
POLITECNICO DI TORINO

Master Degree in Computer Engineering

Master Thesis

Source-Free Domain Adaptation
for Video Action Recognition

Supervisor
Prof.ssa Barbara Caputo
Co-supervisors:
Dott. Mirco Planamente
Dott.ssa Chiara Plizzari

Candidate
Julian Neubert

March 2023



Abstract

With the advent of media streaming, Action Recognition (AR) has become
progressively important for various applications such as intelligent video surveil-
lance, sports analysis, and human-computer interaction. An open challenge is that
video analysis systems heavily rely on the environment in which the activities are
recorded, which inhibits their ability to recognize actions when they are recorded
in unfamiliar surroundings or different lighting conditions. This problem, known in
the literature as domain shift, has long been studied in the image classification do-
main and has recently started to attract attention also in the activity classification
community. Most of the researchers in the field addressed this issue by reducing the
problem to an unsupervised domain adaptation (UDA) setting, where an unlabeled
set of samples from the target is available during training. However, nowadays data
are distributed on different devices and usually contain private information, e.g.,
those on personal phones or from surveillance cameras. Existing UDA methods
need to access the source data during learning to adapt, which is not efficient for
data transmission and may violate the data privacy policy.

In this thesis, we address an interesting but challenging unsupervised DA set-
ting with only a trained source model provided as supervision, which is referred
to as Source-Free Domain Adaptation (SFDA). We propose a solution that aims
to enhance a model’s robustness to distribution shift by working on the feature
space. The key insight is that widespread pretrained feature extractors are able
to extract general domain-independent features, while most of the performance
degradation stems from application-specific classification layers. Thus, we compute
a pseudo-prototype representation of each class from unlabeled target data during
the adaptation step. This allows us to classify samples based on their similarity
to the prototypes, thereby improving the model’s applicability to unseen domains.
Our method does not modify any network parameters, resulting in minimal com-
putational overhead.

We evaluate the efficacy of our method on the two most established benchmarks
for video action recognition, namely UCF-HMDB and EPIC-KITCHENS. As video
data is usually associated with multi-modal information, e.g., RGB, optical flow,
and audio, we also investigate how to apply our method across various information
channels of videos to increase consistency across individual predictions and make
our model overall more robust. Results show our method stably improves perfor-
mance on unseen domains, outperforming existing source-free adaptation methods
by a large margin.



Contents

List of Tables iii

List of Figures iv

1 Introduction 1
1.1 Research Goals and Contribution . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Perceptrons . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Multi-Layer Perceptrons . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.5 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.6 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.7 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Sequential Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . 21
2.3.2 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Related Works 25
3.1 Action recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Egocentric Action Recognition . . . . . . . . . . . . . . . . . 25
3.1.2 Temporal Information . . . . . . . . . . . . . . . . . . . . . 26
3.1.3 Multi-Modal Data . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Cross-Domain Learning . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.1 Domain Generalization . . . . . . . . . . . . . . . . . . . . . 33

i



3.2.2 Unsupervised Domain Adaptation . . . . . . . . . . . . . . . 34
3.2.3 Source-Free Domain Adaptation . . . . . . . . . . . . . . . . 39
3.2.4 Test-Time Adaptation . . . . . . . . . . . . . . . . . . . . . 41

4 Proposed Solution 43
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Predictions from Pseudo-Prototypes . . . . . . . . . . . . . . . . . . 45
4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Experiments 49
5.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Comparison with the State-of-the-Art . . . . . . . . . . . . . . . . . 50

5.2.1 Comparison with Test-Time Adaptation . . . . . . . . . . . 51
5.2.2 Architecture-Independent Relative Norm Alignment . . . . . 54

5.3 Class Imbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.1 Imbalance in the Dataset . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Imbalance in the Classifier . . . . . . . . . . . . . . . . . . . 57

5.4 Multi-Modal Learning . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5.1 Which is the best feature? . . . . . . . . . . . . . . . . . . . 59
5.5.2 Increasing Centroid Robustness by Filtering Samples . . . . 62
5.5.3 Can centroids be improved iteratively? . . . . . . . . . . . . 62
5.5.4 How do we measure similarity between features? . . . . . . . 62

6 Conclusion 65

Bibliography 66

ii



List of Tables

4.1 Different settings in domain adaptation . . . . . . . . . . . . . . . . 44
5.1 Comparison with SOTA on UCF-HMDBfull . . . . . . . . . . . . . 50
5.2 Comparison with SOTA on EPIC-Kitchens-55 . . . . . . . . . . . . 51
5.3 Architecture-indpendent comparison on UCF-HMDBfull . . . . . . 54
5.4 Architecture-indpendent comparison on EPIC-Kitchens-55 . . . . . 54
5.5 Synergies with MTRAN* on EPIC-Kitchens-55 . . . . . . . . . . . 55
5.6 Average accuracy on EPIC-Kitchens-55 . . . . . . . . . . . . . . . . 56
5.7 Average per-class accuracy on EPIC-Kitchens-55 . . . . . . . . . . . 56

iii



List of Figures

1.1 Cross-Domain Performance Loss . . . . . . . . . . . . . . . . . . . . 2
1.2 Domain adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Multi-Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Activation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Early stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Image Augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Normalization Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.9 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.10 Recurrent Neural Network Architectures . . . . . . . . . . . . . . . 22
2.11 LSTM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 EPIC Kitchens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Inflated Inception-V1 Architecture . . . . . . . . . . . . . . . . . . 27
3.3 Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5 Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 HMDB51 & UCF101 . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 EPIC-Kitchens-100 Distribution of Classes . . . . . . . . . . . . . . 33
3.8 Deep Adaptation Network . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Domain Adversarial Neural Network . . . . . . . . . . . . . . . . . 35
3.10 Multi-Modal Self-Supervised Domain Adaptation . . . . . . . . . . 36
3.11 Cross-modal Interactive Alignment . . . . . . . . . . . . . . . . . . 38
3.12 Transfer Sequential Variational Autoencoder . . . . . . . . . . . . . 39
3.13 Attentive Temporal Consistency Network . . . . . . . . . . . . . . . 41
3.14 Multimodal and Temporal Relative Alignment Network . . . . . . . 42
5.1 Accuracy of T3A over share of test dataset seen . . . . . . . . . . . 52
5.2 Architecture-Independent Comparison . . . . . . . . . . . . . . . . 55
5.3 Class Imbalance in EPIC-Kitchens-55 . . . . . . . . . . . . . . . . . 56
5.4 Class Distributions and Classifier Bias . . . . . . . . . . . . . . . . 58
5.5 The Impact of Multi-Modal Training . . . . . . . . . . . . . . . . . 59

iv



5.6 Ablation over Feature Selection . . . . . . . . . . . . . . . . . . . . 60
5.7 Ablation over the Number of Samples . . . . . . . . . . . . . . . . . 61
5.8 Ablation over the Number of k-means Iterations . . . . . . . . . . . 63
5.9 Ablation over the Similarity Measure in the Feature Space . . . . . 64

v



Chapter 1

Introduction

Artificial intelligence has long been fascinating people and sparked their imagi-
nation. With the advent of deep learning the field has seen rapid development,
making intelligent systems a reality in our everyday lives. Virtual assistants can
be controlled with our voice and understand complex commands, computational
photography helps us take better pictures, and recommendation systems provide
us with suggestions on which shows to watch and what music to listen to.

Computer Vision has been a central field in driving the progress of deep learning.
It consists of designing algorithms and techniques that allow computers to extract
high-level information from visual data, such as images or videos. Typical tasks
include classification, object detection, segmentation, instance retrieval, and image
generation. State-of-the-art models are nowadays capable of super-human perfor-
mance on some of these tasks, most notably image classification, where models
recognize and classify images more accurately than humans.

However, despite recent advancements more complex problems still remain a
challenging area of research. One of those is applying deep learning for video un-
derstanding. Videos are significantly more complex than images. First, they come
with additional information on the temporal dimension, encoding motion informa-
tion that is not represented in static images. Incorporating temporality into the
learning process is crucial for most video-related tasks. For instance, many human
activities consist of a series of individual motions, where the order of these mo-
tions defines the overall action. However, adding this extra temporal information
significantly increases computational complexity. In fact, modern 3D CNN video
architectures have several times more parameters than 2D CNNs for image under-
standing. Secondly, videos encode additional information on multiple information
channels. Alternative modalities, such as audio track or apparent motion (optical
flow), can assist in identifying the content of a video, providing valuable clues about
objects and their interactions. Nonetheless, multi-modal learning presents its own
set of challenges, introducing noise into the training process, which can lead to
reduced performance on each modality individually.

1



1 – Introduction

0 25 50 75 100

unseen

seen

% Accuracy

Figure 1.1: Accuracy on UCF-HMDBfull and EPIC-Kitchens-55 when testing in a
familiar "seen" environment and an "unseen" domain.

Another key challenge across all machine learning algorithms is their vulnera-
bility to the domain shift, which occurs when there is a discrepancy in terms of
data distribution difference between the training and evaluation data. For instance,
this can be observed in images from a stylistic point of view, such as the difference
between a photograph of a cat and a sketch of a cat. On videos, this problem is
referred to as “environmental bias”. This problem arises from the network’s heavy
reliance on the environment in which the activities are recorded, which inhibits
the network’s ability to recognize actions when they are conducted in unfamiliar
(unseen) surroundings. For example, changes in illumination, viewpoint, object
locations, and surroundings between training and test data have a drastic impact
on the performance in video understanding tasks. To give an intuition of this per-
formance drop, figure 1.1 highlights how much the accuracy of a state-of-the-art
classifier decreases when applied to test data with a different distribution of the
training data.

The most common approach to address this issue is Unsupervised Domain Adap-
tation (UDA), where a model is trained on both labeled data from the seen domain,
which is referred to as source, and unlabeled data from the same distribution as
the test set, which is referred to as target. The availability of information from
target simplifies the adaptation process and offers interesting ways to study the do-
main gap from a theoretical perspective, leading to significant improvements over
a model trained on source data only. However, requiring data from both domains
is a strong limitation, hindering the usage of UDA methods in many real-world
applications where privacy policies and proprietary licensing do not allow sharing
data between model providers and users. Viable alternatives have been proposed,
such as Domain Generalization (DG), where data from target is not available, and
the model exploits multiple source domains to adapt to any unseen target distri-
bution, or Test-Time Adaptation (TTA), where the model adapts on test samples
on-the-fly during evaluation. However, both DG and TTA are subject to tight
restrictions that limit their potential for improvement, particularly when the data
has high variability and the source data is not representative [1, 2].

2



1 – Introduction

Figure 1.2: Domain adaptation aims to improve cross-domain performance
[3].

In this thesis, we investigate the newest setting of Source-Free Domain Adapta-
tion (SFDA). It requires adapting a model to a target domain without any access
to information from the source domain. Due to its definition, it makes the most of
the available data, integrating information from target while conforming to strict
data-sharing limitations. We explore this setting on video understanding, which
is one of the most challenging tasks nowadays, but it offers the playground for
extensive analysis due to the complexity and richness of the data.

1.1 Research Goals and Contribution
In this thesis we propose a novel method to improve the cross-domain accuracy of
action recognition models in the interesting, yet challenging SFDA setting. Com-
pared to previous publications in this area our method has the key advantage of
having no specific requirements for the model architecture, making it highly flexi-
ble and able to profit from future developments in action recognition architectures.
Furthermore, our method is unique among UDA literature for action recognition
in that it is completely backpropagation-free, directly data dependent, and does
not introduce any learnable parameters, making it computationally efficient, able
to adapt to multiple domains simultaneously, and avoiding many pitfalls associated
with gradient-based training that often lead to degraded performance. These points
play an especially important role in the context of wearable devices, a central field
of application for video SFDA, where computational resources are limited and fast
and reliable adaptation to new environments is crucial. Finally, our method only
works on the classifier, taking extracted features as input, meaning it synergizes

3



1 – Introduction

well with competing SFDA methods that focus on improving the feature extractor.
To this end, we propose a pseudo-prototypical classification module to replace

the final linear classification layer of the model, which is often biased and severely
affected by domain shift. Each class is represented by a prototype, which is the
mean feature vector of all samples from the target dataset belonging to that class,
and classification is done based on the nearest centroid. Since data in the target
domain is unlabeled, our method uses the predictions of the source model as pseudo
labels to assign samples to a prototype’s support set. To improve the quality and
robustness of the centroids we use the average multi-modal feature vector over
several clips to represent each sample, only consider features with low prediction
entropy for the support set, and iteratively improve the centroids in a k-means-like
fashion.

We evaluate the efficacy of our method on two of the most important datasets
for this setting, UCF-HMDBfull and EPIC-Kitchens-55. Since videos are generally
associated with multi-modal information, we investigate how to apply our method
to different information channels to increase consistency among individual predic-
tions. Through a theoretical analysis, we investigate how domain shift affects linear
classification layers and how our method circumvents this. Deriving from these ob-
servations we show how our method increases fairness by specifically improving
accuracy on underrepresented classes. Furthermore, we show how our method ben-
efits from previous achievements in video SFDA, by combining our classification
module with an adapted feature extractor to further improve cross-domain accu-
racy. Comparing our results with the current state-of-the-art shows that we achieve
a significant improvement over existing SFDA methods on all studied datasets.

To summarize, our contributions are threefold:

• We highlight the problem of imbalanced classes in the context of domain adap-
tation and its effect on the classification layer;

• We develop a backpropagation-free architecture-independent classification so-
lution for source-free domain adaptation;

• We validate our method on the UCF-HMDBfull and EPIC-Kitchens-55 datasets
obtaining state-of-the-art results.

4



Chapter 2

Background

This chapter provides an overview of key topics in deep learning, focusing on those
areas that are related to the topic of this thesis. Section 2.1, begins by providing a
broad introduction to deep learning, briefly summarizing the historical development
and core concepts. Then, section 2.2 takes a deeper dive into methods specific to
image understanding. Finally, section 2.3 introduces the most common approaches
to dealing with sequential data.

2.1 Deep Learning
The idea of artificial neural networks can be traced back to the 1940s and 1950s
when researchers first began to explore the idea of using computational models
to simulate the way the brain processes information. McCulloch and Pitts [4]
laid the theoretical groundwork in 1943 by providing a mathematical description
of neural networks and their incredible computational power. The first practical
implementations followed shortly after, with Farley and Clark [5] designing self-
organizing maps and Rosenblatt et al. [6], who introduced the perceptron, a general
algorithm for binary classification. However, it was not until the late 1980s and
early 1990s that the field of deep learning really began to take off. Innovations such
as the backpropagation algorithm by Rumelhart et al. [7] allowed more complex
networks to be trained for a variety of tasks.

As artificial neural networks were originally inspired by how the brain works, we
can find many parallels to biology, and even today researchers look to biology for
new ideas. The basic building block of neural networks is the artificial neuron or
"unit", analogous to the neuron or nerve cell in the brain. Each neuron is connected
to several other neurons and receives electrical signals from them via its dendrites.
If these excitations exceed a certain threshold in strength and number, the neuron
’fires’ and transmits an electrical signal itself along its axon. Individually these cells
follow a simple pattern, but many of them working together can create complex

5



2 – Background

systems that are able to solve abstract problems. Our brains enable us to see,
understand and interact with the world around us in this manner.

This complexity is also where the difference between deep learning and shallow
learning lies. Most classical machine learning methods are classified as shallow
learning, they require high-level measurements or hand-engineered features to work
as intended. The advantage of using pre-computed features is that this often enables
the use of smaller and faster models. Deep learning on the other hand is designed for
applications where only plain data is available which does not immediately provide
useful features. A typical example of this is computer vision, one of the first areas
where deep learning proved its incredible potential. Attempting to define abstract
and generic features based on only pixel values as input proved to be a major
challenge for researchers. Deep learning overcame this challenge by automatically
extracting the features it needed at the cost of requiring larger datasets. Whether
shallow learning or deep learning should be applied to a given task largely depends
on the type of data, its availability, and the complexity of the feature extraction
process.

2.1.1 Perceptrons
This section starts by introducing the perceptron, a simple binary classification
algorithm, and precursor to modern neural networks. The model consists of a
single artificial neuron or unit. Each unit has a set of weights, w1, w2, . . . , wn, and
a bias term, b. It receives input variables x1, x2, . . . , xn and gives one output ŷ,
which is computed as:

ŷ = f(x) =
1 x · w + b > 0

0 x · w + b ≤ 0
(2.1)

with x · w being the dot product defined as

x · w =
nØ
i=1

wixi (2.2)

We find good parameters for w and b using a supervised learning algorithm.
Given pairs of inputs and outputs (x, y) we try to minimize the discrepancy between
the true output y and the prediction ŷ of the perceptron. For each iteration and
training sample in the dataset, we update the parameters with

wi = wi + η ∗ (y − ŷ) ∗ xi (2.3)

and
b = b+ η ∗ (y − ŷ) (2.4)

where η denotes the learning rate. We repeat these steps until the average error
rate over the training set is below a given threshold.

6



2 – Background

Even though the perceptron is a very simple classifier that is only able to draw
linear decision boundaries, it has found many applications in shallow learning and
remains an important concept for artificial neural networks.

x2

x1

...

1

xn

qw2

w1

...

b

wn

nq
i=0

wixi + b

ŷ

Inputs

Weights

Sum
Threshold Function

Output

Figure 2.1: Perceptron A schematic of the different parts of the perceptron. For sim-
plicity, the bias can be integrated into the model weights by appending another dimension
with the value 1 to the inputs.

2.1.2 Multi-Layer Perceptrons
The natural extension of the perceptron is the multi-layer perceptron (MLP), or
feed-forward network. MLPs consist of many individual artificial neurons work-
ing in harmony to overcome most of the limitations of using a single perceptron.
Specifically, units are stacked into layers, where each layer aggregates the individual
outputs and gives forwards them as a vector. Formally a layer is defined as

ŷ = fθ(x) = ϕ(x · W + b) (2.5)

where x is the layers input, W is the weight matrix, b is the bias, ϕ is the acti-
vation function, and ŷ is the output. The activation function is a generalization
and replaces the threshold function of the perceptron. Section 2.1.3 explains its
importance and presents some commonly used examples.

Furthermore, multiple layers can be appended to each other, feeding the output
from one layer as input to the next. These intermediate values are called features.
With each added layer the network can represent more abstract features. An MLP
consists of at least three layers, the input layer, one or more hidden layers, and

7



2 – Background

finally the ouput layer. The Universal Approximation Theorem states that a the-
oretical network with a single hidden layer and an infinite number of units in this
layer can model any continuous function. Networks with at least one hidden layer
can draw any convex decision boundary and if there are two or more hidden layers
the network is able to draw arbitrary decision boundaries. But in practice, the
number of units in a network is limited. So instead of having very wide layers with
many units, researchers exploit the network’s abstraction capabilities and increase
the depth of the network to model more complex functions.

x1

x2

x3

xn

...

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h(1)
a

...

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

h
(2)
b

...

h
(3)
1

h
(3)
2

h
(3)
3

h
(3)
4

h(3)
c

...

y1

y2

yk

...

Input
layer

Hidden
layers

Output
layer

Figure 2.2: Multi-Layer Perceptron A schematic showing the structure of an MLP.
This network has 3 hidden layers with a, b, and c units respectively. The connections
represent weights, that are summed in each unit. Bias and activation functions are part
of the hidden units and are not shown explicitly.

2.1.3 Activation Functions
An essential part of neural networks is the activation function. Without it, the
network would just be a composition of linear functions, itself a linear function.
Choosing an activation function that adds non-linearity is thus imperative. An-
other important feature of the activation function is its derivative, specifically how
it affects the gradient during backpropagation (see section 2.1.4). Finally, the acti-
vation function should not add significant computational complexity to the network,

8



2 – Background

neither during inference nor when computing the gradient. This section will briefly
present the most important activation functions, which can also be seen in figure
2.3 with their derivatives.

Binary Step This simplistic activation function was already introduced in section
2.1.1 as the activation function of perceptrons. It features a hard cutoff at x = 0
giving exactly two possible outputs, 0 and 1. As such, it naturally lends itself to the
binary classification task. However, it is not well suited for use in general neural
networks, as its derivative is always 0 regardless of the input, making it impossible
to train the network using gradient-based methods.

f(x) =
1 x > 0

0 x ≤ 0
(2.6)

Identity Networks consisting of a single layer can also be equipped with the
linear activation function or identity function, its continuous output domain being
useful for regression tasks. For MLPs on the other hand, this choice makes little
sense. Since this function adds no non-linearity, the combination of layers of an
MLP collapse into a linear function, nullifying the MLPs abstraction capabilities.
Because of this, the function sees only limited practical use. Furthermore, its
derivative is constant and independent of the input x, making it impossible to train
a network with the backpropagation algorithm. Nevertheless, it remains interesting
from a theoretical perspective and can be part of more complex activation functions,
such as the ReLU further down.

f(x) = x (2.7)

sigmoid One of the first functions that were used to add non-linearity to neural
networks is the sigmoid function. It is also known as the logistic function and is used
in the logistic regression algorithm. Its most important features are that it is smooth
and it fixes outputs to the interval [−1,1]. The downside of limiting the output range
this way is the potential for saturation. It occurs when the gradient approaches
0 for very large negative or positive input values. This hinders the gradient flow
during training and slows down the learning process. Additionally, it increases
the network’s sensitivity to the initialization of its parameters. Nonetheless, the
sigmoid function has seen wide use and was the de-facto default in the early days
of deep learning in the 1990s.

f(x) = 1
1 + e−x (2.8)

tanh Similar to the sigmoid is the hyperbolic tangent function. The main dif-
ference is that the output of the tanh function is bound in the interval [−1,1].

9



2 – Background

Otherwise, it shares many of the sigmoid’s advantages and disadvantages. In prac-
tice, however, tanh tends to perform better than sigmoid, replacing it in many
applications for most of the 1990s and 2000s.

f(x) = ex − e−x

ex + e−x (2.9)

ReLU Recent convolutional neural networks mainly rely on the Rectifier Linear
Unit (ReLU) activation function. It is simple, efficient, and does not suffer from
gradient saturation, significantly accelerating training. Regardless of its popularity,
however, there are some limitations. Its derivative is 0 for all negative inputs,
meaning the gradient can not backpropagate further. This may lead to ’dead’
units, that do not contribute to the network and never update.

f(x) =
x x > 0

0 x ≤ 0
(2.10)

ELU Many variations of the ReLU function have been proposed to address its
shortcomings. Leaky ReLUs and parametric ReLUs for example, propose replacing
the constant output for negative inputs with a linear function with a very small
gradient. Alternatively, the exponential linear unit (ELU) [8] defines an exponential
function for negative inputs. This improves learning characteristics and evaluation
performance of the network according to the authors. ELUs have a hyper-parameter
α that is usually set to 1 resulting in a smooth function.

f(x) =
x x > 0
α(ex − 1) x ≤ 0

(2.11)

Other Activation Functions So far this section discussed only the most impor-
tant activation functions, but many more exist, each with its advantages and disad-
vantages. An interesting example that features non-monotonous behavior are radial
basis functions, like the Gaussian. Broomhead and Lowe [9] used this extensively
in 1988 when they presented a model for interpolation and function approximation.

Some activation functions go even further, acting not on each input individually,
but rather on the entire input space. The softmax activation function is an essential
example in this category. It is used in virtually all networks for multi-class classi-
fication to transform the network’s outputs into a discrete probability distribution
over the classes.

2.1.4 Backpropagation
Backpropagation [7] played an important role in the success of deep learning, facil-
itating the training of multi-layer perceptrons and more complex architectures. A

10



2 – Background

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

(a) Binary step

−10 −5 5 10

−1

−0.5

0.5

1

x

y

(b) Sigmoid

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

(c) ReLU

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

(d) Linear

−10 −5 5 10

−1

−0.5

0.5

1

x

y

(e) Hyperbolic tangent

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

y

(f) ELU

Figure 2.3: Activation functions These plots show commonly used activation func-
tions in blue and their derivatives in dashed red.

learning objective J is defined to find the optimal model parameters θ∗ minimizing
a loss function L over a set of training data

θ∗ = arg min
θ

J(θ) (2.12)

J(θ) = 1
n

nØ
i=0

L(xi, yi; θ) (2.13)

where xi is the ith input data and yi its associated label. Depending on the task
at hand, different loss functions can be utilized, section 2.1.5 gives an overview of
the most commonly used.

Suitable objective functions are differentiable with respect to the model param-
eters. Similar to how the input flows through the network’s layers, the gradient is
propagated backward through the network following the chain rule. Finally, the
parameters are nudged into the direction of the steepest loss descent

θt+1 = θt − η ∗ ∇J(θt) (2.14)

where θt are the parameters at the t-th iteration, η is the learning rate and ∇J is
the derivative of the objective function J with respect to the parameters θt.

An inherent problem with using the chain rule in very deep network architec-
tures is that the chain of multiplied gradients gets very long in earlier layers. This
becomes a problem if the gradients are consistently smaller or larger than 1. When

11



2 – Background

gradients become very large or are approaching zero, it is called the exploding or
vanishing gradient problem respectively. Section 2.1.3 briefly discusses the impor-
tance of how the gradient behaves during backpropagation, as unstable gradients
are one of the main issues limiting the depth of networks. An effect that is ampli-
fied in recurrent neural networks with long input sequences, as explained in section
2.3.1.

Stochastic gradient descent (SGD) addresses another common issue in large
datasets. Deep learning is very data-intensive, making it infeasible to compute
the loss over the entire dataset at each step. Instead, the use of mini-batches is
proposed, smaller subsets of the dataset that are resampled at every iteration to
approximate the global data distribution.

Slight statistical variations between the mini-batches remain, however, which
can lead to instability during the learning process. Momentum [10] proposes to
update the weights with an exponential moving average of the gradient, to iron
out these variations. Other developments of SGD exist, to improve on different
aspects. Adam [11] for example, additionally tracks the second-order derivative for
each parameter, to find an optimal individual learning rate.

2.1.5 Loss Functions
Loss functions are a crucial component of the training process, as they quantify
the performance of a model and define the learning objective. In this context, the
mathematical properties of the loss function are important, particularly its gradient,
which is propagated through the network to update its parameters. Thus, the loss
function needs to be smooth and behave predictably during differentiation, having a
gradient that points in the general direction of a good local minimum. Furthermore,
there should be few local optima and they should give similar results to the global
optimum.

Many different loss functions exist, depending on the requirements of the task.
For regression problems, the most commonly used function is the mean squared
error (MSE)

L(yi, ŷi) = 1
n

nØ
i=1

(yi − ŷi)2 (2.15)

where yi is the true output and ŷi is the predicted output for the i-th sample. It
is applied directly to the model’s outputs to push predictions closer to the targets,
penalizing outliers more than close misses. Variations of the distance measure can
also be used, like the L1 distance.

Classification models, on the other hand, are generally trained with a cross-
entropy (CE) loss function

L(yi, ŷi) = −
nØ
i=1

yi log(ŷi) (2.16)

12



2 – Background

This loss measures the distance between two discrete probability distributions: the
output of the network after applying the softmax transformation, and the target
label as a one-hot vector.

Other loss functions are commonly seen to address specific problem settings.
Examples include self-supervised loss functions in contrastive learning, added terms
for regularization as in section 2.1.6, or compositions of several loss functions to
achieve multiple objectives and increase robustness.

2.1.6 Regularization
Overfitting is a common problem that can affect all machine learning algorithms,
however, deep learning models are particularly sensitive. It occurs when a model fits
the training data ’too well’, resulting in decreased accuracy on unseen data. This
loss of generalization capabilities should be avoided at all costs. Many techniques
address this, ranging from choosing a different model to changes in the dataset and
learning process. In this section, we present some common approaches that can be
applied to neural networks.

Weight Decay Generally speaking, overfitting occurs when a model is too com-
plex to be justified by the data. Weight decay restricts the amplitude of a model’s
parameters θ by adding a norm penalty to the objective function. Several choices
for the norm exist, the most common being the L1 and L2 norms. In the case of
the L2 norm the objective function J changes to

J̃(θ) = J(θ) + λ∥θ∥2
2 (2.17)

where λ is a hyperparameter that controls the regularization impact.

Early Stopping Early stopping is a simple technique that does not require
changing the network’s parameters or objective function. Instead, it lets the train-
ing process run only as long as generalization improves, and stops as soon as this
condition is violated. Generalization performance can be measured with the loss
or accuracy on an independent validation dataset. Figure 2.4 shows how both
the training and validation loss decrease initially until the validation loss increases
again. With early stopping the final model is the one with the lowest validation
loss.

data augmentation Most methods to prevent overfitting act on the model or
training process. Data augmentation, on the other hand, aims to enhance the
training data, so that it is too complex for the model to overfit. It increases vari-
ance in the dataset by applying random distortions to the data samples. Possible
augmentations range from general methods such as adding Gaussian noise to more

13



2 – Background

Loss

Iterations

Training loss

Validation loss

OptimumUnderfitting Overfitting

Figure 2.4: Early stopping The figure outlines how the training and validation loss
may evolve during training over a number of iterations. Initially both losses decrease,
until the model starts overfitting, leading to an increased validation loss while the training
loss continues to decrease. The optimal model with the best generalization performance
has the lowest validation loss.

task-specific augmentations like rotation or random cropping of images. Figure 2.5
shows some commonly used image augmentations.

On the other hand, augmentations may add noise to the dataset which hinders
the training process and reduces the model’s final performance. Thus, the choice
of transformations depends on the model and task at hand. Generally speaking,
however, data augmentation is considered good practice, aiding with both general-
ization and improving overall performance. In extreme cases, it may even be used
to generate artificial datasets for tasks with very limited real-world data.

label smoothing The hypothesis behind label smoothing is that a model that is
overly confident in its predictions is overfitting. To prevent this, Laplace smoothing
is added to the label vector, pushing the model to make more balanced predictions.
This method is simple to implement and adds very little computational complexity.
Laplace smoothing is defined as

ỹ = (1 − α)y + α/K (2.18)

where y is the one-hot representation of the label, α the smoothing hyperparameter,
K the number of classes, and ỹ the resulting label vector.

dropout Finally, dropout [13] is a regularization method that is specific to deep
learning. It refers to randomly excluding units from the computation, replacing

14



2 – Background

Figure 2.5: Image augmentations This figure shows common data augmentations
applied to RGB images. It is part of a large library of augmentations [12].

their outputs with 0. This encourages the network to learn redundant internal
feature representations, making it more robust to unseen features. To make use of
the redundancy for evaluation, dropout is only enabled during the training process.
Figure 2.6 shows a schematic of an MLP with dropout applied.

In 2013 Wan et al. introduced dropconnect [14] as a generalization of dropout.
Instead of dropping entire units, random connections between the units are dropped,
replacing the inputs with 0. This follows the same general logic as dropout but al-
lows for more variation between model iterations.

15



2 – Background

dropout

×

×

×

×
×

×

×

Figure 2.6: Dropout Dropout randomly excludes a percentage of units from a network
for each forward pass during training, increasing redundancy and robustness in internal
feature representations.

2.1.7 Normalization

This section explores the internal covariate shift and how normalization layers ad-
dress this issue in neural networks. Normalization layers have an additional reg-
ularizing effect on the network, however, we discuss them separately from section
2.1.6, as the primary objective of normalization is different.

Most machine learning models assume their data to follow a normal distribution.
As this is not always the case it has become standard practice to normalize data
before any training or predictions are made. In neural networks, however, this
issue is more complex. As the data flows through the layers each layer applies a set
of transformations potentially violating the assumption of normality for the next
layer. This effect is called the internal covariate shift. Its effects are even more
apparent during training, when the networks parameters are constantly updated
and thus the distribution of the ouput features changes. Normalization layers are
designed to limit this issue and its implications. In the following the various types
of normalization layers are presented.

Batch normalization Batch norm was introduced by Ioffe and Szegedy [15] in
2015. Their paper was the first to analyze the internal covariate shift and propose
normalization layers as a solution. To this day it remains the most widely used nor-
malization layer and has been incorporated in many state-of-the-art architectures
[16].

Given a batch of inputs, each input having a spatial and a channel dimension, the
mean µ and variance σ2 are computed over all spatial dimensions and inputs, sep-
arately for each channel. After normalizing the data it can be shifted and rescaled
with two learnable parameters β and γ to retain the network’s representation power.

16



2 – Background

The normalization layer’s output x̂i is defined as

µB = 1
m

mØ
i=1

xi σ2
B = 1

m

mØ
i=1

(xi − µB)2 (2.19)

x̂
(k)
i = γ(k) x

(k)
i − µ

(k)
Bñ

(σ(k)
B )2 + ϵ

+ β(k) (2.20)

where x(k)
i is kth channel dimension of the ith sample of the input batch and m

the batch size of batch B. This operation ensures normally distributed data with
location and scale explicitly defined by optimized network parameters.

Batch normalization is mainly important during training to account for the
covariate shift due to updated parameters. Since the parameters are fixed for
inference, batch norm is instead replaced by a linear transformation. For this,
running estimates are kept during training via exponential moving averages

µ̃ = (1 − λ)µB + λµ̃ (2.21)
σ̃ = (1 − λ)σB + λσ̃ (2.22)

where λ is the momentum hyperparameter. These estimates are used in place of
the computed mean and variance for inference.

Other Normalization Layers Batch normalization, however, has one major
shortfall, its dependence on the batch size. It works well for large batches giving
meaningful statistics but becomes increasingly unstable for smaller batches. In
response, many alternative normalization layers have been proposed, following the
same ideas but choosing different dimensions over which the normalization statistics
are computed.

Layer norm [17] takes the mean and variance over all spatial and feature dimen-
sions of each individual sample. Instance norm [18] on the other hand calculates
them over all spatial features of each feature, behaving as batch norm would with a
batch size of 1. Group norm [19] tries to strike a balance between the two, extend-
ing the computation over groups of channels. Figure 2.7 illustrates this concept
more intuitively.

17



2 – Background

Figure 2.7: Normalization layers This figure provides an overview of different types
of normalization layers. H and W are the height and width representing the spatial
dimension, C is the channel dimension and N the batch axis. The blue boxes indicate
the sets of values which share the same mean and variance. Figure taken from [19]

2.2 Convolutional Neural Networks
Image understanding and classification are complex disciplines in computer vision
that aim to develop algorithms that are able to extract abstract information from
images. Interesting challenges and a wide range of potential applications keep the
research community engaged. Thus it is no wonder, that this area set the stage for
the rise of deep learning. Early attempts starting in the 1960s sought to tackle the
issue by using traditional machine learning models on top of hand-crafted features
[20], but they saw only limited success.

While simple feed-forward networks are theoretically able to implement arbitrary
functions, they have several fundamental limitations that prevent them from being
successful in this field. Notably, objects in images are position invariant, meaning
the object is the same, no matter where in the image it is located. Additionally,
the meaning of a pixel depends on those around it, a relationship that MLPs do
not capture explicitly.

A new class of neural networks was required, the convolutional neural network
(CNN). Inspired by Hubel and Wiesel’s [21] discovery, that the neurons in the visual
cortex in cats had a limited receptive field, Fukushima [22] presented the neocogni-
tron featuring convolutional layers. Further innovations like the backpropagation
algorithm [7] and increasingly complex architectures kept advancing the field.

2.2.1 Convolutions
Convolutions are mathematical operators that express an interaction between two
functions f and g defined as

(f ∗ g)(x) =
Ú ∞

−∞
f(t)g(x− t)dt (2.23)

If f and g are discrete functions, this equation simplifies to

18



2 – Background

(f ∗ g)[n] =
∞Ø

m=−∞
f [m]g[n−m] (2.24)

In computer vision, convolutional operators are typically defined as 2D matrices
that slide over an image. They are can be used for example to blur images or
detect edges. In CNNs they are treated as learnable parameters to extract features
from the input data. Figure 2.8 shows what this 2D convolutional operation looks
like.

Analog to the linear layers of the MLP, convolutional layers are part of the
architecture of a neural network. This addresses two of the main drawbacks of
MLPs with images, the convolutional operator is spatially invariant and addresses
the locality of features. To increase the representational power of convolutional
layers, several filters can be used at each stage, returning an additional dimension
in the output feature map, the channel dimension.

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

∗
1 0 1
0 1 0
1 0 1

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.8: Convolution The discrete 2D convolution involves sliding the filter (mid-
dle) over the input (left) and computing the weighted sum as the output at that position
(right).

2.2.2 Pooling
Another important part of convolutional neural networks are pooling layers. While
the main purpose of convolutional layers is to extract information, pooling layers are
designed to reduce the dimensionality of latent features. They summarize features
in patches of the feature map and thus downsample the input space and increase
local translation invariance.

Typical summarizing functions in pooling layers are the max function and aver-
aging. They are efficient and maintain important information of the feature map.
Other pooling layers exist, like min pooling or L2 pooling, but they are used much
less frequently. Figure 2.9 shows a simplified comparison of max pooling and aver-
age pooling.

19



2 – Background

3 2 5 4
5 6 2 1
0 8 6 3
3 5 7 4

6 5
8 7

(a) Max pooling

3 2 5 4
5 6 2 1
0 8 6 3
3 5 7 4

4 3
4 5

(b) Average pooling

Figure 2.9: Pooling A simple example of two pooling layers with 2 × 2 kernels and
2 × 2 stride applied to the same input.

2.2.3 Architectures

One of the most important architectures in the development of CNNs is LeNet-5
by Yann LeCun’s research team [23]. Built for optical character recognition of US
postal codes still finds application today as a minimalistic CNN. It features three
convolutional layers and two pooling layers as part of the feature extractor followed
by two fully connected layers for classification.

The next step in the architectural evolution of CNNs was taken by Krizhevsky
[24] with AlexNet. It features a much deeper architecture which empowered it to
win the prestigious ImageNet [25] challenge in 2012. GPU accelerated training
made it feasible to train such a large architecture, a method that would persist
with later research.

In 2014, Szegdy et al. [26] presented Inception net and won the ImageNet
challenge. They proposed a significantly more complex architecture than previ-
ous networks. An important assumption of this architecture is that features are
present at different scales in the input. The researchers address this by applying
several differently-sized convolutions at the same network depth. These parallel
convolutions were bundled into Inception modules that could be chained together.
The very deep architecture required several auxiliary loss functions throughout the
network to help guide the gradient during training. Aggressive downsampling at
the first layer helps to limit the computational cost of the network.

Inception net proved very powerful and several improvements have been added
to later iterations of the base model. Inception v2 [27] saw the factorization of
convolutions into a number of smaller convolutions, reducing the number of param-
eters and computations and increasing the representational power. Inception v3
[27] added several regularization techniques, most notably batch norm layers.

Alongside Inception, ResNet [16] is one of the most widespread architectures
today. Its largest version won the 2015 ImageNet challenge. The defining feature
of ResNet is the skip connection, which allows layers to be skipped, greatly helping
the gradient flow thus allowing much deeper architectures. ResNet exists in different

20



2 – Background

sizes enabling adjustment to the computational constraints of the application.

2.3 Sequential Data
Many real-world applications deal with sequential data. This can be in the form
of chronologically ordered measurements, the frames of a video, notes from a song,
or the words in a text. Specialized models are required to properly caption the
context of logically ordered inputs.

Early attempts at this followed similar developments in computer vision by us-
ing 1D convolutions, as the same locality of features principle discussed in section
2.2 applies to sequential data. To better handle sequences of arbitrary lengths,
researchers proposed encoding the contextual information with a hidden state vec-
tor using recurrent neural networks (RNNs). Long short-term memory (LSTM)
networks are an improvement upon vanilla RNNs that are designed to be more
stable on very long sequences. Current state-of-the-art models rely on transformer
architectures with self-attention modules, that allow the model to focus on specific
parts of the input sequence, for each output, regardless of sequence length.

2.3.1 Recurrent Neural Networks
The fundamental idea behind recurrent neural networks is that the model encodes
the context of an input sample xt at time step t in a hidden state vector ht. Fol-
lowing hidden states ht+1 and the model’s output ŷt can then be computed from
the input and the hidden state.

ŷt = fθ(xt, ht) (2.25)
ht+1 = gθ(xt, ht) (2.26)

Computing the next hidden state from all previous ones using the same operation
gives RNNs their name. It results in a highly versatile model, that can handle
arbitrary length input and output sequences and be naturally adapted to different
settings of sequential data processing, as shown in figure 2.10.

Long-Short-Term Memory An important limitation of RNNs is the vanish-
ing or exploding gradient problem. When backpropagating the gradient over long
sequences, the gradients are multiplied with the weights at each step, leading to
very small or large values if the gradients are consistently below or above 1. LSTMs
propose to limit the number of interactions with the hidden state by adding a series
of gates while keeping to the basic principle of storing context in the hidden state.

Specifically, LSTM cells consist of three gates, an input gate, an output gate,
and a forget gate. Each gate consists of a single fully connected layer followed by a

21



2 – Background

Figure 2.10: Recurrent Neural Network Architectures Different architectural
setups of RNNs, from one-to-one vanilla models without recurrency to different forms
of sequence inputs and outputs with recurrency. Red rectangles represent input vectors,
hidden states are green and output vectors are shown as blue rectangles. Image from
[28].

sigmoid activation function, to convert the output to a weight factor. At time step
t, the cell takes the encoded model input xt along with the previous cell state ct−1,
and hidden state ht−1 to compute the next cell state ct and hidden state ht. The
hidden state ht doubles as the LSTM cell’s output. ht−1 and xt play an important
role in controlling the gates to regulate the flow of all information passing through
the cell.

The output of gate gt at time t can be computed as

gt = σ(Wgxt + Ught−1 + bg) (2.27)

where Wg and Ug are the weights and bg the bias specifically associated with gate
g, and σ is the sigmoid activation function (see section 2.1.3). Furthermore, the
new intermediate cell state is calculated from the layers input and hidden state as

c̃t = tanh(Wcxt + Ucht−1 + bc) (2.28)

Finally, the new cell state is computed by passing the old and new cell states
through their respective gates, applying element-wise multiplication, and summing
the results

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.29)

where ft and it are the outputs of the forget gate and input gate respectively, and
⊙ is the Hadamard product. The cell’s output and new hidden state is then the
Hadamard product of the new cell state with the output gate ot

ht = ot ⊙ tanh(ct) (2.30)

Figure 2.11 gives a visual explanation of the LSTM cell.

22



2 – Background

σ σ Tanh σ

× +

× ×

Tanh

ct−1

Cell

ht−1

Hidden

xtInput

ct

Cell

ht

Hidden

htOutput

Figure 2.11: LSTM cell This figure visualizes the structure of an LSTM cell. LSTMs
improve RNN’s abilities to learn from long input sequences with LSTM cells by improving
the flow of information through the use of input, output, and forget gates, indicated as σ
activation functions. The gates are controlled by the hidden state ht−1 and the input xt,
to manipulate the cell state ct−1 and finally return the new hidden state ht as output.

2.3.2 Transformers
LSTMs mark an evolutionary step in the development of models for text and speech
understanding. However, they face the same underlying issues as standard RNNs:
instability during training and the representational bottleneck of the hidden state.
To address this, researchers proposed the concept of attention. Attention allows the
model to deliberately focus on specific parts of the input sequence when predicting
each output.

Attention First, the inputs x1, x2, . . . , xn are encoded in the latent space as

hi = fE(xi, hi−1) (2.31)

Next, an alignment score eij is computed between the input hi the hidden state sj
of the decoder

eij = fatt(hi, sj) (2.32)

The function fatt used to compute this alignment score can be as simple as the
dot product or as complex as an MLP with its own trainable parameters. Using
the softmax function the alignment scores e1j, e2j, . . . , enj are turned into attention

23



2 – Background

weights a1j, a2j, . . . , anj. These weights are multiplied with the encoded inputs

cj =
nØ
i=1

aijhi (2.33)

to get a representation that is meaningful for the current state sj of the output
sequence. Finally, the decoder computes the new state sj+1 and output from cj.

Transformers Vaswani et al. [29] take the concept of attention a step further
and introduce self-attention. They propose to transform the inputs hi into key ki,
value vi, and query qi vectors

ki = fK(hi) vi = fV (hi) qi = fQ(hi) (2.34)

where fK , fV , and fQ are the multi-layer perceptrons. Then, alignment scores eij
are calculated as the dot product of the query qj and key vectors ki and transformed
again into attention weights aij using the softmax function. Similar to the standard
attention model, the weights aij are multiplied with the value vectors vi to compute
the outputs cj of the layer. However, thanks to the use of key-value pairs, this can
be done independently for each sample of the sequence, without keeping track of a
state vector sj.

Multi-headed attention employs multiple self-attention mechanisms at the same
abstraction layer to focus on separate parts of the sequence, facilitating the mod-
eling of different contexts. Transformers stack many multi-headed attention layers
in both the encoder and decoder, to model high-level abstract relationships within
the input sequence. Currently, transformers are the state of the art for sequence
processing, replacing RNNs and LSTMs in most applications.

24



Chapter 3

Related Works

This chapter provides an overview of the relevant literature for our work. Section
3.1 explores action recognition, explaining the task, the importance of temporal
and multimodal information, datasets, and important architectures. Section 3.2
takes a look at the cross-domain scenario and its sub-settings, presenting important
conventional approaches and methods specific to action recognition.

3.1 Action recognition
Action recognition is a classification problem in computer vision, that aims to
identify what kind of activity is performed in a short video clip. In most cases, this
amounts to assigning a verb label to that activity, like walking or climbing. Some
datasets [30] additionally record interactions with objects, increasing the difficulty
by requiring the correct activity verb as well as the correct object noun to be
identified. This section presents the action recognition task and explores some of
the challenges specific to this setting.

3.1.1 Egocentric Action Recognition
Egocentric Action Recognition is a special case of action recognition where the
videos are filmed from a first-person perspective. This adds many challenges and
unique aspects to the classification task. First of all, the input video is recorded
with a limited field of view and never shows the full body posture or movement of
the person performing the action. Furthermore, the camera itself experiences a lot
of movement leading to drastically changing view angles, as well as frequent object
occlusion.

On the other hand, additional information can be inferred in this special setting.
Changes in the camera perspective keep the relevant action always in the center
of the frame and help determine the relative locations of key objects in 3D space.

25



3 – Related Works

Figure 3.1: EPIC Kitchens Some example actions with their verb and noun labels
from the EPIC Kitchens [30] egocentric action recognition dataset.

Tracking the gaze direction, for example, helps models focus on relevant parts of the
input [31, 32]. Similarly, some researchers have suggested the use of hand positions
to identify hand-object interactions and assist in action classification [33].

Finally, the distribution and structure of action classes is different in egocentric
datasets. Traditional action recognition videos include classes like walking and
running, which are difficult to distinguish from a first-person point of view. The
biggest public egocentric dataset [34], on the other hand, contains videos of people
performing typical kitchen activities, like mix batter and stir chicken, which are
more dependent on egocentric-specific information. Figure 3.1 shows some sample
actions and screenshots from egocentric videos of the EPIC Kitchens dataset.

3.1.2 Temporal Information
The key difference between image and video classification lies in the additional
temporal information of videos. Different formats exist to encode temporal infor-
mation, such as event cameras, RGB differences, and flow images. In most cases,
however, videos are treated as sequences of RGB frames, extracted at a predefined
frame rate.

The relevance of temporal information varies between action recognition datasets
[35] and some researchers achieve impressive results with regular 2D CNNs from
image recognition architectures [36, 37]. Nonetheless, temporality is a defining
feature of this field and often carries essential information. Especially in egocentric

26



3 – Related Works

action recognition, camera angles, and viewpoints often change, indicating new
positions where relevant actions take place [31, 32]. Furthermore, this positional
variance can give the environment a three-dimensional meaning and move objects
in and out of occlusion. Finally, some actions require temporal context to be
distinguishable. In the EPIC Kitchens dataset [30] for example both the action of
opening and closing a cupboard exist. The difference between these two actions
is entirely dependent on the temporal context, highlighting the need for powerful
architectures able to capture this information.

In the following, we briefly present the most important models that have been
proposed to extract both spatial and temporal features from RGB frame sequences.

Figure 3.2: Inflated Inception-V1 Architecture A detailed overview of the I3D
inflated Inception-V1 architecture. The left figure shows a high-level overview, while the
right side shows an Inception module in detail. Figure from [38].

2D Convolutions Earlier approaches relied entirely on applying 2D CNNs on
single frames. The extracted features could then be averaged or concatenated in
a process called fusion. Fusion could either occur in lower layers or higher up in
the network architecture, resulting in the early fusion and late fusion approaches
respectively. Karpathy et al. [39] show in their study that these methods achieve
competitive results and benefit directly from new advances made in image classifi-
cation.

Later advancements improved the fusion process by applying more complex ar-
chitectures from sequence processing or specialized fusion modules. LSTMs have
been used with great success [40, 41] even in complex settings such as unsupervised
learning [42] and domain adaptation [43]. Analog to the developments in sequence
processing, attention-based methods [44, 45] and transformers [46, 47, 48] have
grown in popularity.

Notable examples of special fusion modules include temporal relational networks
[49], which feed different-length sequences of frame-level features into separate

27



3 – Related Works

MLPs to model temporal relations over distinct time intervals. Temporal shift
modules [50] enhance temporal pooling by replacing a small percentage of features
in convolutional layers with features from adjacent frames in the past or future.
Temporal aggregation modules [51] enhance this step by adding a depthwise 1x1
convolution before shifting along the temporal axis. Finally, Sahoo et al. [52]
propose graph convolutions to fuse temporal features.

3D Convolutions A different approach to temporal modeling has been proposed
with 3D CNNs. They naturally extend the 2D convolutional filters of image-based
CNNs along the temporal axis, resulting in 3D spatiotemporal filters. These filters
operate on h × w × f × c inputs called clips, each clip consisting of f consecutive
h× w × c frames.

3D CNNs have been proposed several times [53, 54, 55], however, their drastically
increased complexity requires much more computational power and presents diffi-
culties during training. Inflated 3D (I3D) models [38] were a major breakthrough
in this regard, taking a pretrained BN-Inception net [27] and inflating the 2D filters
to three dimensions while keeping the original parameters. This involves copying
them along the temporal axis, but down-scaling them so that their output does not
change when applied to a static video consisting of a single repeated frame.

While most 2D and 3D CNNs are adaptations of models directly copied from
image recognition, some video-specific architectures have been proposed in recent
years. Similar to the origins of 2D CNNs, Slowfast [56] also takes inspiration from
the biological visual cortex. It features a slow pathway with a powerful CNN that
works on frames sampled with a low frame rate, and a fast pathway, that works
with a high frame rate and a fraction of the channels of the slow pathway, to save
computations. The intuition is that the slow pathway extracts complex spatial
features, while the fast pathway captures temporal information, resulting in an
efficient and capable architecture.

3.1.3 Multi-Modal Data
Another characteristic feature of videos is their inherent multi-modal nature. Modal-
ities are different sources or encodings of the input that may contain complemen-
tary information. Examples include measurements collected from auxiliary sensors,
such as the audio track, camera position and movement, and event-based videos,
as well as information that can be extracted from the source video with advanced
algorithms, for example, optical flow or RGB differences. Figure 3.3 shows some
example modalities.

Training models to extract features from multiple modalities can simultaneously
boost performance [38] and robustness [57]. Different modalities often contain
additional information [58] that is not available in other modalities. Especially in
the cross-domain scenario, many methods exploit a distinct and often uncorrelated

28



3 – Related Works

Figure 3.3: Modalities Examples of different modalities for two different images. From
left to right: RGB images, RGB difference, optical flow, warped optical flow. Images from
[36].

domain shift in each of the modalities [59, 60].
Similar to temporal information, different techniques exist to integrate multi-

modal data. Most models revert to simple early [36] or late fusion [59, 38] of fea-
tures, while others integrate multi-modal learning with the extraction of temporal
features [61] or propose dedicated fusion architectures [62].

This section presents the most relevant modalities for action recognition

Optical Flow Optical flow is the most commonly used auxiliary modality for
action recognition as it records the apparent motion of objects between frames
with a 2D motion vector at each pixel. While this information is present in each
pair of RGB frames as well, it is highly abstract and difficult to implicitly extract
with a neural network. Figure 3.4 shows a visualization of what the optical flow
modality looks like. Extracting optical flow requires complex and slow algorithms
[63], however, efforts have been made to leverage deep learning in this context [64].

Audio Another widely available and commonly used modality is audio [66, 67].
This modality is especially useful in the context of object interactions [30] as objects
made from different materials often make distinct sounds. Cooking food in a metal
pot for example will sound different than chopping paprika on a wooden cutting
board.

It is common practice to transform the audio track into a spectrogram that is
then evaluated by a pretrained 2D CNN. The default architecture for this is BN-
Inception [27] pretrained on ImageNet [25], which has proven to give reliable results
[61]. Figure 3.5 shows a comparison of spectograms of different sounds at different
resolutions.

29



3 – Related Works

Figure 3.4: Optical flow The left column shows two RGB frames of a video, while the
right side shows the corresponding extracted flow images. Color indicates the direction
of the flow vectors and color intensity their magnitude. Images from [65].

Other modalities Other modalities have been proposed to augment the infor-
mation passed to the model. These range from straight-forward RGB differences
[36] to the implementation of novel sensors. Event cameras [68] are neuromorphic
sensors that asynchronously record brightness changes of individual pixels to cap-
ture information at extremely high temporal resolution, simultaneously reducing
redundancy by ignoring still parts of the image. Plizarri et al. [69] show that
event-based videos classified by common video-processing architectures are com-
petitive with state-of-the-art RGB and Flow multi-modal models.

3.1.4 Datasets
A multitude of datasets exists for action recognition. This section introduces the
most relevant ones for this work.

Kinetics Kinetics [72] is one of the largest action recognition datasets, featuring
700 different action classes with over 700 videos each. The videos were scraped from
YouTube and cover a diverse range of human actions, including a variety of human-
object and human-human interactions. Due to its comprehensiveness, it is often
used to pretrain action recognition models, similar to ImageNet in 2D computer
vision. Carreira et al. [38] show that pretraining on Kinetics can significantly boost

30



3 – Related Works

Figure 3.5: Spectrogram This figure shows the spectrogram for two distinct sounds
(Alarm and Siren). The left column has a lower resolution due to the larger hop size,
while the right column shows higher-resolution spectrograms. Figure from [70]

a model’s performance, also on other action recognition datasets.

UCF-HMDB This dataset is a standard benchmark for domain adaptation mod-
els for action recognition. It consists of two independent datasets: HMDB51 [73]
and UCF101 [74]. HMDB51 was the largest action recognition dataset at the time
of publishing, comprising 51 classes and over 7000 videos from YouTube and movie
scenes. Similarly, UCF101 is the latest iteration in a series of related datasets
with videos downloaded from YouTube. It is slightly newer than HMDB51 and
consists of 101 distinct classes. Figure 3.6 shows sample images and classes from
both HMDB51 and UCF101 datasets. Due to domain adaptation being a relatively
new area of research with specific requirements for datasets to show a clear domain
shift, not many datasets dedicated to this task exist yet. In practice, researchers
often resort to combining different datasets that share common classes. Examples
include UCF-HMDBsmall [75], Kinetics-Gameplay [76], and UCF-HMDBfull [76].
However, some newer datasets include dedicated setups for domain adaptation to
provide a unified framework [30] for benchmarks.

Epic Kitchens EPIC Kitchens 55 revolutionized the field as the first large-scale
dataset for egocentric action recognition dataset. Its initial release [30] featured
over 55 hours of videos recorded with a variety of head-mounted cameras in 32

31



3 – Related Works

Figure 3.6: HMDB51 & UCF101 Some examples of actions in the HMDB51 (left)
and UCF101 (right) datasets. Figure from [71].

different kitchens all over the world. Many different annotation types exist for a
variety of tasks including action recognition, action detection, action anticipation,
domain adaptation, multi-instance retrieval, and object detection. A reworked
version of the dataset [34], EPIC Kitchens 100 contains even more videos from
recurring kitchens and some new kitchens. Figure 3.1 shows a few examples of
actions with their verb and noun labels.

32



3 – Related Works

(a) Distribution of Verb Categories

(b) Distribution of Noun Categories

Figure 3.7: EPIC-Kitchens-100 Distribution of Classes Distribution of verb and
noun categories of the EPIC-Kitchens-100 dataset [34].

3.2 Cross-Domain Learning
Machine Learning models are generally trained under the assumption of indepen-
dently and identically distributed data in both the training and test dataset. State-
of-the-art deep learning models achieve impressive results across a variety of tasks
and settings as long as this assumption holds. When models are evaluated on a dif-
ferent domain or dataset, however, the assumption breaks, resulting in a significant
decrease in performance [77]. The difference between the source domain, on which
the model was trained, and the target domain, on which the model is evaluated,
is called the domain shift. Addressing this loss of performance across domains is
an intense area of research. This section summarizes important publications for
different settings: domain generalization (DG) in section 3.2.1, unsupervised do-
main adaptation (UDA) in section 3.2.2, source-free domain adaptation (SFDA) in
section 3.2.3, and test-time adaptation (TTA) in section 3.2.4.

3.2.1 Domain Generalization
Domain generalization comprises methods that adapt a model from one or more
source domains to an unknown target domain and can be roughly divided into
three overall categories [78]. Data manipulation aims to augment source data or
generate new data samples to increase a model’s robustness and includes common
domain shifts in the training process. Representation learning, on the other hand,
attempts to improve internal feature representations by extracting domain-invariant
features and feature disentanglement. Finally, a number of publications propose

33



3 – Related Works

new learning strategies that lead to more general models.

RNA-Net Relatively little research has gone into domain generalization specifi-
cally for action recognition. Planamente et al. [57] propose a relative norm align-
ment loss in the form of RNA-Net. Their approach seeks to augment multi-modal
training by encouraging the feature representations of each modality to be similar in
magnitude. This avoids the common problem of one modality having a significantly
stronger effect on the final prediction.

Figure 3.8: Deep Adaptation Network [79] For adaptation, the first three convolu-
tional layers are frozen, the last two are fine-tuned, and the task-specific fully-connected
layers are adapted with multiple kernel maximum mean discrepancy.

3.2.2 Unsupervised Domain Adaptation
Unsupervised domain adaptation (UDA) is the most widely studied and general
setting of domain adaptation. During adaptation models simultaneously have ac-
cess to labeled source data and unlabeled target data. Many different methods have
been proposed over the years, ranging from discrepancy-based approaches and do-
main adversarial networks to pseudo-labeling and reconstruction-based methods.

Early research attempted to find an embedding space that minimizes the dis-
crepancy between the source and the target domain. A commonly used pattern
is to map samples into a kernel Hilbert space using maximum mean discrepancy
(MMD) [80, 81]. Other publications propose to model the datasets from different
domains as lying on a continuous manifold [82, 83], connected by geodesic curves.
Intermediate datasets can then be sampled along the curve to observe a gradual
change in the data distribution.

Maximum mean discrepancy [85] is another method that aims to minimize the
statistical variance of the model between the source and the target domain. Long et
al. [79] propose multiple kernel maximum mean discrepancy (MK-MMD) to adapt
the classifier module of the network while freezing the earlier layers of the feature

34



3 – Related Works

Figure 3.9: Domain Adversarial Neural Network DANNs [84] include an adversar-
ial network (pink) that is trained to distinguish features from the source and the target
domain, pushing the feature extractor (green) to learn domain-invariant features.

extractor and fine-tuning later layers in a supervised manner. Figure 3.8 illustrates
the architecture of deep adaptation networks using MK-MMD to adapt domains.
They further develop this work with joint MMD [86] to improve gradient flow and
capture more complex domain shifts.

A different approach is taken by adversarial domain adaptation. In this case, an
adversarial network is trained to distinguish between samples from the source do-
main and the target domain. Through the gradient reversal layer, the discriminator
loss pushes the network to encode source and target features in a domain-invariant
way [84]. This adversary is usually applied to high-level features to adapt the fea-
ture extractor, but the method can also be applied directly to inputs [87]. Figure
3.9 shows a general CNN architecture during adaptation with a domain adversarial
network. Asymmetric adversarial domain adaptation [88] takes a similar approach,
replacing the domain discriminator with an autoencoder that is only trained to
reconstruct samples from the source domain, thereby pushing the feature extractor
to model the target domain in a similar manner.

Below we present important UDA for action recognition publications.

MM-SADA Multi-modal self-supervised domain adaptation (MM-SADA) [59] is
the first technique, that exploits the multi-modal nature of videos for domain adap-
tation. Its architecture consists of a two-stream I3D network with separate feature
extractors and classifiers for each modality with the final classification score being
the average of the predictions on each modality. Adaptation is done over source and
target data simultaneously and consists of two components. Within-modal align-
ment performs adversarial domain adaptation separately on both feature extractors,

35



3 – Related Works

while multi-modal alignment is achieved with a binary domain correspondence clas-
sifier which learns to decide whether the features of the two domains belong to the
same action class or different action classes. It is trained in a self-supervised man-
ner by sampling positive samples as clips from the same video, possibly at different
times, and negative samples as clips from different actions. The correspondence
module should be as shallow as possible so that the feature extractors are trained
to encode the necessary information to distinguish actions. The final loss for adap-
tation is a weighted sum of the supervised action classifier loss, the adversarial
within-modal alignment losses, and the self-supervised correspondence loss.

Figure 3.10: Multi-Modal Self-Supervised Domain Adaptation Architecture of
MM-SADA [59]. F RGB and F Flow are the feature extractors for each modality, and GRGB

and GFlow the classifiers. Final predictions are the average of all modality predictions.
Within-modal adaptation is achieved by the adversarial domain discriminators DRGB

and DFlow, while the correspondence module C is responsible for multi-modal alignment.
The adaptation loss is a weighted sum of the adversarial losses LRGB

d and LFlow
d , the

correspondence loss Lc, and the classification loss LRGB
d .

CoMix Sahoo et al. [52] propose contrast and mix (CoMix) to exploit the tem-
poral dynamics and background invariance of actions with a contrastive learning
approach. Their model has a unique architecture consisting of a graph convolutional
network with three layers on top of the I3D feature extractor. During adaptation,
the model is trained with a weighted average of three different losses.

A temporal contrastive loss Ltcl enforces features to be invariant to the video
recording speed by sampling positive samples as clips from the same video at dif-
ferent frame rates and negative samples as clips from different videos.

Ltcl(V i
f , V

i
s ) = − log

h(zif , zis)

h(zif , zis) +
Bq

j=i,j /=i
v∈{s,f}

h(zif , z
j
v)

(3.1)

36



3 – Related Works

where V i
f is fast version of the i-th video, V i

s is its slow version, zif and zis are the
respective feature representations, and h(u, v) = uT v

τ∥u∥2∥v∥2
is the exponential cosine

similarity with temperature hyperparameter τ .
The temporal contrastive loss Ltcl can be augmented with background mixing or

pseudo labels. Pseudo labels are derived from centroids and added into a supervised
contrastive loss [89], the target pseudo-labels loss Ltpl. For the background mixing
loss Lbgm, the backgrounds of videos in equation 3.1 (Ltcl) are shuffled, replacing
the backgrounds of positive samples with backgrounds of videos from the opposite
domain, pushing the model to focus on the action in the foreground. Backgrounds
BG are extracted via temporal median filtering and replaced by a weighted average
sum similar to mixup

V̂ i{s} = (1 − λ) · V i{s} + λ · BGi{t} (3.2)

V̂ i{t} = (1 − λ) · V i{t} + λ · BGi{s} (3.3)

where V̂ i{s} is the background-mixed version of video V i{s}, {s} and {t} are the
source and target domains respectively, and λ is the mixing hyperparameter.

Finally, source samples are trained with a standard cross entropy loss Lce. The
overall loss includes background mixing and pseudo-labeling as

LCoMix = λceLce + λbgmLbgm + λtplLtpl (3.4)

CIA Cross-modal Interactive Alignment (CIA) is a recent UDA method proposed
by Yang et al. [62] to further exploit the use of multi-modal data for domain
adaptation. They present a special architecture to fuse modalities on top of a
standard feature extractor, that consists of two parts, a Mutual Complementarity
module (MC), and a Spacial Consensus module (SC). The MC is responsible for
sharing complementary information across modalities, by reweighing the channels of
each feature map with a weight vector obtained from the globally averaged features
of the other modalities fed through an MLP. The SC has a similar effect as self-
attention but does not introduce additional parameters that could be affected by
the domain shift. Instead, it sums the Pearson correlation between the feature maps
of different modalities at different resolutions to calculate a consensus map C with
which it reweighs the spatial feature maps of each modality. This architecture is
designed to improve inter-modality communication with the MC and generalization
performance with the SC. Finally, adaptation is done with two domain adversarial
classifiers, one at the video level and one at the feature level of each modality.
Figure 3.11 illustrates the overall architecture of CIA.

37



3 – Related Works

Figure 3.11: Cross-modal Interactive Alignment This figure details the archi-
tecture of CIA [62]. The Mutual Complementarity module allows for the exchange of
information between the three input modalities, RGB, Flow, and Audio. The Spatial
Consensus module is conceptually similar to attention, but it is more robust to domain
shift as it does not introduce additional parameters. Domain alignment is done with a
domain adversarial network.

TranSVAE The Transfer Sequential Variational Autoencoders (TranSVAE) [43]
is a state-of-the-art domain adaptation model that takes a radically different ap-
proach from previous work by attempting to disentangle domain-specific and action-
specific features. Firstly, Wei et al. propose a VAE-based architecture to disen-
tangle domain-specific and action-specific information in the latent feature repre-
sentation. Secondly, they do not adapt their model end-to-end but work on pre-
extracted features from a standard I3D architecture trained on Kinetics [38]. Figure
3.12 illustrates their architecture, which notably consists of an encoder, a decoder,
and a Bi-directional LSTM. The latent space is split into an action-specific domain-
invariant sequential component to capture action semantics and an action-invariant
static component to encode domain-specific information. A Kullback–Leibler diver-
gence (KL)-based mutual independence loss ensures that the two components store
complementary information. Furthermore, a euclidean distance-based contrastive
triplet loss pushes static domain encodings from different domains to be further
apart than encodings of the same domain. Analogously an adversarial loss enforces
domain-independent representations of the dynamic action-specific features. Fi-
nally, the task-specific classification loss and a VAE reconstruction loss complete
the setup. Figure 3.12 provides an overview of the architecture and where each loss
is computed.

Other approaches This section presented the most relevant publications for
this work, but many more methods have been proposed to solve UDA for action
recognition. Common patterns include a domain adversary component [76, 90], a
contrastive loss [60], auxiliary tasks [90], entropy minimization [76], or some form
of domain-shift derived attention [76].

38



3 – Related Works

Figure 3.12: Transfer Sequential Variational Autoencoder This figure details the
TranSVAE [43] architecture. Overall, the architecture is an autoencoder operating on pre-
extracted features. It consists of the encoder, a bi-directional LSTM, and the decoder.
The latent space consists of two disentangled factors, a sequential factor for action-specific
features and a static factor for domain-specific features. A mutual independence loss on
the two factors, domain adversarial alignment of action features, and a contrastive loss on
the domain features ensure disentanglement. The AE loss and task supervision complete
the model’s loss for training.

3.2.3 Source-Free Domain Adaptation
Source-free domain adaptation (SFDA) is a special setting within domain adapta-
tion where the model does not have access to any source data during adaptation. It
finds many applications in the real world where data privacy concerns may prevent
the publication of training data. However, most conventional domain adaptation
techniques violate this additional restriction. Thus, specialized methods are re-
quired to address this issue.

How strictly the absence of source information is enforced, however, is not clearly
defined. Some researchers propose methods that follow a more relaxed approach
which allows the model to be prepared on source data with the specific intent to help
with eventual adaptation [91, 37]. This can involve applying domain generalization
methods or encoding source-domain information in the network. Others propose
their models in a stricter setting, which requires the source model to be trained in
a generic way without domain adaptation-specific modifications [92, 93, 94]. Either
way, the SFDA setting requires that the source and target domain can not be
accessed at the same time.

Notable publications in SFDA include source-free domain adaptation via distri-
bution estimation (SFDA-DE) [95], which proposes to sample surrogate features
from estimated source distributions around robust centroid clusters generated by a

39



3 – Related Works

k-means algorithm. Kundu et al. [94] propose universal SFDA, which is designed
to also tackle the difficult open set DA problem by generating negative samples
to emulate unseen classes and using centroid-based clustering to improve discrim-
inability between classes. Style translation was proposed by Hou et al. [92] to
apply the style of the target domain to artificially generated source images and ad-
just batch norm layers accordingly. Computing centroids to generate pseudo labels
or compute attention weights is a common pattern in SFDA [96], with Chen et al.
bringing the concept to the context of action recognition. Source-free hypothesis
transfer (SHOT) [97] enhances the pseudo-labeling concept by using it to make
feature clusters in the source domain tighter and fine-tune the feature extractor on
the target domain along with an information maximization (IM) loss.

SFDA for action recognition has received much less attention than the more
general UDA scenario. Below we present recent publications which we use as a
benchmark for this work.

ATCoN Xu et al. propose Attentive Temporal Consistency Networks [98] (AT-
CoN) to exploit consistency requirements among the different levels of spatial and
temporal features in temporal relation networks [49]. While ATCoN is able to
achieve major improvements over the source-only baseline in the cross-domain sce-
nario, it is a highly architecture-specific approach. TRNs extract spatial features
from each frame and fuse them into a variety of spatial and local temporal features,
which are then combined in the global temporal feature map. ATCoN consists of
several losses that ensure consistency in the form of KL divergence and metric dis-
tance between the different features and partial predictions in both a fixed source
model and the adapted model. Furthermore, it adds an information maximization
(IM) loss, a cross-entropy loss with centroid-based pseudo-labels, and a local weight
module (LWM) to provide temporal attention. Figure 3.13 gives an overview of the
network architecture during adaptation.

MTRAN Multimodal and Temporal Relative Alignment Networks (MTRAN)
[99] mark a significant improvement on previous SFDA methods for action recogni-
tion. The authors propose a unique architecture, which uses a standard I3D model
to extract clip-level features, but instead of following the common practice of av-
eraging predictions over five clips, they employ a transformer to fuse the features
of several clips before adding a multi-modal fusion layer and a classification layer
for the final prediction. The adaptation is then only performed on the transformer,
fixing both the feature extractor and classifier. Their novel adaptation loss takes
inspiration from mixup [100] and attempts to move the internal representation of
target features to be closer to those of the source domain. By splitting the target
dataset into samples with high prediction entropy and low prediction entropy, two
splits are obtained, one with source-like samples that suffers less from the domain

40



3 – Related Works

Figure 3.13: Attentive Temporal Consistency Network During adaptation, AT-
CoN [98] keeps track of both the model that is being adapted and a fixed source model.
KL divergence and metric distance losses ensure consistency within the adapted model
and with the source model, while an IM loss, a pseudo-labeled cross-entropy loss, and the
local weight module (LWM) improve cross-domain performance.

shift, and one with target-like samples that are more affected. Intermediate fea-
tures are sampled with mixup, and a euclidean loss trains the network to represent
more target-like samples in a more source-like way. This step is repeated after the
temporal and multi-modal layers, along with an information maximization loss and
a pseudo-label loss.

3.2.4 Test-Time Adaptation

In some cases, adapting a model to the target domain before evaluation is infea-
sible, due to the unavailability of sufficient training data. Sun et al. address this
problem by proposing the setting of test-time training [101], where the model is
adapted at test-time on each batch individually. This may be extended to online
adaptation where updates from previous batches are retained to continuously im-
prove the model. Test-time adaptation (TTA) is a highly restrictive setting due
to the limited amount of information available at each adaptation step, but also
because of performance limitations, as the inference process should not be slowed
down excessively by the adaptation.

In their original paper, Sun et al. [101] propose rotation prediction as an auxil-
iary task to adapt the entire network on a batch of samples. Later methods often

41



3 – Related Works

Figure 3.14: Multimodal and Temporal Relative Alignment Network Adap-
tation architecture of MTRAN [99]. During adaptation, only the transformers and fu-
sion layer are updated, while parameters of the I3D feature extractors and classifier are
frozen. The target dataset is split by prediction entropy into source-like and target-like
features. A mixup-inspired alignment loss pushes internal representations of target-like
multi-modal and temporal features to appear to be more source-like. This alignment loss
is augmented by a pseudo-label loss and an IM loss.

focus on updating the batch norm statistics [102] as an essential part of the adap-
tation process. Single image test time adaptation [103] enables adapting the model
on batches consisting of a single image, by estimating its batch-norm statistics on
a wide range of augmentations and computing a weighted average of the source
and estimated target statistics. Test time entropy [104] employs an entropy mini-
mization loss, which has been studied extensively in SFDA as a self-supervised loss
[97, 76] to update the statistics. Finally, T3A [105] proposes to replace the final
classification layer with a robust centroid distance classifier.

Test-time adaptation for action recognition has not received attention until very
recently, with Planamente et al. [106] proposing the use of self-supervised losses
in combination with training on multiple source domains and using other domain
generalization methods.

42



Chapter 4

Proposed Solution

Domain shift is an issue that persists in video action recognition, however, most
research focuses on the unsupervised domain adaptation setting. While many in-
teresting advances have been made in this area, its application to the real world
is limited. UDA requires both the source and the target datasets to be available
during the adaptation process, which carries two major drawbacks. Primarily, it
requires the source dataset to be available for the adaptation process. This raises
privacy concerns, as the source dataset may contain sensitive information about
individuals or confidential data that give a competitive advantage. Instead, it is
common for companies to provide plug-and-play models that are pretrained on
proprietary data. Furthermore, in the UDA setting models need to be adapted sep-
arately for each pair of source and target domains. Transferring the model to a new
domain necessitates the adaptation to be redone, requiring both the source dataset
and the new target dataset. Together this means, that UDA can not realistically
be applied by the end user. Finally, UDA methods require the target dataset to be
available as well, meaning the model provider can not perform adaptation either
due to the same privacy concerns.

Domain generalization helps mitigate this issue by providing techniques that
enable training on multiple source datasets simultaneously and improve model ro-
bustness. However, DG is fully done at training time and does not integrate any
knowledge from the target domain. Thus, methods often do not hold up under
general assumptions and still suffer from domain shift [107]. Source-free domain
adaptation, and by extension test time adaptation, addresses this by working on
the target domain without any knowledge of the source domain. TTA is a rel-
atively new research area [101] which is able to provide significant performance
enhancements with little additional computational load. However, it is also a very
strict setting, working in real-time with limited data. Many recent works update
the model parameters on a per-batch basis, relying on large batch sizes to improve
accuracy and robustness. This is not in line with real-world problems which gener-
ally require immediate predictions, making batch collection infeasible. Therefore,

43



4 – Proposed Solution

we see SFDA as an important setting to investigate, having a significant and direct
impact on realistic problem settings.

So far, source-free domain adaptation has been paid limited attention by the ac-
tion recognition research community. Prior works include ATCoN [98] and MTRAN
[99], with both methods being designed to work with a specific model architecture.
This represents a major limitation, as network architectures often change and evolve
over time. A more general approach was proposed with SFTADA [37], however,
it employs centroid-based attention in the source model, which is replaced with a
source-trained MLP to estimate the attention in the target model. This violates
both the strict absence of source information in the SFDA setting, as well as the
standard practice of using the same network architecture in the source and target
domains.

With this work, we want to address the gap in the research by proposing a
general, architecture-independent method to adapt a model under strict source-
free conditions.

source domain target domain
training adaptation adaptation online

DG ✓ - - -
UDA ✓ ✓ ✓ -
SFDA - - ✓ -
TTA - - - ✓

Table 4.1: Different settings in domain adaptation

4.1 Motivation
Our underlying hypothesis states that the extracted features of the network are
sufficient to keep most of the network’s discriminative performance. In fact, the
main reason for the performance drop across domains comes from the shallow clas-
sification module which operates on the feature space. Most modern architectures
for action recognition use the same backbone, either ResNet-101 for spatial fea-
tures or I3D for combined spatiotemporal feature extraction. Additional modules
to improve multi-modal or temporal feature extraction may be added, however,
the majority of the features are extracted within the backbone. These backbones
come pretrained on large datasets, usually ImageNet [25] for ResNet and Kinet-
ics [72] for I3D. The feature extractors are then trained on the source domain
together with a classification layer. Nonetheless, they retain much of their gen-
eral feature-extracting capabilities from pretraining and are thus able to extract
robust domain-invariant features. The classifier, on the other hand, is dependent
on the number of classes and is usually trained from a random initialization on

44



4 – Proposed Solution

the source dataset. We thus hypothesize, that the classifier contains much more
domain-specific information and is responsible for the majority of the cross-domain
performance drop on the target domain. Furthermore, it encodes dataset-specific
biases like the class imbalance and relevance of features for each class.

Recent TTA methods address the domain shift by training the model on each
batch using self-supervised entropy-based losses. This can range from updating
just the batch norm statistics [103] to training the batch norm parameters, classi-
fier [106], or the entire model end-to-end [104]. However, while these methods often
improve the per-batch performance, they do not improve the general performance,
in fact, when training online with more than one batch the model quickly col-
lapses. These self-supervised losses alone are thus unsuitable for the SFDA setting.
Nonetheless, they do find some application in the form of regularization, combined
with other SFDA methods that guide the model to adapt in a more general manner.

Using prototype-generated pseudo-labels to guide the adaptation process is com-
mon practice in source-free domain adaptation literature [97, 94, 37, 99] and to a
lesser extent in general unsupervised domain adaptation [52, 108]. Generally, these
prototypes are simply the mean feature vectors with only minor variations be-
tween proposals. Centroid-based pseudo-labels have several useful properties: they
are computationally light, agnostic to the underlying architecture, combine well
with other losses, and implicitly reduce prediction entropy by encouraging decision
boundaries to pass through low-density regions in the feature space. Instead of
using centroids to just generate pseudo-labels, we propose to replace the classifi-
cation layer with a centroid-based classifier entirely, directly benefiting from these
qualities. Furthermore, this allows us to forego gradient-based optimization, sig-
nificantly reducing adaptation overhead and leaving the source model intact. We
can thus seamlessly adapt a single model to several independent target domains, by
using separate centroids for each domain. Finally, our proposed method is robust
with respect to continuous domain shift and can improve over time, as new samples
can be added to the support sets, directly updating the centroids.

4.2 Predictions from Pseudo-Prototypes

Following Iwasawa and Matsuo [105] we propose to replace the standard classifica-
tion module of deep learning models with an efficient prototypical classifier built
under self-supervision from unlabeled training samples on the target domain, with-
out changing the network’s parameters.

Conceptually, the classification model f = hω ◦ gψ can be split into two parts, a
feature extractor gψ and a classifier hω. Generally, the classifier is a very shallow
network consisting of just a single layer, defined by the weight matrix ω. Thus, the

45



4 – Proposed Solution

predicted probability of a sample x belonging to class k equates to

p(ŷi = k|xi, ψ, ω) = exp(ωk · gψ(xi))q
j exp(ωj · gψ(xi))

(4.1)

where ωk is the kth row ω and ŷ = f(x). Thus, ωk can be seen as a template
representing the kth class, with the dot product as a similarity measure in the
feature space. Class probabilities of a sample x are then computed as the softmax
over the similarity of its feature representation gψ(x) with each class template ωk.
As discussed in section 4.1, we assume that the feature extractor gψ has strong
generalization capabilities and produces robust domain-agnostic features, while the
classifier hω holds domain-specific biases and suffers strongly from the domain shift.
Therefore, we propose to replace the source-specific template ωk with a target-
specific estimate from a training dataset in the target domain.

Given an unlabeled dataset X in the target domain, we must first establish which
features contribute to which prototype. Thus, the model assigns each sample xi ∈ X
a pseudo label ŷi using the source classifier ŷi = f(xi). Finally, the prototype
representing class ck is computed as the mean normalized feature vector of all
samples belonging to class k

ck = 1
N

Ø
i

ŷi=k

gψ(xi)
∥gψ(xi)∥

(4.2)

At test time predictions are then made using the softmaxed distance of a sample’s
feature vector to the classes centroid

p(ŷi = k|xi, ψ) = exp(gψ(xi) − ck)q
j exp(gψ(xi) − cj)

(4.3)

To improve the method’s robustness to outliers and the accuracy of the assigned
pseudo-labels, the set of features to compute each centroid following equation 4.2
can be reduced to a subset of all samples. Iwasawa and Matsuo [105] propose
to select the features of the m samples with the lowest prediction entropy for
each class, which works well on many datasets. Further improvements can be
obtained by replacing the pseudo labels extracted from the source classifier with
the newly generated centroid-based pseudo-labels in equation 4.2. This process
can be repeated several times, updating the centroids similarly to the k-means
algorithm.

Finally, we make some adjustments specific to the video setting. For multi-
modal training, we use the joint predictions to generate the same pseudo-labels
for all modalities in equation 4.2. Similarly, when computing centroids on only
a subset of features, the same subsets of samples are used across all modalities.
Furthermore, video action recognition models are usually evaluated on five clips
for each video. We exploit this additional information by improving initial pseudo-
labels and computing the centroids over the mean feature of 5 separate clips.

46



4 – Proposed Solution

4.3 Problem Formulation
Formally, a domain D = {X ,P(X)} consists of a feature space X with random
input variables X ∈ X and a probability distribution P(X) over the feature space.
A task T = {Y ,P(Y |X)} comprises labels Y in a labels space Y ∈ Y and a
distribution of expected outputs for each input P(Y |X). Machine learning models
are designed to learn a hypothesis h : X → Y that assigns labels Y to inputs X.

In a supervised setting this happens by sampling inputs from the source domain
DS = {X S,P(XS)} and making the network learn the hypothesis hS to predict
the corresponding outputs according to the source task T S = {YS,P(Y S|XS)}.
The network is then evaluated on the target domain DT and task T T . Generally,
machine learning algorithms assume the source and target domain and task to be
the same DS = DT , T S = T T . If this assumption is violated the learned hypothesis
hS is not valid anymore and the model’s performance may degrade. The difference
between two domains is called the domain shift.

Domain shift can occur for many reasons, due to statistical variation nearly
every dataset contains a small amount of domain shift between its splits, even if
they are collected following the same protocol. Larger domain shifts can be caused
by external factors such as different camera sensors, differences in the environment,
weather, season, time of day, or lighting. One of the first datasets dedicated to
capturing the domain shift is the Office-31 dataset [109], which features images
of everyday office objects downloaded from amazon and captured with a DSLR
camera and a webcam.

Transfer learning is the process of learning a hypothesis hT in one domain utiliz-
ing information from another domain DS, T S to improve the result. The area has
received much attention and it is common practice nowadays to initialize models
with weights pretrained on large datasets [110, 111].

Applying pretraining often enables greatly reduced training times, as the net-
work already starts with a good initialization of parameters. Furthermore, it can
boost performance and improve generalization capabilities, by providing an initial
understanding of features that may not be entirely learnable from the target train-
ing data. Finally, transfer learning makes it possible to achieve good results on
tasks or datasets that are too small to be normally used, because collecting the
data is so difficult.

Domain adaptation is a subset of transfer learning, where the task T S = T T and
feature space X S = X T are the same between the source and target domain, but the
samples in the datasets follow a different probability distribution P(X)S /= P(X)T .

The adaptation process can be roughly divided into three stages, training on
the source dataset, adapting the model, and evaluation on the target dataset. Dif-
ferences between domain adaptation settings are mostly defined by what data is
available at which stage. On the one extreme domain generalization exists, where
the model is exclusively trained on the source domain, without any knowledge of

47



4 – Proposed Solution

potential target domains on which the model could be evaluated. Unsupervised
domain adaptation is the most widely studied setting, in which the model is jointly
trained on labeled source data and unlabeled target data. Source-free domain adap-
tation is a subset of UDA, where the supervised training of the source model and its
unsupervised adaptation are strictly separated, with no data being shared between
the two steps outside of the model itself. Finally, test time adaptation sits at the
other end of the spectrum by simultaneously evaluating and adapting the model on
a batch per-batch basis. Table 4.1 gives an overview of the different settings that
were discussed in this section.

48



Chapter 5

Experiments

This chapter presents the experiments we performed to evaluate the effectiveness of
our method. Firstly, section 5.1 defines the technical details of our implementation
and the experimental setup. We then start by comparing our method with the
state-of-the-art in source-free domain adaptation, unsupervised domain adaptation,
and test-time adaptation in section 5.2. The later sections are intended to give
a theoretical analysis of our method. Section 5.3 looks at the dataset bias and
its effect on neural networks. Furthermore, section 5.4 highlights the advantages
of multi-modal learning. Finally, section 5.5 performs an ablation study on our
method, comparing the effect of each individual component.

5.1 Implementation Details
Datasets We evaluate our proposed method on the two most commonly used
datasets for recent works in domain adaptation for action recognition: EPIC
Kitchens 55 [30] has egocentric videos from three different domains and UCF-
HMDBfull [74, 73] following the setting proposed by Chen et al. [76].

Implementation Our model uses a two-stream I3D backbone pretrained on ki-
netics with averaged late fusion to process multi-modal inputs. Flow frames are
extracted using the TV-L1 algorithm [63]. Clips consist of 16 frames following the
dense sampling strategy with random cropping, scale jitters, and horizontal flipping
as augmentations. We follow the standard practice of evaluating our model using
the average prediction on 5 clips per video unless otherwise stated.

Computational Resources Our experiments were run in two different setups:
a workstation with two NVIDIA GeForce GTX 1070 GPUs; on a single NVIDIA-
V100 GPU provided by hpc@polito, which is a project of Academic Computing

49



5 – Experiments

within the Department of Control and Computer Engineering at the Politecnico di
Torino (http://www.hpc.polito.it).

5.2 Comparison with the State-of-the-Art
Most research on domain adaptation for action recognition has focused on the more
general unsupervised domain adaptation (UDA) scenario, with source-free domain
adaptation (SFDA) receiving much less attention. Therefore, we compare our re-
sults to state-of-the-art publications in both settings, however, the most relevant
benchmarks for us remain the SFDA methods: ATCoN [98], SFTADA [37], SHOT
[97] and MTRAN [99].

method backbone SF MM U→H H→U avg
ATCoN [98] ResNet-101 ✓ - 79.7 85.3 82.5

SFTADA [37] ResNet-101 ✓ ✓ 87.2 91.2 89.2
STCDA [112] I3D - - 83.1 92.1 87.6
CoMix [52] I3D - - 86.7 93.9 90.3

CIA + TA3N [62] I3D - - 91.94 94.57 93.26
TransVAE [43] I3D - - 87.78 98.95 93.37
TA3N [76, 90] I3D - - 81.4 90.5 85.95

SAVA [90] I3D - - 82.2 91.2 86.7
MM-SADA [59, 60] I3D - ✓ 84.2 91.1 87.65

CIA [62] I3D - ✓ 90.56 94.22 92.39
[60] I3D - ✓ 84.7 92.8 88.75

SHOT [97, 99] I3D ✓ ✓ 89.72 91.77 90.75
MTRAN [99] I3D ✓ ✓ 92.22 95.27 93.75

ours I3D ✓ ✓ 92.22 98.95 95.59

Table 5.1: Comparison with SOTA on UCF-HMDBfull This table compares our
results with other domain adaptation methods on the UCF-HMDBfull dataset. The
second and third column state whether the proposed method is source-free (SF) and uses
multi-modal data (MM). The best values of each column are indicated in bold writing.
Our method outperforms all previous SFDA and UDA techniques on all shifts.

UCF-HMDBfull Table 5.1 shows that our method outperforms not just previous
SFDA methods, but all UDA methods as well, on both domain shifts, with an
average accuracy of 95.59%, an improvement of 5.74% over the source-only model.
However, one should note that each method reports different source-only and target-
only performances, making a direct comparison difficult. These differences can be
the result of differences in architecture, experimental setting, training process, or
simply statistical variations. For example, two commonly used backbones, are

50



5 – Experiments

ResNet-101 [16] and I3D [38]. As a 3D CNN I3D has significantly more parameters
than ResNet-101 and generally achieves better results.

EPIC-Kitchens-55 Compared to UCF-HMDBfull, EK55 is a much more chal-
lenging dataset, both in the supervised setting and even more so for domain adap-
tation. Table 5.2 reports our results in comparison with state-of-the-art methods
and shows that our method outperforms previous SFDA work and closes the gap
to the more general UDA setting.

method SF MM D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 avg
DANN [84, 52] - - 38.3 38.8 37.7 42.1 36.6 41.9 39.23
TA3N [76, 43] - - 40.9 39.9 34.2 44.2 37.4 42.8 39.90

CoMix [52] - - 38.6 42.3 42.9 49.2 40.9 45.2 43.18
TransVAE [43] - - 50.3 48 50.5 58 50.3 58.6 52.62
MMD [79, 62] - ✓ 46.6 39.2 43.1 48.5 48.3 55.2 46.82

MM-SADA [59] - ✓ 48.2 50.9 49.5 56.1 44.1 52.7 50.25
[60] - ✓ 49.5 51.5 50.3 56.3 46.3 52 50.98

STCDA [112] - ✓ 49 52.6 52 55.6 45.5 52.5 51.20
CIA [62] - ✓ 49.8 52.2 52.5 57.6 47.8 53.2 52.18

SHOT [97, 99] ✓ ✓ 44.09 53.99 40.77 36.45 49.03 45.34 44.95
MTRAN [99] ✓ ✓ 46.33 58.15 42.21 38.12 52.33 46.12 47.21

ours ✓ ✓ 52.06 50.46 45.6 52.27 41.07 55.13 49.43

Table 5.2: Comparison with SOTA on EPIC-Kitchens-55 This table compares
our results with other UDA methods on EPIC-Kitchens-55. Columns 2 and 3 indicate
whether the model was adapted in the source-free setting (SF) and if it uses multiple
modalities (MM). The best results for SF are highlighted in bold blue and for non-SF
methods in bold. Our experiments show that we are able to beat all state-of-the-art
source-free methods and close the gap between SFDA and the more relaxed UDA.

5.2.1 Comparison with Test-Time Adaptation

Test-time adaptation (TTA) methods often operate under the source-free assump-
tion, with the additional constraint of no access to a training dataset in the target
domain. It is thus interesting to compare our proposed SFDA method with state-
of-the-art TTA techniques for action recognition. Specifically, we benchmark our
results against a variety of self-supervised losses utilized for action recognition TTA
by Planamente et al. [106] and Peirone [113], and Test-Time Template Adjusters
(T3A) [105], a method that is conceptually similar to ours. Tables 5.3 and 5.4 show
the results of this analysis on both datasets.

51



5 – Experiments

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Percentage of samples seen

Av
er

ag
e

ac
cu

ra
cy

ucf→hmdb
hmdb→ucf

Average

(a) UCF-HMDBfull

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Percentage of samples seen

Av
er

ag
e

ac
cu

ra
cy

D2→D1 D3→D1 D1→D2
D3→D2 D1→D3 D2→D3
Average

(b) EPIC-Kitchens-55

Figure 5.1: Accuracy of T3A over share of test dataset seen When using T3A
[105] to adapt a model to a new domain, the predictions improve over time, as more
target samples are added to the support set and the centroids become more robust and
representative. This figure shows how the average accuracy over all seen data develops
over time, in relation to how much of the target dataset has been evaluated. On UCF-
HMDBfull T3A quickly improves, having competitive accuracy on the later few batches,
however, the overall average accuracy stays below the source-only benchmark. For the
more difficult EPIC-Kitchens-55 dataset, T3A struggles to adapt. While on D3→D2 it
improves immediately, D1→D2 and D2→D1 take much longer to find good centroids,
and the remaining domain shifts fail completely.

52



5 – Experiments

T3A Despite the similarity between T3A and our method, applying T3A does
not lead to any improvements over the source-only baseline, but rather a drastic
performance decrease. To explain these unexpected observations one has to look
at the way T3A functions. We run T3A in the online learning scenario, where
the support set for each centroid persists between subsequent batches. Figure 5.1
shows how the average accuracy over the seen part of the test dataset develops
as more batches are evaluated and the support set grows. A "warmup" period
can be observed across all analyzed data shifts when T3A has not yet gathered
enough features to make reliable predictions. In most cases, this issue is eventually
resolved. For UCF-HMDBfull the final accuracy almost reaches the source-only
baseline, however, on the more difficult EPIC-Kitchens-55 dataset, T3A performs
much worse and totally fails to adapt on three of the domain shifts.

Of course, these results are highly dependent on the batch size at test-time,
since the main bottleneck of T3A appears to be the number of samples included
in the centroid computations. When adaptation is done on a per-batch basis with
a batch size of 16, the model collapses entirely, making predictions that are indis-
tinguishable from random guessing. If the batch size is equal to the total number
of samples in the test dataset, all samples are included in the support set and per-
formance significantly increases, outperforming all other SFDA and TTA methods.
This, however, is an unrealistic setting, since TTA requires predictions to be made
while simultaneously adapting the model. Collecting the samples of the entire test
dataset would mean separating the adaptation and evaluation stages, breaking the
fundamental assumption of TTA. Furthermore, doing so would violate the strict
separation of training and test data, making the adapted model biased toward the
already-seen test data.

Self-Supervised Losses Following previous work on TTA for action recognition
[106, 113] we conduct experiments with a variety of self-supervised losses, specif-
ically entropy, information maximization, minimum class confusion [114], comple-
mentary entropy, and relative norm alignment [106]. Furthermore, we evaluate
methods, that propose to adjust the batch norm layers, such as TENT [104] and
TENT-C [106].

While these methods show great promise for adapting models that were prepared
with DG techniques or trained on multiple source modalities [113], the results do
not seem to translate to the general case. Table 5.4 shows that the best method,
MCC with three adaptation steps per batch, shows a decrease in performance on
most shifts of EPIC-Kitchens-55 when compared to the source-only baseline. On
the easier UCF-HMDBfull dataset all methods achieve a minor improvement on the
source-only baseline of just under 1%.

However, none of the model updates generalize to data outside of the batch
they were computed on. When keeping updates of previous batches in the online
TTA scenario all models quickly collapse, either always predicting a single class or

53



5 – Experiments

making the predictions indistinguishable from random guesses. Thus, these TTA
methods do not translate well to the SFDA setting except as auxiliary losses to
regularize the main adaptation loss.

method setting U→H H→U avg
source-only 84.40 94.75 89.57
MCC [114] TTA 85.94 95.14 90.54
T3A [105] online-TTA 80 88.64 84.32

MTRAN* [99] SFDA 91.67 95.28 93.47
ours SFDA 92.22 98.95 95.59

target-only 97.50 99.48 98.49

Table 5.3: Architecture-indpendent comparison on UCF-HMDBfull

method setting D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 avg
source-only 46.33 46.79 47.6 55.33 43.02 50.31 48.23
MCC [114] TTA 47.79 44.34 51.87 55.33 40.73 45.69 47.29
T3A [105] online-TTA 29.55 2.96 30.78 47.49 2.15 0.01 18.8

MTRAN* [99] SFDA 50.92 43.58 51.07 55.33 41.48 53.08 48.91
ours SFDA 52.06 50.46 45.6 52.27 41.07 55.13 49.43

target-only 64.6 64.6 76.4 76.4 72.9 72.9 71.3

Table 5.4: Architecture-indpendent comparison on EPIC-Kitchens-55

5.2.2 Architecture-Independent Relative Norm Alignment
Multi-modal and temporal relative alignment networks (MTRAN) [99] are a re-
cently proposed SFDA method for action recognition that achieves state-of-the-art
performance across several benchmark datasets. Our main criticism of MTRAN,
however, is its architecture-specific formulation that makes it unsuitable for real-
world problems, where architectures evolve over time and depend on specific task
requirements.

To this end, we implement MTRAN*, a naive architecture-independent version
of MTRAN, and apply it to our two-stream I3D architecture. Instead of freezing
the feature extractor and adapting the transformer and multi-modal fusion layer,
MTRAN* adapts the feature extractor itself. Other than this, MTRAN* retains
the IM and pseudo-label loss from MTRAN but changes the relative alignment
losses to operate on the I3D backbone, mixing raw inputs and aligning features
separately for each modality.

Tables 5.3 and 5.4 show that our generalized MTRAN* version performs on
par with MTRAN, even achieving a slightly higher accuracy on EPIC-Kitchens-
55. Furthermore, we note that the pseudo labels for MTRAN* are generated by

54



5 – Experiments

method setting D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 avg
source-only 46.33 46.79 47.6 55.33 43.02 50.31 48.23

MTRAN* [99] SFDA 50.92 43.58 51.07 55.33 41.48 53.08 48.91
ours SFDA 52.06 50.46 45.6 52.27 41.07 55.13 49.43

ours + MTRAN* SFDA 55.05 50.69 50.00 55.87 40.76 53.29 50.94
target-only 64.6 64.6 76.4 76.4 72.9 72.9 71.3

Table 5.5: Synergies with MTRAN* on EPIC-Kitchens-55

our proposed method and MTRAN* itself solely adjusts the feature extractor. We
thus expect our method to synergize well with MTRAN*, especially on difficult
datasets like EPIC-Kitchens-55, where the domain shift in the feature extractor
plays a more important role. In fact, table 5.5 confirms this hypothesis, showing
that the combination of our method with MTRAN* achieves even better results.

source-only MCC T3A MTRAN* ours

89.6
90.5

84.3

93.5

95.6

%
A

cc
ur

ac
y

(a) UCF-HMDBfull

source-only MCC T3A MTRAN* ours
0

48.2

37.3

18.8

48.9 49.4

%
A

cc
ur

ac
y

(b) EPIC-Kitchens-55

Figure 5.2: Architecture-Independent Comparison This figure compares the aver-
age accuracy of several methods where we reran the experiments on the same architecture
as our method. Note that these methods are defined in different settings: MCC is a TTA
method, T3A was run as online TTA, and MTRAN* and our method are both SFDA

5.3 Class Imbalance
Not all actions are equal, some are performed much more frequently than others.
Figure 3.7 shows that taking something is the most common task in EPIC-Kitchens-
100 while bending objects occurs much more rarely. Imbalances in the relative
frequency of classes have a significant impact on the performance of machine learn-
ing models. Some datasets, like HMDB51 [73], are artificially balanced, to allow

55



5 – Experiments

take put-down open close wash cut stir pour
0

5

10

15

20

25

30

35

Action

R
el

at
iv

e
fre

qu
en

cy

D1
D2
D3

Figure 5.3: Class Imbalance in EPIC-Kitchens-55 This figure shows the relative
frequency of each class in each of the three kitchens of the UDA EPIC-Kitchens-55 dataset.

for a fair evaluation of each class. Real-world datasets, however, are usually not
adjusted, making the class imbalance an additional challenge to overcome. In the
cross-domain scenario, this becomes an even bigger factor, as the distribution of
classes may change from one domain to the next. This section explores the impact
of imbalanced classes in the EPIC-Kitchens-55 dataset.

method D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 avg
source-only 46.33 46.79 47.6 55.33 43.02 50.31 48.23

ours 52.06 50.46 45.6 52.27 41.07 55.13 49.43
target-only 64.6 64.6 76.4 76.4 72.9 72.9 71.3

Table 5.6: Average accuracy on EPIC-Kitchens-55

method D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 avg
source-only 35.89 33.39 37.23 53.78 23.64 36.84 36.80

ours 59.80 53.17 56.97 63.67 40.55 47.46 53.60
target-only 67.95 67.95 79.76 79.76 55.83 55.83 67.85

Table 5.7: Average per-class accuracy on EPIC-Kitchens-55

56



5 – Experiments

5.3.1 Imbalance in the Dataset
Figure 5.3 shows how the UDA EPIC-Kitchens-55 dataset is affected by the im-
balanced class problem, with two dominant classes, three classes with very few
samples, and different distributions of classes in each of the three kitchens. This
naturally impacts the results, when comparing the average accuracy in table 5.6
with the average per-class accuracy in table 5.7 we observe that the average per-
class accuracy is 3.45% lower than the average sample accuracy in the supervised
setting, meaning that less frequent classes are identified with lower accuracy. In
the cross-domain source-only scenario this discrepancy is dramatically increased,
to 11.43%.

5.3.2 Imbalance in the Classifier
Section 4 previously discussed the role of the classification layer in the loss of
performance across domains. To analyze this in the context of imbalanced classes,
we use the bias parameter of the classification layer as a proxy for the biased internal
representation of class imbalances. Figure 5.4 plots the classifier bias of the target-
only model and the actual class bias in the dataset for each class and domain,
confirming a strong correlation between the two. When applying the source-only
model to a different domain this bias remains fixed, while the layer outputs change,
resulting in the much lower per-class accuracy on the source-only dataset.

The inherent absence of this class bias in our centroid-based classifier is one of
the central arguments in favor of our method. We thus expect our method to be
much more robust with respect to this type of domain shift. In fact, tables 5.6
and 5.7 show that our method achieves a higher average per-class accuracy than
average sample accuracy. This means that our method achieves higher accuracies
classifying less common classes, meaning it is more fair and robust to dataset bias
[2].

57



5 – Experiments

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

re
la

tiv
e

fre
qu

en
cy

tak
e

pu
t-d

ow
n

op
en

clo
se

wash cut sti
r

po
ur

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Action

cl
as

sifi
er

bi
as

relative frequency
classifier bias

(a) D1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

re
la

tiv
e

fre
qu

en
cy

tak
e

pu
t-d

ow
n

op
en

clo
se

wash cut sti
r

po
ur

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Action

cl
as

sifi
er

bi
as

relative frequency
classifier bias

(b) D2

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

re
la

tiv
e

fre
qu

en
cy

tak
e

pu
t-d

ow
n

op
en

clo
se

wash cut sti
r

po
ur

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Action

cl
as

sifi
er

bi
as

relative frequency
classifier bias

(c) D3

Figure 5.4: Class Distributions and Classifier Bias These figures plots the rela-
tive frequency of each class and classifier bias for each domain of the EPIC-Kitchens-55
dataset. A strong correlation between the two variables can be observed.

5.4 Multi-Modal Learning

In this section, we analyze the effect multi-modal learning has on the base model
and our proposed method by looking at the results on the UCF-HMDBfull dataset.
Figure 5.5 compares the average accuracy of our method with the source-only and
target-only on a variety of modalities.

Firstly, we observe that training and evaluating the model on both RGB and
flow modalities achieves the best results across all experiments, showing that the
base model is able to extract complementary information from each modality. In
the cross-domain scenario, this additional information is even more relevant, as we
expect each domain to experience a unique domain shift, enabling a multi-modal to

58



5 – Experiments

average out much of the cross-domain statistical variation. Comparing the source-
only and target-only experiments confirms this hypothesis as the relative improve-
ment of using multiple modalities increases in the source-only case. Furthermore,
we note that our method especially profits from the complementary information in
each modality, achieving a much higher improvement on the multi-modal model.

Finally, our experiments highlight the difficulty of training multi-modal models.
When evaluating only the RGB modality of a multi-modal model, it performs
significantly worse than the RGB model. This presents a known issue and some
research has gone into improving multi-modal models in this regard [57, 58].

RGB+Flow RGB-Flow RGB Flow

89.57

87.11
87.89

87.27

%
A

cc
ur

ac
y

(a) source-only
RGB+Flow RGB-Flow RGB Flow

95.59

89.02

90.4

88.64

%
A

cc
ur

ac
y

(b) ours
RGB+Flow RGB-Flow RGB Flow

98.49

95.28

97.06
97.95

%
A

cc
ur

ac
y

(c) target-only

Figure 5.5: The Impact of Multi-Modal Training This figure compares our model
with the source-only and target-only on different modalities. Specifically, we report the
average accuracy on UCF-HMDBfull for the following settings: trained and evaluated on
RGB+Flow (blue), trained on RGB+Flow and evaluated on RGB (orange), trained and
evaluated on RGB (yellow), trained and evaluated on Flow (purple).

5.5 Ablation Study
In this section, we perform a brief ablation study on the most important design
choices of our proposed method. Specifically, we analyze the accuracy depending on
the choice of features to represent a multi-clip video, using only a subset of features
to compute the centroids, updating centroids iteratively similar to k-means, and
different distance measures in the feature space.

5.5.1 Which is the best feature?
It is standard practice for action recognition models to be evaluated on the average
prediction over 5 clips from the same video to get a more robust prediction. Since
the initial step of our proposed method involves assigning pseudo-labels to the
samples in order to assign them to a centroid, it suggests itself to improve these
predictions in a similar manner. Additionally to using the 5 clips to improve our

59



5 – Experiments

first middle mean entropy confidence
85

90

95

100

Feature

A
cc

ur
ac

y

ucf→hmdb
hmdb→ucf

Average

(a) UCF-HMDBfull

first middle mean entropy confidence
30

35

40

45

50

55

Feature

A
cc

ur
ac

y

D2→D1 D3→D1 D1→D2 D3→D2
D1→D3 D2→D3 Average

(b) EPIC-Kitchens-55

Figure 5.6: Ablation over Feature Selection This figure shows the effect of selecting
the features of different clips to represent a sample when computing the centroid of all
target train sample features of each class. Observations show, that consistently picking
the same features, such as from the first clip or middle clip gives good results, while
picking a clip based on prediction entropy or confidence reduces the accuracy of the
resulting centroids. The best features, however, are the average features over all five
clips.

60



5 – Experiments

1 2 5 10 20 50 100 all
85

90

95

100

Number of samples

A
cc

ur
ac

y

ucf→hmdb
hmdb→ucf

Average

(a) UCF-HMDBfull

1 2 5 10 20 50 100 all
20

30

40

50

60

Number of samples

A
cc

ur
ac

y

D2→D1 D3→D1 D1→D2
D3→D2 D1→D3 D2→D3
Average

(b) EPIC-Kitchens-55

Figure 5.7: Ablation over the Number of Samples This figure shows the impact of
reducing the set features to compute the centroids. For these experiments the n features
with the lowest prediction entropy were chosen for each class. While UCF-HMDBfull

benefits from filtering features, EPIC-Kitchens-55 steadily increases performance with
each sample added on all shifts.

61



5 – Experiments

pseudo-labels, we attempt to select the clip with the best features to represent the
video.

Figure 5.6 shows that a variety of feature selection methods provide good re-
sults, however, the best accuracy is generally achieved by the mean feature of all
the clips. Interestingly, selecting the features with the lowest prediction entropy
or highest confidence leads to lower accuracy, indicating that features with these
characteristics are not good representations of the class overall.

5.5.2 Increasing Centroid Robustness by Filtering Samples
Similar to T3A [105], we reduce the support set of each centroid by selecting the
m features with the lowest prediction entropy. Our experiments in figure 5.7 show
that some datasets like UCF-HMDBfull benefit from this, while the more difficult
EPIC-Kitchens-55 does not. Note how the results on EPIC-Kitchens-55 improve
with each additional sample. This may indicate that the amount of available data
is a major limitation and that a larger dataset would allow us to achieve better
results.

Furthermore, we observe that while confidence is a better indicator of the cor-
rectness of a prediction, entropy is better to determine the usefulness of a feature
for the centroids. Thus it seems that misclassified samples in a centroid’s support
set do not directly harm performance, but may actually increase the robustness of
the centroids by reducing the negative impact of outliers.

5.5.3 Can centroids be improved iteratively?
Previous works on SFDA that rely on centroid-based pseudo labels often propose to
update the centroids iteratively, similar to k-means. In this case, the initial centroid
assignments are determined by the source classifier, while subsequent iterations use
the predictions by the centroid-based classifier itself [97, 98]. Figure 5.8 shows
the impact the number of k-means iterations has on the final accuracy. On UCF-
HMDBfull updating the centroids seems to work well, with performance peaking
after 2 iterations. However, for the more difficult EPIC-Kitchens-55, the perfor-
mance decreases with each iteration. This could indicate that the feature space is
more complex, has non-linear clusters, or that feature clusters are overlapping.

5.5.4 How do we measure similarity between features?
Finally, we investigate a selection of similarity measures on the feature space, specif-
ically euclidean and angular distance, cosine similarity, and the dot product. All
of these measure similarity or distance in euclidean space, and with the exception
of the dot-product, all achieve similarly good results.

62



5 – Experiments

1 2 3 4 5
85

90

95

100

k

A
cc

ur
ac

y

ucf→hmdb
hmdb→ucf

Average

(a) UCF-HMDBfull

1 2 3 4 5
10

20

30

40

50

60

k

A
cc

ur
ac

y

D2→D1 D3→D1 D1→D2 D3→D2
D1→D3 D2→D3 Average

(b) EPIC-Kitchens-55

Figure 5.8: Ablation over the Number of k-means Iterations This figure shows
the impact of computing centroids in an iterative fashion similar to k-means. On UCF-
HMDBfull we observe some improvements, when updating the centroids 2 or 3 times,
while on EPIC-Kitchens-55 performance continuously degrades with each iteration.

63



5 – Experiments

euklidean angular cosine dot

85

90

95

100

Similarity measure

A
cc

ur
ac

y

ucf→hmdb
hmdb→ucf

Average

(a) UCF-HMDBfull

euklidean angular cosine dot
20
25
30
35
40
45
50
55

Similarity measure

A
cc

ur
ac

y

D2→D1 D3→D1 D1→D2 D3→D2
D1→D3 D2→D3 Average

(b) EPIC-Kitchens-55

Figure 5.9: Ablation over the Similarity Measure in the Feature Space This
figure shows how our method performs with different similarity measure between sample
features and centroids. Across all datasets the euclidean distance appears to be a solid
choice, with angular distance and cosine achieving very similar results. While using the
dot product works equally well on UCF-HMDBfull, a major performance drop can be
observed on all shifts in the EPIC-Kitchens-55 dataset.

64



Chapter 6

Conclusion

This work proposes a novel source-free domain adaptation method, which replaces
the linear classification layer with a centroid-based classifier. We show that our
method improves cross-domain performance without modifying the network pa-
rameters themselves, making it more efficient than traditional SGD-based adapta-
tion methods. Our experiments show, that we are able to beat all previous SFDA
methods on two of the most important datasets for domain adaptation in action
recognition.

A central finding of this work is that much of the domain bias in neural net-
works stems from the classification layer that is specific to each dataset, while the
feature extractor is more robust thanks to pretraining on large datasets. We ex-
ploit this by replacing the linear classifier with a centroid-based classifier, which
generalizes butter as it has no trainable parameters, is directly data-dependent,
and does not explicitly encode any class bias. Furthermore, it requires no gradient-
based adaptation of the network parameters themselves, making it computationally
more efficient than previous SFDA methods. Finally, our method integrates well
with previous centroid-based SFDA techniques that adapt the feature extractor,
allowing for further performance enhancements.

One of the main limitations of our method is its restriction to the classification
task, which is shared with many other SFDA methods. However, we see much
promise in exploiting the feature space of pre-trained general feature extractors
and encourage further investigation in this direction.

65



Bibliography

[1] B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk, and Q. Le,
“Rethinking pre-training and self-training,” Advances in neural information
processing systems, vol. 33, pp. 3833–3845, 2020.

[2] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR 2011,
pp. 1521–1528, IEEE, 2011.

[3] Y. Shi, X. Ying, and J. Yang, “Deep unsupervised domain adaptation with
time series sensor data: A survey,” Sensors, vol. 22, no. 15, p. 5507, 2022.

[4] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5, no. 4,
pp. 115–133, 1943.

[5] B. Farley and W. d. Clark, “Simulation of self-organizing systems by digi-
tal computer,” Transactions of the IRE Professional Group on Information
Theory, vol. 4, no. 4, pp. 76–84, 1954.

[6] F. Rosenblatt, “The perceptron: a probabilistic model for information storage
and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[8] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint
arXiv:1511.07289, 2015.

[9] D. S. Broomhead and D. Lowe, “Radial basis functions, multi-variable func-
tional interpolation and adaptive networks,” tech. rep., Royal Signals and
Radar Establishment Malvern (United Kingdom), 1988.

[10] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of
initialization and momentum in deep learning,” in International conference
on machine learning, pp. 1139–1147, PMLR, 2013.

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[12] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and
A. A. Kalinin, “Albumentations: fast and flexible image augmentations,”
Information, vol. 11, no. 2, p. 125, 2020.

66



Bibliography

[13] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” arXiv preprint arXiv:1207.0580, 2012.

[14] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of
neural networks using dropconnect,” in International conference on machine
learning, pp. 1058–1066, PMLR, 2013.

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International conference on
machine learning, pp. 448–456, PMLR, 2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 770–778, 2016.

[17] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[18] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,
2016.

[19] Y. Wu and K. He, “Group normalization,” in Proceedings of the European
conference on computer vision (ECCV), pp. 3–19, 2018.

[20] R. Szeliski, Computer vision: algorithms and applications. Springer Nature,
2022.

[21] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the cat’s
striate cortex,” The Journal of physiology, vol. 148, no. 3, p. 574, 1959.

[22] K. Fukushima, “Neocognitron,” Scholarpedia, vol. 2, no. 1, p. 1717, 2007.
[23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol. 115,
pp. 211–252, 2015.

[26] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1–9, 2015.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2818–2826, 2016.

[28] A. Karpathy, “The unreasonable effectiveness of recurrent neural networks,”

67



Bibliography

May 2015.
[29] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[30] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray, “Scaling egocen-
tric vision: The epic-kitchens dataset,” in European Conference on Computer
Vision (ECCV), 2018.

[31] K. Min and J. J. Corso, “Integrating human gaze into attention for egocentric
activity recognition,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 1069–1078, 2021.

[32] Z. Zhang, D. Crandall, M. Proulx, S. Talathi, and A. Sharma, “Can gaze
inform egocentric action recognition?,” in 2022 Symposium on Eye Tracking
Research and Applications, pp. 1–7, 2022.

[33] A. Bandini and J. Zariffa, “Analysis of the hands in egocentric vision: A sur-
vey,” IEEE transactions on pattern analysis and machine intelligence, 2020.

[34] D. Damen, H. Doughty, G. M. Farinella, A. Furnari, J. Ma, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray, “Rescaling
egocentric vision: Collection, pipeline and challenges for epic-kitchens-100,”
International Journal of Computer Vision (IJCV), vol. 130, p. 33–55, 2022.

[35] C.-F. R. Chen, R. Panda, K. Ramakrishnan, R. Feris, J. Cohn, A. Oliva, and
Q. Fan, “Deep analysis of cnn-based spatio-temporal representations for ac-
tion recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6165–6175, 2021.

[36] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks for action recognition in videos,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 41, no. 11, pp. 2740–
2755, 2018.

[37] P. Chen and A. J. Ma, “Source-free temporal attentive domain adaptation for
video action recognition,” in Proceedings of the 2022 International Conference
on Multimedia Retrieval, pp. 489–497, 2022.

[38] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model
and the kinetics dataset,” in proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6299–6308, 2017.

[39] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-scale video classification with convolutional neural networks,” in
Proceedings of the IEEE conference on Computer Vision and Pattern Recog-
nition, pp. 1725–1732, 2014.

[40] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici, “Beyond short snippets: Deep networks for video classifica-
tion,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4694–4702, 2015.

68



Bibliography

[41] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional net-
works for visual recognition and description,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2625–2634, 2015.

[42] P. Wei, L. Kong, X. Qu, X. Yin, Z. Xu, J. Jiang, and Z. Ma, “Unsupervised
video domain adaptation: A disentanglement perspective,” arXiv preprint
arXiv:2208.07365, 2022.

[43] P. Wei, L. Kong, X. Qu, X. Yin, Z. Xu, J. Jiang, and Z. Ma, “Unsupervised
video domain adaptation: A disentanglement perspective,” arXiv preprint
arXiv:2208.07365, 2022.

[44] Y. Chen, Y. Kalantidis, J. Li, S. Yan, and J. Feng, “Aˆ 2-nets: Double atten-
tion networks,” Advances in neural information processing systems, vol. 31,
2018.

[45] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,” in
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 7794–7803, 2018.

[46] G. Bertasius, H. Wang, and L. Torresani, “Is space-time attention all you
need for video understanding?,” in ICML, vol. 2, p. 4, 2021.

[47] A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Lučić, and C. Schmid, “Vivit:
A video vision transformer,” in Proceedings of the IEEE/CVF international
conference on computer vision, pp. 6836–6846, 2021.

[48] J. Chen and C. M. Ho, “Mm-vit: Multi-modal video transformer for com-
pressed video action recognition,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 1910–1921, 2022.

[49] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational rea-
soning in videos,” in Proceedings of the European conference on computer
vision (ECCV), pp. 803–818, 2018.

[50] J. Lin, C. Gan, and S. Han, “Tsm: Temporal shift module for efficient video
understanding,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 7083–7093, 2019.

[51] Q. Fan, C.-F. R. Chen, H. Kuehne, M. Pistoia, and D. Cox, “More is less:
Learning efficient video representations by big-little network and depthwise
temporal aggregation,” Advances in Neural Information Processing Systems,
vol. 32, 2019.

[52] A. Sahoo, R. Shah, R. Panda, K. Saenko, and A. Das, “Contrast and mix:
Temporal contrastive video domain adaptation with background mixing,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 23386–23400,
2021.

[53] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler, “Convolutional learning of
spatio-temporal features,” in Computer Vision–ECCV 2010: 11th European
Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11,
2010, Proceedings, Part VI 11, pp. 140–153, Springer, 2010.

69



Bibliography

[54] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for hu-
man action recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 1, pp. 221–231, 2012.

[55] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spa-
tiotemporal features with 3d convolutional networks,” in Proceedings of the
IEEE international conference on computer vision, pp. 4489–4497, 2015.

[56] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “Slowfast networks for video
recognition,” in Proceedings of the IEEE/CVF international conference on
computer vision, pp. 6202–6211, 2019.

[57] M. Planamente, C. Plizzari, E. Alberti, and B. Caputo, “Domain general-
ization through audio-visual relative norm alignment in first person action
recognition,” in Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pp. 1807–1818, 2022.

[58] W. Wang, D. Tran, and M. Feiszli, “What makes training multi-modal clas-
sification networks hard?,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12695–12705, 2020.

[59] J. Munro and D. Damen, “Multi-modal domain adaptation for fine-grained
action recognition,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 122–132, 2020.

[60] D. Kim, Y.-H. Tsai, B. Zhuang, X. Yu, S. Sclaroff, K. Saenko, and M. Chan-
draker, “Learning cross-modal contrastive features for video domain adapta-
tion,” in Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 13618–13627, 2021.

[61] E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen, “Epic-fusion: Audio-
visual temporal binding for egocentric action recognition,” in Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 5492–5501,
2019.

[62] L. Yang, Y. Huang, Y. Sugano, and Y. Sato, “Interact before align: Lever-
aging cross-modal knowledge for domain adaptive action recognition,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14722–14732, 2022.

[63] C. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime tv-l
1 optical flow,” in Pattern Recognition: 29th DAGM Symposium, Heidelberg,
Germany, September 12-14, 2007. Proceedings 29, pp. 214–223, Springer,
2007.

[64] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical flow
using pyramid, warping, and cost volume,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 8934–8943, 2018.

[65] “Optical flow,” 2017.
[66] A. Cartas, J. Luque, P. Radeva, C. Segura, and M. Dimiccoli, “How much does

audio matter to recognize egocentric object interactions?,” arXiv preprint
arXiv:1906.00634, 2019.

70



Bibliography

[67] A. Cartas, J. Luque, P. Radeva, C. Segura, and M. Dimiccoli, “Seeing and
hearing egocentric actions: How much can we learn?,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–
0, 2019.

[68] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “Cifar10-dvs: an event-stream dataset
for object classification,” Frontiers in neuroscience, vol. 11, p. 309, 2017.

[69] C. Plizzari, M. Planamente, G. Goletto, M. Cannici, E. Gusso, M. Matteucci,
and B. Caputo, “E2 (go) motion: Motion augmented event stream for ego-
centric action recognition,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19935–19947, 2022.

[70] H. Liu, X. Liu, Q. Kong, W. Wang, and M. D. Plumbley, “Learning the
spectrogram temporal resolution for audio classification,” arXiv preprint
arXiv:2210.01719, 2022.

[71] G. Jiang, X. Jiang, Z. Fang, and S. Chen, “An efficient attention module for
3d convolutional neural networks in action recognition,” Applied Intelligence,
pp. 1–15, 2021.

[72] J. Carreira, E. Noland, C. Hillier, and A. Zisserman, “A short note on the
kinetics-700 human action dataset,” arXiv preprint arXiv:1907.06987, 2019.

[73] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a
large video database for human motion recognition,” in 2011 International
conference on computer vision, pp. 2556–2563, IEEE, 2011.

[74] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[75] W. Sultani and I. Saleemi, “Human action recognition across datasets by
foreground-weighted histogram decomposition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 764–771, 2014.

[76] M.-H. Chen, Z. Kira, G. AlRegib, J. Yoo, R. Chen, and J. Zheng, “Temporal
attentive alignment for large-scale video domain adaptation,” in Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6321–
6330, 2019.

[77] J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence,
Dataset shift in machine learning. Mit Press, 2008.

[78] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and
P. Yu, “Generalizing to unseen domains: A survey on domain generalization,”
IEEE Transactions on Knowledge and Data Engineering, 2022.

[79] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable fea-
tures with deep adaptation networks,” in International conference on machine
learning, pp. 97–105, PMLR, 2015.

[80] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain adaptation via
transfer component analysis,” IEEE transactions on neural networks, vol. 22,
no. 2, pp. 199–210, 2010.

[81] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola, “A kernel

71



Bibliography

method for the two-sample-problem,” Advances in neural information pro-
cessing systems, vol. 19, 2006.

[82] R. Gopalan, R. Li, and R. Chellappa, “Domain adaptation for object recogni-
tion: An unsupervised approach,” in 2011 international conference on com-
puter vision, pp. 999–1006, IEEE, 2011.

[83] B. Gong, Y. Shi, F. Sha, and K. Grauman, “Geodesic flow kernel for unsu-
pervised domain adaptation,” in 2012 IEEE conference on computer vision
and pattern recognition, pp. 2066–2073, IEEE, 2012.

[84] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural net-
works,” The journal of machine learning research, vol. 17, no. 1, pp. 2096–
2030, 2016.

[85] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A
kernel two-sample test,” The Journal of Machine Learning Research, vol. 13,
no. 1, pp. 723–773, 2012.

[86] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer learning with
joint adaptation networks,” in International conference on machine learning,
pp. 2208–2217, PMLR, 2017.

[87] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan, “Unsu-
pervised pixel-level domain adaptation with generative adversarial networks,”
in Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 3722–3731, 2017.

[88] J. Yang, H. Zou, Y. Zhou, Z. Zeng, and L. Xie, “Mind the discriminabil-
ity: Asymmetric adversarial domain adaptation,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XXIV 16, pp. 589–606, Springer, 2020.

[89] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot,
C. Liu, and D. Krishnan, “Supervised contrastive learning,” Advances in neu-
ral information processing systems, vol. 33, pp. 18661–18673, 2020.

[90] J. Choi, G. Sharma, S. Schulter, and J.-B. Huang, “Shuffle and attend:
Video domain adaptation,” in Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XII
16, pp. 678–695, Springer, 2020.

[91] H. Xia, H. Zhao, and Z. Ding, “Adaptive adversarial network for source-free
domain adaptation,” in Proceedings of the IEEE/CVF international confer-
ence on computer vision, pp. 9010–9019, 2021.

[92] Y. Hou and L. Zheng, “Source free domain adaptation with image transla-
tion,” arXiv preprint arXiv:2008.07514, 2020.

[93] Y. Liu, W. Zhang, and J. Wang, “Source-free domain adaptation for semantic
segmentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 1215–1224, 2021.

[94] J. N. Kundu, N. Venkat, R. V. Babu, et al., “Universal source-free domain

72



Bibliography

adaptation,” in Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 4544–4553, 2020.

[95] N. Ding, Y. Xu, Y. Tang, C. Xu, Y. Wang, and D. Tao, “Source-free domain
adaptation via distribution estimation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7212–7222,
2022.

[96] S. Yang, Y. Wang, J. Van De Weijer, L. Herranz, and S. Jui, “Generalized
source-free domain adaptation,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 8978–8987, 2021.

[97] J. Liang, D. Hu, and J. Feng, “Do we really need to access the source data?
source hypothesis transfer for unsupervised domain adaptation,” in Interna-
tional Conference on Machine Learning, pp. 6028–6039, PMLR, 2020.

[98] Y. Xu, J. Yang, H. Cao, K. Wu, M. Wu, and Z. Chen, “Source-free video
domain adaptation by learning temporal consistency for action recognition,”
in Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXIV, pp. 147–164, Springer, 2022.

[99] Y. Huang, X. Yang, J. Zhang, and C. Xu, “Relative alignment network for
source-free multimodal video domain adaptation,” in Proceedings of the 30th
ACM International Conference on Multimedia, pp. 1652–1660, 2022.

[100] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond
empirical risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[101] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt, “Test-time
training with self-supervision for generalization under distribution shifts,” in
International conference on machine learning, pp. 9229–9248, PMLR, 2020.

[102] F. You, J. Li, and Z. Zhao, “Test-time batch statistics calibration for covariate
shift,” arXiv preprint arXiv:2110.04065, 2021.

[103] A. Khurana, S. Paul, P. Rai, S. Biswas, and G. Aggarwal, “Sita: Single image
test-time adaptation,” arXiv preprint arXiv:2112.02355, 2021.

[104] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent:
Fully test-time adaptation by entropy minimization,” arXiv preprint
arXiv:2006.10726, 2020.

[105] Y. Iwasawa and Y. Matsuo, “Test-time classifier adjustment module for
model-agnostic domain generalization,” Advances in Neural Information Pro-
cessing Systems, vol. 34, pp. 2427–2440, 2021.

[106] M. Plananamente, C. Plizzari, and B. Caputo, “Test-time adaptation for ego-
centric action recognition,” in Image Analysis and Processing–ICIAP 2022:
21st International Conference, Lecce, Italy, May 23–27, 2022, Proceedings,
Part III, pp. 206–218, Springer, 2022.

[107] I. Gulrajani and D. Lopez-Paz, “In search of lost domain generalization,”
arXiv preprint arXiv:2007.01434, 2020.

[108] J. Lv, K. Liu, and S. He, “Differentiated learning for multi-modal domain
adaptation,” in Proceedings of the 29th ACM International Conference on

73



Bibliography

Multimedia, pp. 1322–1330, 2021.
[109] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category

models to new domains,” in Computer Vision–ECCV 2010: 11th European
Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11,
2010, Proceedings, Part IV 11, pp. 213–226, Springer, 2010.

[110] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[111] A. Ng, “Nuts and bolts of building ai applications using deep learning,” NIPS
Keynote Talk, 2016.

[112] X. Song, S. Zhao, J. Yang, H. Yue, P. Xu, R. Hu, and H. Chai, “Spatio-
temporal contrastive domain adaptation for action recognition,” in Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp. 9787–9795, 2021.

[113] S. A. Peirone, EGO-Tˆ 3: Test Time Training for Egocentric videos. PhD
thesis, Politecnico di Torino, 2022.

[114] Y. Jin, X. Wang, M. Long, and J. Wang, “Minimum class confusion for ver-
satile domain adaptation,” in Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16,
pp. 464–480, Springer, 2020.

74


	List of Tables
	List of Figures
	Introduction
	Research Goals and Contribution

	Background
	Deep Learning
	Perceptrons
	Multi-Layer Perceptrons
	Activation Functions
	Backpropagation
	Loss Functions
	Regularization
	Normalization

	Convolutional Neural Networks
	Convolutions
	Pooling
	Architectures

	Sequential Data
	Recurrent Neural Networks
	Transformers


	Related Works
	Action recognition
	Egocentric Action Recognition
	Temporal Information
	Multi-Modal Data
	Datasets

	Cross-Domain Learning
	Domain Generalization
	Unsupervised Domain Adaptation
	Source-Free Domain Adaptation
	Test-Time Adaptation


	Proposed Solution
	Motivation
	Predictions from Pseudo-Prototypes
	Problem Formulation

	Experiments
	Implementation Details
	Comparison with the State-of-the-Art
	Comparison with Test-Time Adaptation
	Architecture-Independent Relative Norm Alignment

	Class Imbalance
	Imbalance in the Dataset
	Imbalance in the Classifier

	Multi-Modal Learning
	Ablation Study
	Which is the best feature?
	Increasing Centroid Robustness by Filtering Samples
	Can centroids be improved iteratively?
	How do we measure similarity between features?


	Conclusion
	Bibliography

