
POLITECNICO DI TORINO

Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Multi-sensor machine learning based
robotic perception applied to human

recognition

Supervisors

Prof. Cristiano PREMEBIDA

Prof. Claudio Ettore CASETTI

Candidate

Federico ARDAGNA

April 2023

Abstract

Multi-sensor perception systems, such as machine learning implemented for pedes-
trian recognition, are frequently employed in safety contexts for autonomous or
semi-autonomous vehicles such as mobile robots and self-driving cars. Since the
data redundancy is crucial in the field of human safety (or situational awareness
involving humans), a multiple sensor system is usually exploited. To do so, the
collected data, or information, is then combined in order to obtain a more accurate
estimation of the perception system. The robotic platform used in this work is a
compact entry-level commercial robot (Jackal UGV by Clearpath) equipped with
cameras and a LiDAR mounted onboard the robot. Sensor calibration, and their
intrinsic and extrinsic parameters, is part of this project; a particular effort has been
done on the calibration of the thermal camera, due to the fact that it cannot detect
colors and cannot be set through canonical methodologies. Regarding machine
learning, a convolutional neural network (CNN) is firstly trained with a subset
of the collected data. Then, the remaining part of the data is used to validate
the parameters of the network, testing also the performances in different light
conditions. The errors and confusion matrix are then used to evaluate the detecting
system and computed thanks to the testing and validation phase of the job. Finally,
data from two different cameras are combined using a late-fusion technique and
leading to a further improvement in the human detection framework. The final
results are promising and can be used for further improvements, for instance the
network could be used for real-time detection. In this case, this work can be also
seen as a possible starting point for applications related to drive assisted systems,
autonomous vehicles, and robotics.

i

Acknowledgements

Thanks to Professor Premebida and the whole team of the Mechatronics Laboratory
in the ISR of the University of Coimbra, for the constant support and for teaching
me fundamentals concepts in arguments that were almost new to me. The assistance
of the professor started at the beginning of the Erasmus in February 2022 and
ended with the last suggestions on the thesis just a few weeks ago. Thank you for
your time and patience.

Thanks to Professor Casetti for the help from Turin while I was in Portugal, and
for the suggestions and support when I came back to Italy.

Thanks to the University of Coimbra, where the Thesis work was carried out, and
a special thanks to the Polytechnic University of Turin, where I spent the rest of
the Master’s.

Thanks to my family and friends, because without all of you my results would have
been unreachable. Thanks for supporting and inspiring me everyday, motivating
me to become by best self.

“Se podes olhar, vê. Se podes ver, repara.”
“Se puoi vedere, guarda. Se puoi guardare, osserva.”

“If you can see, look. If you can look, observe.”
José Saramago

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives of the dissertation . 2
1.3 Work performed and contributions 3
1.4 Organization of the thesis . 4

2 Related work 5
2.1 Multi-sensor perception systems . 5
2.2 Sensors calibration . 8
2.3 Machine learning applied to human detection using mobile robotic

platform . 9

3 Calibration of the sensors 12
3.1 Introduction to camera calibration 12
3.2 Forward imaging model . 13

3.2.1 From the world coordinate frame to the camera coordinate
frame . 14

3.2.2 From the camera coordinate frame to the image coordinate
frame . 15

3.2.3 Errors in camera calibration 18
3.3 RGB camera calibration . 19

iv

3.4 NIR camera calibration . 21
3.5 Thermal camera calibration . 23
3.6 LiDAR-RGB camera calibration . 26

3.6.1 Extraction of checkerboard from point Clouds 28
3.6.2 Extraction of checkerboard corners from the camera images . 31
3.6.3 Estimation of rigid transformation lidar-camera and results . 33
3.6.4 Lidar-RGB camera calibration validation 33

3.7 FLIR-RGB camera calibration . 36
3.7.1 FLIR-RGB camera calibration validation 37

4 Dataset, experiments and results 40
4.1 Machine Learning . 40

4.1.1 How to evaluate a model . 41
4.1.2 Deep Learning . 43

4.2 Data collection . 56
4.3 Data processing . 57

4.3.1 Training . 59
4.3.2 Validation . 61
4.3.3 Inference . 62

4.4 Sensors fusion . 63
4.4.1 Linear Support Vector Machine 66
4.4.2 Application of SVM to case of study 67

5 Discussion and conclusion 70

A Optical sensors models 73
A.1 Lidar: Velodyne®VLP-16 . 73
A.2 Thermal camera: FLIR Boson®640 74
A.3 RGB and NIR camera: MQ013CG-E2 and MQ013RG-E2 Ximea® . 75

B Setup of the full apparatus 76

C Point Clouds extraction starting from .pcap file 77

Bibliography 80

v

List of Tables

3.1 Intrinsic parameters of RGB camera 20
3.2 Intrinsic parameters of NIR camera 23
3.3 Summary of the mean reprojection errors (pixels) 25
3.4 Intrinsic parameters of FLIR thermal camera 27
3.5 Reference points coordinates . 35

4.1 Definition of confusion matrix. 41
4.2 Number of frames to be processed 58
4.3 Train and validation results . 62
4.4 Confusion matrix after data fusion 68
4.5 Accuracy parameters after data fusion. 69

vi

List of Figures

2.1 Images taken from the article "A multi-sensor fusion system for
moving object detection and tracking in urban driving environments"
by Cho et al. [7] . 6

2.2 Picture depicted in the work by Burlet and Dalla Fontana: "Robust
and efficient multi-object detection and tracking for vehicle perception
systems using radar and camera sensor fusion" [8] 7

2.3 Images used as a reference for two different kind of human and object
detection systems . 7

2.4 Example of depth map from 3d-lidar data, work by Premebida et al.:
High-resolution lidar-based depth mapping using Bilateral filter [13]. 8

2.5 Two of the works taken as a reference for camera calibration. 9
2.6 Pictures from works based on a mobile platform multi-sensor per-

ception system. 10
2.7 Results in different weather and light conditions taken from the work

"People Detection with Depth Silhouettes and Convolutional Neural
Networks on a Mobile Robot" [21]. 10

3.1 Representation of world, camera and image coordinates. 13
3.2 Original and re-projected points visualization. 18
3.3 Set of collected frames (the images are visualized in black and white). 19
3.4 Camera-centered visualization of extrinsic parameters 20
3.5 Reprojection errors before and after images suppression 21
3.6 Scatter plot reprojection errors . 21
3.7 Dataset of 9 frames used for the NIR camera calibration. 22

vii

3.8 Reprojection errors . 22
3.9 Scatter plot reprojection errors . 22
3.10 Camera-centered visualization of extrinsic parameters 23
3.11 Dataset of 14 frames extracted for the thermal camera calibration. . 24
3.12 Corner points . 25
3.13 Extracted points . 26
3.14 Reprojected points in image 001.jpg 26
3.15 Scatter plot for reprojection error in thermal camera calibration . . 27
3.16 Camera centered visualization of thermal camera external parameters 27
3.17 Checkerboard and padding vector parameters 30
3.18 Checkerboard visualization for pointcloud "11.pcd" of the dataset . 30
3.19 Corner extracted and visualized on the image 32
3.20 First dataset error visualization . 34
3.21 Final dataset error visualization . 34
3.22 Reference point coordinates’ projection on image 35
3.23 Thermal and color camera calibration comparison 39

4.1 Outline of a mammal’s neuron structure 46
4.2 Artificial neuron working principle 46
4.3 Outline of a very simple neural network 47
4.4 Neural network with focus on weights 47
4.5 Sigmoid function, tanh function and ReLU function 48
4.6 An example of simple convolution computation with hyperparame-

ters s = 2, e = 3. 50
4.7 A simple example of non-overlapping pooling operation with param-

eters s = 2, e = 2. 51
4.8 VGGNet architecture . 52
4.9 One-stage and two-stages detectors’ architectures 52
4.10 Comparison of the proposed YOLOv4 and other state-of-the-art

object detectors . 53
4.11 YOLO’s grid cell example over a labelled image 53
4.12 Intersection over Union visual definition 54
4.13 YOLOv3 architecture . 55

viii

4.14 Frames example . 57
4.15 Regions of action comparison . 58
4.16 Two frames labelled for each sensor 59
4.17 Labelled images decomposed by the network 61
4.18 Predicted labels, with respective confidence value. 62
4.19 Accuracy parameters . 63
4.20 The results of the detection process. 64
4.21 Fusion techniques simplified schematics. Here are reported three

generic examples with 3 sensors data as inputs. 65
4.22 Graphic representation of the support vector machine training results 68
4.23 Full data fusion process schematic 69

A.1 The four sensors mounted on an aluminium support 74
A.2 Velodyne®VLP-16 . 74
A.3 Example of Velodyne®VLP-16 scan 74
A.4 FLIR Boson®640 . 75
A.5 Example of FLIR Boson®640 image 75
A.6 MQ013RG-E2 Ximea® . 75
A.7 Comparison between RGB and NIR cameras 75

B.1 Graphic representation of the full system 76

C.1 Point Cloud visualization for the 11th relevant frame 78

ix

Chapter 1

Introduction

This chapter will present, in a summarized manner, the motivations, main objectives,
course of action, technical implementations and contributions to the work carried
out in this MSc dissertation in Mechatronic Engineering done at the Instituto de
Sistemas e Robótica of the Universidade de Coimbra during my Erasmus experience.
The first sections expose the motivations for working on this topic, followed by an
introduction to the concepts and methods used. Subsequent sections present the
objectives and contributions of this project. Finally, the last section sets out the
organizational structure of the thesis.

1.1 Motivation

During the time in which this thesis is written, there is a massive interest in the
sector of the autonomous and semi-autonomous mobility. Both public transporta-
tion networks and private companies are moving in the direction of a smarter
and self-driving future [1]. The main urban areas aim to move forward in becom-
ing smart, and great economic investments are made in the effort to reach this
ambitious goal [2]. In this regard, a large list of projects, starting from the past
century until our days, that focused their attention to the ITS systems improvement,
can be mentioned: NAVLAB (1990s), ARGO (1999), ULTra (2003), CityMobil
(2006), DARPA grand challenge, URBAN challenge, 5G-IANA (2021) i4Driving
(2022). This dissertation’s work is collocated in the context of intelligent systems,

1

Introduction

including mobile robots, and intelligent mobility, in which the technologies and the
innovations related to the ITS systems are of considerable concern [3], [4].

Since great part of the existing systems in mobile robots and autonomous vehicles
share a large number of architecture modules (perception, navigation, trajectory
planning, communication, control, localization, obstacle detection, collision alert,
object classification, human detection, etc.), it is very common that the research
and the experimentation starts indoor, or in controlled environments, with mobile
platforms. Projects in the ambit of the systems of perception applied to mobile
robotics constitute an area of significance in the last years and are already applied
in the field of cars and smart vehicles in real environments [5]. In the latter
domain, the main parameters to be supervised are safety related. This is the reason
why multi-sensor fusion approaches represent a valuable solution in the field of
autonomous driving vehicles. One of the most widely employed sensor in such
applications, alongside with cameras, is the LIDAR, which is highly useful in the
detection of the surrounding object and eventually able to prevent collisions. In
the particular thesis scope, its data is used in combination with different optical
sensors, i.e. cameras. The redundancy given by the multiple sensor system confers
to the vehicle a greater reliability and, as a consequence, the possibility to be
applied to real and urban contexts.

In this data-driven world, the application of Machine Learning (ML) algorithms
has become highly efficient and almost necessary. Efficient solutions to the problems
that involve a large amount of data seems to be difficult and cannot - easily -
be found anymore using traditional (non-deep) algorithms. The approach of ML-
oriented problem solving, which is based on an inductive strategy philosophy, suits
perfectly for this work ambitions; indeed, the adoption of artificial intelligence
is nowadays widely spread and the most common way to deal with autonomous
driving vehicle’s control [6].

1.2 Objectives of the dissertation

The main objective of this dissertation is to give the reader a broad and comprehen-
sive panoramic of the issues of computer vision and machine learning, as applied
to the case study in multi-sensory perception for mobile robots.

2

Introduction

In particular, the goals are to:

• assemble a sensory suite, using aluminum profile elements, that “fits" the
position of the cameras to be mounted on the mobile robotic platform and to
design tailored plastic cases to protect the sensors and fix them stably on the
profile;

• calibrate the available cameras and sensors correctly, calculating with ac-
ceptable accuracy the intrinsic and extrinsic parameters and their relative
orientation;

• collect large and varied data sets to feed a convolutional neural network (CNN)
for training;

• use convolutional neural networks (CNN) based methods for applying deep
learning techniques to human detection based on the collected data;

• explore the fusion data possibilities from different sensors to improve perception
and object detection performance.

1.3 Work performed and contributions
The entire work was carried out at the Institute of Systems and Robotics (ISR),
located at Polo 2 of the University of Coimbra (PT). In particular, the calibration of
the cameras and the assembly of the full apparatus took place at the Mechatronics
Laboratory located at floor 0 of the aforementioned institute. The recordings and
data collection took place outside of the laboratory, specifically in the corridors
of floors 0, 1, 2 and 4. The University’s contribution in providing me with all
the tools and sensors needed to carry out this thesis was also crucial and worth
mentioning. The performed work was firstly to assemble the apparatus by means of
a structure composed of aluminum profiles, made available by the University for the
Mechatronics Laboratory. After that, some pieces of plastic material, which were
previously designed thanks to the 3D-modeling software SolidWorks, were molded
with the function of protecting and housing the sensors. The next and crucial
step was to calibrate the sensors. The process took a lot of time and different
tries in order to obtain the most accurate estimation of the cameras parameters.

3

Introduction

In this precise phase, the presence of the LIDAR sensor was particularly crucial.
Once the whole apparatus was assembled and functional the next step was data
collection: the mobile platform was remotely guided to explore 4 different floors
of the building, while RGB and thermal cameras collected data. Then the data
were processed, so that they could be fed into the convolutional neural network
(CNN) and the results were collected. Finally, data from the two different optical
sensors were fused so that differences and improvements could be analyzed using
data fusion techniques from multi-sensor perception systems.

1.4 Organization of the thesis
The dissertation is divided in three main parts. The first two chapters (Introduction
and Related work) and the last one (Discussion and conclusion) are mainly
discursive and aim to present the work, the scientific context in which the work is
located, the discussion about the results and the future possible scenarios. The
third chapter (Computer vision basics and camera calibration) firstly gives
the reader an overview about the computer vision topic and, after that, it techni-
cally describes the calibration work done with the four sensors. The fourth chapter
(Dataset, experiments and results) explains how the data were collected, de-
scribes what the work was about in a practical way and depicts the results. In this
chapter there is also an important panoramic about the deep learning technique
used in the present work. At the end of this thesis the reader can also find three
different appendices: A) where the used sensors are briefly described, B) in which
there is the full apparatus setup explanation and C) for a deeper comprehension
about the point cloud-frame extraction.

4

Chapter 2

Related work

2.1 Multi-sensor perception systems

The state of art in the multi-sensor perception systems argument is, at the current
time, deeply varied and comprehensive. In this field, the main applications in
automotive and mobile robots concern human and object detection (and eventually
avoidance). Vision modules are able to detect nearby moving objects like pedes-
trians, bicyclists and vehicles. Modern systems can utilize the visual recognition
information to improve a tracking model selection, data association, and movement
classification. An example of this can be found in the work by Cho et al. [7]. The
results are proved to be very robust and reliable, exploiting the fused data coming
from two sensors (LIDAR and camera). In this way, it is possible to take as a
reference also the paper by Burlet and Dalla Fontana [8].

Other works focus their attention to the human recognition, putting an on-point
target in the pedestrian detection goal. These are set in an urban environment and
simulate the real daily application with mobile robots. One of these is the paper
that can be found in the bibliography at index [9], the work by Premebida et al. An
interesting comparison between two different data fusion architectures is examined:
a centralized and a decentralized one; the results highlight that the latter one led to
a more valuable performance. Another interesting work is [10], in which the authors
Yan et al. developed a functioning online transfer learning based on a multisensor
system, to the service of a mobile robot with the aim of human detection. The ML

5

Related work

Figure 2.1: Images taken from the article "A multi-sensor fusion system for
moving object detection and tracking in urban driving environments" by Cho et al.
[7]

algorithm is trained on a basis of "trajectory probability". The probability is used
to determine whether new detection belongs to a human trajectory or not. The
tests are conducted in a real-word environment and led to great results.

In [11], the authors Monteiro et al. have studied the classification problem
applied to different kind of dynamic obstacles: pedestrians and cars. In this
case, data of a LRF (Laser Range Finder) are combined with data coming from a
monocular camera. Again, the multi-sensor apparatus and the fusion of the sensors
data led to a working system for detecting, tracking and classifying objects in
outdoor environment.

To have a reference inherent also to automotive applications, the reader can
take a look at the work by Herpel et al. [12]. In this study, fusion paradigms are

6

Related work

Figure 2.2: Picture depicted in the work by Burlet and Dalla Fontana: "Robust
and efficient multi-object detection and tracking for vehicle perception systems using
radar and camera sensor fusion" [8]

(a) Mobile platform and sensor acquisition
from the work by Yan et al.: "Multisensor
online transfer learning for 3d lidar-based
human detection with a mobile robot"

(b) Detections taken from the work "Track-
ing and classification of dynamic obstacles
using laser range finder and vision" by Mon-
teiro et al.

Figure 2.3: Images used as a reference for two different kind of human and object
detection systems

used in reliable context perception for ADAS. The simulations results for different
settings of traffic scenarios, sensors set and fusion paradigms show advantages of
the low-level fusion paradigm in both overall tracking accuracy and false positive
detections.

Finally, another interesting work is the one by Premebida et al. [13], that shows
how to obtain depth maps starting from a 3D-LiDAR input. Depth maps are widely

7

Related work

used in the field of object detection and could result to be very useful for data
fusion purposes. The results are verified exploiting the KITTI database, showing
very positive performances of the approach introduced in the work.

Figure 2.4: Example of depth map from 3d-lidar data, work by Premebida et al.:
High-resolution lidar-based depth mapping using Bilateral filter [13].

2.2 Sensors calibration

Of the main references in the field of geometric calibration of optical sensors is
the work by Zhengyou Zhang [14]. This brilliant paper provides the scientific
community with a slim and easy method that returns a closed form solution with
a nonlinear refinement based on the maximum likelihood criterion. Almost all
algorithms incorporate this method’s practical applicability for camera calibration
in MATLAB and Python environments, like the one used in this thesis [15].

The state of the art in hybrid (LiDAR-camera) calibration systems is referred
in an article from 2021 that can be found in the bibliography at index [16]. It
reports an example of calibration using a pyramidal checkerboard pattern. This
latter work is taken as reference for the work developed in this thesis; in particular
because the lidar model differs only in the number of channels (64 vs 16) from the
equipment used in this thesis.

8

Related work

(a) Working principle schematic of the work
by Bu et al.: "Calibration of camera and
flash Lidar system with a triangular pyramid
target" [16]

(b) Image taken from the thermal camera
calibration process in the work by Liu et al.:
"Multiple methods of geometric calibration of
thermal camera and a method of extracting
thermal calibration feature points" [17]

Figure 2.5: Two of the works taken as a reference for camera calibration.

One of the few papers that treats the argument of FLIR camera (i.e. long-
wave infrared) calibration is the one written by Ruixuan Liu, Hengrui Zhang and
Sebastian Scherer in 2018 [17] and can be considered as the only one which offers
three easy-to-follow and practical methods to calibrate a thermal camera and that
overcome the issue of the non-optical sensor geometric calibration.

2.3 Machine learning applied to human detection
using mobile robotic platform

In the field of experimentation, it is common to use a mobile robot and mount on
it a multi-sensor perception system. The presented thesis follows this method and
takes as a reference different works in this sense. The first one is the article "A
Survey of Deep Learning Techniques for Mobile Robot Applications" [18], where
Shabbir and Anwer present a discussion of the applications, gains, and obstacles to
deep learning in comparison to physical robotic systems. In the end the research-
survey will show the shortcomings and solutions to mitigate them in addition to
discussion of the future trends. Furthermore, Lewandowski et al. in the work "A
Fast and Robust 3D Person Detector and Posture Estimator for Mobile Robotic

9

Related work

Applications" [19] depict a solution for human detection and posture classification
in the field of mobile platforms. In that project the robot is physically placed in a
challenging environment from the detection point of view, which is a supermarket.
For the purposes of the mentioned work, it has been used the depth sensor Kinect2.

(a) Frame extraction from the work by
Lewandowski et al. showing the mobile plat-
form perception system at work, detecting
two people and their different pose [19].

(b) Summary schematic of the system de-
picted in the work by Lee and An: "Real-
Time Human Action Recognition with a Low-
Cost RGB Camera and Mobile Robot Plat-
form" [20].

Figure 2.6: Pictures from works based on a mobile platform multi-sensor percep-
tion system.

In the work by Spiess et al. [21] a combination of RGB camera and depth
sensor is used to detect human people silhouettes. The results of the project can
be found in Figure 2.7 and show how the sensor data augmentation process leads
to a remarkable improvement in terms of accuracy.

Figure 2.7: Results in different weather and light conditions taken from the work
"People Detection with Depth Silhouettes and Convolutional Neural Networks on a
Mobile Robot" [21].

10

Related work

In the work published by Lee and Ahn [20], the authors have used some frame-
works to implement a skeleton-like structure extraction from RGB camera images.
This is done to improve the computational expense for the human detection and
applied to a mobile platform perception system. The work represents an innovative
way to approach the human detection problem and the results are particularly
promising and remarkable. A schematic of the working system is depicted in Figure
2.6b.

11

Chapter 3

Calibration of the sensors

3.1 Introduction to camera calibration

To correct lens distortion, quantify the size of an object in world units, and determine
the location of a camera in the picture, optical sensors have to be calibrated. Some of
the modern applications in existing computer vision applications demand geometry
calibration because they require an accurate translation map from 3-dimensional
object points to 2-dimensional picture points in order to function effectively. The
process of camera calibration is aimed to estimate a large number of parameters
of a physical camera. They can be computed through the comparison of some
key frames captured by the optical sensor, knowing the real dimension of the
objects depicted in those pictures. Usually the objects used to calibrate cameras
are checkerboards, since they have very sharp black and white edges, and a regular
shape.

Measurements on the images taken from the cameras, with reference to another
camera or a LiDAR, which are the main part of the data collection section of
this project, can be done after a successful calibration; moreover, since this work
is based on a multi-sensor system, it is necessary that each of the sensors gets
calibrated after being fixed on the aluminium support attached to the mobile robot
platform. This is due to the fact that the parameters to be extrapolated from
the calibration include the ones that define the orientation of the camera with
reference to a given system of coordinates; so, this orientation of the cameras must

12

Calibration of the sensors

be fixed before the calibration and never changed during the whole usage of the
sensors - otherwise the system has to be calibrated again. Consequently, if any
change is made to the mechanical setting of the system, then a re-calibration will
be necessary. In addiction to this, each camera presents some peculiar internal
parameters that are due to:

• differences in lens position (focal length, optical center, aperture)

• optical elements in the light path such as protective filters for the sensor

• signal transfer and A/D conversion

These factors impact on the image and must be taken into account in the recon-
struction of the 3D object starting from the picture of it. To do so, during the
camera calibration it is also important to extract a set of parameters that are
related to the internal structure of each sensor (the intrinsic parameters).

Therefore, it is possible to claim that after a successful calibration both the exact
orientation and position of each camera in the so called world reference system and
the internal (intrinsic and extrinsic) parameters of the cameras will be known.

3.2 Forward imaging model

Figure 3.1: Representation of world, camera and image coordinates.

The model to be described in this section is used to map points from the 3D
real world dimension to the 2D image plane. The world coordinate system is shown

13

Calibration of the sensors

in the Fig.3.1 and marked with the subscript w. The attention will be focused on a
single point of the real world for simplicity (i.e. point P). The camera is defined by
the camera coordinate frame denoted by the subscript c. The zc axis of the frame
is aligned with the optical axis of the camera. The focal length f is the distance
between the effective central projection and the image plane of the camera. Lastly,
the image coordinate frame is defined by the subscript i, and is a 2D coordinate
system located in the image plane.

Knowing the position and orientation of the camera coordinate frame with
respect to (w.r.t.) the world coordinate frame, it is possible to write an expression
that converts the point P in the world coordinate frame to its projection xi in the
image plane. The complete mapping is called forward imaging model.

This process will be decomposed in two sub-problems: to map from the world
coordinate frame to the camera coordinate frame and to map from the camera
coordinate frame to the image plane.

3.2.1 From the world coordinate frame to the camera co-
ordinate frame

The aim of this subsection is to describe the steps of transforming the xw coordinates
of point P to the xc coordinates in the camera reference system through a coordinates
transformation:

xw =

xw

yw

zw

 −→ xc =

xc

yc

zc

 .

To reach this objective it is indispensable to know the position and the orientation
of the camera w.r.t. the world coordinate frame. The position is given by the vector
cw in Fig. 3.1. The orientation is given by a rotational 3 × 3 matrix R. Those
two elements (which include 12 parameters) are the unknowns in our problem and
constitute the external parameters of the camera.

Knowing them, the camera-centric location of the point P in the world coordinate
frame is:

xc = R(xw − cw) = Rxw − Rcw = Rxw + t t = −Rcw

14

Calibration of the sensors

which can also be written in matrix form:

xc =

xc

yc

zc

 =

r11 r12 r13

r21 r22 r23

r31 r32 r33

xw

yw

zw

 +

tx

ty

tz

and, finally in homogeneous coordinates form:

x̃c =

xc

yc

zc

1

 =

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

xw

yw

zw

1

where the 4 × 4 matrix is called extrinsic matrix Mext. For the definition of
homogeneous coordinates the reader can refer to Subsection 3.2.2. Finally the
following equation sums up the conclusion that was achieved:

x̃c = Mextx̃w =
R3×3 t

01×3 1

 x̃w

3.2.2 From the camera coordinate frame to the image co-
ordinate frame

The aim of this subsection is to show how we can transform from the xc coordinates
of point P in the camera reference frame to the xi image coordinates.

xc =

xc

yc

zc

 −→ xi =
xi

yi

Once xc is computed, it is possible to apply the perspective projection to end up
with the 2D coordinates in the image plane. The projection equations are reported
in (3.1) and (3.2).

xi

f
= xc

zc

−→ xi = f
xc

zc

(3.1)

15

Calibration of the sensors

yi

f
= yc

zc

−→ yi = f
yc

zc

(3.2)

A further step is necessary to end up with the sensor output. In fact, the point
in the camera image has coordinates in pixels, not in millimeters. So, the actual
image coordinates in pixels will be given by:

u = mxxi = mxf
xc

zc

v = myyi = myf
yc

zc

where mx and my are the pixel densities along the x and y axis defined in pixels/mm.
Those parameters are unknown and their computation is a part of the calibration
problem. Following the completion of this part, it is feasible to state that the

coordinates in pixel of the projected point P in the image plane are u =
u

v

. The

assumption that the origin of the axis coincides with the optical center of the image
cannot be given for granted and is not true in general. The point in which the
optical axis pierces the image plane is called principal point and its coordinates
ox and oy are unknown. Differently from that point, usually the origin is placed
on the top-left corner of the sensor image (for indexing reasons). Said that, the
new equations to compute the point P pixel coordinates in the image plane are the
followings:

u = mxf
xc

zc

+ ox

v = myf
yc

zc

+ oy

Usually the two unknowns mx and f are combined together in a single parameter
fx, just as my and f in fy, being called focal lengths in pixels along the x and y
directions. The equations become

u = fx
xc

zc

+ ox (3.3)

v = fy
yc

zc

+ oy (3.4)

16

Calibration of the sensors

where the unknowns are (fx, fy, ox, oy) and are called intrinsic parameters of the
camera, representing the internal geometry of the camera.

Since the previous equations are nonlinear (the term zc is at the denominator) it
is usual to linearize them exploiting the homogeneous coordinates. The homogeneous
representation of a 2D point u=(u,v) is a 3D point ũ=(ũ,ṽ,w̃) where the third
coordinate is fictitious such that u = ũ

w̃
and v = ṽ

w̃
. So all the points that belong to

the line starting from the origin and crossing the point u=(u,v,1) in the 3D space
can be considered as homogeneous representation of the same 2D point u=(u,v).
This leads to:

u ≡

u

v

1

 ≡

w̃u

w̃v

w̃

 ≡

ũ

ṽ

w̃

 = ũ

for every w̃ /= 0. If we choose a convenient value for w̃ these considerations can be
used to linearize Eq. (3.3) and Eq. (3.4):

u

v

1

 ≡

ũ

ṽ

w̃

 ≡

w̃u

w̃v

w̃

 ≡

zcu

zcv

zc

 =

fxxc + zcox

fyyc + zcoy

zc

Finally it is possible to convert this in a multiplication between a 3×4 matrix
which includes the intrinsic values and the homogeneous coordinates of the point
in camera frame, leading to:

u

v

1

 ≡

zcu

zcv

zc

 =

fxxc + zcox

fyyc + zcoy

zc

 =

fx 0 ox 0
0 fy oy 0
0 0 1 0

xc

yc

zc

1

The matrix is called intrinsic matrix Mint and includes all of the intrinsic
parameters of the camera. After all these considerations it is possible to conclude
this subsection with the following equation:

ũ = Mintx̃c

17

Calibration of the sensors

3.2.3 Errors in camera calibration

The main source of accuracy loss in single camera calibration comes from the so-
called reprojection error, which is the distance between a pattern keypoint detected
in a calibration image and a corresponding world point projected into the same
image. This error depends on the quality of the camera calibration and the quality
of the marked point on the images. It should have a value smaller than 1 pixel but,
in some circumstances, values that are a little bigger than 1 pixel can be considered
acceptable.

The mean re-projection error is a number that indicates the quality of the
calibration. In the following images there is a graphical representation of it.

(a) (b)

Figure 3.2: Original and re-projected points visualization.

In Fig. 3.2 the image points are marked with a cross and the reprojected ones
with a circle. If they are very far one from each other, the calibration was not very
good and in some cases needs to be done again, maybe choosing better images and
improving the pose and the distance from the camera of the checkerboard. In the
calibration images taken as example in the Fig. 3.2 the process was very accurate
and lead to a mean reprojection error of 0.1636 pixels. It’s a very impressive result
picked from the MATLAB documentation. The results presented in this work are
close to the one seen in this example except for the thermal camera for reasons
that will be explained in Chap. 3.5. In the majority of the cameras, including the
ones used in this work, the focal length and the shutter time can be set. These

18

Calibration of the sensors

parameters contribute to the success of the calibration, thus in case of problems
with too significant reprojection error it is suggested to set them better in order to
get higher image quality.

3.3 RGB camera calibration

Figure 3.3: Set of collected frames (the images are visualized in black and white).

After correctly collected the dataset made of 15 relevant frames (Fig.3.3), the
calibration can start based on the MATLAB function estimateCameraParameters
in the following way:

1 % Create a s e t o f c a l i b r a t i o n images .
2 images = imageDatastore (f u l l f i l e (’C: \ Users \ f e d e r \Desktop\ D i s s e r t a t i o n

\01− Ca l i b ra t i on \ c a l i b rgb\img ’)) ;
3 imageFileNames = images . F i l e s ;
4

5 % Detect c a l i b r a t i o n pattern .

19

Calibration of the sensors

6 [imagePoints , boardSize] = detectCheckerboardPoints (imageFileNames) ;
7

8 % Generate world coo rd ina t e s o f the co rne r s o f the squares .
9 squareS i z e = 8 1 . 4 ; % m i l l i m e t e r s

10 worldPoints = generateCheckerboardPoints (boardSize , squareS i z e) ;
11

12 % Cal ib ra t e the camera .
13 I = readimage (images , 1) ;
14 imageSize = [s i z e (I , 1) , s i z e (I , 2)] ;
15 [params , ~ , e s t imat i onEr ro r s] = estimateCameraParameters (imagePoints ,

worldPoints , ’ ImageSize ’ , imageSize) ;
16

17 %extr v i s u a l i z a t i o n
18 f i g u r e (1) ;
19 showExtr ins i c s (params , ’ CameraCentric ’) ;
20 f i g u r e (2) ;
21 showExtr ins i c s (params , ’ PatternCentr i c ’) ;
22 f i g u r e (3) ;
23 showRepro ject ionErrors (params) ;
24

25 %save
26 save (’ ca l ib_data ’) ;

The results are saved in the "calib_data.mat" file and the extrinsic parameters
are visualized in two different modes, which are camera-centred (Fig.3.4) and
board-centred. Moreover, a chart showing the reprojection error for each image
will be also visualized. Thanks to this, some images can be suppressed and not
used in order to lower the average error (see Fig.3.5).

Figure 3.4: Camera-centered visualization
of extrinsic parameters

Focal length 1180.2
1180.3

Principal point 633.01
511.59

Image size 1024
1280

Table 3.1: Intrinsic parameters
of RGB camera

The intrinsic parameters which are of the focal length, principal point and image
size will be reported in the Table 3.1. Another way to visualize the reprojection

20

Calibration of the sensors

Figure 3.5: Reprojection errors before
and after images suppression

Figure 3.6: Scatter plot reprojection
errors

errors is using a scatter plot like the one shown in the Fig.3.6, in which every
different color represents a different image and every single point represents a
reprojected point. To do this, the previous MATLAB command has been used
to set an additional parameter: showReprojectionErrors(params,’ScatterPlot’) .
Thanks to the suppression of the worst images for the calibration a final value of
average reprojection error of 0.0772 was obtained and can be considered acceptable.

3.4 NIR camera calibration
Since RGB and NIR cameras are very similar the procedure is identical and the
expected results should be comparable in terms of errors. The script used is the
same as in the Chapter 3.3 and the results are reported here. The NIR calibration
dataset can be found in Fig. 3.7.

The dataset has a reduced number of images with respect to the previous case,
thus for our purpose it is not necessary to have a very accurate calibration, and
considering the results from the RGB camera calibration, it is possible to settle for
a rougher calibration. This choice was made also to improve the computing time.

For this reason there was no need to suppress any image, and the results confirm
this assertion, returning a still acceptable final value of mean reprojection error
equal to 0.1411 px, as can be seen in Fig. 3.8 and in Fig. 3.9.

21

Calibration of the sensors

Figure 3.7: Dataset of 9 frames used for the NIR camera calibration.

Figure 3.8: Reprojection errors
Figure 3.9: Scatter plot reprojection
errors

The intrinsic parameters are reported in Table 3.2, while the extrinsic ones are
visualized in Fig.3.10.

22

Calibration of the sensors

Figure 3.10: Camera-centered visualization
of extrinsic parameters

Focal length 1178.5
1179.7

Principal point 628.65
532.69

Image size 1024
1280

Table 3.2: Intrinsic parameters
of NIR camera

3.5 Thermal camera calibration

In the calibration of the thermal camera there is an additional challenge. This
is due to the fact that the edges on the checkerboard are detected only by the
color cameras (since the difference between the squares is, in fact, related to the
gray-level or color intensity). It is therefore necessary to find a way to make the
FLIR-camera able to "see" the edges on the checkerboard.

One way to reach this goal is to exploit the different emissivity of the colors
white and black on the checkerboard. The board was exposed to the direct sunlight
of the lunchtime of the city of Coimbra during spring. An hour was more than
enough to reach a proper heating of the panel. In this way, the black squares of the
checkerboard absorbed more energy than the white ones, resulting in a different
infra-red light emission that can be sensed by the FLIR.

Of course, the expected image of the checkerboard will be less clear and the
edges between the squares less defined and sharp. This will be translated in a
poorer calibration that needs to be set in a more precise way than in the other two
calibrations analysed.

To do this, a calibration app [15] running on MATLAB was brought into play.
This allows the user to manually select the corners of the checkerboard and to
manually set parameters like the width and height of the window size of the corner

23

Calibration of the sensors

finder in the toolbox algorithm.

Figure 3.11: Dataset of 14 frames extracted for the thermal camera calibration.

This time, it was used an initial set of 14 images that can be visualized in the
Fig.3.11. In the Figure 3.12, the corner points are projected by the algorithm,
based on the number of squares of the checkerboard and the position of the four
extreme corners, which was manually selected.

After a first calibration, the mean error returned by the algorithm results to be
equal to [1.51, 1.56] (using this method the error is decomposed in error along the x
and y direction), which cannot be considered acceptable (norm([1.51, 1.56]) = 2.16).

In order to reduce this error the calibration is more finely set and the following
steps have been taken:

• the window size of the corner finder are set to [wintx, winty] = [3, 3] from an
initial value of [5, 5];

• the images with the major reprojection errors are suppressed resulting in a set

24

Calibration of the sensors

Figure 3.12: Corner points

of 10 used images as following: imgactive = [1, 2, 4, 5, 6, 9, 10, 11, 12, 14].

The calibration is still not very accurate as in the previous cases, like is shown
in the extracted points in the Fig.3.13, but the reprojection error is lowered down
to [0.72, 0.76], which has a norm value of norm(e) = 1.04 that can be considered
acceptable. This can be noticed also in Fig. 3.14, showing that also in a different
image the reprojected points are in average not precise as in the calibration of the
other cameras. In the Table 3.3 the difference in mean reprojection errors among
the three cameras can be evaluated.

RGB 0.07
NIR 0.14
FLIR 1.04

Table 3.3: Summary of the mean reprojection errors (pixels)

For a supplementary investigation the reader can also take the scatter plot
shown in Fig. 3.15 as a reference. About the extrinsic parameters, it is convenient
to visualize them as camera-centered as usual. They are pointed out in Fig. 3.16.
Finally, the intrinsic parameters are reported in the Table 3.4.

25

Calibration of the sensors

Figure 3.13: Extracted points

Figure 3.14: Reprojected points in image 001.jpg

3.6 LiDAR-RGB camera calibration

About the Velodyne®LIDAR VLP-16 calibration, the process is different with
respect to the other camera sensors. The internal parameters are already calibrated

26

Calibration of the sensors

Figure 3.15: Scatter plot for reprojection error in thermal camera calibration

Figure 3.16: Camera centered visualization
of thermal camera external parameters

Focal length 749.4
762.84

Principal point 384.84
282.69

Image size 512
640

Table 3.4: Intrinsic parameters
of FLIR thermal camera

by the manufacturer in advance. The fundamental part is then to link the 3-D
Lidar points and the 2-D camera images. In summary, the aim of this part of the
calibration section is to obtain a rigid transformation matrix T which maps from

27

Calibration of the sensors

the reference coordinate system of one of the cameras (i.e. RGB camera) to the
coordinate system of the Lidar sensor. In order to do this MATLAB provides an
useful function included in the Lidar toolbox:

1 [tform , e r r o r s] = estimateLidarCameraTransform (ptCloudPlanes ,
imageCorners) ;

where the input parameters are:

1. ptCloudPlanes | P-by-1 array of pointCloud objects | each pointCloud object
must contain points that represent a checkerboard;

2. imageCorners | 4-by-3-by-P array | each row of a channel is in the form [x y

z] of a checkerboard corner extracted from the corresponding camera image;

and the outputs are a rigid 3D map and error data that will be later analyzed.

3.6.1 Extraction of checkerboard from point Clouds
The first step is to extrapolate relevant frames starting from a whole VeloView®
recording (VeloView® is the software used to visualize and record the output of
the lidar scan). To do this, a little script was developed and can be found in the
appendix.

To detect the checkerboard starting from a point cloud will be exploited the
following function implemented in MATLAB:

1 ptCloudPlanes = detectRectangu larPlanePo ints (ptCloudIn ,
planeDimensions , . . .)

In particular, it is used in the following script:

1 c a l i b f o l d e r = ’C: \ Users \ f e d e r \Desktop\ D i s s e r t a t i o n \01− Ca l i b ra t i on \
c a l i b rgb−l i d a r ’ ;

2 pcd fo ld e r = f u l l f i l e (c a l i b f o l d e r , ’ 4\pcd ’) ;
3 ptCloud = pcread (f u l l f i l e (pcd fo lder , ’ 11 . pcd ’)) ;
4

5 pcshow (ptCloud)
6 t i t l e (’ Input Point Cloud ’)

28

Calibration of the sensors

7 xlim ([−5 1 0])
8 ylim ([−5 1 0])
9

10 s q s i z e =81.4;%mm
11 padding =[53 57 60 5 3] ;%mm
12 boardSize = [6∗ s q s i z e+padding (2)+padding (4) 9∗ s q s i z e+padding (1)+

padding (3)] ;
13 mindist =0.2 ;
14 t o l =0.1 ;
15 ROI=[−2.3 2 −3.3 6 −1 1] ;
16

17 l idarCheckerboardPlane = detectRectangu larPlanePo ints (ptCloud , . . .
18 boardSize , ’RemoveGround ’ , true , ’ DimensionTolerance ’ , to l , . . .
19 ’ROI ’ ,ROI , ’ MinDistance ’ , mindist) ;
20

21 %v i s u a l i z a t i o n part
22 hRect = f i g u r e ;
23 panel = u ipane l (’ Parent ’ , hRect , ’ BackgroundColor ’ , [0 0 0]) ;
24 ax = axes (’ Parent ’ , panel , ’ Color ’ , [0 0 0]) ;
25 pcshow (l idarCheckerboardPlane , ’ Parent ’ , ax)
26 t i t l e (’ Rectangular Plane Points ’)
27 f i g u r e
28 pcshowpair (ptCloud , l idarCheckerboardPlane)
29 t i t l e (’ Detected Rectangular Plane ’)
30 xlim ([−5 1 0])
31 ylim ([−5 1 0])

The parameters have been set in this way:

• boardsize: differently from the other cameras calibration, here it is necessary
to compute the dimensions of the whole checkerboard, including the padding
if present; in the checkerboard used in this work (see Fig. 3.17) the measured
padding dimensions are [53 57 60 53] mm;

• mindist: clustering threshold for two adjacent points, high in case of low
resolution lidars; in this case was set to 0.2;

• tol: tolerance for uncertainty in rectangular plane dimensions; set to 0.1;

• ROI: region of interest; is used to save computational memory; the algotithm
will look for the checkerboard only in the selected area expressed in the form
[xmin xmax ymin ymax zmin zmax] = [−2.3 2 − 3.3 6 − 1 1]

The final part of the script is used to visualize the rectangular plane as can be
seen in the Fig. 3.18a and 3.18b. This procedure is then repeated for the whole

29

Calibration of the sensors

Figure 3.17: Checkerboard and padding vector parameters

(a) Rectangular plane points highlighted in
the point cloud

(b) Detected rectangular plane

Figure 3.18: Checkerboard visualization for pointcloud "11.pcd" of the dataset

dataset of pointclouds in order to have an array of detected rectangular planes.

30

Calibration of the sensors

3.6.2 Extraction of checkerboard corners from the camera
images

The next ingredient for the Lidar calibration is an array of the coordinates in the
3D world of the four corners of the checkerboard, for each of the images. To get
this the following function will be exploited:

1 imageCorners3d = est imateCheckerboardCorners3d (I , camera In t r in s i c ,
checkerS i ze , . . .)

which needs as input parameters:

• I: image file

• cameraIntrinsic: intrinsic parameters (we know them from the prior RGB
camera calibration

• checkerSize: size of the checker (81.4mm)

• Padding: this is a necessary ‘Name-Value’ argument, since the checkerboard
of this work has a non-zero padding value([53 57 60 53], see Fig. 3.17)

and outputs as a matrix the coordinates of the four corners. The following script
does all the work:

1 image = imread (’C: \ Users \ f e d e r \Desktop\ D i s s e r t a t i o n \01− Ca l i b ra t i on \
c a l i b rgb−l i d a r \4\ img \11 . png ’) ;

2

3 %i n t r i n s i c eva lua t i on
4 f c =[1180.2 1 1 8 0 . 3] ;
5 cc =[633.0 5 1 1 . 6] ;
6 n=[1280 1 0 2 4] ;
7 i n t r i n s i c = c a m e r a I n t r i n s i c s (fc , cc , n) ;
8

9 %params eva lua t i on
10 s q s i z e = 8 1 . 4 ;%mm
11

12 %corne r s e x t r a c t i o n
13 boardCorners = est imateCheckerboardCorners3d (image , i n t r i n s i c , s q s i z e , ’

Padding ’ , [5 3 57 60 5 3]) ;
14

31

Calibration of the sensors

15 %v i s u a l i z a t i o n
16 imPts = projectLidarPointsOnImage (boardCorners , i n t r i n s i c , r i g i d 3 d ()) ;
17 J = undistort Image (image , i n t r i n s i c) ;
18 imshow (J)
19 hold on
20 p lo t (imPts (: , 1) , imPts (: , 2) , ’ . r ’ , ’ MarkerSize ’ ,30)
21 t i t l e (’ Detected Checkerboard Corners ’)
22 hold o f f

and visualizes the corners on the image in the end as shown in the Fig.3.19. Similarly

Figure 3.19: Corner extracted and visualized on the image

to the rectangular plane extraction, these matrices will be gathered in a single
array with one channel for each image.

32

Calibration of the sensors

3.6.3 Estimation of rigid transformation lidar-camera and
results

After the collection of the arrays ptCloudPlanes and imageCorners it is now
possible to use the function estimateLidarCameraTransform which returns the
following transformation matrix

T =
R 0

t 1

 =

0.9999 0.0096 0.0089 0

−0.0088 −0.0110 0.9999 0
0.0097 −0.9999 −0.0110 0

−0.0872 −0.1186 −0.0187 1

The other output of the function is a structure containing three different errors:

• Translation error: the difference between the centroid coordinates of checker-
board planes in the point clouds and those in the images

• Rotation error: the difference between the normal angles defined by the
checkerboard planes in the point clouds (lidar frame) and those in the images
(camera frame)

• Reprojection error: the difference between the projected (transformed)
centroid coordinates of the checkerboard planes from the point clouds and
those in the images

and all of these can be visualized in the Fig.3.20.
From this visualization it is easy to see and exclude the three image-point

cloud couples which are characterized by the worst translational, rotational and
reprojection error. This leads to a new dataset of 8 frames with the errors shown
in Fig.3.21.

3.6.4 Lidar-RGB camera calibration validation
Before passing to the next step of the work it is important to validate the obtained
results in the lidar-camera calibration, to check if the computed transformation
matrix works properly. To do this, all the theoretical knowledge depicted in Chap.
3.2 will be applied to the images. The point cloud-image couples used in Chap. 3.6

33

Calibration of the sensors

(a) Translation error

(b) Rotation error

(c) Reprojection error

Figure 3.20: First dataset error
visualization

(a) Translation error

(b) Rotation error

(c) Reprojection error

Figure 3.21: Final dataset error
visualization

will be taken as a reference. Firstly, a reference point was chosen for each frame.
The coordinates of the selected points in the Lidar world frame were extracted
and saved in a .txt file that is reported in the Table 3.5, and can be used by the
reader to test the following scripts. These are what have been previously called xP

coordinates.

The remaining job is to transform these points in image points exploiting
the transformation matrix T from the Chap. 3.6 and the RGB camera intrinsic
parameters from the Chap. 3.3. There are some differences with the formulae
presented in Chap. 3.2 due to the fact that the calibration algorithms used in this
work output the transpose matrices of the theoretical ones. So, in order to use
these, the points coordinates will be computed as row vectors instead of column

34

Calibration of the sensors

Figure 3.22: Image point estimated
coordinates are marked by a red

circle (top-right corner)

xP yP zP
1 0.397 3.943 0.347
2 0.374 3.891 0.619
3 0.122 3.958 0.770
4 0.065 4.365 0.382
5 0.397 3.618 0.318
6 0.405 2.333 0.547
7 0.404 2.416 0.566
8 0.378 2.536 -0.045
9 0.357 5.036 0.442

10 0.280 5.091 0.267
11 0.466 5.013 0.440
12 0.058 5.208 0.456
13 0.569 4.181 0.369
14 0.642 1.967 0.478
15 0.101 2.328 0.453

Table 3.5: Reference points
coordinates (one point for each

frame)

and the multiplication with the matrices will be a right-hand side multiplication.
The code used in MATLAB is the following:

1 c a l i b f o l d e r =(’C: \ Users \ f e d e r \Desktop\ D i s s e r t a t i o n \01− Ca l i b ra t i on \
c a l i b rgb−l i d a r \4\ ’) ;

2 t x t f o l d e r =(f u l l f i l e (c a l i b f o l d e r , ’ txt \ ’)) ;
3 img fo lde r =(f u l l f i l e (c a l i b f o l d e r , ’ img\ ’)) ;
4

5 Points=readmatr ix ([t x t f o l d e r , ’ po in t s . txt ’]) ;
6 nframes=length (Points (: , 1)) ;
7

8 load (f u l l f i l e (c a l i b f o l d e r , ’ r e s u l t s . mat ’)) ;
9 load (f u l l f i l e (imgfo lder , ’ ca l ib_data . mat ’) , ’ params ’) ;

10

11 M_int=params . I n t r i n s i c M a t r i x ;
12 T=tform .T;
13

14 f o r i =1:1 : nframes

35

Calibration of the sensors

15 x_point=[Points (i , :) 1] ; %homogeneous coord inate
16 x_cam=x_point∗T; x_cam=x_cam (1 : 3) ;
17 x_image=x_cam∗M_int ; x_image=x_image/x_image (3) ; %d i v i s i o n by the

s c a l e f a c t o r wt i l d e
18 x_image=x_image (1 : 2) ;
19

20 path=s p r i n t f (’%s%02d . png ’ , imgfo lder , i) ;
21 f i g u r e (i)
22 imshow (path)
23 hold on
24 p lo t (x_image (1) , x_image (2) , ’ or ’) ;
25 ax i s on
26 end

In the end of the code there is a part that visualizes the original images and the

corresponding projected reference point with coordinates u =
u

v

.

The results can be visualized in two examples reported in the Fig. 3.22. In both
of them the reference point is the top-right corner, and it is possible to affirm that
the estimation is accurate enough to proceed to the next part of the work.

3.7 FLIR-RGB camera calibration

It can be useful to understand the relative position of the two sensors used in this
work, so this section will be focused on a quickly exploration of a method to find the
orientation and the translation vector of the RGB camera with respect to the FLIR
camera and vice-versa. The starting point is the general frame transformation
formula that is the following:

xc = Rcxw + tc (3.5)

which converts the coordinates of a point in the world reference system xw into
the coordinates of the same point with reference to a different reference system (in
our case of a generic camera) xc using the rotation matrix Rc and the translation
vector tc. From (3.5) it is possible to do the following computations for our specific

36

Calibration of the sensors

cameras reference systems:
xth = Rcthxw + tcth

=⇒ R−1
cth

(xcth − tcth
) = xw

xrgb = Rcrgbxw + tcrgb

(3.6)

with xth, xrgb the coordinates in the cameras’ frames, Rcth , Rcrgb the rotation matri-
ces (considered here always invertible), tcth

, tcrgb
the translation vectors. Remember

that Rci
and tci

are known from the camera calibration and are the external param-
eters of the two cameras. Now it is trivial to express the coordinates of a camera
with respect with the ones of the other:

xrgb = RcrgbR−1
cth

(xth − tcth
) + tcrgb

= RcrgbR−1
cth

xth − RcrgbR−1
cth

tcth
+ tcrgb

(3.7)

and, with the notation
Rth2rgb = RcrgbR−1

cth

and
tth2rgb = −RcrgbR−1

cth
tcth

+ tcrgb

equation (3.8) is obtained, which results to be a direct connection between the two
reference systems of the two cameras.

xrgb = Rth2rgbxth + tth2rgb (3.8)

3.7.1 FLIR-RGB camera calibration validation

In order to validate the results obtained in the previous subsection and the ones
obtained in the FLIR calibration, a procedure similar to the one seen in the
subsection 3.6.4 will be performed. In particular, will be added a further step to
that algorithm:

1. transform the world coordinates of a point (thanks to the lidar scan) to
the coordinates of the point with respect to the RGB-camera thanks to the
external parameters of the camera;

2. transform the RGB-camera point coordinates to the 2D image coordinates

37

Calibration of the sensors

thanks to the internal parameters of the camera and project them on the
image to see if the point is at the corner of the checkerboard;

3. transform the RGB-camera point coordinates to the FLIR-camera point
coordinates thanks to the equation (3.8) and its inverse;

4. transform the FLIR-camera point coordinates to the 2D image coordinates
thanks to the internal parameters of the camera and project them on the
image to see if the point is at the corner of the checkerboard.

Notice that only step 3) and 4) are new with respect to the RGB camera calibration
validation.

1 c l e a r
2 c l o s e a l l
3 c l c
4

5 %f o l d e r s c o n f i g u r a t i o n
6 c a l i b f o l d e r =(’C: \ Users \ f e d e r \Desktop\ D i s s e r t a t i o n \03− Ca l i b ra t i on \

ca l i b −f i n a l ’) ;
7 t x t f o l d e r =(f u l l f i l e (c a l i b f o l d e r , ’ txt \ ’)) ;
8 th img fo lde r =(f u l l f i l e (c a l i b f o l d e r , ’ thermal \png\ ’)) ;
9 rgb imgfo lde r=(f u l l f i l e (c a l i b f o l d e r , ’ rgb\png\ ’))

10

11 %read ing o f the r e l e v a n t po in t s from a text f i l e
12 Points=readmatr ix ([t x t f o l d e r , ’ po in t s . txt ’]) ;
13 nframes=length (Points (: , 1)) ;
14

15 %load i n t e r n a l and e x t e r n a l parameters o f the two cameras
16 load (f u l l f i l e (c a l i b f o l d e r , " rgbparams . mat ")) ;
17 tform_rgb=tform ; R_rgb=tform .R(: , : , 1) ; t_rgb=tform . t (: , 1) ;
18 M_int_rgb=params . In te rna lMatr ix ;
19 load (f u l l f i l e (c a l i b f o l d e r , " f l i r p a r a m s . mat ")) ;
20 tform_th=tform ; R_th=tform .R(: , : , 1) ; t_th=tform . t (: , 1) ;
21 M_int_th=params . In te rna lMatr ix ;
22

23 %compute the r o t a t i o n and t r a n s l a t i o n parameters
24 R_th2rgb=R_rgb∗ inv (R_th) ;
25 t_th2rgb=−R_rgb∗ inv (R_th) ∗t_th+t_rgb ;
26 th2rgb=r i g i d 3 d (R_th2rgb , t_th2rgb) ;
27 rgb2th=inv (th2rgb) ;
28

29 f o r i =1:1 : nframes
30 x_point=[Points (i , :) 1] ; %homogeneous coord inate
31 x_rgb=x_point∗ tform_rgb .T;

38

Calibration of the sensors

32 x_rgb=x_rgb (1 : 3) ;
33 x_th=x_rgb∗ rgb2th .T;
34 x_th=x_th (1 : 3) ;
35 x_im_th=x_th∗M_int_th ; x_im_th=x_im_th/x_im_th (3) ;%d i v i s i o n by

the s c a l e f a c t o r wt i l d e
36 x_im_th=x_im_th (1 : 2) ;
37 x_im_rgb=x_rgb∗M_int_rgb ; x_im_rgb=x_im_rgb/x_im_rgb (3) ;
38 x_im_rgb=x_im_rgb (1 : 2) ;
39

40 path_rgb=s p r i n t f (’%s%03d . png ’ , rgb imgfo lder , i) ;
41 path_th=s p r i n t f (’%s%03d . png ’ , th imgfo lder , i) ;
42 f i g u r e (i)
43 subplot (2 , 1 , 1)
44 imshow (path_th)
45 hold on
46 p lo t (x_im_th (1) ,x_im_th (2) , ’ or ’) ;
47 ax i s on
48 subplot (2 , 1 , 2)
49 imshow (path_rgb)
50 hold on
51 p lo t (x_im_rgb (1) ,x_im_rgb (2) , ’ or ’) ;
52 ax i s on
53 end

This returns the images shown in Fig. 3.23.

Figure 3.23: The correspondence between the red dot in the left image and in the
right one shows how the thermal camera parameters and the relative orientation
with respect to the RGB one are valid and usable.

39

Chapter 4

Dataset, experiments and
results

4.1 Machine Learning

The field of study that gives computers the ability to learn
without being explicitly programmed.

Arthur Samuel, IBM

Over the past decades, interest around Machine Learning (ML) related topics
has risen in a considerable way. It is discussed in a wide variety of fields, from
computer science classes to business conferences. Machine learning is essentially
the use of algorithms to extract information from unstructured data and represent
it in a model. This model is used to draw conclusions about additional data that
we have not yet modeled.

To give a high-level insight of a ML formulation, in the domain of linear algebra,
the main interest is in solving linear equations in the form:

Ax = b

where A is a matrix of our set of input row vectors, b is the column vector of labels
for each vector in the A matrix and x is called parameter/feature vector. In a very

40

Dataset, experiments and results

simplistic manner a machine learning algorithm has his main goal in minimizing
the error of this equation through optimization.

In optimization, the objective is to iteratively change the values in the x column
vector until a good set of values is discovered, that produces results that are as
accurate as possible. After, the loss function determines the error (depending on
the actual outcome, as illustrated previously as the b column vector), each weight
in the weight matrix will be modified. This is called parameter optimization. It
can be seen like a scientific method:

1. formulate a hypothesis: choose a set of weights;

2. test against reality: use the weights in the problem;

3. refine hypothesis and repeat: iterate the process to minimize the error.

4.1.1 How to evaluate a model

In order to understand how well a model gives the correct classification and
to measure the value of a prediction, generally the following parameters (i.e.
performance metrics) are employed.

Confusion matrix

The confusion matrix is a table where the predictions and the actual outcomes for
a classifier are compared.

P’ (Predicted) N’ (Predicted)
P (Actual) True Positive False Negative
N (Actual) False Positive True Negative

Table 4.1: Definition of confusion matrix.

We measure these values in the following way:

• True positives [TP]: positive prediction, label was positive

• False positives (a.k.a. type I errors) [FP]: positive prediction, label was
negative

41

Dataset, experiments and results

• True negatives [TN]: negative prediction, label was negative

• False negatives (a.k.a. type II errors) [FN]: negative prediction, label was
positive

Sensitivity or Recall

Also called true positive rate, this parameter quantifies how well the model avoids
false negatives:

Sensitivity = TP

TP + FN

Specificity

In the contrary, this parameter quantifies how well the model avoids false positives:

Specificity = TN

TN + FP

Accuracy

In the most general definition, accuracy is the degree of closeness of measurements
of a quantity to that quantity’s real value:

Accuracy = TP + TN

TP + TN + FP + FN

Precision

Also called positive prediction value, it differs from the accuracy parameters since
it only compares the positive predictions:

Precision = TP

TP + FP

It is possible to have a model which is accurate but not precise, and vice-versa. We
consider a model good if it is both.

42

Dataset, experiments and results

F1

The F1 score is the harmonic mean of both the precision and sensitivity measures
into a single score:

F1 = 2TP

2TP + FP + FN

In binary classifications it is common to use this parameter to evaluate the model’s
accuracy. Its value goes from 0 to 1 and we consider acceptable those values which
are close to the 1.

4.1.2 Deep Learning

A type of machine learning based on artificial neural networks
in which multiple layers of processing are used to extract
progressively higher level features from data.

Definition from Oxford Languages

Deep Learning has evolved gradually through the years, which made it difficult
to define properly. In the present state of art, it is possible to state that a DL
algorithm is a neural network with a large number of parameters and layers in one
of the following four fundamentals architectures:

• unsupervised pretrained networks

• convolutional neural networks (CNNs)

• recurrent neural networks

• recursive neural networks

One of the many advantages deep learning provides over conventional machine
learning algorithms is ‘automatic’ feature extraction. This means that the network
can determine which properties of a dataset can be used as indicators to accurately
label that data. That is the reason why deep learning is usually employed in the
fields of: computer vision, natural language processing, sound recognition, face
recognition, self-driving cars.

43

Dataset, experiments and results

As a further proof of the deep learning algorithms’ potentiality, it will be reported
here an example of modern application regarding the Covid-19 pandemic and how
the AI helped us in the fight against the virus.

Shorten et al. reported in the article [22] how deep learning algorithms have
been employed in different applications during the recent years’ pandemic:

• Natural Language Processing: it has been crucial to analyse written data
like Covid-19 clinical reports, but also to understand and categorize public
questions (i.e. coming from media and social networks) in order to figure out
what the public is concerned about with respect to the pandemic;

• Literature Mining: the most popular open literature dataset CORD-19
contains over 128,000 papers. From this datum it’s easy to deduct that a
simple human-driven search could result difficult and could be useful a little
help coming from ML algorithms and neural networks. The tools developed
are the following and all of them use deep learning techniques: CO-search,
Covidex, SLEDGE, CAiRE-COVID;

• Misinformation Detection: the SARS-CoV-2 and COVID-19 infodemic’s
information dissemination has been chaotic. Numerous studies have developed
categorization models to flag tweets that might include false information. One
of the most effective algorithms [23] labels tweets according to 7 question labels
(contains a verifiable factual claim? is likely to contain false information? is of
interest to the general public? is potentially harmful to a person, a company,
a product, or society? requires verification by a fact-checker? poses a specific
kind of harm to society? requires the attention of a government entity?). The
output labels are misinformative, informative or irrelevant.

For sake of completeness, here will be reported the other applications of DL during
the pandemic that won’t be discussed in this work. The reader can find a further
exploration in the article [22] about:

• Medical Images Analysis;

• Ambient Intelligence;

• Vision-based Robotics;

44

Dataset, experiments and results

• Precision Diagnostics;

• Protein Structure Prediction;

• Drug Repurposing;

• Epidemiology.

Convolutional Neural Networks (CNN)

To give an overview of the potentiality of the CNNs it is enough to start from
the birth them. Every year, during the ImageNet challenge, teams of researchers
compete in the attempt to classify images into one of the possible 200 classes given
a training dataset of about 450,000 images. No surprise, this event is considered the
"Olympics of Computer Vision" [24]. The goal of the competition is to encourage
development in the field of Computer Vision algorithms to compete with the
accuracy of human vision itself (about 95%).

In 2011, the winner of the ImageNet benchmark managed to achieve a result of
25.7% as error rate, making a mistake on one out of four images. It was quite far
from humans’ recognition capacity, but much better than random guessing. Then
in the next year, Alex Krizhevsky from Geoffrey Hinton’s lab at the University of
Toronto has been a game changer: pioneering a deep learning architecture known
as convolutional neural network easily won the competition, with just some months
of work, with an error rate of approximately 16%. His network, called AlexNet,
put Deep Learning on the map for computer vision and significantly changed the
sector.

To describe properly a convolutional neural network the definition will be divided
in two parts: convolution and neural networks. Let’s start from the latter.

Neural Network is a computational model that takes inspiration from the
animals’ brain. In the great part of mammals’ encephalon the vision (just like all of
the mind’s tasks) works thanks to specific cells called neurons (Fig. 4.1) which are
connected with each other through a dense net. They exist to communicate with
one another and pass electro-chemical impulses by means of synapses, as long as
the impulse is strong enough to activate the release of ions across the synaptic slit.
It’s important to highlight here that the impulse must overpass a certain threshold

45

Dataset, experiments and results

in order to stimulate the chemical release. Each of the connections between neurons
are dynamically strengthened or weakened depending on how often they are used.
It’s the strength of a connection (synapse) which determines its weight in the input
that will reach the nucleus of the neuron. After being filtered by the strength of
the connections, the inputs are summed in the cell’s body and then changed in the
axon of the neuron to be delivered to another cell.

This process can be translated into computers’ algorithms with an artificial
model shown in Fig. 4.2. As for the biological neuron, our artificial one takes as
inputs x1, x2, xn and multiplies them by a specific weight w1, w2, wn. The sum
of the results is the so-called logit of the neuron: z = qn

i=0 wixi + bi, where bi

represents a bias term used to move the function from the origin. The logit is then
passed through a function ϕ (non-linearity function) to become the output and to
be transmitted to the next neuron y = ϕ(z).

Figure 4.1: Outline of a mam-
mal’s neuron structure (image from
Wikipedia [25])

Figure 4.2: Artificial neuron work-
ing principle

As the reader can imagine, although they are very powerful, single nodes are not
nearly expressive enough to solve complex problems, like for example differentiate
handwritten digits. There is a reason in our brain there are millions of neurons: in
animals’ brain, they are organized in layers; if we take as a reference the human
cerebral cortex, it is made up of 6 different layers [26], and sensory information flows
from one layer to the other until becomes as an output a conceptual understanding.
Taking again as inspiration the biology, the neural networks are built in the
same way.

As depicted in Fig. 4.3 the usual structure of a neural network is divided in
three kind of layers: input layer, hidden layers and output layer. The input layer

46

Dataset, experiments and results

pulls the input data and passes them to the nodes that can be found in the first
hidden layer. Usually a network has many hidden layers and each layer has a
different number of nodes. Each node of a layer is hooked up with the nodes of
the following layer and this connection is weighted by different coefficients for each
layer and for each node. For sake of example, the coefficient w

(k)
i,j connects the j-th

neuron of the k-th layer to the i-th neuron of the previous layer (see Fig. 4.4).

Figure 4.3: Outline of a very sim-
ple neural network: an input layer
formed by 2 nodes (green), a single
hidden layer formed by five nodes
(light blue) and an output layer
formed by a single node (yellow).
Image from Wikipedia [27]

Figure 4.4: Another example in which
are highlighted the weights coefficients
w

(k)
i,j

Most neurons are defined by the ϕ function they apply to the logit y = ϕ(z).
Usually this function is a non-linear one: this is because linear-functions’ neurons
run into very serious limitations because linearity reduces the complexity of the
network. In fact, it can be proved that a network made of only linear nodes can be
expressed as a network with no hidden layers. Which is inconvenient since all the

47

Dataset, experiments and results

important features are learnt from the model in the hidden layers. For this reason,
we need to introduce neurons that employ some nonlinearities in order to have a
model which is able to learn complex features.

There are three common neurons that use nonlinearities and are usually applied
in convolutional neural networks. The first one to be depicted is the sigmoid. Its
function is ϕ(z) = 1

1+e−z and can be seen on the left of Fig.4.5. When the logit is
very small, the output of the neuron node is close to 0, and when it is very large the
output is close to 1. In between these extremes, the function assumes a "S shape".
Since this function is not zero-centered, the tanh (hyperbolic tangent) is usually
preferred to the previous one. The characterizing function is ϕ(z) = tanh(z) (in
the middle of Fig. 4.5) and goes from -1 to 1. Its S shape is also sharper, so the
output tends faster to the extreme values. Last and most used are the ReLU,
which use a particular function (Restricted Linear Unit, it can be found on the
right in Fig. 4.5) that can be expressed as follows:

ϕ =

0 if z ≤ 0

z if z > 0

or, in a more compact way ϕ = max(0, z).

Figure 4.5: From left to right: sigmoid function, tanh function and ReLU function

Now, to go on with the description of a CNN, it is necessary to refer again to the
structure of the human brain. This is because it has been used as an inspiration
to build the artificial model. In particular, it has been discovered in the late first
half of the 20-th century how parts of the visual cortex are used by our brain to
detect edges. Later, scientists also found out that the cortex was divided in layers,
and that each layer builds on the features detected in the previous layers; so the

48

Dataset, experiments and results

information coming from the eyes is interpreted firstly as lines, then as contours,
then as shapes and finally as objects.

Coming back to the computer science domain, in order to obtain a simple
detail starting from a very complex image it is commonly used the technique of
convolution. It consists of an iterated application of a filter (or kernel) to a whole
matrix, to get a so-called feature map. An image can be interpreted as a matrix,
or as a combination of matrices (depending on the quantity on channels of that
image, for example RGB images have 3 channels). From this, it is trivial to deduct
that using the convolution, an image can be decomposed into simpler and simpler
objects in order to extract basic features. Moreover, in real application filters also
have a depth, due to the fact that most of the images have more than one channel;
this is why usually kernels are also called volumetric convolutional filters.

These filters have the following hyperparameters:

• spatial extent e, which is basically the filter’s width and height. Usually the
kernels have little dimensions, at most equal to 7 × 7;

• stride s, which is the distance between the points where the filter is applied.
If s = 1 the kernel is applied to each e × e cell of the matrix.

For sake of example, a very basic application of convolution will be here analyzed.
In Fig. 4.6 an input matrix of dimension 7 × 7 is depicted, to the which a 3 × 3
kernel is applied and a the convolution’s stride is set to s = 2. The filter is so
executed on the first 3 × 3 cell of the matrix, the upper-right one. An element-wise
matrix multiplication gives as a result the first element of the feature map. The
next step will be to multiply the same filter with the following 3 × 3 cell in the
matrix, remembering to skip one of the cells because of the stride equal to 2. In
this case the feature map will be a matrix of dimension 3 × 3 because of the stride.
If the stride was 1, the dimension would have been 5 × 5.

In a more realistic application, the dimensions would have been very larger:
if we take as an example a RGB-image as an input, it is made up of 3 different
channels. Let’s assume the image dimensions to be 416 × 416, the input matrix
would have been 416 × 416 × 3. The kernel is necessary of the same depth of the
input, so it must have 3 channels as the RGB image. The filters dimensions could
be, for example 5 × 5 × 3. Depending on the application, the stride could be 8, 16

49

Dataset, experiments and results

or even 32; in object recognition, the greater is the stride, the bigger is the object
to be detected.

Figure 4.6: An example of simple convolution computation with hyperparameters
s = 2, e = 3.

A particular type of node could be involved, inside of a CNN, into a slightly
different kind of operation. Usually, after a convolutional layer can be found a max
pooling layer. It can be characterized by the following hyperparameters:

• spatial extent e, which is the dimension of the cells collected;

• stride s, which is the distance between the points where the pooling operation
is applied.

Again, it’s reported in Figure 4.7 a very basic example of pooling operation,
only for the reader’s comprehension. Here it is applied a pooling layer with stride
equal to 2 and spatial extent equal to 2. Thus the input matrix, originally of
dimension 4 × 4 is transformed in another matrix which will be locally invariant to
the previous, of dimension 2 × 2. The reason of this operation can be found in the
will to create a condensed feature map. De facto, this operation does not modify the
feature map, since even if it locally slightly differs, the result will still be the same.
It’s important to highlight that the major applications of the pooling layers are

50

Dataset, experiments and results

always with parameters (s, e) = (2,2) or (2,3) respectively called non-overlapping
pooling layer and overlapping pooling layer.

Figure 4.7: A simple example of non-overlapping pooling operation with parame-
ters s = 2, e = 2.

Now that the whole picture has been outlined, it’s interesting to take a look
to the structure of a real implemented architecture, in particular one built for
ImageNet, called VGGNet (Fig. 4.8).

Notice how the last section of the model’s architecture is usually provided with
fully connected (FC) layers, which are used to create relations between the features
allowing to classify the input data.

YOLO (You Only Look Once)

Usually, object detection goals are reached by algorithms which break the problem
in two stages: detect possible regions where the object can be, classify the image
in the detected regions. Two among the most popular networks of this type are
Fast-RCNN and Single-Shot MultiBox Detector (SSD), which both propose an area
inside the image where the object could be found.

Differently from those, YOLO algorithm makes prediction on bounding boxes
and probabilities all at once. This structural comparison is depicted in the Fig.
4.9. YOLO can achieve most of the state-of-art results with a completely different
approach, that brings this model to the top of the most efficient and fastest real-time

51

Dataset, experiments and results

Figure 4.8: VGGNet architecture (source: [28])

Figure 4.9: One-stage and two-stages detectors’ architectures [29]

deep learning models (as shown by the graph in Fig. 4.10). The region-focused
approach algorithm works in a very simple way: the picture is first separated into
many grids, where S × S are the dimensions of each grid. The grids created from
an input image are displayed in an example in the Fig. 4.11. Every grid cell will
be able to detect items that enter it. For instance, a grid cell will be in charge of
detecting an item if its center appears within that cell.

Three anchor boxes are predicted for each cell grid, along with confidence scores
for each box. Logistic regression is used to compute confidence ratings, which

52

Dataset, experiments and results

Figure 4.10: Comparison of the pro-
posed YOLOv4 and other state-of-
the-art object detectors. AP stands
for Average Precision, FPS is the
speed (frames per second) [29]

Figure 4.11: YOLO’s grid cell ex-
ample over a labelled image. Frame
taken from output4 of the dataset

express how certain the model is that the box contains an item as well as how
accurately it believes the box to be predicted. A brief parenthesis about logistic
regression:

Logistic regression is a simple and efficient method for binary and linear
classification problems. It is a classification model, which is very easy
to realize and achieves very good performance with linearly separable
classes [30].

If the anchor box overlaps a ground truth item by more than any other anchor box
before, allowing for object recognition, the confidence score should be 1. Finally,
the Non-Maximum Suppression (NMS) approach is employed to get rid of
numerous detections on the same item and selects the bounding box with best
confidence score and best IoU parameter (see Fig. 4.12 for a visual definition of
IoU).

YOLO performs a detection at 3 different layers:

• @layer 82 the grids have stripe 32, so the net is sparse and large objects are
detected;

• @layer 94 the grids have stripe 16, so the medium objects are detected;

53

Dataset, experiments and results

Figure 4.12: IoU = Intersection Area
Union Area

• @layer 106 the grids have stripe 8, so the net is very dense and small objects
are detected

The Darknet53 (composed of 53 layers) is used twice for detection purposes,
to totalize an amount of 106 layers. The following kind of layers are employed in
YOLO and can be visualized in the Fig. 4.13:

• convolutional layers;

• shortcut layers, used to skip connections;

• upsample layers, usually before YOLO layers, upsample the previous feature
map by a stride factor;

• route layers, copy N backward layers’ feature maps;

• YOLO layers, detect the features (layers # 82, 94, 106).

54

Dataset, experiments and results

Figure 4.13: YOLOv3 architecture

Notice how no pooling layers are used in this architecture. Instead, YOLO
presents convolutional 2 × 2 filters, which have the same goal of the pooling layers
previously analyzed. YOLO’s architecture can be seen also in another functional
view and the network could be considered as the union of:

• a backbone, which is a convolutional neural network responsible for aggre-
gating and forming image features at different definitions;

• a neck, that is responsible for the combining features processes;

• a head, which has the prediction decision layers.

To conclude this section, it is important to highlight the differences among the
different algorithms’ versions, since in this work has been used the latest available,
which is YOLOv5:

• YOLO [31]: first version released, achieved a mAP (mean Average Precision)
score of 63.4 at a speed of 45 FPS;

• YOLOv2 [32]: main improvement was the multi-scale training that allowed
the model to predict at different input sizes. It achieved a mAP score of 76.8
at a speed of 67 FPS;

• YOLOv3 [33]: showed the first introduction of the DarkNet53 backbone,
which improved considerably the speed of the network. It achieved the same
precision of the SSD321 (Single-Shot Detector) model, with a speed improved
by a factor of 3;

55

Dataset, experiments and results

• YOLOv4 [29]: a massive improvement was made thanks to the introduction
of different new features that are used in this model combined, which means
that some of them work only on a specific problem statement or on a specific
dataset. Some examples are: weighted residual connections, cross stage partial
connections, cross mini-batch normalization, self-adversarial training and mish
activation. For a further explanation the reader is referred to the paper that
can be found in bibliography;

• YOLOv5: released only two months after the previous version, the main
difference is the implementation in the PyTorch environment, done in order
to remove the limitations due to the C programming language, on the which
the v4 is based.

4.2 Data collection

datasets

output1

rgb

th

output2

rgb

th

output3

rgb

th

output4

rgb

th

The experimental part of this Dissertation consists, essentially,
in the a mobile robot exploration (a perception system basis)
of the different floors of the building (i.e., indoor scenario) in
order it to record relevant frames that depict people during their
normal daily activities.

The driving of the mobile platform is done through a remote
controller that communicates with the PC, which is itself con-
nected to the robot’s motor and steering apparatus through ROS
(an explanatory diagram can be found at the end of the thesis, in
the appendix). Again thanks to a few lines of ROS code, inputs
are recorded through the RGB and thermal cameras. By the
end of the exploring tours what is obtained as output will be 4
folders, one for each inspected floor, with two subfolders, one for
each camera.

The choice to use only 2 of the 4 available sensors is due to
the fact that it’s not necessary to overburden the outputs and
consequently the convolutional neural networks and in order to
reach the proposed goals we need only two outputs. Moreover,
the chosen sensors (RGB and FLIR cameras) provide sufficient

56

Dataset, experiments and results

coverage in every possible lighting and visibility condition and can be considered
complementary. In Fig. 4.14 is represented an example of a frame and a depiction
of the mobile platform busy in capturing data for a dataset in the ISR building.

Figure 4.14: From left to right: 1) Mobile platform at work in the fourth floor
of the ISR building, producing output4 2) Detail from output2/th/002203.png 3)
Detail from output2/rgb/002203.png

4.3 Data processing
After data collection, the first thing to do is process the frames in order to get data
which is compatible with the algorithm’s way to process images and labels. Since
the two sensors (RGB and FLIR) that have been used in this thesis have been set
to work at different frequencies (FLIR @30Hz, RGB @60Hz) it is necessary to have
the same number of frames for the two sensors. For this reason, half of the frames
captured from the Ximea camera are useless and deleted from the dataset. The
final number of frames to be processed for each sensor is reported in Tab. 4.2.

Another difference between the two sensors is the different region of action of
the cameras (this is shown in Fig. 4.15), and because of this the RGB’s output
frames have been cropped partially.

57

Dataset, experiments and results

output 1 2 3 4 tot
number of frames 4666 2483 1348 2835 11331

Table 4.2: Number of frames to be processed

Figure 4.15: As can be seen by this frame comparison, the FLIR camera has a
reduced region of action with respect to the RGB camera’s one.

Moreover, an opportune labelling process has to be done in order to properly train
the model. To do this, a tool called ImageLabeller belonging to the Computer Vision
toolbox from the MATLAB environment has been used. The most representative
frames are selected, where people are depicted and in good visibility conditions
on both cameras’ field of view. The chosen frames are labelled and used for the
training phase of the project. In Fig. 4.16 are reported two different frames for
sake of example.

Last thing to be done is to convert the labels in a suitable representation for
the YOLO algorithm. It has been used a short script to do the conversion from
the ground-Truth kind of data (MATLAB tool’s output), and a simple text file for
each frame, needed as input for the YOLO algorithm. The text file must have the
following format: n x y w h

where each line corresponds to a different label, ni is the number of the class, which
in our case will be always 0 because the algorithm will be dealing with only one
kind of object, i.e. people, x, y are the coordinates of the upper-left point of the
rectangle and w, h are the width and the height. Note that all of these parameters
(except the first one) must be normalized and expressed as a number between 0

58

Dataset, experiments and results

Figure 4.16: Two different frames labelled. Note that labels are not always
exactly the same for the two sensors. Moreover, the second frame shows how in
low visibility environments it is necessary to adopt a second sensor, in this case a
thermal camera.

and 1.

4.3.1 Training

The training phase of a model has the objective to find the best values of weights
(see Subs. 4.1.2 as reference) for the nodes of the network. In particular it is
necessary to feed the YOLO network with two folders: one contains images for the
training and the other one contains labels in text format as specified above. In this
way, each image file has a corresponding label file with one line for each label in
the picture. A subset of 81 frames was chosen and the training was repeated twice,
once for each sensor data.

The first important step is to setup the repository of Yolov5 and install the
requirements necessary to run the algorithm. Note that all the code in this section
is Python and exploits the PyTorch environment.

!git clone https://github.com/ultralytics/yolov5 # clone
%cd yolov5
%pip install -qr requirements.txt

59

Dataset, experiments and results

import torch
import utils
display = utils.notebook_init() # check

Now it is possible to use the network and the following command is useful for
the training process:

!python train.py
--cfg yolov5x.yaml --img 640 --batch 14 --epochs 590
--data yolov5/data/config_rgb.yaml --weights ’’ --cache

The used parameters will be analyzed here:

• train.py is the script responsible for the training of the network;

• --cfg stands for ’configuration’ and yolov5x.yaml is the specific model
version to be used for training;

• --img 640 is the dimension of the image to be cropped. In fact, YOLO uses
a square image as input and automatically crops all images into sub-images of
the desired dimension. In this case the predefined value of 640x640 is used;

• --batch 14 is the number of samples used before the model is updated;

• --epochs 590 is the number of times the dataset is passed to the algorithm.
After each epoch, the accuracy and precision parameters should improve;

• --data ... is the configuration file where can be found some parameters like
the images’ and labels’ path and the name of the labels. Of course this file is
different for the FLIR and the RGB inputs;

• --weights usually takes as input a .pt file where the weights can be found.
In this case, no file was chosen so that the model will take random values as
first values. Note that it’s necessary to chose a model in the --cfg parameter
if the argument of --weights is not present (like in this case);

• --cache allows the creation of a cache file.

60

Dataset, experiments and results

The runtime is usually about several hours to train the dataset, and it is strongly
affected by the number of epochs to be completed (and consequently by the accuracy
goal value to be reached). In Fig. 4.17 can be visualized the exact input that is
fed to the network for both channels. The results are reported in the Subs. 4.3.2
because the accuracy parameters are computed after the validation.

Figure 4.17: Note how the images are automatically decomposed and combined
in square frames (640x640) in order to be fed into the network. The "0" refers to
the "person" label.

4.3.2 Validation
Inside the train.py code there is a section that automatically validates the weights
found for each epoch and computes the accuracy parameters. Those parameters
can be found in the Tab. 4.3 and are referred to the last epoch (590-th). The
predicted labels for the training dataset are reported in Fig. 4.18. In the figure it
is possible to notice how the confidence is not always equal to 1 (it’s that number
next to the label "person"), and the bounding boxes do not perfectly overlap with
the labelled ones. This is because the accuracy parameters will never reach the
perfection, although they result to be very good values, close enough to 100%.

A new precision parameter can be found in the table, called mAP (which stands
for mean Average Precision) and it refers to different values of IoU (which stands
for, as previously explained, Intersection over Union). In a simple way, it can be

61

Dataset, experiments and results

Figure 4.18: Predicted labels, with respective confidence value.

said that these two values indicate the mean precision of prediction on bounding
boxes that are at a certain percentage overlapping the labels. Intuitively it is
possible to understand how the value of mAP @ 50% is always larger than the one
of mAP @ 80%, for instance.

Sensor name Precision Recall mAP @ 0.5 mAP @ 0.5:0.95
RGB 0.946 0.955 0.980 0.784
FLIR 0.958 0.919 0.967 0.774

Table 4.3: Train and validation results

In Figure 4.19 are reported the plots of precision, recall and mAPs over epochs.
It is interesting to see how they tend to grow after each iteration, and reach
acceptable values only after several epochs.

4.3.3 Inference

In this subsection the results of the detection over the dataset previously acquired
will be shown. In order to let the neural network detect from a source, it’s possible
to use the following line of code:

!python detect.py --weights /content/drive/weights/best.pt
--img 640 --conf 0.25 --source /content/drive/flir/output1.avi

and the parameters are:

62

Dataset, experiments and results

Figure 4.19: Comparison between the accuracy parameters’ trends of the FLIR
(left side) and of the RGB (right side) sensors’ data.

• detect.py is the script to be run in order to start the detection;

• --weights [path] is the .pt file which is obtained in the training phase;

• --img 640 is the dimension of the squares the image will be decomposed into
(same as training paragraph);

• --conf 0.25 is the confidence threshold a bounding box must overcome in
order to be considered a valid label and establish a detection;

• --source [path] is the file that will be labelled. In this case we have 8
different videos to process (4 outputs for each of the two sensors).

Some frames taken from the network’s detection results are shown in Fig. 4.20.

4.4 Sensors fusion
In order to obtain a robust detection system, it is useful to adopt one among the
typical techniques of sensors combination/fusion. The main ones are reported here:

63

Dataset, experiments and results

Figure 4.20: The results of the detection process.

• early fusion: it is a technique in which the fusion happens at data level,
before entering into the detection stage (see Figure 4.21a). There are mainly
two ways of doing this: combining data by removing the correlation between
the two sensors or fusing data at their lower dimensional space e.g., thanks to
statistical tools like principal component analysis (PCA);

• late fusion: in this case, the fusion happens in the decision stage. Data
coming from different sensors enter independently the neural network and the
outputs of it are then re-combined, as shown in Figure 4.21b;

• intermediate fusion: this last solution can be collocated somewhere in
between the other two. Thanks to intermediate fusion it is possible to combine

64

Dataset, experiments and results

features, changing input data into a higher level of representation through
multiple layers. In this case, the model learns a joint representation of each of
the modalities. A schematic can be found in Figure 4.21c.

(a) Early fusion (b) Late fusion (c) Intermediate fusion

Figure 4.21: Fusion techniques simplified schematics. Here are reported three
generic examples with 3 sensors data as inputs.

For the purpose of this thesis, a late fusion technique has been implemented.
In order to do this, it is very important to use the results of the calibration phase
of this work. In fact, it is crucial to have bounding boxes coordinates that refer to
the same world coordinate frame. The outputs of the models i.e. , bounding boxes
coordinates with a confidence score value associated, are going to be compared and
combined, so they have to be computed in the same reference frame. To do it, the
transformation depicted in the Equation 3.8 has been used, and the coordinates
of the bounding boxes detected by the model with the thermal camera data as
input were transformed to have a coherent reference system with respect to the
color camera one. Once the two bounding boxes are comparable, it is possible
to compute a measure of the overlapping of the two, using the ratio between the
intersection and the union of the two rectangles. From this point, it has been used
a decision model called Support Vector Machine. In the following subsection a
little panoramic about this technique will be reported.

65

Dataset, experiments and results

4.4.1 Linear Support Vector Machine

Given a linear function f(x) = w0 + wT x it is possible to define an hyperplane χ

such that:
χ = {x ∈ Rn : w0 + wT x = 0} (4.1)

χ separates the hyperspace into two parts, where one above it and one below it
can be expressed by:

χ+ = {x ∈ Rn : w0 + wT x ≥ 0} χ− = {x ∈ Rn : w0 + wT x ≤ 0} (4.2)

and the distance between one point x and the hyperplane is:

dist(x, χ) = −w0 + wT x

||w||2
(4.3)

It is possible to classify point-features according to the fact that they belong either
to one or to the other part of the hyperspace. In this sense, the hyperplane χ can
be considered as a decision boundary. Let’s suppose to have as output a label
yi which is equal to:

yi =

+1 if xi ∈ χ+

−1 if xi ∈ χ−

(4.4)

In this particular case, it is easy to notice how the product yi × (w0 + wT x) is
always positive in the case of a correct detection and negative for bad detection.
We can then use as a loss function for training purposes the following one:

L(w0, w) =
NØ

i=1
[−yi × (w0 + wT xi)]+ =

NØ
i=1

max((−yi × (w0 + wT xi)), 0) (4.5)

Notice that this function is equal to zero for the points that are correctly classified
and proportional to the distance between the point xi and the decision boundary
for the points misclassified. The loss function leads to a minimization problem that

66

Dataset, experiments and results

can be formulated as follows:

min
1
2 ||w||22 + c

NØ
i=1

ξi s.t. : yi(w0 + wT xi) ≥ 1 − ξi ξi ≥ 0 (4.6)

In the previous equation it was inserted a "slack variable" ξi. This is due to the
fact that it is not always feasible to perfectly separate the points that are labelled
into the two semi-hyperspaces. ξi represents the amount of misclassification of the
i-th point, while c is a trade-off parameter. The one formulated in the expression
4.6 is a quadratic problem that is always feasible.

4.4.2 Application of SVM to case of study

In the presented case of study, it is necessary to define the feature space of the
support vector machine. The inputs must be quantities that derive from the
detections at the previous layers and must give an idea of the confidence of the
detection and of the percentage of overlapping area of the bounding boxes. The
objective of this part of the work is to improve detecting accuracy, by eliminating
false positive detections. In a more practical way, the goal is to exclude all those
bounding boxes which do not have a strong correspondence between the two sensors.
In order to do this, it is important to properly train the SVM model i.e. , compute
the optimal parameters w0, w. This is done automatically thanks to the Python
framework scikit-learn [34]. The model is trained using a dataset composed of two
features as inputs: intersection over union and confidence scores. The labels will be
two classes: +1 for the bounding boxes with good overlapping and confidence score
and −1 for the ones that we consider as false positives and with bad overlapping
correspondence. After the model has been trained, the SVM is used to predict
labels for the whole dataset. For the bounding boxes predicted as true positives,
we consider the maximum between the two scores and the corresponding bounding
box.

In Figure 4.22 a scatter plot is showing the decision boundary (solid line) and
the slacked decision boundaries (dotted lines). It can be seen how the algorithm
manages to detect the bad predictions, which are characterized to have a small
confidence score and a small overlapping area of the bounding boxes. The number

67

Dataset, experiments and results

Figure 4.22: Graphic representation of the support vector machine training results

of support vectors can be changed; in this case has been used a number of 50
vectors for each label, and this choice has lead to a good result. The decision
boundary is then used to predict with more precision the other outcomes, and a
validation phase is done in order to compute the effectiveness and the accuracy of
the algorithm. In the Table 4.4 the confusion matrix of the experiment is reported.

P’ (Predicted) N’ (Predicted)
P (Actual) 1157 36
N (Actual) 24 772

Table 4.4: Confusion matrix after data fusion

In the Table 4.5 the main accuracy results after data fusion are reported.
The comments about the comparison of the single mode vs multimodal results
will be present in Chapter 5. In conclusion, in Figure 4.23 a summary schematic
is reported, where the theory of the data fusion section is applied to a particular
frame for the detection.

68

Dataset, experiments and results

Precision Recall
0.98 0.96

Table 4.5: Accuracy parameters after data fusion.

Figure 4.23: Full data fusion process schematic

69

Chapter 5

Discussion and conclusion

This dissertation exploits the powerful means of artificial intelligence and deep
learning for machine perception purposes in an application domain related to robot
perception. The application of a CNN and then a late-fusion approach neural
network was necessary in order to obtain an effective system, capable of detecting
people with a reliable accuracy. The physical architecture of the system is mainly
composed of a combination of 3 cameras and one lidar sensor, mounted on a mobile
robotic platform, through an aluminium profile and plastic sensor supports. The
full sensory system could communicate through the sensors and their connection
with an onboard core laptop. The presence of different sensors, even though not all
of them were used in the same measure, led to a greater reliability of detection,
thanks to the redundancy and the data fusion. From an operative and practical
point of view, starting with the calibration of the sensors: it was strictly necessary
in order to gain awareness about internal and external parameters of the cameras,
and furthermore in order to have the possibility to fuse data coming from different
sensors, which have different parameters, orientation in space and field of view.
The calibration phase of the work has been done following the forward imaging
model theory. By a more empiric standpoint, it has been done using different tools,
but mainly in the Matlab framework; this because it offers also the possibility to do
the validation of the results of the calibration in a simpler manner. In this section
of the work it was critical the exploitation of the lidar sensor, that gave a precise
and fast estimation of the position of the calibration checkerboard in different

70

Discussion and conclusion

settings and conditions. After the collection of thousands of frames in different
weather and lighting conditions, and their labelling, a fraction of them were used to
train the convolutional neural network. The remaining part was used for validation
purposes and for error estimations. After finding the best settings in order to get
good recall and precision rates, the CNN-network was used to detect humans in a
new and untouched (test) dataset. Finally, a technique of late fusion was used in
order to improve the precision of the system, thanks also to a completely different
machine learning algorithm, which is the Support Vector Machine. The collected
results respected the expectations in terms of precision and accuracy. In fact, if we
compare the Tables 4.3 and 4.5, it is possible to observe three conclusions mainly:

1. the accuracy parameters obtained from RGB and thermal cameras separately
were satisfactory;

2. the precision coming from the thermal camera detecting system is slightly
better compared to the one of the color (RGB) camera. As expected, the recall
obtained with the color camera is significantly better than the thermal camera
one. This basically means that if we use a color camera to feed a human
detecting neural network, it will be more prone to commit false positives
kind of errors. On the contrary, the thermal data are more affected by false
negatives;

3. both precision and recall are considerably increased by the exploiting of late
data fusion techniques and SVM application.

In light of this, and given the context here, it is possible to state that if we want a
system that needs to avoid false positives (i.e. , type I errors), it is better to rely
on thermal camera-based detecting structure. Differently, if it is more important to
avoid false negatives (i.e. , type II errors), then it is better to exploit a RGB-camera
detecting system. In both cases, the support of a data fusion approach will lead to
an improvement of the results. Nevertheless, it is important to highlight that the
collected results are certainly influenced by the difficulties met in the calibration
process of the thermal camera. Probably, if we could use a different and more
accurate calibration technique for the thermal camera, also the outputs of the
neural network applied to the FLIR camera would have been better.

71

Discussion and conclusion

The possible improvements to be applied to this study can be divided into three
main points:

1. sensors: it could be useful to have at disposal a more complex system of
sensors, to provide better quality of data and different angles of field of view.
In this sense, it can be interesting to also use cameras that are oriented to sense
the back of the mobile platform, for the detection to be useful also in reverse
gear. Furthermore, as stated before, it is possible to improve the quality of the
calibration of the thermal camera, and eventually to use a FLIR with better
definition (nonetheless, our sensor was very valuable). It is important to keep
in mind also that for the purposes of this thesis, the detection phase was based
only on the outputs of two of the 4 sensors available. It is possible to enhance
this apparatus in order to improve accuracy. One last hypothetical scenario
could be the one in which other sensors are used for detection, instead of RGB
and FLIR. It can be interesting to analyze the advantages and drawbacks in a
case in which a NIR camera was used instead of the color or the thermal one.
Or, moreover, if the lidar data were used for the detection;

2. real-time application: the Yolov5 CNN gives the opportunity to detect live
images coming from the sensors. Of course, this had to be supported by proper
hardware and devices, that could implement in real-time the detection. In this
case, it could be interesting to evaluate the opportunity to use the output of the
neural network directly on the brakes of the mobile platform. So, the mobile
platform would have a working detection and braking system embedded. In
order to design a mobile platform able to avoid obstacles properly, it should be
necessary to involve in the project some trajectory planning-related algorithm;

3. data fusion with more inputs: as highlighted in the Section 4.4, data fusion
led to an improvement in detection results. The work in this thesis was based
on data coming from two different sensors, and it is trivial to conclude that
an increase in the number of the sensors feeding the Support Vector Machine
detection algorithm would, in principle, result in a further improvement of
the overall system performance. Moreover, data coming from the lidar sensor
could be converted into depth maps and fused with other sensors, supplying
the detecting apparatus with an additional data source.

72

Appendix A

Optical sensors models

The mechatronics laboratory of the University of Coimbra, where this whole
practical experience was conducted, provided a large number of sensors that will
be listed and briefly described in this section. Four plastic supports were designed
in Solidworks ® environment and 3D-printed. They were useful for the attachment
on the aluminium profile structure and for the protection of the sensor. A photo is
reported in Fig. A.1.

For a further description of the sensors the reader is redirected to the official
manuals of the sensors that can be found online.

A.1 Lidar: Velodyne®VLP-16

This sensor is widely used in guidance applications. It emits 16 layers of pulsed
light waves which bounce off back to the lidar; then the sensor uses the time it
took for each pulse to come back to calculate the distance of each material point
in the surroundings. The VLP-16 model in particular has a 360° horizontal and a
30° vertical coverage and can be easily connected to a computer through ethernet
cable for data collection and processing.

73

Optical sensors models

Figure A.1: The four sensors
mounted on an aluminium support

Figure A.2: Velodyne®VLP-16

Figure A.3: Example of Velodyne®VLP-16 scan

A.2 Thermal camera: FLIR Boson®640

The thermal camera exploits the infrared-wavelength energy emitted by objects to
detect them and converts it in visible-wavelength data to display as images. Its
most common use is military applications but in this working case it is very useful
to combine with the lidar data collection for human recognition purposes.

74

Optical sensors models

Figure A.4: FLIR Bo-
son®640 Figure A.5: Example of FLIR Boson®640

image

A.3 RGB and NIR camera: MQ013CG-E2 and
MQ013RG-E2 Ximea®

Figure A.6: MQ013RG-E2
Ximea®

Figure A.7: Comparison between RGB (left
half) and NIR (right half) camera outputs

These two cameras are very similar with each other. The substantial difference
is in the captured wavelength of the light, which is red-green-blue in the first
case, and near-infrared in the second. This allows the system to work properly in
different light conditions.

75

Appendix B

Setup of the full apparatus

The cameras system is mounted on an aluminium profile support and attached on
the mobile platform. The sensors are connected to a Linux-based computer that
collects data through ROS, to which the three cameras are linked by means of USB
3.0 connection. The lidar sensor is connected directly to a microprocessor that
is power supplied by a couple of batteries and links the sensor to the computer
thanks to an ethernet connector. The two batteries also feed directly the PC and
the motor of the mobile platform, which is remotely commanded by a joystick.
This whole system is represented in Fig. B.1.

Figure B.1: Graphic representation of the full system

76

Appendix C

Point Clouds extraction
starting from .pcap file

The Veloview software can perform a recording of the surrounding environment
and export it in a .pcap file. Since the input parameters of the functions used in
this work must be point clouds it is necessary to extract .pcd files starting from the
whole recording. To do this the most relevant frames (in which the checkerboard is
steady and in the range of the lidar) are selected and then exported thanks to the
following Matlab script:

1 c l c
2 c l e a r a l l
3 c l o s e a l l
4 %Saving the PCD f i l e s o f the data
5 c a l i b f o l d e r = ’C: \ Users \ f e d e r \Desktop\ D i s s e r t a t i o n \01− Ca l i b ra t i on \

c a l i b rgb−l i d a r ’ ;
6 pcd fo ld e r = f u l l f i l e (c a l i b f o l d e r , ’ 4\pcd ’) ;
7 %Reading the l i d a r f i l e
8 veloReader = ve lodyneFi leReader (f u l l f i l e (c a l i b f o l d e r , ’ 4\ v ideos \ l i d a r

scan . pcap ’) , ’VLP16 ’) ;
9 %Limits o f the Lidar

10 x l i m i t s = [−2 4] ;
11 y l i m i t s = [−4 8] ;
12 z l i m i t s = [−2 2] ;
13 p layer = pcp layer (x l im i t s , y l im i t s , z l i m i t s) ;
14 %Label the Axes
15 x l a b e l (p laye r . Axes , ’X (m) ’) ;

77

Point Clouds extraction starting from .pcap file

16 y l a b e l (p laye r . Axes , ’Y (m) ’) ;
17 z l a b e l (p laye r . Axes , ’Z (m) ’) ;
18 frame =[388 459 483 540 571 612 648 690 744 774 798 825 865 924 9 6 3] ;
19 t o ta l f r ame=length (frame) ;
20 i =1;
21 %Display
22 whi le (hasFrame (veloReader) && player . isOpen () && (i<=tota l f r ame))
23 ptCloud = readFrame (veloReader , frame (i)) ;
24 ptCloud = pointCloud (reshape (ptCloud . Location , [] , 3) , ’ I n t e n s i t y ’

, s i n g l e (reshape (ptCloud . In t en s i t y , [] , 1))) ;
25 name = s p r i n t f (’%02d . pcd ’ , i) ;
26 pcwr i te (ptCloud , f u l l f i l e (pcd fo lder , name)) ;
27 view (player , ptCloud) ;
28 i=i +1;
29 end

After running the script in the output folder will be found one pointcloud file with
pcd extension for each relevant frame (xx.pcd with xx=increasing number from 01
to the number of frames) and will be visualized each of them as shown in the Fig.
C.1.

Figure C.1: Point Cloud visualization for the 11th relevant frame

78

Point Clouds extraction starting from .pcap file

The number of the relevant frames in this work is 14, so the lidar-camera
calibration dataset will be composed of 14 couples of images coming from the RGB
camera and pointclouds coming from the lidar.

79

Bibliography

[1] Ibrar Yaqoob, Latif U Khan, SM Ahsan Kazmi, Muhammad Imran, Nadra
Guizani, and Choong Seon Hong. «Autonomous driving cars in smart cities:
Recent advances, requirements, and challenges». In: IEEE Network 34.1
(2019), pp. 174–181 (cit. on p. 1).

[2] Klaus R. Kunzmann. «Smart cities: a new paradigm of urban development».
In: (). url: http://www.carocci.it/files/riviste/digitali/01_
kunzmann.pdf (cit. on p. 1).

[3] Sebastian Thurun. What we’re driving at. 2010. url: https://googleblog.
blogspot.com/2010/10/what-were-driving-at.html (cit. on p. 2).

[4] John Markoff. «Google Cars Drive Themselves, in Traffic». In: (2010). url:
https://www.nytimes.com/2010/10/10/science/10google.html?smid=
url-share (cit. on p. 2).

[5] Romuald Aufrère, Jay Gowdy, Christoph Mertz, Chuck Thorpe, Chieh-Chih
Wang, and Teruko Yata. «Perception for collision avoidance and autonomous
driving». In: Mechatronics 13.10 (2003), pp. 1149–1161 (cit. on p. 2).

[6] M.I. Jordan and T.M. Mitchell. «Machine learning: Trends, perspectives, and
prospects». In: (). url: http://www.cs.cmu.edu/~tom/pubs/Science-ML-
2015.pdf (cit. on p. 2).

[7] Hyunggi Cho, Young-Woo Seo, BVK Vijaya Kumar, and Ragunathan Raj
Rajkumar. «A multi-sensor fusion system for moving object detection and
tracking in urban driving environments». In: 2014 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE. 2014, pp. 1836–1843
(cit. on pp. 5, 6).

80

http://www.carocci.it/files/riviste/digitali/01_kunzmann.pdf
http://www.carocci.it/files/riviste/digitali/01_kunzmann.pdf
https://googleblog.blogspot.com/2010/10/what-were-driving-at.html
https://googleblog.blogspot.com/2010/10/what-were-driving-at.html
https://www.nytimes.com/2010/10/10/science/10google.html?smid=url-share
https://www.nytimes.com/2010/10/10/science/10google.html?smid=url-share
http://www.cs.cmu.edu/~tom/pubs/Science-ML-2015.pdf
http://www.cs.cmu.edu/~tom/pubs/Science-ML-2015.pdf

BIBLIOGRAPHY

[8] J Burlet and M Dalla Fontana. «Robust and efficient multi-object detection
and tracking for vehicle perception systems using radar and camera sensor
fusion». In: IET and ITS Conference on Road Transport Information and
Control (RTIC 2012). IET. 2012, pp. 1–6 (cit. on pp. 5, 7).

[9] Cristiano Premebida, Oswaldo Ludwig, and Urbano Nunes. «LIDAR and
vision-based pedestrian detection system». In: Journal of Field Robotics 26.9
(2009), pp. 696–711 (cit. on p. 5).

[10] Zhi Yan, Li Sun, Tom Duckctr, and Nicola Bellotto. «Multisensor online
transfer learning for 3d lidar-based human detection with a mobile robot». In:
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2018, pp. 7635–7640 (cit. on p. 5).

[11] Gonçalo Monteiro, Cristiano Premebida, Paulo Peixoto, and Urbano Nunes.
«Tracking and classification of dynamic obstacles using laser range finder and
vision». In: Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2006, pp. 1–7 (cit. on p. 6).

[12] Thomas Herpel, Christoph Lauer, Reinhard German, and Johannes Salzberger.
«Multi-sensor data fusion in automotive applications». In: 2008 3rd Interna-
tional Conference on Sensing Technology. IEEE. 2008, pp. 206–211 (cit. on
p. 6).

[13] Cristiano Premebida, Luis Garrote, Alireza Asvadi, A Pedro Ribeiro, and
Urbano Nunes. «High-resolution lidar-based depth mapping using bilateral fil-
ter». In: 2016 IEEE 19th international conference on intelligent transportation
systems (ITSC). IEEE. 2016, pp. 2469–2474 (cit. on pp. 7, 8).

[14] Z. Zhang. «A flexible new technique for camera calibration». In: IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 22.11 (2000), pp. 1330–
1334. doi: 10.1109/34.888718 (cit. on p. 8).

[15] Jean-Yves Bouguet. Camera Calibration Toolbox for Matlab. en. 2022. doi:
10.22002/D1.20164. url: https://data.caltech.edu/records/20164
(cit. on pp. 8, 23).

81

https://doi.org/10.1109/34.888718
https://doi.org/10.22002/D1.20164
https://data.caltech.edu/records/20164

BIBLIOGRAPHY

[16] Zean Bu, Changku Sun, Peng Wang, and Hang Dong. «Calibration of Camera
and Flash LiDAR System with a Triangular Pyramid Target». In: Applied
Sciences 11.2 (2021). issn: 2076-3417. doi: 10.3390/app11020582. url:
https://www.mdpi.com/2076-3417/11/2/582 (cit. on pp. 8, 9).

[17] Ruixuan Liu, Hengrui Zhang, and Sebastian Scherer. «Multiple Methods
of Geometric Calibration of Thermal Camera and A Method of Extracting
Thermal Calibration Feature Points». In: (2018). url: https://henryzh47.
github.io/assets/documents/multiple-methods-geometric.pdf (cit.
on p. 9).

[18] Jahanzaib Shabbir and Tarique Anwer. «A Survey of Deep Learning Tech-
niques for Mobile Robot Applications». In: ArXiv abs/1803.07608 (2018)
(cit. on p. 9).

[19] Benjamin Lewandowski, Jonathan Liebner, Tim Wengefeld, Steffen Müller,
and Horst-Michael Gross. «Fast and Robust 3D Person Detector and Pos-
ture Estimator for Mobile Robotic Applications». In: 2019 International
Conference on Robotics and Automation (ICRA). 2019, pp. 4869–4875. doi:
10.1109/ICRA.2019.8793712 (cit. on p. 10).

[20] Junwoo Lee and Bummo Ahn. «Real-Time Human Action Recognition with
a Low-Cost RGB Camera and Mobile Robot Platform». In: Sensors 20.10
(2020). issn: 1424-8220. doi: 10.3390/s20102886. url: https://www.mdpi.
com/1424-8220/20/10/2886 (cit. on pp. 10, 11).

[21] Florian Spiess, Lucas Reinhart, Norbert Strobel, Dennis Kaiser, Samuel
Kounev, and Tobias Kaupp. «People detection with depth silhouettes and
convolutional neural networks on a mobile robot». In: Journal of Image and
Graphics 9.4 (2021), pp. 135–139 (cit. on p. 10).

[22] Connor Shorten, Taghi M. Khoshgoftaar, and Borko Furht. «Deep Learning
applications for Covid 19». In: 2021 (cit. on p. 44).

[23] F Alam et al. «Fighting the COVID-19 infodemic in social media: a holistic
perspective and a call to arms». In: 2020 (cit. on p. 44).

[24] Jia Deng and al. «ImageNet: A Large-Scale Hierarchical Image Database».
In: Computer Vision and Pattern Recognition. 2009 (cit. on p. 45).

82

https://doi.org/10.3390/app11020582
https://www.mdpi.com/2076-3417/11/2/582
https://henryzh47.github.io/assets/documents/multiple-methods-geometric.pdf
https://henryzh47.github.io/assets/documents/multiple-methods-geometric.pdf
https://doi.org/10.1109/ICRA.2019.8793712
https://doi.org/10.3390/s20102886
https://www.mdpi.com/1424-8220/20/10/2886
https://www.mdpi.com/1424-8220/20/10/2886

BIBLIOGRAPHY

[25] "Anatomy and Physiology" by the US National Cancer Institute’s Surveillance,
Epidemiology and End Results (SEER) Program. 2019. url: https://it.m.
wikipedia.org/wiki/File:Neuron.svg (cit. on p. 46).

[26] Vernon B. Mountcastle. «Modality and topographic properties of single
neurons of cat’s somatic sensory cortex». In: Journal of Neurophysiology. 1957
(cit. on p. 46).

[27] "A simplified view of an artifical neural network", Vectorized by Mysid in
CorelDraw on an image by Dake. 2006. url: https://it.m.wikipedia.org/
wiki/File:Neural_network.svg (cit. on p. 47).

[28] Timea Bezdan and Nebojsa Bacanin. «Convolutional Neural Network Layers
and Architectures». In: Jan. 2019, pp. 445–451. doi: 10.15308/Sinteza-
2019-445-451 (cit. on p. 52).

[29] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. «YOLOv4:
Optimal Speed and Accuracy of Object Detection». In: CoRR abs/2004.10934
(2020). arXiv: 2004.10934. url: https://arxiv.org/abs/2004.10934
(cit. on pp. 52, 53, 56).

[30] Abdulhamit Subasi. «Chapter 3 - Machine learning techniques». In: Practical
Machine Learning for Data Analysis Using Python. Ed. by Abdulhamit Subasi.
Academic Press, 2020, pp. 91–202. isbn: 978-0-12-821379-7. doi: https:
//doi.org/10.1016/B978- 0- 12- 821379- 7.00003- 5. url: https://
www.sciencedirect.com/science/article/pii/B9780128213797000035
(cit. on p. 53).

[31] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. «You Only
Look Once: Unified, Real-Time Object Detection». In: (2016) (cit. on p. 55).

[32] Joseph Redmon and Ali Farhadi. «YOLO9000: Better, Faster, Stronger». In:
(2017) (cit. on p. 55).

[33] Joseph Redmon and Ali Farhadi. «YOLOv3: An Incremental Improvement».
In: (2018) (cit. on p. 55).

[34] F. Pedregosa et al. «Scikit-learn: Machine Learning in Python». In: Journal
of Machine Learning Research 12 (2011), pp. 2825–2830 (cit. on p. 67).

83

https://it.m.wikipedia.org/wiki/File:Neuron.svg
https://it.m.wikipedia.org/wiki/File:Neuron.svg
https://it.m.wikipedia.org/wiki/File:Neural_network.svg
https://it.m.wikipedia.org/wiki/File:Neural_network.svg
https://doi.org/10.15308/Sinteza-2019-445-451
https://doi.org/10.15308/Sinteza-2019-445-451
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934
https://doi.org/https://doi.org/10.1016/B978-0-12-821379-7.00003-5
https://doi.org/https://doi.org/10.1016/B978-0-12-821379-7.00003-5
https://www.sciencedirect.com/science/article/pii/B9780128213797000035
https://www.sciencedirect.com/science/article/pii/B9780128213797000035

	List of Tables
	List of Figures
	Introduction
	Motivation
	Objectives of the dissertation
	Work performed and contributions
	Organization of the thesis

	Related work
	Multi-sensor perception systems
	Sensors calibration
	Machine learning applied to human detection using mobile robotic platform

	Calibration of the sensors
	Introduction to camera calibration
	Forward imaging model
	From the world coordinate frame to the camera coordinate frame
	From the camera coordinate frame to the image coordinate frame
	Errors in camera calibration

	RGB camera calibration
	NIR camera calibration
	Thermal camera calibration
	LiDAR-RGB camera calibration
	Extraction of checkerboard from point Clouds
	Extraction of checkerboard corners from the camera images
	Estimation of rigid transformation lidar-camera and results
	Lidar-RGB camera calibration validation

	FLIR-RGB camera calibration
	FLIR-RGB camera calibration validation

	Dataset, experiments and results
	Machine Learning
	How to evaluate a model
	Deep Learning

	Data collection
	Data processing
	Training
	Validation
	Inference

	Sensors fusion
	Linear Support Vector Machine
	Application of SVM to case of study

	Discussion and conclusion
	Optical sensors models
	Lidar: Velodyne®VLP-16
	Thermal camera: FLIR Boson®640
	RGB and NIR camera: MQ013CG-E2 and MQ013RG-E2 Ximea®

	Setup of the full apparatus
	Point Clouds extraction starting from .pcap file
	Bibliography

