. The last bandwidth selector uses cross validation to approximate
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the MISE. The implementation of the aforementioned bandwidth selectors
originates three different models: KDE normal scale (NS), plug in (PI) and
cross validation (CV).

The GMM’s parameters are optimized minimizing the Bayesian informa-
tion.

The OCSVM’s contamination parameter is set to match the ratio of out-
liers found by the baseline model. The kernel used is a Gaussian radial basis
function with gamma defined as the inverse of the product of the number of
features and the average variance of data set columns.

Results.The training test split is 70-30 percent of the contracts whose
awarding procedure is open. On the one hand, the discriminative approach
embodied by OCSVM leads to poor results. It performs slightly better than
a random guesser, as it average AUC is 0.510. The results suggest that the
outlier are not well separated in the feature space.

On the other hand, the generative approach yields better results, all the
KDE models and the GMM AUC averages are above the 0.800 threshold,
with the best one being the GMM at 0.840. The better performance of the
generative models is due to the presence of the outliers defined by the tail
model.

The best model is KDE NS. The ROC curve shows that the model does
not assign high probabilities to any outlier. Considering as the outlier class
as the "positive class", the threshold that maximizes the specificity at .9895
flags 1% of the total number of cases, while sensitivity is 0.0556. Conversely,
the threshold that maximizes the sensitivity at 1.00 flags 42% of the total
number of contracts. Comparing the outliers flagged by the baseline with
those of the advanced is a flawed by the fact that not all the anomalous
contracts are found by the baseline model. Hence, a manual check of the
contracts classified as outliers by the KDE model is needed. The research
shows that all contracts flagged as outliers lie in tail of either the duration
or amount feature, thus exceeding the ability of the tail model. Among these
contracts, the almost ten percent of them are typographical errors. Yet, there
exists typographical errors that are not flagged by the model.
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Chapter 1

Introduction

1.1 The necessity of an anomaly detection
tool

The web portal ContrattiPubblici.org provides a set of tools for private com-
panies and public administration entities to improve their knowledge of the
public procurement market from a business intelligence perspective. The por-
tal may show users the overall dimension of the market they are interested
in, where the public entities that have already bought that good or service
are located, what was the quantity exchanged, the type of award procedure,
or other related information.

The granularity of the user’s research is limited to a single contract. In-
deed, the contracts are the atomic elements of the database that constitutes
the query tool of the portal. This database collects those contracts issued by
the general government, hospitals, universities, public authorities, and pri-
vate companies, even partially own by the government. From now all these
entities will be called public entities.

Every public entity is bound by Italian law 1 to provide the general public
with a file that summarizes the content of the contract. Then, this file
is processed and eventually cleaned up before reaching the main database
where it will be incorporated by users’ queries.

To provide customers with the most accurate and reliable information, the
data must not contain outliers or errors. Among the features that character-
ize a public procurement contract, the most sensitive is the amount, that is

1L. 190/2012
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1 – Introduction

the value of the contract. Outliers regarding the value of the contract may
lead users to overestimate or underestimate the market or, more in general,
to retrieve misleading, when not utterly deceitful, information. Hence, out-
liers must be recognized, eventually flagged, or deleted from the main data
set.

This thesis aims at detecting and analyzing the outlier contracts, supplying
a tool to further clean the data set and improve the quality of the service
provided to the customers of ContrattiPubblici.org.

1.2 Legislative framework
In 2012 the Anti-Corruption law established the National Anti-Corruption
authority, ANAC. Its main purpose is to watch, prevent, and contrast cor-
ruption and illegality in public administration [2]; among its duties, the ad-
ministrative authority supervises public procurement.

Every six months the public administrations are requested to issue and
update the list of provisions regarding the authorization or concession; the
choice of the tender for the committed works, supplies, or services [3], specify-
ing the roles assigned to each tender and the amount spent, if any. Moreover,
public administrations have to issue contracts signed with private subjects
or other public administrations [2].

To fully achieve the transparency the Anti-Corruption law aims at, in-
formation regarding the contracts signed by public entities must be made
accessible to everyone. The Freedom of Information Act (FOIA) grants ac-
cess to information held by the public administration to the general public.
The act allows the citizen watch over the public administration’s activities,
which was previously limited to the public authority ANAC.

The Freedom of Information act translates into the possibility for citizens
or private companies to download from the internet the list of the provisions
public entities have to deliver to the ANAC authority in a machine-readable
format.

1.2.1 The public procurement contract
The entries in the data set object under analysis are the contract lots for
public procurement. The law regulating the matter is the Italian Public
Contract Code. According to article 1, this Code establishes rules on pub-
lic procurement contracts and concession contacts by contracting authorities

12



1.2 – Legislative framework

and contracting entities of services, supplies, works as well as on designs
contests. [4]. The parties of the contract are the contracting entities and the
economic operator. With contracting entity, the code refers to State public
administrations; local public authorities, such as municipalities; the bodies
governed by public law, such as hospitals or the Italian National Institute
for Social Security (it. INPS); the central purchasing bodies, i.e. consortia of
usually small contracting entities to improve their bargaining power; public-
owned companies. (art.3 letter e) With economic operator, the code refers to
any business entity, that is, any legal entity whose purpose is to gain prof-
its, that offers the execution of works and/or, the supply of products or the
provision of services on the market; (art.3 letter p).

Among the many procedures regulated by the code - there are almost
forty types - the most common and the most valuable are the open procedure,
the negotiated procedure, the direct assignment and assignment based on a
Framework Agreement.

The open procedure requires a public call of tenders to deliver an offer
for satisfying the needs of the public call. Once the time for bids is elapsed,
the contracting authority selects the best offer, according to their criteria.
Eventually, the authority announces the winner of the contest and generally
explains why that tender won. [4]

The negotiated procedure applies in those cases in which the matter of the
order is sensitive. For this reason, the call is preemptively limited to selected
economic operators satisfying the needs of the call.

The assignment, which we will call direct assignment to distinguish it
from a generic assignment, applies whenever the object of the procurement
is relatively small and not complicated in needs. The assignment may be used
for the purchase of writing materials for the staff of a small municipality or
to carry out out repair work on a boiler. This procedure does not require
an open call; the contracting entity directly assigns the work, supply, and
service to a business entity.

A peculiar type of direct assignment is one based on a framework agree-
ment. The framework agreement is not an award procedure, but rather
a contractual tool [5] that, on a whole, specifies the prices, the minimum
quantities, the maximum delivery time, and all the requirements that the
contracting entity needs for the given order. This distinction is relevant be-
cause the input data set presents it. Yet, the laws that apply are the same
for direct assignment.
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1 – Introduction

1.2.2 Award procedures thresholds
In order to determine the proper award procedure apt to the order, the
contract value and the type of sector are the main drivers of the decision.
The legislation is time-dependent; this is particularly true for the award
procedures’ thresholds as they act as upper limits for the use of the different
procedures. As lower threshold procedures leave the contracting entity a
higher degree of discretion and the execution of the order is significantly
quicker, the thresholds are a matter of political interest and they change
frequently. The data set in use collects the contracts from 1st January 2016
to 31st December 2018; in this time span, the law regarding the threshold is
uniform. The tables 1.2, 1.1 show the thresholds valid at the time.

Works sector
Award Procedure Thresholds [€]
Direct assignment lot value < 150,000

Negotiated procedure 150,000 ≤ lot value ≤ 1,000,000
Open procedure lot value ≥ 1,000,000

Table 1.1: Value thresholds of award procedures for the works sector accord-
ing to the 2018 legislation

Supplies and services sectors
Award Procedure Thresholds [€]
Direct assignment lot value < 40,000

Negotiated procedure 40,000 ≤ lot value ≤ 214,000
Open procedure lot value ≥ 214,000

Table 1.2: Value thresholds of award procedures for the supplies and services
sectors according to the 2018 legislation

1.2.3 Common Procurement Vocabulary
The Common Procurement Vocabulary is a system designed for the clas-
sification of goods, services, and works mandatory for public procurement
in the European Union. The Italian Public Contract Code implements the
European directive [6] that mandates it. The entries of the vocabulary are
nine-digit codes. As the Information about European Procurement web page
reports, the codes incorporate a tree classification system where
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1.3 – Structure of the thesis

• The first two digits identify the divisions (XX000000-Y);
• The first three digits identify the groups (XXX00000-Y);
• The first four digits identify the classes (XXXX0000-Y);
• The first five digits identify the categories (XXXXX000-Y);

Each of the last three digits gives a greater degree of precision within
each category.
A ninth digit serves to verify the previous digits. ( [7])

Whilst the law mandates the classification of public procurement contracts
according to this system, only 7 percent of the contracts report the CPV
code.

1.3 Structure of the thesis
The thesis consists of two parts. The first one describes the input data set and
aims at delving into the its features to develop knowledge and insights. The
second part reports the development of a series of methods to detect outliers
within the data set in the light of the discoveries made in the previous part.

The output of the fist part will be forwarded to the methods of the second;
it can be considered as a pre-process step to the second part.
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Part I

Data Exploration

17





Chapter 2

Materials

The data set collects the contract lots issued by contracting entities located
in the Veneto region spanning from 1st January 2016 to 31st December 2018.

The choice of time and space is not random. In these three years, the
legislation regarding public procurement is uniform. Hence, contract award
procedures are uniquely dependent on the lot amount, not on the starting
date of the contract.

Contracts are confined to a single region because the data set is smaller
than the one collecting the contracts issued by the contracting authority of
the whole country; consequently, it can be handled with ease.

In addition, the regional confinement of the data set allows the possibility
to check whether the model built on the data of a single region is enough
to model the entire country — even if the peculiarities of the Veneto region
must be taken into account for the test to be reliable and sound.

Moreover, even if the data set collected the contracts issued by all Italian
contracting entities, it would still miss the assumption of catching all the
value produced by the economic operators. It is not uncommon to have
an economic operator that works abroad as well. Indeed, a large portion of
public procurement contracts issued by hospitals for the provision of drugs or
vaccines is purchased from international pharmaceutical companies such as
GlaxoSmithKlein or Pfizer. One cannot reasonably assume that the revenues
of these companies are limited to the Italian market.

The data set does not picture the whole public procurement contracts for
the region, but only those issued by the contracting entities located in the
Veneto region. For this reason, the data set does not actually represent the
entire region’s public expenditure. For example, suppose that a contract for
hiring nurses is issued by the State government in place of the single hospital
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2 – Materials

as it usually is; then, the expenditure would not appear in the data set as
the head office of the State administration is in Rome, although a portion of
the nurses hired would actually work in Veneto.

The rows of the relational database are the contracts’ lots, as already
mentioned. A single public contract may cover several sub-calls; these are
called lots as they are partitions of the same contract. Each one of them may
be won by an economic operator. The same firm can win multiple lots of the
same contract.

Moreover, a single contract lot may be assigned to an ensemble of firms.
The ensemble of firms has a leading firm and an array of ancillary firms. A
typical example of this kind of call is the construction of a building. The lead-
ing company manages the subordinate firms that handle the specialized works
that the building requires, such as the thermal plant, the electrical wiring,
or the sewage system. Generally, the leading company receives money from
the public contract and distributes it according to the agreement between
the ensemble of firms.

The amounts of public money received by each firm are not written in the
data set entry regarding their contract lot, hence, in the cases where a lot
is won by more than one firm the sum of money will be equally distributed
among all the winners. In a Bayesian perspective, this is the assumption of
an uninformative prior.

The actual data set consists of two comma separated value files: one de-
scribes the public procurement contracts, and the other assigns a winner to
each contract. The former will be referred to as the lot data set, while the
latter as to the winner data set.

The two data sets will be joined together in order to form a single data
set. Each row will have the tuple (contracting authority issuing the lot, lot
amount, economic operator winning the lot). The semantics of the tuple lies
in the nature of the contract that is defined by the contracting parties and
the object to be exchanged between them.

2.1 The lot data set features
For each entry of this paragraph, the bold text refers to the name of the
features, the italics to the content type of the features, while the text written
with an unmodified font describes the content of the feature.

Lot id integer
The contract lot identifier. The primary key of the database

20



2.1 – The lot data set features

Pa id integer
The identifier of the contracting authority issuing the contract lot. Pa
stands for public authority or public administration, that is a calque from
the italian amministrazione pubblica.

Object string
A brief textual description of the object of the contract lot

Award procedure id integer
The identifier of the contract award procedure

Amount float
The amount spent by the contracting authority

Auction start price float
Whenever the award procedure calls for a dutch auction, the field de-
scribes the starting price for the work, supply, or service commissioned.

Amount paid float
The amount paid by the contracting authority.

Start date date
The effective date of the contract.

End date date
The termination date of the contract.

Inferred date date
The contract start date is extracted by a machine-learning algorithm
from the attached documents.

sector id integer
The code identifies the sector of the commission. The sectors are works,
services, or supplies.

Legal form integer
The identifier of the legal form of the contracting entity.

Uber legal form integer
The identifier of the classification of the contracting authorities into
macro-categories.
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2 – Materials

CPV integer
The first two digits of the Common Procurement Vocabulary code as
inferred by Synapta’s algorithm.

original CPV integer
The complete nine-digit Common Procurement Vocabulary code as writ-
ten in the contract’s original XML file, if found.

The uber legal form specifies a category for contracting entities and busi-
ness entities. The categories are the following:

• Environment and habitats

• State government (it. Amministrazione dello Stato)

• Regional and local government (it. Amministrazione regionale e locale)

• Culture and tourism

• Economics and labor

• Private entity

• Public economic entity

• Public non-economic entity

• Justice

• Education and research

• Public defense

• Healthcare

• Private company or joint venture

2.2 The winner data set features
As for the previous paragraph, for each entry of this paragraph, the bold
text refers to the name of the features, the italics to the content type of the
features, while the text written with an unmodified font describes the content
of the feature.
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2.2 – The winner data set features

Lot id integer
The contract lot identifier. The primary key of the data set. The first
member of the composite key of the table.

Business entity id integer
The identifier of the business entity that won the contract. The second
member of the composite key of the table.

Legal form integer
The legal form of the business entity winning the contract.

Uber legal form integer
The identifier result in a classification of the business entities into macro-
categories. they are the same defined for the contracting authorities
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Chapter 3

Methods

3.1 Data preparation pipeline
The input data undergoes the processing:

1. handle missing values

2. join the lot set and winner set by contract winner

3. features engineering

Finally the data is visualized according to the

3.2 Missing values handling
The majority of the models for machine learning cannot handle missing val-
ues. As the right model is not known a priori, the missing entries are to be
removed.

The winner data set does not present any missing values; table 3.1 shows
the percentages of missing values for each feature of the lot data set.

To reduce the number of missing values, those values missing a column
may be replaced by those belonging to another column but having similar
content.

The cases where the start date is missing are replaced with inferred date.
Albeit the amount paid may replace the amount — the amount paid by the

contracting authority should be comparable when not similar to the amount
written in the contract — in practice, it is not a viable substitution. Indeed,
the amount paid column accounts only for the sum the contracting authority
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3 – Methods

Feature N/A percentage
Lot id 0.000000
Pa id 0.000000
object 0.012878

Award procedure id 0.096727
Amount 0.396962

Auction start price 98.109166
Amount paid 30.442027

Start date 31.450964
End date 34.544839

Inferred date 0.033930
Sector id 2.858028

Legal form id 0.000000
Uber legal form 0.001302

CPV 12.254250
CPV true 93.756977

Table 3.1: Percentages of Not Available entries for each feature of the lot
data set.

paid at the time the XML file was sent. The auction start price may replace
the amount; the auction start price is an upper limit to the amount that will
be assigned in the procedure. The substitution leads to unwanted outcomes,
as it will be shown later; hence, it is discarded.

When possible, the CPV true replaces the CPV column. Since the CPV
true reports eight digits, only the first two are kept to maintain uniformity
with the CPV column.

The object column is replaced by the CPV column. This column contains
plenty of useful information regarding the supply, service, or work object
of the procurement. However, the extraction overly complicates the outlier
detection analysis, which would require a natural language processing model.
The latter should be validated on the CPV provided by the original contracts.
The training and validation of such a model have been the object of a previous
master of science thesis [8]. The results of Amato’s work lie in the CPV
feature. The object text first undergoes a classification according to a set of
regular expressions. Those rules the text do not cover, yielding a void CPV
code, is further classified with a Random Forest model. As the accuracy
score on the test is a satisfactory 86 percent the CPV column replaces the
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object column.
The biggest problem the model is going to face is that a CPV limited to

the first two digits of the actual CPV (the so-called CPV division) covers
an excessively broad spectrum of items. For instance, division 33 represents
the medical equipment, pharmaceuticals, and personal care products that in-
cludes, among the others, ophthalmology equipment and dental mirrors. For
the ophthalmology equipment, the prices range from the third order of mag-
nitude to the fifth, while a single dental mirror average about ten euro.

After the substitutions so far mentioned, the columns dropped are object,
auction start price, amount paid, inferred date, sector id, CPV true.

The sector id is dropped as it is redundant with the CPV column. Indeed,
the CPV codes whose division is less than 45 are supplies, if their division is
equal to 45, they are works, otherwise, they are services.

At last, all the rows with at least one N/A are dropped. Any solution to
input the missing values is discarded: the yielded table is large enough —
it counts 755660 rows — to compensate for the number current number of
features.

3.3 Data sets join

To form the tuple (contracting entity, lot value, business entity) the lot data
set and the winner data set are to be joined together. The joining key is
the lot identifier. The lot data set has 1,382,247 rows; the winner data set
has 917,316 rows. As it is evident, not all lots have a winner. Moreover,
not all contracts in the winner table occur in the lot data set. The need
of information from both the tables reduces the join options to only the
inner-join, an alias for the θ-join in terms of relational algebra.

Because a contract lot may be assigned to an ensemble of firms, there may
be more than one business entities resulting as the contract winner in the
winner data set. This entails the fact that the value of the lots assigned
to more than one firm is multiplied across the data set by the number of
winning firms. To reduce the error, the lot amount is equally divided among
all the lot winners, implicitly assuming an uninformative prior. Actually, the
lot amount is shared among the ensemble of firms by their leader according
to agreements between them, but the information is not known.
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3.4 feature engineering
The tabular representation of the public procurement contract consists of the
following features:

exp float
the sum of all the lot amounts issued by the contracting entity along the
year of the issue date of the contract.

rev float
the sum of all the lot amount won business entity along the year of the
issue date of the contract. Then, it is taken the median over the three
years.

amount float
the lot value

cpv integer
the Common Procurement Vocabulary division of the contract

proc integer
the type of public contract procedure

duration integer
the number of days result of the difference between the contract termi-
nation date and start date

n winner integer
The number of winners of the same contract lot

pa mean float
sample mean computed over the distribution of contracts that are issued
by contracting authority of this contract

pa std float
sample standard deviation computed over the distribution of contracts
that are issued by contracting authority of this contract

pa skewness float
sample skewness computed over the distribution of contracts that are
issued by contracting authority of this contract
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pa kurtosis float
sample kurtosis computed over the distribution of contracts that are
issued by contracting authority of this contract

be mean float
sample mean computed over the distribution of contracts won by the
same business entity of this contract

be std float
sample standard deviation computed over the distribution of contracts
won by the same business entity of this contract

be skewness float
sample skewness computed over the distribution of contracts won by the
same business entity of this contract

be kurtosis float
sample kurtosis computed over the distribution of contracts won by the
same business entity of this contract

The purpose of this thesis is to determine which contract lots are out-
liers. Hence, we have to build a model of the public procurement contract.
Ideally, any contract requires at least two parties, and the definitions of the
obligations of each party to be due to the other. In the public procurement
contract case, the parties are the contracting entity and the business entity,
while the obligations are the provision of work, service, or supply for the
business entity and the exchange of money for the contracting entity. A first
version of the model for a public contract is given by the tuple

contract = (contracting entity, business entity, provision object, date).
(3.1)

This model is rather abstract. Let’s make it more tangible. The con-
tracting entity and the business entity are represented by their ids in the
data set. This representation is not satisfactory. The number of business
entities is 71,455 while that of contracting entities is 1,752. A standard fea-
ture encoding technique like the dummy variables would cast the curse of
dimensionality on the features: a sparse data set where all cows are black.

A simple solution is possible: the contracting authority may be replaced
by its total annual expenditure, and the business entity by its gross revenue.
On the one hand, this solution provides an estimate of the dimension of
the contracting parties. The underlying hypothesis is that the higher
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the annual expenditure or the revenue, the bigger the lot value; at
least, this dimension should be an upper limit for the value of the contract
provision. On the other hand, reducing the peculiarities of a contracting
authority or a business entity to a single number may lead to an oversim-
plification of the entities. While the contracting entity’s annual expenditure
can be accurately accounted for by the sum of all the lot amounts issued
by the same entity, the same is not true for the business entities. The sum
of all the lot amounts won by the same business entity is only a portion of
the gross revenue of that firm, unless the model assumes that the business
entities work only for the public sector; yet the hypothesis hardly holds the
test of reality. Nonetheless, with the given data set, the business entity’s an-
nual lots sum and the contracting authority’s annual expenditure are among
the few features one can easily extract. The other way to compensate the
oversimplification is to add the uber legal form feature.

The second to last dimension of the model 3.1 is the provision object.
The feature accounts for the object of the procurement; this may be the
execution of a work, such as the building of a new facility, a service, such as
the hiring of a new staff member, or the supply of a new item, such as medical
instruments. The only features given by the data set are the lot value v, the
CPV division CPV, and the type of procedure. All the characteristics of the
possible provisions mentioned earlier are not given, hence the feature cannot
be further complicated at this stage.

Last but not least, the time dimension. Every contract has a date a issue,
and may have termination date. The difference between them yields the
duration of the contract. The duration is a relevant feature in predicting
the amount of the contract: a longer duration should imply a higher
amount; this hypothesis will be verified in the next chapter. The duration
is expressed in days. More precision is not needed in this context.

It is common knowledge that prices are inherently a time-dependent. For
instance, prices increase according to the inflation. Yet, in the context of
engineering the features of a contract, the time dimension is hard to employ.
Even if the contract specifies the object of the provision, the quantities are
usually not contained in the XML files that makes this data set. The usual
object for a time series analysis of prices is the unit amount. The contract
usually displays the total amount to be bought; seldom the price per unit.
Additionally, even the object of the provision may not be clear. As stated
above, inferring the object of the provision from the object field is out of the
thesis’ objectives, hence, the object is replaced by the CPV division which is
a classification so broad it cannot reasonably be used to determine the object
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of the provision. Thus, the start date and the end date of the contract are
discarded from the model.

A natural dimension for the contract is the year. Several contracts have a
duration expressed in years as the public procurement contracts are tied to
budgets that are defined by the yearly Italian budget laws. for this reason,
the inherited way to circumscribe the contract model is the year: the annual
contracting entity expenditure, the annual business entity specific revenue. In
order to provide for each contract a single value to distinguish the contracting
entity and one for the business entity, a choice must be made about the
aggregating function. A common choice would be the average among the
three years the data set spans. Yet, the mean is biased in the presence of
outliers. A more robust option is the median.

The underlying assumption behind the choice of the median is that the
contract distributions is sufficient to describe the dimension of the contracting
parties. The hypothesis can be partially verified by testing whether
the distributions over the three years differs. The Kullback-Leibler
divergence measure how much two distributions differs. These computations
are displayed in the next chapter.

To give models more information about the distribution of the contract
lot amount of each business entity and contracting authority, we computed
the variance, the skewness and the kurtosis such distributions.

The skewness is defined as the third standardized moment of a random
variable E[(X − µ)3] = µ̃3, while the kurtosis as the forth standardized
moment E[(X − µ)4] = µ̃4.

Each contracting party has a minimum of ten awarded contracts over the
three years, hence we cannot assume to have the whole distribution as the
definitions of skewness and kurtosis require. For this reason, we employ
the sample moment mr = 1

n

q(xi − x̄)r and we derive the sample skewness
g1 = m3/m

3/2
2 and sample (excess) kurtosis g2 = m4/m2

2 − 3. Unfavorably,
such estimators are biased. Finally, to overcome their biases, we deploy
the definition of sample skewness and kurtosis computed as ratios of biased
cumulant estimates [9].

Unbiased skewness:

G1 =
ñ

n(n − 1)
n − 2 g1

Unbiased kurtosis:

G2 = (n − 1)[(n + 1)g2 + 6]
(n − 2)(n − 3)
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3.5 probabilistic distribution visualization
For the sake of a simple visualization of the data set distribution, the the
uni-dimensional histogram is the statistical tool of choice. The histogram
offers a discrete visualization of the theoretical distribution that generates
the data. Indeed, it can be even devised as an outlier detector.

The most important histogram parameter is the bin width. The choice
of such parameter determines whether the distribution visualization actually
represents the theoretical true variable distribution, either warps its percep-
tion.

The question of which bin width determines a histogram that better de-
scribes the actual distribution has been posed before. In the literature there
are two commonly used rules to choose a good bin width: that developed
by Stuges in 1926 [10] and that developed by Freedman and Draconis in
1981 [11].

Sturges’ rule that assumes that a good approximation of a continuous
random variable is a symmetric binomial distribution X ∼ Bin(n, 0.5) where
n is the number of independent and identically distributed variables sampled
from the theoretical distribution.

Sturges’ rule works well when the original distribution is normal, thus
its inevitable shortcomings when this condition is not met. Draconis and
Freedman showed that is a bin width w given by

w = 2IQR(x)
3
√

n
(3.2)

minimizes the mean squared error δ2 between the original probability density
function f(x) and the bars height H(x) for the given continuous random
variable X:

δ2 = E
5Ú

(H(x) − f(x))2
6

. (3.3)

All the histograms’ bins width are computed according to the Freedman
Draconis rule.
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Chapter 4

Visualizations

4.1 Business entity specific distribution by
specific revenue and number of awarded
lots

Several business entities appear only once in the data set. It is not stati-
cally sound to infer anything about the business entities which there are not
enough data of; especially if their dimension is inferred by the median annual
specific revenue, where specific revenue is the sum of all the public contracts
awarded to that business entity.

As a consequence, the contracts awarded to business entities with a lower
prevalence must be cut off: all the contract lots awarded to business entities
that in any year won less than n lots are discarded.

Yet, this cut off is too strict for our purposes. The new cut off threshold
is the number of contracts awarded to a single business entity over the three
years; if such number is less than 10 units, then the business entity and all
its awarded contracts are removed from the data set.

The data set rows narrows from 755,660 to 599,177 contract lots.
Figure 4.1 shows how much each threshold for n would impact the dis-

tribution of business entities dimension. The x-axis counts the number of
contracts awarded to a business entity in a year. The y-axis counts the num-
ber of business entities having at least x contracts awarded in a year. The
color of the bar accounts for the business entity dimension; each color is as-
signed to a specific revenue step. Each step is by order of magnitude. The
absence of a color is due to low prevalence of that specific revenue order of
magnitude in the data set. The graph shows that as the number of contracts
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Figure 4.1: The x-axis counts the number of contracts awarded to a business
entity in a year. The y-axis counts the number of business entities having at
least x contracts awarded in a year. The color of the bar accounts for the
business entity dimension; each color is assigned to a specific revenue step.
Each step is by order of magnitude. The absence of a color is due to low
prevalence of that specific revenue order of magnitude in the data set. The
graph shows that as the number of contracts awarded to a business entity
grows, the business entity with a lower specific revenue shrinks

awarded to a business entity grows, the business entity with a lower specific
revenue shrinks. With a threshold of n = 10 minimum yearly number of
awarded contracts per business entity, the business entities with a median
annual specific revenue within one thousand and ten thousands euro almost
disappear.
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4.2 Probabilistic distributions of features

4.2.1 Award procedure feature

The award procedures describe how the contract lots are going to be assigned
for the given public call. Figure 4.2 shows that considering only the open
procedure, the negotiated procedure, the assignment under framework agree-
ment, and the direct assignment procedure, the number of rows narrows to
the 87.11% of the total, while, from a business perspective, the sum amount
shrinks to the 89.52% of the total expenditure for the public procurement.

For the purpose of reducing the complexity of the classification, this anal-
ysis will encompass only procedures stated above, that are, the open proce-
dure, the negotiated procedure, the assignment under framework agreement,
and the direct assignment procedure.

(a) Number of lots per procedure (b) Sum of lot amount per procedure

Figure 4.2: Number of lots and sum of the lot amount per award procedures.
The first four award procedure codes identify the assignment under frame-
work agreement (26), the piecework assignment (8), the direct assignment
(23), the negotiated procedure (4), and the open procedure (1).

A few remarks on the graphs. Histograms in 4.3 suggest that the lot
amount variable is log-normal, given that each procedure its own mean and
variance. Figure 4.3a presents the peculiarity of two spikes at 40k euros and
100k euros. That are the Italian law thresholds for the public procurement
contracts. The contracts lots that exceed the law threshold of 100 thousands
euro should be illegal, yet as we consider them lawfully exceptions.

On the one hand, the business entity median annual specific revenue his-
tograms 4.4 and the contracting authority median share the fact that there
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are few entities with a large share of the market. On the other hand, the busi-
ness entities histograms look more log-normal, while the contracting entities
one look uniform, with few entities of the right tail. Figure 4.4a shows few
bars because the bar width is so thin they do not appear in the figure. The
contract lot whose won by a business entity with a median annual specific
revenue over 300K euro are 1179.

The duration histograms 4.6 look like the original distribution is log-
normal. Each procedure type presents its peculiarities: the direct assignment
has spikes around the year and 2 years thresholds; for in the negotiated pro-
cedures these spikes are strongly marked at every year; the open procedure
and assignment under framework agreement have a higher kurtosis.

(a) Direct assignment (b) Framework agreement assignment

(c) Negotiated procedure (d) Open procedure

Figure 4.3: Histograms of the lot amount variable by procedure type

Figure 4.7 shows the award procedure clusters. In order to have a better
view, the assignment under framework agreement and the direct assignment,
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(a) Direct assignment (b) Framework agreement assignment

(c) Negotiated procedure (d) Open procedure

Figure 4.4: Histograms of the business entity median annual specific revenue
variable by procedure type

and the negotiated procedure are down-sampled to match that of the open
procedure.

Observing the entire scatter plot, the the cluster is mostly globular with
some regions with different densities. This peculiarity suggest the use of
statistical models that take advantage of this structure, such as the Gaussian
mixture models.

4.2.2 Common procurement vocabulary feature
The common procurement vocabulary division codes classify the object of the
procurement. They are required by the European Regulation No. 2013/2008.

Figure 4.8 shows that narrowing the CPV divisions to medical equipments
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(a) Direct assignment (b) Framework agreement assignment

(c) Negotiated procedure (d) Open procedure

Figure 4.5: Histograms of the contracting entity median annual expenditure
variable by procedure type

(33), construction works (45), public utilities (65), and health related services
(85), the number of rows shrinks to 20.28% while the sum of the lot amount
accounts for the 66.62% of the total.

To simplify the inspection, the CPV divisions considered are the 33, 45,
65, and 85.

Most of the procurement contracts are issued by the regional local health
firms such as Azienda ULSS 3 Serenissima, Azienda ULSS 2 Marca Trevi-
giana, by Azienda Zero, a public entity for purchasing health realated goods
for the entire Veneto Region, and by the local government.
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(a) Direct assignment (b) Framework agreement assignment

(c) Negotiated procedure (d) Open procedure

Figure 4.6: Histograms of the contract duration variable by procedure type

CPV division
Award procedure 33 45 65 85
open proc. 0.0066 0.0039 0.0001 0.0014
restricted proc. 0.0363 0.0183 0.001 0.0022
direct ass. 0.6234 0.0749 0.0261 0.025
framework ass. 0.1733 0.0012 0.0056 0.0008

Table 4.1: CPV and award procedure joint distribution
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Figure 4.7: the award procedure clusters. The axis scale is log10. Due to
their cardinalities, the assignment under framework agreement, the direct
assignment, and the negotiated procedure are down-sampled to match that
of the open procedure.

4.3 Analysis of the time variable

4.3.1 Problems of defining the object of the time series
When speculating about the public contract features, it comes naturally to
theorize the contract as time dependent. The amount feature is the price
of a work, service, or goods; prices are time-dependent; then, the contract’s
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(a) Number of lots per CPV division (b) Sum of lot amount per CPV division

Figure 4.8: Number of lots and sum of the lot amount per CPV division.
The first CPV divisions by sum of lot amounts identify medical equipments,
pharmaceuticals and personal care products (33), Construction work (45),
Public utilities (65), Health and social work services (85).

feature amount is time-dependent.
The main problem with the approach is that with the given contract in-

formation are not enough to accurately determine the exact object of the
procurement and the quantity bought. The only information available is the
Common Procurement Vocabulary division, which is too broad of a definition
to hold the assumption of temporal continuity [12], which states that data
patters should not change abruptly.

4.3.2 Contracts clustered by year
The model assumes that the contracting entities and the business entities can
be represented by their median annual expenditure and their median annual
specific revenue. Even though this hypothesis cannot be tested for the single
entity, a test can be set up to measure whether the whole distribution changes
over the years.

A rather empirical way to have a first impression of the phenomenon is to
plot a point for each contract lot. Figure 4.14 shows the results. It is clear
that the cluster overlap.

A common method to measure the separation between the cluster consists
of computing the distance between the centroids of the clusters [13].

separation(Ci, Cj) = proximity(ci, cj) (4.1)

where a measure of proximity can be any distance metric. In our analysis,
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(a) Medical equipments (33) (b) Construction work (45)

(c) Public utilities (65) (d) Health and social work services (85)

Figure 4.9: Histograms of the amount feature grouped by CPV

this measure is the euclidean distance. This definition of separation applies
especially if the cluster are prototype-based, as Tan et al. call them, that is,
the cluster can be represented by their centroids and they are globular.

To compute the distances between each couple of centroids, each dimension
has been projected into the log10 space, centered removing their median, and
normalized with the interquartile range.

Table 4.2 shows the euclidean distances between each couple of centroids in
the log-normalized space. The magnitude of the distances is not high, but it
is not negligible. Figure 4.15a display that the difference in the amount value
between 2016 and 2018 amounts to more the 20 thousand euro. The incre-
ment may be due to and increment in the total volume of goods exchanged;
indeed, figures 4.15b, 4.15d support the hypothesis of increased volume as a
higher amount is correlated with a bigger expenditure and a bigger specific
revenue. Another explanation for the increment is the increased government
public expenditure: during the from 2016 to 2018 there was a 3 percent
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(a) Medical equipments (33) (b) Construction work (45)

(c) Public utilities (65) (d) Health and social work services (85)

Figure 4.10: Histograms of the business entity median annual specific revenue
feature grouped by CPV

2016 2017 2018
2016 0 0.0041 0.0311
2017 0 0.0310
2018 0

Table 4.2: Euclidean distances between each couple of centroids of the data
clustered by year

increment.
To sum up, is the data set actually independent from time? No, but this

thesis assumes it is. The complexity that denying the time-independence
assumption entails is out of the scope of this thesis. A simple and not ex-
haustive way to keep into consideration the time dimension is to add the year
dimension as a set of dummy variables.
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(a) Medical equipments (33) (b) Construction work (45)

(c) Public utilities (65) (d) Health and social work services (85)

Figure 4.11: Histograms of the duration feature grouped by CPV

year 2016 2017 2018
PA expenditure 832,265 846,821 857,245

Table 4.3: Italian Public Adminitration (PA) expenditure. Values expressed
in millions of euro. Source: ISTAT [1]

4.4 Pearson Correlation of the numerical fea-
tures analysis

Figure 4.16 shows that Pearson correlation of the model continuous features.
The highest correlations are:

• business entity’s amount standard deviation and the business entity me-
dian annual specific revenue (0.56).
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(a) Medical equipments (33) (b) Construction work (45)

(c) Public utilities (65) (d) Health and social work services (85)

Figure 4.12: Histograms of the duration feature grouped by CPV

• public administration amount standard deviation and public adminis-
tration median annual expenditure (0.8);

• public administration amount skewness and public administration me-
dian annual expenditure (0.61);

• public administration amount kurtosis and public administration median
annual expenditure (0.61);

• public administration amount skewness and public administration amount
standard deviation (0.56);

• public administration amount kurtosis and public administration amount
standard deviation (0.57);

• public administration amount kurtosis and public administration amount
skewness (0.97);
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Figure 4.13: CPV clusters. The axis scale is log10. To make clusters more
visible, the medical equipment, construction work, and public utilities are
down-sampled to match that of the health services.

The correlation coefficient suggest that

• business entities that have higher annual revenue tend to have a higher
degree of variation in contract prices;

• the same applies for contracting authorities: higher expenditures corre-
lates with a higher variance of contract prices;

• the amount distribution of contracting entities is skewer and wider for
those having a substantial annual expenditure;

• the amount distribution of contracting entities that have a higher skew-
ness highly correlate with a high kurtosis distribution.
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Figure 4.14: Scatter plot of the contract lots grouped by year.
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(a) (b)

(c) (d)

Figure 4.15: Centroids’ amount feature plotted against the other features.
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Figure 4.16: Pearson Correlation of continuous features
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Part II

Outlier detection
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Chapter 5

Background

5.1 Problem definition
The problem of anomaly detection is going to be defined in this section. We
will pursue a probabilistic perspective. The structure of the definition follows
that of [14].

Let X ⊆ RD be the data space yielded by an application; in our case, X
coincides with the space of all possible contract lots. In order to have an
anomaly detection, we need to assume that there exists a concept of normal
behavior, by which we can tell if a contract lot is normal or deviates from
the normal; let P+ be the distribution ground-truth of this normal behavior,
and p+(x) is the respective probability density function. Then, we define the
set of anomalies as

A = {x ∈ X | p+(x) ≤ τ}, τ ≥ 0, (5.1)

where τ is some probability threshold.

5.1.1 Types of anomalies
There are three types of anomalies: point anomalies, contextual anomalies,
and group anomalies. Point anomalies are individual observation that x ∈
A. Contextual anomalies are observation that are not anomalies per se,
as their values are not inherently deviant, but they fall into the category
when considering a conditional distribution P+

X|T where T is the contextual
variable. The usual instance for contextual anomalies is time series, where
the textual variable T is time. The group anomalies are a set of data points
bounded together by some relations. A group of anomalies may occur when
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analyzing the signal from a sensor, such as a seismic sensor, where the group
of anomalies are yielded by an earthquake signal.

Ruff et al. classify the instances of the anomaly set A as anomalies when
abnormal observations are drawn from a distribution different from P+; the
assumption is that the random process that output the anomaly differs from
what it is expected to be normal. Let P− be the ground-truth anomaly
distribution. Then, the anomaly set follows P−. They classify instances as
outliers when they are drawn from the same probability distribution P+,
they come from the same process, bu their probability is low; They classify
instances as novelties when they are drawn from a new region of an non-
stationary P+. These differences are rather abstract and only some authors
introduce these distinctions. Yet, they help up distinguish between the two
types of anomalies may we encounter during this analysis. A contract lot
is an anomaly when there is a typo in its XML file as the process deviates
from the normal behavior of the process of writing the XML file; a contract
lot is an outlier when all the entries of its XML file are correct, but the
combination is infrequent. While the purpose of this thesis is to detect these
anomalies, we are going to determine the outliers, as detecting this type of
anomalies is complex in an unsupervised setting. From now on, we are going
to use the terms anomaly as a super set of outlier.

5.1.2 Concentration assumption
A key assumption for outlier detection is that the normal data region can be
bounded. This assumption is known as the concentration assumption:

X \ A = {x ∈ X | p+(x) > τ}, τ ≥ 0, (5.2)

is non-empty and small. The assumption does not state that the normal
distribution P+ must bu bounded, but that high-density subset is bounded.

Most of the times, we are unable to model the process yielding the dis-
tribution P+ as the process is too complex. One should be able to model
the process of writing the XML files describing the contract lots. A viable
option consists in estimating P+ with the data-generating distribution P,
with p(x) its probability density function. The observation in the data set
x1, ..., xn ∈ X are assumed to be drawn from independent and identically
distributed random variables following P.

We can now revise the objective of outlier detection as density level set
estimation. Let C be the density level set of P, given α ∈ [0, 1],

Cα = {x ∈ X | p(x) > τα}. (5.3)
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Finally, the outlier detector cα : X → {±1} can be defined as

cα(x =
+1 ifx ∈ Cα,

−1 ifx /∈ Cα,
(5.4)

5.1.3 Unsupervised setting
The setting under which we are going to carry out the outlier detection is
unsupervised, as we have only unlabeled data while training the model:

x1, ..., xn ∈ X . (5.5)

Each sample is drawn from i.i.d. random variables following P. For simplic-
ity, we assume that the data-generating distribution coincides with the the
normal law P ≡ P+.

Noise. Another peculiarity of the data set is that its samples inherit ran-
domness, x+ϵ ∼ P, while x ∼ P+. The source of noise is due to the errors the
civil servant writing the contract lot XML file may do. Under the perspective
of noise, the purpose of cleaning the data set from erroneous contract lots
translates into determining which contract lots have been affected by noise,
that is, isolating the noise from the original sample.

The last component describing the data set settings is contamination. The
contamination accounts for undetected anomalies, which are inevitable in the
unsupervised setting. In our context, the source of randomness is due to the
manipulation of the raw data. Some data may be lost or corrupted during the
data transmission between the servers; some data may be wrongly inferred
by the Synapta’s algorithm for inferring lost information.

As these error affect the whole data space X , the contamination affects
both the normal and the anomaly distribution. Thus, denoting η ∈ (0, 1) the
contamination rate, the data-generating distribution becomes

P ≡ (1 − η)P+ + ηP− (5.6)

To sum up, a realistic assumption for the unsupervised setting is that the
samples drawn from P have the form of x + ϵ where bmx ∼ P ≡ (1 − η)P+ +
ηP−.
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Chapter 6

Models

6.1 Baseline model
A first approach in building the baseline model consists in combing out the
contracts that blatantly violate the law. This procedure is easy to implement
as the Public Contract code is clear about the thresholds of contract amount
for each type award procedures. These thresholds are reported in tables
1.1, 1.2. This method failed at determining the outliers from the inliers.
Moreover, this procedure denies the assumption that contracts are lawfully,
that is, contracts are unlawful by chance; for instance, the file reporting an
apparently unlawful contract is corrupted, or was wrongly written by the
civil servant.

The second approach to obtain a first set of outliers and inliers relied on
the knowledge of Synapta’s domain experts. The rules they came up with
are:

1. if a contract lot has a value that exceeds the business entity median
annual specific revenue and the contracting authority median annual
expenditure, while the duration is at most one year, then it is an outlier,
given that each business entity has at least ten contracts per year;

2. if a contract lot is a direct assignment and its duration is longer than
ten years, then it is an outlier;

3. if a contract lot amount is 25 times bigger than the median annual
specific revenue of the business entity that won the lot, then the contract
lot is an outlier.
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6.2 Probabilistic tails and Box Cox transfor-
mation

The Chebishev inequality offers a relation between the standard deviation of a
univariate distribution and and the probability of encountering observations.

By the Chebishev Inequality [12], for a random variable X and a constant
k,

P(|X − µ| > kσ) ≤ 1
k2 . (6.1)

The weakness of the aforementioned expression is that we need k ≥ 10
to achieve probabilities compatible with the the definition of outliers, as
P(|X − µ| > 10σ) ≤ 0.01. Its strength lies in the fact that the it applies no
matter the distribution of the random variable.

The Chebishev inequality is a generalization of the so-called 68-95-99.7 rule
that applies for the normally distributed random variables. For a comparison,
with k = 1, 2, 3 the inequality states that any observation x ∈ X lies outside
the range of k times the standard deviation with a probability lesser or equal
than 0, 25 and 11.1 percent. In the literature the Chebishev inequality is a
considered a weak threshold to define outliers as the constant k must be high
to achieve smaller probabilities of outliers.

The application of the Chebishev inequality follows from the definition of
outlier within the Synapta context. The definition states that

a contract lot is an outlier if, within the regional and time setting,
either its amount lies in any tail of the business entity which is
awarded to, either its amount lies in any tail end of the contracting
entity that issued the contract, either its duration lies in the tail of
its award procedure.

To apply the Chebishev inequality, we need to compute mean and standard
deviation of the amount distribution grouped by business entity, mean and
standard deviation of amount distributions grouped by contracting authority,
lastly, mean and standard deviation of the duration distribution grouped by
award procedure.

The Chebishev inequality assumes that the population mean and standard
deviation are known. By the law of large numbers, the sample mean and
the sample standard deviations statistics effectively replace their population
counterparts when the number of sampling instances is big enough. It is
usually assumed that this number is higher than thirty.
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The number of contract lots grouped by business entity sometimes is less
than thirty, but always more than ten, due to the data preparation step
where the infrequent business entities have been removed. On the other
hand, the number of contracts won by contracting authority and the number
of contracts by award procedure are always big enough.

Another tool to ensure the normality of the distribution is the BoxCox
transformation [15].

y(λ) =


yλ−1
λ if λ /= 0;

log y if λ = 0.
(6.2)

The equation applies to only non-negative values, such is the case into con-
sideration.

Box and Cox obtain the preferred parameter λ as follows. They assume
that the response vector should be Normal;

y(λ) ∼ N(Xβ, σ2In) (6.3)

where y is the response vector, X is the data matrix, and the model param-
eters are (λ, β, σ2) The probability density function is

f(y(λ)) =
exp − 1

2σ2 (y(λ) − Xβ)′(y(λ) − Xβ))
2πσ2

n
n

. (6.4)

Then, Box and Cox maximizes the likelihood to get the optimal λ.

L(λ, βσ2|y, X) = f(y)J(λ, y) (6.5)

where J(λ, y) is Jacobian from y to y(λ). A complete explanation of the
MLE computation for the λ parameter is beyond the scope of this work.

A note: not all distribution can be power-transformed to Normal [16].

6.3 Density estimation with kernel smooth-
ing

The purpose of a kernel density estimation is to estimate the probability
density function of a population from a given sample. Once the pdf is known,
we can set probability thresholds to discriminate the outliers from the inliers.

The following is a summary of [17] chapters 2 and 3.
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6.3.1 Univariate case

Histograms are a discrete estimation of a population probability density func-
tion. Given a sample of independent and identically distributed univariate
random variables Xi, X2, ..., Xn, a histogram is given by

f̂(x; h) = 1
nh

nØ
i=1

1
2✶{−1<

x−Xi
h <1} (6.6)

where the subscript of the indicator function ✶ states the subset where the
variable x takes value one, zero otherwise; the h term is the width of the
bars. The term 1

2✶{−1<
x−Xi

h <1} can be interpreted as a uniform distribution
U(−1, 1) centered at Xi and scaled by h. With the uniform distribution, we
are giving equal value to each x. One can arbitrary set any other distribution
in place of the uniform. If we choose a smooth function, such as the Gaussian

1√
2πh2 exp{−1

2(x−Xi

h )2}, the histogram yields a smooth estimate of the pdf.
The general term for such window function is kernel.

A kernel density estimator for a univariate distribution is given by

f̂(x; h) = 1
nh

nØ
i=1

K(x − Xi

h
). (6.7)

Bandwidth selection The bandwidth parameter h is of paramount im-
portance for a good estimate of the population pdf. The usual quantity for
comparing and evaluating estimators is the mean squared error.

MSE[f̂(x; h)] = E
è
(f̂(x; h) − f(x; h))2dx

é
(6.8)

Yet, this quantity is defined for a given point x of the estimator, while we
would like to have a quantity capturing the whole distribution. A possible so-
lution consists in integrating the mean squared error, the so-called Integrated
Squared Error (ISE)

ISE[f̂(x; h)] ..=
Ú è

f̂(x; h) − f(x; h)
é2

dx. (6.9)

The ISE depends on the sample X1, ..., Xn as f̂ is estimated on the sample.
Instead, we want our error criterion to estimate the population integrated
square error; for this reason, we consider the Mean Integrated Squared Error
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(MISE):

MISE[f̂(x; h)] ..= E
5Ú

(f̂(x; h) − f(x; h))2dx
6

(6.10)

=
Ú
E
è
(f̂(x; h) − f(x; h))2dx

é
dx (6.11)

=
Ú

MSE[f̂(x; h)]dx (6.12)

The assumption that holds up these equation are that the population density
f is square integrable (i.e. the integration of f2 is finite); for this reason, the
Fubini’s theorem holds and we can change the order of integration.

To find the optimal h, we minimize the MISE:

h∗ = arg min
h>0

MISE[f̂(x; h)] (6.13)

In an unsupervised setting, the probability density function of the popula-
tion f is not given. We can approximate MISE by means of cross-validation.

MISE[f̂(x; h)] = E
5Ú

(f̂(x; h) − f(x; h))2dx
6

(6.14)

= E
5Ú

f̂(x; h)2dx
6

− 2E
5Ú

f̂(x; h)f(x; h)dx
6

(6.15)

+ E
5Ú

f(x; h)2dx
6

The last addend of 6.15 is constant as f is square integrable by hypothesis.
Then, to minimize the MISE[f̂(x; h)] is equal to minimize

E
5Ú

f̂(x; h)2dx
6

− 2E
5Ú

f̂(x; h)f(x; h)dx
6

. (6.16)

It can be shown that the an unbiased estimator of MISE is given by Lease
Squares Cross validation (LSCV) estimator (also known as Unbiased Cross
validation (UCV) estimator)

LSCV(h) ..=
Ú

f̂(x; h)2dx − 2n−1
nØ

i=1
f̂−i(Xi; h), (6.17)

where f̂−i(Xi; h) is the leave-one-out kernel density estimated on the sample
removed of Xi

f̂−i(Xi; h) = 1
n − 1

Ø
j=1
j /=i

K

A
x − Xj

h

B
. (6.18)
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6.3.2 Multivariate case
In a multivariate setting, we have that our sample and random vectors
X1, X2, ..., Xn, while x ∈ Rd, d > 1. The kde estimator is given by

f̂(x, H) ..= 1
n|H|1/2

nØ
i=1

K
1
H−1/2(x − Xi)

2
(6.19)

where the bandwidth matrix H is a d × d positive definite matrix, otherwise
|H|1/2 and H−1/2 would not be well defined. The bandwidth matrix H is
a real symmetric matrix with positive eigenvalues. If H is full, then we are
implying correlation between the d variables. If H is diagonal, then we are
assuming that the variables are independent. In our setting, we cannot as-
sume that the variables are independent as the contracting authority annual
expenditure and business entity specific revenue are computed as sum of the
lot amount variable.

Bandwidth selection The considerations for computing the bandwdith
matrix are an extension of the univariate case: we want to minimize the
mean integrated squared error MISE[x; H ]; as the MISE is unfeasible, we
estimated it with its asymptotic version, the AMISE.

The actual formula for AMISE is rather complicated and cannot be com-
puted in practice as they depend on the unknown f . For these reasons, we
only provide the formula for H which assumes that f = ϕΣ(x − µ). It is
called the normal scale bandwidth selector

HNS =
A 4

d + 2

B 2
d+4

Σn−2/(d+4). (6.20)

When variance matrix Σ is replaced by the sample covariance matrix S, we
obtain the estimated ĤNS.

The problem is that we are back into the lands of parametric statistics.
There is an additional selector that tries not to assume the distribution

f , as the normal scale selector does, until a condition is met. The idea is to
estimate f a combination of its derivative up the ℓ order, where ℓ is a positive
integer. As the process it iterative, this kind of selectors are called ℓ-stage
plug-ins, in opposition to the zero-stage plug-ins, such as the normal scale
bandwidth selector, where the f distribution is assumed at the beginning.
This method was proposed by Sheather and Jones [18].

62



6.4 – Gaussian Mixture model

As for the univariate case, another way of estimating the bandwidth is by
means of cross-validation.

LSCV(H) =
Ú

f̂(x; H)2dx − 2
n

nØ
i=1

f̂−i(Xi; H) (6.21)

This estimator is unbiased. Then, the bandwidth matrix is given by

ĤLSCV = arg min
H

LSCV(H) (6.22)

6.4 Gaussian Mixture model
The Gaussian mixture model aims at determining the probabilities of each
point in the data set D by estimating data-generating distribution P.

The model assumes that the data-generating distribution P is the combi-
nation of k distributions. Let us denote Gr the r-th component of the mixture
distribution, and f r(x) its probability density function.

The probability that a data point xj is generated by the mixture model
M is given by

f(xj|M) =
kØ

i=1
αi · f i(x) (6.23)

where αi ∈ [0, 1], i ∈ {1, ..., k} is the prior probability that captures the idea
that a fraction of the data is generated by the component i.

The parameters of each distribution Gr and the probabilities αr are esti-
mated from the data via log-likelihood maximization.

Assuming that each sample of the data set D is drawn from i.i.d. random
variables, the data set’s pdf is

f(D|M) =
NÙ

j=1
f(xj|M). (6.24)

where N is data set number of samples. Then, the log-likelihood is

L(D|M) = log
 NÙ

j=1
f(xj|M)

 =
NØ

j=1
log

 kØ
i=1

αi · f i(x)
 (6.25)

6.4.1 Parameter Optimization
The Gaussian mixture model parameters are
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number of components whose combination is the actual mixture model,

distribution parameters of each Gaussian component.

A Gaussian distribution is entirely determined by its mean and covariance
matrix. The covariance matrix describes the the directions and lengths of
the axes of its density contours. There are four types of covariance matrix

full each Gaussian component has a full covariance matrix Σ ∈ R×M×M ; the
model covariance matrix is a three dimensional matrix where its depth
equal the number of components k.

tied each Guassian component has the same full covariance matrix ΣGM ∈
RM×M , thus they are tied together;

diagonal the contour axis are oriented along he coordinate axes, yet, each
component eccentricities can vary along each axes; the covariance matrix
of each component are diagonal, but each diagonal entry can differ from
one another; Σi = diag(σj), j ∈ {1, ..., M}, i ∈ {1, ..., k} while ΣGM is
three dimensional (k, M, M).

spherical each component have one standard deviation. The covariance
matrix Σ is diagonal but all the diagonal entries are equal; ΣGM =
diag(σi)i ∈ {1, ..., M}.

The standard method to optimize the Gaussian mixture model parameter
relies on the Akaike information criterion [19] and the Bayesian information
criterion [20]. We are going to use the Bayesian information criterion.

Konishi and Kitagawa [21] provide a simple explanation of the Bayesian
information criterion. We are not going to see the whole derivation of the
information criterion; we will revise only their main ideas.

Let Mi ∈ {1, ..., r} be a set of candidate models. Each model is entirely
defined by a parametric distribution fi(x|θi, (θ ∈ Θi ⊂ Rki), and the prior
distribution πi(θi. Given n observations xn = {x1, ..., xn}, the marginal
distribution of xn for the model Mi is

pi(xn) =
Ú

fi(xi|θi)πi(θi)dθi (6.26)

In a Bayesian perspective, pi(xi) is the likelihood relative to the candidate
model Mi, hence marginal likelihood.
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By the Bayes’ theorem, assuming that the prior probability of the i-th
model is P(Mi), then its posterior probability is

P(Mi|xn) = pi(xi))P(Mi)qr
j=1 pj(xn)P(Mi)

, i ∈ {1, ..., r} (6.27)

It is reasonable to assume that models’ priors P(Mi), i ∈ {1, ..., r} are un-
informative, that is, they all have the same probability. As the denominator
probability is shared across all the models, the model having the highest pos-
terior probability coincides with that having the highest marginal likelihood.
Now, the marginal likelihood is not easily obtainable. Schwarz demonstrated
that applying the Laplace approximation the marginal likelihood becomes

p(xn) ≈ exp {ℓ(θ̂)}π(θ̂)(2π)p/2n−2p/2|J(θ̂|1/2 (6.28)

where

ℓ(θ̂) is the log-likelihood function ℓ(θ) = log f(xn|θ)

θ̂ is the maximum likehood estimator for the parameter θ

p is the number of features

n is the number of samples

J(θ̂) = − 1
n

∂2ℓ(θ)
∂θ∂θT evaluated at θ = θ̂

Taking the logarithm, and multiplying the approximated marginal likeli-
hood by -2, we get

−2 log p(xn) ≈ −2ℓ(θ̂) + p log n + log |J(θ̂)| − p log(2π) − 2 log π(θ̂) (6.29)

If we consider only the terms with order greater then O(1), we get the
Bayesian information criterion (BIC):

BIC = −2 log f(xn|θ̂) + p log n (6.30)

Minimizing the Bayesian information criterion yields to a trade-off between
the number of samples n and their number of features p and the maximization
of the model likelihood. The purpose is to balance the eventual over fitness
of a model with the penalty term of the number of samples and features.
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6.5 One-class Support Vector Machine
The one-class support vector machine is a modified version of the commonly
used binary support vector machine classifiers. The algorithm was proposed
by Schölkopf et al. in 1999 [22]. The main model assumption is that inliers
lie in small neighborhood of the origin of the feature space F — assuming
that data is standardized — onto which the model’s kernel projects them.

Consider the training data xi, ..., xn ∈ X , where X ⊆ RD is the data
space. Define the feature map Φ : X → F such that the dot product of two
images Φ(x), Φ(y), x, y ∈ X can be computed by evaluating a kernel

k(x, y) = (Φ(x) · Φ(y)). (6.31)

To separate the outliers from the center of gravity of the, the authors
developed the quadratic problem

min
w∈F, ξ∈RD, ρ∈R

1
2wT w + 1

νn

nØ
i=1

ξi − ρ (6.32)

subject to (w · Φ(xi)) ≥ ρ − ξi, ξi ≥ 0 (6.33)

where

w is the vector representing whose entries are separating-hyperplane coeffi-
cients to be estimated;

ρ is the hyperplane bias term;

ν is the contamination parameter;

ξ is slack variable vector.

Besides the choice of the kernel and its eventual parameters, the contami-
nation parameter ν defines the model. It represents the fraction of outliers
that are supposed to populated the data set.

The optimization problem is then solved by a quadratic programming
routine.
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Chapter 7

Related works

7.1 Literature review
The study of public procurement is not new. Economics scientists, man-
agement engineers, legal scholars have their interests in understanding the
bidding process, how different legislation lead to different outcomes in more
transparent and cost-effective public procurement, whether optimal bidding
strategy exists and how to pursue them.

On the other hand, the actual data of the bidding process were not avail-
able until recently. The need of more efficient bureaucratic procedures now
that the information infrastructure is mature suggest governments to digi-
talize processes formerly analog.

Among the outcomes of digitalization lies the construction of data set.
For public procurement these databases are open and easily accessible for
the purpose of public transparency.

The European Union imposes their State members to provide lists of their
public calls for tenders if the object of public procurement if higher than
a given threshold. Such information is contained in the Tenders Electronic
Daily (TED). The public availability and the richness of the data set spawned
scientific researches such as [23]. In the paper the authors shows a positive
correlations between a higher quality of public procurement rules and a higher
degree of competitiveness between bidders. The quality of the public pro-
curement rules that given by the European Public Accountability Mechanism
(EuroPAM), a European institution that judges European country legislation
assigning scores according to the transparency it imposes in political financ-
ing, financial disclosure, conflict of interest, freedom of information, public
procurement. The quality scores given by EuroPAM is integrated by the
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Benchmarking Public procurement by the World Bank.
In [24], using the TED data set, the authors statistically describe the use

of Voluntary Ex Ante Transparency notice (VEAT) in place of the more
common Contract Award Notice (CAN). The authors find no conclusive evi-
dence towards the use of VEATs over CANs to guarantee a competitive and
transparent public procurement.

Coming to the price modeling of tenders there have been a few attempts.
Among them, a game theoretic approach has been proposed in [25] to model
the bidding process and determine the price. The authors analyze define a
payoff function and describe the game equilibria and the case for two bidders,
then extend the analysis to more than two bidder. In the latter case, the
proposed model captures the intuitive ideas that the more bidders, the lower
the tenders, and that the higher the cost of performing the contract, the
higher the tender price.

Another study [26] forecast the tender prices by means of machine learning
techniques. The authors’ data set consists of the auction bids for a highway
in Vermont. They claim their models, an ordinary least squares regressor,
and their regularized versions Ridge and Lasso, outperforms their baseline
model, that is a random forest regressor.

Finally, Garcia and Portugues (2022) [17] try to forecast the awarded ten-
ders in Spanish public Procurement Announcements. The Spanish legislation
forces contracting authorities to publish XML files containing information re-
garding calls and their tenders.

These files are the input of their analysis. Scraping the XML files, the
authors build a tabular data set. Each row represents a tender to a given
contract. As such, the table columns describe the firm that made the tender,
the object of the tender and type of contract, and the firm that won the
procurement contract ans its award price.

Among the tenders lies the tender that won the public contract. The
authors refer to the former as tender price, the latter as award price. The
correlation between them is 97 percent and it is the highest among the pre-
dictors.

Nonetheless, the authors argue that the tender price predictors is not
enough to determine which bid will actually win the public contract. They
train a random forest regressor having the award price as the response vari-
able.

The authors shows that the prices forecast by their regressor are actually
better than the raw tender prices. Indeed, the absolute percentage error
(APE) between the forecast prices and the award prices grouped by CPV
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division are less disperse than the APE between the raw tender prices and
the award prices grouped by CPV.

Albeit the different objective of the research, the study conducted by Gar-
cia and Portugues is interesting as their input data set is similar to that of
this thesis. The main difference between ours and their data set is that ours
does not have tender prices, but only award prices.

Moreover, they show that the correlations between their data set columns
are within [−0.38, 0.38] with the only exceptions of tender price and award
price (0.97) and type of contract and sub-type of contract (0.74). Even
the correlations in the 40 percent neighborhood are scarce as well. The only
correlations are the procedure code and the award price (-0.36), the procedure
code and the tender price (-0.38) and the CPV and contract duration (.34).
All the others are in [−.20, 20].

Their correlation analysis suggest which features may be useful to extract
from our data set. In their correlations analysis, those are

1. tender price (.97)

2. procedure code (-0.36)

3. type of contract (0.23)

4. subtype of contract (0.21)

5. number of received offers (0.19)

Such features do not rank among the highest by Random Forest impor-
tance (i.e. for each feature, the average variance reduction gained by the
node splits of each tree. Refer to the Scikit-learn documentation for a full
explanation). The trained regressor places in top five predictors

1. tender price (.87)

2. received offers (0.035)

3. duration (0.017)

4. date (0.013)

5. identifier of the firm that made the tender (0.012)

The CPV, CPV division and procedure code importance score are 0.009,
0.005, and 0.003. Their regressor feature importance counters the intuition
that the CPV and the procedure type defines the award procedure.
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7.2 The novelty of the research
The data set from the study of Garcia and Portugues [17] is similar to that
we are using for this thesis; yet, the atomic element of their data set tables is
the tender of a given public procurement contract. In opposition, the atomic
element of our data set is the contract itself, that is characterized by one or
more winners and it is issued by a contracting authority. Moreover, we do
have access to the raw XML files, while we have access to the information
extracted by the feature extraction pipeline of Spazio Dati, the owner of
the data set. Due to the absence of such files, we lack the information
about the bid prices and the firms or other public authority that made them.
We know only the winner of that tender. The main difference between our
objective and that of Garcia and Portugues is that they developed a regressor
to forecast which tender price is going to be win the public call, while ours is
to determine which contract are anomalous. As far as we can tell, this is the
first time a anomaly predictor is developed for public procurement contracts.
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Development and
implementation

8.1 Evaluation method

The evaluation method arises from the necessity of measuring the perfor-
mance of the outlier detecting models in an unsupervised setting.

It is standard practice [14] to have rather small labelled subset which which
the metrics of choice can be calculated. Unfortunately, we lack a labelled set
of contracts. A first attempt to overcome the absence of a labelled subset
consists in manually checking a set of two hundreds contracts. The number
of outlier contracts found in the subset is one. The encounter of one outlier
out of two hundred contracts suggests that the percentage of outliers of 0.5
percent, which is higher than the subject matter experts of Synapta expected.
Moreover, having a single outlier cannot represent the population of outliers,
entailing an imperfect representation of the actual models’ performances.
Last but not least, checking contracts one by one by hand is time consuming
and requires a deep understanding of civil law.

A partial solution to label the data set is to automate the process. The
automation is carried out concatenating the output of the baseline model
and the probabilistic tails model. Figure 8.1 shows the process. The baseline
model is chosen because the it is the implementation of a set a set of rules
results of the experience of Subject Matter Experts (SME). The probabilistic
tails is chosen because it follows the probabilistic definition of outlier, the
discovery of which is one the objective of this thesis. As the outliers found
by the two models differs in nature, we assign them different names: SME
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outliers and probabilistic outliers. The SME outliers and the probabilistic are
concatenated so that each contract has a SME outlier label and a probabilistic
outlier label. The now labeled data set is forwarded to the outlier detecting
models and their performance metrics can be easily computed on the test
set.

The outliers found by the automated labeling process 8.2 are not all the
outliers of the data set. As a consequence, the metrics computed, such as
the True Positive Rate and the even more relevant False Positive Rate are
to be taken with a grain of salt. Indeed, the outlier detectors used by the
automated labeling come with the limitation that they can only determine
outlier with respect to one dimension (the amount and duration dimensions
in our models); if a contract is a very rare as a combination of features, it
will be never spotted by such models, thus, the need of a manual check of
the outlier discovered by the other outlier detectors.

8.2 Data preparation and enrichment
The data set input to the outlier detecting models is that resulting of the
analysis of the exploratory part. Let us call this data set contract.csv, as it
is called in the implementation code.

Contracts.csv is a tabular set. Each row describes a contract lot and its
features are the contract amount a, the contract duration d, the identifier
of the contracting authority issuing the contract id pa, the identifier of the
business entity selling the contract id be, the identifier of the contract award
procedure proc, the number of winners of that contract lot and the date the
contract has been issued.

In addition to standard routines such as the removing of missing values,
what greatly characterizes the input data is that the number of contract lots
per contracting entity (business entity and contracting authority) is greater
than ten.

The input to each outlier detecting model undergoes the same preprocess-
ing steps illustrated in figure 8.3.

The input data set is read from its file contract.csv and imported as pandas
DataFrame [27]. All the manipulation it will undergo are performed by the
methods the pandas library [28] offers.

First step. Once the data is read and loaded in memory as a pandas
DataFrame, the the contracts are grouped by contracting party. For the
purpose of clearness, let us explain the preprocessing with and example.
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Figure 8.1: Models evaluation process

Suppose that the contracting entity are the business entity be0. Then, the
set of contracts sold by be0 are Cbe0 = {c0, c1, ..., cn}.

Second step, transformation routine. For each set of contracts such as Cbe0,
take the amount feature and the duration feature, Abe0{= a0, a1, ..., an} and
Dbe0 = {d0, d1, ..., dn} normalize each set of feature according to the function

norm(X) = x − min(X)
max(X) − min(X) .

The image of the normalization is to [0, 1]. This prepare each set of features
to be transformed by the Box Cox function as implemented by the boxcox
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Figure 8.2: The input data are labeled by the baseline and probabilistic tails
models. Next, the predicted SME and probablistic outliers are horizontally
concatenated. The now-labelled data are restricted to only contracts awarded
with an open procedure and split into train and test set, with their respective
label sets.
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form the scipy stats package [29]

y(λ) =


yλ−1
λ if λ /= 0;

log y if λ = 0.
(8.1)

where the optimization of the parameter λ is obtained by minimizing the
maximizing the likelihood the the transformed data are normally distributed.
The optimal λ is achieved by the function optimize_scalar of the scipy
optimize package

The Box Cox transformation projects image set is R. To prevent extreme
value, we normalize the data again so that the feature values are restricted
to [0, 1].

Third step. Once the data is normalized, each contract is enriched with
the mean, variance and skewness computed on each set of features, such as
Abe0 and Dbe0.

Fourth step. The collection of (statistical) moments computed in the
previous step is appended to each contract ci. As a consequence, a new set
of features is added to the input data set contracts.csv In addition to the
older features, the new ones are

• amount mean, amount variance, amount skewness

• duration mean, duration variance, duration skewness

8.3 Baseline model
The baseline model implements the rules defined by the domain expert to
determine which contracts are outliers and which are not. The rules are the
following:

1. if a contract lot has a value that exceeds the business entity median
annual specific revenue and the contracting authority median annual
expenditure, while the duration is at most one year, then it is an outlier,
given that each business entity has at least ten contracts per year;

2. if a contract lot is a direct assignment and its duration is longer than
ten years, then it is an outlier;

3. if a contract lot amount is 25 times bigger than the median annual
specific revenue of the business entity that won the lot, then the contract
lot is an outlier.
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Figure 8.3: Data preparation and enrichment steps the input data set un-
dergoes before being fed to the outlier detecting models. The output of each
step is supposed to be fed to the next one in ascending order.

To enforce the rules, we first need to compute the median annual specific
revenue and the median annual expenditure of each contract. To compute
the former, we group the contracts by business entities and years, to compute
the latter, the contracts are grouped by contracting authorities and year. The
amount values are summed within each contracting party and for each year.
finally, we take the median value of the years and we append this value to its
contract row. Now, each contract has two new features: the median annual
specific revenue of the business entity to whom the contract was awarded
and the median annual expenditure of the contracting authority that issued
that contract.

With the new features appended to each contract row, we can easily deter-
mine which contracts are outlier creating pandas DataFrame masks objects
that flag the outliers as ones and the inliers as zeros.

1 def r u l e 1 ( d f : pd . DataFrame ) −> pd . S e r i e s :
mask = ( d f . amount > df . be_med_ann_revenue ) & \

3 ( d f . amount > df . pa_med_ann_revenue )
return mask

5

def r u l e 2 ( d f : pd . DataFrame ) −> pd . S e r i e s :
7 n_years = 10

mask23 = ( d f . award_procedure == 23) & \
9 ( d f . d u r a t i o n > n_years ∗ 365)
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mask26 = ( d f . award_procedure == 26) & \
11 ( d f . d u r a t i o n > n_years ∗ 365)

return mask23 | mask26
13

def r u l e 3 ( d f : pd . DataFrame ) −> pd . S e r i e s :
15 k = 25

return d f . amount > k ∗ d f . be_med_ann_revenue
The output masks values are transformed to comply with standard nota-

tion for inliers and outliers:

inlier : 1

outlier : -1

Next, each output is recorded in a comma separated value file.

8.4 Probabilistic tails model
To apply the Chebishev inequality we first compute the Box Cox transfor-
mation to the contract features amount and duration grouped by contracting
entity; that is, we first regroup the contracts by contracting party, then we
apply the Box Cox transformation optimizing lambda to each subset of con-
tracts. The results is a new set of features:

• business entity Box Cox transformed contract amount

• contracting authority Box Cox transformed contract amount

• business entity Box Cox transformed contract duration

• contracting authority Box Cox transformed contract amount

Then, for each subset, we compute its mean and standard deviation. Fi-
nally, we apply the Chebishev’s inequality to determine which is an outlier
and which is not.

The Chebishev’s inequality requires to specify the value of k. We arbi-
trarily set k = 10, as from 6.1 the probability of finding an extreme value is
less than one percent.

With the application of the Box Cox transformation, we aim at shaping
our distribution as normal. The Shapiro-Wilk test [30] provides a handy tool
to verify the hypothesis that the distribution are actually normal. The scipy
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package [29] offers the shapiro function to compute the p-value under the
null-hypothesis that the sample is normally distributed.

Table 8.1 shows the percentages of business entities and contracting au-
thorities having an amount and duration normal distribution. There are
11037 business entities and 1562 contracting authorities. The threshold to
pass the Shapiro-Wilk test is the standard 0.05.

business entity contracting authority
Box Box transformed amount 6.63% 0.06%
Box Box transformed duration 8.44% 1.60%

Table 8.1: Percentages of contracting parties having having a normal distri-
bution with respect to the amount and duration feature

k = 3 in 6.1 for contracts following a normal distribution, as P(|X − µ| ≤
3σ) = 0.9973, which is comparable to 99 percent yielded by the Chebishev’s
inequality with k = 20.

The determination of the contracts in the tails is as described by the
following Python pseudocode
fo r e n t i t y in [ " b u s i n e s s _ e n t i t y " ,

2 " c o n t r a c t i n g _ a u t h o r i t y " ] :
fo r f e a t u r e in [ " amount " , " d u r a t i o n " ] :

4 fo r X in d f . groupby ( e n t i t y ) [ f e a t u r e ] :
mu = mean (X)

6 s igma = s td (X)

8 pva l u e = s h a p i r o _ w i l k _ t e s t (X)
i f pva l u e > 0 . 0 5 :

10 k = 3
e l se :

12 k = 20

14 o u t l i e r _ f l a g s = abs ( (X − mu) ) > k ∗ s igma

8.5 Kernel density estimation model
This model is implemented in the R language. The reason for the change
resides in the lack of Python packages that implements the optimization
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of the bandwidth parameter H in a multivariate case by means of cross
validation.

There are three python packages that provide tools to perform the estima-
tion of densities with kernel smoothing, namely the scipy.stats package,
the sklearn package and the KDEpy package, yet none of them offers a band-
width selector that works out-of-the-box.

On the other hand, the R package ks [31] provides the functions ks::Hns,
which implements the normal scale bandwidth selector 6.20, the ks::Hpi,
which implements a 2-stage plug-in selector as described by [18], and the
ks::Hlscv, which implements a least squares cross validation selector. The
ks package is based on the work of Chacón and Duong [32].

The package comes with a few limitations. The maximum number of
dimension of the input data is six. The computation of the density estimate
with an interpolation algorithm is limited to four dimensions on a evaluation
points on a evenly spaced grid. We want to use the interpolation algorithm to
calculate the density estimate because the process is quicker than computing
over the whole grid of each sample we want the prediction of.

For the aforementioned reason, the data set’s features are restricted to
four: amountbe, amountpa, durationbe, durationpa where the subscripts spec-
ify the contracting party with which the data set has been grouped by in the
preprocessing stage.

In our experiments, each density is estimated on a grid linear grid of
21 × 21 × 21 × 21 nodes.

The kernel density estimation process works as showed in the listing below.
We are assuming the the train and the test sets are already loaded in memory
as X.train and X.test.

# compute bandwidth mat r i x
2 Hns <− ks : : Hns ( x = X. t r a i n )

4 # compute the d e n s i t y f u n c t i o n o f the t e s t s e t
f h a t <− ks : : kde ( x = X. t e s t , H = Hns )

6

# get p r o b a b i l i t y p r e d i c t i o n
8 p r ed s <− ks : : pred ict ( fha t , x = X. t e s t )

The bandwidth selector ks::Hns can be changed with the preferred ks::Hpi
or ks::Hlscv.
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8.6 Gaussian mixture model
The package that implements the Gaussian mixture model is provided by
the Python Scikit-learn library [33].

The model is implemented by the GaussianMixture class from the sklearn.mixture
package.

The computation of the density estimates works as showed by the next
Python code listing. The code uses the application programming interface
provided by scikit-learn. The X_train and X_test variables are supposed to
be the training and testing set output of the preprocessing stage.

# i n s t a n t i a t e a model
2 gmm = Gaus s i anMix tu r e ( n_components ,

c o va r i a n c e_ t ype )
4

# f i t the model on the t r a i n i n g s e t
6 gmm. f i t ( X_tra in )

8 # compute the d e n s i t y e s t i m a t e s o f the t e s t s e t
p r ed s = gmm. sco r e_samp l e s ( X_test )

The class requires the selection of the number of components and the type
of covariance matrix. Minimizing the Bayesian information criterion 6.30 is
the selection method we opted for. The implementation of the criterion is
provided as a method of the GuassianMixture class, namely the bic method,
that for given data and parameter set computes the BIC value. The param-
eter optimization is carried out by the following python function. The X is
supposed to be a numpy array matrix representation of the data set.

1 def op t im i z e_pa ramte r s ( , X : np . a r r a y ) :
l owe s t_b i c = np . i n f t y

3 b i c _ l i s t = [ ]
best_gmm = None

5 fo r cv_type in [ " s h p e r i c a l " , " t i e d " , " d i ag " , " f u l l " ] :
fo r n in range (1 , 6 0 ) :

7

# i n s t a n t i a t e a model
9 gmm = Gaus s i anMix tu r e (

n_components = n ,
11 co va r i a n c e_ t ype = cv_type

)
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13

# f i t the c u r r e n t model
15 gmm. f i t (X)

17 # compute the BIC v a l u e
b i c_va l u e = gmm. b i c (X)

19

# r e c o r d the BIC v a l u e
21 b i c _ l i s t . append ( b i c_va l u e )

23 i f b i c _ l i s t [ −1] < l owe s t_b i c :
l owe s t_b i c = b i c _ l i s t [ −1]

25 best_gmm = gmm

27 return b i c _ l i s t , best_gmm
Figure 8.4 shows the BIC scores of the Gaussian Mixture models with

number of components ranging from one to sixty and different types of co-
variance matrix.

The best model has a BIC score of -9522.4081, a diagonal covariance ma-
trix, and 57 components. The diagonal nature of the best model covariance
matrix suggest that the axis the generated model are orthogonal; from a sta-
tistical perspective this entails that the predictors of this generative model
are independent.

8.7 One-class support vector machine
The sklearn.svm package provides the OneClassSVM class that implements
the model proposed by [22].

The classification in inliers and outliers works as showed by the next
Python code listing. The code uses the application programming interface
provided by scikit-learn. The X_train and X_test variables are supposed to
be the training and testing set output of the preprocessing stage.

1 # i n s t a n t i a t e a model
svm = OneClassSVM ( nu )

3

# f i t the model on the t r a i n i n g s e t
5 svm . f i t ( X_tra in )
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Figure 8.4: Bayesian Information criterion scores of Gaussian Mixture models
by number of components and type of covariance matrix computed on the
training set

7 # c l a s s i f y the t e s t s e t
l a b e l s = svm . p r e d i c t ( X_test )

9

# compute the d i s t a n c e s from the s e p a r a t i n g
11 # hype r p l a n e

d i s t a n c e s = svm . d e c i s i o n _ f u n c t i o n ( X_test )
The nu parameter is the ratio of outliers the model expects to find in the
data set; in the equation describing the model 6.32, it is called contamination
parameter ν. In the model implementation ν is estimated with y_train.csv
set, that contains the labels output of classification carried out by the baseline
and probabilistic tails models.

The distances variable are computed to sort the classified sample in order
of descending distance from the separating hyper-plane. The assumption is
that the greater the distance, the greater the anomaly.
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Chapter 9

Results

9.1 SME and probabilistic outliers
The application of the rules defined by the subject matter expert in the
baseline model yields the following outlier counts by rule 9.1.

feature # SME outliers percentage
amount 218 0.035%
duration 12 0.003%

Table 9.1: Count of SME outliers resulting from the rules defined by the
subject matter expert

The main characteristic is that they generally do not reside in the tails of
their awarded business entities amount and duration distributions nor of the
contracting authorities.

Table 9.2 shows the count of outliers result of the application of the Chebi-
shev inequality in the probabilistic tails model. As one would expect, the

feature # probabilistic outliers percentage
amount 187 0.031%
duration 152 0.025%

Table 9.2: Count of the outliers found by the probabilistic tails model
grouped by feature

outliers lie in the upper tails of the amount and duration distribution of the
contracts grouped by contracting party.
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9.2 Models comparison
A common metric to evaluate the performance of binary classifiers is plotting
Receiver Operating Characteristic curves (ROCs). It involves the computa-
tion of the True Positive Rate (TPR) (also called hit rate) and the False
Positive Rate (FPR) (or false alarm rate) for a range of thresholds. Defined

TP true positive, the count of samples that are predicted as positive (inliers)
by the model and they are positive in the ground truth

FP false positive, the count of samples that that are predicted as positive
(inliers) by the model, but they are negative in the ground truth

TN true negative, the count of samples that that are predicted as negative
(outliers) by the model and they are negative in the ground truth

FN False negative, the count of samples that that are predicted as negative
(outliers) by the model, but they are positive in the ground truth

TPR and FPR are given by

TPR = TP

TP + FN
FPR = FP

FP + TN

The ROC plots the TPR on the y-axis, the FPR on the x-axis.
The thresholds used to determine inliers from outliers are densities for the

all the KDE model variations and GMM, the distance from the hyperplane
for the OC-SVM model.

Another common measure the Area Under the Curve (AUC) that, as the
name suggests, is value of area under the ROC curve. Yet, the measure is
less expressive as the ROC plot because it cannot show the thresholds at
which models mis-label the samples. Table 9.3 shows the AUC scores of each
model.

On the other hand, the ROC curves can be used to determine the threshold
apt to our purposes. Indeed, it is generally preferred to have outliers in the
lower end of the decision function; it follows that ROC curves where the
TPR is high and the FPR is low are preferred, as such curves are yielded
by models where the outliers are in the lower end of the decision function
spectrum.

Figures 9.1a, 9.1b 9.1c shows the ROC curves yielded by the KDE models
with different bandwidth selectors, namely the normal scale selector (NS), the
plug-in selector (PI), and the least squares cross validation selector (LSCV).
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The best performance among the three is achieved by the normal scale selec-
tor as percentage of miss-classified samples is zero for almost the 60 percent
of the sample. The performance of the KDEpi and KDElscv models is com-
parable.

Figures 9.2 and 9.3 shows the ROC curves of the GMM and OC-SVM
models. The GMM is exceptionally good in predicting the probabilistic out-
liers in the duration feature while the other ROC comparable with those
of the KDE models. The OC-SVM performance is very poor. The curves
resemble that of a random guesser.

The reason for OC-SVM performance lies in the nature of the classifier.
The model clusters data according to the euclidean distance between samples.
The performance suggests that on the current feature space, the euclidean
distance is not well suited to distinguish inliers from outliers.

Figure 9.4 shows the OC-SVM decision function contours and the outlier
location along with their type. To visualize the decision function contours
in only two dimension, he data has been projected on the first two principal
components of the singular value decomposition of the data matrix. The first
two principal components explain 99.86 percent of the total variance. The
OC-SVM model is trained on such projection. It is clear that almost all the
outliers are classified as positive by the model. This confirms the inaccuracy
of the model and the inadequacy of the euclidean distance as a means to
differentiate the contracts.

KDEns KDEpi KDElscv GMM OC-SVM
SME amount 0.855 0.831 0.846 0.784 0.519
prob. amount 0.871 0.858 0.864 0.821 0.520
prob. duration 0.761 0.761 0.762 0.914 0.490
average 0.828 0.817 0.824 0.840 0.510

Table 9.3: models AUC values on the test set by type of outlier
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(a) ĤNS

(b) ĤP I

Figure 9.1: ROC curves of kde models with different bandwidth matrices.
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(c) ĤLSCV

Figure 9.1: ROC curves of kde models with different bandwidth matrices.

Figure 9.2: ROC curves of the GM model on the test set
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Figure 9.3: ROC curves of OC-SMV model on the test set

Figure 9.4: Contours of the decision function of OC-SMV model. The data
are projected on the first two principal components of the singular value
decomposition of the data matrix to visualize the decision function contours
in two dimension.
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Chapter 10

Conclusions and future
works

The main purpose of this thesis is to develop an automated an process process
to remove the public contracts containing errors. A secondary purposes is
to develop a score of contract normality that should tell whether the single
contract is aligned with its market.

The strategy used to achieve the objectives consisted in developing a model
that could serve both purposes. The use of a probability as a decision variable
seems the most intuitive means to achieve our goals, besides the fact that
outliers are usually defined in a probabilistic context.

Thus, most of the models developed originates from the idea of determine
the data probabilistic distribution. The probabilistic tails model tries to
determine which samples lie in tails of each data features. The KDE and
GMM tries to determine which contracts are rare in a multivariate manner,
not only one feature at a time as the former. The only exception to the
probabilistic perspective is the OC-SVM model that compares contracts by
measuring the euclidean distance between them.

According to their performances, the most promising model is KDE with
a normal scale bandwidth selector, a combination of non-parametric method
(the kernel smoothing) and parametric statistics (the assumption of normal-
ity in the bandwidth selector).

The model main advantage is its simplicity. It uses only four dimensions,
estimating the density of new samples is fast thanks to the interpolation
method, and the interpretation of its output is straight-forward: it is the
probability of encountering a contract with such characteristics in the amount
and duration dimensions.
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Its drawback is the lack of explainability, especially in the absence of a
satisfactory visualization tool that could give hints as to why that contract
has such a probability. A possible solution to the problem is the restriction of
the number of dimensions to only two, so that the data density can be viewed
in a three-dimensional space. Duong et al [34] developed a tool to determine
which are the most significant features, so that the two most significant can
be used to visualize the distribution. The main idea is that we can determine
local maxima regions when the density curvature is non zero.

Another aspect in need of improvement is the feature space. The tech-
niques used in the data preparation stage are not satisfactory. The idea that
lead to the use of the Box Cox transformation is that business entities and
contracting authorities should have a similar distribution with regards to the
contracts amounts, once such spaces have been standardized. Even reducing
the contracting authorities and business entities to those having at least ten
contracts, the transformation is ineffective. If the contracting parties shared
the amount distribution once standardized, the distribution of all the con-
tracts in the amount features should be the mean of all of the single ones.
Unfortunately, the amount distribution does not look so. The same applies
for the duration feature.

The current state of the art in outlier detection are Auto-Encoders. They
are a deep-learning architecture made of two parts. The first part, the so-
called encoder learns to project the samples fed in a lower dimensional space,
while the decoder part learns to reconstruct the samples from the lower di-
mensional space to the original one. The model learns by minimizing the
reconstructing error from the original sample with the reconstructed sample.
In the context of outlier detection, one can distinguish outliers from inliers
by looking at the reconstruction error as outliers should have a greater re-
construction error. The most interesting auto-encoder architecture is that
provided by [35]. The authors propose a variational auto encoder that should
identify and repair typographical errors in tabular data. Given enough time,
the implementation of the methods and architecture is what one should focus
on.

Assuming a business point-of-view, the baseline and the probabilistic tails
model are the most production-ready. Their simplicity is their strength: the
reasons why the outliers they detect are considered are the models them-
selves. A high intelligible tool has a greater probability of being used by
many, even users not fond of statistics. They both can be a helping hand for
those responsible of filtering the wrong contracts out. Moreover, the result of
such models can be used as a starting point for the developing of a set that
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could change the developing of outlier detector from an unsupervised to a su-
pervised task. This change would greatly benefit the quality of the predicted
outliers as the model could autonomously learn how to project samples on a
space where outliers are well separated from inliers.
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