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A Survey on Federated Learning Algorithms in
IoT networks

Abstract

The capability of mobile devices to sense and compute at an advanced level has
significantly improved in recent years, and combined with the advancements
in Deep Learning (DL) has led to a vast range of opportunities for different
practical applications such as healthcare and vehicular networks. However,
traditional cloud-based Machine Learning (ML) approaches require the data
to be stored in a cloud server, resulting in critical issues such as poor com-
munication efficiency, high latency and privacy concerns. The idea to bring
intelligence closer to the edge was proposed. However, the conventional tech-
nologies that enable Machine Learning (ML) at edge networks require sharing
of personal data, which defies strict data privacy regulations. In response, Fed-
erated Learning (FL) has been introduced. In FL, devices use their local data
to train a ML model in a decentralized way. Instead of sharing raw data, de-
vices iteratively optimize the model locally. Then, the resulting model updates
are shared to a centralized server for aggregation. However, in a complex mo-
bile edge network that includes various devices with different constraints, some
challenges may arise. Implementing FL on a large scale presents difficulties
with regards to communication costs, resource allocation, as well as privacy
and security concerns. To address these challenges, this survey paper provides
an overview of the fundamentals and background of FL and its implementation
challenges. We focus on reviewing client selection frameworks for FL, then we
shed light on state-of-the-art (SoTA) techniques that tackle the issue of data
heterogeneity. Lastly, we provide a detailed discussion about novel communi-
cation efficienct FL algorithms that strike a balance between learning accuracy
and communication efficiency, via model masking and pruning.
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1. Introduction

Nowadays there are numerous amount of IoT and mobile devices. Each of
these devices produce multitudes of information, which can be beneficial to
improve Artificial Intelligence (AI) for different applications. In traditional
Centralized Machine Learning (ML) settings, data are pooled from various
data sources to train ML models at the cloud-server side. In most applications,
data sources correspond to simple, computationally capable, battery limited
sensory devices with communication abilities (e.g. IoT devices, phones, etc
· · · ). Generally, training robust ML models necessitates the availability of
large amount of training data. As a result, centralized ML training requires
a set of communication resources and an energy budget (i.e. bandwidth and
transmission power) exploding with the number of devices in the system and the
size of data pooled. Moreover, in some settings, the transmission of raw data to
a central server may raise privacy concerns, especially if the data hold sensitive
and private user information. To address the aforementioned problems, a set of
training algorithms known as Distributed Learning (DL) has been proposed. In
DL, devices collaborate to train a model locally, without the need to transmit
any raw data samples to the cloud. Collaboration is orchestrated by a central
server, or established directly via Device-to-Device (D2D) communication links.
In the latter case collaboration is established among neighbouring devices [18]
to solve ML problem. D2D is chosen, when server-clients based approaches are
undesirable. Distributed Learning encounters the following challenges:

• When devices are connected through wireless links, impairments will be
introduced affecting the transmitted data (e.g., interference, noise, fading)
which should be accounted for in the system model.

• Collaboration among devices in a distributed fashion may impose learning
latency. Consequently, it becomes necessary to strike a balance between
distributed model training delay and accuracy in some delay-intolerant
application.
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There are different DL frameworks proposed in the literature, among the most
popular ones is Federated Learning (FL), which will be explained in details in
the next section.

2. Federated Learning

In a supervised FL setting, the system is made up of a set K of K de-
vices (clients) and a server. Each device k is endowed with a dataset Dk =
{(xk,i, yk,i)}|Dk|

i=1 , where, xk,i ∈ Rd denotes a feature input vector, and (without
any loss of generality) yk,i ∈ R denote its corresponding ground truth label.
Supervised by the server, users collaborate to train a ML model to fit their
corresponding task. In particular, the goal of collaborative training is to find a
global model that can minimize the average loss among the devices given by:

F (w) =
KØ

k=1
pkFk(w), s.t

Ø
k

pk = 1, (1)

where pk denotes the weight of user k, Fk(w) is the average local loss function
of device k over its local dataset, given by:

Fk(w) = 1
|Dk|

|Dk|Ø
i=1

f(xk,i, yk,i, w), (2)

where f(xk,i, yk,i, w) is the local loss of the model w over the example pair
(xi, yi). The FL training goal is to find a minimizer w∗ of (1) such that:

w∗ = arg min
w

F (w), (3)

This is achieved via an iterative process, where each device k updates its local
model at each iteration t + 1 according to:

wk[t + 1] = w[t]− η∇Fk(w[t]), (4)

where η is the learning rate and ∇ is the gradient operator. Then, users send
their updated model (or model updates) to the server. The server aggregates
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the updates according to

wg[t + 1] =
KØ

k=1
pkwk[t] (5)

The produced global model is transmitted to the devices and a new iteration
of training is initiated. FL process can be summarized as follows:
Initialization: In the beginning of the training the server initializes the task,
the requirements for performing the task, and initializes the global model with
all necessary parameters (e.g. learning rate) and sends them to the participat-
ing devices.
Model training and update: Each client after receiving the global model
trains the ML model using any training method (e.g., SGD Stochastic Gradi-
ent Descent ) on its local data, and then updates and sends the model updates
back to the server.
Global aggregation and model update: The server aggregates all model
updates from the devices and updates the global model and sends it back to
the participating devices.
This iterative process repeats until FL converges or reaches the desired accu-
racy.
The authors in [8] describe four key metrics to evaluate FL performance over
wireless networks:

1. Training Loss: The value of the average loss function F (w), which depends
on the model performance at all devices.

2. Convergence Time: The time when FL converges or reaches the desired
accuracy. It depends on the time needed for clients to train and transmit
the models to the server, and the total number of communication rounds.

3. Energy consumption: The energy consumption at each participating de-
vice. It includes the energy spent on training and transmitting the ML
model.

4. Reliability: It is the probability that the FL model achieves a target train-
ing loss.

The architecture and the training process of FL are illustrated in Fig. 1.
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Figure 1: General Federated Learning training process. [23]

2.1 Federated Averaging

Federated Averaging (FedAvg) algorithm was proposed in [14]. It is a training
algorithm based on local SGD, which allows users to collaboratively minimize
the average loss of the FL model over their local datasets during multiple com-
munication rounds. The FedAvg algorithm procedure is akin to that described
in Sec. 2. User weights are assigned according to pk = |Dk|q

k |Dk| , i.e the ratio
of user k dataset size w.r.t the total number of data available in the system.
Moreover, unlike FedSGD which limits the local training to a single step Batch
Gradient Descend, FedAvg allows users to apply multiple SGD steps locally
over a set of mini-batches before uploading their updates. Consequently, Fe-
dAvg is shown to enjoy a faster convergence rate in homogeneous settings,
where local users gradients are seen as unbiased estimates to the averaged
global gradient calculated at the server side. At the end of each communica-
tion round, the produced local models are sent to the server, which in turn
aggregates them to produce a new global model. Accordingly, the aggregation
rule of FedAvg at communication round t + 1 is given by

wg[t + 1] =
KØ

k=1

|Dk|q
k |Dk|

wk[t], (6)
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where wg[t + 1] denotes the global model produced at communication round
t+1, and wk[t] is given in (4). The pseudo-code of FedAvg is given in Algorithm
1.

Algorithm 1: Federated Averaging
Input : K clients are indexed by k, B is the local minibatch size, E

is the number of local epochs and η is the learning rate.
Server executes: initializes w0

for each round t = 1, 2, · · · do
m← max (C ·K, 1)
St ← (random set of of m clients)
for each client k ∈ St in parallel do

wk[t + 1]← Client Update (k, wg[t])
wg[t + 1]← qK

k=1
|Dk|q
k |Dk|wk[t + 1]

end
end
Client Update (k, w): //Run on client k
B ← (split Dk into batches of size B)
for each local epoch i from 1 to E do

for batch b ∈ B do
w ← w − η▽ f(w; b)

end
end
return w to the server

Numerous challenges face the implementation of FL. Albeit that there is
no need to transmit users raw data to the server during training, the dimen-
sionality of model updates transmitted are not negligible. Given the limited
radio resources, communication cost remains an issue. Another problem which
hinders the convergence of FL models is the heterogeneity of the participating
device, which can take different forms. For instance, hardware heterogeneity
(i.e. battery capacity and computational power variance across clients) may
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limit the participation of some devices during the entire FL training, and intro-
duces stragglers in the system. Additionally, data heterogeneity across devices
may lead the FL model to diverge, especially in cases where clients aim to train
conflicting tasks. In [21], the authors demonstrate how data heterogeneity in-
flicts a hit to the training performance of FL. They propose to have the server
create a small dataset by collecting few samples from each user dataset. Then,
the dataset is shared across the devices to alter their non-i.i.d (independent
and identically distributed) local data distribution towards that of the global
system distribution. However, pooling data from users to create such a dataset
defies the privacy considerations of the FL framework.

2.2 Communication Bottleneck in FL system

Given that the communication between the server and the devices is done
through wireless links, the wireless factors affecting the model updates should
be considered. Table 1 illustrates the causality among wireless and system
variables, and FL performance metrics. For instance, a poor wireless channel
can cause errors in the transmission of model updates, leading to stagnation
in training loss. Moreover, this would deteriorate the channel capacity, in-
creasing transmission delays for model updates or, if compensated for, higher
transmission power requirements.

Table 1: Effects of Wireless factors on FL metrics. A tick implies that a given wireless
factor affects the FL metric [8]

Communication bottleneck is another issue while transmitting large amount
of data from a substantial number of devices to the server. In FL, due to the
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high dimensionality of model updates, it is still very costly to send them to
the server. Some proposed solutions to reduce the amount of information
exchanged between participating devices and the server through sparsification
and quantization [4].
Sparsification transforms an N dimensional vector (i.e. the model update),
into a sparse representation, by setting some of its elements to zero according
to a pre-defined rule. For instance, the authors in [2], [3], [17] utilize the top-
K sparsification rule to sparsify the model updates of the FL devices before
sending them to the server. The top-K sparsification rule sets all but the largest
absolute values of a vector to zero. This operation rule can be given as:

w̃ = M⊗w, (7)

where ⊗ is the Hadamard product, w is the model update and w̃ denotes its’
sparse representation. M is an N dimensional mask vector M ∈ {0, 1}N .
Devices then proceed to send the non-zero values to the server, alongside indi-
cating the location of non-zero elements to enable the correct reconstruction of
sparse model update. This causes an additional communication cost as a func-
tion of the number of non-zero elements. As a rule of thumb, the lower is the
sparsification level (the ratio of non zero elements in a vector to its dimension)
the higher is the compression, and the smaller will be the communication cost
of sending the location of non-zero elements.
Since the values of model updates are real, Quantization is performed to re-
strict those values to a finite discrete codebook values to further reduce the
number of bits needed to transmit the data.

Despite that sparsification and quantization guarantee a communication ef-
ficient transmission of updates, it comes at the price of adding noise to the
model updates. As a result, the global model may generalize poorly. Accord-
ingly, it is of vital importance to strike a balance between the communication
cost that can be tolerated and the required learning performance depending on
the requirements of the task being trained.
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2.3 Over the Air computation

Generally, the wireless resources in a FL system increase linearly with the in-
creasing number of devices. This is especially true in orthogonal access schemes
such as OFDMA, where the bandwidth is split into sub-channels which are dis-
tributed among the users. One problem faced by adopting such a transmission
scheme in FL uplink, is that it doesn’t scale well with the number of devices in
the system, given a finite bandwidth. To tackle this problem, the authors in [24]
propose Over the Air computation (AirComp), which leverages the superposi-
tion property of radio waves to sum-up and average uncoded analog modulated
model updates sent by the users. Their solution stems from the fact that the
server is interested in the average model update to produce the global model,
rather than each of them individually. In particular, the authors propose to
replace digital modulation with linear analog modulation and channel inversion
power control at the receiver side, assuming that the channel state information
(CSI) are known. Model updates are amplitude modulated into symbols and
divided into blocks, such that each block is transmitted over one frequency
sub-channel using OFDMA technique. All users share the sub-channels and
the transmitted signals are super imposed over the air. Subsequently, an ag-
gregated signal is received at the server, thanks to the interference of the radio
waves. As a result, transmission rates and latency become dependent on the
total bandwidth rather than the number of participants. Sub-channels are in-
verted by power control, so the model updates transmitted will be received with
the same amplitude, which is one of the requirements to implement over the air
computation. Due to deep fading, truncated channel inversion is used, where
each user’s sub-channel is inverted only once its gain exceeds a given threshold.
Accordingly, some users’ model updates coefficients may be lost, which would
negatively affect the FL accuracy and convergence time. Another important
requirement for implementing the AirComp is time synchronization of partici-
pating devices, which can be done by adopting timing advance techniques. Fig.
2. illustrates AirComp procedures.
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Figure 2: Demonstration of over the air model aggregation (AirComp) [24]

Fig. 3 illustrates the difference between AirComp and OFDM transmissions
in FL.

Figure 3: Difference between AirComp and Digital OFDMA techniques [23]

One problem that faces AirComp relates to device scheduling. Specifically,
devices residing far away from the server may experience deep fading. Ac-
cordingly, distant devices are ignored and only close devices are scheduled.
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However, this may impact the testing accuracy, as data diversity could be lost.
In FL, it is of utmost importance to guarantee data diversity among the de-
vices, to avoid training a biased model.

Figure 4: Performance comparison between AirComp and OFDMA [8]

Fig. 4 highlights the performance difference between digital OFDMA and
AirComp in terms of test accuracy and latency as a function of the number
of communication rounds and number of devices, respectively. We note that
the FL model under AirComp converges slower compared to digital OFDMA,
due to the errors that follow from the channel truncation step in the uplink.
Moreover, according to Fig. 4b, AirComp is shown to significantly reduce
the communication latency by a factor proportional to the number of devices
involved in the process in comparison with the digital OFDMA approach, while
guaranteeing a comparable learning accuracy.

2.4 A Joint Communication and Learning Framework

In [7] a novel framework is proposed for implementation of FL over the wireless
links, by jointly taking into account FL convergence and wireless effects. In this
framework, participating devices are cellular users. For uplink transmissions
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OFDMA technique is used and each user is given one resource block (RB).
Moreover, the authors assume that the model updates are sent to the Base
Station (BS) in a single packet and that erroneous packets (i.e model updates)
are discarded by the server. Then, the users packet error rates are quantified as
a function of their transmission power and resource allocation. Furthermore,
an upper bound of the average excess risk is derived as a function of the user
selection scheme, and their average packet error rates. The upper bound of the
average excess risk is given by:

E (F (wt+1)− F (w∗)) ≤ AtE (F (w0)− F (w∗))

+ 2ζ1

LK

UØ
i=1

Ki (1− ai + aiqi (ri, Pi))
1− At

1− Aü ûú ý
Impact of wireless factors on FL convergence

, (8)

where F (wt+1) is the average loss of the global model (over the devices datasets)
at round t+1, w0 is the initialized model, and F (w∗) is the global minimum of
F (under the assumption that F is convex) in the ideal setting where wireless
impairments are absent, and all users successfully participate in training. The
excess risk, quantified by the gap between the average and the optimal loss at
round t+1 is mainly regarded to the wireless factors introduced in the system.
ai is a binary variable indicating the scheduling of user i, ri is a one-hot en-
coded vector associating user i to a resource block, Pi is user’s i transmission
power, and A is the convergence rate, which is a function of the aforemen-
tioned parameters. Finally, the authors aim at minimizing the average excess
risk bound by jointly optimizing the scheduling of users, their resource alloca-
tion and transmission power, alongside bounding the convergence rate below
one.

3. Client Selection in Federated learning

Given the limited wireless resources available in the FL system, it becomes
essential to determine which clients shall be scheduled and chosen to participate
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in training. Generally, the server in the FL system waits for all the clients to
upload their models before the aggregation takes place. Therefore, devices
with low computational capabilities or bad channel conditions may introduce
improper delays that impact the convergence time. One of the solutions is
setting a deadline for the UL step and discard all model updates received after.
However this approach may lead to wasting the wireless and clients resources, as
users are required to run the global model optimization locally and are often
granted a wireless resource to transmit their updates once done. A better
solution is to perform clients selection prior or during training, to induce an
efficient use of resources and some performance guarantees. We now shed light
on some client selection frameworks in the literature.

3.1 Federated Learning with Client Selection

Federated Learning with Client Selection (FedCS) framework is proposed in
[15]. FedCS consists of a Mobile edge Computing (MEC) platform (base sta-
tion and a server) and the clients. The difference between FedCS and original
FL, is that after the initialization step, the server sends a resource information
request to a random set of selected clients which constitute their wireless chan-
nel condition, computational capabilities and the amount of data they posses.
After receiving the resource information, the MEC operator decides on which

clients will participate in the training, and then broadcasts the global model
to the selected clients. In Fig.5 FedCS steps are shown.
According to [14] the large number of clients participating in FL training speeds
up the convergence time, hence it is important to maximize the number of
clients in the training process. Accordingly, the authors in [15] devise the
following client selection optimization problem

max
S

|S| (9)

s.t. Tround ≥ TCS + T d
S + Θ|S| + Tagg (10)

where S set of selected clients for the training process, Tround denotes a fixed
round duration, TCS is the required time for client selection, T d

S represents
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Figure 5: FedCS framework. [15]

the required time for the global model distribution, Tagg the aggregation time
and ΘS is the time needed by the slowest client in the selected set to update
and upload its updates to the server. Another important parameter is Tfinal,
which denotes the deadline for FL training. Accordingly, the number of com-
munication rounds can be given as Tfinal

Tround
. Note that if Tround is increased, the

number of clients able to participate in training process will subsequently in-
crease, but the total number of communication rounds before the final deadline
will decrease.

In Figures 6 and 7, the performance of FedCS in i.i.d and non-i.i.d settings,
compared to FedLim is highlighted respectively. FedLim represents the original
FL equipped with a deadline for each communication round, where late up-
dates are discarded once the deadline is exceeded. Thanks to the optimization
problem solved in (10), it is shown that FedCS achieves higher accuracy than
FedLim in both settings, given the same communication round deadline. Those
results stem from the fact the FedCS is able to efficiently accommodate higher
client participation rates and guarantee better performance results regardless
of the induced data heterogeneity.

15



Figure 6: FedCS performance in i.i.d setting [15]

Figure 7: FedCS performance in non i.i.d setting [15]

3.2 Multi Criteria Client Selection

In [5], it is reported that the number of participating clients is 4× more during
the night, while they are idle. As a consequence, the location of the clients
will impact their participation in training. In [1], which is the case study
for an intrusion detection system, a new client selection model is proposed,
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while considering clients location. Similar to FedCS, their proposed algorithm
aims at maximizing the number of participating devices in FL training, while
accounting to their resources in addition to their geographical location. The
steps of the proposed FL approach can be summarized into multiple steps:

• Initialization: Server generates the global model.
• Client Filtering: Instead of choosing clients at random, the clients are

formed into subgroups with the users sharing similar characteristics. In
this proposed algorithm users are filtered according to their locations.

• Resource and Request: After filtering the clients, the server request the
clients’ resource information.

• Multicriteria Clients Selection: Once the resource information is received,
the server selects the clients able to perform FL training.

• Distribution: The server distributes the global model to the selected
clients.

The remaining steps are akin to the original FL algorithm.
Denoting X = (X1, · · · , XK) the set of all clients and Xf = (Xf1), · · · , XfK)
the filtered client set. In accordance with [15], the goal is to maximize the
number of participating clients under the following constrains:

max
S

|S| (11)

s.t. ∀X{fz}i
z=1

,
Ø

Util
Xfz

r∈(CP U,Memory,Energy) < BudgetXfz

r , (12)

∀X{fz}i
z=1

,
Ø

(T Xfz

d + Util
Xfz

r=Tud
+ T

Xfz

ul ) < T, (13)

s.t. max ERX{fz}i
z=1

=
C

|Xfz · lA|
|Xfz · lA|+ |Xfz · lN |

× 100
D

. (14)

The first constrain indicates that the utilized resources must not exceed a
limit budget, which is dynamic per device type. Util

Xfz

r∈(CP U,Memory,Energy) are
the predicted utilized resources using linear regression. The second constrain
indicates that the download, upload and update time should not exceed a given
threshold, where Util

Xfz

r=Tud
is the predicted update time (i.e. the local update

time). The third constrain indicates that the client selection depends on the
Event Rate (ER) of each client’s data set, showing the class distribution of
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minor samples. It aims at guaranteeing a representative unbiased model, by
accounting to the datasets of the selected clients. Accordingly, the clients with
high ER are prioritized and chosen to participate in the training. In Fig. 8

Figure 8: The comparison of client selection algorithm,when k = 2 [5]

shows a comparison of three techniques when 2 clients need to be selected.
VanillaFL is the original FL, which randomly chooses clients C2 and C5, while
disregarding their resources. As a result, they may not be able to successfully
perform the training task. FedMCCS first filters the clients according to their
time zone (Day and Night times), then chooses the clients which satisfy the
constraints in (12-14). In this case, clients C1 and C4 are selected. On the
other hand, FedCS randomly chooses C5 and C6, while disregarding their time
zones. After receiving their resource information, only C6 will participate in the
training since it satisfies the latency requirements needed. As a result, fewer
devices are selected to participate in training, and lower convergence rates are
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expected. This highlights the importance of accounting to the devices time-
zones in the selection process, as devices are often idle at night, and therefore
posses enough energy resources to take part in training.

Figure 9: Performance in terms of accuracy among FedMCCS and other base-
lines [5]

In Fig. 9, the test accuracy attained vs communication rounds for the
three algorithms is shown. FedMCCS is shown to converge faster and attains
higher accuracy compared to Vanilla FL and FedCS, as a result of the larger
participation rate that it guarantees. In Fig. 10 a) illustrates the number of
chosen devices for training process and b) shows the actual number of clients
performing the training task. It is obvious FedCS and Vanilla FL suffer from
more dropouts compared to FedMCCS during most rounds.

3.3 Client Selection for Federated Learning With non-i.i.d Data

A new algorithm for client selection is proposed in [20], called CSFedAvg, where
weight divergence is used to differentiate between different non-i.i.d degrees of
the clients’ data. Their goal is to choose clients to reach an unbiased model,
representative of the population target data distribution. To this end, The
proposed approach uses a virtual client C0 at the server with an i.i.d dataset (i.e.
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Figure 10: Scheduling (a) and participation (b) rate achieved by FedMCCS in
comparison to other baselines [5]

representative of the population data distribution), with its’ samples pooled
from randomly selected devices. The virtual client is then used to assign the
non i.i.d degrees to the different clients in the system. The weight divergence
between client k and the virtual client C0 is given by:

dk(t) = ∥wk(t)−w0(t)∥
∥w0(t)∥

, (15)

where w0(t) is the model of the virtual client. A followed rule of thumb is that
a large value of weight divergence of device k is induced by a high degree of
non-i.i.d of its dataset. The chosen clients are then selected in an increasing
order according to their weight divergences.
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3.4 Client Selection and Bandwidth Allocation in Wireless
Federated Learning Networks

In [19], the clients selection and the bandwidth allocation is jointly optimized.
The authors focus on which clients are selected and how much bandwidth is
allocated to them, given the devices energy limitations. To this end, the au-
thors propose some experiments to understand the effect of adopting three
different client selection schemes. Mainly, the ascending, descending and uni-
form selection patterns. More specifically, the descending/ascending pattern
schedules more/less clients at the early stages of training, while maintaining a
smaller/larger participation rate at later stages. The Uniform pattern selects
the same number of clients in each round. Fig. 11 illustrates the testing accu-
racy evolution as a function of the number of rounds and the client selection
patterns that could be followed, which appear to affect the model performance.
According to the experiments results shown in Fig.11, the best performance

Figure 11: Testing accuracy as a function of the number of rounds and different
client selection patterns [19]

shown is attained following the ascending pattern. This result stems from the
fact that the model during early learning stages can be driven by few number
of devices, towards a neighborhood of the global average loss minimizer. The
model generalization is later enhanced by scheduling more clients at the end
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of the training process to reach the minimizer. To this end, due to the energy
limitation of the clients in the system, the authors propose to schedule a small
set of devices with large energy budget at the beginning of training, followed by
scheduling those with smaller energy budget at later stages. This way, devices
with low energy budget are not exhausted early on during training, where their
contribution is negligible. In order to realize the aforementioned observations
in their problem, the authors propose the following optimization problem:

max
a0,b0,··· ,aT −1,bT −1

T −1Ø
t=0

U t(at) (16)

s.t.
T −1Ø
t=0

E(at
k, bt

k|ht
k) ≤ Hk, ∀k (17)

bmin ≤ bt
k ≤ 1, ∀k,∀t,

KØ
k=1

bt
k = 1 (18)

at
k ∈ {0, 1}, ∀k, ∀t, (19)

where
U t(at) = ηt

KØ
K=1

Dkat
k

is a proxy of the expected FL performance at round t given a set of scheduled
users. at

k is a scheduling binary random variable of user k at communication
round t, Dk is user k dataset size and ηt is a hyper-parameter, which em-
phasizes the importance of scheduling more devices at round t. Generally, an
increasing value of η w.r.t the number of communication rounds would yield
better FL performance, as more importance is given to scheduling users at later
stages of training. The objective function in (16) aims at maximizing the FL
performance throughout the training process. In (17) Hk denotes the energy
budget constraint of each client k. E is the energy consumption for each com-
munication round for each user k given his channel gain hk. If more clients are
selected at the early stages of training, the bandwidth allocated for each clients
will decrease, hence each client will need more power to send the model updates
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to the server to compensate to the lower rates and subsequently, more energy
will spent. To address this problem the authors proposed to create a virtual
deficit queue qk(t), which shows the difference of energy spent during training
and energy budget of each client. The virtual queue is set to zero at the start
of the training process for all clients k, i.e. qk(0) = 0,∀k. Since it is impossible
to know the future CSI in advance, the problem in (16) is reformulated as a
per round problem, where T rounds are divided into N frames with R rounds,
such that T = NR. Within each frame, the CSI are considered to be known
and constant. The reformulated problem is then given according to:

min
at,bt

V · U t(at)−
Ø
k=1

Kqk(t)E(at
k, bt

k|ht
k) (20)

s.t.(18), (19), (21)

where V is the parameter that controls the trade off between the energy con-
sumption and the number of selected clients. To solve this surrogate problem,
set expansion algorithm (SEA) is used, where the clients are selected according
to their selection priority ρk = qk(t)

(ht
k)2 . The priority is a function of the virtual

queue size of each client and their channel quality. The queue length indicates
the deviation of the current energy consumption of client k from its long-term
energy constraint Hk. The clients are added one by one in an increasing order
of ρk. A smaller value of ρk indicates high priority to select client k. There-
fore, it is of interest to schedule those devices that can meet their long term
energy constraint in contrast to those that already deviated from it. Moreover,
the selection policy emphasizes the importance of scheduling clients with good
channel gains in order to conserve their transmission energy.

Based on the work in [19], in [10], a clients selection and bandwidth alloca-
tion scheme is proposed to minimize the latency of each round, where the cost
function is defined as follows:

F (at, bt) = T (at, bt)− Φ(at). (22)

T is the total latency in each round t given a binary scheduling vector at, and
a resource allocation vector bt. Φ(at) denotes the FL accuracy, which depends
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on the scheduling variables and the clients dataset sizes in the following way:

Φ(at) =
KØ

k=1
log(1 + µDk(t)ak(t)), (23)

where µ and Dk(t) are the system parameter and dataset size of each client
respectively. The optimization problem is given according to:

min
a0,b0,··· ,aT −1,bT −1

1
T

T −1Ø
t=0

F (at, bt), (24)

s.t. (17), (18), (19) (25)

Similar to [19], the goal is to minimize the long-term cost function over T com-
munication rounds and likewise, the optimization problem is then reformulated
as per round problem, dividing the T rounds into N frames, and using the en-
ergy deficit queue algorithm called Per-round Energy Drift Plus Cost algorithm
(PEDPC), where the objective function is minimized via alternating optimiza-
tion: First bt is fixed and at is optimized. After optimization, the optimized
value of at is fixed and used in the optimization of bt.
In Fig. 12, a comparison among the performance of five different scheduling
and resource allocation algorithms, in i.i.d and non-i.i.d settings is illustrated.
PEDPC is the proposed algorithm. Select all selects all clients an equally al-
locates the bandwidth among them. For the other algorithms the average of
40 clients are selected for training process. Greedily selects the clients which
satisfy the long-term energy limit requirement according to:

max
at,bt

KØ
k=1

at
k (26)

s.t. at
kEk(t) ≤ Hk

T
, ∀k,∀t (27)

(17), (18), (19) (28)

Randomly selects clients in a random way with a given probability p, and
allocates bandwidth equally among them. Energy overflow is the difference
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between energy consumption and budget. It is obvious that the proposed
algorithm in i.i.d case saves more energy compared to the other algorithms.
FedCS saves more latency, however it it consumes more energy than PEDPC,
because FedCS doesn’t take into account the energy consumption. In Fig. 13
the non i.i.d case is shown, where the average number of clients is 90 for all
algorithms, except Select all.

Figure 12: Performance metrics evaluation among different approaches in i.i.d
setting [10]

Figure 13: Performance metrics evaluation among different approaches in non
i.i.d setting [10]

The accuracy in non i.i.d case does not differ a lot. PEDPC still has the
advantage in terms of latency, but it consumes almost the same amount of
energy compared to the other algorithms. With increasing number of clients
FedCS does not have the advantage of low latency.
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4. Heterogeneity in Federated Learning

As previously discussed, the deployment of federated learning in wireless net-
works is significantly hindered by the challenges posed by data and system
heterogeneity. For instance, conducting more local epochs during each com-
munication round can reduce the communication burden of frequent model
updates, however it may also increase the risk of training failure due to the
deviation of the global objective from its minimum. Within this section, we
will explore a variety of frameworks that address the challenges posed by data
heterogeneity in federated learning.

4.1 FedProx

In [13], a new framework was proposed called FedProx, which enables vari-
able amount of work to be done at each device in terms of local training at
each communication round with the goal of tackling the variable computing
resources available at the devices. Unlike FedAvg, FedProx allows the aggre-
gation of partial solutions from the stragglers instead of simply drop them out
from the aggregation step. This is achieved by introducing a proximal term
into the local objective function as follows:

hk(w; wt) = Fk(w)ü ûú ý
Traditional Loss

+ µ

2∥w − wt∥2ü ûú ý
Proximal term

(29)

where w∗ is an γt
k ∈ [0, 1] inexact solution, which minimizes minw hk(w; wt)

given that
∥∇hk(w∗; wt)∥ ≤ γt

k∥∇hk(wt; wt)∥ (30)

and
∇hk(w; wt) = ∇Fk(w) + µ(w − wt) (31)

The addition of the proximal term to the local loss and the use of a stopping
criteria defined by (30) provide two main benefits. Firstly, it helps to tackle the
issue of statistical heterogeneity by constraining the distance between the up-
date from each learner and that of the population. Additionally, it enables the
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integration of varying amounts of local training at the devices by adjusting γk

for each device, thereby reducing the impact of system resource heterogeneity.

4.2 Model contrastive learning (MOON)

While FedProx offers some advantages on non-i.i.d data, it does not perform
well on image datasets. To overcome this limitation, a new framework called
MOON is proposed in [12], which is based on the model contrastive learning
approach. Contrastive learning is primarily used in unsupervised learning for
learning visual representations and emphasizes that representations derived
from different images should be distinct, while representations derived from the
same image should be related. Similar to FedProx, MOON is based on FedAvg.
The proposed framework aims to minimize the gap between the representation
learned by the local model and the representation learned by the global model,
while maximizing the difference between the representation learned by the local
model and the representation obtained by the previous local model.

Figure 14: MOON network architecture [12]
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The architecture of MOON consists of following three components:
1. Base encoder: serves the purpose of extracting representation vectors from

input data.
2. Projection head: converts the representation into a space of fixed dimen-

sions.
3. Output layer: generates the predicted values for each classification.
The local loss which needs to be minimized is given in Eq. (32).

ℓtotal = ℓsup(wt
i; (x, y))ü ûú ý

supervised learning loss

+ µℓcon(wt
i; wt−1

i ; wt; x)ü ûú ý
contrastive loss

(32)

where ℓsup is the general local loss, and ℓcon is the model contrastive loss given
by:

ℓcon = − log
A exp(sim(z, zglob)/τ)

exp(sim(z, zglob)/τ) + exp(sim(z, zprev)/τ)

B
, (33)

where τ is the temperature parameter, sim(·, ·) is a similarity function (e.g.
cosine similarity), zglob = Rwt(x) , zprev = Rwt−1

i
(x) and z = Rwt

i
(x). Rw(w) is

the mapped representation of the input x retrieved at the second-last layer of
the network. As the global model is expected to produce more optimal repre-
sentations, the objective is to minimize the distance between z and zglob while
simultaneously increasing the distance between the current and the previous
local model representations defined by z and zprev respectively.

The top-1% validation accuracy for the different algorithms as a function
of the number of communication rounds is illustrated in Fig. 15. FedProx
performs similarly to FedAvg, which highlights its shortcoming in image recog-
nition tasks. Moreover, it’s evident that MOON and FedAvg exhibit similar
convergence rates. However, MOON is able to attain a higher level of accuracy
thanks to added regularization term, characterized by the model contrastive
loss which is added to the local loss function, which additionally encourages
similar representation learning from augmented data. As a result MOON out-
performs other learning methods on a range of image classification tasks, how-
ever, it could also be applied to non-image related classification tasks, where
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Figure 15: Top-1 accuracy among the different approaches during the training
of CIFAR-10 and CIFAR-100 tasks [12]

structural similarities among the input data can be characterized and therefore
exploited via contrastive learning.

4.3 Clustering in Federated Learning

As mentioned earlier, the existence of non-i.i.d. data represents a challenge in
developing a joint model under FL training. The data heterogeneity in FL can
be characterized in the following ways : [6]:

• Input features are not uniformly spread out among the clients.
• Data labels are not uniformly distributed among clients.
• Same input features, but different labeling, or same labeling, but different

input features. This phenomena is also known as Concept Shift.
In the case of highly non-i.i.d data, training of one global model is not feasi-
ble, as it will not be able to fit the objectives of all participating clients [16].
Rather than relying on a single model it may be more advantageous to train
several models for different groups of clients with comparable data distribu-
tions. To achieve this, a Hierarchical Clustering (HC) approach was proposed
in [6]. In particular, HC aims at clustering clients based on their objectives
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similarity. Clustering is achieved during a specific communication round, where
the aggregated model updates are utilized to determine the similarity between
participating clients. Once the clusters are formed, separate models are trained
independently but concurrently within the different clusters. During training,
the most similar clusters are merged iteratively, combining clients who share
similar characteristics and updates. The merging of clusters continues until no
notable similarity among clusters is found.
The performance of the proposed algorithm is mainly dependent on how well
those clusters are formed. However, if clusters are poorly defined, the algo-
rithm’s performance may affect the accuracy.
The experiments are carried out to assess the efficiency of the proposed ap-
proach, where FedAvg is used as a baseline. In the an i.i.d setting, as expected,
the HC approach was not able categorize clients into clusters, therefore produc-
ing a single joint model. This stems from the similarity of the clients generated
updates. To asses the performance of HC in non-i.i.d. settings, experiments are
considered under pathological (each client randomly receives samples belonging
to two labels) and label swapped (each client has two digits labels exchanged
with one another) non-i.i.d setting. The evaluation of the test accuracy and
the number of clients attaining their target accuracy over each communication
round in comparison to FL for the non-i.i.d settings are illustrated in Fig. 16
and 17.

Figure 16: Pathological non-i.i.d setting, clustering step at round=1 [6]
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Figure 17: Pathological non-i.i.d setting, clustering step at round=10 [6]

The black horizontal line indicates the communication round where cluster-
ing is done. FL represents the FedAvg baseline, and FL+HC is the proposed
approach. The largest enhancement in contrast to FL, seems to occur when
the clustering step is made during the first communication round. In the label

Figure 18: Label swapped non-i.i.d setting, clustering step at round=10 [6]

swapped non-i.i.d setting shown in Fig. 18, FL+HC is able to attain a maxi-
mum test accuracy of 80%.
The performance demonstrates that FL with HC converges faster, and results
in greater number of clients achieving the desired accuracy in each communi-
cation round during severe non-i.i.d settings.
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5. Communication-efficient Federated Learning

As mentioned previously, FL faces a significant obstacle in terms of communi-
cation and computation costs. Generally, a moderately large number of local
epochs aids in decreasing the communication cost. However, this results in an
increase of the computational cost, and risks the divergence of the global model
in non-i.i.d settings. Fig. 19 illustrates a general trend, in terms of trade-off
between the cost of local computation and communication in FedAvg, as a
function of the number of local epochs. To enhance the training efficiency it is

Figure 19: Training cost under varying number of local epochs [11]

necessary to minimize both communication and computation costs. Previous
works [22] highlight the existance of subnetworks within the initialized models
that are able to generalize well, if found, without any weight modification. Such
sub-networks can attain high accuracy and guarantee reduced communication,
computation and memory cost.
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5.1 FedMask

A new approach is proposed in [11] called FedMask. In FedMask, each de-
vice attempts to find a personalized sub-network which generalizes to its’ local
task, within the initialized global model shared by the server. The personalized
sub-networks are found by training a deterministic binary mask (in contrast
to training the model weights in classical FL approaches) based on the clients
local datasets. The trained masks are then sent back to the server, where
similar masks are aggregated together to preserve personalization. Then, the
aggregated personalized masks are sent back to their corresponding clients for
further training.

Figure 20: Weight masking process [11]

The training process for FedMask involves the following steps:
Initialization: The server distributes the initialized model and deterministic
mask to the clients, and each client keeps the received model frozen throughout
the training process.
One shot pruning: Each participating device then learns a heterogeneous
binary mask using a one-shot pruning method, which is based on a combina-
tion of real-valued masks and fixed weights. This pruning technique helps to
remove less important model parameters while preserving the most important
ones. During weight pruning, each device will keep the structure of the upper
layers and only perform pruning on the classifier layers.
Training and Aggregation: Local training is carried out on the heteroge-
neous binary masks using the local datasets for several epochs. The result-
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ing masks, which embody the personalized sub-networks, are then sent to the
server, where similar masks are aggregated together to preserve personaliza-
tion. The personalized models are then sent back to their corresponding clients.
Those steps iterate until the final personalized sub-networks are found.
In Fig. 20 the weight masking process is illustrated, where a sub-network is
formed by applying a binary mask m ∈ {0, 1}m×n to the matrix representing
the model connections with fixed weights, using element wise multiplication,
such that the output of the produced sub-network can be given by y ∈ Rm

defined as follows:
y = (W ⊙m) · x, (34)

where x ∈ Rn is the input, and W ∈ Rm×n denotes the weight matrix of the
fully connected initialized network. Due to the limitations of current optimiza-
tion algorithms like SGD, it is not practical to use them on binary masks. As a
solution, a new real-valued mask mr ∈ Rm×n has been proposed. Binarization
of mr to m during feedforward step is performed using a sigmoid function and
a threshold function as shown in (36)

mij = σ(mr
i,j) ∈ [0, 1] (35)

and then binarizing mi,j using a threshold operation according to:

mij =


1, mij ≥ τ

0, mij ≤ τ
(36)

where mij is the element located in the i-th row and j-th column. (37) is utilized
to compute the gradients of the loss with respect to the mask m during the
back-propagation process.

∂L

∂m
=
A

∂L

∂y
· xT

B
⊙W , (37)

However, due to the fact that threshold function is not differentiable, the gra-
dient of the loss w.r.t mr is computed and then the sigmoid function σ(·) is
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used to obtain mij = σ(mr
ij). The gradient w.r.t mr could be computed using

the chain rule, and is given by:
∂L

∂mr
= Φ⊙ ∂L

∂m
, (38)

where m = σ(mr) and Φ = m⊙ (1−m) denotes the derivative of the sigmoid
function.
In FedMask, the aggregation process cannot be performed through simple aver-
aging, due to heterogeneity of the binary masks with non-overlapping elements.
Given the personalization goal of FedMask, the proposed approach should aim
at preserving the personalized structure and information during the aggregation
step. Accordingly, the authors propose a novel aggregation policy to aggregate
the personalized binary masks. Averaging is made element-wise. Model ele-
ments could be composed of channels, full layers, or single weights. The authors
propose to average the elements present in at least two binary masks. The cen-
tral server then updates the mask with the aggregated values and keeps the
elements that are unique to a single mask unchanged. As shown in Fig. 21, the

Figure 21: Personalization-preserving mask aggregation. The unpruned masks
are depicted using yellow and blue matrices, while the updated masks resulting
from the intersection between devices are shown in green. [11]

first channel of device i and device j are intersected (shown in yellow), which
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causes the proposed aggregation technique to average the masks of these two
channels (shown in green). The white channels however represent the pruned
ones, consequently they will remain unchanged for both users. Consequently,
two separate personalized binary masks are then produced via thresholding
and transmitted to their corresponding devices.

5.2 FedPM

A similar approach is proposed in [9] called Federated Probabilistic Mask Train-
ing (FedPM). The proposed approach is illustrated in Fig. 22. The server

Figure 22: Generation of a sparse sub-network with random weights, achieved
through a trainable probability mask. [9]

initializes the model randomly winit, and transmits the initialized model in
addition to a probability mask θ ∈ [0, 1]d to all clients. Each client then gen-
erates a score mask s ∈ Rd using the inverse sigmoid function according to:

s = σ−1(θ), (39)

Then, a binary mask m is generated using the Bernoulli distribution over the
transmitted probability mask θ, m ∼ Bern(θ). Then, each client performs
model sparsification w = m⊙winit to produce it’s own stochastic sub-network,
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which is used for the feed-forward computations over the local dataset. Given
that the sampling operation m ∼ Bern(θ) is not differentiable, error back-
propagation is performed to update the score masks instead of updating the
binary masks directly. This is done locally at each client via gradient descent
methods according to:

s = s− η∇L(fw,Dk), (40)

The clients then extract the locally updated probability masks by applying the
sigmoid function according to :

θ = σ(s) (41)

Then, a new binary mask is sampled from the newly produced probability mask
at each client. The sampled binary masks are sent in the UL to the server,
which in turn averages to estimate the global probability mask given by: θ̄g.t

as:
ˆ̄θ = 1

K

Ø
k∈Kt

mk, (42)

which is unbiased estimation of true mean. The global probability mask is then
sent in the DL to all users. Those steps iterate until a global probability mask
is found, which is able to produce stochastic sub-networks fit to the clients
datasets. In the experimental evaluation, FedPm attains higher validation
accuracy in comparison with FedMask and other baselines, despite the fact
that FedMask converges faster as shown in Fig. 23. Additionally,as illustrated
in Fig. 24 FedPm proves to be more communication efficient in comparison
to other. FedMask requires 1 bit per parameter (bpp) when communicating
binary mask to the server, meanwhile in FedPm the communication can be
reduced lower that 1bpp, due to random masking process and the unequal
distribution of ones and zeroes within the binary masks.
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Figure 23: Accuracy comparison between FedPm and FedMask

Figure 24: Bitrate comparison between FedPm and FedMask

6. Conclusion

Based on the discussions presented in this survey, it is evident that FL can be
considered as an efficient solution to the challenges faced by traditional cloud-
based ML approaches, such as poor communication efficiency, high latency,
and privacy concerns. The FL approach allows devices to use their local data
to train a ML model in a decentralized way, iteratively optimizing the model
locally and sharing the resulting model updates to a centralized server for ag-
gregation.
One of the key challenges in implementing FL on a large scale is the communi-
cation bottleneck in wireless resources. This survey discussed the compression
techniques, such as sparsification and quantization, which aid in countering
the unfavorable communication burden in FL settings. Additionally, AirComp
technique was explored, which can further improve the efficiency of FL in wire-
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less networks compared to the widely used digital OFDMA, by leveraging the
superposition feature of radio waves to combine and average uncoded analog
modulated model updates transmitted by users. Furthermore, an overview of
different client selection frameworks for FL is provided. Moreover, the detri-
mental effect of data heterogeneity on FL training was discussed, as well as
the proposed FL frameworks which aid in deterring its effects, such as FedProx
and MOON. Additionally, the potential of clustering approach in Federated
Learning in addressing severely heterogeneous datasets was highlighted.
Finally, this work covered two novel approaches, FedMask and FedPm, which
enable collaboration among clients to find underlying sub-networks within the
initially initialized model, that are able to generalize well over a given task.
The discovery of those sub-networks involve binary mask training in lieu of the
traditional model training. As a result, in this setting, clients enjoy communi-
cation efficient collaboration during training.
In conclusion, this survey paper provides a comprehensive overview of the fun-
damentals and implementation challenges of Federated Learning, covering var-
ious techniques and frameworks that address communication efficiency, client
selection, and data heterogeneity.
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