
POLITECNICO DI TORINO

Master’s Degree Course
in Computer Engineering

Master’s Degree Thesis

A Comparative Analysis of Methods and Tools
for Identification of GPU-friendly Algorithms

Supervisors Candidate
Prof. Alessandro SAVINO Jacopo PATI
Dr. Giulio GAMBARDELLA

Academic Year 2022-2023

Alla mia famiglia.
A Erika.
Grazie del vostro costante supporto.

Abstract

In solving advanced computational problems, GP-GPUs (General-Purpose Graphics Pro-
cessing Units) have gained prominence in recent years. The adoption of GPUs not only
for computer graphics allows to exploit their huge compute performance and high level
of parallelism to lighten the CPU from burdensome executions. Aim of this thesis is to
analyze automatic methodologies to help developers to find code for acceleration, study-
ing ways to identify functions amenable to GPU acceleration without prior knowledge or
assumption on the code-base.
The first parameter useful in identifying such loops is Arithmetic Intensity (AI). The
higher is the value, the most likely the code will benefit from GPU offloading. Although
AI is independent from the hardware characteristics, it can be related to the FLOPs/s of
the machine through an analysis called Roofline, in order to also identify if the consid-
ered functions are memory or compute bound. We analyzed different tools, namely Intel
VTune together with SDE, RRZE LIKWID and Intel Advisor, allowing to calculate AI
with little effort on the developer side. A set of publicly available benchmarks (KernelGen
Test Suite) has been used to evaluate and compare the tools in depth, relying on imple-
mentations from third party of the code base to GPU (e.g., CUDA) as a golden reference.
We demonstrate how Intel Advisor provides the best evaluation, thanks to its ability to
model GPU execution advantages.
Given the limit on the AI evaluation as standalone metric for GPU offload potential, we
improved our analysis including the modeling of the speed up on GPU versus the CPU
counterpart, providing further hints thanks to the Intel Advisor feature, using as end-to-
end approach evaluation the open source Static Time Analysis (STA) tool OpenTimer.
Finally, given the estimation provided by the benchmarked tools, we ported core function
of OpenTimer to GPU with minimal code changes using OpenACC to validate the AI
evaluation.
Despite being an important first step in assessing GPU offload opportunities, we conclude
that AI evaluation is not enough information to completely estimate possible advantage of
GPU execution. The evaluation is based on the CPU implementation without techniques,
like batching or vectorization, that could increase GPU advantages.

Contents

List of Tables 4

List of Figures 7

1 Introduction 11

2 Background 13
2.1 GPU Architecture Fundamentals . 13

2.1.1 Comparison with the CPU model 15
2.2 GPGPUs Programming Challenges . 16
2.3 Arithmetic Intensity as Metric . 17

2.3.1 Roofline Visual Model . 20

3 Tools and Methods for GPU Offload Assessment 23
3.1 Intel VTune with SDE . 23

3.1.1 VTune - Introduction and Features Overview 24
3.1.2 Evaluating Memory Accesses with VTune 25
3.1.3 Use SDE to Measure Floating-Point Operations 27

3.2 RRZE LIKWID . 29
3.2.1 Measuring Arithmetic Intensity with LIKWID 30

3.3 Intel Advisor . 33
3.3.1 Modelling GPU Offload Opportunities 34
3.3.2 Measuring Arithmetic Intensity with Advisor 36

3.4 Control and Limit Data Collection . 38
3.4.1 Collection Control APIs for Intel Products 38
3.4.2 Marker APIs for LIKWID . 39

4 Experimental Analysis for Arithmetic Intensity Evaluation 41
4.1 Environment and Tools Setup . 42

4.1.1 VTune and SDE Configuration . 43
4.1.2 LIKWID Configuration . 44
4.1.3 Advisor Configuration . 44

4.2 Evaluation of Arithmetic Intensity . 45
4.2.1 divergence Benchmark: Divergence Operator 45

2

4.2.2 gameoflife Benchmark: Conway’s Game Of Life 48
4.2.3 gaussblur Benchmark: Gaussian Blur 50
4.2.4 gradient Benchmark: Gradient Operator 52
4.2.5 laplacian and lapgsrb Benchmarks: Laplace Operator 53
4.2.6 matvec Benchmark: Matrix-vector Multiplication 57
4.2.7 tricubic Benchmark: Tricubic Interpolation 59
4.2.8 uxx1 Benchmark: Approximation of Second Derivative 61
4.2.9 vecadd Benchmark: Sum between Matrices 63
4.2.10 wave13pt Benchmark: 3D Wave Equation Solver 65
4.2.11 whispering Benchmark: 2D Nanophotonics Simulation 67

4.3 Validation through GPU Execution . 69
4.3.1 How to Measure Arithmetic Intensity of a GPU Kernel 69
4.3.2 Comparing Tool Results using GPU-based Analysis 72

5 Exploring GPU Offload Opportunities in OpenTimer: A Case Study 79
5.1 Introduction to Static Time Analysis (STA) and OpenTimer 79
5.2 Identification of Offload Opportunities with Intel Advisor 82

5.2.1 Loop at star.hpp:39 . 83
5.2.2 Loop at verilog.cpp:59 . 84
5.2.3 Loop at parser-spef.hpp:1186 . 86
5.2.4 Loop at tokenizer.cpp:149 . 87
5.2.5 Loop at hashtable_policy.h:2120 . 88

5.3 Sorting Analysis Results by Arithmetic Intensity 89
5.3.1 Loop at net.cpp:160 . 90

5.4 Porting OpenTimer RC Delay Function to GPU 92
5.5 Exploring OpenACC for Heterogeneous Computing 94

5.5.1 Accelerating OpenTimer with OpenACC Directives 96
5.6 Compile GPU Code with Minimal Project Impact 99

5.6.1 Using GCC Compiler with NVPTX Extension 100
5.6.2 Creating an Accelerated Static Library with NVIDIA Compiler . . 101

5.7 Execution Times Evaluation for the Various Approaches 103

6 Results 107

7 Conclusions 113

Bibliography 115

3

List of Tables

2.1 Arithmetic Intensity, obtained as the ratio between GFLOPs and memory
accesses, for the multiplication of two matrices with different example sizes. 19

3.1 Correspondence between the event name and the counter name for the
"MEM_SP" Performance Group of the Intel Skylake architecture. 31

4.1 Technical features of the machine CPU, used to carry out the measurements. 42
4.2 Technical features of the GPU used in the validation phase. 42
4.3 Comparison between the results obtained with the tools for the divergence

benchmark using "128 128 128" as input. 47
4.4 Comparison between the results obtained with the tools for the divergence

benchmark using "256 256 256" as input. 47
4.5 Comparison between the results obtained with the tools for the divergence

benchmark using "512 512 512" as input. 47
4.6 Comparison between the results obtained with the tools for the gameoflife

benchmark using "1024 1024" as input. 49
4.7 Comparison between the results obtained with the tools for the gameoflife

benchmark using "2048 2048" as input. 49
4.8 Comparison between the results obtained with the tools for the gameoflife

benchmark using "4096 4096" as input. 49
4.9 Comparison between the results obtained with the tools for the gaussblur

benchmark using "1024 1024" as input. 51
4.10 Comparison between the results obtained with the tools for the gaussblur

benchmark using "2048 2048" as input. 52
4.11 Comparison between the results obtained with the tools for the gameoflife

benchmark using "4096 4096" as input. 52
4.12 Comparison between the results obtained with the tools for the gradient

benchmark using "128 128 128" as input. 53
4.13 Comparison between the results obtained with the tools for the gradient

benchmark using "256 256 256" as input. 54
4.14 Comparison between the results obtained with the tools for the gradient

benchmark using "512 512 512" as input. 54
4.15 Comparison between the results obtained with the tools for the laplacian

benchmark using "128 128 128" as input. 55
4.16 Comparison between the results obtained with the tools for the laplacian

benchmark using "256 256 256" as input. 56

4

4.17 Comparison between the results obtained with the tools for the laplacian
benchmark using "512 512 512" as input. 56

4.18 Comparison between the results obtained with the tools for the lapgsrb
benchmark using "128 128 128" as input. 56

4.19 Comparison between the results obtained with the tools for the lapgsrb
benchmark using "256 256 256" as input. 57

4.20 Comparison between the results obtained with the tools for the lapgsrb
benchmark using "512 512 512" as input. 57

4.21 Comparison between the results obtained with the tools for the matvec
benchmark using "1024 1024" as input. 58

4.22 Comparison between the results obtained with the tools for the matvec
benchmark using "2048 2048" as input. 59

4.23 Comparison between the results obtained with the tools for the matvec
benchmark using "4096 4096" as input. 59

4.24 Comparison between the results obtained with the tools for the tricubic
benchmark using "128 128 128" as input. 60

4.25 Comparison between the results obtained with the tools for the tricubic
benchmark using "256 256 256" as input. 61

4.26 Comparison between the results obtained with the tools for the laplacian
benchmark using "512 512 512" as input. 61

4.27 Comparison between the results obtained with the tools for the uxx1 bench-
mark using "128 128 128" as input. 62

4.28 Comparison between the results obtained with the tools for the uxx1 bench-
mark using "256 256 256" as input. 62

4.29 Comparison between the results obtained with the tools for the uxx1 bench-
mark using "512 512 512" as input. 63

4.30 Comparison between the results obtained with the tools for the vecadd
benchmark using "128 128 128" as input. 64

4.31 Comparison between the results obtained with the tools for the vecadd
benchmark using "256 256 256" as input. 64

4.32 Comparison between the results obtained with the tools for the vecadd
benchmark using "512 512 512" as input. 65

4.33 Comparison between the results obtained with the tools for the wave13pt
benchmark using "128 128 128" as input. 66

4.34 Comparison between the results obtained with the tools for the wave13pt
benchmark using "256 256 256" as input. 67

4.35 Comparison between the results obtained with the tools for the wave13pt
benchmark using "512 512 512" as input. 67

4.36 Comparison between the results obtained with the tools for the whispering
benchmark using "1024 1024" as input. 68

4.37 Comparison between the results obtained with the tools for the whispering
benchmark using "2048 2048" as input. 69

4.38 Comparison between the results obtained with the tools for the whispering
benchmark using "2048 2048" as input. 69

5

4.39 Comparison of the GFLOPs and memory metrics between the values cal-
culated manually and those obtained by the GPU execution, for the Ker-
nelGen Test Suite. 74

5.1 Technical features of the GPU modeled by Intel Advisor. 82
5.2 First five loops suggested to offload by Intel Advisor with OpenTimer an-

alyzing the "aes_core" benchmark. 83
5.3 Top five results ordered by Arithmetic Intensity from the "report_timing"

analysis of Intel Advisor on the "aes_core" benchmark. 89
5.4 Frequency distribution of the number of sub-nodes for each tree node in

the "aes_core" design. 97
5.5 Arithmetic Intensity of the loop for different values of Sub-nodes. 97
5.6 OpenTimer execution times for CPU standard version and for GPU imple-

mentations, using the two different compilation methods to accelerate the
code. 105

6

List of Figures

2.1 Memory transfers between host and device. The CPU moves data via
an Host-To-Device copy, the GPU works on them, with the possibility of
allocating local memory, and then can return the result back to the CPU
via a Device-To-Host copy. 14

2.2 The GPU architecture in a simplified view, showing the shared DRAM and
L2 cache along with the large number of SMs each with its own L1 cache
and instruction scheduler. Source: NVIDIA [34]. 14

2.3 Overview of the differences between the architecture of a CPU and a GPU.
Note in the case of the GPU a much higher number of processing cores. . . 16

2.4 Axis representing Arithmetic Intensity (AI) with different example of al-
gorithms. Higher is the value, higher is the change they will benefit from
GPU offload. Source: "Computer Architecture: a Quantitative Approach"
[14]. 19

2.5 Example of a Roofline model graph with two points plotted, each repre-
senting an algorithm. The red one, to the left of the threshold, is mem-
ory bound and the purple one is compute bound. Source: "Applying the
Roofline Model" [39]. 21

3.1 Screenshot of Intel VTune homepage to perform a new analysis. 25
3.2 Section to create a custom analysis, starting from a predefined one, for Intel

VTune. 26
3.3 Screenshot of Intel Advisor results for the Performance Modeling analysis. 35
3.4 The mechanism behind Advisor suggestions for GPU offloading. Source:

"Modeling Heterogeneous Computing Performance with Offload Advisor" [2]. 36
3.5 Screenshot of Intel Advisor results showing the metrics useful to obtain

Arithmetic Intensity of a function. 37
4.1 Pictures of the famous Temple Bar in Dublin, the city where I did my

internship. The picture on the left shows the original photo, while the
picture on the right shows the same image after applying a Gaussian blur
filter. 50

4.2 divergence benchmark, comparison of CUDA implementation with tools
results. 75

4.3 gameoflife benchmark, comparison of CUDA implementation with tools
results. 75

7

4.4 gaussblur benchmark, comparison of CUDA implementation with tools re-
sults. 75

4.5 gradient benchmark, comparison of CUDA implementation with tools results. 76
4.6 laplacian benchmark, comparison of CUDA implementation with tools re-

sults. 76
4.7 lapgsrb benchmark, comparison of CUDA implementation with tools results. 76
4.8 matvec benchmark, comparison of CUDA implementation with tools results. 77
4.9 tricubic benchmark, comparison of CUDA implementation with tools results. 77
4.10 uxx1 benchmark, comparison of CUDA implementation with tools results. 77
4.11 vecadd benchmark, comparison of CUDA implementation with tools results. 78
4.12 wave13pt benchmark, comparison of CUDA implementation with tools re-

sults. 78
4.13 whispering benchmark, comparison of CUDA implementation with tools

results. 78
5.1 Layout of the OpenTimer "simple" benchmark. 81
5.2 Screenshot of the Intel Advisor results page for the "report_timing" action

in OpenTimer on the "aes_core" design. 83
5.3 Intel Advisor "Top down" tab showing the functions call stack before the

loop at star.hpp:39. 84
5.4 Example of a traversal sequence of nodes using the DFS algorithm. 92
5.5 Values of Arithmetic Intensity for the function related to the number of

sub-nodes. 98
6.1 The location of the integrated memory controller counters, indicated by a

magnifying glass, used for the memory analysis with VTune and LIKWID. 108
6.2 Comparison of the execution time for Arithmetic Intensity analysis across

the different tools for the KernelGen benchmarks for the largest input di-
mension tested. 109

6.3 Three example results of AI evaluation obtained using the tools compared
with CUDA implementation of the Kernelgen Test Suite and input dimen-
sions 512 512 512 . 110

6.4 Comparison of the execution times for the two compilation methods to
accelerate OpenTimer code. 111

8

Acronyms

AI Arithmetic Intensity. 7, 11, 17–20, 23, 30–33, 36–38, 41, 44–49, 51–53, 55–58, 60,
62–64, 66–69, 71–73, 79, 89, 90, 97, 108–110

CLI Command Line Interface. 25, 26, 36, 70

CPU Central Processing Unit. 11, 13, 15

DAG Direct Acyclic Graph. 80, 90

DFS Depth-First Search. 91, 92, 103, 110

EBS Event-Based Sampling. 24, 26

EDA Electronic Design Automation. 79

FLOP/s floating-point operations per second. 20

FLOPs floating-point operations. 17, 18, 23, 27–29, 31, 35, 37, 38, 41, 43, 46, 48, 51, 53,
55–58, 60, 62–64, 66, 68–73, 97, 107, 108

GPGPU General-Purpose Graphics Processing Unit. 11, 16, 113

GPU Graphic Processing Unit. 7, 11–19, 23, 24, 33–36, 38, 69, 71, 79, 82–89, 91–99,
101, 103, 104, 107–111, 113, 114

GUI Graphical User Interface. 24, 33, 34

HPC High Performance Computing. 11, 24, 29, 42, 94, 114

IMC Integrated Memory Controller. 26, 31, 107

ITT Instrumentation and Tracing Technology. 24, 38, 43

MSR Model Specific Registers. 30

PCI-Express Peripheral Component Interconnect Express. 13, 15

9

SIMD Single Instruction, Multiple Data. 15, 16

SIMT Single Instruction, Multiple Threads. 16

SM Streaming Multiprocessor. 7, 13, 14

STA Static Time Analysis. 11, 79, 109, 113

10

Chapter 1

Introduction

The use of Graphic Processing Units (GPUs) has always been prominent in the field of
computer graphics with a growing demand for hardware also supported by the gaming
industry. Lately, thanks to the constant innovation and progress leading to the contin-
uous increase in their performance, developers are starting to integrate more and more
GPUs use also in High Performance Computing (HPC), cluster computers able to provide
extremely elevated performance, primarily used for scientific research [3].

The monsters that move on the playing field of a video game have been transformed
into particles, and their smashing have become particle collisions. Hence the term General-
Purpose Graphics Processing Unit (GPGPU) is born, broadens their field of use beyond
that of graphics, processing large amount of data in parallel, which is something tradi-
tional CPUs are not well-suited for [46].

Writing code that can run on GPUs, however, can be challenging for several reasons,
including that GPU vendors have different programming model and libraries, which can
take time to learn, and it is not easy to identify functions that are worth offloading without
prior knowledge or assumption, especially in large code projects.

During my six months internship hosted by "Synopsys International LTD" in Dublin,
an electronic design automation (EDA) company, we studied ways to identify functions
amenable to GPU acceleration without prior knowledge or assumption on the code-base.

Arithmetic Intensity (AI) is the first parameter that will be evaluated to identify
algorithms that could benefit from GPU acceleration. We will analyze different tools,
namely Intel VTune together with SDE, RRZE LIKWID and Intel Advisor, allowing to
calculate AI with little effort on the developer side. A set of publicly available benchmarks
(KernelGen Test Suite [29]) will be used to evaluate and compare the tools in depth, relying
on implementations from third party of the code base to GPU (e.g., CUDA) as a golden
reference.

The analysis will be improved by including the modeling of the speed up on GPU
versus the CPU counterpart, providing further hints thanks to the Intel Advisor feature,
using as end-to-end approach evaluation the open source Static Time Analysis (STA) tool
OpenTimer [43]. This application has been chosen because it is open source and operates

11

Introduction

in a similar area as the Synopsys team I worked with. We’ll try to implement one of its
core functions to run on GPU, using OpenACC directives, also comparing two different
approach of code compiling to enable acceleration.

Final aim of this thesis will be to analyze opportunities and obstacles of methodologies
that can help developers to find code to be accelerated on GPU. We are interested in
understanding whether it can be done effectively automatically, evaluating different tools,
in order to simplify the developer’s work.

12

Chapter 2

Background

2.1 GPU Architecture Fundamentals
The Graphic Processing Unit (GPU) is a specialized electronic circuit equipped with many
parallel processing elements and an high bandwidth memory hierarchy which supports the
Central Processing Unit (CPU) inside a computer for specific tasks.

Different manufacturers, such as AMD, NVIDIA, Intel, ASUS and many more, produce
GPUs with slightly different characteristics and nomenclatures. To learn more, we chose
to focus mostly on those produced by the supplier NVIDIA. They are composed by [34]:

• A large number of processing units called Streaming Multiprocessors (SMs) (in AMD
GPUs denominated Compute Units (CUs) [1]). Within each SM, we find multiple
instruction execution pipelines, each containing hundreds of cores, an instruction
scheduler responsible of efficiently dispatching instruction to the processing units
and a dedicated L1 cache;

• L2 shared cache part of the chip package, used to decrease memory latency and
increase bandwidth of memory accesses;

• Fast private DRAM, also known as global memory. As shown in Figure 2.1, the
CPU, which is in charge of running the main program, transfers a copy of the data
from its main memory, via the PCI-Express interface, to the GPU one with an
operation called Host-to-Device copy (H→D). Once present, the device will perform
the required algorithms and can also allocate and deallocate local memory. When the
computation is completed, results are brought back to the CPU via a Device-to-Host
copy (D→H) [31].

Refer to Figure 2.2 for a simplified visual representation of a GPU structure.

Taking as an example their NVIDIA A100 GPU, released in the last quarter of 2020
specifically for data centers, it is equipped with 80 GB of DRAM, accessed by 40 MB L2
cache, and contains 108 SMs, including within it a total of 8192 FP32 cores, performing

13

Background

Figure 2.1: Memory transfers between host and device. The CPU moves data via an
Host-To-Device copy, the GPU works on them, with the possibility of allocating local
memory, and then can return the result back to the CPU via a Device-To-Host copy.

Figure 2.2: The GPU architecture in a simplified view, showing the shared DRAM and
L2 cache along with the large number of SMs each with its own L1 cache and instruction
scheduler. Source: NVIDIA [34].

mathematical operations on single-precision floating-point numbers, 8192 INT32 cores and
65536 32-bits registers [35].

Its technical characteristics highlight some advantages of the GPU programming model,
including [42]:

• Computational power : the large number of optimized processing cores allows to
perform a massive number of operations in a short amount of time;

• High parallelism: GPUs are designed to perform multiple operation simultaneously
by splitting up large data sets into smaller chunks. Different processing cores execute

14

2.1 – GPU Architecture Fundamentals

the same instruction but on different data and the results could be then combined
together to produce the final output. This parallel processing technique is called
Single Instruction, Multiple Data (SIMD);

• Minimized data movement: when working on data-intensive algorithms, the CPU
may need to read large amount of data multiple time from the memory hierarchy to
perform computation on different chunks. On the GPU instead, once you get past the
PCI-Express interface data transfer bottle neck, which in its 5th generation is limited
to 64 GB/s, the large number of processing cores can execute the computation on
a larger portion of data simultaneously. This overcomes the need to read the same
data multiple time, processing it more quickly and efficiently [31].

GPUs are a powerful tool for the high-performance computing field. However, not all
applications are suitable for GPU parallelism, as it requires careful consideration on the
data it is working with to take full advantages of the hardware features.

2.1.1 Comparison with the CPU model
In order to clearly and easily perceive the main differences between CPU and GPU model,
Tolga Sotaya, author of [46], makes use of a straightforward analogy. Imagine a coconut
harvesting competition in which three teams participate: a strong and experienced farmer,
Arnold, two young farmers, Fred and Jim, with a less powerful tractor than Arnold’s and
finally Tolga, a farmer who instead of a tractor drives a bus with 32 young scouts, helping
him pick the fruit from the trees. Who would win this race?

In the example Arnold represents a single-threaded 4 GHz CPU, Fred and Jim a dual-
core CPU with each core running at around 2.5 GHz and Tolga a single CPU running a
GPU with 32 small low-power cores. The victory of the competition depends on several
factors, but it can be seen that if there are many coconuts trees and Tolga is able to coor-
dinate his high number of no-experienced helpers efficiently, he can win the competition.
This is certainly a conceptual simplification of the two devices but helps to imagine in a
simple way how a CPU alongside a GPU can, in certain fields, have superior performance
to a much more powerful CPU alone.

A comparison of the two architectural models is shown in Figure 2.3. The CPU is
optimized for serial tasks and designed to run threads as fast as possible, thanks to its
complex control logic and large caches. As showed in the figure, nowadays in a single
processing chip it is possible to find several cores. Each one has its own ALU and reg-
isters that together are able to carry a thread execution independently from the others
in the chip. Multiple threads can run together until there is available hardware for their
execution. It may happen however in a CPU that the threads invoked are greater than
the number of cores present. In this case a Context Switch takes place. The context of
the current process needs to be saved and it includes several data such as the program
counter and the contents of the registers, which will allow to resume execution at a later
time. It is computationally very expensive and requires a considerable period to carry out
all the necessary operations. Thanks to its architecture, the GPU is capable of executing
thousands of threads simultaneously on the SMs and registers, that can still maintain the

15

Background

status of the thread cancelling the context switch cost. This execution model is called
Single Instruction, Multiple Threads (SIMT), where the Single Instruction, Multiple Data
(SIMD) paradigm embraces multithreading [14].

Finally, it should be remembered that the CPU is in charge of coordinating and man-
aging the work, sending the data to the GPU for computation, as the GPU is just an
executor that returns the results back. The purpose of GPGPU programming model is
to make two separate devices with different characteristics to work together and achieve
best possible performance. However, this model has some limitations that may prevent
the acceleration of algorithms, as detailed in the next paragraph.

Figure 2.3: Overview of the differences between the architecture of a CPU and a GPU.
Note in the case of the GPU a much higher number of processing cores.

2.2 GPGPUs Programming Challenges
Taking full advantage of the GPU parallelism, especially in fields outside of computer
graphics, is not always simple and can be difficult for several reasons. Listed below are
some common challenges that a developer may encounter when attempting to accelerate
their code:

1. Identification of GPU-friendly algorithms: working on a large existing code base,
and perhaps written by different developers, it can be very complex to identify
algorithms to be offloaded on the GPU. Also, not all code can be accelerated or is
worth it, for example, if it requires sequential processing where each steps depends
on the previous one, or if it involves frequent small data transfers;

16

2.3 – Arithmetic Intensity as Metric

2. Data transfers: in Section 2.1 we introduced how data is synchronized from the CPU
main memory to the global memory of the GPU. This aspect often turns out to be the
bottleneck of the offloading operation and therefore the goal is to minimize the data
movement between the host and the device, to take full advantage of performance;

3. Programming models: writing code that can run on GPGPUs can be complex for a
developer who is new to this world and the learning curve can be steep. It involves a
different programming model that could make use of libraries like NVIDIA cuBLAS,
directives such as OpenACC, or programming languages as NVIDIA CUDA or AMD
HIP. The source code is then enriched with one of these methods, which imply a
different degree of difficulty, in order to highlight the algorithms to be offloaded on
a GPU;

4. Portability: code written in certain GPU programming languages, such as CUDA
or HIP, is often optimized for a specific GPU architecture and can only run on
proprietary device. Porting code on different architectures or on a device of a different
vendor could be complex. Universal languages such as OpenCL or libraries such as
OpenACC have been developed to try overcome this obstacle.

While all of these aspects will be taken into consideration, the focus of our studies
will be primarily on the first point of the list, looking for methods and tools that could
help the developer to identify algorithms suitable for offloading. We will analyze whether
this is achievable via modeling the speed up of the code on the GPU versus the CPU
counterpart or also by evaluating the Arithmetic Intensity (AI) of the algorithm.

2.3 Arithmetic Intensity as Metric
Finding code that can benefit from GPGPUs in an already existing code base can be very
complex. A factor that developers can take into consideration to identify algorithms to
accelerate is their Arithmetic Intensity and in this thesis work we want to see if it can be
a sufficient parameter and how it can be evaluated automatically.

Arithmetic Intensity (AI) of an algorithm, also known as Operational Intensity, is
defined by [14]:

AI = FLOPs

Memory accesses
. (2.1)

where in (2.1):

• FLOPs are the amount of floating-point operations carried out by a segment of code;

• Memory accesses are the total of bytes required to execute it. In the context of
GPU offloading they are the sum between the data transfer H→D and D→H for the
algorithm.

17

Background

An example, such as matrix multiplication, can help better understand this concept.
Matrix multiplication is a widely used operation in different fields, like in Neural Networks.
Given a matrix A of n · m values and a matrix B of m · p values, the operation produces
as output the matrix C of n · p elements.

Each cell cij of the resulting matrix C is determined by:

cij = ai1b1j + ai2b2j + · · · + ain + bnj =
nØ

k=1
aikbkj . (2.2)

where aij and bij are the elements of A and B, respectively.
A canonical implementation of this operation, written in C++ code, can be the fol-

lowing:

Listing 2.1 Matrix multiplication in C++.
1 void MatrixMultiplication (float **A, float **B, float **C, int rows_A ,

int cols_A , int cols_B){
2 for (int row = 0; row < rows_A ; row ++) {
3 for (int col = 0; col < cols_B ; col ++) {
4 for (int k = 0; k < cols_A ; k++) {
5 C[row][col] += A[row][k]*B[k][col];
6 }
7 }
8 }
9 }

It is possible to calculate the FLOPs of the operation as:

FLOPs(matrix multiplication) = n · p · (2m − 1). (2.3)

since n ·p operations are involved where each includes m multiplications and (m−1) sums.
The bytes related are:

Bytes(matrix multiplication) = (n · p + m · p + n · m) · datatype size. (2.4)

since the reads in memory are (n · m + m · p) and the writes (n · p), each multiplied for
the size of the data type considered.
For single-precision floating-points values of 4 bytes, like float data type in C++, the
resulting AI of the operation is:

AI(matrix multiplication) = n · p · (2m − 1)
(n · p + m · p + n · m) · 4 . (2.5)

Table 2.1 shows the values of AI for the multiplication between two matrices of dif-
ferent example sizes. It can be seen that as the size of rows and columns increases, the
number of FLOPs grows much more than the memory accesses and so does the value of
the AI, making it an advantageous operation to perform on the GPU.

18

2.3 – Arithmetic Intensity as Metric

Table 2.1: Arithmetic Intensity, obtained as the ratio between GFLOPs and memory
accesses, for the multiplication of two matrices with different example sizes.

Matrix A size Matrix B size GFLOPs
Memory
Accesses
[GB]

Arithmetic Intensity
[FLOPs/Bytes]

512 x 512 512 x 512 0.268 0.003 89.333
1024 x 512 512 x 1024 1.073 0.008 134.125
1024 x 1024 1024 x 1024 2.146 0.012 178.833
2048 x 1024 1024 x 2048 8.586 0.033 260.182
2048 x 2048 2048 x 2048 17.176 0.050 343.520
4096 x 2048 2048 x 4096 68.793 0.134 513.381
4096 x 4096 4096 x 4096 137.422 0.201 683.692

Arithmetic Intensity and hardware offloading are closely related: higher is the AI value,
higher is the chance that the algorithm will benefit of the GPU features. Figure 2.4 shows
different values for different algorithms on the axis represented by the AI. As we have
seen, its value for an algorithm is not always fixed, but can depend on parameters defined
at runtime.

Figure 2.4: Axis representing Arithmetic Intensity (AI) with different example of al-
gorithms. Higher is the value, higher is the change they will benefit from GPU offload.
Source: "Computer Architecture: a Quantitative Approach" [14].

The challenge is being able to calculate Arithmetic Intensity of an algorithm automat-
ically, without having to compute it manually as seen previously, and to do this we will
use some tools introduced in the next chapter. Arithmetic Intensity has also a crucial
purpose in allowing to understand if the execution of an algorithm is optimal or if it is

19

Background

bounded by some factors, thanks to the use of a visual paradigm: the Roofline model.

2.3.1 Roofline Visual Model
The Roofline Model allows to understand what is limiting the performance of an algo-
rithm, which optimization to follow and when the applied enhancements are sufficient.
Basically, it can helps developers to visually quantify how their code performs.

This model uses Cartesian axis, where:

1. On the x-axis is placed the Arithmetic Intensity (AI);

2. On the y-axis the peak performances, expressed as floating-point operations per
second (FLOP/s), or GFLOPS/s if expressed as multiple of 109.

The "roof" is built by drawing a line representing the maximum performance that a
machine can achieve. It is formed by putting together the memory bandwidth limit of the
machine under consideration, with the computational limit.

Afterwards the algorithm, in the form of a dot representing its characteristics, is placed
on the graph. Its position towards the intersection TH , as seen in the example Roofline
Model in Figure 2.5, allows to understand the type of bound of the algorithm:

• Computation with AI ≤ TH are memory bound;

• Computation with AI ≥ TH are compute bound.

Since Arithmetic Intensity (AI) is a parameter independent from the hardware char-
acteristics, the Roofline Model allows to understand the bound of an algorithm relating
it to the actual machine under consideration.

20

2.3 – Arithmetic Intensity as Metric

Figure 2.5: Example of a Roofline model graph with two points plotted, each represent-
ing an algorithm. The red one, to the left of the threshold, is memory bound and the
purple one is compute bound. Source: "Applying the Roofline Model" [39].

21

22

Chapter 3

Tools and Methods for GPU
Offload Assessment

In this chapter we will introduce and study several software tools to help developers
evaluate algorithms that could potentially benefit from GPU execution.

The main parameter we will focus on is the Arithmetic Intensity (AI). As we have
seen, the higher its value, the higher the chance that the algorithm can benefit from
GPU acceleration. Compute the AI of an algorithm involves measuring the operations it
performs and the memory accesses it makes. However, manually calculating AI multiple
times for different sections of code can be a major obstacle and its value may also depend
on parameters only known at runtime.

Even though evaluating AI is not the main purpose of these tools, we will analyze how
they can be configured and utilized to calculate it automatically.

3.1 Intel VTune with SDE

The first proposed method to calculate the Arithmetic Intensity (AI) of an algorithm
involves using two tools in conjunction, as suggested in the article written by Yang [51].
Intel VTune is used to evaluate the memory accesses and Intel SDE to measure the
floating-point operations (FLOPs). The values collected from these analyses can then be
divided to obtain the AI of a section of code, as evidenced in Equation 3.1.

AI(evaluated with V T une and SDE) =
FLOPs(computed with SDE)

Memory accesses(measured with V T une)
. (3.1)

In the following sections, we will introduce the two tools and explore how they can
work together to achieve this outcome.

23

Tools and Methods for GPU Offload Assessment

3.1.1 VTune - Introduction and Features Overview
VTune [21] is a software profiler developed by Intel that enables optimization of application
performance and system configuration for HPC, cloud, IoT, storage, and more. It also
allows to tune code running on GPUs.

VTune analyses support both Intel and AMD 64-bit architectures, with exception of
Hardware Event-Based Sampling (EBS) analysis that requires an Intel processor for col-
lection. VTune supports Linux, Windows and MacOS. It allows profiling of code written
in multiple programming languages, such as C, C++, Python, Java, Fortran and more
[23]. Data collection can be limited to specific sections or files by instrumenting the code
using the Intel Instrumentation and Tracing Technology (ITT) APIs. These APIs are part
of the "oneAPI" bundle which includes also VTune and other Intel profiling tools and will
be detailed in Section 3.4.1.

To take full advantage of the VTune features, it is necessary to install Intel proprietary
sampling drivers during its setup, which are also mandatory for exploiting EBS analysis.
This operation requires root access to the system. A driverless sampling data collection
is also available, but it has several analysis limitation for users without root privileges.

Intel VTune features a Graphical User Interface (GUI) that provides a visual repre-
sentation of data and information, making it easier to study complex analysis. The setup
phase is divided into three parts: WHERE, WHAT and HOW, simplifying the process of
starting a new analysis.

A screenshot of the GUI can be found in Figure 3.1, in which numbered red circles
have been inserted to help us to better explain its use. In particular:

1. Project Navigator can be used to move between the folders of previous analysis
performed;

2. WHERE section allows to select the analysis target system by choosing between a
local or a remote device;

3. WHAT section manages the path and the parameters of the application to be pro-
filed;

4. HOW section allows to chose between different pre-configured analysis. Among the
macro-categories, it is possible to find:

• Performance Snapshot, which provides an overview of issues affecting applica-
tion performance;

• Algorithm, used to detect and tune algorithms anomalies;
• Microarchitecture, helpful to identify hardware bottlenecks;
• Accelerators, which analyses GPU kernel execution.

Additionally, by clicking on the plus sign button circle in red, you can create cus-
tomized analyses starting from the existing ones, modifying the execution parame-
ters. This also makes it possible to enable or disable specific EBS to be read during
the collection;

24

3.1 – Intel VTune with SDE

5. At the bottom right of the screenshot, you can finally start the analysis. It is also
possible to begin a collection in a "paused" mode, where the application execution
is started but the data collection deferred until activated by markers in the instru-
mented code, using the ITT APIs.

Figure 3.1: Screenshot of Intel VTune homepage to perform a new analysis.

Once completed, the results of the analysis will be saved in the folder of the Project
Navigator section and opened in a new screen. More information can be found in the tool
manual [22].

VTune also supports terminal usage via a Command Line Interface (CLI), which allows
more experienced users to start the analysis quickly and in a personalized way. Results
can be saved in different formats to be lately processed or opened in the GUI.

3.1.2 Evaluating Memory Accesses with VTune
To evaluate memory accesses with VTune, the first step is to create a customized analysis.
This is mandatory if the evaluation will be carried out via the CLI and you want to limit
the data collection to algorithms of interest only. Refer to the Section 3.4.1 of this chapter
to learn how to instrument the code and use the ITT APIs.

To create a custom analysis, select the "Memory Access" option under the Microarchi-
tecture section in the "HOW" tab from the GUI, and click on the plus symbol to customize
the pre-configured analysis.

From the section that will appear, similar to the one showed in Figure 3.2, it is necessary
to:

25

Tools and Methods for GPU Offload Assessment

1. Give the analysis a custom name, to be used from the command line later;

2. Select the option "Analyze user tasks, events and counters";

3. Make sure that, in the EBS related section, the Uncore Events
"UNC_IMC_DRAM_DATA_READS" and "UNC_IMC_DRAM_DATA_WRITES"
are selected.

Figure 3.2: Section to create a custom analysis, starting from a predefined one, for Intel
VTune.

"Uncore Events" is a term used by Intel to describe events that occurs in the portions
of a microprocessor that are not part of the core, such as the ones related to the L3 cache
and the thunderbolt or memory controller. As reported on Monitoring Integrated Memory
Controller Request [...] in Intel Core processors [26], in order to monitor memory traffic
metrics, the analysis must read the following values of the Integrated Memory Controller
(IMC) counters, which are part of the Uncore Events:

• UNC_IMC_DRAM_DATA_READS : "counts every read (RdCAS) issued by the
Memory Controller to DRAM (sum of all channels)"

• UNC_IMC_DRAM_DATA_WRITES : "counts every write (WrCAS) issued by the
Memory Controller to DRAM (sum of all channels)".

Starting from the two values corresponding to these metrics, in order to obtain the
number of bytes read and written from the memory, we need to add them and and multiply
the result by 64, since all requests result in 64-byte data transfer from the DRAM. The
resulting formula is shown in Equation 3.2.

Memory Access(Bytes evaluated with V T une) =
(UNC_IMC_DRAM_DATA_READS +

UNC_IMC_DRAM_DATA_WRITES) · 64.

(3.2)

Once configured the analysis and figured out how to interpret the results, in order
to carry out the assessment we moved to the CLI for pratical reasons. On an already
compiled application, in the example app.o, execute on the terminal the command in
Listing 3.1.

26

3.1 – Intel VTune with SDE

Listing 3.1 Intel VTune analysis to collect memory accesses via terminal.
1 $vtune -collect custom -memory - access -start - paused -finalization -mode=

full -data -limit =0 -r ./ results -- app.o

Where, in Listing 3.1:

• -collect <string>: run the specified analysis, where "custom_memory_access" is the
name of the custom one we created before;

• -start-paused: starts the application but postpones data collection only when it will
encounters the ITT APIs in the code, to limit the collection to algorithms of interest
only;

• -finalization-mode = <string>: when "full" mode is specified, the finalization on the
sampled data produces the most accurate results, but takes more time to complete;

• -r <path>: specifies the folder where to save the analysis results.

After data collection, the tool will print the analysis report on the terminal screen.
The two memory traffic metrics, as introduced before, can be read and then manipulated
from the "Uncore Event summary" section of the results.

3.1.3 Use SDE to Measure Floating-Point Operations
Intel Software Development Emulator [20], or SDE, is a command line tool developed by
Intel with the main goal of executing applications that contain new instruction sets on a
systems that don’t support them. It is built upon "PIN", a dynamic binary instrumen-
tation framework, to control the execution of an application, examining each instruction
and evaluating if it should be emulated or not. For example, it can emulate the Intel
Advanced Vector Extensions 512 (Intel AVX-512) instructions on system that don’t sup-
port them, helping developers to gain familiarity with the vendor upcoming instruction
set extensions.

SDE is available for Windows and Linux operating systems and supports only Intel
processors.

SDE comes with several useful features, in addition to the emulator, like the "Mix
Histogramming" tool. It allows, among other analysis, to evaluate the number of instruc-
tions executed, their length, category, the most frequent ones, and also the number of
floating-point operations (FLOPs) computed.

To use the Mix tool for FLOPs collection on an application, run the following command
from terminal:

Listing 3.2 Intel SDE Mix analysis to evaluate FLOPs.
1 $sde64 -skl -iform 1 -omix results -start_ssc_mark 111: repeat -

stop_ssc_mark 222: repeat -- app.o

27

Tools and Methods for GPU Offload Assessment

where app.o is the example name of an executable and:

• -slk: identifies the architecture to run the analysis on (e.g. -knl for Knights Landing
processors, -hsw for Haswell and -ckx for Cascade Lake);

• -iform: used to specify the output format for the instruction trace generated, in this
case the ISA format;

• -omix <string>: runs the Mix Histogramming tool and specifies the output file, for
example "results";

• -start_ssc_mark <string> and -stop_ssc_mark <string>: allows to trace only cer-
tain sections of code, as explained in the section 3.4.1 about the ITT APIs. If not
specified, it will trace data for the entire execution.

After the collection is completed, a report is generated containing the correspondence
between the evaluated parameters and the detected values.

To compute the number of FLOPs executed by the application, open the results file
and follow these steps [17]:

1. Locate the section of the report titled "EMIT_GLOBAL_DYNAMIC_STATS";

2. To calculate single-precision FLOPs, multiply each value corresponding to the pa-
rameters starting with "elements_fp_single_" by the number in the parameter name
that appears after the underscore. It represents the number of elements that have
been processed at once thanks to vectorization.
If you are interested in double-precision FLOPs, consider "elements_fp_double_"
instead;

3. Add together all of the values obtained to calculate the number of floating point
operations. The equation to refer is therefore:

FLOPs(computed with SDE) =
16Ø

X=1
elements_fp_single_X · X. (3.3)

To make the explanation more understandable, we can consider the following possible
results, which are extrapolated from an example report:

Listing 3.3 Report section example that displays results useful for calculating FLOPs
with Intel SDE.

1 # EMIT_GLOBAL_DYNAMIC_STATS
2 #
3 # $global -dynamic - counts
4 #
5 # iform count
6 [...]
7 * elements_fp_single_1 234234231
8 * elements_fp_single_2 8798747
9 * elements_fp_single_4 23453

28

3.2 – RRZE LIKWID

To compute the overall single-precision floating-point operations (FLOPs), apply the
formula in the equation 3.3:

FLOPs(for listing 3.3) = (234234231 · 1) + (8798747 · 2) + (23453 · 4) =
287026713 ≈ 0.287 GFLOPs

(3.4)

A simple script can be used to parse the output file and compute the operation to
evaluate FLOPs multiple times with little effort.

3.2 RRZE LIKWID
LIKWID [45], acronym of "Like I Knew What I’m Doing", is a toolsuite for performance
analysis of HPC systems. It provides a set of command-line tools and libraries that can be
used to collect and analyse various types of data, including monitoring of CPU, memory
and energy consumption counters, to evaluate and optimize application efficiency.

LIKWID is developed by Regionales Rechenzentrum Erlangen (RRZE), the regional
data center of the Friedrich-Alexander University (FAU) in Germany, under an open
source license. It works on Intel, AMD, ARMv8 and POWER9 processors but is only
available on Linux operating systems.

The suite contains eleven tools, each with its own terminal command that starts with
"likwid-". Among them we can find the following [47]:

• likwid-topology: query multicore or multisocket architecture to get information about
the thread and cache topology. Useful to optimize resource usage in parallel code;

• likwid-perfctr : allows to read the hardware performance counters of a processor
while an application is running. It also elaborates some metrics to propose a derived
one in the report, with standard or simplified name such as "Memory data volume
[GBytes]", for less experienced users. It can be used to collect data about an entire
execution or it allows the use of proprietary markers to delimit sections of code to
be monitored;

• likwid-pin: out-of-the-box, it allows to pin processes to specific CPU cores for
threaded applications without requiring any changes the source code;

• likwid-powermeter : reads the RAPL (Running Average Power Limit) counters and
queries Turbo mode steps for measuring power consumption of processors and mem-
ory.

Monitoring and optimizing code for specific hardware requires in-depth knowledge of
the machine. LIKWID, with its tools, allows a higher level of abstraction to simplify this
process for the developer.

For example, before carrying out a data collection with "likwid-perfctr", LIKWID au-
tomatically identifies the processor architecture of the machine and detects which counters
can be accessed. It also proposes sets of related metrics, called "Performance Groups",

29

Tools and Methods for GPU Offload Assessment

put together by using the raw events available and that could be monitored during an
application execution.

By executing "likwid-perfctr -a" on the command line, it will return the list of all
Performance Groups available on the architecture of the machine used, as showed in
Listing 3.4.

Listing 3.4 List of available Performance Groups, on an Intel Skylake architecture, using
"likwid-perfctr"

1 $likwid - perfctr -a
2 BRANCH Branch prediction miss rate/ratio
3 CACHES Some data from the CBOXes
4 CLOCK Power and Energy consumption
5 DATA Load to store ratio
6 ENERGY Power and Energy consumption
7 [...]

3.2.1 Measuring Arithmetic Intensity with LIKWID
To evaluate the Arithmetic Intensity (AI) of algorithms using LIKWID, we will rely on
the "likwid-perfctr" tool. It allows limiting data collection to a determined section of code
using the proprietary Marker APIs for supported programming languages, as explained
in Section 3.4.2. If used as wrapper, it supports monitoring any application, regardless of
the programming language used.

"likwid-perfctr" [12] is a tool that allows to read the hardware performance counters of
a machine and to process the values obtained to calculate higher level metrics. Since the
suite is open source, it is possible to study the functioning of the tool in more detail. We
will focus on machines equipped with Intel processors, as we used one in our analyses.

Evaluate the hardware performance counters of an architecture means read its Model
Specific Registers (MSR). They are processor-specific hardware registers also used to track
"events": a situation that occurs and is intended by the processor designer to be measured,
such as a cache miss. To interact with these registers is required to have root permissions
or use a driver that interacts with them for you.

Also, the paranoid value of the Linux system should be set to "0" to allows measurement
of the whole CPU and Uncore Events. Its value can be checked via terminal with the
command:

Listing 3.5 Check the paranoid value on a Linux system.
1 $cat /proc/sys/ kernel / perf_event_paranoid

"likwid-perfctr" uses the Linux "msr module" to read and write on those registers
from the user space [47], avoiding the developer to have an in-depth knowledge of the
architecture. LIKWID, for each processor architecture supported, holds a correspondence
between the hardware counter name to be evaluated and the address of the register to
read.

30

3.2 – RRZE LIKWID

To calculate the Arithmetic Intensity, which is a derived metric, LIKWID must first
obtain the FLOPs and memory accesses for a section of code. To study how those metrics
are computed, we can take a look to the "Performance Groups" of a processor architecture.
It is a set of files provided by LIKWID holding the correspondence between the counters
to be evaluated and the events related to a specific analysis. It also contains their derived
metrics, like AI.

Taking as an example a machine equipped with the Intel Skylake architecture, the
Performance Group to evaluate single-point arithmetic and main memory performance is
called "MEM_SP" [44]. Table 3.1 shows the counter useful for the AI analysis and their
relative name of the event to be measured. Subsequently the events are combined together
to obtain higher level metrics.

Table 3.1: Correspondence between the event name and the counter name for the
"MEM_SP" Performance Group of the Intel Skylake architecture.

Counter Name Event Name
PCM0 FP_ARITH_INST_RETIRED_128B_PACKED_SINGLE
PCM1 FP_ARITH_INST_RETIRED_SCALAR_SINGLE
PCM2 FP_ARITH_INST_RETIRED_256B_PACKED_SINGLE
MBOX0C1 DRAM_READS
MBOX0C2 DRAM_WRITES

To evaluate the FLOPs the following computation is performed on the sets of events:

FLOPs(using LIKW ID on Skylake CP U) =
(FP_ARITH_INST_RETIRED_128B_PACKED_SINGLE · 4+

FP_ARITH_INST_RETIRED_SCALAR_SINGLE+
FP_ARITH_INST_RETIRED_256B_PACKED_SINGLE · 8) .

(3.5)

and for bytes of accesses in memory, evaluated considering the Uncore Events from the
Integrated Memory Controller (IMC) counters:

Bytes of Memory Access(with LIKW ID for Skylake CP U) =
(DRAM_READS + DRAM_WRITES) · 64 .

(3.6)

Finally, the tools divides the FLOPs computed by the cores and the memory data
volume of the whole socket to propose the Arithmetic Intensity, as a ready-made metric.

Although the theory behind it may not seem trivial, calculating AI with LIKWID is
very simple. From the command line, to evaluate the group "MEM_SP" for an Intel
processor with Skylake architecture, you can run the following:

31

Tools and Methods for GPU Offload Assessment

Listing 3.6 LIKWID analysis to collect Arithmetic Intensity for Intel Skylake architec-
ture.

1 $likwid - perfctr -c 0 -g MEM_SP -m ./ app.o

where:

• -c <list>: requires to list the processor ids to measure;

• -g <string>: specifies the Performance Group for which to collect data. It is unique
to the processor architecture and the command "likwid-perfctr -a" can be used to
see which ones are available for your architecture;

• -m: enable the Marker APIs inside the code to limit the data collection, as explained
in Section 3.4.2.

This allows for the direct retrieval of the value of Arithmetic Intensity, referred to as
Operational Intensity from the tool in the report. The counters and events used in the
analysis along with all the other values evaluated from the Performance Group are also
printed. The results of an example analysis are showed in Listing 3.7.

Listing 3.7 Example of the report obtained through a LIKWID analsys to obtain the
Arithmetic Intensity of a section of code.

1 $likwid - perfctr -c 0 -g MEM_SP -m ./ app.o
2 --
3 Region read_stats , Group 1: MEM_SP
4 [...]
5 +--+---------+------------+
6 | Event | Counter | HWThread 0 |
7 +--+---------+------------+
8 | [...] |
9 | FP_ARITH_INST_RETIRED_128B_PACKED_SINGLE | PMC0 | 0 |

10 | FP_ARITH_INST_RETIRED_SCALAR_SINGLE | PMC1 | 53385470 |
11 | FP_ARITH_INST_RETIRED_256B_PACKED_SINGLE | PMC2 | 0 |
12 | DRAM_READS | MBOX0C1 | 5049095 |
13 | DRAM_WRITES | MBOX0C2 | 334272 |
14 +--+---------+------------+
15

16 +-----------------------------------+------------+
17 | Metric | HWThread 0 |
18 +-----------------------------------+------------+
19 | Runtime (RDTSC) [s] | 0.0174 |
20 | SP [MFLOP/s] | 3064.2843 |
21 | [...] |
22 | Memory data volume [GBytes] | 0.3445 |
23 | Operational intensity | 0.1549 |
24 +-----------------------------------+------------+

32

3.3 – Intel Advisor

3.3 Intel Advisor
Intel Advisor [18] is an analysis tool for improving applications performance by evaluating
the efficiency of threading, vectorization, memory usage and GPU offloading of algorithms.
It is available for Linux, Windows and MacOS operating systems and supports C, C++,
FORTRAN, SYCL, OpenMP, OpenCL and Python code. Performing its analyses does
not require privileged execution permissions or the installation of any special drivers.

Advisor consists of a set of tools that provide recommendations for optimizing code by
identifying where to make improvements:

• Vectorization and Code Insights: identifies and recommends ways to improve loops
that can be optimized due to their high impact on performance or low vectorization;

• CPU and GPU Roofline Insights: performs Roofline analysis of the application,
relating the performance of the algorithms to that of the machine in use. It allows
to identify and resolve execution bottlenecks;

• Offload Modeling: identifies GPU offloading opportunities in the source code, evalu-
ating also the data transfer and speed up projection of the application if accelerated.
It reports the limiting factors of a loop if is not advantageous to offload;

• Threading: check and tune threading design options, finding performance issues. It
also creates a projection of the analysis on a system with more cores count.

All the evaluations can be performed through the use of the GUI or via the system
command line, as in Listing 3.8.

Listing 3.8 Perform an Intel Advisor analysis via CLI.
1 $advisor --collect =<string > --project -dir ./ results -- app.o

Where:

• –collect=<string>: runs the specified type of analysis. Each tool has a string that
identifies it;

• –project-dir <path>: path in the system where to save the results of the data col-
lection.

The application under examination should be compiled with the debug flag for more
in-depth results. It is also possible to customize or modify how the analysis is performed
by including other flags, which can be found in the Advisor manual [19].

Advisor stands out from the other tools we have considered due its "Offload Modeling"
tool, which analyses code to identify potential candidates for GPU offloading. This mode
is particularly relevant to our goals and we will explore it in the next section before
conducting more extensive testing in Chapter 5 of this thesis. Additionally, the Offload
Modeling serves as a starting point for evaluating the Arithmetic Intensity of an algorithm
using Advisor.

33

Tools and Methods for GPU Offload Assessment

3.3.1 Modelling GPU Offload Opportunities
The "Offload Modeling" mode of Advisor enables various analyses related to hardware ac-
celeration, including performance estimation for running GPU-designed code on different
GPU models, among those produced by Intel. Additionally, for CPU-designed code, it can
estimate data transfer between the host and device, and identify offloading opportunities
by estimating potential speed up of loops. We will focus on the latter, studying how the
tool can be used to identify algorithms that can benefit from GPU offloading.

This analysis requires no instrumentation of the code or knowledge about the code
base, since functions detection is totally automatic. However, it is possible to limit the
files or sections to be evaluated using the ITT APIs, as explained in Section 3.4.1.

Carrying out the analysis does not require having a GPU installed in your system,
since the tool does not relies on hardware counters but models the behaviour of a GPU.
However, the only GPUs available in Advisor are the one produced by Intel and the de-
fault one when executing an analysis is the "Intel Arc Graphics" with 512 vector engines.
Even if it is the only device brand present, the tool allows to tune the hardware parameter
of the GPUs available, such as frequency and DRAM size, to perform an estimation on a
customized device according to the developer’s needs.

The Offload Modeling analysis can be performed via the GUI of Advisor or the system
terminal, by using the parameter "–collect=offload" to start the data collection, as showed
in Listing 3.8. Once the modelling is started, it performs the following steps on the
application under examination [19]:

1. Survey analysis: first run of the application and collection of key parameters on the
baseline CPU platform;

2. Characterization analysis: identification of the number of times functions in code
are invoked, the number of floating-point and integer operations and estimation of
the memory traffic between the host and the device;

3. Performance Modeling: estimation of the speed up on a modeled GPU, considering
the improvement for loops that could be offloaded on the GPU.

By opening the results using the user interface, and selecting the "Accelerated Regions"
tab, we will find ourselves in front of a screen similar to the one in Figure 3.3. Here we
can find:

1. Summary of the estimated offload characteristics: here is reported the total speed
up that the application would have if exploiting also the GPU, the number of loops
and function suggested for offloading and the fraction of code accelerated;

2. List of loops/functions: functions suggested for offloading. The top not-offloaded
function are shown in light gray, reporting also the reason why they have not been
selected;

3. Metrics report: provides detailed metrics of the identified loops. By scrolling hori-
zontally, you can find information such as the time required for the function to run

34

3.3 – Intel Advisor

Figure 3.3: Screenshot of Intel Advisor results for the Performance Modeling analysis.

on the CPU of the machine, the estimated time for the function to execute on the
modeled GPU, the computed speed up, the number of FLOPs, the estimated data
transfer and factors that may limit execution, such as latencies, data exchange and
DRAM bandwidth;

4. Transferred data: estimated data transfer H→D and D→H for the selected loop. It
takes also into account data reuse: if the function is executed multiple times working
on the same data, these are considered already held on the GPU memory, without
the need for numerous transfers;

5. Source code: snippet from the file of the code identified for offloading.

To conduct this analysis and identify algorithms that can benefit from running on the
GPU, Advisor measures CPU execution time on baseline platform. This value is compared
to the time it would take on a modelled GPU, evaluated as follows[2]:

tregion = max(tcompute, tmemory subsystem) + tdata transfer tax + tkernel launch. (3.7)

where:

• tcompute: is the estimated time assuming bound exclusively by compute;

• tmemory subsystem: is the estimated time assuming bound exclusively by the memory
subsystem;

• tdata transfer: is the time required for the data transfers H→D and D→H;

• tkernel launch: is the requested kernel launch time.

35

Tools and Methods for GPU Offload Assessment

Figure 3.4: The mechanism behind Advisor suggestions for GPU offloading. Source:
"Modeling Heterogeneous Computing Performance with Offload Advisor" [2].

A region is considered profitable and recommended for offloading if the ratio between
the time required on the CPU and the time modelled for the GPU is greater than 1.
Figure 3.4 provides a graphical representation of this concept.

The results obtained will therefore not be universal, since changing the underlying
hardware of the machine or the GPUs to be modelled will also change the outcome of the
analysis.

3.3.2 Measuring Arithmetic Intensity with Advisor
To measure Arithmetic Intensity (AI) of an algorithm using Advisor, we need to use the
"Offload Modeling" analysis introduced in the previous section, to which is possible to add
some flags that can improve the collection. The command to be run in the CLI is the
following:

Listing 3.9 Arithmetic Intensity collection using Intel Advisor analysis via CLI.
1 $advisor --collect = offload --loop -filter - threshold =0 --data - transfer =

full --project -dir ./ results -- app.o

where:

• –collect=offload: performs the Offload Modeling analysis on the specified applica-
tion;

• –loop-filter-threshold=0 : evaluate all loops in the code, even those that have a very
low running time;

36

3.3 – Intel Advisor

• –data-transfer=full: model data transfer between host and device with high details,
identifying also where data can be potentially reused. Adds significant overhead to
the analysis;

• –project-dir <path>: path in the system where to save the results.

The identification of the loops, including the name of the functions and the line where
they are located in the code, is automatic and does not require limiting the areas of in-
terest using markers.

The Advisor screen containing the results is similar to the one in Figure 3.5. From the
"Accelerated Regions" tab, after selecting a function of interest and scrolling horizontally
in the report, the metrics we are interested in are:

1. GFLOP: representing the floating-point operations (FLOPs) computed by the algo-
rithm, expressed as multiple of 109 (to not be confused with the "GFLOPS" section,
that contains the GFLOPs per second);

2. Estimated Data Transfer With Reuse: containing the memory accesses performed,
considering also data reuse, in the specified unit of measure. The "Read" value
represents the H→D data movement, while the "Write" value the D→H one.

Figure 3.5: Screenshot of Intel Advisor results showing the metrics useful to obtain
Arithmetic Intensity of a function.

The AI can be therefore obtained as:

AI(Advisor analysis) = GFLOP

Estimated Data Transfer With Reuse Read + Write [GB] .

(3.8)

37

Tools and Methods for GPU Offload Assessment

3.4 Control and Limit Data Collection
While it may be useful to evaluate certain metrics for the entire application execution,
computing the Arithmetic Intensity (AI) of an algorithm to determine if it can benefit
from GPU offloading is only profitable if it can be evaluated on delimited portions of code.
This section explains how to instrument the code so that the collection of FLOPs and
memory accesses by the the tools is limited only to the regions of interest.

3.4.1 Collection Control APIs for Intel Products
The Instrumentation and Tracing Technology (ITT) APIs are used to instrument the code
and control the data collection for Intel products. They support C/C++ and FORTRAN
applications on Windows, Linux and MacOS. The source code is open source and released
on Github [25]. The installation of the ITT APIs occurs simultaneously with that of
VTune and Advisor, as part of the same "oneAPI" bundle which includes them and other
Intel profiling tools.

When compiling the application, it must be linked to the "libittnotify.a" static library
("-littnotify") and the build system needs to be configured to reach the API headers and
libraries by adding [24]:

• <install_dir>/sdk/include to the include path;

• <install_dir>/sdk/lib64 to the libraries path.

Finally, to instrument the code for VTune and Advisor, add the following to every
C/C++ source file in which you want to control the data collection:

1. #include <ittnotify.h> to the file headers;

2. __itt_resume(): to start the collection and record data (note it uses two underscores
at the beginning);

3. __itt_pause(): to stop recording performance data.

Here is a practical C++ example of how to limit the collection, and later use the
"start-paused" analysis to execute the application but wait until the resume markers are
found:

Listing 3.10 Example of instrumenting the code to perform an analysis with VTune or
Advisor

1 # include <ittnotify .h> // built with appropriate paths and libraries
2

3 __itt_resume (); // resume collection
4 for (int i = 0; i < M; i++){
5 for (int j = 0; j < J; j++){
6 someFunction ();
7 }
8 }
9 __itt_pause (); // stop collection

38

3.4 – Control and Limit Data Collection

To instrument the code for the SDE-performed collection, specify in the analysis con-
figuration with the commands "-start_ssc_mark 111:repeat" and "-stop_ssc_mark 222:re-
peat" that the data collection is limited. Then, add the following to every C/C++ source
file:

1. #include <ittnotify.h> to the headers;

2. __SSC_MARK(0x111): to start the collection and record data (note it uses two
underscores at the beginning and the number in the brackets for the start and stop
commands must be different);

3. __SSC_MARK(0x222): to stop recording performance data.

A C++ example on how to use them, is shown in the sample code snippet below:

Listing 3.11 Example on how to instrument the code to perform an analysis with SDE
1 # include <ittnotify .h> // built with appropriate paths and libraries
2

3 __SSC_MARK (0 x111); // start SDE collection
4 for (int i = 0; i < M; i++){
5 for (int j = 0; j < J; j++){
6 someFunction ();
7 }
8 }
9 __SSC_MARK (0 x222); // stop SDE collection

3.4.2 Marker APIs for LIKWID
LIKWID has developed the "Marker APIs" for controlling data collection. Through code
instrumentation, the "likwid-perfctr" analysis can be conducted on a specific section of
code. They are available for C, C++, Julia and FORTRAN.

For C/C++ applications, a set of defines allows to disable or enable the markers at
build time. To enable them you need to set "-DLIKWID_PERFMON" as compiler flag
along with linking the application to the LIKWID library ("-llikwid"). The build system
needs also to be configured to reach the application include and libraries paths.

The instrumentation is done by modifying the source code, which you must have access
to, adding in every file for which you want to control the collection the following:

1. #include <likwid.h>: to the headers;

2. The set of defines to enable or disable the markers using "-DLIKWID_PERFMON"
as compiler flag;

3. LIKWID_MARKER_INIT : to initialize the Marker API;

4. LIKWID_MARKER_REGISTER ("string"): to register a region to be monitored,
with the name contained in the brackets;

39

Tools and Methods for GPU Offload Assessment

5. LIKWID_MARKER_START("string"): to start collecting data for the specified
region;

6. LIKWID_MARKER_STOP("string"): to stop the collection for the named region;

7. LIKWID_MARKER_CLOSE : finalizes the Marker API for the "likwid-perfctr" eval-
uation.

A sample code snippet written in C++, demonstrating the usage of Marker APIs,
could look like the following:

Listing 3.12 Marker APIs usage example to conduct an analysis with LIKWID.
1 # include <likwid .h> // built with appropriate paths and libraries
2

3 #ifdef LIKWID_PERFMON
4 # include <likwid .h>
5 #else
6 # define LIKWID_MARKER_INIT
7 # define LIKWID_MARKER_THREADINIT
8 # define LIKWID_MARKER_SWITCH
9 # define LIKWID_MARKER_REGISTER (regionTag)

10 # define LIKWID_MARKER_START (regionTag)
11 # define LIKWID_MARKER_STOP (regionTag)
12 # define LIKWID_MARKER_CLOSE
13 # define LIKWID_MARKER_GET (regionTag , nevents , events , time , count)
14 #endif
15

16 int main(int argc , char ** argv) {
17 LIKWID_MARKER_INIT ;
18

19 LIKWID_MARKER_REGISTER (" read_stats ");
20 LIKWID_MARKER_START (" read_stats ");
21 for (int i = 0; i < M; i++){
22 for (int j = 0; j < J; j++){
23 someFunction ();
24 }
25 }
26 LIKWID_MARKER_STOP (" read_stats ");
27

28 LIKWID_MARKER_CLOSE ;
29 return 0;
30 }

The Marker APIs allows also to define multiple regions to be monitored using different
names, since "likwid-perfctr" will create a report for each of them.

40

Chapter 4

Experimental Analysis for
Arithmetic Intensity
Evaluation

To effectively identify code areas that can benefit from GPU execution, we will evalu-
ate the Arithmetic Intensity (AI) of functions using the tools introduced in the previous
chapter. We want to assess whether the tools can be successfully used for our purpose
and for this reason we selected twelve benchmarks, part of the "KernelGen Test Suite"
[29]. Each benchmark includes a function that performs floating-point operations and can
benefit from parallel execution. The code can be compiled by selecting a compiler and
setting custom flags in the makefile, including the choice whether to use single-precision
or double-precision floating-point format for numbers. The KernelGen Test Suite is writ-
ten in C language and has a counterpart in CUDA, a GPU programming language. The
benchmarks were initially developed by Dr. Mikushin et al. to compare the performance
of "KernelGen Compiler" [30], a C and FORTRAN compiler for NVIDIA GPUs, with other
compilers such as CAPS Enterprise Compiler, NVIDIA CUDA Compiler, GCC compiler
and Intel MIC Compiler. These comparisons were made by targeting host CPUs, NVIDIA
GPUs and Intel Xeon Phi accelerators.

For each benchmark in the KernelGen Test Suite, we begun by studying the algorithmic
implementation, trying to analyze the implementation complexity. Next, we computed
expected FLOPs and memory accesses (needed to AI evaluation) using the algorithmic
analysis. This evaluation is performed a priori to avoid biases on the analysis given the
benchmarking results. Then we measured these values using Intel VTune with SDE, RRZE
LIKWID and Intel Advisor to compare the results. Finally, we validated the obtained
results by running each benchmark on the GPU using the CUDA implementation.

41

Experimental Analysis for Arithmetic Intensity Evaluation

4.1 Environment and Tools Setup
To conduct the measurement, we are using a machine with exclusive access and not
running on shared hardware. This is necessary since some tools require special permissions
to be installed and do not support a shared environment. The system employed is equipped
with 16 GB of DDR4 RAM, an Intel Core i7-7820HQ CPU, whose characteristics are listed
in Table 4.1, and a NVIDIA Quadro M1200 GPU, with proprieties listed in Table 4.2.
The operating system, based on Linux, is CentOS 7 running 3.10.0-1160.76.1.el7.x86_64
version of the kernel.

Table 4.1: Technical features of the machine CPU, used to carry out the measurements.

CPU Model Intel Core i7-7820HQ
Architecture x86 64-bit
CPUs 8
Threads per Core 2
Cores per Socket 4
Max Clock [GHz] 3.9
Min Clock [GHz] 0.8
L1d Cache [kB] 32
L1i Cache [kB] 32
L2 Cache [kB] 256
L3 Cache [kB] 8192

Table 4.2: Technical features of the GPU used in the validation phase.

GPU Model NVIDIA Quadro M1200
Architecture Maxwell
Boost Clock [MHz] 1148
Base Clock [MHz] 991
SM Count 5
L1 Cache [kB] 64 (per SM)
L2 Cache [MB] 2
Memory Type GDDR5
Memory Size [GB] 4
Bandwidth [GB/s] 80.19

To evaluate the benchmarks with LIKWID, we compiled the source code using the
version 11.2.1 of the GCC compiler. Instead, to perform the analyses with VTune, SDE,
and Advisor, we used the Intel oneAPI ICC compiler version 2021.7.0, which is distributed
in the same bundle of the tools and is specifically designed for HPC applications. Although
VTune and Advisor can analyze any binary regardless of the compiler used, we chose this
compiler to ensure maximum compatibility with the tools.

42

4.1 – Environment and Tools Setup

4.1.1 VTune and SDE Configuration
To perform the measurements using Intel VTune for the memory accesses and Intel SDE
for FLOPs evaluation, we instrumented the code using the Instrumentation and Tracing
Technology (ITT) APIs, wrapping the function that performs the computation of our
interest. This allows to disable and then re-enable the tracing only for certain portions of
code, to be sure of not collecting more data than necessary, as explained in Section 3.4.1.

Next, we compiled the benchmarks using Intel proprietary compiler as it follows:

Listing 4.1 Compile command for the Kernelgen Test Suite to be evaluated with VTune
and SDE.

1 icc -g -O3 -std=c99 -L$(ITT_library) -I$(ITT_include) benchmark .c -o
benchmark .o -littnotify

where:

• -g: enables debugging information;

• -O3 : turns on an high grade of compile optimizations;

• -std=c99 : lets the compiler know that the C99 standard version is used;

• ITT_library and ITT_include: are the paths to the ITT API libraries and include,
used to limit the data collection to the region of interest;

• -littnotify: is the name of the ITT library;

Once we obtained the executable, the VTune analysis to collect the memory accesses
for each benchmark can be initiated via the terminal command in Listing 4.2.

Listing 4.2 VTune analysis on the KernelGen Test Suite to collect memory accesses.
1 vtune -collect custom -memory - access -start - paused -finalization -mode=

full -data -limit =0 -r ./ result -- benchmark .o 512 512 512 1

Where "512 512 512 1" represent function arguments, which meaning depends on the
benchmark.

Afterwards, on the same executable, we can measure the floating-point operations
(FLOPs) using the SDE command from terminal showed in Listing 4.3.

Listing 4.3 Intel SDE terminal command to collect FLOPs from the KernelGen Test
Suite.

1 sde64 -skl -iform 1 -omix result .sde -start_ssc_mark 111: repeat -
stop_ssc_mark 222: repeat -- benchmark .o

The version of VTune used for our evaluations is 22.4.0 and the version of SDE is
9.14. In-depth information about the terminal commands to start the analyses and how
the results can be collected can be found in Section 3.1.2 for VTune and Section 3.1.3 for
SDE.

43

Experimental Analysis for Arithmetic Intensity Evaluation

4.1.2 LIKWID Configuration
Before conducting the measurements using RRZE LIKWID, we instrumented each bench-
mark using its Marker API to limit the data collection only to the function of interest.
This can be achieved as explained in Section 3.4.2.

We compiled the benchmarks using the GCC compiler, as it follows:

Listing 4.4 Compile command for the Kernelgen Test Suite to be evaluated with VTune
and SDE.

1 gcc -g -O3 -std=c99 -DLIKWID_PERFMON -L$LIKWID_library -I$LIKWID_include
benchmark .o -llikwid

where:

• -g: enables debugging information;

• -O3 : turns on an high grade of compile optimizations;

• -std=c99 : lets the compiler know that the C99 standard version is used;

• -DLIKWID_PERFMON : enables the Marker APIs;

• LIKWID_library and LIKWID_include: are the paths in the system to the Marker
APIs libraries and include, used to limit the data collection to the region of interest;

• -llikwid: indicates the LIKWID library.

Obtained the executable, each analysis using LIKWID to collect the Arithmetic In-
tensity can be initiated with the terminal command in Listing 4.5, where "512 512 512
1" represent an example input dimensions: the first three number sequences are the di-
mensions of the data structures to be allocated and the last is the number of times the
benchmark execution should be repeated, in this case always one. The version of likwid-
perfctr we used is the 5.2.0.

Listing 4.5 LIKWID terminal command to collect AI of the benchmarks.
1 likwid - perfctr -c 0 -g MEM_SP -m benchmark .o 512 512 512 1

More information on how to use LIKWID can be found in Section 3.2.1.

4.1.3 Advisor Configuration
Performing the analyses with Intel Advisor does not require any instrumentation of the
code since the tool is able to automatically detect functions to evaluate their AI. The
Kernelgen Test Suite was compiled using the following command with the Intel C compiler:

Listing 4.6 Compile command for the Kernelgen Test Suite to be evaluated with Advisor.
1 icc -g -O3 -std=c99 benchmark .c -o benchmark .o

44

4.2 – Evaluation of Arithmetic Intensity

where:

• -g: enables debugging information;

• -O3 : turns on an high grade of compile optimizations;

• -std=c99 : lets the compiler know that the C99 standard version is used.

Once compiled, the analysis for each benchmark can be launched by running from the
command line:

Listing 4.7 Advisor terminal command to collect AI of the benchmarks.
1 advisor --collect = offload --loop -filter - threshold =0 --data - transfer =full

--project -dir ./ benchmark_results -- benchmark .o 512 512 512 1

The version of Advisor we used is the 2022.3. More information about Advisor analysis
to evaluate AI and how the results can be collected can be found in Section 3.3.2.

4.2 Evaluation of Arithmetic Intensity
This section presents the results of the different analyses. Firstly, we analyzed each
benchmark in the KernelGen Test Suite in terms of algorithmic features. Next, we have
calculated the Arithmetic Intensity (AI) of each operation manually, starting from the
source code, that we call "expected" in the tables containing the results. Finally, the AI
was measured with Intel VTune with SDE, RRZE LIKWID and Intel Advisor.

Each benchmark, in order to be executed, requires three or four input parameters:
the first two or three are the input dimensions of the data structures to be allocated,
depending from the benchmark itself, and the last one always represents the number
of times that the main function must be executed, in case multiple runs are needed.
Each measurement is repeated ten times, to evaluate also the variance and the standard
deviation of the results, and using three different dimensions for each benchmark. To
equalize the execution times, we used square data structures with input dimensions of
"1024", "2048" and "4096" for benchmarks that require three dimensions, and "128", "256"
and "512" for those that require two dimensions. For the purpose of the experiment all
the benchmarks have been compiled enabling the single-precision floating point format
for numbers (4 bytes).

4.2.1 divergence Benchmark: Divergence Operator
The first benchmark we evaluated is called "divergence", and is based on the mathematical
divergence operation. In vector differential calculus, the divergence measures the tendency
of a vectorial field F = F1i + F2j + F3k to diverge or converge towards a point in space,
and it is indicated with the symbol ∇ · F.

In Cartesian coordinates the operation is defined as the sum of the partial derivatives
equations (PDEs) of the components of F along the axes:

45

Experimental Analysis for Arithmetic Intensity Evaluation

divF = ∇ · F = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
. (4.1)

To implement this operation in the discrete field, the algorithm makes use of the finite
differences theorem. According to this theorem, the value of the derivative at a certain
point of the field is approximated by a weighted sum of the values at the neighboring
items, while discarding the first and the last ones, as shown in Equation 4.2. Usually the
coefficients like a, b and c, in the finite differences theorem, are generated from the Taylor
series expansions.

∂f(x, y, z)
∂x

= a(fx+1,y,z − fx−1,y,z)

∂f(x, y, z)
∂y

= b(fx,y+1,z − fx,y−1,z)

∂f(x, y, z)
∂z

= c(fx,y,z+1 − fx,y,z−1).

(4.2)

Since the algorithm performs a large number of independent operations to compute
the differences between neighboring grid points, it is well-suited to be parallelized on a
GPU.

The number of FLOPs and memory accesses, expressed as bytes, expected by the
operation are the following:

• FLOPSdivergence : 8 · (x − 2) · (y − 2) · (z − 2)

• Bytesdivergence : 4 · (x · y · z) · sizeof(type)

The Arithmetic Intensity of the algorithm that implements the divergence operation
can be computed as:

AIdivergence = 8 · (x − 2) · (y − 2) · (z − 2)
4 · (x · y · z) · sizeof(type) . (4.3)

We evaluated the core function of the divergence benchmark using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "128 128 128",
"256 256 256" and "512 512 512". Each measurement was repeated 10 times to also report
the values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.3, 4.4 and 4.5, respectively
for each input size.

It is evident that all the tools correctly measured the FLOPs performed by the oper-
ation. However, when evaluating memory accesses, VTune and LIKWID overestimated
the values since their analysis is based on reads and writes from the main memory of
the host. This indicates that their evaluation is not optimized to data offloading, as is it

46

4.2 – Evaluation of Arithmetic Intensity

Table 4.3: Comparison between the results obtained with the tools for the divergence
benchmark using "128 128 128" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.016 0.034 0.471
Intel VTune+SDE 0.016 n/a n/a n/a n/a
RRZE LIKWID 0.016 0.073 0.220 0.060 0.004
Intel Advisor 0.016 0.034 0.471 0.000 0.000

Table 4.4: Comparison between the results obtained with the tools for the divergence
benchmark using "256 256 256" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.131 0.268 0.489
Intel VTune+SDE 0.131 0.444 0.295 0.137 0.019
RRZE LIKWID 0.131 0.529 0.248 0.055 0.003
Intel Advisor 0.131 0.268 0.489 0.000 0.000

Table 4.5: Comparison between the results obtained with the tools for the divergence
benchmark using "512 512 512" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 1.061 2.147 0.494
Intel VTune+SDE 1.061 5.289 0.201 0.058 0.003
RRZE LIKWID 1.061 4.275 0.248 0.049 0.002
Intel Advisor 1.061 2.147 0.494 0.000 0.000

for Advisor. Additionally, during the execution with the smallest input, VTune failed to
evaluate the memory accesses due to the function execution speed, which was faster than
its sampling interval of 0.1 ms. Finally, unlike the other tools, Advisor shows a variance
of zero between the various measurements made, correctly estimating the value of the AI.

47

Experimental Analysis for Arithmetic Intensity Evaluation

4.2.2 gameoflife Benchmark: Conway’s Game Of Life
The Conway’s game of life represents an algorithm that can be applied to grid of elements
in which each item represent a cell that may be "dead" or "alive". In this case it consists
of a matrix of x ·y elements, which can be above or below a threshold, or in other versions
just zeros and ones, to represent the state. The algorithm purpose is to generate the next
generation of cells following this rules [9]:

1. Any living cell that has less than two living neighbors has no chance of surviving, so
dies of under-population;

2. Any living cell that has two or three living neighbors can survive;

3. Any living cell that is surrounded by more than three living neighbors has no chance
of surviving, so dies of over-population;

4. Any dead cell that is surrounded by exactly three live cells becomes alive. thanks to
cellular reproduction.

By the "neighbors of the cell", where the cell represents an item a = M [row][column]
in the matrix, are meant the eight elements starting from a−1−1 = M [row−1][column−1]
up to a+1+1 = M [row + 1][column + 1] from the location of the element a:

Neighbors =

a−1−1 a0−1 a−11
a−10 a00 a10
a11 a01 a11

 (4.4)

The number of FLOPs and memory accesses, expressed as bytes, expected by the
algorithm are the following:

• FLOPsgameoflife : 14 · (x − 2) · (y − 1)

• Bytesgameoflife : (x · y + x · y) · sizeof(type)

Therefore, the AI of the Conway’s game of life can be defined as:

AIgameoflife = 14 · (x − 2) · (y − 1)
(x · y + x · y) · sizeof(type) . (4.5)

We evaluated the core function of the gameoflife benchmark using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "1024 1024",
"2048 2048" and "4096 4096". Each measurement was repeated 10 times to also report the
values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.6, 4.7 and 4.8, respectively
for each input size.

After inspecting the results, we noticed a slight discrepancy in the measured FLOPs
between the Intel tools and LIKWID, which is likely due to the different algorithm opti-
mization performed by the different compilers. As for memory accesses, VTune failed to

48

4.2 – Evaluation of Arithmetic Intensity

Table 4.6: Comparison between the results obtained with the tools for the gameoflife
benchmark using "1024 1024" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.015 0.008 1.875
Intel VTune+SDE 0.016 n/a n/a n/a n/a
RRZE LIKWID 0.008 0.028 0.299 0.246 0.061
Intel Advisor 0.021 0.012 1.750 0.000 0.000

Table 4.7: Comparison between the results obtained with the tools for the gameoflife
benchmark using "2048 2048" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.059 0.034 1.735
Intel VTune+SDE 0.063 0.752 0.084 0.076 0.006
RRZE LIKWID 0.033 0.157 0.212 0.189 0.036
Intel Advisor 0.087 0.050 1.740 0.000 0.000

Table 4.8: Comparison between the results obtained with the tools for the gameoflife
benchmark using "4096 4096" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.235 0.134 1.754
Intel VTune+SDE 0.251 0.740 0.339 0.164 0.027
RRZE LIKWID 0.134 0.361 0.371 0.128 0.016
Intel Advisor 0.352 0.201 1.751 0.000 0.000

evaluate them for the "1024 1024" input due to the function execution speed, which was
faster than its sampling interval. Advisor demonstrates more accurate modelling of data
transfer between the host and device compared to VTune and LIKWID, getting closer to
the expected AI value.

49

Experimental Analysis for Arithmetic Intensity Evaluation

4.2.3 gaussblur Benchmark: Gaussian Blur

The gaussblur benchmark is based on the operation known as Gaussian Blur, named after
the mathematician Carl Friedrich Gauss, primarily used in image processing to reduce
details. The final visual output resembles an out-of-focus object, as shown in the example
in Figure 4.1.

Figure 4.1: Pictures of the famous Temple Bar in Dublin, the city where I did my
internship. The picture on the left shows the original photo, while the picture on the
right shows the same image after applying a Gaussian blur filter.

To apply the algorithm, the image can be considered as a matrix of pixels on which
a convolution is computed using a second matrix called "Kernel", which represents the
filter to apply. The matrix convolution is an high parallelizable operation in which we
superimpose the center of the kernel on the n-Th element of the matrix considered. This
value is recalculated as the weighted sum of the products of each element of the kernel
matrix with the value of the underlying matrix, representing a pixel.

The mathematical formulation of the operation is:

g(x, y) = K ∗ f(x, y) =
aØ

dx=−a

bØ
dy=−b

K(dx, dy)f(x − dx, y − dy). (4.6)

where f(x, y) is the original image, K is the Kernel and g(x, y) is the resulting image.
The Gaussian Blur differs from similar operations from the values that make up the Kernel:
the pixels nearest the centre of it are given more weight than those far away, as shown in
the example 4.7.

50

4.2 – Evaluation of Arithmetic Intensity

Kernel =

0.01 0.05 0.05 0.05 0.01
0.05 0.11 0.11 0.11 0.05
0.05 0.11 0.25 0.11 0.05
0.05 0.11 0.11 0.11 0.05
0.01 0.05 0.05 0.05 0.01

 (4.7)

The resulting matrix will contain (k − 1) less elements for each column and row com-
pared to the original one, since the kernel is not applied to the border elements. Therefore
considering a matrix M of x · y elements in input with a Kernel of k · k items, the size of
the matrix containing the result of the convolution will be n · m where n = (x − k + 1)
and m = (y − k + 1). In the considered benchmark, a 5x5 items Kernel is used.

The number of floating point operations and memory accesses, expressed as bytes,
expected by the Gaussian blur operation, is:

• FLOPSgaussblur : 31 · (m · n)

• Bytesgaussblur : (x · y + k · k + n · m) · sizeof(type)

The Arithmetic Intensity of the operation can therefore be defined as:

AIgaussblur = 31 · (m · n)
(x · y + k · k + n · m) · sizeof(type) . (4.8)

We evaluated the core function of the gaussblur benchmark using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "1024 1024",
"2048 2048" and "4096 4096". Each measurement was repeated 10 times to also report the
values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.9, 4.10 and 4.11, respectively
for each input size.

Table 4.9: Comparison between the results obtained with the tools for the gaussblur
benchmark using "1024 1024" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.032 0.008 4.000
Intel VTune+SDE 0.032 0.101 0.316 0.218 0.048
RRZE LIKWID 0.032 0.117 0.273 2.276 5.179
Intel Advisor 0.032 0.008 4.000 0.000 0.000

For this benchmarks all the tools correctly evaluated the number of FLOPs, while only
Advisor estimated the data transfer correctly. Compared to VTune, LIKWID have an

51

Experimental Analysis for Arithmetic Intensity Evaluation

Table 4.10: Comparison between the results obtained with the tools for the gaussblur
benchmark using "2048 2048" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.130 0.034 3.824
Intel VTune+SDE 0.130 0.327 0.398 0.180 0.032
RRZE LIKWID 0.130 0.439 0.296 0.888 0.789
Intel Advisor 0.130 0.034 3.824 0.000 0.000

Table 4.11: Comparison between the results obtained with the tools for the gameoflife
benchmark using "4096 4096" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.519 0.134 3.873
Intel VTune+SDE 0.519 0.554 0.937 0.249 0.062
RRZE LIKWID 0.519 1.120 0.464 0.777 0.604
Intel Advisor 0.519 0.134 3.873 0.000 0.000

higher standard deviation, obtained from ten execution of the benchmark, appearing to
be less reliable. The value of AI estimated by Advisor corresponds to the expected one
computed manually.

4.2.4 gradient Benchmark: Gradient Operator
The gradient of a scalar function f(x1, x2, x3, ...xn), represented with the symbol ∇f called
Nabla, is a mathematical operation that allows to understand the rate of fastest increase
of the function and its direction. In a three-dimensional Cartesian coordinate system the
operation is given by:

∇f = ∂f

∂x
i + ∂f

∂y
j + ∂f

∂z
k . (4.9)

that is, the partial derivatives of the function in reference to the standard unit vectors
in the direction of the Cartesian axes.

In the considered algorithm an approximation of the derivatives will be performed us-
ing the theorem of the finite differences, introduced in the Paragraph 4.2.1 regarding the
divergence benchmark. The theorem approximates the value of the derivative at a certain

52

4.2 – Evaluation of Arithmetic Intensity

point by a weighted sum of the values at the neighboring items. While the divergence op-
erator maps a vector to a scalar quantity by taking the sum of its three partial derivatives,
the gradient operator expresses the variation of a physical quantity per unit of length in
a given direction.

The number of floating-point operations and memory accesses, expressed as bytes,
expected by this benchmark, where each component of the function is represented by a
vector called respectively x, y and z, is:

• FLOPSgradient : 6 · (x − 2) · (y − 2) · (z − 2)

• Bytesgradient : 4 · (x · y · z) · sizeof(type)

The Arithmetic Intensity of the gradient benchmark can therefore be defined as:

AIgradient = 6 · (x − 2) · (y − 2) · (z − 2)
4 · (x · y · z) · sizeof(type) . (4.10)

We evaluated the core function of the gradient benchmark using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "128 128 128",
"256 256 256" and "512 512 512". Each measurement was repeated 10 times to also report
the values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.12, 4.13 and 4.14, respec-
tively for each input size.

Table 4.12: Comparison between the results obtained with the tools for the gradient
benchmark using "128 128 128" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.012 0.034 0.353
Intel VTune+SDE 0.012 n/a n/a n/a n/a
RRZE LIKWID 0.012 0.124 0.097 0.042 0.002
Intel Advisor 0.012 0.033 0.364 0.000 0.000

After inspecting the results, we noticed that all the tools correctly evaluated the number
of FLOPs. In terms of memory access evaluation, Advisor shows results correctly oriented
towards data offload. While VTune was unable to collect data for the smallest input size,
it shows values more in line with our analysis than LIKWID.

4.2.5 laplacian and lapgsrb Benchmarks: Laplace Operator
The Laplace operator is a second-order differential mathematical operation defined as the
divergence of a function gradient in an Euclidean space. In Cartesian coordinates it is

53

Experimental Analysis for Arithmetic Intensity Evaluation

Table 4.13: Comparison between the results obtained with the tools for the gradient
benchmark using "256 256 256" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.098 0.268 0.366
Intel VTune+SDE 0.098 0.377 0.260 0.105 0.011
RRZE LIKWID 0.098 0.899 0.109 0.039 0.002
Intel Advisor 0.098 0.268 0.366 0.000 0.000

Table 4.14: Comparison between the results obtained with the tools for the gradient
benchmark using "512 512 512" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.796 2.147 0.371
Intel VTune+SDE 0.796 4.682 0.170 0.022 0.001
RRZE LIKWID 0.796 7.391 0.108 0.040 0.002
Intel Advisor 0.795 2.147 0.370 0.000 0.000

defined as the sum of the second partial derivatives and can operate from two up to n
dimensions. Assumes particular importance in the fields of electromagnetism and fluid
dynamics.

The Laplace operator is defined as Nabla squared. Considering a function in a space
of three dimensions, the related equation is:

∇2f = ∂2f

∂x2 i + ∂2f

∂y2 j + ∂2f

∂z2 k . (4.11)

On the same theory of the divergence benchmark, it is possible to approximate the
computation of the Laplacian operator by the finite differences method, thus obtaining
the "discrete Laplacian". This operator could be used for edge detection in image process-
ing, since the image is considered as a pixel matrix and the discrete Laplacian operator
is applied on each element. The operator is defined as the sum of differences over the
nearest neighbors of the matrix item being considered.

The two benchmark being considered differ in the number of neighboring elements
being evaluated. For the laplacian benchmark 6 closest points are considered (therefore 7
points including the central one) and for the lapgsrb one the Laplacian operator has been
applied for 24 neighboring points (25 points considering the one in question).

54

4.2 – Evaluation of Arithmetic Intensity

The number of expected floating point operations and memory accesses, expressed as
bytes, of the laplacian benchmark, where the matrix contains the three dimensions defined
as x, y and z, is:

• FLOPSlaplacian : 8 · (x − 2) · (y − 2) · (z − 2)

• Byteslaplacian : (x · y · z + x · y · z) · sizeof(type)

The Arithmetic Intensity of the 7-point approximation of the Laplace operator can
therefore be defined as:

AIlaplacian = 8 · (x − 2) · (y − 2) · (z − 2)
(x · y · z + x · y · z) · sizeof(type) . (4.12)

We evaluated the core function of the laplacian benchmark using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "128 128 128",
"256 256 256" and "512 512 512". Each measurement was repeated 10 times to also report
the values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.15, 4.16 and 4.17, respec-
tively for each input size.

Table 4.15: Comparison between the results obtained with the tools for the laplacian
benchmark using "128 128 128" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.016 0.017 0.941
Intel VTune+SDE 0.016 n/a n/a n/a n/a
RRZE LIKWID 0.016 0.056 0.287 0.108 0.012
Intel Advisor 0.016 0.025 0.640 0.000 0.000

For the lapgsrb benchmark the number of expected floating point operations and mem-
ory accesses, expressed as bytes, where the matrix contains the three dimensions defined
as x, y and z, are:

• FLOPSlapgsrb : 28 · (x − 4) · (y − 4) · (z − 4)

• Byteslapgsrb : (x · y · z + x · y · z) · sizeof(type)

The Arithmetic Intensity of the 25-point approximation of the Laplace operator can
therefore be defined as:

AIlapgsrb = 28 · (x − 4) · (y − 4) · (z − 4)
(x · y · z + x · y · z) · sizeof(type) . (4.13)

55

Experimental Analysis for Arithmetic Intensity Evaluation

Table 4.16: Comparison between the results obtained with the tools for the laplacian
benchmark using "256 256 256" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.131 0.134 0.978
Intel VTune+SDE 0.131 0.279 0.469 0.253 0.064
RRZE LIKWID 0.131 0.392 0.335 0.110 0.012
Intel Advisor 0.131 0.201 0.652 0.000 0.000

Table 4.17: Comparison between the results obtained with the tools for the laplacian
benchmark using "512 512 512" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 1.061 1.074 0.988
Intel VTune+SDE 1.061 2.679 0.396 0.102 0.010
RRZE LIKWID 1.061 3.215 0.330 0.122 0.015
Intel Advisor 1.061 1.607 0.660 0.000 0.000

Also for the lapgsrb benchmark, we evaluated its core function using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "128 128 128",
"256 256 256" and "512 512 512". Each measurement was repeated 10 times to also report
the values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.18, 4.19 and 4.20, respec-
tively for each input size.

Table 4.18: Comparison between the results obtained with the tools for the lapgsrb
benchmark using "128 128 128" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.053 0.017 3.118
Intel VTune+SDE 0.053 0.077 0.691 0.422 0.178
RRZE LIKWID 0.053 0.200 0.266 0.510 0.260
Intel Advisor 0.053 0.017 3.118 0.000 0.000

56

4.2 – Evaluation of Arithmetic Intensity

Table 4.19: Comparison between the results obtained with the tools for the lapgsrb
benchmark using "256 256 256" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.448 0.134 3.343
Intel VTune+SDE 0.448 0.798 0.561 0.291 0.085
RRZE LIKWID 0.448 1.640 0.273 0.613 0.376
Intel Advisor 0.448 0.134 3.343 0.000 0.000

Table 4.20: Comparison between the results obtained with the tools for the lapgsrb
benchmark using "512 512 512" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 3.671 1.074 3.418
Intel VTune+SDE 3.671 5.631 0.652 0.400 0.160
RRZE LIKWID 3.671 11.779 0.312 0.537 0.288
Intel Advisor 3.671 1.074 3.418 0.000 0.000

For both the benchmarks and for all the evaluations, the number of FLOPs measured
by the tools is correct. For the laplacian benchmark the number of memory accesses is
slightly overestimated by Advisor, while for VTune and LIKWID they are out-of-scale,
showing their inadequacy for the purpose of evaluating the data exchange between host
and device for a GPU execution. This happens also for the lapgsrb benchmark, while
Advisor correctly estimated the value of AI. The standard deviation of the LIKWID
measurement is higher than the VTune one, which proves to me more reliable.

4.2.6 matvec Benchmark: Matrix-vector Multiplication

The matrix-vector multiplication is a mathematical operation that takes as input a matrix
M of x · y elements and a vector V of y, to produce as output a vector of y elements.
Is it possible to define this operation only if the number of columns of M is the same of
the rows of V . The matrix-vector multiplication (mvm) can be defined by the following
equation:

57

Experimental Analysis for Arithmetic Intensity Evaluation

mvm =

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
am1 am2 . . . amn

x1
x2
...

xn

 =

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn
...

am1x1 + am2x2 + · · · + amnxn

 (4.14)

The operation defines the n-th element of the result matrix as the dot product of the
n-th row of the matrix M with the vector V.

The number of floating point operations and memory accesses, expressed as bytes,
expected by the matrix-vector multiplication, are:

• FLOPSmatvec : x · (2y − 1)

• Bytesmatvec : (x + y + x · y) · sizeof(type)
The Arithmetic Intensity of the benchmark can therefore be defined as:

AImatvec = x · (2y − 1)
(x + y + x · y) · sizeof(type) . (4.15)

We evaluated the core function of the matvec benchmark using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "1024 1024",
"2048 2048" and "4096 4096". Each measurement was repeated 10 times to also report the
values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.21, 4.22 and 4.23, respec-
tively for each input size.

Table 4.21: Comparison between the results obtained with the tools for the matvec
benchmark using "1024 1024" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.002 0.004 0.500
Intel VTune+SDE 0.002 n/a n/a n/a n/a
RRZE LIKWID 0.002 0.016 0.135 0.065 0.004
Intel Advisor 0.002 0.004 0.500 0.000 0.000

For the matvec benchmark, all the tools correctly evaluated the number of FLOPs.
Unfortunately, VTune for the three dimensions and for all the repetitions was not able
to estimate the number of memory accesses, since the function execution time was faster
than its sampling interval. LIKWID measurements, even if are not as expected, are not
completely out of range probably because the vector may fit better in the cache than a
matrix, resulting in fewer reads of the same range of values. Advisor instead, was able to
estimate correctly the AI for all the measurements.

58

4.2 – Evaluation of Arithmetic Intensity

Table 4.22: Comparison between the results obtained with the tools for the matvec
benchmark using "2048 2048" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.008 0.017 0.471
Intel VTune+SDE 0.008 n/a n/a n/a n/a
RRZE LIKWID 0.009 0.037 0.237 0.159 0.025
Intel Advisor 0.008 0.017 0.471 0.000 0.000

Table 4.23: Comparison between the results obtained with the tools for the matvec
benchmark using "4096 4096" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.034 0.067 0.507
Intel VTune+SDE 0.034 n/a n/a n/a n/a
RRZE LIKWID 0.034 0.127 0.266 0.111 0.012
Intel Advisor 0.034 0.067 0.507 0.000 0.000

4.2.7 tricubic Benchmark: Tricubic Interpolation

In numerical analysis by "interpolation" is intended an evaluation of the values of a function
in different points. It is referred to as "tricubic" when the arbitrary points are in 3D space
and is mainly used in ocean dynamics and meteorology.

To briefly introduce the theory behind the operation, assuming that a function f is
given at a corner of a regular mesh (that is a collection of quadrilaterals that represents
a surface), inside each cube of three dimensions the function is approximated by an ex-
pression such as:

f(x, y, z) =
NØ

i=0

NØ
j=0

NØ
k=0

aijkxiyjzk. (4.16)

To guarantee the C1 continuity, f and its three first derivatives should be continuous
on each of the six faces of the cubes. To ensure that, four constraints at the eight corners
of the element are needed and therefore are necessary 32 constraints. Reconsidering the
equation 4.16, N must be equal to 3 to keep the size of the coefficients required. The
resulting tricubic interpolation of the function can be expressed as:

59

Experimental Analysis for Arithmetic Intensity Evaluation

f(x, y, z) =
3Ø

i=0

3Ø
j=0

3Ø
k=0

aijkxiyjzk. (4.17)

and is demonstrated the first 32 constrains of the 64 obtained from the formula are
enough to ensure the continuity. An in-depth study by Lekien et al. can be found at [27].

The number of floating point operations and memory accesses, expressed as bytes,
expected by the tricubic algorithm is:

• FLOPStricubic : 242 · (x · y · (z − 2))

• Bytestricubic : 5 · (x · y · z) · sizeof(type)
The Arithmetic Intensity of the benchmark can therefore be defined as:

AItricubic = 242 · (x · y · (z − 2))
5 · (x · y · z) · sizeof(type) . (4.18)

We evaluated the core function of the tricubic benchmark using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "128 128 128",
"256 256 256" and "512 512 512". Each measurement was repeated 10 times to also report
the values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.24, 4.25 and 4.26, respec-
tively for each input size.

Table 4.24: Comparison between the results obtained with the tools for the tricubic
benchmark using "128 128 128" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.499 0.042 11.881
Intel VTune+SDE 0.369 0.488 0.756 0.469 0.220
RRZE LIKWID 0.360 0.301 1.195 1.606 2.580
Intel Advisor 0.369 0.042 8.786 0.000 0.000

After inspecting the results, we notice that SDE, LIKWID, and Advisor measured a
number of FLOPs that were really similar to each other but slightly different from the
expected values. Since the tricubic function is quite computationally intensive, it is likely
that the compilers performed optimizations on the operations, reducing the number of op-
erations required. This is also supported by the fact that the tools using an Intel compiler
measured the same value. Advisor estimates the AI more faithfully, compared to the other
tools, to what we expected, thanks to its ability to model the data transfer between host
and GPU. Also, both VTune and LIKWID reported an high value of standard deviation
and variance for the different measurement.

60

4.2 – Evaluation of Arithmetic Intensity

Table 4.25: Comparison between the results obtained with the tools for the tricubic
benchmark using "256 256 256" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 4.028 0.336 11.988
Intel VTune+SDE 3.061 1.957 1.564 0.972 0.946
RRZE LIKWID 2.980 2.046 1.456 1.774 3.147
Intel Advisor 3.061 0.335 9.137 0.000 0.000

Table 4.26: Comparison between the results obtained with the tools for the laplacian
benchmark using "512 512 512" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 32.353 2.684 12.054
Intel VTune+SDE 24.924 14.986 1.663 1.354 1.835
RRZE LIKWID 24.264 17.377 1.396 1.598 2.554
Intel Advisor 24.924 2.687 9.276 0.000 0.000

4.2.8 uxx1 Benchmark: Approximation of Second Derivative
The algorithm implemented in the benchmark in question approximates the second deriva-
tive of a function f(x,y,x), which has been discretized and its values are contained in a
three-dimensional matrix.

The computation is based on the finite difference method, introduced for the divergence
benchmark in Paragraph 4.2.1, that allows to calculate an approximation of the derivative
of a function even for orders higher then the first one. Since there is no data dependency
between the various operations, the algorithm can be efficiently implemented on GPU.

To obtain the second derivative of a function, the Equation 4.19 is applied to the func-
tion, where h represents the interval between two adjacent points in the approximation.

f ′′(x) =

f(x + h) − f(x)
h

−
f(x) − f(x − h)

h
h

= f(x + h) − 2f(x) + f(x − h)
h2 . (4.19)

For the sake of brevity, the equation considers only a single-variable function. How-
ever, the benchmark applies the same concept to calculate the approximate derivative in
three dimensions instead of one.

61

Experimental Analysis for Arithmetic Intensity Evaluation

The number of floating point operations and memory accesses, expressed as bytes,
expected by this implementation of the second derivative approximation is:

• FLOPSuxx1 : 25 · (x − 3) · (y − 3) · (z − 3)

• Bytesuxx1 : 6 · (x · y · z) · sizeof(type)

The Arithmetic Intensity of the uxx1 benchmark can therefore be defined as:

AIuxx1 = 25 · (x − 3) · (y − 3) · (z − 3)
6 · (x · y · z) · sizeof(type) . (4.20)

We evaluated the core function of the uxx1 benchmark using VTune with SDE, LIK-
WID, and Advisor to measure the performed values of FLOPs, memory accesses, and AI.
The benchmark was executed with three different input dimensions: "128 128 128", "256
256 256" and "512 512 512". Each measurement was repeated 10 times to also report the
values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.27, 4.28 and 4.29, respec-
tively for each input size.

Table 4.27: Comparison between the results obtained with the tools for the uxx1 bench-
mark using "128 128 128" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.049 0.05 0.980
Intel VTune+SDE 0.054 n/a n/a n/a n/a
RRZE LIKWID 0.037 0.194 0.191 0.151 0.023
Intel Advisor 0.054 0.050 1.080 0.000 0.000

Table 4.28: Comparison between the results obtained with the tools for the uxx1 bench-
mark using "256 256 256" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.405 0.403 1.005
Intel VTune+SDE 0.451 0.700 0.644 0.189 0.036
RRZE LIKWID 0.308 1.720 0.179 0.181 0.033
Intel Advisor 0.451 0.403 1.119 0.000 0.000

62

4.2 – Evaluation of Arithmetic Intensity

Table 4.29: Comparison between the results obtained with the tools for the uxx1 bench-
mark using "512 512 512" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 3.297 3.221 1.024
Intel VTune+SDE 3.682 6.702 0.549 0.125 0.016
RRZE LIKWID 2.506 13.654 0.184 0.164 0.027
Intel Advisor 3.682 3.217 1.145 0.000 0.000

We can observe from the result tables that the number of FLOPs varies slightly between
the expected values and those measured by the tools. This variation is caused by the
compiler, which intervenes in the optimization. Advisor evaluation of AI is correct. VTune
for the first input size can’t measure the number of memory accesses performed by the
algorithm, since its sampling interval is slower than the function execution but for the other
sizes the estimation is good, even if not oriented to data offloading. The AI evaluated
with LIKWID is not correct, especially for the largest size.

4.2.9 vecadd Benchmark: Sum between Matrices
Although the name suggests that the benchmark performs an addition between vectors,
the algorithm also allows the addition of two matrices up to three dimensions.

Starting from the matrices A and B, with dimensions x, y and z, the operation returns
another matrix, called sum matrix, with the same size as the two in input. The sum is
in fact possible only if the starting matrices A and B have the same dimensions. The
result is obtained by adding the elements that occupy the same position. Assuming that
A + B = C:

cxyz = axyz + bxyz. (4.21)

By arranging the dimensions of the matrices, it is possible to obtain obtain the sum of
two vectors, as well as the sum of objects in two dimensions.

The number of floating point operations and memory accesses, expressed as bytes,
expected by the operation is:

• FLOPSvecadd : (x · y · z)

• Bytesvecadd : (x · y · z + x · y · z + x · y · z) · sizeof(type)

The Arithmetic Intensity of the sum between two matrices of three components can
therefore be defined as:

63

Experimental Analysis for Arithmetic Intensity Evaluation

AIvecadd = (x · y · z)
(x · y · z + x · y · z + x · y · z) · sizeof(type) . (4.22)

We evaluated the core function of the vecadd benchmark using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "128 128 128",
"256 256 256" and "512 512 512". Each measurement was repeated 10 times to also report
the values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.30, 4.31 and 4.32, respec-
tively for each input size.

Table 4.30: Comparison between the results obtained with the tools for the vecadd
benchmark using "128 128 128" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.002 0.025 0.080
Intel VTune+SDE 0.002 n/a n/a n/a n/a
RRZE LIKWID 0.002 0.052 0.039 0.016 0.000
Intel Advisor 0.002 0.025 0.080 0.000 0.000

Table 4.31: Comparison between the results obtained with the tools for the vecadd
benchmark using "256 256 256" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.017 0.201 0.085
Intel VTune+SDE 0.017 0.212 0.080 0.040 0.002
RRZE LIKWID 0.017 0.383 0.044 0.011 0.000
Intel Advisor 0.017 0.201 0.085 0.000 0.000

For the vecadd benchmark, all the tools correctly estimate the number of FLOPs.
However, VTune cannot estimate the number of memory accesses for the first input di-
mension due to its sampling interval being slower than the function execution. VTune
and LIKIWID also show limitations in evaluating data transfer oriented to offloading. In
contrast, Advisor accurately estimates the Arithmetic Intensity of the operation for all
input sizes.

64

4.2 – Evaluation of Arithmetic Intensity

Table 4.32: Comparison between the results obtained with the tools for the vecadd
benchmark using "512 512 512" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.134 1.611 0.083
Intel VTune+SDE 0.134 2.347 0.057 0.005 0.000
RRZE LIKWID 0.134 2.937 0.046 0.011 0.000
Intel Advisor 0.134 1.607 0.083 0.000 0.000

4.2.10 wave13pt Benchmark: 3D Wave Equation Solver

The wave13pt benchmark of the KernelGen Test Suite is derived from a benchmark orig-
inally developed for the PATUS Framework [5]. The benchmark implements an approx-
imation of a 3-dimensional wave equation, which is commonly used to model sound or
electromagnetic waves.

Starting from the classical wave equation and imposing some initial conditions as it
follows:

∂2u

∂t2 − c2∆u = 0 in Ω,

u = 0 on ∂Ω,

u(x, y, z)|t=0 = sin(2πx) sin(2πy) sin(2πz).

(4.23)

By using an explicit finite difference method to discretize the equation in both space
and time, we can employ a fourth-order discretization of the Laplacian Delta over an
equidistant spatial grid with step size h and a second-order scheme with a time step
delta t. The resulting equation is:

u(t+δt) − 2u(t) + u(t−δt)

δt
− c2∆hu(t) = 0. (4.24)

As explained in [6], solving the equation by ut+δt and interpreting u as a grid in space
and time with mesh size h and time step δt, we obtain the Equation 4.25 that is an
approximation of a 3-dimensional wave equation.

65

Experimental Analysis for Arithmetic Intensity Evaluation

u[x, y, z; t + 1] = 2u[x, y, z; t] − u[x, y, z; t − 1] + c2 δt

h2 (−15
2 u[x, y, z; t]+

− 1
12(u[x − 2, y, z; t] + u[x, y − 2, z; t] + u[x, y, z − 2; t])+
4
3(u[x − 1, y, z; t] + u[x, y − 1, z; t] + u[x, y, z − 1; t])+
4
3(u[x + 1, y, z; t] + u[x, y + 1, z; t] + u[x, y, z + 1; t])+

− 1
12(u[x + 2, y, z; t] + u[x, y + 2, z; t] + u[x, y, z − +2; t])).

(4.25)

Given the three matrices defined in the C-code representing the spacial grid, the ex-
pected number of floating point operations and memory accesses expressed in bytes, for
the wave13pt benchmark are:

• FLOPSwave13pt : 16 · (x · y · (z − 4))

• Byteswave13pt : 3 · (x · y · z) · sizeof(type)

The Arithmetic Intensity (AI) can therefore be obtained as:

AIwave13pt = 16 · (x · y · (z − 4))
3 · (x · y · z) · sizeof(type) . (4.26)

We evaluated the core function of the wave13pt benchmark using VTune with SDE,
LIKWID, and Advisor to measure the performed values of FLOPs, memory accesses, and
AI. The benchmark was executed with three different input dimensions: "128 128 128",
"256 256 256" and "512 512 512". Each measurement was repeated 10 times to also report
the values of variance and standard deviation.

Expected results and tools results are reported in Tables 4.33, 4.34 and 4.35, respec-
tively for each input size.

Table 4.33: Comparison between the results obtained with the tools for the wave13pt
benchmark using "128 128 128" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.033 0.025 1.320
Intel VTune+SDE 0.031 n/a n/a n/a n/a
RRZE LIKWID 0.031 0.077 0.400 0.199 0.040
Intel Advisor 0.031 0.025 1.240 0.000 0.000

All the tools correctly estimated the FLOPs computed by the operation, with small
tolerable differences due to compiler optimization. The memory accesses estimated by

66

4.2 – Evaluation of Arithmetic Intensity

Table 4.34: Comparison between the results obtained with the tools for the wave13pt
benchmark using "256 256 256" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.264 0.201 1.313
Intel VTune+SDE 0.256 0.570 0.449 0.130 0.017
RRZE LIKWID 0.257 0.594 0.433 0.252 0.064
Intel Advisor 0.256 0.201 1.274 0.000 0.000

Table 4.35: Comparison between the results obtained with the tools for the wave13pt
benchmark using "512 512 512" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 2.131 1.611 1.323
Intel VTune+SDE 2.098 5.410 0.388 0.156 0.024
RRZE LIKWID 2.102 6.318 0.333 0.245 0.060
Intel Advisor 2.098 1.607 1.306 0.000 0.000

Advisor are correct and so the estimated AI. VTune and LIKWID evaluation of memory
is proved to be not oriented to data offloading, with VTune sampling interval that does
not allow the tool to evaluate the first input dimension. LIKWID shows a higher standard
deviation between the different repetitions of the same measurement.

4.2.11 whispering Benchmark: 2D Nanophotonics Simulation
The algorithm underlying this benchmark implements a 2D nanophotonics simulation.
Nanophotonics is the study of how light behaves on the nanometer scale and its inter-
action with objects at this scale. This type of simulation is commonly used in electrical
engineering fields such as for solar cells, as well in biomedical fields for controlled release
of anti-cancer therapeutics.

The algorithm uses the user-entered input (x, y) to randomly initialize 2D matrices.
These matrices are then used as input for calculating Maxwell’s equation using the FDTD
(finite difference time-domain) method: it is a version of the finite differences introduced
for the divergence benchmark in Section 4.2.1, that discretizes the equations using central-
difference approximations to the space and time partial derivatives. The results obtained
are then integrated with the energy density to complete the computation.

67

Experimental Analysis for Arithmetic Intensity Evaluation

However, the mathematical theory behind the algorithm will not be explained in detail
and can be found in [28].

By studying the algorithm, we can determine the number of floating point operations
and bytes of memory accesses involved in this operation, which are:

• FLOPSwhispering : 31 · (x − 2) · (y − 2)

• Byteswhispering : (10 · (x · y)) · sizeof(type)

The resulting Arithmetic Intensity of the whispering benchmark can be obtained as:

AIwhispering = 31 · (x − 2) · (y − 2)
(10 · (x · y)) · sizeof(type) . (4.27)

We evaluated the core function of the benchmark using VTune with SDE, LIKWID,
and Advisor to measure the performed values of FLOPs, memory accesses, and AI. The
benchmark was executed with three different input dimensions: "1024 1024", "2048 2048"
and "4096 4096". Each measurement was repeated 10 times to also report the values of
variance and standard deviation.

Expected results and tools results are reported in Tables 4.36, 4.37 and 4.38, respec-
tively for each input size.

Table 4.36: Comparison between the results obtained with the tools for the whispering
benchmark using "1024 1024" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.032 0.042 0.762
Intel VTune+SDE 0.030 0.086 0.347 0.205 0.042
RRZE LIKWID 0.030 0.626 0.048 0.121 0.015
Intel Advisor 0.039 0.050 0.780 0.000 0.000

As shown in the result tables, all the tools correctly estimated the number of FLOPs
with negligible differences. However, Advisor slightly overestimated the number of mem-
ory accesses, although it still evaluated the correct value of AI. On the other hand, VTune
and LIKWID once again demonstrate their inadequacy in modeling data transfer from
host to device since their measurements are based on the transfer from main memory to
the core. Moreover, LIKWID showed a higher standard deviation between measurements
with the same input than VTune.

68

4.3 – Validation through GPU Execution

Table 4.37: Comparison between the results obtained with the tools for the whispering
benchmark using "2048 2048" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.130 0.168 0.774
Intel VTune+SDE 0.121 0.478 0.253 0.076 0.006
RRZE LIKWID 0.121 2.108 0.057 0.153 0.023
Intel Advisor 0.155 0.201 0.771 0.000 0.000

Table 4.38: Comparison between the results obtained with the tools for the whispering
benchmark using "2048 2048" as input.

Tool GFLOPs
Memory
Accesses
[GB]

Arithmetic
Intensity
[FLOPs/
Bytes]

Arithmetic
Intensity
Standard
deviation

Arithmetic
Intensity
Variance

Expected 0.520 0.671 0.775
Intel VTune+SDE 0.486 1.974 0.246 0.066 0.004
RRZE LIKWID 0.486 8.420 0.058 0.162 0.026
Intel Advisor 0.620 0.805 0.770 0.000 0.000

4.3 Validation through GPU Execution
We have completed data collection using the tools and now aim to verify our results
by running the KernelGen Test Suite on the machine GPU. Through the use of the
implementation of the benchmarks in CUDA, a GPU programming language developed
by NVIDIA, we will verify if the number of floating point operations performed and the
amount of data exchanged between the host and the device match the values we calculated
manually and those measured with the three tools.

Before proceeding, let us examine how we can evaluate the Arithmetic Intensity of a
function executed on a GPU. The methods proposed are specifically designed for NVIDIA
GPUs.

4.3.1 How to Measure Arithmetic Intensity of a GPU Kernel
To obtain the Arithmetic Intensity (AI) of a function executed on a GPU, called kernel,
first we need to profile the number of floating-point operations (FLOPs) performed and
then the number of memory accesses. Finally, we can divide them to get the value of AI.

We propose two methods for both the evaluations: one that supports older architec-
tures and another that works only with the newest ones. All the tools described are

69

Experimental Analysis for Arithmetic Intensity Evaluation

developed by NVIDIA.

The first method to measure FLOPs of a kernel, supported up to the NVIDIA Volta
architecture, is to use NVIDIA Visual Profiler (nvprof) CLI [38], that allows to collect
and view profiling data of CUDA activities. The analysis can be performed by executing:

Listing 4.8 NVIDIA Visual Profiler analysis on a GPU kernel to evaluate its FLOPs.
1 nvprof --kernels kernelName --metrics flop_count_sp ./ app.o

where:

• --kernels <list>: limits the collection to the specified kernels list;

• --metrics <list>: allows to list the metrics to evaluate during the analysis.
"flop_count_sp" counts the number of single-precision floating-point operations.

A table containing the number of FLOPs performed by the kernel will be printed on
screen.

The second proposed method uses NVIDIA Nsight Compute (ncu) CLI [36], a per-
formance analysis tool for GPU applications. It is supported starting from the Volta
architecture and can be started using the following command:

Listing 4.9 NVIDIA Nsight Compute analysis on a GPU kernel to evaluate its FLOPs.
1 ncu -k kernelName --metrics

smsp__sass_thread_inst_executed_op_fadd_pred_on .sum ,
smsp__sass_thread_inst_executed_op_fmul_pred_on .sum ,
smsp__sass_thread_inst_executed_op_ffma_pred_on .sum ./ app.o

where:

• -k <string>: collects the data only for the specified kernel;

• --metrics <list: requires the list of metrics to evaluate during the analysis.

In this case, the results are also printed on screen. However, find the number of FLOPs
computed requires an extra step, since it is broken down into more basic metrics, as listed
in Listing 4.9. One metric reports the number of additions, another reports the number of
multiplications, and a third reports the number of fused multiply-add operations, which
performs both addition and multiplication in one operation, so it must be counted twice.
The number of FLOPs can therefore be derived using the following formula:

FLOPsncu analysis = smsp__sass_thread_inst_executed_op_fadd_pred_on.sum +
smsp__sass_thread_inst_executed_op_fmul_pred_on.sum +

smsp__sass_thread_inst_executed_op_ffma_pred_on.sum · 2.

(4.28)

We now propose two methods, based on the architecture available, to evaluate the
memory accesses required by an application that also runs on GPU. Unfortunately, unlike

70

4.3 – Validation through GPU Execution

measuring FLOPs, it is not possible to distinguish the memory usage for a single kernel as
the measurement occurs for the entire execution. If there are multiple kernels that have
to run on the GPU, only one kernel can be enabled at a time to trace its memory accesses
with the following methods. For GPUs up to Volta, we can still use the "nvprof" tool, and
the analysis can be performed by executing:

Listing 4.10 NVIDIA Visual Profiler analysis to collect memory metrics via terminal.
1 nvprof --track -memory - allocation on -o output_memory .sql ./ app

where:

• --track-memory-allocation on: turns on the tracking of the memory operations per-
formed;

• -o <string>: exports the report of the analysis the specified file. Note that the file
format must be "sql".

We can use the NVIDIA Nsight System (nsys) CLI [37] for GPUs with architecture
starting from Pascal. Similar to the previous ones, it is an analysis tool used to profile
and analyze the performance of GPU applications. The analysis to track memory accesses
can be initiated with the following command:

Listing 4.11 NVIDIA Nsight System analysis to collect memory metrics via terminal.
1 nsys export output_memory .nsys -rep --type= sqlite

where:

• export <string>: launches the application and generates the export file;

• --type=sqlite: specifies that the report containing the results must be in sqlite format.

After the analysis is completed, we can apply the same procedure to evaluate the
memory metrics for both the proposed methods. Since CPU and GPU have separate
memory spaces, first the memory needs to be allocated on the device, next the data
is copied from and to the host, and then it is released. The operation of allocation
on the device in C/C++, takes place through the cudaMalloc(void** pointer, size_t
nbytes) function, that allocates spaces for the device copies of the data. By open-
ing the SQL database and summing the values from the "byte" column of the table
"CUPTI_ACTIVITY_KIND_MEMORY", we can obtain the quantity of memory allo-
cated in bytes. Instead, the data moving operations are carried out through the cudaMem-
Cpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction) function. Its
value can be obtained by opening the database and summing the values from the "byte"
column of the table "CUPTI_ACTIVITY_KIND_MEMCPY". All the cudaMemCpy op-
erations for a specific kernel represents its data exchange between the host and the device
and therefore the value is considered to evaluate the AI of the function.

71

Experimental Analysis for Arithmetic Intensity Evaluation

4.3.2 Comparing Tool Results using GPU-based Analysis
Each benchmark in the KernelGen Test Suite includes an implementation of the core
function written in CUDA that we want to run on the GPU of the machine to evaluate
the Arithmetic Intensity achieved. We aim to compare the results with the ones previously
estimated manually and collected with the tools, to validate if they match in real-world
usage scenarios.

To compile the GPU version of the benchmarks we used the NVIDIA CUDA Compiler
(nvcc), a proprietary compiler developed by NVIDIA that enables GPU acceleration of
kernels. It is part of "CUDA Toolkit" [33], a suite of tools for developing GPU-accelerated
applications. The command used to compile each benchmark is the following:

Listing 4.12 Command to compile the CUDA implementation of the KernelGen Test
Suite.

1 nvcc -L$(CUDA_libraries) -I$(CUDA_include) -O3 -arch=sm_50 benchmark .o

where:

• CUDA_libraries and CUDA_include: are paths in the system to libraries and in-
clude of the CUDA Toolkit;

• -O3 : turns on an high grade of compile optimizations, the same used to compile the
code for the tools analysis;

• -arch=<string>: specify the architecture on which the code will be executed. "sm_50"
matches a Maxwell card in this case.

To collect the FLOPs and memory accesses of the GPU execution, we can apply the
methods explained in Section 4.3.1. The results of the data collection for all the bench-
marks, together with the expected values evaluated with pen and paper for comparison,
are available in Table 4.39.

Upon studying the results, a discrepancy between the memory access values for GPU
execution and the expected values can be observed, and this happens for every benchmark
in the suite. By inspecting the source code of the benchmarks, we can see that each one
works with matrix data structures, to contain the input and output of the operations
performed. The GPU implementation mandates allocation of all the matrices on the de-
vice, followed by moving input matrices to the device and later copying back the resulting
matrices to the host. However, it was observed that during the H→D copies, the matrix
that will contain the results is initialized with random values also moved to the device,
which is unnecessary. This results in an increased number of bytes moved, which does not
align with the expected values. The benchmarks were not optimized for GPU execution
as their primary goal was to perform compiler comparisons. To optimize the process,
the input and output matrices must be allocated on the device, and only the input ones
should be moved to the device. Once the GPU has filled the output matrix, it can then
be moved to the host.

To overcome the issue of increased data movement performed by the GPU implemen-
tation of the KernelGen Test Suite, is possible to consider in our analysis the bytes of

72

4.3 – Validation through GPU Execution

memory allocation for each benchmark, instead of the memory accesses, that is the value
crucial to evaluate the Arithmetic Intensity. Notably, the memory allocation value for
the benchmarks always corresponds to the sum of data that needs to be copied to the
device and moved back to the host. This value, as shown in Table 4.39, also coincides
with the expected value, which was manually evaluated from the source code. These find-
ings validate previous observations across various tools and underscore the importance of
accurately evaluating the amount of data to be transferred during each phase, as it can
significantly impact the execution time once the algorithms that can be offloaded to the
GPU are identified.

Regarding the evaluation of floating-point operations (FLOPs), we notice that some-
times there are a small variation that may be due to the compiler optimization, resuting in
a reduction in the number of required operations. This occurs in the gameoflife, tricubic
and wave13pt benchmarks. However, in the gaussblur, uxx1 and whispering benchmarks,
the number of FLOPs is slight higher than expected. NVIDIA reports that a floating point
instruction written in CUDA can result in multiple assembly instructions depending on
the compiler flags and the actual operation, causing a difference from the expected value
[32]. In general, the results of the FLOPs evaluation are in line with our expectations,
with a negligible variation.

Overall, the results of the GPU evaluation of the benchmarks match our expectations
and validate our analysis. Figure 4.2 through Figure 4.13 provide a graphical comparison
between the AI measured for the CUDA implementations and the tools measurements for
all the benchmarks. The FLOPs evaluated by SDE, LIKWID and Advisor are correct,
with only slight variations, which supports their reliability in the analysis. However, in
terms of memory accesses, LIKWID and VTune measure a value that is not suitable for
the analysis we want to perform. This is because they read from counters located between
the main memory and the processor core, which also take into account the multiple read-
ings that occur during the operation, thereby increasing the number of memory accesses
counted. Advisor is confirmed as the tool that best estimates the AI, as the memory
movement it estimates specifically focuses on data offloading. Moreover, the number of
memory accesses it models could also help developer to fix performance issues by identi-
fying opportunities to optimize data movement between the host and device, even after
the GPU implementation has already been written, as was the case in our study.

73

Experimental Analysis for Arithmetic Intensity Evaluation

Table 4.39: Comparison of the GFLOPs and memory metrics between the values calcu-
lated manually and those obtained by the GPU execution, for the KernelGen Test Suite.

Expected GPU Measurements

Benchmark Input
Size GFLOPs

Memory
Accesses
[GB]

GFLOPs
Memory
Allocation
[GB]

Memory
Accesses
[GB]

divergence 128 0.016 0.034 0.016 0.034 0.042
256 0.131 0.268 0.131 0.268 0.336
512 1.061 2.147 1.061 2.147 2.684

gameoflife 1024 0.015 0.008 0.008 0.008 0.013
2048 0.059 0.034 0.033 0.034 0.050
4096 0.235 0.134 0.134 0.134 0.201

gaussblur 1024 0.032 0.008 0.045 0.008 0.013
2048 0.130 0.034 0.180 0.034 0.050
4096 0.519 0.134 0.720 0.134 0.201

gradient 128 0.012 0.034 0.012 0.034 0.059
256 0.098 0.268 0.098 0.268 0.470
512 0.796 2.147 0.796 2.147 3.758

lapgsrb 128 0.053 0.017 0.053 0.017 0.025
256 0.448 0.134 0.448 0.134 0.201
512 3.671 1.074 3.671 1.074 1.611

laplacian 128 0.016 0.017 0.016 0.017 0.025
256 0.131 0.134 0.131 0.134 0.201
512 1.061 1.074 1.061 1.074 1.611

matvec 1024 0.002 0.004 0.002 0.004 0.004
2048 0.008 0.017 0.008 0.017 0.017
4096 0.034 0.067 0.034 0.067 0.067

tricubic 128 0.499 0.042 0.492 0.042 0.050
256 4.028 0.336 4.081 0.336 0.403
512 32.353 2.684 33.232 2.684 3.221

uxx1 128 0.049 0.050 0.074 0.050 0.059
256 0.405 0.403 0.615 0.403 0.470
512 3.297 3.221 5.011 3.221 3.758

vecadd 128 0.002 0.025 0.002 0.025 0.042
256 0.017 0.201 0.017 0.201 0.336
512 0.134 1.611 0.134 1.611 2.684

wave13pt 128 0.033 0.025 0.031 0.025 0.034
256 0.264 0.201 0.256 0.201 0.268
512 2.131 1.611 2.098 1.611 2.147

whispering 1024 0.032 0.042 0.045 0.042 0.042
2048 0.130 0.168 0.180 0.168 0.168
4096 0.520 0.671 0.721 0.671 0.671

74

4.3 – Validation through GPU Execution

Figure 4.2: divergence benchmark, comparison of CUDA implementation with tools results.

0.2

0.4

128 128 128A
I[

FL
O

Ps
/B

yt
es

]

0.2

0.4

256 256 256

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0.2

0.4

512 512 512

Figure 4.3: gameoflife benchmark, comparison of CUDA implementation with tools results.

0.5
1

1.5
2

1024 1024A
I[

FL
O

Ps
/B

yt
es

]

0.5

1

1.5

2

2048 2048

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0.5
1

1.5
2

4096 4096

Figure 4.4: gaussblur benchmark, comparison of CUDA implementation with tools results.

0

2

4

6

1024 1024A
I[

FL
O

Ps
/B

yt
es

]

0

2

4

6

2048 2048

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0

2

4

6

4096 4096

75

Experimental Analysis for Arithmetic Intensity Evaluation

Figure 4.5: gradient benchmark, comparison of CUDA implementation with tools results.

0.1

0.2

0.3

0.4

128 128 128A
I[

FL
O

Ps
/B

yt
es

]

0.1

0.2

0.3

0.4

256 256 256

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0.1

0.2

0.3

0.4

512 512 512

Figure 4.6: laplacian benchmark, comparison of CUDA implementation with tools results.

0

1

2

3

128 128 128A
I[

FL
O

Ps
/B

yt
es

]

0

1

2

3

256 256 256

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0
1
2
3

512 512 512

Figure 4.7: lapgsrb benchmark, comparison of CUDA implementation with tools results.

0.5

1

128 128 128A
I[

FL
O

Ps
/B

yt
es

]

0.5

1

256 256 256

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0.5

1

512 512 512

76

4.3 – Validation through GPU Execution

Figure 4.8: matvec benchmark, comparison of CUDA implementation with tools results.

0.2

0.4

1024 1024A
I[

FL
O

Ps
/B

yt
es

]

0.2

0.4

2048 2048

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0.2

0.4

4096 4096

Figure 4.9: tricubic benchmark, comparison of CUDA implementation with tools results.

0

5

10

128 128 128A
I[

FL
O

Ps
/B

yt
es

]

0

5

10

256 256 256

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0

5

10

512 512 512

Figure 4.10: uxx1 benchmark, comparison of CUDA implementation with tools results.

0.5

1

1.5

128 128 128A
I[

FL
O

Ps
/B

yt
es

]

0.5

1

1.5

256 256 256

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0.5

1

1.5

512 512 512

77

Experimental Analysis for Arithmetic Intensity Evaluation

Figure 4.11: vecadd benchmark, comparison of CUDA implementation with tools results.

2
4
6
8

·10−2

128 128 128A
I[

FL
O

Ps
/B

yt
es

]

2
4
6
8

·10−2

256 256 256

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

2
4
6
8

·10−2

512 512 512

Figure 4.12: wave13pt benchmark, comparison of CUDA implementation with tools results.

0.5

1

128 128 128A
I[

FL
O

Ps
/B

yt
es

]

0.5

1

256 256 256

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0.5

1

1.5

512 512 512

Figure 4.13: whispering benchmark, comparison of CUDA implementation with tools results.

0.5

1

1024 1024A
I[

FL
O

Ps
/B

yt
es

]

0.5

1

2048 2048

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0.5

1

4096 4096

78

Chapter 5

Exploring GPU Offload
Opportunities in OpenTimer:
A Case Study

This chapter builds upon the concepts and methods introduced in the previous ones by
applying them to a real-world scenario. The challenge is to identify algorithms and loops
that could benefit from GPU execution in projects where the code base is large and
not all known beforehand. As a case study, we chosen the Static Time Analysis (STA)
tool OpenTimer [43]. It has been selected because it is prominent in the open-source
Electronic Design Automation (EDA) world, with multiple awards won in CAD contests,
and it operates in a similar area as the Synopsys team where my internship was carried
out. Additionally the source code is completely available on GitHub.

To identify and evaluate functions that could be offloaded to the GPU, we used the
Offload Modeling analysis of Intel Advisor and the Arithmetic Intensity evaluation method
introduced for the tool.

We expanded the analysis by implementing one of its core function to run on the GPU,
using the OpenACC directives, and explored developing techniques as batching.

Finally, we illustrate two different methods to compile the project enabling GPU accel-
eration. The first method uses a GCC version with native NVPTX extension for OpenACC
support, and the second method involves mixing GCC with NVC compilation. A final
version of the code can be found in the GitHub repository in [10].

5.1 Introduction to Static Time Analysis (STA) and
OpenTimer

OpenTimer is a tool for Static Time Analysis (STA) in electronic design, helping designers
validate the timing of integrated circuits. Static Time Analysis (STA) is a crucial step
in the Electronic Design Automation (EDA) process as it ensures that the circuit meets
timing requirements and operates correctly under all possible conditions [4]. By checking

79

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

all paths for timing violation under worst-case conditions, OpenTimer ensures the data
is presented at the input of each synchronous device when the clock edge arrives. Com-
pared to dynamic simulation, static timing analysis can quickly evaluate timings without
simulating logical operations, resulting in faster evaluation times [16].

OpenTimer is written in modern C++17 and uses CMake to manage the compiling
process. Internally it holds the circuit structure as a Direct Acyclic Graph (DAG) G =
{P, E} where P is the pin set and E is the edge set. Each pin p in the graph can
be levelized by a level index "level[p]" in order to maintain a topological order between
different pins. Timing is propagated level by level keeping the circuit topology intact [15].

The tool offers a shell for interaction through command-line interface. Every timing
operation executed through the shell can be interpreted in three distinct forms:

• Builder : OpenTimer creates a graph of operations to be performed and adds tasks
every time a builder operation is called. The function to insert a gate in the circuit
or read a cells library, for example, are builder operations;

• Action: An action triggers the timing update for each task in the graph upon the
one that produces the result of the call. The command to report the timing of the
circuit is an action;

• Accessors: queries the timer without altering the internal data structure. For exam-
ple, the command to dump the timing graph is considered an accessor.

The OpenTimer shell can be launched using the ot-shell command from a system
terminal, and the following builder commands can be used to load data into the graph
from industry-standard input files:

• read_celllib <string>.lib: reads a liberty format library file. It contains an ASCII
representation of timing and power parameters associated with any cell in the semi-
conductor, obtained by simulating the component in different conditions;

• read_verilog <string>.v: imports a gate level Verilog netlist and initializes the circuit
graph from the given libraries;

• read_spef <string>.spef : applies the design parasitics of a set of nets as a resistive-
capacitive (RC) network;

• read_sdc <string>.sdc: reads a Synopsys design constraint file, containing the initial
timing conditions to impose on the design. It is a TCL-based format to specify design
intent and constraints for synthesis, clocking, timer, power and area.

After importing the design characteristics, a range of actions can be performed. For
example, by utilizing the report_timing command, as demonstrated in Listing 5.1, on
the "simple" design - a benchmark integrated into the OpenTimer project with the layout
depicted in Figure 5.1 - the analysis displays the most critical path on the screen. This
path has the maximum delay between the input and output in the circuit.

80

5.1 – Introduction to Static Time Analysis (STA) and OpenTimer

Figure 5.1: Layout of the OpenTimer "simple" benchmark.

Listing 5.1 OpenTimer results for the report_timing command on the "simple" design.
Source: OpenTimer GitHub [43].

1 ot > read_celllib osu018_stdcells .lib
2 ot > read_verilog simple .v
3 ot > read_sdc simple .sdc
4 ot > report_timing
5

6 Startpoint : inp1
7 Endpoint : f1:D
8 Analysis type : min
9 --

10 Type Delay Time Dir Description
11 --
12 port 0.000 0.000 fall inp1
13 pin 0.000 0.000 fall u1:A (NAND2X1)
14 pin 2.786 2.786 rise u1:Y (NAND2X1)
15 pin 0.000 2.786 rise u4:A (NOR2X1)
16 pin 0.181 2.967 fall u4:Y (NOR2X1)
17 pin 0.000 2.967 fall f1:D (DFFNEGX1)
18 arrival 2.967 data arrival time
19

20 related pin 25.000 25.000 fall f1:CLK (DFFNEGX1)
21 constraint 1.518 26.518 library hold_falling
22 required 26.518 data required time
23 --
24 slack -23.551 VIOLATED

In the example analysis, the critical path is originated from the inp1 port and feed into
the data pin f1:D of the DFFNEGX1 flip-flop. The slack, which is the difference between
required time and the arrival one, has been violated. Therefore, the circuit designer must
take corrective measures.

A range of other actions is available, including:

• report_at: reports the arrival time at a pin;

• report_slew: reports the transition time at a pin;

• report_slack: reports the slack of a pin;

81

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

• report_leakage_power : reports the aggregate cell leakage power of the design.

5.2 Identification of Offload Opportunities with Intel
Advisor

Our current objective is to pinpoint potential GPU offload opportunities within the code
of OpenTimer. Due to the large size of the code base and our lack of prior knowledge of
the code, we will rely on the automatic evaluation conducted by Intel Advisor "Offload
Modeling" analysis. Section 3.3.1 contains additional information on the tool and provides
guidance on how to perform the evaluation.

Advisor analysis deems a loop profitable and recommended for offloading if the ratio
between the time required on the baseline CPU and the time estimated for the modelled
GPU is greater than 1. Table 4.1 provides information on the CPU characteristics of
the machine used for the analysis, whereas Table 5.1 outlines the specifications of the
top-of-the-line Intel XeHPG 512 GPU modeled from the tool.

Table 5.1: Technical features of the GPU modeled by Intel Advisor.

GPU Model Intel XeHPG 512
Architecture Xe-HPG
Frequency [GHz] 1.80
L1 Cache Size [MB] 6
L1 Cache Bandwidth [TB/s] 14.75
L3 Cache Size [MB] 16
L3 Cache Bandwidth [TB/s] 3.69
Memory Type GDDR6
Memory Bandwidth [GB/s] 460.8

To perform the analysis, we selected the "aes_core" benchmark and used the re-
port_timing action in OpenTimer. This design consists of 20795 components that work
together to provide encryption of digital data using the AES symmetric encryption algo-
rithm. This algorithm uses a block cipher to encrypt and decrypt data, which is performed
by the circuit on a block of plaintext. To accomplish this, a secret key is shared between
the sender and receiver of the data.

In addition to the Verilog design, we loaded both early and late libraries for the cir-
cuit. The early library represents a best-case scenario where signals propagate faster than
typical values, while the late library represents the opposite. By loading both libraries,
the developer can ensure that the design meets timing requirements under all conditions.
Before conducting the analysis, we also loaded the file containing the parasitics and the
one with the constraints that specify the timing conditions to impose on the design.

After completing the analysis and opening the results with Advisor, as shown in Picture
5.2, the tool estimated that the application would run 10.274 times faster compared to
using the CPU alone and identified 19 offload opportunities.

82

5.2 – Identification of Offload Opportunities with Intel Advisor

Figure 5.2: Screenshot of the Intel Advisor results page for the "report_timing" action
in OpenTimer on the "aes_core" design.

We have selected the top five loops/functions based on the Intel Advisor estimated
benefit from GPU offloading. We aim to study each of them to determine whether they
can be actually accelerated or not. The functions are presented in Table 5.2, which is
ordered by (CPU time) − (GPU estimated time). This order represents the potential
gain that the function can achieve following Amdahl’s law.

Table 5.2: First five loops suggested to offload by Intel Advisor with OpenTimer ana-
lyzing the "aes_core" benchmark.

Loop/function CPU time
[ms]

GPU es-
timated
time [ms]

Saved
time [ms] Speed Up

Loop at star.hpp:39 4120.0 163.8 3956.2 25.155x
Loop at verilog.cpp:59 820.0 235.0 585.0 3.489x
Loop at parser-spef.hpp:1186 388.3 0.824 387.476 4713.513x
Loop at tokenizer.cpp:149 350.0 51.1 298.9 6.846x
Loop at hashtable_policy.h:2120 200.0 53.3 146.7 3.752x

5.2.1 Loop at star.hpp:39
The first loop suggested for GPU offloading, the most profitable for Intel Advisor, is
contained in the file "ot/parser-spef/pegtl/pegtl/internal/star.hpp" at the line 39.

To obtain additional information about the history calls that occur before the loop,
we can open the "Top Down" tab, which is part of the accelerated regions screen in Intel

83

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

Advisor, as shown in Picture 5.3. Examining the call stack in reverse can helps us to
gain a better understanding of the loop execution and its characteristics. By studying the
stack we can determine components and data on which the loop operates, and we found
that it belongs to the handling stage of the parasitics information, contained in the ".spef"
file that was loaded into the OpenTimer shell at the beginning.

Figure 5.3: Intel Advisor "Top down" tab showing the functions call stack before the
loop at star.hpp:39.

Prior to the loop, the file has been loaded into a string buffer in memory which is
then used to perform parsing. A parsing operation analyzes the incoming data flow to
determine its correctness and to make it machine-readable. This phase is handled by an
external library called PEGTL, a C++ parser combinator library. Although included in
the project, the library is not written by the OpenTimer developers themselves but by a
third-party.

Although Intel Advisor recommends offloading the code region, it would not be appro-
priate to do so since the suggested loop belongs to an external library. As the developers
are not the owners of this code, it would be difficult for them to optimize it for GPU
execution.

Intel Advisor was unable to recognize that the function was part of an external library
and not of the OpenTimer project. It is possible to exclude external libraries from the
Offload Modeling by adding the parameter "–exclude-files=<path>" before starting the
analysis, where path is a comma-separated list of file directories to exclude.

5.2.2 Loop at verilog.cpp:59
The loop presented is a crucial component of the functions that handle the gate level
Verilog net list, and its primary purpose is to store the collected data into an internal
class. It is located within the file "ot/timer/verilog.cpp", beginning line 59.

84

5.2 – Identification of Offload Opportunities with Intel Advisor

To give some context, when a Verilog file path is inserted into the shell, a called
"module" data structure is allocated within OpenTimer, and the file path is passed to a
function that parses it and populates the module. In essence, a module represents a block
that defines a design, such as "aes_core," and its data structure consists of the following
components:

• The module name;

• A vector of strings called "wires", which represents the internal nets used for physical
connections;

• A vector of strings called "inputs", which contains the input pins;

• A vector of strings called "outputs", containing the output pins;

• A vector of strings called "ports", for all the cell pins in the module;

• A vector of objects called "gates", tracking a cell with its information. It contains
two C++ unordered map to keep track of the connections between a net and and
its input and between its output and another net.

Subsequently, OpenTimer proceeds to update the circuit by reading all inputs, outputs,
and wires from the module data structure and storing the obtained data within an object
of the class "Timer," which is defined in the file "timer.hpp." This stored data will be used
for future applications. The loop that Intel Advisor suggests offloading is responsible for
reading the "gate" vector from the "module" object and storing its details in the "Timer"
object. The code snippet of the loop identified is contained in Listing 5.2.

Listing 5.2 Code snippet containing the loop at verilog.cpp:59 suggested for offloading
by Advisor.

1 for(auto& gate: module .gates){
2 _insert_gate (gate.name , gate.cell);
3 for ([c, n]: gate. cellpin2net){
4 auto& pin = _insert_pin (gate.name + ":" + c);
5 auto& net = _insert_net (n);
6 _connect_pin (pin , net);
7 }
8 }

Let’s take a detailed look at the loops and functions contained in the code snippet to
determine whether there is a potential benefit in running them on a GPU:

1. The outer for loop iterates on all the gates contained in the module object:

(a) The function "insert_gate" defined in "timer.cpp:135" creates a new Gate ob-
ject that is not yet connected to other gates or wires. The function takes two
parameters: the name of the Gate and a Cell. The newly created Gate object
is then added to the unordered map "_gates" declared in "timer.hpp," which
contains a tuple of the Gate name and Gate object. The Cell object is filled

85

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

using the data structure containing the cell pins called "_celllib." Pins of the
gate are added using the "_insert_pin" function, and a reference of them is
included inside the Gate to keep track. Finally, a function initializes the arc by
creating a correspondence between each cell and its pins and the pin with the
cells connected.

2. The inner foor loop iterates on each Pin-Net mapping specified in the gate:

(a) The "_insert_pin" function, defined in timer.cpp:421, checks if the passed
string, composed of the gate name plus the cell pin, already exists in the un-
ordered map "_pin". The "_pin" map contains objects of type Pin and strings
that hold the pin identifier. If the string exists in the map, the function returns
a reference to the corresponding object. However, if the string does not exist,
a new Pin object is created and added to the list of pins called "_frontiers".
Finally, the function returns a reference to the newly created Pin object.

(b) "_insert_net", defined in "timer.cpp:386," creates and returns a reference to an
object of type "Net" with the name passed as input. This function also adds
this information to the unordered map "_nets". The newly created Net object
is not yet connected to any pin or loaded with parasitic information.

(c) "_connect_pin", located at "timer.cpp:291", creates a connection between a pin
and the corresponding net, creating an arc. First, the reference to the pin is
inserted into the Net object. Then, the function "_insert_arc" is called with the
pin and the net as input parameters to store this correspondence in the list of
"Arc" objects called "_arcs". Finally, this function inserts the fanin and fanout
references into their corresponding data structures in the Pin class.

The two loops perform complex operations that involve filling multiple unordered_map
and lists, rather than arithmetic computations. Although Advisor reported a very high
trip count of 22938, it is not beneficial to offload the loops to the GPU due to the overhead
of transferring all the data to perform non-trivial operations on C++ data structures.
Therefore, despite Advisor’s suggestion, the loops may not be suitable for offloading to
the GPU.

5.2.3 Loop at parser-spef.hpp:1186
The third loop identified by Advisor is part of the manipulation process of the spef file,
which contains the parasitics information related to the module. This loop is executed in
the same flow as the first one evaluated, which is located at star.hpp:39. As previously
mentioned, the spef file is read and stored in a string buffer variable in memory before it
is parsed by the PEGTL library. However, if any comment is present in the file, indicated
by the characters "//" at the start of the line, the subsequent characters until the new line
operator are replaced with a space to prevent any disruption during the parsing phase. A
code snippet containing the relevant loops is provided in Listing 5.3.

86

5.2 – Identification of Offload Opportunities with Intel Advisor

Listing 5.3 Code snippet containing the loop at parser-spef.hpp:1186 suggested for of-
floading by Advisor.

1 for(size_t i=0; i< buffer .size (); i++){
2 if(buffer [i] == ’/’ && i+1 < buffer .size () && buffer [i+1] == ’/’) {
3 buffer [i] = buffer [i+1] = ’ ’;
4 for(i=i+2; i< buffer .size (); ++i) {
5 if(buffer [i] == ’\n’ || buffer [i] == ’\r’) {
6 break ;
7 }
8 else buffer [i] = ’ ’;
9 }

10 }
11 }

Although the string contained in the buffer is accessed character by character as a
vector in this operation, it is not possible to offload it to a GPU to take advantage of its
SIMD architecture because of the break statement in line 6, which is used to exit the loop
once the newline ”\n” or carriage return ”\r” character is encountered. This ensures that
the internal loop stops as soon as all comments have been removed and can start looking
for "//" characters in the vector again. Unfortunately, threads running in parallel would
not be aware of this interruption, and they might already be removing data from a later
element of the vector since the comment’s length is not known in advance. This could lead
to the removal of critical information about the parasitics, making the loop unsuitable to
offload on a GPU.

5.2.4 Loop at tokenizer.cpp:149
This function recommended by Advisor, is located at line 149 of "ot/utility/tokenizer.cpp"
file in the OpenTimer installation folder. The function is part of the execution flow
that reads the Verilog file passed as input from the shell, and creates a "module" object
containing the Verilog information about the design of "aes_core". This module is the
same as the one mentioned in the previous function identified by Advisor for the analysis
of the loop at "verilog.cpp:59", but this operation occurs at an earlier stage.

The file is first opened and its contents are stored in a buffer. Then, a tokenization
operation is performed on the characters in the buffer, which involves splitting the text
into tokens based on pre-defined delimiters like "input", "output", or "wire" and removing
comments. These tokens are subsequently used to populate the data structures. The loop
suggested by Advisor is part of a function that takes three arguments: the file path, a
string of delimiters that signal the end of a token, and a string of exceptions that specifies
a delimiter that should also be included in the token before it is closed.

After the file is opened and saved into a buffer, an operation of tokenization takes
place on the characters contained in the buffer, splitting it into tokens based on prede-
fined delimiters, such as "input", "output", or "wire", which are later used to fill the data
structures, and removing comments. The function which the loop is part of, with a sim-
plified code snippet presented in Listing 5.4, takes three arguments: the path to the file,
the string of delimiters, that indicate when a token ends, and the string of exceptions,
which contains a delimiter that must also be saved in the token before closing it.

87

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

Listing 5.4 Code snippet containing the loop at tokenizer.cpp:149 suggested for offloading
by Advisor.

1 std :: string token;
2 std :: vector <std :: string > tokens ;
3

4 for(size_t i=0; i< file_size ; ++i) {
5 bool is_delimiter = (delimiter .find(buffer [i]));
6 if(is_delimiter || std :: isspace (buffer [i])) {
7 if (! token.empty ()) {
8 tokens . push_back (std :: move(token));
9 token.clear ();

10 }
11 if(is_delimiter && exceptions .find(buffer [i]) != -1) {
12 token. push_back (buffer [i]);
13 tokens . push_back (std :: move(token));
14 }
15 } else {
16 token. push_back (buffer [i]);
17 }
18 }

To provide a more detailed explanation, the loop takes each character from the buffer
individually and performs the following operations:

• If the character is a delimiter or a whitespace, and the current token is not empty,
the token is stored to a vector of tokens and then it is cleared, ready to temporarily
hold new characters;

• If the character is both a delimiter and an exception, it is saved in the current token,
and the token is then pushed into the vector of tokens;

• If the character is not a delimiter, it is added to the current token;

After executing the tokenization loop, the buffer containing the file will be transformed
into a vector of tokens. However, parallelizing this loop on a GPU is not possible due
to the data dependency between the current character being processed and the previous
ones. Parallel execution would disregard this dependency, potentially leading to incorrect
tokenization results. Therefore, preserving the order of character processing is crucial to
properly construct the graph representing the circuit for the "aes_core" module.

5.2.5 Loop at hashtable_policy.h:2120
The last of the five functions suggested for GPU offloading by Advisor, is the loop at the
line 2120 of "hashtable_policy.h".

This function is a component of the GNU ISO C++ library, commonly referred to
as libstdc++. It is utilized in the phase detailed in Subsection 5.2.2 about the loop at
verilog.cpp:59, when the gates are added to an "unordered_map", that is a data structure
implemented as a hash table, and the hashtable_policy.h file provides the classes that
control its behavior.

88

5.3 – Sorting Analysis Results by Arithmetic Intensity

Unfortunately, also in this instance, the tool did not provide accurate or constructive
suggestions, thus making it arduous for developers to implement the proposed advice on
GPU.

5.3 Sorting Analysis Results by Arithmetic Intensity
The Offload Modeling analysis conducted by Advisor was not successful as the five best
suggested loops for offloading, despite having a high trip count, could not be accelerated
on the GPU due to the reason previously explained, which were discovered after a detailed
analysis of their behavior.

As a result, we decided to order the 19 identified loops by their Arithmetic Intensity
(AI), as detected by the tool, instead of by speed up. This change in approach was made
to determine if the utilization of AI as evaluation parameter, which is it is hardware-
independent, can aid in identifying functions that are suitable for offloading on the GPU
and evaluate whether execution times can improve.

Table 5.3 contains the first five functions for AI. Although Advisor identified them, they
are marked as top not-offloaded since the speed up evaluated is deemed not advantageous.
Specifically, the ratio between the CPU execution time and the GPU execution time is
estimated to be less than 1.

Table 5.3: Top five results ordered by Arithmetic Intensity from the "report_timing"
analysis of Intel Advisor on the "aes_core" benchmark.

Loop/function GFLOPs
Memory
Accesses
[GB]

Arithmetic Intensity
[FLOPs/Bytes]

Loop in Rct::_update_ldelay
at net.cpp:160

0.012 0.083 0.145

Loop in Rct::_update_response
at net.cpp:178

0.006 0.083 0.072

Loop in Rct::_update_load
at net.cpp:126

0.006 0.083 0.072

Loop in Timer::_fprop_delay
at timer.cpp:746

0.003 0.240 0.013

Loop in Rct::_update_delay
at net.cpp:143

0.001 0.083 0.012

Despite the tool modeled speedup not being deemed beneficial and the estimated AI
value not being particularly high, it is still worthwhile to study the functions in order
to identify any potential offload opportunities. This will allow us to verify the accuracy
of the Advisor analysis and determine whether GPU acceleration can still provide any
benefits in the application execution.

89

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

We have observed that four out of the five functions for Arithmetic Intensity belong
to the same C++ class "Rct", which is responsible for the RC propagation phase of the
circuit. To gain a better understanding of this class and its role, we need to take a step
back in the OpenTimer execution flow.

In the presentation paper authored by Huang et al. [15], it is explained that OpenTimer
represents a circuit as a DAG G = {P, E} where P is the sets of pins and E is the set of
edges. To enable temporal propagation, OpenTimer constructs a data structure known
as a "bucket list". Each bucket is assigned to a level index "l" and contains a list of pins
that belong to the same level as "l". This allows to maintain a levelized structure while
preserving a topological order to propagate the timing level-by-level.

When a pin is levelized, starting from the lowest level, its fanout (the number of input
gates connected to the output of a single gate) is inserted in the bucket list.

The levelized bucket list facilitates the execution of the forward time propagation
procedure, which performs six tasks for each pin in the bucket list for every level:

1. RC propagation;

2. Slew propagation;

3. Delay propagation;

4. Arrival time propagation;

5. Jump point propagation (contraction of the graph to reduce the search space);

6. CPPR credit propagation (removal of some pessimism for the timing test).
The loops within the "Rct" class identified by Advisor are all part of the first phase

enumerated, responsible for updating the RC parameters necessary for the propagation
of the slew and delay through a net. This process begins with reading the ".spef" file
containing the parasitic design of the module, modeled as a resistive-capacitive network
that includes the capacitance of internal gates and resistance of the wires between them.

OpenTimer estimates the output slew and delay of the RC network by computing the
the first and second moment of the impulse response and taking their symmetric value.

The objective of this propagation is to calculate the RC parameters for each RC net,
and to evaluate the delay and impulse between the root and every output pin.

Now, we will examine the operations performed by the first function based on the
AI value, "Rct::_update_ldelay". Our goal is to assess the feasibility of offloading the
function to the GPU and determine the potential benefits of executing it on the device.

5.3.1 Loop at net.cpp:160
The first loop listed for Arithmetic Intensity pertains to the "Rct::_update_ldelay" func-
tion, which can be found in the file "OpenTimer/ot/timer/net.cpp:160".

To estimate the timing of the circuit, OpenTimer performs the following steps when
implementing the RC delay computation on the graph:

1. For each node in the circuit, the load is computed;

90

5.3 – Sorting Analysis Results by Arithmetic Intensity

2. The delay between the port and the node is calculated;

3. The sum of the product of capacitance and delay in the subtrees of the node is
computed, which is referred to as load delay (ldelay);

4. Using the "ldelay" obtained in step 3, the delay and impulse between the port and
the node are calculated.

The loop identified by Intel Advisor computes the load delay in the subtrees of every
node, as explained in point three. The source code of the function is presented in Listing
5.5.

Listing 5.5 Function to compute the load delay by OpenTimer, located in net.cpp:160.
1 void Rct :: _update_ldelay (RctNode * parent , RctNode * from) {
2

3 for(auto e : from -> _fanout) {
4 if(auto& to = e->_to; &to != parent) {
5 _update_ldelay (from , &to);
6 FOR_EACH_EL_RF (el , rf) {
7 from -> _ldelay [el][rf] += to. _ldelay [el][rf];
8 }
9 }

10 }
11

12 FOR_EACH_EL_RF (el , rf) {
13 from -> _ldelay [el][rf] += from ->cap(el , rf) * from -> _delay [el][rf];
14 }
15 }

The function performs a Depth-First Search (DFS) traversal of the RC tree of each
node in the circuit. DFS is an algorithm that starts from the root of the tree and explores
as far as possible along each branch before backtracking. Figure 5.4 shows the traversal
order performed by the algorithm on an example graph.

During backtracking, the function adds up the load delay from the most recent visited
node, which has accumulated the values of the previously visited nodes, to the current
one. Then to obtain the load delay, the function sums the value with the product of
capacitance and delay.

Every time a node is visited, these operations are performed for the four combinations
of early/late and rise/fall values. The "FOR_EACH_EL_RF(el, rf)" function is a user-
defined loop that iterates on the four values without having to write them out each time,
as they are just a combination of zeroes and ones.

As the operation does not present any significant impediments to run on a GPU, apart
from the required execution time which we will evaluate later, we can implement a version
that can be offloaded to accelerate the code. By introducing techniques that are accessible
to developers new to the world of GPU programming, we can offload the code without
requiring any particular previous knowledge of the subject.

91

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

Figure 5.4: Example of a traversal sequence of nodes using the DFS algorithm.

5.4 Porting OpenTimer RC Delay Function to GPU
Our goal is to offload the "Rct::_update_ldelay" function, which computes the load delay
in the subtrees of each node in a circuit, to the GPU. However, the function performs
a DFS traversal and recursive operations like this are typically not well-suited for GPU
acceleration due to the high frequency of memory access during the tree traversal, which
can result in expensive data transfers.

While we don’t want to completely rewrite the OpenTimer structure, we do want to
explore GPU execution methodologies. To achieve this, we will use a batching technique,
which involves accumulating data before offloading them to the GPU. By building a data
structure to process a set of elements at the same time, we can take advantage of GPU
parallelism and manipulate the batched workloads all together, which can reduce data
transfer and improve performance [7]. This will enable us to implement the function on
GPU without the need to completely rewrite the OpenTimer structure.

To accomplish this, rather than performing the operation at line 7 of Listing 5.5 directly
on GPU, which would be not convenient, we can accumulate the values on a support data
structure while traversing the tree and then compute them in batches when the node is
reached during backtracking.

An updated version of the function with these changes implemented can be found in
Listing 5.6

Listing 5.6 Rct::_update_ldelay function rewritten implementing batching technique on
data.

1 void Rct :: _update_ldelay (RctNode * parent , RctNode * from) {
2 int i, j;
3 std :: vector <std :: vector <float >> to_ldelay_acc ;
4

5 for (auto e: from -> _fanout) {
6 if (auto & to = e->_to; & to != parent) {

92

5.4 – Porting OpenTimer RC Delay Function to GPU

7 _update_ldelay (from , & to);
8 std :: vector <float > to_ldelay_RctNode ;
9 FOR_EACH_EL_RF (el , rf) {

10 // Save current "to. _ldelay " values into a temporary vector
11 to_ldelay_RctNode . push_back (to. _ldelay [el][rf]);
12 }
13 // Push the vector inside an accumulator data structure
14 to_ldelay_acc . push_back (to_ldelay_RctNode);
15 }
16 }
17

18 // Save the number of nodes visited and allocate temporary vectors
19 int num_nodes = to_ldelay_acc .size ();
20 float * to_float_star = new float[num_nodes * 4];
21 float from_ldelay [4], from_cap [4], from_delay [4];
22

23 // Move the accumulator to a simpler vector of float
24 for (i = 0; i < num_nodes ; i++) {
25 for (j = 0; j < 4; j++) {
26 to_float_star [i * 4 + j] = to_ldelay_acc [i][j];
27 }
28 }
29

30 // Save delay and capacitance to temporary vectors
31 FOR_EACH_EL_RF (el , rf) {
32 from_cap [el *2+ rf] = from ->cap(el , rf);
33 from_delay [el *2+ rf] = from -> _delay [el][rf];
34 }
35

36 // Loop to be accelerated using OpenACC directives
37 for (i = 0; i < 4; i++) {
38 float acc = 0.0;
39 for (j = 0; j < num_nodes ; j++) {
40 acc += to_float_star [i + j * 4];
41 }
42 from_ldelay [i] = acc + from_cap [i] * from_delay [i];
43 }
44

45 delete [] to_float_star ;
46

47 // Copy the result back to the OpenTimer data structure
48 FOR_EACH_EL_RF (el , rf) {
49 from -> _ldelay [el][rf] = from_ldelay [el * 2 + rf];
50 }
51

52 }

The following operations were applied to obtain the code that will support GPU ac-
celeration:

1. Instead of computing the operation directly for each visited node, we saved the four
float values representing the combinations early/late and rise/fall contained inside
the "to._ldelay" vector into a temporary C++ std::vector;

93

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

2. Before continuing the tree traversal, we pushed the vector into an accumulator vec-
tor<vector<float» that keeps track of all visited nodes. We used this dynamic data
structure because it does not require advance knowledge of the tree depth and the
number of nodes that will be added;

3. When backtracking starts, we move the accumulator std::vector to a dynamically
allocated vector of float to be sent to the GPU. We translate the 2-dimensional
data structure into a single vector, where we perform a column by moving 4 values
at a time. While C++ data structures can be moved to the GPU, they require
compiling the entire project with a NVIDIA Compiler and CUDA Unified Memory.
To minimize the impact on large projects, in Section 5.6 we propose alternative
compilation methods;

4. We also add the sum of the product of capacitance and delay for the node to the
operations to be performed on the device. Since they are contained in complex data
structures, we temporarily save them in vectors of float;

5. From line 31 to 37 of Listing 2, two nested loops perform all the necessary calcula-
tions, ready to be offloaded to the GPU using the OpenACC directives, introduced
in Section 5.5;

6. The results of the computation are contained in a vector of four elements, which is
the only one copied back from the device to the host. The values can be moved to
the OpenTimer data structure to continue the computation correctly.

The loop to be offloaded can be parallelized across different GPU threads because the
four combinations of early/late and rise/fall are independent, allowing for vectorization.
Vectorization is another technique to further increase GPU performance by reorganizing
the data in memory so that it can be accessed efficiently by the parallel processing units,
rewriting the loop logic to take advantage of the parallelism.

In the following section, we introduce the use of OpenACC directives, that will enable
us to instrument the code allowing the compiler identify which data structures to move
to the GPU and which computations can be accelerated.

5.5 Exploring OpenACC for Heterogeneous Comput-
ing

OpenACC [40] is an open standard platform-independent programming model that en-
ables programmers to accelerate High Performance Computing (HPC) applications writ-
ten in C/C++ and FORTRAN. It is supported by a wide range of compilers that can
automatically generate parallel code, handle data movement, and enable various features
like detecting data dependencies between loops. Compared to CUDA, which is specifically
designed for NVIDIA devices and offers fine-grained control over the hardware, OpenACC
is a more accessible option.

OpenACC high-level compiler directives are not device-dependent and can be used on
a variety of hardware architectures provided by different vendors, such as NVIDIA, AMD,

94

5.5 – Exploring OpenACC for Heterogeneous Computing

and Intel. This make it easier to program GPU code, as it can be added to existing code
base with minimal modifications, simplifying the process of adapting existing application
to exploit GPU parallelism.

In order to enable acceleration using OpenACC, the source code needs to be instru-
mented to specify to the compiler which portions should be offloaded and which data
structures copied to the device. In C++ this is done using pragmas. The keywords to
highlight the code to be executed on the GPU begin with "#pragma acc" and to handle
data movement with "#pragma acc data".

In particular, some of the pragmas that manage data movement between the host and
the device are the following [41]:

• copy: allocates memory on the GPU and moves the specified data from the host to
the device for computation. When completed copies the data back to the host;

• copyin: allocates memory on the device and moves the specified data from the host
to the device for computation;

• copyout: allocates memory on the device and when the computation is completed
moves the data to the host;

• create: allocates memory on the device without performing any data movement;

• present: informs the compiler that the specified data structure is already present on
the device, and therefore it is not necessary to move it again.

Within the brackets of the OpenACC data movement pragmas it is necessary to specify
the name of the variable to be transferred, along with its size if it is a vector. For example,
to copy a five element vector V to the device, before the loop that deals with it the pro-
grammer would add the following pragma to the code: "#pragma acc data copyin(V[:5])".

Once data transfer is managed, programmers can specify the code section to be accel-
erated using various available pragmas. Some of these are as follows:

• kernels: identifies a region for parallel execution, but leaves it to the compiler to
analyze and identify which loops are safe to accelerate;

• parallel: identifies a region to be parallelized, and the developer asserts that is safe
to be accelerated. When paired with the loop directive, the compiler will generate a
parallel version of the loop.

The main difference between the two directives is the level of control left to the com-
piler. The kernels keyword is a hint for the compiler about where it should look for
parallelism, while the parallel directive is an assertion [41].

95

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

5.5.1 Accelerating OpenTimer with OpenACC Directives
We can now enable acceleration using OpenACC directives for the "Rct::_update_ldelay"
function we rewrote and shown in line 37 of Listing 5.6, which takes care of summing the
batched values and computing the product of capacitance and delay to obtain the load
delay for each node in the tree visit. The loops become as follows:

Listing 5.7 Accelerated loops with OpenACC directives for the Rct::_update_ldelay
function, ready to run on a GPU.

1 # pragma acc data copyin (to_float_star [: num_nodes *4], from_cap [:4] ,
from_delay [:4])

2 # pragma acc data copyout (from_ldelay [:4])
3 # pragma acc parallel loop
4 for (i = 0; i < 4; i++) {
5 float acc = 0.0;
6 for (j = 0; j < num_nodes ; j++) {
7 acc += to_float_star [i + j * 4];
8 }
9 from_ldelay [i] = acc + from_cap [i] * from_delay [i];

10 }

Specifically, we instructed the compiler to offload the loops by using the following
OpenACC pragmas:

• data copyin(to_float_star[:num_nodes*4], from_cap[:4], from_delay[:4]): performs
the allocation and transfer of vectors containing temporary data structures to the
device. These structures hold the batched load delay values of the child nodes, as well
as the capacitance and delay values for the four possible combinations of early/late
and rise/fall transitions;

• data copyout(from_ldelay[:4]): allocates the data to contain the result load delay
and transfers the value to the host once the computation is completed;

• parallel loop: asserts that the two nested loops can be parallelized on the GPU.

The number of bytes to be transferred from the device to the host is always 16, that is
4 values multiplied by 4 bytes, the size of a float number. However, the bytes copied from
the host to the device cannot be predetermined, as it varies based on the size of the float*
to_float_star[num_nodes*4] vector. For each node, the vector is dynamically allocated
with a size depending on the number of the sub-nodes visited from the considered node.
As this function is part of a tree traversal, multiple calls will occur, each leading in data
movement on the GPU. Therefore, it is essential to optimize the performance as much as
possible, as executions with low num_nodes value could be inefficient on the GPU due
to the cost of data transfer. The number of sub-nodes for each node varies based on the
complexity of the design being analyzed with OpenTimer.

For instance, in the analysis of "aes_core", the design that we worked with, the fre-
quency distribution of the number of sub-nodes for each tree node is contained in Table
5.4.

96

5.5 – Exploring OpenACC for Heterogeneous Computing

Table 5.4: Frequency distribution of the number of sub-nodes for each tree node in the
"aes_core" design.

Number of Sub-nodes Occurrences
0 41297
1 287536
2 17912
3 90
4 2

An excessive amount of data movement can occur when performing operations with
too few batched sub-nodes, which can significantly slow down the execution. To optimize
the loop, we can study its Arithmetic Intensity and determine the threshold value of
num_nodes below which offloading the operation would be too burdensome, making it
more efficient to run it on the CPU.

To achieve this, we compiled Table 5.5 which includes values of FLOPs and memory
accesses to calculate the AI based on the number of sub-nodes traversed. By examining
the results, we can determine the optimal number of number of values the vector should
contain to find a balance between minimizing data movement and maximizing computa-
tional efficiency.

Table 5.5: Arithmetic Intensity of the loop for different values of Sub-nodes.

Number of
Sub-nodes

FLOPs
performed

Memory
Accesses
[Bytes]

Arithmetic Intensity
[FLOPs/ Bytes]

0 4 48 0.083
1 8 64 0.125
2 16 80 0.200
3 20 96 0.208
4 24 112 0.214
5 28 128 0.219

The analysis results reveal that AI value almost doubles, passing from 0.125 to 0.200,
when the num_nodes values increases from 1 to 2. Then it it slowly reaches a saturation
point at 0.250, as showed in Figure 5.5.

Based on these findings, we have decided to divide the function execution flow based
on the number of sub-nodes batched in the vector. With num_nodes value up to 1, the
function will continue to execute on the CPU, since the data transfer to the GPU would
be not efficient. However, when the value is 2 or higher, the function will be offloaded to
the GPU, to take advantage of its computational power.

Listing 5.8 contains the final version of the "Rct::_update_ldelay" OpenTimer func-
tion, optimized to run on the GPU with the OpenACC directives. This version is the

97

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

result of a thorough analysis and several iterations aimed at maximizing its performance
on the GPU.

Figure 5.5: Values of Arithmetic Intensity for the function related to the number of
sub-nodes.

0 1 2 3 4 50

0.1
0.15
0.2

0.25
0.3

Number of Sub-nodes

A
I[

FL
O

Ps
/B

yt
es

]

Listing 5.8 Final version of the "Rct::_update_ldelay" function optimized to run on the
GPU with the OpenACC directives.

1 void Rct :: _update_ldelay (RctNode * parent , RctNode * from) {
2 int i, j;
3 std :: vector <std :: vector <float >> to_ldelay_acc ;
4

5 for (auto e: from -> _fanout) {
6 if (auto & to = e->_to; & to != parent) {
7 _update_ldelay (from , & to);
8 std :: vector <float > to_ldelay_RctNode ;
9 FOR_EACH_EL_RF (el , rf) {

10 to_ldelay_RctNode . push_back (to. _ldelay [el][rf]);
11 }
12 to_ldelay_acc . push_back (to_ldelay_RctNode);
13 }
14 }
15

16 int num_nodes = to_ldelay_acc .size ();
17 if (num_nodes > 1) {
18 /* ******** GPU EXECUTION - num_nodes >1 ******** */
19 float * to_float_star = new float[num_nodes * 4];
20 float from_ldelay [4], from_cap [4], from_delay [4];
21

22 for (i = 0; i < num_nodes ; i++) {
23 for (j = 0; j < 4; j++) {
24 to_float_star [i * 4 + j] = to_ldelay_acc [i][j];
25 }
26 }
27

28 FOR_EACH_EL_RF (el , rf) {

98

5.6 – Compile GPU Code with Minimal Project Impact

29 from_cap [el *2+ rf] = from ->cap(el , rf);
30 from_delay [el *2+ rf] = from -> _delay [el][rf];
31 }
32

33 # pragma acc data copyin (to_float_star [: num_nodes *4], from_cap [:4] ,
from_delay [:4])

34 # pragma acc data copyout (from_ldelay [:4])
35 # pragma acc parallel loop
36 for (i = 0; i < 4; i++) {
37 float acc = 0.0;
38 for (j = 0; j < num_nodes ; j++) {
39 acc += to_float_star [i + j * 4];
40 }
41 from_ldelay [i] = acc + from_cap [i] * from_delay [i];
42 }
43

44 delete [] to_float_star ;
45

46 FOR_EACH_EL_RF (el , rf) {
47 from -> _ldelay [el][rf] = from_ldelay [el * 2 + rf];
48 }
49

50 } else {
51 /* ******* CPU EXECUTION - num_nodes <=1 ******* */
52 for (i = 0; i < num_nodes ; i++) {
53 for (j = 0; j < 4; j++) {
54 from -> _ldelay [i][j] += to_ldelay_acc [i][j];
55 }
56 }
57 FOR_EACH_EL_RF (el , rf) {
58 from -> _ldelay [el][rf] += from ->cap(el , rf) * from -> _delay [el][rf];
59 }
60

61 }
62 }

5.6 Compile GPU Code with Minimal Project Im-
pact

Adding GPU code to an existing project, particularly a large one, can present several
challenges for developers. GPU programming requires specific libraries to communicate
with the hardware and not all compilers support GPU acceleration. As a result, it may
be necessary to make some changes to the build system in order to integrate GPU code.

OpenTimer compilation is performed via the CMake build system, which uses the
CMakeLists text file to describe the build process. In this section, we present two methods
that we believe offer significant advantages for integrating C/C++ code with OpenACC
directives to be executed on NVIDIA GPUs. These methods are as follows:

1. Using GCC-11 compiler with NVPTX (Nvidia Parallel Thread Execution) extension,

99

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

we were able to compile the entire project without making any changes to the CMake
build system already in place;

2. Compiling the GPU specific code using the NVIDIA NVC++ compiler, creating a
static library, and then linking it with the rest of the project which is compiled using
a traditional CPU compiler.

We have successfully compiled the GPU-accelerated version of OpenTimer using both
methods, and provide a detailed explanation of each one in the corresponding subsections.
Finally, we compare the performance of the two methods to determine which one provides
the best results.

5.6.1 Using GCC Compiler with NVPTX Extension
To compile the accelerated version of OpenTimer, the first method we utilized relies on the
GCC compiler. GCC, or the GNU Compiler Collection, is the default compiler for most
Linux distributions and can be configured to target NVIDIA GPUs by using the NVPTX
(Nvidia Parallel Thread Execution) extension [49], enabling the offloading of code with
OpenACC support.

Using this method, it will be sufficient to use the compiler together with the appropriate
compile flag to enable code acceleration. This eliminates the need to edit the OpenTimer
CMakeLists file.

Since the GCC compiler does not come with built-in offload support, to simplify the
configuration process we utilized Spack [50], an open source package management system.
Once Spack is installed on the system, a version of the GCC compiler with the NVPTX
extension can be setup by running the command:

Listing 5.9 Install GCC compiler including the NVPTX extension using Spack.
1 $spack install gcc+nvptx

Spack automatically creates a module in its environment that includes the specified
version of the compiler. To load the environment in a terminal shell, simply run the
following command:

Listing 5.10 Load the Spack environment in a terminal shell.
1 $. /spack/share/spack/setup/setup -env.sh

This will also automatically add the path to the executable files in the module to
the PATH Linux variable. However, including the libraries used by the compiler to the
LD_LIBRARY_PATH variable of the system is also necessary and must be done manu-
ally.

The compiler setup process is complete. To compile the entire OpenTimer project and
accelerate all the loops that contain OpenACC directives, simply use the following flags
while compiling the code:

100

5.6 – Compile GPU Code with Minimal Project Impact

Listing 5.11 Compile OpenTimer accelerated using OpenACC directives using GCC with
NVPTX extension and flags.

1 $cmake ../ -DCMAKE_CXX_FLAGS ="-fopenacc -offload =nvptx -none -fopt -info -
optimized -omp"

where:

• -fopenacc: enables OpenACC directives;

• -offload=nvptx-none: specifies the target to enable code acceleration. In this case
"nvptx-none" is a GCC configuration that targets NVIDIA PTX;

• -fopt-info-optimized-omp: enables OpenACC diagnostics also showing the loop par-
allelism assigned.

5.6.2 Creating an Accelerated Static Library with NVIDIA Com-
piler

In OpenTimer, we utilized a second method to enable GPU acceleration, which allows for
the use of any compiler for the code that will run on the CPU, while utilizing the NVIDIA
NVC compiler exclusively for the files containing the OpenACC directives. This can be
accomplished by creating an accelerated static library that can be linked to the rest of the
code. However, there is a trade off, as small modifications will be required in the CMake
build system of the project.

To create the static library, the code file to be offloaded must be compiled with
NVC++, a compiler developed by NVIDIA specifically for their hardware, which is part of
the NVIDIA HPC SDK [48]. To achieve this, we created a "NetAccelerated" folder inside
the OpenTimer project with a specific CMakeLists file that creates the library based on
the "OpenTimer/ot/timer/net.cpp" file. Here are some of the steps involved:

• In the CMAKE_CXX_FLAGS the flag "-fPIC" is added to enable position indepen-
dent code to create the library;

• We used set(CMAKE_INSTALL_PREFIX $CMAKE_CURRENT_LIST_DIR/library)
to set the "./NetAccelerated/library" path as the directory for the install procedure;

• We used add_library(NetAccelerated STATIC $OT_NET) to build the static library
called NetAccelerated that can be linked to other targets;

• The target_include_directories directive specifies the destination folder to use when
compiling the library;

• Finally, install(TARGETS NetAccelerated DESTINATION
$CMAKE_INSTALL_PREFIX) compiles the static library when the "make" com-
mand is run.

101

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

Since the entire configuration is non trivial, the complete CMakeLists file can be found
on GitHub at [11].

Additionally, compared to the previous compilation method, NVC provides more de-
tailed information about the loop parallelism during the compilation phase. These infor-
mation are printed on the terminal screen and can be used to identify and improve the
code during development. For instance, Listing 5.12 displays the diagnostic output for
the accelerated loops in the "Rct::_update_ldelay" function.

Listing 5.12 Diagnostic output for the "Rct::_update_ldelay" loops showing the paral-
lelism assigned by the compiler.

1 ot:: Rct :: _update_ldelay (ot:: RctNode *, ot:: RctNode *):
2 193, Generating copyin (from_delay [:]) [if not already present]
3 Generating copyout (from_ldelay [:]) [if not already present]
4 Generating copyin (to_float_star [: num_nodes *4], from_cap [:],

from_float_star [: num_nodes *4]) [if not already present]
5 Generating NVIDIA GPU code
6 198, # pragma acc loop gang /* blockIdx .x */
7 200, # pragma acc loop vector (128) /* threadIdx .x */
8 Generating implicit reduction (+: acc)
9 200, Loop is parallelizable

To build the "NetAccelerated" static library on any machine, is necessary to change in
the file the paths for the variables "OPENACC_PATH", "OPENACC_INC", and "OPE-
NACC_LIB" with the ones for the configured HPC SDK, along with the path of the NVC
compiler with the one in use. Then, in the NetAccelerated folder, execute the commands
"make" and then "cmake ../" to build the static library.

To link the library containing the code to be offloaded to OpenTimer during compila-
tion, we needed to slight modify the project CMakeLists file. Firstly, we excluded from
the list of files in the project to be compiled the one we accelerated, "net.cpp". Next, we
added the CMake variables contained in Listing 5.13 to the file. This CMake code allows
us to save the path of the static library in a variable that will be added to the project using
the "add_library" function. Finally, we linked the library to the OpenTimer executable
using the "target_link_libraries" function.

Listing 5.13 Environment variables required in the CMakeLists file of OpenTimer to use
the accelerated static library.

1 set(ACCELERATED_NET ${ PROJECT_SOURCE_DIR }/ NetAccelerated /lib/
libNetAccelerated .a)

2 add_library (OpenTimer ${ OT_CPP })
3 target_link_libraries (OpenTimer PUBLIC ${ ACCELERATED_NET })

The complete version of OpenTimer GPU-accelerated can be found in [10].
Before building the project, simply update the paths for the "CUDA_PATH" and

"NVC_PATH" in the CMakeLists file to match the locations of the CUDA and compiler
libraries on the used machine. These libraries are required during compilation.

This compilation methods allows the flexibility to use any compiler for the section that
will be run on the CPU. However, we have chosen the standard version of GCC compiler.

102

5.7 – Execution Times Evaluation for the Various Approaches

The required flags for the GCC compiler have already been added to the CMakeLists
file, but they can be customized to use a different one. Then, when everything is ready,
navigate to the project directory in a terminal shell and run "make" followed by "cmake
../" to build the entire project.

5.7 Execution Times Evaluation for the Various Ap-
proaches

We now aim to evaluate the resulting execution times for the various OpenTimer imple-
mentations. We compared the standard CPU-based version with our accelerated version
that computes the load delay of the RC tree on the GPU. Then, we evaluated the the
two compilation approaches we introduced before, which enable GPU offloading for the
function.

To automate the analysis process, we relied on OpenTimer C++ APIs since the stan-
dard shell requires users to manually enter commands into the shell. We developed three
C++ applications using different OpenTimer versions as baseline to perform the measure-
ments:

1. A standard version that only runs on the CPU;

2. A version where the code to be offload has been compiled with NVC++ and the
remaining CPU code using the standard implementation of GCC;

3. A version where we compiled the entire project using GCC with NVPTX extension
to enable acceleration.

Each application takes the name of a benchmark, which represents a digital circuit,
as input. Then it performs the "report_timing" action after loading the early and late
libraries, the Verilog design, the parasitics, and constraints files for the module. We
embedded a timer in the application using the C++ "std::chrono::steady_clock" function
to collect the execution time for each run.

To measure the execution times, we selected 26 benchmarks included in OpenTimer,
each representing a different circuit design with varying component numbers. The mea-
surements has been repeated ten times for each benchmark using the three versions. We
then calculated the average values for these repetitions, which we present in Table 5.6.

The collected execution times demonstrate that performing a Depth-First Search (DFS)
traversal on a graph is not an efficient operation to execute on the GPU, despite the pre-
cautions taken during the development phase. This is due to the high the number of
nodes in the graph, each of which requires a data movement to the device, resulting in a
bottleneck. On average, the CPU execution time takes 36.28% of the time required by the
accelerated code using the NVC compiler in conjunction with the standard GCC compiler
and the 21.80% of the code compiled using GCC with NVPTX extension.

Furthermore, we evaluated also the execution times for a CPU-version of OpenTimer
that implements batching and compared it to the standard version. We found that it takes

103

Exploring GPU Offload Opportunities in OpenTimer: A Case Study

4.98% more time to execute, even if our case is disadvantageous since the high number
of nodes. This demonstrates that batching, which typically requires the allocation of new
data structures and filling them, is not an onerous operation and that the time required
can easily be recovered by executing the function on the GPU, if beneficial.

Finally, to compare the effectiveness of the two methods of compiling the code to
be accelerated, we utilized version 11.3.0 of GCC, 11.8 of NVIDIA CUDA, and 22.9 of
NVIDIA NVC compiler for both of the implementations. Our analysis, presented in Table
5.6, revealed that out of 26 benchmarks, 23 favored compiling the code with OpenACC
directives using NVC to create a static library, followed by compiling the remaining CPU
code using a standard version of GCC. This approach yielded an average execution time
that was 63% less compared to using the GCC compiler with NVPTX support. However,
this method requires a more invasive compilation process, including making changes to the
CMakeLists file, compared to using GCC with NVPTX support, which enables OpenACC
directive to work on GPU almost out-of-the-box.

104

5.7 – Execution Times Evaluation for the Various Approaches

Table 5.6: OpenTimer execution times for CPU standard version and for GPU imple-
mentations, using the two different compilation methods to accelerate the code.

Benchmark CPU Exe-
cution [ms]

NVC +
GCC [ms]

GCC with
NVPTX
ext. [ms]

Faster Accelerated Solution

c3_slack 44.604 46.534 45.821 GCC with NVPTX ext.
c17 45.511 81.342 111.156 NVC + GCC
s27 46.644 99.724 208.550 NVC + GCC
s400 49.293 293.165 437.650 NVC + GCC
s526 51.779 382.150 478.524 NVC + GCC
simple 52.055 104.909 142.085 NVC + GCC
s386 59.115 328.495 484.028 NVC + GCC
s349 64.661 270.970 466.666 NVC + GCC
s344 66.150 273.805 439.586 NVC + GCC
s1494 78.094 947.867 849.674 GCC with NVPTX ext.
s510 78.290 451.695 602.622 NVC + GCC
s1196 86.533 815.462 810.046 GCC with NVPTX ext.
c432 93.353 137.320 472.217 NVC + GCC
c1908 109.050 252.002 467.406 NVC + GCC
c499 123.803 230.869 522.193 NVC + GCC
c1355 129.847 221.181 466.621 NVC + GCC
c3540 136.548 394.631 867.011 NVC + GCC
c6288 148.883 530.673 1152.849 NVC + GCC
c880 160.005 268.552 601.946 NVC + GCC
c2670 320.963 501.975 854.164 NVC + GCC
c5315 429.512 763.909 1350.638 NVC + GCC
c7552 450.275 803.307 1520.935 NVC + GCC
ac97_ctrl 459.577 6072.552 10779.579 NVC + GCC
aes_core 1030.752 7542.972 10597.931 NVC + GCC
des_perf 3412.909 24867.922 48808.327 NVC + GCC
vga_lcd 4415.907 79179.312 115491.217 NVC + GCC

105

106

Chapter 6

Results

The study of Arithmetic Intensity is a first crucial parameter that can help identify func-
tions that are suitable for offloading on a GPU, even without prior knowledge of the code
base. To automate the data collection process and avoid manual computations, we ex-
plored three different methods that do not require a GPU to be present on the machine.
Each of these methods showed its own set of benefits and drawbacks, which we evaluated
by comparing their results to a manual evaluation of each benchmark in the KernelGen
Test suite.

The first method we tested involved using SDE to compute the floating-point opera-
tions (FLOPs), together with Intel VTune to evaluate the memory accesses of a function.
Both tools required the code of interest to be marked manually to not measure the entire
execution, and they were unable to differentiate between multiple sections for evaluation.
Moreover, utilizing VTune requires an Intel CPU and the installation of Intel proprietary
drivers, which require root access to the environment where the analysis is performed.

We found that SDE was both fast and precise in evaluating the FLOPs performed by
every function. However VTune, in our testing of 12 benchmarks in the KernelGen Test
Suite with small input dimensions, was unable to measure the memory accesses for 8 of
them because the function execution speed was faster than the tool sampling interval of
0.1 ms. For the other input dimensions we tested it was able to evaluate the memory
accesses without issue.

Unfortunately, the memory accesses evaluated by VTune are not always indicative of
the data movement required for offloading computations to the GPU. To better explain
why, we can consider the example of performing computation on a matrix data structure,
which is often used in the KernelGen Test Suite. If we want to offload this computation
to the GPU, we expect the data movement from the host to the device to be exactly the
size of the matrix in bytes. However, VTune memory counters used to evaluate memory
movements are based on the Integrated Memory Controller (IMC) counters, positioned as
shown in Figure 6.1 between the main memory and the L3 cache. As a result, when the
values are moved to the CPU core for computation, the total number of bytes accessed
can be higher than the size of the matrix itself.

This is because of the cache miss phenomenon. When the CPU performs the computa-
tion, it stores some chunks of data in the cache, which is faster than reading directly from

107

Results

Figure 6.1: The location of the integrated memory controller counters, indicated by a
magnifying glass, used for the memory analysis with VTune and LIKWID.

the DRAM. However, if the matrix is larger than the size of the cache or if the CPU can’t
predict correctly which data it will need next, a cache miss occurs, and the CPU must
read another chunk of data from the DRAM. Furthermore, since the matrix elements are
not always accessed in a contiguous manner, it can lead to frequent cache misses, as the
cache is designed to work efficiently with contiguous blocks of memory. All these factors
can cause the number of memory reads from the DRAM to be higher than the size of the
matrix itself. This evaluation method is therefore poorly suited for accurately evaluating
Arithmetic Intensity in the context of GPU offloading.

Our study included a second method based on RRZE LIKWID. This tool also requires
the code to be instrumented to limit the amount of data collected, however it is possible
to use multiple markers in the code, each with its identifier, to perform different mea-
surements simultaneously. LIKWID is lightweight and open source tool, and its analysis
adds almost no overhead to the execution time. Even it has been shown to be highly
accurate in estimating the number of FLOPs performed by a section of code, it evaluates
memory accesses in the same way as Intel VTune, unfortunately not oriented to GPU of-
floading. Furthermore, results obtained using this tool indicate that multiple repetitions
of the memory accesses evaluation on the same function have a higher variance compared
to other methods used.

The third and last method we tested to evaluate the Arithmetic Intensity of a function
uses Intel Advisor. Unlike the other tools we introduced before that profile applications, it
performs a modeling analysis which has been shown to be accurate in measuring FLOPs
and evaluating memory accesses to obtain AI. In particular, Advisor is designed to model
memory accesses oriented towards data offloading to GPU, taking into consideration also
data reuse between accelerated loops. Using Advisor does not require special permissions
on the machine used, and the variance between repeated measures was always zero.

Advisor analysis is capable of automatically detecting functions that could benefit

108

Results

Figure 6.2: Comparison of the execution time for Arithmetic Intensity analysis
across the different tools for the KernelGen benchmarks for the largest input dimension tested.

div
erg

en
ce

ga
meofl

ife

ga
uss

blu
r

gra
die

nt

lap
gsr

b

lap
lac

ian

matv
ec

tri
cu

bic ux
x1

vec
ad

d

wave
13

pt

whis
pe

rin
g

0

500

1,000

Benchmark

Ex
ec

ut
io

n
T

im
e

[s]

Advisor
VTune+SDE

LIKWID

from offloading, which means that there is no need to use markers. However, its analysis
is much more time-consuming, especially when modeling the data transfer with high
precision. In Figure 6.2, we provide a comparison of the analysis required time for the
three evaluation methods, showing only the results for the largest input dimension with
the tested benchmarks. On average, VTune required 36% of the time required by Advisor,
while LIKIWID required only 5%.

To validate our analysis, we compared the obtained results with the Arithmetic In-
tensity calculated through the CUDA implementation of the benchmarks executed on the
GPU. In Figure 6.3, we present the results of the AI evaluation for three representative
benchmarks, using the CUDA implementation as a golden reference. Overall, the com-
parison matched our expectations and validated our findings. Notably, Advisor emerged
as the most suitable method oriented towards GPU offloading for assessing the AI of
functions. The memory accesses modelled by the tool could also help developer identi-
fying opportunities to optimize data movement between the host and device, even after
the GPU implementation has already been written, thus addressing any potential perfor-
mance issues.

While arithmetic intensity analysis is a useful metric to identify GPU offload opportu-
nities, it cannot be the only parameter considered, as it does not account for dependencies
between computations, memory bandwidth limitations, or conditional statements. To im-
prove our analysis we modeled the speed up on GPU versus the CPU counterpart, using
Intel Advisor Offload Modeling analysis and the Static Time Analysis (STA) tool Open-
Timer as a test bench.

To evaluate the potential advantage, the tool compares the execution time of each
function on the machine being used with the estimated time on a modeled GPU. This

109

Results

Figure 6.3: Three example results of AI evaluation obtained using the tools compared with
CUDA implementation of the Kernelgen Test Suite and input dimensions 512 512 512

0.2

0.4

DivergenceA
I[

FL
O

Ps
/B

yt
es

]

2
4
6
8

·10−2

Vecadd

CUDA implementation Intel VTune+SDE RRZE LIKWID Intel Advisor

0.1

0.2

0.3

0.4

Gradient

comparison is limited to GPUs produced by Intel, although configuration tuning is pos-
sible. If the speedup achieved is greater than 1, then the offloading is recommended.
However, the results obtained are specific to the hardware configurations used in the
evaluation, and may not be universally applicable.

The top five suggestions of functions that can be accelerated on GPU, automatically
identified by Advisor on a design for which it was required to report the critical paths,
were found to be not correct. Two functions were part of a library external to the project,
one involved multiple complex C++ data structures not worth to menage on GPU and the
last two had a data dependency which makes not possible to parallelize the loop taking
advantage of the acceleration.

However, by sorting the analysis results by increasing AI, we were able to identify loops
that could be accelerated. Among five with the highest AI values identified, four were
part of the RC propagation phase in the circuit. We successfully ported the function with
highest AI value from OpenTimer, which is part of the RC delay computation, to GPU
with minimal code changes using OpenACC directives. Their use proved to be highly
effective, enabling even non-expert developers to implement GPU code with ease.

The collected execution times demonstrated that performing a Depth-First Search
(DFS) traversal on a graph, which is part of the offloaded function, is not an efficient
operation to execute on the GPU due to the high number of data movements required.
On average, the CPU version took 36.28% of the time required by the best solution of
accelerated code. However we were able to improve the efficiency of data transfers to the
GPU introducing the batching and vectorization techniques. Batching had a minimal im-
pact on the execution time, making it a crucial resource for leveraging the full capabilities
of the GPU. Moreover, the evaluation of AI of the loops during the developing phase,
helped us to evaluate when it was more convenient to offload or to keep the execution on
the CPU below a certain AI threshold.

Finally, we tested two methods for compiling the code to accelerate, and found that
using the NVIDIA NVC compiler to create an accelerated static library, followed by com-
piling the remaining CPU code using a standard version of GCC, yielded better execution
times on 23 out of 26 benchmarks, with an average execution time that was 63% less

110

Results

compared to using the GCC compiler with NVPTX support. Figure 6.4 shows the re-
sults for a sample of the tested modules. However, creating the static library required a
more invasive compilation approach, including changes to the CMakeLists file, compared
to compile the entire project with GCC with NVPTX support, which enables OpenACC
directive to work on GPU almost out-of-the-box.

Figure 6.4: Comparison of the execution times for the two compilation methods to accelerate
OpenTimer code.

s27
sim

ple c43
2

c13
55 c49

9
c19

08 c88
0

s34
9

s34
4

s40
0

s38
6

s52
6

0

200

400

600

Module

Ex
ec

ut
io

n
T

im
e

[m
s] NVC+GCC

GCC with NVPTX ext.

111

112

Chapter 7

Conclusions

GPGPUs are a valid answer to the increasing demand for more computing power to
effectively tackle tasks such as scientific simulation and machine learning. Their high level
of parallelism and compute performance make it possible to process large amounts of data
in parallel, which is something that traditional CPUs are not well-suited for. However,
writing code that runs on GPUs can be challenging for several reasons, including that
GPU vendors have different programming model and libraries, which can take time to
learn, and it is not easy to identify functions that are worth offloading without prior
knowledge or assumption, especially in large code-bases.

One way to assess GPU offload opportunities is to study the Arithmetic Intensity
(AI) value of functions, and being able to automatically compute it can help developers
expedite the evaluation process. We studied three methods for automatically evaluating
AI values, including using respectively Intel VTune with SDE, RRZE LIKWID, and Intel
Advisor. Among these methods, Intel Advisor stood out for its ability to provide an
evaluation of AI that was specifically oriented towards data offloading.

Given the limits on the AI evaluation as a standalone metric for GPU offload potential,
we improved our analysis including the modeling of the speed up on GPU versus the CPU
counterpart, providing further hints thanks to the Intel Advisor Offload Modeling feature,
using as end-to-end approach evaluation the Static Time Analysis (STA) tool OpenTimer,
chosen because it operates in a similar area as the Synopsys team where the internship
was carried out.

The results showed that Advisor modeling analysis had difficulties analyzing data de-
pendencies or complex data structures in the functions it suggested for offloading. How-
ever, by sorting the analysis results by AI, we were able to select and port the function
with the highest measured value to GPU with minimal code changes using OpenACC
directives.

Between the top five functions with highest AI, estimated by Intel Advisor in Open-
Timer, four were part of the RC delay computation stage. A study by Guo et al. [13]
showed that this stage, together with levelization and timing propagation tasks, had the
highest offload opportunities, with the potential to bring up to 3.69x speedup on the ex-
ecution time of OpenTimer. However computing a timing graph, which is a fundamental
operation in STA, is an extremely challenging task to accelerate since it involves irregular

113

Conclusions

memory access, dynamic data structures, and recursion. Therefore, taking advantage of
GPU parallelism in their study required the development of GPU-efficient data structures
and substantial algorithmic changes.

This shows that AI is an important first step in identifying functions that could ben-
efit from GPU parallelism. However, AI alone is not enough information to completely
estimate possible advantages of GPU execution, because the evaluation of the function
is based on the CPU implementation, which may not have considered the possibility of
offloading or developing techniques to increase performance, such as batching or vector-
ization, to fully realize the benefits of GPU execution.

By using OpenACC directives, we were able to write code that can be executed on
the GPU, regardless of the brand, with minimal modifications on the source code. We
illustrated two ways to compile the project with accelerated code, both of which had a
low impact on the project build chain. This makes it easy for developers to port their
applications to the GPU, even for those who are new to this field.

This was also confirmed in the "Application Experiences on a GPU-Accelerated Arm-
based HPC Testbed" research [8], where ten teams from several universities collaborated
on a project to port and benchmark various High Performance Computing (HPC) applica-
tions to GPU in Arm-based HPC platforms, also using OpenACC directives. The results
showed that the porting process was straightforward for every application, requiring only
minor modifications to the build system to run the applications on the GPU.

The technologies are proved to be mature and reliable, and future advancements such
as a more tightly integrated memory between CPU and GPU will further enhance their
advantages, overcoming the data transfer bottleneck.

114

Bibliography

[1] AMD. «Introducing DNA Architecture». In: AMD Docs (2019). url: https://www.
amd.com/system/files/documents/rdna-whitepaper.pdf.

[2] Cedric Andreolli, Zakhar Matveev, and Vladimir Tsymbal. «Modeling Heteroge-
neous Computing Performance with Offload Advisor». In: Proceedings of the Inter-
national Workshop on OpenCL. ACM, Apr. 2020. doi: 10.1145/3388333.3388665.

[3] Toru Baji. «Evolution of the GPU Device widely used in AI and Massive Parallel
Processing». In: IEEE 2nd Electron Devices Technology and Manufacturing Confer-
ence (EDTM) (2018). doi: 10.1109/edtm.2018.8421507.

[4] J Bhasker and Rakesh Chadha. Static timing analysis for nanometer designs. 2009th ed.
Springer, Apr. 2009. isbn: 9780387938202.

[5] Matthias Christen, Olaf Schenk, and Yifeng Cui. «Patus for convenient high-performance
stencils: Evaluation in earthquake simulations». In: 2012 International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE, Nov.
2012. doi: 10.1109/sc.2012.95.

[6] Matthias M. Christen. PATUS Quickstart. 2012. url: https : / / github . com /
matthias-christen/patus/blob/master/doc/quickstart/quickstart.pdf.

[7] Lauro B. Costa, Samer Al-Kiswany, and Matei Ripeanu. «GPU support for batch
oriented workloads». In: 2009 IEEE 28th International Performance Computing and
Communications Conference. IEEE, Dec. 2009. doi: 10.1109/pccc.2009.5403809.

[8] Wael Elwasif et al. Application Experiences on a GPU-Accelerated Arm-based HPC
Testbed. 2022. doi: 10.48550/ARXIV.2209.09731.

[9] Toru Fujita et al. «Efficient GPU Implementations for the Conway’s Game of Life».
In: 2015 Third International Symposium on Computing and Networking (CANDAR).
IEEE, Dec. 2015. doi: 10.1109/candar.2015.11.

[10] Jacopo Pati GitHub. Case Study: OpenTimer GPU Accelerated Using OpenACC
directives. Mar. 2023. url: https://github.com/include-jacopo/OpenTimer-
CaseStudy.

[11] Jacopo Pati GitHub. CMakeLists to Create a Static Library for OpenTimer. Mar.
2023. url: https://github.com/include-jacopo/OpenTimer-CaseStudy/blob/
main/NetAccelerated/CMakeLists.txt.

115

https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://doi.org/10.1145/3388333.3388665
https://doi.org/10.1109/edtm.2018.8421507
https://doi.org/10.1109/sc.2012.95
https://github.com/matthias-christen/patus/blob/master/doc/quickstart/quickstart.pdf
https://github.com/matthias-christen/patus/blob/master/doc/quickstart/quickstart.pdf
https://doi.org/10.1109/pccc.2009.5403809
https://doi.org/10.48550/ARXIV.2209.09731
https://doi.org/10.1109/candar.2015.11
https://github.com/include-jacopo/OpenTimer-CaseStudy
https://github.com/include-jacopo/OpenTimer-CaseStudy
https://github.com/include-jacopo/OpenTimer-CaseStudy/blob/main/NetAccelerated/CMakeLists.txt
https://github.com/include-jacopo/OpenTimer-CaseStudy/blob/main/NetAccelerated/CMakeLists.txt

BIBLIOGRAPHY

[12] Thomas Gruber. LIKWID Perfctr Wiki. Nov. 2022. url: https://github.com/
RRZE-HPC/likwid/wiki/likwid-perfctr.

[13] Zizheng Guo, Tsung-Wei Huang, and Yibo Lin. «GPU-accelerated static timing
analysis». In: Proceedings of the 39th International Conference on Computer-Aided
Design. ACM, Nov. 2020. doi: 10.1145/3400302.3415631.

[14] John L. Hennessy and David A. Patterson. Computer Architecture, Sixth Edition: A
Quantitative Approach. 6th. Morgan Kaufmann Publishers Inc., 2017. isbn: 0128119055.

[15] Tsung-Wei Huang and Martin D. F. Wong. «OpenTimer: A high-performance timing
analysis tool». In: 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). 2015, pp. 895–902. doi: 10.1109/ICCAD.2015.7372666.

[16] Tsung-Wei Huang et al. «OpenTimer v2: A New Parallel Incremental Timing Analy-
sis Engine». In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 40.4 (Apr. 2021), pp. 776–789. doi: 10.1109/tcad.2020.3007319.

[17] Intel. Calculating “FLOP” using Intel Software Development Emulator (Intel SDE).
Mar. 2015. url: https://www.intel.com/content/www/us/en/developer/
articles/technical/calculating-flop-using-intel-software-development-
emulator-intel-sde.html.

[18] Intel. Intel Advisor. Mar. 2023. url: https://www.intel.com/content/www/us/
en/developer/tools/oneapi/advisor.html.

[19] Intel. «Intel Advisor User Guide». In: Intel Documentation (Feb. 2023). url: https:
//www.intel.com/content/dam/develop/external/us/en/documents/advisor-
user-guide.pdf.

[20] Intel. Intel Software Development Emulator (Intel SDE). Oct. 2022. url: https:
//www.intel.com/content/www/us/en/developer/articles/tool/software-
development-emulator.html.

[21] Intel. Intel VTune Profiler. Feb. 2023. url: https://www.intel.com/content/
www/us/en/developer/tools/oneapi/vtune-profiler.html.

[22] Intel. «Intel VTune Profiler User Guide». In: Intel Documentation (Feb. 2023). url:
https://www.intel.com/content/dam/develop/external/us/en/documents/
vtune-profiler-user-guide.pdf.

[23] Intel. Intel VTune Supported Architectures and Terminology. Feb. 2023. url: https:
//www.intel.com/content/www/us/en/developer/articles/system-requirements/
vtune-profiler-system-requirements.html.

[24] Intel. ITT APIs Basic Usage and Configuration. Dec. 2022. url: https://www.
intel.com/content/www/us/en/develop/documentation/vtune- help/top/
api-support/instrumentation-and-tracing-technology-apis/basic-usage-
and-configuration/configuring-your-build-system.html.

[25] Intel. ITT APIs Repository. Feb. 2023. url: https://github.com/intel/ittapi.

116

https://github.com/RRZE-HPC/likwid/wiki/likwid-perfctr
https://github.com/RRZE-HPC/likwid/wiki/likwid-perfctr
https://doi.org/10.1145/3400302.3415631
https://doi.org/10.1109/ICCAD.2015.7372666
https://doi.org/10.1109/tcad.2020.3007319
https://www.intel.com/content/www/us/en/developer/articles/technical/calculating-flop-using-intel-software-development-emulator-intel-sde.html
https://www.intel.com/content/www/us/en/developer/articles/technical/calculating-flop-using-intel-software-development-emulator-intel-sde.html
https://www.intel.com/content/www/us/en/developer/articles/technical/calculating-flop-using-intel-software-development-emulator-intel-sde.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-user-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-user-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/advisor-user-guide.pdf
https://www.intel.com/content/www/us/en/developer/articles/tool/software-development-emulator.html
https://www.intel.com/content/www/us/en/developer/articles/tool/software-development-emulator.html
https://www.intel.com/content/www/us/en/developer/articles/tool/software-development-emulator.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-user-guide.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/vtune-profiler-user-guide.pdf
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/vtune-profiler-system-requirements.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/vtune-profiler-system-requirements.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/vtune-profiler-system-requirements.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/api-support/instrumentation-and-tracing-technology-apis/basic-usage-and-configuration/configuring-your-build-system.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/api-support/instrumentation-and-tracing-technology-apis/basic-usage-and-configuration/configuring-your-build-system.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/api-support/instrumentation-and-tracing-technology-apis/basic-usage-and-configuration/configuring-your-build-system.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/api-support/instrumentation-and-tracing-technology-apis/basic-usage-and-configuration/configuring-your-build-system.html
https://github.com/intel/ittapi

BIBLIOGRAPHY

[26] Intel. Monitoring Integrated Memory Controller Requests in Intel Core processors.
Feb. 2016. url: https://www.intel.com/content/www/us/en/developer/
articles/technical/monitoring-integrated-memory-controller-requests-
in-the-2nd-3rd-and-4th-generation-intel.html.

[27] F. Lekien and J. Marsden. «Tricubic interpolation in three dimensions». In: Inter-
national Journal for Numerical Methods in Engineering 63.3 (2005), pp. 455–471.
doi: 10.1002/nme.1296.

[28] Antonino Calà Lesina et al. «FDTD Method and HPC for Large-Scale Computa-
tional Nanophotonics». In: NATO Science for Peace and Security Series B: Physics
and Biophysics. Springer Netherlands, 2017, pp. 435–439. doi: 10.1007/978-94-
024-0850-8_25.

[29] Dmitry Mikushin. KernelGen Stencil Performance Test Suite for CPU and GPU
compilers. Feb. 2022. url: https://github.com/dmikushin/kernelgen-perf-
tests.

[30] Dmitry Mikushin et al. «KernelGen – The Design and Implementation of a Next
Generation Compiler Platform for Accelerating Numerical Models on GPUs». In:
Proceedings of the 2014 IEEE International Parallel & Distributed Processing Sym-
posium Workshops. IEEE Computer Society, 2014, pp. 1011–1020. doi: 10.1109/
IPDPSW.2014.115.

[31] John Nickolls and David Kirk. Appendix C: Graphics and Computing GPUs. 5th.
Morgan Kaufmann Publishers Inc., 2013. isbn: 9780124077263.

[32] NVIDIA. Achived FLOPs. Mar. 2023. url: https://docs.nvidia.com/nsight-
visual-studio-edition/4.6/Content/Analysis/Report/CudaExperiments/
KernelLevel/AchievedFlops.htm.

[33] NVIDIA. CUDA Toolkit. Mar. 2023. url: https://developer.nvidia.com/cuda-
toolkit.

[34] NVIDIA. «GPU Performance Background». In: NVIDIA Docs (2022). url: https:
/ / docs . nvidia . com / deeplearning / performance / dl - performance - gpu -
background/index.html.

[35] NVIDIA. «NVIDIA A100 Tensor Core GPU Architecture». In: NVIDIA Docs (2020).
url: https://nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf.

[36] NVIDIA. NVIDIA Nsight Compute. Mar. 2023. url: https://developer.nvidia.
com/nsight-compute.

[37] NVIDIA. NVIDIA Nsight Systems. Mar. 2023. url: https://developer.nvidia.
com/nsight-systems.

[38] NVIDIA. NVIDIA Visual Profiler. Mar. 2023. url: https://developer.nvidia.
com/nvidia-visual-profiler.

[39] Georg Ofenbeck et al. «Applying the Roofline Model». In: IEEE, 2014. doi: 10.
1109/ispass.2014.6844463.

117

https://www.intel.com/content/www/us/en/developer/articles/technical/monitoring-integrated-memory-controller-requests-in-the-2nd-3rd-and-4th-generation-intel.html
https://www.intel.com/content/www/us/en/developer/articles/technical/monitoring-integrated-memory-controller-requests-in-the-2nd-3rd-and-4th-generation-intel.html
https://www.intel.com/content/www/us/en/developer/articles/technical/monitoring-integrated-memory-controller-requests-in-the-2nd-3rd-and-4th-generation-intel.html
https://doi.org/10.1002/nme.1296
https://doi.org/10.1007/978-94-024-0850-8_25
https://doi.org/10.1007/978-94-024-0850-8_25
https://github.com/dmikushin/kernelgen-perf-tests
https://github.com/dmikushin/kernelgen-perf-tests
https://doi.org/10.1109/IPDPSW.2014.115
https://doi.org/10.1109/IPDPSW.2014.115
https://docs.nvidia.com/nsight-visual-studio-edition/4.6/Content/Analysis/Report/CudaExperiments/KernelLevel/AchievedFlops.htm
https://docs.nvidia.com/nsight-visual-studio-edition/4.6/Content/Analysis/Report/CudaExperiments/KernelLevel/AchievedFlops.htm
https://docs.nvidia.com/nsight-visual-studio-edition/4.6/Content/Analysis/Report/CudaExperiments/KernelLevel/AchievedFlops.htm
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nvidia-visual-profiler
https://developer.nvidia.com/nvidia-visual-profiler
https://doi.org/10.1109/ispass.2014.6844463
https://doi.org/10.1109/ispass.2014.6844463

BIBLIOGRAPHY

[40] OpenACC. OpenTimer. More science, Less Programming. Mar. 2023. url: https:
//www.openacc.org.

[41] openacc-standard.org. «OpenACC Programming and Best Practices Guide». In:
OpenACC Documentation (May 2021). url: https://www.openacc.org/sites/
default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf.

[42] J.D. Owens et al. «GPU Computing». In: Proceedings of the IEEE 96.5 (2008). doi:
10.1109/JPROC.2008.917757.

[43] GitHub Repository. OpenTimer - High-Performance Timing Analysis Tool. Mar.
2023. url: https://github.com/OpenTimer/OpenTimer.

[44] RRZE. LIKWID "MEM_SP" Performance Group for Skylake Architecture. Apr.
2021. url: https://github.com/RRZE- HPC/likwid/blob/master/groups/
skylake/MEM_SP.txt.

[45] RRZE. LIKWID Repository. Feb. 2023. url: https://github.com/RRZE-HPC/
likwid.

[46] Tolga Soyata. GPU Parallel Program Development Using CUDA. 1st. Chapman and
Hall/CRC, 2018. doi: 10.1201/9781315368290.

[47] J. Treibig, G. Hager, and G. Wellein. «LIKWID: A lightweight performance-oriented
tool suite for x86 multicore environments». In: Proceedings of PSTI2010, the First
International Workshop on Parallel Software Tools and Tool Infrastructures (2010).
doi: 10.1109/ICPPW.2010.38.

[48] NVIDIA Website. NVIDIA HPC SDK. Mar. 2023. url: https : / / developer .
nvidia.com/hpc-sdk.

[49] NVIDIA Website. NVIDIA Parallel Thread Execution. Mar. 2023. url: https :
//docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[50] Spack Website. Spack - A Flexible Package Manager. Mar. 2023. url: https://
spack.io.

[51] Charlene Yang. «Hierarchical Roofline Analysis: How to Collect Data using Per-
formance Tools on Intel CPUs and NVIDIA GPUs». In: CoRR (Oct. 2020). doi:
10.48550/ARXIV.2009.02449.

118

https://www.openacc.org
https://www.openacc.org
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://www.openacc.org/sites/default/files/inline-files/OpenACC_Programming_Guide_0_0.pdf
https://doi.org/10.1109/JPROC.2008.917757
https://github.com/OpenTimer/OpenTimer
https://github.com/RRZE-HPC/likwid/blob/master/groups/skylake/MEM_SP.txt
https://github.com/RRZE-HPC/likwid/blob/master/groups/skylake/MEM_SP.txt
https://github.com/RRZE-HPC/likwid
https://github.com/RRZE-HPC/likwid
https://doi.org/10.1201/9781315368290
https://doi.org/10.1109/ICPPW.2010.38
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://spack.io
https://spack.io
https://doi.org/10.48550/ARXIV.2009.02449

	List of Tables
	List of Figures
	Introduction
	Background
	GPU Architecture Fundamentals
	Comparison with the CPU model

	GPGPUs Programming Challenges
	Arithmetic Intensity as Metric
	Roofline Visual Model

	Tools and Methods for GPU Offload Assessment
	Intel VTune with SDE
	VTune - Introduction and Features Overview
	Evaluating Memory Accesses with VTune
	Use SDE to Measure Floating-Point Operations

	RRZE LIKWID
	Measuring Arithmetic Intensity with LIKWID

	Intel Advisor
	Modelling GPU Offload Opportunities
	Measuring Arithmetic Intensity with Advisor

	Control and Limit Data Collection
	Collection Control APIs for Intel Products
	Marker APIs for LIKWID

	Experimental Analysis for Arithmetic Intensity Evaluation
	Environment and Tools Setup
	VTune and SDE Configuration
	LIKWID Configuration
	Advisor Configuration

	Evaluation of Arithmetic Intensity
	divergence Benchmark: Divergence Operator
	gameoflife Benchmark: Conway's Game Of Life
	gaussblur Benchmark: Gaussian Blur
	gradient Benchmark: Gradient Operator
	laplacian and lapgsrb Benchmarks: Laplace Operator
	matvec Benchmark: Matrix-vector Multiplication
	tricubic Benchmark: Tricubic Interpolation
	uxx1 Benchmark: Approximation of Second Derivative
	vecadd Benchmark: Sum between Matrices
	wave13pt Benchmark: 3D Wave Equation Solver
	whispering Benchmark: 2D Nanophotonics Simulation

	Validation through GPU Execution
	How to Measure Arithmetic Intensity of a GPU Kernel
	Comparing Tool Results using GPU-based Analysis

	Exploring GPU Offload Opportunities in OpenTimer: A Case Study
	Introduction to Static Time Analysis (STA) and OpenTimer
	Identification of Offload Opportunities with Intel Advisor
	Loop at star.hpp:39
	Loop at verilog.cpp:59
	Loop at parser-spef.hpp:1186
	Loop at tokenizer.cpp:149
	Loop at hashtable_policy.h:2120

	Sorting Analysis Results by Arithmetic Intensity
	Loop at net.cpp:160

	Porting OpenTimer RC Delay Function to GPU
	Exploring OpenACC for Heterogeneous Computing
	Accelerating OpenTimer with OpenACC Directives

	Compile GPU Code with Minimal Project Impact
	Using GCC Compiler with NVPTX Extension
	Creating an Accelerated Static Library with NVIDIA Compiler

	Execution Times Evaluation for the Various Approaches

	Results
	Conclusions
	Bibliography

