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Abstract

Visual Geo-localization is the task of estimating the geographical coordi-
nates where a given photo has been taken. The problem is well known in
computer vision literature and the common approach relies on image retrieval
technique. Recent works achieved high performances leveraging deep convo-
lutional neural network to embed an image in a fixed low dimensional sized
vector. However, we observe how domain shift is still a big challenge and
the accuracy of these methods can drop when facing such a challenge, for
example, a dataset of query images taken at night. In this work, we explore
how re-ranking methods based on spatial verification and deep learning can
handle this problem by providing new benchmark with state-of-the-art mod-
els on datasets with night queries. Moreover, we introduced a new labeled
dataset that contains night query images taken in San Francisco.
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Chapter 1

Introduction

1.1 Thesis’s objectives
The goal of this thesis is to evaluate the performance of different re-ranking
methods extending the main Visual Geo-localization (VG) methods which
regards estimating the position of an image taken which we call a query im-
age, based on a set of database images that have been previously collected.
VG has received a significant amount of attention in the past years in appli-
cations like outdoor navigation systems for autonomous driving where GPS
signal may not be reliable depending on the environment, augmented reality,
and 3D reconstruction. Although some applications require the 6 degrees-
of-freedom position of an object, the focus in this thesis is estimating the
location of a photo with a large-scale database covering big areas like cities
with a tolerance of a few meters. The use of this task in real applications
poses some constraints to be followed:

• Scalable: it should be able to match an image against a very large
database representing big areas like cities or regions;

• Performance: it should predict accurate locations of street level with
few meters of error;

• Efficiency: it should perform fast so that it can be applied for real-time
applications;

• Robust: the model should be domain invariant with little effects of do-
main shift, and it should be able to overcome appearance and viewpoint
changes.
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1.2 Related works and main problems
VG has been getting more attention and a lot of studies and research is being
done on this topic focusing on different aspects of the way to approach like
classification or image retrieval. Moreover, many research done for image
retrieval and image matching can be used and implemented into the VG
model. The purposes of those researches varied in their focus on some major
problems that make VG a challenging task:

• Domain shift: Domain shift is one of the major problems that com-
puter vision tasks usually have to handle, and in the case of VG, taking
a photo at night for example for any real-time application, and matching
it with database with day images is difficult;

• Different viewpoints: matching the same scene from different view-
points is not a trivial task for a model;

• Scenery changes: The image taken for a scene might change due to
some environmental changes or some construction work, also there are
vehicles and pedestrians which are dynamic in images which the model
may take into consideration as interesting objects affecting its perfor-
mance;

1.3 Our contribution: research & develop-
ment

We used as a baseline state-of-the-art VG model that performs image retrieval
where given a query image for which the model should estimate coordinates,
this image is compared to an extensive database of images with known coor-
dinates. The location of the closest matching image is the predicted position
for the query image. Our experiments’ main focus is the re-ranking path
of the VG pipeline where given a number of candidates retrieved from the
database given by the image retrieval model, a more dense model focusing
more on local context is to be used for the feature extraction of these candi-
dates, followed by a matching and scoring algorithm for these features which
results in the new re-ranked candidates. Although a decrease in efficiency
results from such an approach, it can still be managed to a certain point by
configuring the number of candidates to re-rank depending on the applica-
tion, meaning how much we are willing to sacrifice the performance, and on
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the other hand, we are getting a significant performance increase, and it is
very robust against domain shift. Finally, we propose a labeled query dataset
that covers night images in San Francisco which will help further evaluate
the robustness of the re-ranking approach. This work has been done with the
help of a group of colleagues, which resulted in a submission under review
for the CVPR 2023 Workshop.
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Chapter 2

Related Works

2.1 VG Approaches

VG has been handled with different approaches in the literature, with image
retrieval being developed recently achieving very good results, and this work
uses the re-ranking approach which is another version depending on image
retrieval.

2.1.1 Image Retrieval

It is a very common approach used by several recent works where a given
query image has to be located by matching it to a set of labeled images
called a database, where the label from the retrieved image matched from
the database is to be the predicted location for the query. The way images are
matched requires an image representation that has been handled in different
ways, either by global descriptors or local descriptors for which a similarity
search like a k-nearest neighbor or a more efficient alternative like approxi-
mate nearest neighbor that is supported with FAISS library [1] which benefit
from the GPU for faster computation which will lead to the top-k closest
matches. For local features there exist other methods like spatial verification
which can be used for refining the retrieved candidates by confirming the
reliability of matched features using algorithms like RANSAC [2], it can still
be used before producing the retrieved candidates.
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2.1.1.1 Global Descriptors

Global Features: They are represented with a compact vector that contains
the high-level context of an image, which is an advantage considering global
information to match images, in addition to its efficiency compared to other
approaches, but this also has its disadvantages when facing high viewpoint
shifts. To extract these features, GIST and HOG [3, 4] are hand-crafted
feature representations are used which process the whole image to extract a
single global vector, and there are other methods depending on a Convolu-
tional Neural Network (CNN) to learn to extract features which have been
improving lately like CosPlace [5] which has been used in this work as the
retrieval method, and [6] that is built upon using VLAD embedding and
aggregation. Generalized mean pooling (GeM) [7] is another recent method
that generalizes max and average pooling which is differentiable.

2.1.1.2 Local Descriptors

They represent an image at the local level which may be a pixel or a patch,
it sacrifices efficiency to get higher performance. Some methods following
this approach extract sparse features where they try to find relevant regions
by using keypoint detectors [8, 9]and extract the features of those patches
or neighbor of the center pixel of the detected regions [10, 11]. Hand-crafted
feature extractors have been used like SIFT [12], SURF [13], RootSIFT [14],
whereas, recent methods using convolutional representations have been fre-
quently used due to being more robust to challenges that might be faced for
image retrieval like R2D2 [15], D2-Net [16], and SuperPoint [17] which are
used in this work.

2.1.2 Classification Approach
This approach has been adopted by some methods considering the visual
geo-localization (VG) task as classification where the goal is to predict the
location of the image. Planet [18] is the first study formulating the VG
problem as a classification where either the whole earth’s surface or the region
we are interested in is to be divided into disjoint cells where each cell is
a class. Planet further applies subdivision to have a balanced number of
images among classes, but this affects the accuracy of cells with smaller
sizes. CPlanet [19] has tried to overcome this issue by applying different
coarse divisions and using a classifier backbone with fully connected layers
corresponding to each coarse division where cumulative scores are used from
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the multiple classifiers overlapping over a region included in multiple coarse
divisions.

2.1.3 Re-ranking Approach
It is an extension of the image retrieval approach where a further step of
refinement is applied to the candidates retrieved from the image retrieval
pipeline, and it is the approach we are using in this work. This approach is
a compromise for the performance and efficiency trade-off since the retrieval
method is based on global descriptors and then the local descriptors are only
used on these candidates which overcome the computational problem and
the memory problem of saving descriptors. Methods like DELG [20], CVNet
[21], and TransVPR [22] have been used in this work.

2.2 Domain Shift for VG
The focus in this work is on the domain shift challenge that the VG task
encounters, where in some applications like autonomous driving cars, the
query images captured by the car may be taken at night whereas the geo-
tagged database is collected in day conditions, which will be an issue for
the retrieval model to perform matching with high accuracy. AdAGeo [23]
was recently introduced addressing the task of cross-domain for visual geo-
localization based on a generative approach that produces domain-invariant
features resulting in higher performance on different domains. Moreover, an-
other work that tackled night-day domain shift for visual localization was
done by ToDayGAN [24] which is based on ComboGAN [25] which applies
image-to-image translation transforming the night images to daytime repre-
sentation and it was associated with DenseVLAD [26]. [27] is another method
that was used to transform images across domains like day to night for vi-
sual geo-localization by training a CNN architecture that produces synthetic
images with the ability to apply feature mapping with real images.
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Chapter 3

Data collection

3.1 Building Night Domain Dataset
Introducing a night-domain dataset helps in further evaluating the robust-
ness and performance of our proposed method against images with low light
conditions where extracting image features is extremely challenging to match
against those extracted from images with normal light conditions, and this
is particularly important in applications like navigation systems and urban
planning.

To build the new dataset with night queries named SF-XL test night
dataset, we use the same database of the test split introduced by [5], whereas,
for the query set, we collected images located in San Francisco area from
Flickr using a script that downloads large batches of images from a given
area given the coordinates of the borders. The download images are labeled
but might be inaccurate which will be dealt with. Since the collected images
are taken everywhere including ’indoor’ and ’outdoor’, we used a pre-trained
classifier based on EfficientNet [28] that divides images into categories de-
pending on the level of ’indoorness’, producing 10 categories plus an extra
panoramic category, from which we chose the 6 most ’outdoor’ categories
and checked manually for any mislabeled image that belongs to indoor in the
chosen categories.

The next step is to handle selecting night images from the outdoor images
previously chosen which is the main goal for this dataset, this required using a
day-night classifier based on MobileNetV2 [29] pre-trained on ImageNet [30]
available on [31] to separate night images from day images. Furthermore, we
relabeled the night images manually using automated software that compares
them to street view images with the same location and scene from www.
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instantstreetview.com and when the correct coordinates and heading are
found on the website we can press on ’Next’ and the software is gonna change
the label for that image to the new one (Fig. 3.1). Then we reduced the
images taken for the same scene, since Flickr images are mainly taken by
smartphones where people take pictures of touristic places or famous scenery,
we can see how the images are distributed over the San Francisco area in 3.2.
Finally, we compared manually positive reference images with a threshold
under 25 meters with respect to each query image and removed the latter in
case no positive reference image matched the same scene as the query.

Figure 3.1: Screenshot of the software that helps relabel the images.
In case the image is labeled correctly press ’next’. If it is mislabeled move
to the correct location on www.instantstreetview.com and press ’next’ to
relabel, otherwise press ’ok’ to skip image.
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Figure 3.2: Choropleth map. It shows the distribution from which neigh-
bors the image are from after cleaning.

3.2 SVOX Night
Street View Oxford Dataset (SVOX) was proposed by [23] for the purpose
of evaluating a VG model for cross-domains, it is a large-scale dataset with
a wide coverage of Oxford. The database and query with a single domain
were collected from Google Street View taken from two different years where
for each query at least a single positive database image exists. To address
multiple domains, a subset of each of the five domain were used from Oxford
RobotCar Dataset [32] with 5 meters distance between consecutive images
to avoid redundancy, these images also have the hood of the car visible. For
our work, we used the night queries provided by SVOX and the database
from the test split, and we call it SVOX night.

3.3 Tokyo Night
Tokyo Night is a subset of Tokyo24/7 that was introduced in [26] to address
the challenge of illumination changes and the variability like construction of
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buildings, at each location three images were taken by smartphone, each in a
different direction than the other and at three different times, the query set
has for the same scene a day, sunset, and night image. Tokyo Night has the
same database as Tokyo24/7 but just the night image subset of the queries.

3.4 San Francisco Extra Large
San Francisco Extra Large Dataset (SF-XL) [5] was built as a largely dense
dataset that covers the whole city of San Francisco with challenging cases in-
cluding the variability due to its collection between long-term. The Database
is collected by splitting panoramas from Google Street View imagery. The
two test query sets suggested in the papers were used which are associated
with the test split of the database set. Test set v1 contains images collected
from Flickr which contain some illumination and viewpoint challenges, and
their given coordinates were verified, and test set v2 is from the queries of
San Francisco Landmark Dataset [33] taken with smartphones where its 6
DoF coordinates were generated by [34].

Datasets # Query images # Database images
Tokyo24/7 315 75 KTokyo Night 105
SVOX Night 823 17 K
SF-XL test v1 1000

2.8 MSF-XL test v2 598
SF-XL test night (ours) 466

Table 3.1: Datasets statistics
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Figure 3.3: Datasets sample. It shows a query sample (left image) and its
corresponding positive reference image (right image).
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Chapter 4

Architectures and
Experiments

4.1 Pipeline Overview
The used approach in these experiments is the re-ranking approach which
is composed of several components (Fig. 4.1). For the first component, we
choose state-of-the-art VG model CosPlace [5] which will act as the baseline
for this benchmark without any re-ranking, with the goal of retrieving top-k
candidates which in our case we chose k = 100, for the second phase, the
re-ranking includes using a model which extracts local features of hybrid fea-
tures which will be further discussed in 4.3, these features are then matched
by selecting mutual neighbors which will be followed by scoring methods
discussed in 4.4 which will refine the retrieved candidates producing the fi-
nal predictions. Moreover, we mention another approach that is complete
including their own extractor, matching, and scoring in 4.5. Finally, the
combinations of scoring and feature extractors used in addition to the hy-
perparameters associated with them are used as suggested by their authors.

4.2 VG Retrieval Model
CosPlace [5] has recently achieved state-of-the-art performance for large-scale
VG tasks on datasets like SF-XL [5] and Tokyo 24/7 [26]. It is the first block
of the VG pipeline we used. CosPlace is a highly scalable and memory-
efficient VG model where at training the model needs to compute global
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Figure 4.1: The re-ranking pipeline used in our experiments.

descriptors for all images in the database and store them without having
time or space issues or the need to use dimensionality reduction methods,
[5] approaches the training phase of VG as a classification problem which
makes it suitable for this task. At inference time it uses the image retrieval
approach by extracting features from a query and database where matching
can be applied to choose the closest image where the label is known to predict
the query’s location.

4.2.1 Training Process
CosPlace follows a similar approach to cosFace [35] which requires having
different classes that are not given with VG datasets since their labels are
coordinates. The author suggests performing splits into the dataset following
specific criteria:

• Divide the area that the dataset covers into squares with side M

• Map the coordinate labels with longitude, latitude (represented by east
and north respectively), and heading angle into new coordinates ac-
cording to the square cells division defining each class Cei,nj ,hk

where
ei = ⌊east

M ⌋, ⌊nj = north
M ⌋, ⌊hk = heading

α ⌋ with α the parameter for head-
ing extent of a class.

• Divide classes in CosPlace Groups and train over them iteratively, where
each group contains classes separated with a minimum number of cells
N and within a minimum heading angle L

• Train on the N×N×L groups using Large Margin Cosine Loss (LCML)
[35]
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CosPlace can use different Convolutional Neural Network (CNN) back-
bones followed by Generalized Mean (GeM) pooling [7] giving an output of
a 512-global descriptor.

4.2.2 Inference Time
During inference time, the fully connected layer is discarded since there are no
classes considered with the image retrieval approach, but only to extract the
global descriptors using the trained backbone so that matching can be applied
with nearest neighbor search using Faiss [1], developed by the Facebook AI
Research team. The backbone we used is ResNet-50 [36] and the weights
pre-trained on SF-XL Dataset [5].

4.3 Feature Extractors for Re-ranking

4.3.1 SuperPoint
SuperPoint [17] is one of the re-ranking networks we used, which is a fully
convolutional self-supervised model trained on the whole image that jointly
computes keypoint locations and the corresponding local descriptors. The
network architecture overview is shown in figure 4.2 where there are three
main components that this is built from. SuperPoint takes a gray-scale image
as input where a shared encoder is applied to outputting two similar feature
maps, one for the descriptor extractor head and the other for the keypoint
detector head where each head results in a specific feature map to the task
required. This will be further discussed in more detail in the next sections.

4.3.1.1 Shared Encoder

This is the first component that will be applied to the input gray-scale image,
It has similar architecture to VGG [37] having eight 3 × 3 convolutional
layers where every layer is followed by ReLU non-linear activation function,
and every two convolutional layers there is a 2 × 2 max-pooling layer for
the goal of reducing the dimensionality of the input image, which means
for this encoder there are 3 max-pooling layers with kernel 2 × 2 leading to
an output feature map with 1/8 the size of the input image and with 128
channels, so given an input gray-scale image I ∈ RH×W where H ×W is the
input image’s size, denoting the encoder function as E, the output feature
map is E(I) = B ∈ RHc×Wc×128 where Hc = H/8 and Wc = W/8.
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Figure 4.2: Overview of the SuperPoint architecture.

4.3.1.2 Keypoint Detection

The keypoint detection process is a challenging part because the model should
detect keypoints in a repeatable way even if the viewpoint of illumination
changes for a certain image scene. The keypoint decoder head takes B as
input and outputs an upscaled feature map with the same size as the in-
put image I by applying two convolutional layers to B to get a feature map
X ∈ RHc×Wc×65 followed by a channel-wise softmax which will give probabil-
ity scores, then an upscale process is applied to get a dense output probability
scores for each pixel from the input following sub-pixel convolution from [38].
To train the detector the author followed a self-supervised framework to make
it more robust. The main problem was that there is no common definition
of keypoints or interest points of an image for all tasks that a model can
agree on. The semantics that a model is trained on for face recognition to
define interest points focusing on the corner of an eye and other facial fea-
tures is different than what a model should focus on in VG where buildings
and other structures and vegetation are the regions that matter to check
the matching of two images, especially with the presence of occlusions from
vehicles and pedestrians that should be ignored while detecting keypoints
because they are dynamic objects that cannot be matched or will lead to a
wrong matching. To solve this problem the author worked on creating a syn-
thetic dataset called Synthetic Shapes which is created by rendering simple
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shapes like triangles, quadrilaterals, and ellipses and labeling their keypoints
without ambiguity by using simple junctions types. The detector path of
SuperPoint is pre-trained on this dataset resulting in a model called Magic-
Point with high performance compared to other traditional corner detection
approaches on scenes having corner-like structured objects. but it is still not
robust enough to generalize to real images with natural image scenery. To
make the detector more robust on real images, homographic adaptation was
introduced. SuperPoint was trained on MS-COCO, but since it is unlabeled
for keypoint detection, MagicPoint is used to generate pseudo-ground truth
labels for the MS-COCO dataset with the use of homographic adaptation.
To perform homographic adaptation starting with MagicPoint and unlabeled
images from MS-COCO. The author generates a set of homographies such
as scaling, translation, in-plane rotations, etc., where a homography is a
geometric transformation mapping points from one image to corresponding
points from another. The aim is to have a detector that results in correspond-
ing keypoints when applied to different viewpoints which are performed by
homography in this case. So let fθ(.) be the keypoint detector function, H
be a random homography, I the input image, and x the detected keypoints,
then:

x = fθ(I). (4.1)

And the keypoint extracted by the detector should be covariant to the ho-
mography:

Hx = fθ(H(I)), (4.2)

which gives:
x = H−1fθ(H(I)). (4.3)

And since in practice, the detector is not perfectly covariant, Homographic
Adaptation was introduced with the following steps: Given H a set of ran-
dom homographies, MagicPoint fθ(.), unlabeled image I, xI empty list of
keypoints, and Nh number of homographies to sample:

• sample a random homography Hi

• warp the unlabeled image Hi(I)

• apply MagicPoint to get the keypoints for the warped image xwarp =
fθ(Hi(I))

• compute the unwarped keypoints xunwarp = H−1
i fθ(Hi(I))
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• store xunwarp into xI

• repeat the previous steps Nh times

• aggregate the keypoints stored in xI to produce the super-point detector
F̂ (.):

F̂ (I; fθ) = 1
Nh

NhØ
i=1

H−1
i fθ(Hi(I)). (4.4)

The detector is trained with convolutional cross-entropy loss given two syn-
thetically warped images having pseudo-ground-truth keypoints generated by
MagicPoint and ground truth correspondence generated by the homography
transforming one of the images to the other, we define the loss as:

Lp(X , Y ) = 1
HcWc

Hc,WCØ
h=1
w=1

lp(xhw; yhw), (4.5)

where:
lp(xhw; y) = − log

A exp(xhwy)q65
k=1 exp(xhwk)

B
. (4.6)

4.3.1.3 Descriptor Extractor

The descriptor head takes B as input from the shared encoder and ap-
plies two convolutional layers to it to give a feature map D ∈ RHc×Wc×D

where D is fixed to 256, then perform Bi-Cubic Interpolation to upscale
the feature map to the original size as the input image I and normalize it
with L2-normalization leading to a fixed length dense descriptor. After the
pseudo-ground truth labels have been generated by the MagicPoint with ho-
mographic adaptation, a homography is sampled from a different set than
that for homographic adaptation to transform the image and its correspond-
ing pseudo-ground truth to produce the pair of inputs which the SuperPoint
model will be jointly trained on using a loss applied to descriptors from the
resulting input dhw ∈ D and d′

hw ∈ D′ from the original and transformed
input images respectively. The correspondences between two cells (h,w) and
(h′, w′) from both images transformed by the homography are defined as:

shwh′w′ =
 1, if ∥\Hphw − ph′w′∥ ⩽ 8

0, otherwise (4.7)
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where phw denotes the location of the center pixel in the (h,w) cell. The set
of correspondences for a pair of images is represented with S. The descriptor
loss uses hinge loss as:

Ld(D,D′, S) = 1
(HcWc)2

Hc,WCØ
h=1
w=1

Hc,WCØ
h′=1
w′=1

ld(dhw,d′
h′w′; shwh′w′), (4.8)

where

ld(d,d′; s) = λd ∗ s ∗ max(0,mp − dT d′) + (1 − s) ∗ max(0,dT d′ −mn). (4.9)

mp and mn are the positive and negative margins respectively.
Since the model is trained jointly, the final loss is the sum of the detector

loss from 4.3.1.2 and the descriptor loss 4.9:

L(X ,X ′,D,D′;Y, Y ′, S) = Lp(X , Y ) + Lp(X ′, Y ′) + λLd(D,D′, S). (4.10)

4.3.2 D2-Net
Proposed by [16], it was aimed at finding stable pixel-level correspondences
extracted from Structure from Motion (SfM) reconstructions where the cor-
responding local features can be used to match images reliably under chal-
lenging conditions like illumination or viewpoint changes. The idea is based
on having characteristics of a sparse local features approach leading to an
efficient model in addition to being able to perform better on images with
different viewpoints or illuminations changes since sparse local features ap-
proach uses small regions to detect keypoints which is unstable on challenging
conditions to be extracted with repeatability. The model is a single convo-
lutional neural network trained jointly for both tasks following the describe-
and-detect approach where detection is postponed into a later stage as shown
in figure 4.3.

4.3.2.1 Descriptor Extraction

The D2-Net pipeline starts with a descriptors extraction phase where a con-
volutional neural network with a VGG-like architecture [37] was used to
truncate the network until conv4_3 pre-trained on ImageNet [30] represents
the feature extractor defined as F is to be applied on an input image I to
output a feature map F = F(I), F ∈ Rh×w×n where n is the number of
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Figure 4.3: D2-Net training pipeline. It follows the detect and describe
approach. Image from [16].

channels and h × w is the feature map resolution. Each element (i, j) in F
represents a descriptor vector d across its channels as:

dij = Fij:,d ∈ Rn. (4.11)

These descriptors are adjusted at training so that the same points in a scene
lead to similar descriptors even under challenging conditions, followed by
L2-normalization.

4.3.2.2 Feature Detection

For this phase the author suggested a different annotation to help interpret
the detection stage by defining each channel of the feature map F as:

Dk = F::k, D
k ∈ Rh×w (4.12)

For this approach Hard Feature Detection is used to determine if a point
(i, j) is to be detected if and only if:

Dk
ij is a local maximum in Dk,with k = arg max

t
Dt

ij. (4.13)

This approach is further softened to be differentiable for training with back-
propagation suggesting a Soft Feature Detection where they start by com-
puting a soft local maximum score:

αk
ij =

expDk
ijq

(i′,j′)∈N (i,j) expDk
i′,j′

, (4.14)

where N (i, j) is the set of 9 neighbours of the pixel (i, j) including it. Then
defining the soft channel selection that scales each value in the 2D response
with respect to the max channel-wise to act as non-maximum suppression:

βk
ij = Dk

ij/max
t
Dt

ij. (4.15)
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Both criteria are then taken into account to obtain a single score map:

γij = max
k

(αk
ijβ

k
ij). (4.16)

The normalization is applied to obtain the soft detection score sij:

sij = γij

M Ø
(i′,j′)

γi′j′ . (4.17)

Due to the lack of data labeled for pixel-wise correspondences between
images. The author used MegaDepth Dataset [39] considering pairs of images
with at least 50% overlap in the sparse SfM point cloud.

4.3.2.3 Training Loss

The main attributes that the model should be trained for that the author
suggested is producing repeatable keypoints under challenging changes and
distinctive descriptors, so they used an extended version of triplet margin
ranking loss used by [40, 41] that jointly optimizes for both attributes. The
pixel-wise correspondences between two images I1 and I2 are defined by c :
A ↔ B where A ∈ I1 and B ∈ I2, the idea is to minimize the distance
between their descriptors d̂(1)

A and d̂(2)
B while maximizing the distance to

other descriptors that are the hardest negative samples to them d̂(1)
N1 and

d̂(2)
N2 . The positive descriptor distance between corresponding descriptors is:

p(c) = ||d̂(1)
A − d̂(2)

B ||2, (4.18)

whereas the negative distance is:

n(c) = min
3

||d̂(1)
A − d̂(2)

N2 ||2, ||d̂
(1)
N1 − d̂(2)

B ||2
4

(4.19)

The triple margin ranking loss is:

m(c) = max
1
0,M + p(c)2 − n(c)2

2
. (4.20)

which is extended leading to the proposed loss:

L(I1, I2) =
Ø
c∈C

s(1)
c s(2)

cq
q∈C s

(1)
q s

(2)
q

m(p(c), n(c)) (4.21)

where s(1)
c and s(2)

c are the soft detection scores in 4.17 and C is the set of
correspondences between the two images.
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4.3.2.4 Test time

At test time the feature extractor is modified to output a larger resolution to
improve localization. Additionally, multiple scales are considered, {0.5, 1, 2};
to build an image pyramid as in [42] to obtain a more robust feature extractor
by propagating image structures from lower to higher feature maps as in [43].

4.3.3 R2D2

Repeatable and Reliable Detector and Descriptor (R2D2) [15] is another
model that aims at jointly learning to detect keypoints and compute im-
age descriptors. In addition to finding repeatable and sparse keypoints with
unsupervised loss, the model has to predict reliable descriptors that are dis-
criminative with high confidence that can accurately match a pair of images
while overcoming the repetitiveness of some unnecessary salient regions that
a model might focus on like windows. The model takes an image as input
and outputs pixel-wise descriptors and pixel-wise confidence maps (Fig. 4.4).

Figure 4.4: R2D2 architecture overview.
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4.3.3.1 Convolutional Network

The first component in this network is a fully convolutional network that
is common for the two paths that the R2D2 has. This component is based
on L2-Net [44] with the addition to replacing the final 8 × 8 convolutional
layer with 3 successive 2 × 2 convolutional layers to reduce the number of
parameters. This convolutional network takes an image I ∈ RH×W ×3 and
outputs a feature map B ∈ RH×W ×128.

4.3.3.2 Descriptor path

The output is produced by the means of L2-normalization applied to the
final layer of the common convolutional network B from 4.3.3.1, the resulting
feature map is defined as X ∈ RH×W ×128 where each vector Xij with i =
1...W and j = 1...H correspond to the (i, j) pixel in the input image I.

4.3.3.3 Repeatability and Reliability path

The second path of the common convolutional network results in two confi-
dence maps, one for repeatability and the other for reliability. B is squared
element-wise giving a feature map K ∈ RH×W ×128.

• Repeatability Sub-Path The output feature map of this sub-path is
produced by applying 1 × 1 convolutional layer on K that outputs a 2-
channel feature map where a softmax is applied after that to produce a
one-channel heatmap S ∈ [0, 1]H×W . This path aims at detecting sparse
repeatable keypoints. Training for keypoints detection is not an easy
task due to the lack of labeled datasets for this task. The author men-
tioned ’We thus treat the repeatability as a self-supervised task and train
the network such that the positions of local maxima in S are covariant to
natural image transformations like viewpoint or illumination changes’ to
handle this problem. So they define a 3D tensor U ∈ RH×W ×2 such that
Uij = (i′, j′) where (i, j)and(i′, j′) are pixels corresponding to each other
from images I and I ′ respectively. Similarly, S′

U is the correspondences
from repeatability maps S and S′. In order to make local maxima co-
variant, they aim to maximize the cosine similarity between S and S′

U .
Moreover, to overcome occlusion which impacts this goal, the maximiza-
tion objective is done locally and then averaged. So they define a set of
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overlapping patches P = p giving a loss:

Lcosim(I, I ′, U) = 1 − 1
|P|

Ø
p∈P

cosim(S[p],S′
U [p]), (4.22)

where S[p] ∈ RN2 is the flattened vectorized N × N patch p extracted
from S, similarly for S′

U [p]. To avoid having the heatmaps constant
leading to minimum loss a second loss is employed to maximize the local
peakiness of the repeatability map:

Lpeaky(I) = 1 − 1
|P|

Ø
p∈P

A
max
(i,j)∈p

Sij − mean
(i,j)∈p

Sij

B
. (4.23)

Leading to the final repeatability loss:

Lrep(I, I ′, U) = Lcosim(I, I ′, U) + λ(Lpeaky(I) + Lpeaky(I ′)). (4.24)

• Reliability Sub-Path It follows a similar operation as repeatability
where 1×1 convolutional layer followed by softmax is applied to K lead-
ing to a confidence map Rij ∈ [0, 1] representing the discriminativeness
of each descriptor in X since only descriptors belonging to salient regions
with high confidence are to be used for matching. The author treats the
problem as a ranking optimization problem where each descriptor from
an image is ranked with respect to one of the descriptors from another
image. However, following the work of [45] where an exhaustive Eu-
clidean Distance is computed between query patches from a given batch
to all patches from another to maximize the average precision. The
author uses L2-Net [44] in a fully convolutional way where each pixel
from an image defining a patch is compared to others in another image,
then proposes a loss that ignores regions with repeatability patterns or
lacking distinction as:

LAP κ(i, j) = 1 − [AP (i, j)Rij + κ(1 − Rij)], (4.25)

with κ ∈ [0, 1] indicating the minimum AP per batch chosen as 0.5
because it yielded in good results.

4.3.4 DELG
Deep Local and Global features (DELG) [20] is a model similar to the VG
pipeline we are following with image-level supervision, where global features
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are extracted and top candidates from the database are retrieved by match-
ing the database global descriptors with that of the query, then local feature
extractor is used to re-rank the retrieved candidates. There are some addi-
tional operations suggested in DELG that reduces the dimensionality of the
local features which the author introduced and an attention-based keypoint
detection. The final re-ranked candidates suggested by DELG depend on the
scores computed using both global and local descriptors. In our pipeline, we
used the global descriptors of DELG to compute this score instead of that
extracted by CosPlace. The pipeline overview is shown in figure 4.5

Figure 4.5: DELG architecture overview. Image from [20]

4.3.4.1 Common Convolutional Network

The pipeline starts with a common convolutional network backbone which is
ResNet-50 where a deeper feature map D ∈ RHD×WD×CD obtained from the
output of conv5 layer with CD = 2048 will be used for the global descriptors
and shallower one S ∈ RHS×WS×CS obtained from the output of conv4 is used
for the local descriptors with CS = 1024.

4.3.4.2 Global Descriptors

Since a global descriptor is a compact vector representation that should have
a high-level semantic context of an image which is why we use the feature
maps belonging to deeper layer D. To obtain global descriptors generalized
mean pooling (GeM) is used as in [7], then whitening of the obtained aggre-
gated features by applying fully connected layer F ∈ RCF ×CD with CF = 2048
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and learned bias bF ∈ RCF as in [46] to produce global feature g ∈ RCF , this
path can be summarized as:

g = F ×
 1
HDWD

Ø
h,w

dp
h,w

1/p

+ bF (4.26)

where p is the generalized mean pooling power parameter, and dh,w ∈ RCD

are features from map D at location (h,w). g is then L2-normalized into ĝ.
The global feature path uses ArcFace margin loss [47]:

AF(u, c) =
cos(acos(u) +m), if c = 1
u, if c = 0

(4.27)

where u is the cosine similarity, m is the ArcFace margin, and c representing
the binary ground-truth class. In addition, the cosine classifier which is
cross-entropy loss and scaled softmax normalization applied to L2-normalized
classifier weights Ŵ is computed as:

Lg(ĝ, y) = −log
A exp (γ × AF(ŵT

k ĝ,1))q
n exp (γ × AF(ŵT

n ĝ, yn))

B
(4.28)

where ŵi is the L2-normalized weights for class i, γ is a learnable scalar, y is
a one-hot label vector and k is the index of the ground-truth class.

4.3.4.3 Dimensionality Reduction

An autoencoder module [48] is learned jointly with the other components
without extra supervision to reduce the dimensionality of the local features
trained with reconstruction loss. The encoder T is applied to S to obtain
the local descriptors L ∈ RHS×WS×CT . The autoencoder learn to reconstruct
S as S ′ using mean-squared error regression loss:

Lr(S ′,S) = 1
HSWSCS

Ø
h,w

||s′
h,w − sh,w||2. (4.29)

4.3.4.4 Keypoint Detection

To detect keypoints, an attention model M [49] is used to extract local
features for relevant regions only instead of dense extraction. M is based on
a small convolutional network that outputs an attention score map A ∈ RCF :

A = M(S). (4.30)
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. M is trained with cross-entropy classification loss after pooling the recon-
structed features S ′:

a′ =
Ø
h,w

ah,ws
′
h,w (4.31)

where ah,w ∈ A are the attention weights. Softmax cross-entropy loss is then
used:

La(a′, k) = −log
A exp (vT

k a
′ + bk)q

n exp (vT
n a

′ + bn)

B
. (4.32)

where vi and bi are the weights and biases for class i and k is the index of
ground-truth class.

4.3.4.5 Local descriptors

Local descriptors are extracted at locations with high keypoints detection
scores from the attention map produced by M from 4.3.4.4 taking the center
of the receptive field computed. Local descriptors are the ones with reduced
dimensionality obtained by the encoder T in 4.3.4.3. The local descriptors
are defined as lh,w ∈ L where h,w represent the location of the extracted
descriptor, then the set of descriptors is further L2-normalized to give l̂h,w.
The total loss is:

Ltot = Lg + λLr + βLa (4.33)

where Ltot is not optimized completely, since the reconstruction loss Lr and
attention loss La makes S worse for localization so during back-propagation
the gradients are stopped from both losses to S while optimizing Lg only.

4.3.4.6 Test Time

DELG uses image pyramid [42] during test time for both global and local
features by applying L2-Normalization to the global feature at each of the
three scales, {1/

√
2, 1,

√
2}; followed by average pooling the thee resulting

global features and another L2-normalization. On the other hand, the local
features use seven scales which are extracted as described in 4.3.4.5 selecting
the ones with attention scores higher than a specified threshold equal to that
in the final epoch of training, with a maximum of 1k local features.
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4.3.5 TransVPR
This model is one of the hybrid models that extract both global and patch-
level descriptors for the task of Visual Geo-localization based on visual trans-
formers with the use of self-attention, where global descriptors are integrated
by aggregating multi-level attention on task-relevant features to retrieve the
top candidates and then patch-level descriptors are used for spatial verifica-
tion to re-rank the retrieved candidates. The advantage of such an architec-
ture is the fact that it does not consider all regions in the image by selecting
task-relevant regions, which is one of the main challenges in VG.

4.3.5.1 Patch-Level Descriptors

First, the model extracts patch descriptors using a four-layer convolutional
neural network performed on a given input image, where for each layer the
output feature map is computed according to the following:

Fi = MaxPool(ReLU(BN(Conv(Fi−1)))), (4.34)
where Fi is half the spatial size of Fi−1. Then patch embedding is performed
on each feature map as in [50] where all feature maps have the same number
of patches which are flattened but with patch area difference of a factor
of 4 between each consecutive feature maps, the flattened patches are then
mapped to a different dimension related to the latent embedding dimension
of the transformer blocks. Then the patches at the same positions of different
feature maps are concatenated to obtain raw patch-level descriptors P0 that
will be the input tokens of multiple transformer encoder layers to give multi-
level output patch tokens P by concatenating the patch tokens from low-level,
mid-level, high-level defined as PL,PM,PH in order to generate a multi-level
attention map A by merging the three attention maps:

A = MinMaxNorm(
Ø

i

MinMaxNorm(ai)). (4.35)

where i ∈ L,M,H, and ai is defined as:
ai = softmax(PWa

i ) (4.36)
where Wa

i maps the concatenated patch tokens to scalar with multi-level.
To re-rank the retrieved candidates with local descriptors, the author found
experimentally that using patch tokens from the mid-level led to the best
performance, and to choose keypoints from where to extract the local de-
scriptors, the multi-level attention map A is used where scores larger than a
given threshold are to be selected.
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4.3.5.2 Global Descriptors

To compute the global descriptors, the author suggested using the output
patch tokens weighted with the attention masks obtained from 4.3.5.1 from
the multiple levels as in:

Gi = ai
T Pi (4.37)

These level-wise global descriptors are concatenated to get G∗ and post-
processed to get the final global descriptor G:

G = L2Norm(L2Norm(G∗)Wg), (4.38)

where Wg is used for reducing dimensionality.

4.3.6 Patch-NetVLAD

One of the hybrid methods that follow the re-ranking approach is Patch-
NetVLAD [51] that uses NetVLAD [6] descriptors first to retrieve top-k can-
didates, then patch-level descriptors with the multi-scale approach are used
to refine the retrieved candidates.

4.3.6.1 Patch-level Global Features

Patch-NetVLAD has a similar approach to the original NetVLAD but it
considers the aggregation of descriptors at a patch level which are densely
sampled. So from the original NetVLAD, starting from a pre-trained CNN
that extracts from an image I a feature map F ∈ RH×W ×D, then patch
extraction is applied from F leading to a set of patch features Pi of np

square patches (patches can have different shapes but square shape gave
better results as experimented in [51]). Then VLAD aggregation [52] and
projection layers are applied on each patch feature fiasNetV LAD:

fi = fproj(fV LAD(Pi)) (4.39)

For extra efficiency, IntegralVLAD similar to [53] is used after the VLAD
aggregation of the features which is necessary to compute an integral feature
map, followed by a depth-wise dilated convolution is used to produce the
patch feature for multiple scales.
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4.4 Scoring Methods

4.4.1 RANSAC
Random Sample Consensus (RANSAC) [2] is a widely used algorithm for
computing scores given to the matched extracted local features which we
used in the re-ranking of the retrieved candidates. The most important
advantage is its robustness to outliers. An overview of how the RANSAC
algorithm works for image matching:

• select four pairs of points at random from the mutual matches of both
images.

• use these points to compute the homography transformation matrix be-
tween those images.

• calculate the error between estimated matches transformed by apply-
ing the homography matrix on matches from the first image and the
corresponding matches from the second image.

• count the number of inliers, that are the points that have an error below
a specified threshold which is a hyperparameter for this algorithm.

• repeat the first four steps for a specified number of iterations, selecting
different random subsets of points each time.

• re-compute the homography using all the inliers counted by the ho-
mography with the highest number of inliers computed in the previous
iterations.

The final homography computed is to be used to calculate the score that will
be used to find the closest match while re-ranking.

4.4.2 Rapid Spatial Scoring
An efficient scoring method was suggested by [51] based on the translation
transformation considering horizontal and vertical displacements in patches
where the set of horizontal displacements is defined as:

xd = {xr
i − xq

j}(i,j)∈P (4.40)

for a pair of matched patches (i, j) ∈ P from two given images r and q for
query and reference, similarly for the vertical displacement set represented
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by yd. Then the mean displacement in both directions is computed over all
the set of matched patches as x̄d and ȳd for horizontal and vertical directions
respectively. Which leads to the rapid spatial score definition:

sspatial = 1
np

Ø
i∈P

A
| max

j∈P
xd,j| − |xd,i − x̄d|

B2
+
A

| max
j∈P

yd,j| − |yd,i − ȳd|
B2
.

(4.41)

4.4.3 RRT
Reranking transformers (RRTs) [54] is a model that replaces the process of a
geometric verification in the image retrieval pipeline that uses both the global
and local descriptors extracted from an image. This model learns to predict
a similarity score between images instead of estimating a homography, which
may be very challenging. Moreover, it can be used as a scoring block for
various re-ranking models. It is based on the transformer architecture [55] .

4.4.3.1 Model

For a given image I use the feature extractor of DELG [20] that outputs both
global and local descriptors represented as xg ∈ Rdg with dg = 2048 extracted
with multi-scale followed by a linear projection to reduce the dimensionality
to 128, and L = 500 local descriptors xl = {xl,i ∈ Rdl}L

i=1 with dl = 128
respectively. Each local descriptor may have a coordinate tuple pl,i = (u, v) ∈
R2 specifying its location and a scale factor sl,i. Similar to BERT transformer
encoder [56] the input tokens are represented by the descriptors obtained by
the feature extractor as:

X(I, Ī) := [ ⟨CLS⟩; fg(xg); fl(xl,1); · · · ; fl(xl,L);
⟨SEP⟩; f̄g(x̄g); f̄l(x̄l,1); · · · ; f̄l(x̄l,L) ],

(4.42)

where:
fg(xg) := xg + α;
fl(xl,i) := xl,i + φ(pl,i) + ψ(sl,i) + β

f̄g(x̄g) := x̄g + ᾱ;
f̄l(x̄l,i) := x̄l,i + φ(p̄l,i) + ψ(s̄l,i) + β̄.

(4.43)

α, ᾱ, β, β̄ are segment embeddings to differentiate between global and local
descriptors, φ is a positional embedding function as in [57], and ψ is linear
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embedding that takes the scale factor as input. Each layer of the multi-layer
transformer is defined as:

Z̄i+1 = LayerNorm(Zi + MHA(Zi)),
Zi+1 = LayerNorm(MLP(Z̄i+1)),

MLP(Z̄i+1) = ReLU(Z̄i+1W
T
1 )W T

2 ,

i = 0, · · · , C − 1.

(4.44)

with Z0 = X(I, Ī), W1 and W2 the parameters of the multi-layer perceptron
(MLP), MHA is a multi-headed attention block and C transformer layers The
model is trained with binary cross entropy loss for the objective of predicting
if the pair of images are a match or not:

E(I, Ī) = BCE(sigmoid(Z⟨CLS⟩
C W T

z ), ✶(I, Ī)), (4.45)

where Z⟨CLS⟩
C is a feature vector corresponding to the ⟨CLS⟩ token and W T

z

is a linear function mapping from Z⟨CLS⟩
C to a logit scalar. ✶(I, Ī) indicates if

both images are the same or not with values one or zero respectively. The
author used 500 local descriptors from DELG which is one of the advantages
of RRT not needing all the local descriptors.

4.4.4 SuperGlue
SuperGlue [58] uses a graph neural network to solve an optimal transport
problem which is a relaxation of a linear assignment problem to match the
local features of two images, and benefits from self and cross attention that
pertains spatial relationships of keypoints and their visual appearance. It is
robust against viewpoint changes and occlusion.

4.4.4.1 Architecture

SuperGlue uses SuperPoint [17] as a feature extractor to extract descriptors
di ∈ RD and p the corresponding position represented by (x, y) coordinates
and detection confidence c, each keypoint can be considered as a node for
the graph. The first component of the architecture is an Attentional Graph
Neural Network that uses the initial local features extracted by SuperPoint
from both images and applies a keypoint encoder to embed the local fea-
ture tuple (p,d) to take the visual appearance and spatial positioning into
consideration as:

(0)xi = di + MLPenc(pi) (4.46)
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where (0)xi is for the initial representation at layer zero. Keypoints from both
images form a single complete graph where Eself are self edges connecting
keypoints within the same image and Ecross are cross edges that connects
keypoints from an image to keypoints in another. The idea proposed was
suggested by [59, 60] which aims to update the representations by passing
messages across keypoints, for keypoints in image A:

(l+1)xA
i =(l) xA

i + MLP
1è

(l)xA
i ||mE→i

é2
(4.47)

where [.||.] is the notation for concatenation. After the keypoint encoder, an
Attentional Aggregation is performed where self-attention and cross-attention
are performed for self edges and cross edges respectively. The message is an
aggregation from all keypoints from both images:

mE→i =
Ø

j:(i,j)∈E
αijvj (4.48)

where E is the set of both self and cross edges, αij = Softmaxj(qT
i kj), and

q,k,v are the query, key, and value computed as linear projections from the
feature representation. The final matching descriptors for image A are:

fA
i = W.(L)xA

i + b, (4.49)

The same goes for image B.

4.4.4.2 Optimal Matching Layer

The second component of SuperGlue results in a partial assignment matrix
P ∈ [0, 1]M×N by maximizing the following:Ø

i,j

Si,jPi,j, (4.50)

under the following constraints:

P1N ≤ 1M and P⊤1M ≤ 1N (4.51)

where M and N are the numbers of local features for a pair of images, S ∈
RM×N is the score matrix obtained by computing the inner product between
local features corresponding to matches from the image pair. To handle
occlusion and visibility the author suggests solving an optimal transport
problem [61] using Sinkhorn Algorithm [62, 63] on augmented score S̄ and
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assignment matrix P̄. SuperGlue is trained in supervised manner where the
set of ground truth matches are represented by M = {(i, j)} ⊂ A × B and
unmatched keypoints in both images as I ⊆ A and J ⊆ B, where the loss
used is:

Loss = −
Ø

(i,j)∈M
log P̄i,j −

Ø
i∈I

log P̄i,N+1 −
Ø
j∈J

log P̄M+1,j. (4.52)

4.5 Other Re-ranking Methods with Built-in
Scoring

4.5.1 CVNet
Correlation Verification Network [21] (CVNet) is a hybrid approach for image
retrieval with its own scoring method that substitutes geometric verification
component for re-ranking models where a scoring method like RANSAC [2] is
applied on the extracted local features from the retrieved candidates obtained
based on similarity scores computed from the extracted global descriptors.
This method benefits from the 4D convolution that compresses feature cor-
relation from image pair into an image similarity, it also uses cross-scale
correlation with a single inference to replace multi-scale inference. Moreover,
CVNet uses curriculum learning with hard negative mining and Hide and
Seek technique [64] that handles hard samples like images with occlusion.

4.5.1.1 CVNet Global

The Global backbone network of CVNet includes two ResNet networks [36]
f and f̄ pre-trained on ImageNet [30] where each is used to extract global
descriptor dg ∈ RCg where Cg = 2048 from an image I ∈ R3×H×W , the
use of two networks is a structure inspired from [65]. Each ResNet network
consists of four ResNet blocks. The whole global architecture is composed
of two main paths trained jointly. The first path takes the global descriptor
extracted from a query image and applies GeM Pooling [7] and a whitening
layer [66] followed by L2-Normalization to result in the query descriptor dq

g

which will be trained for classification using the CurriculurFace-margined
classification loss [67] Lcls. The second path uses the momentum network f̄
to extract positive momentum global descriptor d̄p

g from a sampled positive
image Ip with the same label as the query image Iq, the same processing
is applied with GeM Pooling, whitening layer, and L2-Normalization, the
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resulting global descriptor is enqueued to a queue Q, this is done iteratively
for each sample and while dequeuing the last element. A CurriculurFace-
margined momentum contrastive loss Lcon is used without being updated by
the optimizer but with a momentum update. The total loss is obtained by a
weighted sum of the stated losses:

Lg = λclsLcls + λconLcon. (4.53)

4.5.1.2 CVNet-Rerank

Local feature maps F ∈ RCl×Wl×Hl are extracted using the third ResNet
Block f3 from the query and candidate image pairs to predict the similarity
score sq,k

l where q and k are for query and key, the similarity score is obtained
using a classifier composed of 4D convolutional layers. Moreover, to build
a scale indifferent features, the author suggests replacing standard image
pyramid [42] with feature pyramid [68] {Fs}S

s=1 by resizing the feature map F
with multiple scales S = {1/2, 1/

√
2, 1} followed by scale-wise convolutional

layer to produce a feature map with channel number C ′
l = 256. Then using

the computed feature maps from the query and key images the cross-scale
correlation set Csq,sk

qk is obtained by applying ReLU to the cosine similarity
of local features taken from different pixel positions from the feature maps.
A sequence of 4D convolutional blocks followed by a global average pooling
layer and a 2-layer MLP is applied to output a binary class logit. The
author suggested adopting a center-pivot 4D convolution [69] to be more
computationally efficient. The final score used for re-ranking is the sum of
cosine similarity of the global descriptors with the weighted output score of
the re-ranking network. The re-ranking network is trained with total loss:

Lr = (Lqp
r + Lpq

r + Lqn
r + Lnq

r )/4. (4.54)

where:
Lqk

r = CE(Softmax(Zqk), ✶k
q). (4.55)

To build a more robust re-ranking network, the author makes use of hard neg-
ative mining where negative images with the highest global descriptor match-
ing score are sampled, another strategy used is the Hide-and-Seek strategy
that augments an image by deactivating some grids with a certain probability
to synthesize the occlusion concept. Both mentioned strategies are learned
in curriculum manner where the rate of selecting hard negatives or applying
the augmentation increases as the learning progresses.
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4.5.2 LoFTR

LoFTR [70] is a method that consists of local feature extraction and matching
while skipping the detection phase that existing methods like [71, 72] use.
The detection-free approach avoids the challenges associated with this step
from being able to extract repeatable interest points. Moreover, another
issue is that images with low-texture regions are challenging when using dense
features because they may lack context locally, so the global context is crucial
to be considered, so a coarse feature map is extracted from a CNN backbone
and used to simulate a larger receptive field which is then updated at a finer
level by a fine feature map after finding the matches. The local features
are updated by a Transformer using self and cross-attention to make them
conditioned on both input images. The overview of the pipeline is shown in
Figure 4.6.

Figure 4.6: LoFTR pipeline overview. Image from [70]

4.5.2.1 Local Feature Extraction

First, a CNN based on FPN [73] is used to extract a pair of coarse-level
feature maps (1/8 the original dimension) F̃A and F̃B and a pair of fine-level
feature maps (1/2 the original dimension F̂A and F̂B from an input image
IA and IB.
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4.5.2.2 Coarse-Level Local Feature Transform

The coarse-level local features are flattened and a positional encoding is
added to both feature maps to account for the position factor, which is
followed by a LoFTR Module that performs Self-Attention Layer and Cross-
Attention Layer while substituting the normal Dot-Product Attention [55]
with a Linear Attention [74] that is more computationally efficient. This
phase outputs a transformed feature maps F̃A

tr and F̃B
tr .

4.5.2.3 Matching Module at Coarse Level

After computing the score matrix S between the transformed features as:

S(i, j) = 1
τ

· ⟨F̃A
tr (i), F̃B

tr (j)⟩, (4.56)

two approaches can be used to perform matching, the first approach is de-
scribed in SuperGlue [58] by using an optimal transport layer where −S
is the cost matrix for the partial assignment problem, and the second ap-
proach is using dual-softmax operator [75, 76] on S, where we then obtain
the matching probability Pc as:

Pc(i, j) = softmax(S(i, ·))j · softmax(S(·, j))i. (4.57)
Matches are selected according to Pc where their value is higher than a
specified threshold θc and constraining the matches to be mutual.

4.5.2.4 Coarse-to-Fine Module

To update the coarse matches’ locations into the original image size the
coarse-to-fine module finds the location (̂i, ĵ) in the fine feature maps F̂A

and F̂B corresponding to ĩ, j̃ then crop two windows sets and apply LoFTR
transformer module as in 4.5.2.2 into F̂A(̂i) and F̂B(ĵ) where î and ĵ are
their centers respectively, then correlating the center vector from the first
transformed feature maps to all vectors in the other and getting the final
location ĵ′ according to the calculated expectation over the probability dis-
tribution of the previous correlation to produce the set of fine-level matches
{(̂i, ĵ′)}.

4.6 Results
We provide a benchmark to evaluate the effect of the re-ranking pipeline
by comparing several combinations of feature extraction models and scoring
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methods that use nearest neighbor search to match the extracted features
to re-rank the top 100 retrieved candidates provided by CosPlace [5] against
the baseline. The choice of feature extractor, scoring methods, and their
corresponding best configuration of hyperparameters are as suggested by
their author except for the backbones where we chose ResNet-50 over ResNet-
100. Furthermore, the feature extractors used are not all designed for re-
ranking. The characteristics of the feature extractors are summarized in 4.2.

We also mention that DELG uses an affine version of RANSAC with a lim-
ited number of transformation restricted to estimating a homography with
6 parameters whereas all other models using RANSAC uses the general ver-
sion with 8 parameters. Also, Patch-NetVLAD uses RANSAC on each of its
scales and averages the score.

The metric used in all experiments is Recall@N (R@N) which was used in
[6, 77] which represents the percentage of queries having a correct prediction
in the top-N predicted candidates within a specific threshold. We select a
value of 100 for N and 25 meters as a threshold.

4.6.1 Quantitative Evaluation
Table 4.1 shows the results achieved by the re-ranking models on the datasets
described in 3. It is observed that re-ranking models have a significant im-
provement on datasets with both night and day domain queries with respect
to the baseline. For datasets with day queries, there is no clear winner. For
example, on SF-XL test v1 with SuperGlue implementation having Super-
Point as a local extractor achieves the highest R@1, R@5, and R@10 with
11.9% improvement over the baseline for R@1 and with DELG immediately
behind it with 0.1% difference, while on SF-XL test v2, R2D2 with RANSAC
increases the R@1 by 15.1% with 0.1% higher than D2-Net with RANSAC.
On datasets with night queries, SuperPoint with SuperGlue achieves the
highest R@1 on Tokyo Night and SF-XL test night with 15.2% and 9.2%
increase over the baseline respectively, and DELG achieves the highest R@1
on SVOX Night with 28.5% higher R@1 than the baseline, while CVNET
achieving the highest R@5 and R@10 on all night datasets. On average,
DELG shows the highest improvements in R@1 for both domains with 8.3%
and 17% increases on both day and night domains respectively, followed
by SuperGlue and LoFTR. Additionally, comparing RRT against RANSAC
for feature matching with local features extracted by DELG shows a great
improvement using RANSAC over RRT, especially for night datasets with
the highest difference on SVOX Night with 15% R@1 improvement. Also
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comparing Rapid Scoring against RANSAC with Patch-Netvlad as a local
feature extractor shows that the approach of rapid scoring performs worse
than the baseline for all datasets except SF-XL test v2 with an increase of
1%. This shows how good RANSAC is compared to the other matching
methods considered. SuperGlue on the other hand seems to have a very
good performance too in general competing with RANSAC in performance.
Finally, we notice how challenging the SF-XL test night dataset with the best
combination achieving 33% R@1 which compared to other night datasets is
significant which might mean that the illumination challenge is not the only
reason for the low results, but the images themselves with the high viewpoint
shifts, and others focusing on signboards and some images with decorations
and lights are challenging for these models.

Regarding the computational cost of these methods, the trade-off between
the performance and the efficiency can be observed in 4.7, where we show
the R@1 for the re-ranking models with respect to the time it required to
re-rank the top-100 candidates for a single query from SF-XL test night
dataset not considering the time it takes CosPlace to retrieve these candi-
dates which are computed by summing the time it takes to extract feature
from the query and the 100 candidates and the time to match and score each
of the candidates with the query. We notice that although DELG had the
best performance overall, the time it requires is very high compared to other
high-performing methods like SuperGlue and LoFTR which takes less than
half the time DELG requires, they are still not feasible for applications that
require real-time retrieval like autonomous driving for example which can be
handled by changing the number of candidates considered while still main-
taining a noticeable increase in performance. We can see in 4.8 the effect
of changing the number of retrieved candidates to re-rank (K) on the R@1
against the upper-bound on SF-XL test v1 and SF-XL test night within 25
meters threshold. In general, as K increases the R@1 increase reaching an
asymptote which is reached quicker for night domain as we see for SF-XL test
night. So we can decrease the number of candidates to make the re-ranking
faster while not sacrificing the performance much, or even in case the ap-
plication does not require very high accuracy, a lower number of candidates
might be more suitable.

4.6.2 Qualitative Evaluation
Most of the re-ranking models have a keypoint detection phase, so they use
their local features to perform matching using a homography estimation using
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Features
Extractor

Features
Matching

Tokyo Night SVOX Night SF-XL test v1 SF-XL test v2 SF-XL test night
R@100 = 96.2 R@100 = 90.3 R@100 = 92.5 R@100 = 97.7 R@100 = 41.6

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
- - 80.0 88.6 91.4 51.6 68.8 76.1 76.7 82.5 85.6 89.0 95.3 96.3 23.8 29.0 31.5
SuperPoint SuperGlue 95.2 95.2 95.2 77.9 85.2 86.5 88.6 91.6 91.9 92.8 96.7 97.7 33.0 38.0 39.1
D2-net RANSAC 92.4 96.2 96.2 78.9 85.1 86.4 87.5 90.3 90.8 94.0 96.3 97.0 32.6 38.2 39.5
R2D2 RANSAC 86.7 90.5 92.4 72.5 80.7 82.9 85.1 88.2 89.6 94.1 96.8 96.8 26.2 32.2 33.9
DELG RANSAC 94.3 95.2 96.2 80.1 84.1 86.0 88.5 91.2 91.5 93.8 96.2 97.0 32.2 37.6 39.2
DELG RRT 84.8 94.3 95.2 66.3 81.7 85.7 85.3 89.6 90.4 88.6 96.0 97.2 27.3 35.6 38.6
Patch-NetVLAD RANSAC 90.5 94.3 94.3 67.2 80.6 83.6 77.0 84.7 87.0 91.0 95.2 96.2 31.8 37.3 38.4
Patch-NetVLAD Rapid Scoring 73.3 87.6 92.4 42.2 66.3 73.1 69.3 80.3 84.1 90.0 94.6 95.8 21.7 31.3 35.4
TransVPR RANSAC 88.6 95.2 95.2 63.8 79.2 83.2 84.0 87.6 89.1 92.5 96.2 96.7 27.3 34.3 36.7

LoFTR 93.3 95.2 95.2 80.0 84.0 85.3 87.9 89.8 90.7 93.3 96.3 97.2 32.6 37.6 38.2
CVNet 94.3 96.2 96.2 74.6 85.2 86.5 84.8 91.0 91.6 88.0 95.8 97.0 31.5 39.3 39.9

Table 4.1: Results of the re-ranking methods against the baseline
with CosPlace. The first 100 candidates retrieved by CosPlace were used
to be re-ranked by the re-ranking methods. The upper bound defined as
Recall@100 is shown under the dataset name for each dataset.

Figure 4.7: Recall@1 and Time. The Recall@1 is considered for the re-
ranking methods on SF-XL test night dataset. The time is for the latency it
takes the re-ranking method to re-rank the 100 candidates for a single query
considering feature extraction, matching, and scoring.

RANSAC for example. For this reason, we visualize the keypoints detected
by these models except for CVNet which has no keypoint detection phase,
also for LoFTR which is a detector-free model, we try to visualize what
points it matches given two images which is not exactly a keypoint detection
stage but we visualize the matches chosen which are dependent on the image
pair. We can observe from figure 4.9 that D2-Net and SuperPoint extract
keypoints without avoiding irrelevant objects like sky, pedestrians, and cars,
even for the night query image, whereas R2D2 is better at avoiding the
sky, especially for the night domain, but still it does not ignore pedestrians
and cars, then there is DELG that has a significant improvement over the
other models in detecting interest points avoiding unnecessary objects much

53



Mohamad Mostafa: Deep Learning
for Visual Geo-localization Architectures and Experiments

Figure 4.8: Plot for the effect of candidates number on the recall.
DELG and Patch-NetVLAD with RANSAC are considered.

better and focusing on the important regions that are useful for the VG task
which might be explained due to the fact that not all models were trained
for the VG task (Table 4.2), as DELG is for VG, other models are not.
LoFTR also behaves accurately with respect toother models (Fig. 4.10) and
we can see the difference of the chosen points for matching for the same
query image when the reference image changes. TransVPR does keypoint
detection depending on the image size by dividing the height and width by
patch size which gives the number of patches for both dimensions Nh and Nw

respectively and selecting the equidistant keypoints equal to the number of
patches Nh × Nw (Fig. 4.11. We also show the matching between the same
image pair with a query in both domains using the best scoring methods
compared to mutual matches (Fig. 4.12). Moreover, a sample of predictions
on SF-XL test night was given using the best-performing re-ranking methods
showing their performance against the baseline (Fig. 4.13).
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Model Descriptors size
(num. × dim.) Backbone Designed for

re-ranking
Sparse

Keypoints
DELG 1000 x 128 ResNet-50 ✓ ✓
Patch-NetVLAD 2826 x 4096 VGG-16 ✓ ✗
TransVPR 522 x 256 Custom CNN+transformer ✓ ✓
R2D2 4126 x 128 custom L2-Net[44] ✗ ✓
D2Net 2775 x 512 VGG-16 ✗ ✓
SuperPoint 1034 x 256 custom VGG ✗ ✓

Table 4.2: Characteristics of feature extractors used for re-ranking.
The number of descriptors for each method may vary depending on the image
resolution or the visual content.
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Figure 4.9: Visualization of the keypoint detection phase of the re-
ranking methods.
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Figure 4.10: LoFTR keypoints. LoFTR is a detector-free model, so we
show what points of interest are being considered for matching since it is
dependent on image pair.

57



Mohamad Mostafa: Deep Learning
for Visual Geo-localization Architectures and Experiments

Figure 4.11: Visualization of the keypoints used by TransVPR.
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Figure 4.12: Matching visualization using different methods for night
and day queries.
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Figure 4.13: Predictions example for the best re-ranking methods.
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Chapter 5

Conclusions and future
works

The main purpose of this thesis was to provide a benchmark that evalu-
ates the effects of applying a re-ranking approach on the task of visual geo-
localization (VG), especially on a major challenge that some applications
require which is the domain shift problem, specifically the night-day domain
shift. Starting from an image retrieval method, we experimented with vari-
ous re-ranking methods that not necessarily are trained for the VG task, but
might also be trained for image matching or other similar tasks, and analyzed
their performance and efficiency for various challenging datasets, especially
on night domain which showed a significant improvement. Moreover, we in-
troduced a new clean dataset SF-XL test night having night queries which
proved to be challenging for the suggested methods due to other challenges
in addition to the illumination change like some lighting effects from decora-
tions or signboards, and this helps for further experimenting for challenges
that might be faced in real life applications. Some additional work might be
used to extend what has been evaluated in this thesis:

• try to use the global features provided by the best retrieval method
instead of those used by re-ranking models that perform scoring for both
global and local features (like DELG).

• provide an alternative scoring method that estimates homography which
is challenging since it is hard to choose pairs of keypoints that are co-
planar which is important for estimating the homography matrix.

• Use Generative Adversarial networks that can help with homography
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estimation to help with scoring [78]
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