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Summary

The increasing interest towards visual geolocation (or visual place recogni-
tion) has been noticeable in recent years. A fast and efficient system able
to identify a particular place around the globe, that uses only the visual
content of a query image, has been requested in many different fields, going
from virtual reality to self driving cars and exploratory robots. Advances in
artificial intelligence and dense open source datasets boosted the research
community on proposing a set of alternative ways to tackle this challenge,
being retrieval and classification two of the most diffused approaches, each
of which propose its own advantages and weaknesses. Although, there is
no absolute winner when comparing the existing approaches, more efficient
systems can be obtained when combining more than one technique through
the processing pipeline.

The objectives of this project were focused on the analysis of the classifi-
cation approach. Primarily consisting of partitioning the geographical area
of interest into geographical cells and developing machine learning models
able to associate a particular set of images to its correspondent geo-class.
The goal of this project was to study, implement and deploy existing ap-
proaches, popular among the existing literature, but whose authors in some
cases never released the source codes to replicate their results. A second
part of the project consisted of developing a deep, complete and updated
comparison of the existing methods, studying their performances on highly
dense datasets of urban scenarios.
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"A place is more than just its
physical attributes, it is the essence
of its history, culture, and traditions
that gives it its true identity."
[ChatGPT, the essence of a place]



Chapter 1

Introduction

Location systems are technologies that allow for the determination of the
physical position of an object or person. These systems have become in-
creasingly important in a wide range of applications, from navigation and
tracking to emergency response and logistics. There are several different
types of location systems, including global positioning systems (GPS), cel-
lular triangulation, WiFi-based systems, and newer emerging approaches
like visual geo-location.

Traditional systems follow a satellite-based approach, on which the main
idea is to use a network of satellites in orbit around the Earth and a receiver
on the ground to determine its precise location. In practice, the satellites
broadcast a signal that contains information about their precise location,
as well as the time the signal was transmitted. When the receiver on the
ground receives signals from the satellites, it can use the time-stamped sig-
nals to calculate its precise position through a process called trilateration.

Satellite-based location systems are highly accurate, with GPS providing
location information with an accuracy of a few meters. Other satellite-based
location systems, such as the European Galileo system and the Chinese
Beidou system, are also becoming more widely available and increasing their
accuracy. However, there are several disadvantages to these systems:

• Dependency on technology: Satellite-based location systems rely on
technology and infrastructure that can be vulnerable to disruption or
failure. For example, if a GPS satellite fails, it can affect the accuracy
and availability of location services.
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• Limited coverage: Satellite-based location systems require a clear
line of sight to the sky, which can be obstructed in urban areas with
tall buildings, tunnels, or in densely forested areas. This can limit their
effectiveness in certain situations.

• Accuracy: While GPS is generally accurate, it can sometimes be af-
fected by environmental factors such as atmospheric conditions or in-
terference from other devices, which can affect its accuracy.

• Security: Satellite-based location systems can be vulnerable to hack-
ing or other security threats, which can compromise the privacy and
security of users.

• Battery: Using satellite-based location services can consume a lot of
battery power on mobile devices, which can limit their usefulness in
situations where power is limited or not available.

• Cost: While GPS is freely available for civilian use, some satellite-based
location systems can be expensive to use or require special equipment,
making them less accessible to some users.

At this extent and given the astonishing advances in machine learning,
deep learning and computer vision, we could ask ourselves if it is possible
to develop alternative location systems, that do not depend on a complex
and expensive infrastructure of satellites orbiting around the globe, but
exploiting the large amounts of images coming from highly diffused social
networks, and by using only visual cues such as landmarks, street signs,
and building facades, could we teach a computer to accurately recognize the
location of where the scene was taken?

1.1 General Description
This document is intended to work as a guide to explore the latest advances
in deep-learning to the visual geolocation task, relative to the classification
approach. Aiming to provide a fair comparison of the most recent ways to
tackle the problem of understanding the location of a scene only by analyzing
its visual content. Until now, the existing benchmarks lack key aspects that
were targeted to be solved through this project:
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1. Homogeneity: Evaluating the performance of the different methods
on the same datasets and computational conditions.

2. City-wide performances: Applying the existing methods on highly
dense datasets from large city-wide maps, where classes are intended to
cover areas of just a few blocks, and the visual gap between adjacent
classes is minimum.

3. Multiple-scenarios analysis: Testing their efficiency on a variety of
different highly diffused datasets, well known among the research com-
munity, including visual elements from different sources, environmental
conditions, locations, and dataset-lengths.

4. Replicability: Releasing the source code of the implemented methods,
providing clear documentation of either the hyper-parameters used in
the partitioning and in the training process, as the computational re-
sources employed during the analysis.

1.2 Objectives
The precise roadmap of the project consisted of:

1. Implementing a number of existing papers as baselines.

2. Use the best baseline method to train a large neural network on large-
scale datasets.

3. Collect a bunch of well known datasets on which to evaluate the speed/accuracy
trade-off between retrieval-based VG and classification-based VG.

1.3 My Contribution
This project aims to present a deep analysis in the visual geolocation task,
focusing on the most significant progress done in recent years under the
classification-based framework. The main part of this project consisted of
developing machine learning algorithms capable of classifying an image into
a geographic cell, generated by a variety of partitioning strategies at differ-
ent granularity, following existing baselines to which the source code was
not released.
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Then, by comparing their performance with new SotA methods, this docu-
ment provides a fair and updated benchmark through a variety of datasets,
at either large city-wide scale and planet-wide scale.
Finally, releasing the code to the open public for further research activities,
specially those requiring the comparison of the implemented approaches with
newer and more efficient methodologies.
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Chapter 2

Related works

The following chapter aims to describe the general overview of the Visual
Geolocation task, describing its uses and limitations, as well as the most
common approaches discussed in the literature, which includes the classifi-
cation approach.

2.1 Visual Geolocation
Visual Geolocation (VG) or Visual Place Recognition (VPR) could be de-
scribed as the process of finding any kind of geographical information, such
as geographical coordinates or orientation, from a visual media source, that
can be defined as a single image or a sequence of frames taken on a relatively
close period of time. In this process, only the visual cues and the content of
the visual elements are considered.
Although some authors propose different definitions of this complex process,
influenced by the kind of approach they use to solve it, they all coincide with
the main idea of the task. E.g. Hays and Efros [1] give a classification-based
definition, referring to this process as obtaining the probabilistic distribu-
tion of where a picture was taken in a limited geographical space, over a
set of predefined regions or classes. On the other hand, Zamir and Shah
[2] describe this process as retrieving the location of a visual scene by ana-
lyzing the content-based similarities it shares with a set of well-known items.

This challenging process has been gaining more interest inside the re-
search community, which seeks for alternative ways to build faster, more
reliable, and more robust autonomous navigation systems, that is at the
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moment highly dependent on satellite-based technology, such as GPS sen-
sors and space communication devices, constantly sharing data with far
away transponders that constitute a complex and expensive infrastructure.
In some cases, VPR seems to be the most promising solution to apply, es-
pecially in environments where satellite communication is limited, mostly
affected by the presence of physical obstructions (buildings or tunnels), at-
mospheric inference (solar flares, ionospheric scintillation), electronic inter-
ference with other electromagnetic waves, and weather conditions (rain, fog
or snow).

This particular approach takes the advantage of highly diffused RGB cam-
eras worldwide as well as the growing media community that makes it easier
to find accurate geo-tagged visual elements, with no significant additional
costs. And of course, the recent discoveries in machine learning and artificial
intelligence constitute a key aspect of the development of these promising
methods.

Although modern technologies had helped efficiently in achieving extraor-
dinary results in this field, this task is still vulnerable to visual limitations
that add an extra notch to its complexity. For example, dynamic environ-
ments influenced by weather conditions, and significant architectural modi-
fications, in the case of urban scenarios, are difficult to address and have a
direct impact on the performance of the proposed solutions. Not to mention
the large computational resources required either in the development of the
model or during the inference process. These problems together with the
demand for fast inference solutions have shaped the development of modern
approaches which are discussed later in this chapter.

2.2 Approaches to VG
Inside the research community, plenty solutions have been proposed in re-
cent years, addressing the problem of visual geolocation through different
approaches, each of them focused on solving a specific problem of the task.
Recent discoveries have been addressed to improve this process along the
following aspects:

1. dynamic environments: moving objects that do not constitute part
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of a specific place but can be found on a particular scene, as pedestrians
or vehicles as in urban scenarios or any fauna and flora element that
modifies its appearance based on seasonal stages.

2. scene conditions: The best iconic example is well described by the
different appearance a scene can show during day and night. Without
introducing substantial changes in the urban architecture of a place, just
by varying the position and direction of light sources can impact nega-
tively on the performance of VG solutions. Not to mention distortions
introduced by weather conditions can not only modify the appearance
of the surroundings but can interfere in the collection of accurate visual
elements as in the application of autonomous vehicles.

3. inference time: It will be discussed how some approaches introduced
in the literature achieve SotA results in terms of accuracy but are not
salable to larger applications, since their performance has share a linear
dependency with the amount of visual elements used to provide the
accurate results, either at a World-wide or city-wide scale.

4. variable orientations: One of the most crucial aspects in achieving
high performance has to do with models being tolerant to variations
in the location at which a scene is captured. The complexity of this
particular task grows with the granularity of the desired results.

As any challenging task, it is difficult to find a solution that rules over
all the challenging aspects that have been described. Some approaches are
faster during inference time but are less scalable than others and viceversa.
And sometimes the best results are achieved when different approaches are
fused at different stages of the processing pipeline.

2.2.1 Image Retrieval
The idea behind the Image Retrieval process is to analyze a user’s query and
to retrieve, usually from inside a large database, a particular image that best
fits with the requested output. The input sent by the user could be either a
textual description of the image to be retrieved or another image from which
it is asked to obtain the most similar one from the whole dataset, measur-
ing their similarity only based on their visual content. These systems are
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typically used to facilitate the navigation and browsing into the database
on the client side.

As mentioned before, the main ways to process the user’s input are:
content-based and text-based. The former type, Content-based image re-
trieval (CBIR), considers only the visual features during the search, these
may include color, texture, shape, or even spatial layout. The latter type,
Text-based image retrieval (TBIR), uses instead a set of textual items asso-
ciated with the image, these may include captions, keywords, or descriptions
relevant to the desired output. In both types, the first stage consists of con-
verting the input features into numerical vectors used then to compare and
retrieve images that are similar in their content.
Figure X shows a general overview of a CBIR pipeline, where it can be seen
the 4 main stages are listed below:

1. Feature extraction: obtaining a numerical representation of the features
that best characterize the images. Typically the features of the input
query are extracted at the running time while the features for the entire
dataset are extracted offline and used during the comparison.

2. Similarity measurement: By using a distance measure such as the Eu-
clidean distance or cosine similarity it is obtained a numerical indicator
of the likeliness between the input query and each of the images stored
in the dataset.

3. Ranking and re-ranking: This similarity measure is used to select those
images that best fit with the query. At this stage, the output scores are
ordered and the top results are selected. In some cases, the previous
steps are repeated with the top results as an ulterior analysis to obtain
a higher precision.

In the VG setting, the initial dataset is intended to contain verified geo-
tagged images, i.e. pictures to whom its geographical coordinates are already
known. Then, by following a CBIR approach, the system extracts the rel-
evant features from its visual content. Finally, once the ranking process is
done and the best matches have been selected, it is retrieved the geograph-
ical information (or an aggregated version) of the top-N results.

These systems are well-known for their high-tolerance capabilities. The
geographical coordinates retrieved are highly exact, with a tolerance of only
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a few meters, when they accurately match the input query with its coun-
terpart on the backend side. However, in order to get a greater rate of
successful matches, these systems require large datasets, which increases in-
ference time because the number of comparisons in the backend for each
query grows, in most cases, directly proportional to the dimension of the
dataset.

2.2.2 Classification
The image classification problem in computer vision entails training a ma-
chine learning model to associate a user’s query image with a certain cate-
gory or label retrieved from a set of predefined classes. The ultimate goal is
for machines to be capable of identifying and comprehending visuals in the
same way that humans do.

During the process, the machine learning model is trained on a dataset
of previously annotated images. It then learns to find patterns in photos
that distinguish one category from another by extracting vectors of numer-
ical information from the images. These characteristics are derived from
the image’s visual content, which may contain numerical representations of
colors, textures, forms, and other visual clues. After the teaching process is
completed, the model is used to classify unseen images into their appropri-
ate class. This procedure is required for a variety of applications, including
object recognition, facial recognition, and medical diagnosis.

The classes in the VG setup are intended to be a group of predeter-
mined geographical regions, generated by partitioning the geographical area
of interest and defining the geo-tag of each class using the geographical co-
ordinates of their associated photos. Once the geographical area of interest
has been divided properly, the model receives image pixels as input, and
the goal output is a one-hot encoded vector indicating the cell holding the
image geotag. Given a test image, the output of this model is a probability
distribution for the entire area. This formulation is superior to one that just
regresses from pixels to latitude/longitude coordinates because it allows the
model to indicate its uncertainty about a picture by assigning a confidence
score to each cell that the image was taken there. In contrast, a regression
model would be compelled to select a single site and would lack a natural
manner of expressing concern about its predictions.
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When compared to mage retrieval methods, this methodology provides an
entirely different perspective. Their key advantage is their reduced latency
during inference and their excellent scalability. Once trained, the inference
time is nearly constant and independent of the dimension of the training
dataset. To achieve more accurate predictions, one possible option would be
to expand the number of positives during training, increasing the amount of
photos associated to each cell and making the model more robust in detecting
the right label of an input image. However, as it was discussed before,
once the cell has been identified the coordinates retrieved by the model are
the ones of the entire cell, extracted by aggregating the coodinates of the
training images associated to it. As a result, the final prediction accuracy is
determined by the granularity of the designated cells. Increasing the number
of classes by constructing them at a finer granularity is connected with a
decrease in accuracy as well, because by decreasing the area of the cell, fewer
possibilities are examined during training.

2.2.3 Hybrid and Paired Methods
More recent studies have shown extraordinary results when combining the
most diffused approaches so far, classification and retrieval. There are a
variety of ways these two approaches can be combined to achieve better
performances in the VG task. In this project, it were identified two main
types, hybrid, and paired methods. For a hybrid method, it is intended a
system that changes completely its approach in the transition from training
to inference, during training it uses the dataset to tune a set of parameters
but during inference, these parameters are extracted from the trained model
and used as vectors of features. On the other hand, paired methods place
the two procedures one on top of another, using the output obtained after
the first layer to reduce the searching space on the second layer.

In the previous sections, we have seen how the two main approaches offer
different advantages and limitations when applied to the VG task. However,
in recent years, researchers have found ways of exploiting the best of both
worlds, building highly scalable systems with low tolerance predictions. The
hybrid procedure introduced on [6] uses the classification approach only as
a proxy to train the model avoiding the introduction of mining techniques
as in contrastive learning. After the training phase, the model is used to

14



Related works

extract a set of image descriptors which are then used during the inference
phase as intended on the image retrieval approaches.

2.3 Image Retrieval Framework
The preceding section provided an overview of how the image retrieval frame-
work approaches the VG challenge. The primary benefits and drawbacks of
the VG systems that use this method were highlighted. Finally, the section
addressed how newer methods link the image retrieval pipeline with the
classification methodology. As a result, the retrieval strategy is presented
in greater detail in this part, a system that first showed promising results
in the early 2000s and has gained increasing relevance in the field of deep
learning with the launch of AlexNet in 2012.

2.3.1 Feature Extraction
Until now, it has been stated that retrieval systems determine the similarity
of two images by comparing their image descriptors, which are numerical
representations of an image’s content in the form of vectors. Nevertheless,
no mention has been made of how this procedure works.

An image descriptor is an algorithm that collects important aspects from
an image and encodes them in a form that allows them to be easily compared
to other images. Based on the type of features the descriptor is extracting
from the image the following classes can be made:

• Color-based image descriptors: These image descriptors use statistical
methodologies to describe a picture’s color distribution, which is the
only information considered to represent its visual content. Color mo-
ments (such as mean, standard deviation, and skewness) are calculated
from a picture’s color histogram, which is a graph that shows the fre-
quency of each color value in the image. The color histogram is typically
displayed in three dimensions, representing the Red, Green, and Blue
color channels, respectively.

• Texture-based descriptors: They primarily encode the image’s local tex-
ture information by comparing the gray-scale intensity levels of a pixel
and its surrounding neighbors. These descriptors are robust to noise
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and illumination changes, and insensitive to geometric transformations.
Specifically, a binary code is assigned based on whether each neighbor’s
intensity value is more than or less than the intensity value of the cen-
ter pixel. The generated binary code is then utilized to represent the
pixel’s local texture pattern.

• Shape-based descriptors: They use the forms and contours of an image
to describe its content. Its main virtue is that they are unaffected by
translation, rotation, or scaling, allowing them to compare shapes that
have been altered in different ways. Fourier descriptors, for example,
aim to characterize the boundary of an item in a picture as a set of
sine and cosine waves. The Zernike moments, which are based on the
Zernike polynomials, are another well-known approach that can capture
more complex and irregular structures.

• Deep learning-based descriptors: Unlike traditional feature extraction
approaches that rely on craftsman features, deep learning-based descrip-
tors learn how to extract them directly from data via neural networks.
Learning a mapping between the input image and a high-dimensional
feature space, with each feature representing a different component of
the image. The input image is convolved using a collection of learnable
filters that capture distinct features of the image at different scales in a
Convolutional Neural Network (CNN). To minimize the dimensionality
of the feature space, the generated feature maps are passed through a
sequence of non-linear activation functions and pooling layers. Another
type of deep learning-based descriptor is the Siamese Network, consist-
ing of two identical neural networks that share the same weights, with
each network taking as input one of the two images to be matched.

At this point, it has been shown a general overview on the different types
of features introduced in the existing literature. The descriptors have been
associated based on the type of information they are able to extract from
the input pixels. However, often the literature proposes an alternative way
of classifying them, based on the granularity or the level of details they are
able to express from a single picture. While some descriptors tell a general
overview of the whole image, others focus only on few portions of the image
and treat them in a separate manner. Specifically, they group them into
local and global descriptors.

• Local descriptors: They consist of techniques used in image processing
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to identify highly interesting regions or points within an image. These
points are locations that stand out from their surroundings in terms
of intensity, texture, or other visual characteristics. The idea is to
determine if two images refer to the same visual content by analyzing the
number of matches in terms of their extracted keypoint. Typically, local
features are more robust to changes in lighting, orientation, and scale,
than global approaches. There are various types of local descriptors
used in image processing, with some of the most diffused algorithms
listed below:

– Scale-invariant feature transform: SIFT descriptors were introduced
in 1999 by David G. Lowe [11]. The way it extracts features is based
on the scale and orientation of an image by using gradient magni-
tudes and orientations within rotated image patches. They use a
similar approach to the Difference of Gaussian (DoG) algorithm,
which identifies key points based on the differences in the Gaussian
function associated with the compared images. The input image is
convolved using two Gaussian filters with varying standard devia-
tions. The difference between these two filtered images yields a new
image that emphasizes locations where the intensity changes at a
specific scale. Then, the gradient orientation of patches surround-
ing each of the keypoints is extracted. These gradient orientations
are then histogramed, and the orientation with the highest value is
chosen as the dominant orientation.

– Speeded Up Robust Features: A few years later, in 2006, Herbert
Bay, Tinne Tuytelaars, and Luc Van Gool introduced SURF de-
scriptors [5] based on the same principles of SIFT , by making some
modifications to the previous approach to make it more robust and
computationally efficient. The algorithm uses a box filter to ap-
proximate the Laplacian of the Gaussian function and identify key
points based on the local maxima of the determinant of the Hessian
matrix. The use of the Hessian matrix for scale space representa-
tion was crucial in achieving faster feature detections. SURF also
uses a unique descriptor that captures information about the distri-
bution of Haar wavelet responses around a feature point. The Haar
wavelet function is used to analyze and decompose signals into their
frequency components, in this case, it is used to detect edges in an
image.
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– Oriented FAST and Rotated BRIEF: In 2011 Ethan Rublee and
Vincent Rabaud introduced the ORB descriptor [19]. By taking an
improved version of the BRIEF (Binary Robust Independent El-
ementary Features [13]) descriptor and joining it together with a
Features from Accelerated Segment Test (FAST) module. While in
BRIEF, binary feature descriptors are computed by comparing the
intensity values of pairs of pixels in a neighborhood around a key-
point being affected by images with significant orientation changes,
Rotated BRIEF overcomes this problem by allowing the descriptors
to be computed with respect to an arbitrary orientation of the patch
around the keypoint, rather than being limited to horizontal and
vertical directions. On the other hand, FAST module compares the
intensity of pixels in a circular pattern around a central pixel, mak-
ing this approach more efficient than previously existing methods,
as it only requires a few comparisons per pixel.

• Global descriptors: These extraction techniques used in image process-
ing describe an entire image rather than just a local region or point.
Their goal is to capture the overall properties of the image such as
color, texture, shape, and spatial layout. Global approaches are often
made by grouping local descriptors extracted from an image into a set
of clusters, each of which represents a distinct visual feature. This is
often done using clustering techniques such as k-means or hierarchical
clustering. Once the local descriptors have been clustered into visual
words or codewords, a global descriptor can be constructed by counting
the number of local descriptors that belong to each cluster in the image.
Some of the most diffused methods that follow this approach are:

– Bag of Visual Words: The technique was first introduced in the
early 2000s by Sivic and Zisserman [21]. The BoVW algorithm
surged with the observation that images can be represented as sets
of small patches each of which capture specific visual features such
as edges, corners, or textures. Once the visual words have been de-
termined, the frequency of each visual word is counted in the image
to create a histogram of visual word frequencies. This histogram
serves as the fixed-length representation of the image.

– Gist: The GIST method was applied for representing global descrip-
tors in 2006 by Aude Oliva and Antonio Torralba [18]. The algo-
rithm starts by dividing the image into a grid of cells and computing
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a set of statistics for each cell. These statistics include color his-
tograms, gradient orientation histograms, and texture energy mea-
sures. Next, a spatial pyramid matching scheme is applied to the
image, by dividing the image into increasingly fine subregions and
computing histograms of the GIST features within each subregion.
The histograms are then concatenated into a single feature vector
that captures the global spatial layout and color properties of the
image.

– Pyramid Match Kernels: PMK was introduced in 2007 by Kristen
Grauman and Trevor Darrell [8]. This algorithm represents an im-
age as a set of histograms at multiple levels of spatial resolution.
Each histogram captures the distribution of visual words or fea-
tures within each region of the image. The idea is to divide the
whole image into multiple spatial bins at each level of the pyramid,
and to compute the histograms independently for each bin, so that
the similarity between two images is given by comparing the his-
tograms at each level of the pyramid using a kernel function, such
as the Chi-squared distance or the intersection kernel.

– Vector of Locally Aggregated Descriptors: [12] The idea behind the
VLAD methodology was based on the bag-of-words model. Once
the histogram of visual word frequencies is generated, a residual
vector is calculated for each visual word, computed as the difference
between the feature vector and the nearest visual word. Finally,
the residuals are aggregated into a single vector by summing up the
residuals for each visual word.

2.3.2 Similarity Search
Previously it was explained that the idea behind image retrieval approaches
in VG is to identify images that are visually similar to a given query based on
their associated features. The previous section showed the general overview
of how features are extracted, what kind of information they can represent,
and at what level of granularity they can explain the visual content of the
analyzed image. At this point, it is necessary to introduce the next funda-
mental part of the retrieval pipeline that is in charge of effectively comparing
two vectors of features extracted by the same descriptor when applied to dif-
ferent pictures.
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In order to evaluate the similarities or dissimilarities between two numer-
ical vectors it is crucial to define an adequate indicator capable of measuring
this property in terms of distance. Often, in literature, the following math-
ematical functions are implemented:

• Euclidean distance: It is one of the most commonly used distance mea-
sures for similarity search. It computes the distance between two Eu-
clidean points. It is defined as the square root of the sum of the squared
differences between the two vectors’ corresponding elements. The Eu-
clidean distance is always non-negative, and it is zero if and only if
the two features are identical. The Euclidean distance between two
n-dimensional vectors X and Y is calculated as follows:

dE(X, Y ) =

öõõõô NØ
i=1

(xi − yi)2

• Cosine distance: The cosine distance is used to compare two vectors in
a high-dimensional space. It computes the cosine of the angle formed
by the two vectors. The cosine distance is always between 0 and 1, and
it is 0 if and only if the two vectors are identical. The larger the cosine
distance, the less similar the two vectors are. It’s a popular distance
metric in natural language processing and text mining.

dC(X, Y ) = X · Y

∥X∥2 ∥Y ∥2

• Manhattan distance: Also known as the L1 norm, it computes the
distance between two points by adding the absolute differences between
their corresponding elements.

dE(X, Y ) =

öõõõô NØ
i=1

|xi − yi|

Intuitively, one may assume that in order to have more accurate results,
retrieval systems should extract as many features as possible in order to
increase the matching rate of the local features or to introduce more com-
plex global approaches by concatenating all at once the outputs of different
types of local descriptors. However, in many fields of machine learning
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and mathematics in general, it has been demonstrated that moving toward
high-dimensional vectors does not always improve the system’s performance
in finding similarities. Specifically, it has been noticed that distance mea-
sures lose their ability to represent similarities and dissimilarities in high-
dimensional spaces. A phenomenon commonly described as "The curse of
dimensionality".

When dealing with high-dimensional spaces the number of possible data
points grows exponentially with the number of dimensions, making it dif-
ficult and computationally expensive to search for similar points. The dis-
tance between any two points tends to converge towards a constant value
as the number of dimensions increases, making it difficult to distinguish be-
tween similar and dissimilar points. This means that in high-dimensional
spaces, distance-based similarity measures become less informative, which
can lead to poor search performance.

Various techniques have been developed to address the curse of dimen-
sionality in similarity search. Dimensionality reduction is one of the most
widely used approaches. The number of dimensions can be reduced by
transforming high-dimensional data into a lower-dimensional space, making
similarity search more efficient. PCA (Principal Component Analysis) and
other dimensionality reduction techniques can be used to convert data into
a lower-dimensional space while retaining the most important information.

In the PCA framework, the initial dimensions are transformed into a new
coordinate system in which the data points are represented by a smaller
number of variables called principal components. The first principal compo-
nent is chosen to be the linear combination of variables that has the largest
possible variance. In a similar way, the second principal component is then
chosen to be, not only, the linear combination of variables that has the next
largest possible variances, but also subject to the constraint that it must
be orthogonal to the previous one. This is how the dimensionality of the
feature space can be reduced while retaining the majority of the variance in
the data by retaining only the top k principal components, where k is much
smaller than the original number of variables.
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2.3.3 Indexing & Clustering

It was discussed in the previous section how similarity searching techniques
can quantify the degree to which two feature vectors are similar when they
exhibit high coincidences in the features extracted. However, the retrieval
pipeline discussed at this point consists of comparing the query features with
all the features available on the backend side, which is inefficient and not
suitable for large datasets. In this section, it is presented a clever solution
that has been introduced in the literature, and whose implementation helps
to solve this problem.

In machine learning, clustering is an unsupervised learning technique
whose goal is to group objects in a way that maximizes similarity within
each group and minimizes similarity between groups. Clustering and index-
ing are techniques used in similarity-searching tasks to improve the efficiency
and scalability of the search process. The main idea is to avoid searching
into the entire dataset for the best match of a query object but to search
only within the clusters that are likely to contain the nearest neighbors. This
reduces the number of distance calculations required and can significantly
speed up the search process.

Indexing, on the other hand, involves creating a data structure that en-
ables fast search based on some similarity metric or distance measure. An
index is a precomputed data structure that summarizes the dataset and
can be used to quickly find the nearest neighbors of a query object. How-
ever, clustering and indexing can be used together to further improve the
efficiency and scalability of similarity search, by clustering the dataset into
smaller groups and then creating an index for each cluster to speed up the
search within each group.

In line with this topic, in recent years, the Faiss library developed by
Facebook has gained relevance. The Facebook AI Similarity Search open-
source library was designed to work with high-dimensional vectors, such as
those used in computer vision and natural language processing applications.
It applies the KNN algorithm to cluster the dataset into groups that are
then indexed.

22



Related works

2.3.4 Reranking
On the last stage of the retrieval pipeline, it is common to add a post-
processing step. The goal is to improve the accuracy of the retrieved output
by applying deeper analysis into a reduced version of the searching space,
considering only the elements that achieved better results in the previous
stages. Reranking is the process of using a secondary ranking algorithm to
reorder the top N results produced by a search engine or machine learning
model based on additional criteria.

In the existing literature, some of the most diffused approaches apply
spatial verification methods to verify the correctness of correspondences be-
tween points or features in two or more images, the goal is to improve the
accuracy of matching algorithms by verifying that the matches satisfy cer-
tain geometric constraints. Some versions apply algorithms like RANSAC
[17], which randomly samples a small set of point correspondences, fits a
model to them, and then verifies the model by checking how many other
correspondences agree with it.

2.4 Classification Framework
We have already seen how machine learning algorithms are used in the anal-
ysis of the visual content of an image in order to determine the geographical
coordinates of where the picture was taken. The previous chapter provided a
brief overview on the main structure of one of the most widely used method-
ologies in this subject, the image retrieval pipeline. This section of the
project describes an alternative approach for tackling the challenging task
of visual geolocation, changing completely the previous paradigm. Although
there is not a clear winner when comparing these approaches, the classifi-
cation framework is more demanded in the development of VG applications
for large-scale and dense datasets, which are often applied in city-wide sce-
narios and for which the image retrieval approach loses efficiency, mainly in
terms of inference time.

Image classification is the process of categorizing and assigning pre-defined
labels to images based on the vectors of features extracted from their pixels.
Approaching visual geolocation through classification surged from the inter-
est of the research community after the great results observed in a variety
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of fields. In medical imaging analysis, for example, image classification has
been used in detecting tumors, cancer, and other abnormalities in X-rays.
Autonomous driving cars are using image classification to identify and clas-
sify objects such as pedestrians, traffic lights, and road signs. And in the
information-security industry image classification is used in security systems
for facial recognition, object detection, and tracking.

The idea behind the image classification approach applied to the visual
geolocation task is to develop machine learning models capable of associating
images to geographical classes based on the visual content extracted from
its pixels. The term geographical class coincides with the same definition of
a geographical area, and in some cases, this term is extended into a wider
idea, as a collection of geographical areas (not necessarily adjacent) that
are linked together based on visual elements that are common to their geo-
graphical environments. Once the area of interest has been divided into the
desired amount of classes, obtaining an adequate distribution of the training
images, the labels are generated for each class by aggregating the latitude
and longitude information of the images from the training dataset. To this
extent, a classification-based VG system is able to associate the input query
to a specific class and retrieve an accurate but approximated version of its
latitude and longitude, obtained through the class label.

In the image classification framework, the reliability of a large and high-
quality training dataset is key. The greater the dataset, the more likely
the model’s predictions are to be accurate. This is due to the fact that a
larger dataset contains more representative examples of the various classes
and variants within those classes, making it easier for the model to learn
the patterns and characteristics that differentiate them. Larger datasets,
on the other hand, help to avoid overfitting. When a model is trained on a
tiny dataset, it gets overly specialized to the training data, resulting in poor
performance on fresh data. A larger dataset can help to prevent overfitting
by giving the model more examples to learn from, lowering the danger of it
memorizing the training data rather than generalizing to new data. In order
to improve the model’s ability to generalize the different environments it is
necessary to provide not only a large number of images for each class but
also images taken from a wide variety of conditions, such as light intensity,
seasonal factors, visual noise and camera orientation.
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The research community, proposing classification-based VPR solutions,
has found a tremendous chance in terms of having access to accurate and
large-scale datasets. In recent years, the research community has benefited
from access to a large variety of datasets designed to train, test and compare
their proposals without incurring any significant additional costs. The role
of the growing and already large media community has been crucial. Thanks
to a variety of sources, mostly consisting of social media platforms, millions
of people from all around the world are allowed to upload and share with the
public a large number of high-quality pictures, all taken from a wide spec-
trum of environmental conditions that have been accurately labeled with
their geographical information. The largely diffused YFCC (Yahoo Flickr
Creative Commons) dataset serves as a clear example. A substantial mul-
timedia dataset that includes pictures and videos as well as the tags and
geolocation data that go with them was produced by Yahoo and Flickr and
is accessible for research under a Creative Commons Attribution license.

Another important aspect to consider when developing classification-
based VG systems relies on the proper delimitation of the classes, choosing
their right dimensions according to the use case has a similar impact on the
accuracy of the model as the one already discussed regarding the length of
the training dataset. Finer approaches may require denser training datasets
in order to provide a sufficient amount of images per class during the teach-
ing phase, otherwise, models may perform poorly in generalizing the com-
mon features of the class. On the other hand, coarser solutions may not
be sufficiently accurate during the inference phase, achieving good results
in associating images to classes but performing poorly when comparing the
ground truth with the retrieved geographical label.

In recent years, researchers have been studying different ways of handling
and generating efficient geographical classes either for the planet or city-wide
applications. In general, the latest proposals have been done by choosing
different approaches under two main aspects. The proper delimitation of
the geographical classes through the proper selection of a partitioning
schema, which aids in reducing the complexity of the implemented system,
and the output aggregation mechanism, used to efficiently improve the
probabilistic distribution of the predicted classes during inference, defining
an effective approach of combining classes and their outputs to improve
predictions.
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2.4.1 Discrete Global Grid Systems

Before diving into the description of how each of the proposed classification-
based VG methods operates, in this section it is going to be discussed the
most diffused libraries and methodologies used to generate the partitioning
of Earth or any geographical area of interest. To this purpose, it is necessary
to introduce the term of geographical cell, whose definition does not always
coincide with the previously mentioned geographical class. A geographical
cell, is the finest output obtained from an algorithm in charge of splitting the
area of interest only based on the geographical information, such as latitude
and longitude. In some of the proposed classification-based approaches, the
cells are grouped together based on the visual content of their associated
images in order to generate clusters of cells which are then called classes.

In the existing literature, this approach can also be referred to as Geo-
hashing, which by definition, it converts any location’s latitude and longi-
tude into a short string of letters and digits. A geohash is a hierarchical
spatial index, which means that it divides the Earth’s surface into a grid
of cells, each with a unique representative code. Each geohash code corre-
sponds to a regular-shaped area on the map, such as rectangles or hexagons.
The longer the code, the more precise the area it represents. The main idea
behind the discrete global grid systems is to generate a discrete “digital”
model of the Earth.

Although there is an infinite number of ways to split the surface of the
Earth, the most diffused approaches follow a similar idea to the one pro-
posed many centuries ago, through projections. During the 16th century
mathematicians studied and developed algorithms to transform the globe
into accurate flat maps. Popular rectangular maps, that are still used today
like the Mercator’s map (developed in 1569 by Gerardus Mercator) use a
cylindrical projection, an algorithm that puts a theoretical cylinder over the
globe and projects each of the points of the Earth onto the cylinder’s sur-
face. However, thanks to the Theorema Egregium proposed by Karl Gauss
in 1827, it is demonstrated that it is impossible to project a spheroid into
a flat surface without introducing any kind of distortion. Indeed, although
the Mercator’s map is accurate in terms of directions (the angle between
two lines on the map is the same angle between the projected lines on the
earth), it is highly inaccurate in terms of dimensions (areas closer to the
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pole are larger than the rest of the map).

In order to reduce the distortions while achieving the goal of a discrete
global grid, which is to cover the globe with each cell having an equal area.
Modern approaches use 3D polyhedrons to project into the globe. Although
any polyhedral solid can be mapped to the surface of the planet, only the
Platonic solids (like cube, tetrahedron, icosahedron, octahedron or dodeca-
hedron) can divide a sphere’s surface into uniform, equal-sized cells. Hence,
the Platonic solids are employed in the design of the most accurate DGGS in
terms of greatest equal area, frequently by mapping the polyhedral faces to
the surface model of the Earth. The coordinate reference system produced
by this technique maps the faces of a base unit polyhedron to the surface
model of the Earth.

In the existing literature, there exists different libraries and methodologies
to perform the partitioning of the globe. The followings are some of the most
diffused approaches in the classification-based VG field:

UTM

The UTM (Universal Transverse Mercator) projection is a cartographic pro-
jection used to represent the Earth’s surface on a flat map. It divides the
Earth into 60 time zones of 6 degrees each, numbered from 1 to 60, and
centered on the meridians of longitude that are multiples of 6 degrees. Each
UTM zone is projected onto a cylinder tangent to the Earth’s surface along
the central meridian of the zone. The cylinder is then unrolled into a flat
map, resulting in a rectangular grid of coordinates. The grid lines are placed
on the map at every km so that UTM coordinate values are displayed on the
grid as labels, where the East-West position is determined by the vertical
grid lines, whereas the North-South position is determined by the horizontal
ones.

Since UTM follows a similar approach to the one described previously for
the Mercator’s map, one of the main distortions introduced by the UTM
projection is that distances and areas are not accurately represented on the
map. In particular, areas that are far away from the equator are dispropor-
tionately enlarged, while areas close to the equator are compressed. This is
because the UTM projection is based on a cylindrical model of the Earth,
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which stretches the Earth’s surface as it moves away from the equator.

Another type of distortion introduced by the UTM projection is the dis-
tortion of shape. As you move away from the central meridian of a UTM
zone, the shapes of features on the map become increasingly distorted. UTM
also introduces angular distortion, which means that angles between lines
on the map are not accurately represented.

S2 Geometry

S2 geometry is a mathematical framework originally designed to perform
computations on the surface of a sphere. It was developed by Google as a
key component of their mapping and geospatial tools, such as Google Maps,
Google Earth, and Google Street View. Unlike UTM projection, S2 geom-
etry does not rely on projecting the Earth’s surface onto a flat plane, but
instead represents the Earth as a sphere and makes the projection onto the
six faces of a cube, allowing for more accurate representations of geographic
data.

The S2 geometry is based on a hierarchical spatial indexing system that
divides the surface of a sphere into a series of progressively smaller cells,
using a quadtree structure. It starts by projecting the spherical representa-
tion of the earth into the six faces of a cube, then for each of the projected
faces it applies a non-linear transformation in order to correct the problem
of same-area cells on the cube having different sizes on the sphere. In total
there are 30 levels in the hierarchy, which by using a 64-bit integer the finest
granularity of the cells can reach every cm2 on Earth.

In order to identify each of the cells in the s2 framework, the library
implements at each level of the hierarchy an indexing system based on the
Hilbert Curve. The Hilbert curve is constructed by recursively dividing a
square into four smaller squares, and then connecting the centers of those
squares in a specific order. At each level of recursion, the Hilbert curve visits
each point in the square exactly once, and the resulting curve fills the entire
square as the recursion depth goes to infinity. In doing so this algorithm
assures that cells sharing similar indexes appear close to each other on the
globe.
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One of the key features of S2 geometry is its ability to accurately repre-
sent the curvature of the Earth’s surface at any scale, from the entire globe
down to a single city block. This makes it a powerful tool for geospatial
computations, such as distance calculations, nearest neighbor searches, and
spatial queries. Another advantage of the s2 geometry projection is that it
provides an efficient way of storing and retrieving geographic data. Because
the cells are all the same size and shape, they can be easily indexed and
searched, making it possible to quickly retrieve data for a particular loca-
tion or region. https://github.com/sidewalklabs/s2sphere

level Min Area [km2] Max Area [km2]
0 85,011,012 85,011,012
1 21,252,753 21,252,753
12 3.31 6.38
30 48 × 10−12 93 × 10−12

Table 2.1: Areas of the S2-sphere cells at different hierarchy levels.

H3

H3 is a hierarchical geospatial indexing system developed by Uber for map-
ping and location-based services. It is similar to S2 geometry since it uses
a hierarchical system of cells to represent the surface of a sphere, but with
some important differences. H3 cells are hexagons and pentagons, rather
than squares. There are always exactly 12 pentagons at every resolution,
designed to provide more uniform coverage of the surface of the Earth. This
approach was introduced in order to minimize the impact of projection dis-
tortions, that in s2 geometry were already reduced by applying a non-linear
transformation.

In H3 the hierarchy of the cells is also designed to be more flexible, with
different levels of resolution depending on the specific use case. One of the
key advantages of H3 is its ability to accurately represent complex urban
environments, where traditional geospatial indexing systems can struggle
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with irregular shapes and varying densities of data. H3 cells can be used to
accurately represent neighborhoods, city blocks, and other areas of interest
with a high degree of precision.

Although the shapes of the cells in the H3 framework helps reducing
the distortion generated from the globe’s curvature, this frameworks looses
one important property that is insted preserved on S2 geometry, the area
covered by a single cell is not the same as the sum of the areas covered by
its children. In the classification-based VG framework, later on, it will be
shown that this property is crucial for the implementation of some strategies.
https://h3geo.org/

level Min Area [km2] Max Area [km2]
0 4,106,166 4,977,807
1 447,684 729,486
12 0.000185933 0.000370527
15 0.000000542 0.000001080

Table 2.2: Areas of the H3 cells at different hierarchy levels.

2.4.2 PlaNet
Developed in 2016, by Tobias Weyand, Ilya Kostrikov and James Philbin
[24], the PlaNet framework was one of the first classification-based VG al-
gorithms to be applied on a planet-wide scale. This means that the goal
of this method was to identify the geographical coordinates of any type
of photo taken at any possible location on Earth, including nature scenes
whose visual cues are very similar world wide, such as beaches, waterfalls or
mountains. The authors highlighted the fact that at that time many of the
proposed VG methods were focused only on restricted fields of applications,
for example some works treated only the landmark-building scenarios like
[4],[23]. Others were focused on cities or other places were the available
datasets could provide denser areas, but only a few proposals were done at
the global scale. The authors also proposed a way of exploiting the temporal
coherence between images in order to improve the accuracy by working with
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photo albums instead of just single images.

In line with the description of classification-based VG algorithms, this
method proposes an adaptive partitioning schema, meaning that the way it
generates the geographical cells for the entire world uses the advantage of
hierarchical DGGSs to regulate the density for each class. To this extent,
the authors decided to work with the s2 geometry framework, partitioning
the surface of the earth into a set of non-overlapping cells. Instead of fixing
the depth in the hierarchy of the cells, arguing that this approach could
impact the imbalance distribution of the classes, the authors introduce two
parameters, τ1 and τ2, to indicate the minimum and maximum amount of
images each class is allowed to contain in order to be considered a class. The
partitioning schema starts from the root of the quadtree as implemented on
the s2 geometry library, then it recursively descends by splitting the current
leaves into smaller cells until the distribution of the images is in line with
the constraints, so that larger cells cover sparsely populated areas.

The way this algorithm calculates the output prediction of an image
whose features have been passed through the trained model is by simply
applying the SoftMax function to the output layer, obtaining the proba-
bility distribution within the classes. This output probability distribution
is considered by the authors an important advantage for the classification-
based VG methods with respect to other approaches since it represents the
model’s confidence for possible locations, useful in cases where the model is
not able to determine with low uncertainty the location of the image.

2.4.3 CPlaNet
Developed in 2018 [20], by Paul Hongsuck Seo, Tobias Weyand, Jack Sim,
and Bohyung Han, the CPlaNet framework aimed to improve the perfor-
mance of the existing classification-based VG algorithms by combining the
output of multiple partitioning schemes, achieving highly accurate results
while reducing the number of parameters with respect to fine-granularity
models. In the paper, the authors highlighted the importance of choosing
a proper partitioning schema to handle the crucial trade off related to the
granularity of the classes. As it was already discussed in the previous sec-
tion, usually finer approaches are prone to overfitting since the fixed number
of training images are distributed into a larger number of classes. On the
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other hand, coarser approaches may not provide a proper accuracy output
since the retrieved label of the class (containing an aggregated version of the
geographical information) is far from the ground truth of the query image.

The idea behind CPlaNet is to generate a large number of fine-grained
classes by intersecting multiple coarse-grained partitions, also known as geo-
ClassSets. Each partition is then used to train a different classifier during
the training phase. However, during inference, a normalized version of the
probability distribution of each classifier is added cell-wise across the dif-
ferent partitioning schemes, generating finer predictions without incurring
training data deficiency issues commonly observed when reducing the num-
ber of images per class.

The way CPlaNet generates each geoClassSet starts by splitting the ge-
ographical area of interest into a set of non-overlapping cells. The authors
proposed to use the s2 geometry library since it allows to access cells with
very similar properties at every level of the quadtree. In this process, the
depth of the quadtree is fixed to a specific value at which all cells are consid-
ered. Then, after associating each of the training images to its corresponding
cell, the empty ones are randomly merged with one of their non-empty neigh-
bors. At this point, the algorithm merges the existing cells into clusters or
geo-Classes, one at a time, until the number of classes reaches a predefined
number. During the merging process, cells are grouped by considering both
geolocational and visual distances. At each iteration, the cell or group to
be merged is selected by applying a scoring function (ω(vi)) that considers
the number of images present in the group (α1), the number of non-empty
s2-cells (α2) and the number of empty cells (α3). Once the cell or group
has been selected it is merged with its closest neighbor in terms of the edge
scoring function ν(vi, vj). In this formula, the visual distance refers to the
cosine similarity between the visual features of the classes, while the geolo-
cational distance is the euclidean distance between the centers of the two
nodes.

ω(vi) = α1 ∗ nimages + α2 ∗ nemptyS2 + (1 − α2) ∗ nnonEmptyS2

ν(vi, vj) = β1 ∗ distvisual(vi, vj) + β2 ∗ distgeographical(vi, vj)

Once each of the partitioning schemes has reached the desired number of
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classes, a classifier is trained independently for each geoClassSet. On the
other hand, during inference once the probability distributions have been
obtained for each of the geoClassSets, the authors proposed to normalize
the obtained scores by the number of s2-cells available for each class before
adding the cell-wise probability distributions across the geoClassSets. This
strategy assures that each classifier contributes equally to the final predic-
tion.

In particular, the authors quote three major benefits of combinatorial
partitioning:

• Fine-grained classes with fewer parameters: The authors demonstrate
that by using a combinatorial approach to generate finer classes from
coarse partitions, it is possible to build VG classifiers that require fewer
parameters.

• More training data per class: By considering fewer classes the number
of training images associated to each class is sufficient to make the
training process robust and avoid overfitting.

• More reasonable class sets: At some partitioning, the geographical cells
are combined considering the information of their visual environments
by comparing an aggregated version of the visual features of their asso-
ciated images. For this reason the obtained classes are likely to share
common visual characteristics that are well represented on each class.

2.4.4 Hierarchical Geo-Estimation
Also in 2018, a group of researchers from Hannover, Germany, developed
a hierarchical model [15] for the Visual Place Recognition of photos. The
group conformed by Eric Muller-Budack, Kader Pustu-Iren, and Ralph Ew-
erth proposed to exploit the hierarchical knowledge of multiple partition-
ing schemes to improve the accuracy of classification-based VG methods
at inference time. Their method was demonstrated to perform well on the
planet-wide scenario, even by considering a reduced number of training im-
ages per class, and considering instead a vast variety of visual environments
into account, such as indoor pictures, and natural and urban settings.
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As in previous cases, this work dedicates particular attention to describe
the existing tradeoff between coarser and finer partitioning schemes. How-
ever, on this occasion, this phenomenon is tackled from a different perspec-
tive. The authors propose that the main reason why finer partitionings per-
form better on city-scale scenarios while coarser divisions are more efficient
at the country scale is because of the huge diversity caused by different
environmental settings. For this reason, the authors propose that taking
information about the type of environmental setting into account could ad-
dress efficiently the requirement of specific features to distinguish different
locations.

On the other hand, the authors proposed to develop a multi-partitioning
approach for incorporating the hierarchical knowledge at different geograph-
ical granularities. Similar to PlaNet, the authors proposed using the s2 ge-
ometry library to generate a set of non-overlapping cells in order to build
multiple partitioning schemes by varying the parameters τ1 and τ2 that share
the same meaning discussed before. With this approach at each partition-
ing, the authors argue that it prevented any kind of dataset bias by allowing
the creation of classes with almost the same amount of training images. On
the other hand, more accurate predictions can be obtained at interesting
regions such as landmarks or cities.

In order to calculate the output prediction during inference, the authors
propose multiplying the respective output probabilities for each of the parti-
tioning schemas. Consequently, the finer subdivision is refined by the output
probabilities of the coarser partitions.

2.4.5 MvMF
This method was proposed in 2019 by Mike Izbicki, Evangelos E. Papalex-
akis, and Vassilis J. Tsotras. In comparison to the previous methods, where
the main contribution of the proposed solutions was aimed to solve the neg-
ative impact of the granularity tradeoff, in the paper [14], the authors argue
that the used cross-entropy loss is inadequate for the classification-based
VG framework because it does not take advantage of the earth’s spherical
geometry. Instead, they propose an alternative loss function based on the
von-Mises Fisher distribution which demonstrates to improve the geoloca-
tion accuracy.
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The authors build their proposal on top of the PlaNet framework, applied
into a planet-wide scenario, highlighting the fact that while some images are
strongly localizable because of their unique visual content, such as famous
buildings, bridges or monuments, other images are hard to localize since
different places worldwide can show very similar visual environments (pic-
tures taken from a mountain, beach or at indoors). At the same time, they
assure that by exploiting the spherical geometry of the Earth it is possible
to represent the visual ambiguity of the images.

In traditional classification tasks, including the previously discussed solu-
tions, it is common to used the cross-entropy loss to measure the dissimilar-
ity between the predicted probability distribution and the actual probability
distribution of the target variable. This loss is minimized when the predicted
probability for the true class is close to 1, and for all other classes close to 0.
The cross-entropy loss works by applying the softmax function to the out-
put vector of the classifier and then computing the loss value from the true
label, y, and the predicted probability , ŷi. However, on this occasion, the
authors criticize the fact that this approach does not consider the Earth’s
spherical geometry.

L(y, ŷ) = −
Ø

yi ∗ log(ŷi)
The MvMF framework applies the von-Mises Fisher distribution (vMF)

which is used in directional statistics to study spherical distributions. The
easiest way to understand it is to consider it as the spherical analog of the
Gaussian distribution. The normal (or Gaussian) distribution is a continu-
ous probability distribution that is symmetric, bell-shaped, and character-
ized by two parameters: the mean µ and the variance σ2, which control
the location and spread of the distribution. On the other hand, the vMF
distribution is used to model directional data on the surface of a sphere.
It is characterized by two parameters: the mean direction µ and the con-
centration parameter κ, which control the location and concentration of the
distribution, respectively.

In the mixture of vMF there are considered c component vMF distribu-
tions and the parameters are considered as collections of multiple items. In
particular it is considered the set of mean directions M = (µ1, ..., µc), the set
of concentration parameters K = (κ1, ..., κ2) and a vector of weights Γ ∈ Rc.
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The following equation describes the density function for all y ∈ S2.

vMF (y; µ, κ) = κ

sinhκ
exp(κiµ

T y) (2.1)

so that the obtained loss function is the following:

lMvMF (x, y; M, K, W ) = −log
Ø

(Γi ∗ vMF (y, Mi, Ki)) (2.2)
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Chapter 3

Datasets

In the previous section, it was presented the general overview of the VG
framework and how the classification-based VG approaches tackles this chal-
lenging task, highlighting the main requirements in terms of available data
in order to provide highly accurate results at fast inference time. In par-
ticular, it was explained the existing trade off regarding the granularity of
the partitioning schema, focusing on how large and dense datasets are more
likely to achieve better results, specially in the city-wide scenario, and how
they avoid the overfitting of the model by offering more representative sam-
ples for the various geographical classes, making it easier for the model to
learn the patterns and characteristics that differentiate them, while lowering
the danger of it memorizing the training data rather than generalizing to
new data.

On the other hand, it was discussed how the research community, propos-
ing classification-based VPR solutions, has found a tremendous chance by
having access to a large clusters of high quality geo-tagged images, used
to build large-scale datasets designed to train, test and compare their pro-
posals without incurring any significant additional cost. In particular, it
was mentioned the positive impact of the growing and already large media
community, where millions of people share with the public a large number
of high-quality pictures, all taken from a wide spectrum of environmental
conditions that have been accurately labeled with their geographical infor-
mation.

In line with the previous discussion, this section aims to describe the list

38



Datasets

of the datasets that were used at the different stages of this project, including
the evaluation and fair comparison of the most diffused classification-based
methods.

3.1 YFCC100M
The Yahoo Flickr Creative Commons 100 Million Dataset was published in
2016 by Bart Thomee, David A. Shamma, and Gerald Friedland [22], com-
prising a large collection of almost 100M images and videos made free and
publicly available. This media dataset was considered one of the largest col-
lection of media elements useful for a variety of research activities oriented
in the image analysis and computer vision fields.

The dataset contains around 99.2 million photos and 0.8 million videos
extracted from the Flickr social media platform, in the temporal range be-
tween 2004 and 2014. For each item in the collection, the dataset includes
a set of tags (introduced for a variety image classification purposes), times-
tamp, locations and other useful information, such as the Flickr identifier,
the camera description, the title, and general information about the user.

In line with the purpose of this project, we were interested only on the im-
ages associated with their geographical metadata. To this goal, the dataset
provides around 48 million pictures annotated with geographical informa-
tion, either obtained automatically from the GPS of the capturing device
or manually introduced by the user during the uploading of the files. In
total, the geographical items make reference to 249 territories world wide,
including a vast variety of visual scenarios such as landmarks, indoor and
outdoor pictures, artistic images, ecc.

3.1.1 MP16
The MediaEval Placing Task 2016 dataset is a subset extracted from the
original YFCC100M. The subset includes around 5 million images with ge-
ographical information extracted from Flicker on a world-wide basis.

In this project we considered in our experiments the same subset as
the one introduced in https://github.com/TIBHannover/GeoEstimation.
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Figure 3.1: Dataset images randomly sampled from YFCC100M

YFCC100M GEO-TAGGED IMAGES 

Figure 3.2: Geographical distribution of the geo-tagged images of
YFCC100M Dataset.

However, the MediaEval Placing Task was an anual research challenge that
aimed to develop algorithms for automatically geolocating images and videos
based on their visual content and other metadata. In order to determine
the geographic location where a particular media item was captured or pro-
duced, the task involved using a dataset of geotagged multimedia content,
along with other metadata and contextual information, to develop a system

40



Datasets

MP16 GEO-TAGGED IMAGES 

Figure 3.3: Geographical distribution of the geo-tagged images of MP-16
Dataset

that can accurately predict the location of a new media item.

3.1.2 YFCC_26k
Commonly used as validation set [15][10], this dataset was generated by ran-
domly extracting 25,600 geo-tagged images from the original YFCC100M.

3.2 Im2GPS & Im2GPS3k
Introduced in 2008 by James Hays and Alexei A. Efros [9], this dataset was
proposed with one of the first and simplest algorithms for VG applied to
the planet scale. The idea behind the proposed algorithm was to provide a
probability distribution for a query image belonging to a particular region
worldwide, by extracting and aggregating features from the images in order
to find its k-nearest-neighbors (k = 120) around the globe. For this reason,
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YFCC_26K

Figure 3.4: Geographical distribution of the geo-tagged images of
YFCC_26K dataset.

the authors were interested in defining a sufficiently large dataset with la-
beled images providing their geographical information.

In the paper, the authors highlighted the importance of a rapidly growing
media community and proposed to take advantage of widely diffused social
media platforms such as flickr.com to collect high-quality labeled images.
The training dataset consists of 6 million images extracted from Flickr,
which were filtered based on their provided textual tags in order to rely
only on useful and high-quality data. The authors described the existence
of poor-quality images, mainly affected by noise and low resolution, that
were efficiently filtered by considering both the geographical coordinates
and additional geographic keywords.

On the other hand, the authors provided a test set, primarily to evaluate
the performance of their method. In this case, 400 images were randomly
sampled from the original dataset, to which they manually discarded any
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IM2GPS (TEST-SET)

IM2GPS3K

Figure 3.5: Geographical distribution of the geo-tagged images of im2GPS
test-set and im2GPS3k Dataset

kind of undesirable photos, evaluating either their visual content (abstract
art, black and white, ecc.) and the presence of significant artifacts (blur and
extreme noise). Finally, by discarding images that may affect someone’s own
privacy and removing from the training data all those images whose authors
are already present in the test set, it was provided a final dataset with 237
items.

The authors Nam Vo, Nathan Jacobs and James Hays [16] provided a
new dataset consisting of 3,000 samples randomly extracted from im2GPS
training-dataset, called im2GPS3k, arguing that the previous test-set was
not sufficiently large for significant evaluations on a planet-scale in VG.
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3.3 Pitts250k

This dataset was introduced in 2013, by Akihiko Torii, Josef Sivic, Tomas
Pajdla, and Masatoshi Okutomi [2]. Originally designed for retrieval-based
VG applications, it is a large-scale image dataset covering a portion of the
geographical area of Pittsburgh, Pennsylvania, USA. The dataset coontains
precisely 254,064 geotagged images that were collected using Google Street
View, a feature of Google Maps that provides panoramic views of various
locations around the world, covering a large amount of urban scenarios, in-
cluding downtown, residential neighborhoods, and commercial areas.

Each image in the Pitts250k dataset is associated with a geographical
label, which provides the geographical information, such as latitude and lon-
gitude, of where the picture was taken. Initially, for the development of this
dataset, there were extracted 10,586 panoramas from Google Street View,
each of them at very high resolution (6,656x3,328 pixels). Each panorama
was then cropped into 24 perspective images with dimensions 640x480, con-
sidering 60◦ of the horizontal field of view (FoV), using two pitch directions
(4◦ and 26.5◦) and 12 yawn directions (at each 30◦)

On the other hand, the test data originally consisted of 24,000 images
generated using a similar approach to the training data, starting from 1,000
panoramas collected with different timestamps. These panoramas were ran-
domly selected from the Google Pittsburgh Research Data Set.

3.3.1 Pitts30k

Introduced in 2016 by Relja Arandjelovic, in the same paper on which
NetVlad [3] was proposed, Pitts30k contains a subset of 30,000 images from
the larger Pitts250k dataset, with the images selected to form a represen-
tative sample of Pittsburgh’s urban and suburban areas. The variant was
introduced in order to facilitate faster training for some experiments.
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Pitts250K

Training

4.25 x 5.00 km

Test

Validation

2

Figure 3.6: Geographical distribution of the geo-tagged images of Pitts30k
dataset.

3.4 Tokyo 24/7
Introduced in 2015 by Akihiko Torii and Relja Arandjelovi [1], the Tokyo
24/7 dataset contains 75,985 street-level images with their corresponding
geographical coordinates, covering a significant part of the urban area in
Tokyo, Japan. The authors introduced the following dataset focusing on
the existing challenge of large-scale VG applications, on which appearance
variations in the query images, such as changes in the illumination or the
presence of environmental noise due to seasonality represent one of the major
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Figure 3.7: Sampled images from Pitts250k training dataset.

vulnerabilities of this task. For this reason, the authors propose an efficient
approach to extend existing datasets, commonly sampled on a regular grid
basis, by introducing synthetic views which is demonstrated to have a posi-
tive impact in the inference accuracy. In the mentioned dataset, each image
was generated with a resolution of 640x480 pixels and representing different
lighting conditions and from various angles and perspectives.

This images were generated by applying virtual transformations to 6,332
street-view panoramas. During the development of the dataset, there were
generated 597,744 synthesized views generated at 49,812 virtual camera po-
sitions combined with depth maps downloaded from Google maps, each of
the maps encoded as a set of 3D plane parameters. Originally the panora-
mas captured 360◦ by 180◦ horizontal and vertical viewing angle with a
standard resolution of 13,312x6,656 pixels. However, the panoramas were
then cropped into 12 perspective images 1,280x960 pixels each, by partition-
ing each of the items across 12 yawn directions (30◦, 60◦, ..., 360◦) at a fixed
pitch direction (12◦).

Regarding the evaluation dataset the authors proposed a subset of 315
images covering a smaller area of 1600x1600 m2.

3.5 San Francisco eXtra Large
Firstly introduced in 2022 by Gabriele Berton, Carlo Masone, and Bar-
bara Caputo, [6] the SF-XL dataset was proposed specifically for evaluating
the performance of VG applications in urban environments. The authors
proposed that the existing geo-tagged datasets were not suitable for the
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Training

Test

Validation

Pitts30k

1.53 x 1.67 km
2

Figure 3.8: Geographical distribution of the geo-tagged images of Pitts30k
dataset.

city-wide scenarios, on which VG methods require higher granularity lev-
els to provide accurate results (with just a few meters of tolerance). On
the other hand, the majority of the large geo-tagged datasets were planet-
wide oriented, covering more extensive geographical areas with few visual
characteristics in common within items, instead of covering entire urban
environments. Thus, this dataset is considered to be the first highly-dense
dataset city-wide oriented, comprising a collection of images at different
timestamps, taken in the range from 2009 to 2021, to offer the most realistic
conditions requested on a possible use case for VG in large urban environ-
ments.
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Figure 3.9: Sampled images from Tokyo 24/7 training dataset

Training

Test / Val

1.54 x 1.40 km
2

Figure 3.10: Geographical distribution of the geo-tagged images of Tokyo
24/7 dataset.
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The authors proposed three different sets of images specifically designed
for training, and testing/evaluating VG methods at a city-wide scale. To this
scope, the different sets come from different sources, offering images from
different visual domains, aiming to simulate real-world scenarios while cover-
ing the whole area of the city of San Francisco, USA,. The training-dataset
contains images extracted from Google StreetView imagery, a feature of
Google Maps that provides panoramic 360◦ views from various positions
along streets and roads around the world. The additional sets, designed for
testing the trained model on unseen samples were extracted from Flickr, an
online photo management and sharing application, and the San Francisco
Landmark Dataset [7], a collection of data and images related to historical
landmarks and buildings in the city of San Francisco.

Regarding the training-set, SF-XL offers 3.43M panoramas (images cov-
ering 360◦ scene view) from which there were extracted 41.2M frames, by
splitting the panoramas horizontally into 12 crops each, labeling them with
geographical information including latitude, longitude, and camera orien-
tation. On the other hand, the two additional subsets proposed as test
queries (v1 and v2) consists of 1,000 images collected from Flick and 598
images from the San Francisco Landmark Dataset , respectively.

Figure 3.11: Training-set samples randomly extracted from San Francisco
eXtra Large.

49



Datasets

Training 

Test v1

Test  v2

13.32 x 12.79 km   
2

Figure 3.12: Geographical distribution of the San Franciso eXtra Large
dataset
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Chapter 4

Replicating the results

We discussed the most common approaches to the classification-based VG
challenge in previous sections. The operation of the suggested methods was
explained, as well as how they primarily contribute to the development of
faster and more accurate VG applications, focusing on their primary dif-
ferences regarding the generation of the partitioning schema and how some
of them even aggregate the model’s output to improve the prediction’s ac-
curacy. The datasets that were used in this research were discussed in the
previous chapter. These datasets were used to assess the performances of
the suggested methods in order to provide a fair comparison in the city-wide
scenario, which is closer to a real and practical case of application.

However, many of the demonstrated classification-based pipelines did not
include source code that could be used to assess their performance in chal-
lenging scenarios. As a result, one of the primary goals of this project was
to comprehend the concept underlying each proposal and to develop our
own implementation based on the theoretical description given by the avail-
able documentation. Along this process, thanks to the great work done by
Eric Müller-Budack, Kader Pustu-Iren, and Ralph Ewerth, who did provide
a well documented repository to replicate their results, it was possible to
modify their proposed algorithm [15] to implement the rest of the desired
methods.

In this chapter it is presented the obtained results from testing the pre-
trained model proposed by the authors and comparing it with a model
trained from scratch, using the same datasets as those provided in their
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documentation. The experiments were computed on a 24GB NVIDIA TI-
TAN RTX.

Experimental setup:
• Training-set: MP-16
• Validation-set: yfcc_25600
• Test-set: im2gps & im2gps3k
• Backbone: ResNet50

• Batch size: 128
• τmins: [50, 50, 50]
• τmaxs: [5000, 2000, 1000]

Test-set Partitioning Great Circle Distance (GCD)
1m 25m 200m 750m 2500m

im2GPS

fine 0.0928 0.3122 0.4937 0.6667 0.7890
medium 0.1392 0.346 0.481 0.6793 0.7890
coarse 0.1561 0.3882 0.4895 0.6624 0.7848
hierarchy 0.1477 0.3797 0.4979 0.6878 0.7932

im2GPS3k

fine 0.0617 0.2429 0.3604 0.5155 0.6680
medium 0.0824 0.2616 0.3577 0.5125 0.6637
coarse 0.0991 0.2723 0.3610 0.5105 0.6627
hierarchy 0.1011 0.2796 0.3680 0.5105 0.6710

Table 4.1: Test on a pretrained version for HGE proposed by [15].
Evaluating its performance on the proposed test-sets

Test-set Partitioning Great Circle Distance (GCD)
1m 25m 200m 750m 2500m

im2GPS

fine 0.0844 0.3038 0.4768 0.6751 0.7890
medium 0.1308 0.3418 0.4726 0.6329 0.7764
coarse 0.1392 0.3629 0.4684 0.6371 0.7679
hierarchy 0.1435 0.3797 0.4937 0.6498 0.7848

im2GPS3k

fine 0.0617 0.2252 0.34 0.4948 0.6527
medium 0.0767 0.2379 0.3327 0.4818 0.642
coarse 0.0868 0.2506 0.3297 0.4751 0.634
hierarchy 0.0928 0.2589 0.3427 0.4892 0.6446

Table 4.2: Test on a trained-from-scratch version for HGE. Evaluat-
ing its performance on the proposed test-sets [15]
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Experiments on SF-XL

Based on the work done by Eric Müller-Budack, Kader Pustu-Iren, and
Ralph Ewerth, it was possible to adjust the HGE framework to replicate the
pipelines for the rest of the widely diffused classification-based VG meth-
ods, whose implementation were not publicly available. Specifically, this
project presents the comparison between HGE and two additional proposed
methods, PlaNet and CPlaNet. All of the proposed solutions exploit the
s2sphere partitioning framework to generate the geographical cells which
are then combined in different ways to generate the classes according to the
authors proposals.

This section compares the effectiveness of these three classification-based
VG methods in the context of a large and highly dense city-wide dataset,
SF-XL.

5.1 PlaNet
The main goal of these experiments was to evaluate the PlaNet framework
on SF-XL. For this reason there were tested different partitioning schemes
by varying the granularity level of the obtained classes, and evaluating the
model’s robustness against the granularity trade-off discussed in the previ-
ous sections.

Experiment setup:

• Training-set: SF-XL training set
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• Validation-set: SF-XL queries v2

• Test-set: SF-XL queries v1

• Backbone: EfficientNet_B0

• batch size: 64

• optimizer: adam

• learning rate: 0.0001

• τmin: 100

τmax num. classes Great Circle Distance (GCD)
25m 50m 100m 500m 1000m

80,000 1,169 1.0 2.7 10.4 28.5 38.2
40,000 2,336 2.45 6.7 16.2 31.3 40.8
20,000 4,714 5.43 15.5 24.3 34.6 42.9
10,000 9,359 11.2 22.7 28.5 36.6 44.0
5,000 18,505 20.0 28.5 31.6 38.1 45.8
2,500 34,978 22.4 27.9 30.1 37.2 45.7
1,250 65,330 24.5 28.6 30.2 37.0 45.2
625 115,226 20.7 23.7 25.4 32.4 40.2

Table 5.1: Evaluating the performance of PlaNet on SF-XL by varying the
granularity of the partitioning schema

From the results showed on Tab 5.1 and by analyzing the GCD@25m
it is evident that the granularity trade-off is properly balanced around
τmax = 1,250.

5.2 HGE
The experiments discussed on this section were designed to evaluate the
performance of the HGE framework on SF-XL. By considering the same
parameter-space as in the previous section it was decided to evaluate how
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the previous results could be improved when aggregating multiple partition-
ing schemes at different granularity (τmax).

Experiment setup:

• Training-set: SF-XL training set

• Validation-set: SF-XL queries v2

• Test-set: SF-XL queries v1

• Backbone: EfficientNet_B0

• batch size: 64

• optimizer: adam

• learning rate: 0.0001

• τmin: 100

τmax Great Circle Distance (GCD)
coarse medium fine 25m 50m 100m 500m 1000m
80,000 40,000 20,000 4.8 13.6 22.0 31.8 40.4
40,000 20,000 10,000 11.1 22.0 27.3 36.3 44.3
20,000 10,000 5,000 20.1 28.7 32.0 39.4 47.4
10,000 5,000 2,500 26.1 29.5 33.3 39.4 47.8
5,000 2,500 1,250 27.0 32.2 33.9 40.1 48.0
2,500 1,250 625 23.2 26.6 28.1 35.6 44.7

Table 5.2: Evaluating the performance of HGE on SF-XL by varying the
granularity of the partitioning schema

By analyzing the highlighted results with the ones obtained in the pre-
vious section it is possible to see that the best accuracy on the PlaNet
framework (at τmax was improved by considering the model’s predictions on
coarser partitions. However, it is possible to identify that the main drawback
of this approach is the increasing number of classes and models used along
the process which is translated to more computational resources required to
infer the geographical location of the image.
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Figure 5.1: Example of the partitioning schema for HGE. It shows the par-
titionings: coarse, medium & fine, computed by varying the τmax parameter
into [5000, 2500, 1250] respectively.

5.3 CPlaNet

As it was discussed in the previous sections, the CPlaNet framework aims to
provide predictions at a fine granularity scale by combining the outputs of
multiple models trained on coarser partitions. As it was already discussed,
this combinatorial approach aims to reduce the number of computational re-
sources with respect single-model approaches at the same level of granularity.

Experiment setup:

• Training-set: SF-XL training set
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• Validation-set: SF-XL queries v2

• Test-set: SF-XL queries v1

• Backbone: EfficientNet_B0

• batch size: 64

• optimizer: adam

• learning rate: 0.0001

• s2sphere level: 17

Param. Group Parameters 1 2 3 4 5

N/A Num. of geoclasses 20,000 20,000 26,000 24,000 22,000
Image Feature Dim 512 0 307 256 358

Node Score Weight num. images 1.0 1.0 0.501 0.953 0.713
Weight num. cells 0.0 0.0 0.499 0.047 0.287

Edge weight Visual Distance 1.0 0.0 0.421 0.628 0.057
geographical distance 0.0 1.0 0.579 0.372 0.943

Table 5.3: CPlaNet parameters for SF-XL

N. geoclasses N. intersections Great Circle Distance (GCD)
25m 50m 100m 500m

10K/10K/11K/12K/13K 47,412 25.7 31.5 32.9 38.9
20K/20K/22K/24K/26K 54,144 27.4 31.9 32.8 37.9
30K/30K/33K/36K/39K 58,233 27.2 31.7 32.9 37.2

Table 5.4: Evaluating the performance of CPlaNet on SF-XL by varying the
granularity of the partitioning schema

5.4 Comparison with retrieval approaches
At this point of the project we have seen how different classification-based
VG approaches behave in large and highly dense datasets. However, we
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(a) geoclasset 1 (b) combinatorial

Figure 5.2: Demonstration of the CPlaNet framework applied on a small por-
tion of SF-XL considering 5 geoclassSets of 4 classes each. (a) The obtained
geoclasset 2 applied to the area of interest, where the cells are iteratively
combined based solely on geographic distance. (b) The combinatorial result
showing the intersections between all the geoclassSets produced.

haven’t seen a comparison with other traditional approaches to highlight
the advantages of the classification-based approach, which we have discussed
earlier to be ideal for this kind of applications. In Tab 5.5, it is presented
a summary of the previous results, focusing at the GCD@25m metric, and
a comparison with two of the most diffused methods in the retrieval frame-
work, NetVlad [3] and CosPlace [6].

From these results it is possible to see that although the retrival-based
methods are more accurate at the fine-granularity scale, their main drawback
relies on the inference time, being from 100 to 10,000 times slower than
classification-based solutions.
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Method Infer. GCD@25m
time queries v1 queries v2

Classification:
PlaNet [24] 12 ms 24.5 53.1
HGE [15] 15 ms 27.0 56.4
CPlaNet [20] 17 ms 27.4 64.1

Retrieval:
NetVLAD [3] 12117 ms 40.0 71.1
CosPlace [6] 1514 ms 64.7 83.4

Table 5.5: Comparison of results for a large number of methods
using different approaches. All inference times measures are averaged
over 1000 queries, on a system with a RTX 3090 GPU and i9-10940X CPU.
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Experiments on smaller
datasets

In the previous chapter, the performance of the various classification-based
VG methods was evaluated using the large and highly dense dataset SF-XL.
The goal was to simulate a realistic use case of the VG framework at a city-
wide scale. At this point, we have already discussed how the granularity
trade-off have an impact on the parameters of the partitioning schema, in
particular, datasets on which there is a sufficiently large amount of images
to achieve highly accurate results allow us to reduce the granularity of the
classes without affecting the learning process.

On the other hand, this project seeks to evaluate the performance of the
proposed classification-based VG methods on a wider range of urban scenar-
ios, considering datasets with a smaller number of images to consider during
training while covering low density areas. The goal of this section is test
how by adapting the granularity of the partitioning schema it is possible
to achieve good performances on these kind of scenarios. In particular, it
was decided to conduct a series of experiments on a city-wide scale, aim-
ing to test the already proposed classification-based VG methods on other
popular urban and geo-tagged datasets, including different visual domains:
Pitts250k[2], Pitts30k and Tokyo 24/7[1].
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FINE MEDIUM COARSE

Figure 6.1: Pitts250k partitioning schema for HGE. It shows the par-
titions: coarse, medium & fine, computed by varying the τmax parameter
into [500, 220, 120] respectively (τmin = [4, 4, 4]).

6.1 Pitts250k

6.1.1 PlaNet on Pitts250k
In Tab 6.1 it is presented the results of evaluating the performance of the
PlaNet framework applied to the Pitts250k dataset. For this analysis a total
of 4,578 classes were considered

Experiment setup:

• batch size: 64

• learning rate: 0.0001

• optimizer: adam

• τmin: 4

• τmax: 120
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Backbone Great Circle Distance (GCD)
25m 50m 100m 500m

EfficientNet-B0 26.9 34.5 40.7 71.5
EfficientNet-B5 29.6 38.0 44.4 74.5

Table 6.1: Evaluating the performance of PlaNet on Pitts250k using different
versions for the feature extraction model.

6.1.2 HGE on Pitts250k
In Tab 6.2 it is presented the results of evaluating the performance of the
HGE framework applied to the Pitts250k dataset. By following a similar to
the previous chapter it was decided to improve the accuracy of the finest par-
tition (same partition used in PlaNet) by aggregating coarser cells obtained
by increasing teh τmax by a factor of 2. The number of classes obtained were
4578, 2667 and 1355 (fine, medium & coarse)

Experiment setup:

• batch size: 64

• learning rate: 0.0001

• optimizer: adam

• τmin: [4,4,4]

• τmax: [500, 220, 120]

6.1.3 CPlaNet on Pitts250k
By looking at the results shown in Tab 6.3 we are able to see an improvement
with respect the PlaNet baseline. In this case, it was considered the number
of classes to have the same order of magnitude as in the coarse partition
(1355 classes).

Experiment setup:
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Backbone Great Circle Distance (GCD)
25m 50m 100m 500m

EfficientNet-B0 28.5 37.6 44.7 76.2
EfficientNet-B5 32.0 40.2 47.7 73.7

Table 6.2: Evaluating the performance of HGE on Pitts250k using different
versions for the feature extraction model.

• batch size: 64

• learning rate: 0.0001

• optimizer: adam

• num. classes: [1000, 1000, 1300, 1200, 1100]

Backbone Great Circle Distance (GCD)
25m 50m 100m 500m

EfficientNet-B0 26.8 36.2 43.2 73.9
EfficientNet-B5 32.5 45.7 52.4 76.1

Table 6.3: Evaluating the performance of CPlaNet on Pitts250k using dif-
ferent versions for the feature extraction model.

6.2 Pitts30k
6.2.1 PlaNet on Pitts30k
Knowing that Pitts30k is a subset of Pitts250k, and considering that the
PlaNet partitioning schema is based on the density of the cells it was de-
cided to mantain the same parameter configuration as in the previous ex-
periments, achieving a total of 486 classes. The PlaNet baseline for Pitts30k
is provided on Tab 6.4
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FINE MEDIUM COARSE

Figure 6.2: Pitts30k partitioning schema for HGE. It shows the parti-
tionings: coarse, medium & fine, computed by varying the τmax parameter
into [500, 220, 120] respectively.

Experiment setup:

• batch size: 64

• learning rate: 0.0001

• optimizer: adam

• τmin: 4

• τmax: 120

Backbone Great Circle Distance (GCD)
25m 50m 100m 500m

EfficientNet-B0 30.3 41.5 51.5 88.9
EfficientNet-B5 38.9 49.4 58.5 89.5

Table 6.4: Evaluating the performance of PlaNet on Pitts30k using different
versions for the feature extraction model.
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6.2.2 HGE on Pitts30k
By looking at the results in Tab 6.5 we are able to see that the performance
of the single-partitioning schema is improved when the ouptuts of coarser
models are agregated into the final inference of the system. For this exper-
iment there were obtained the following number of classes: 486, 272, and
158 (fine, medium and coarse respectively)

Experiment setup:

• batch size: 64

• learning rate: 0.0001

• optimizer: adam

• τmin: [4,4,4]

• τmin: [500, 220, 120]

Backbone Great Circle Distance (GCD)
25m 50m 100m 500m

EfficientNet-B0 31.9 45.0 56.0 90.4
EfficientNet-B5 40.3 51.7 60.3 88.7

Table 6.5: Evaluating the performance of HGE on Pitts30k using different
versions for the feature extraction model.

6.2.3 CPlaNet on Pitts30k
The last experiment on Pitts30k consisted of testing the CPlaNet with a dis-
tribution of the classes similar to the orders of magnitude as in the medium
partition. In this case it was decided to work with these parameters in order
to obtain a cell distribution similar to the previous scenario.

Experiment setup:
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FINE MEDIUM COARSE

Figure 6.3: Tokyo 24/7 partitioning schema for HGE. It shows the
partitionings: coarse, medium & fine, computed by varying the τmax param-
eter into [360, 170, 90] respectively.

• batch size: 64

• learning rate: 0.0001

• optimizer: adam

• num. classes: [270, 270, 310, 300, 290]

Backbone Great Circle Distance (GCD)
25m 50m 100m 500m

EfficientNet-B0 33.5 48.5 58.8 91.2
EfficientNet-B5 47.5 61.7 69.8 91.0

Table 6.6: Evaluating the performance of CPlaNet on Pitts30k using differ-
ent versions for the feature extraction model.
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6.3 Tokyo 24/7

6.3.1 PlaNet on Tokyo24/7
Moving into the last dataset, the PlaNet baseline (Tab 6.7) was computed
considering a partitioning schema with a similar distribution to the previous
cases showed before. In this case, the number of classes obtained was 1840.

Experiment setup:

• batch size: 64

• learning rate: 0.0001

• optimizer: adam

• τmin: 4

• τmax: 90

Backbone Great Circle Distance (GCD)
25m 50m 100m 500m

EfficientNet-B0 22.3 27.4 31.3 68.7
EfficientNet-B5 22.9 30.4 35.1 70.4

Table 6.7: Evaluating the performance of PlaNet on Tokyo 24/7 using dif-
ferent versions for the feature extraction model.

6.3.2 HGE on Tokyo24/7
Even in this case the previous baseline was improved by considering the
output of coarser partitions at the inference process (Tab 6.8). In this case,
the number of classes produced for each of the partitions were the following:
1840, 961, and 508.

Experiment setup:
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• batch size: 64

• learning rate: 0.0001

• optimizer: adam

• τmin: [4,4,4]

• τmax: [360, 170, 90]

Backbone Great Circle Distance (GCD)
25m 50m 100m 500m

EfficientNet-B0 22.5 31.8 38.8 73.6
EfficientNet-B5 24.9 33.4 38.0 73.1

Table 6.8: Evaluating the performance of HGE on Tokyo 24/7 by using
different versions for the feature extraction model.

6.3.3 CPlaNet on Tokyo 24/7
Lastly, in Tab 6.9 it is shown the results of the CPlaNet framework applied
to the Tokyo 24/7 dataset. In this case it was noticed a slight drop in the
performance with respect the PlaNet baseline.

Experiment setup:

• batch size: 64

• learning rate: 0.0001

• optimizer: adam

• num. classes: [450, 450, 480, 470, 460]
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Backbone Great Circle Distance (GCD)
25m 50m 100m 500m

EfficientNet-B0 18.7 25.2 32.3 72.3
EfficientNet-B5 23.2 31.4 37.5 67.3

Table 6.9: Evaluating the performance of CPlaNet on Tokyo 24/7 by using
different versions for the feature extraction model.
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Chapter 7

Conclusions

On this project we examined the Visual Geolocation task, focusing on the
most widely diffused classification-based approaches. In particular it was
discussed the general overview and main idea behind the PlaNet, CPlaNet
and HGE frameworks, explaining what are their main contributions in effi-
ciently achieving accurate results in either city and planet-wide scenarios. It
was also discussed why these types of solutions are faster than other widely
diffused VG approaches, such as retrieval-based solutions, specially when
applied to large and highly dense datasets. On the other hand, we discussed
the main limitations for classification VG methods, highlighting the differ-
ences between finer and coarser approaches, and the importance of working
at the right balance in the granularity trade-off.

In the second part of the project, it was listed a wide range of datasets
commonly used in the development of VG applications, covering from small
portions of a single city to extensive areas at the world wide scale. These
datasets were then used to test and compare the efficiency of the classifica-
tion approaches, implementing and testing a wide set of experiments aiming
to highlight the advantages and disadvantages between classification and
retrieval-based solutions.
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