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Summary

In recent decades, a large amount of studies have been focusing on target tracking
using radar measurements. Radar systems typically measure the position of the
target in polar coordinates, but in many applications it is of interest to obtain the
target Cartesian coordinates. However, due to measurement noise, the conversion
from polar to Cartesian coordinates using the classical trigonometric formulas
may lead to inaccurate results. This problem can be mitigated by using an
observer/filter, which can attenuate the noise effects and provide a more accurate
estimate of the target Cartesian coordinates. Designing a state observer, the main
two following phases have to be expected: first identifying a system model from
an experimental data set, and then designing an observer based on the identified
model. This two-step approach might be problematic due to some nonlinearities in
the identified model. So, a one-step approach is preferable, since the data set is
used to direct design the filter and not for identification of the model. The aim
of this thesis is to design both the two-step and the one-step procedures in order
to highlight the differences between the two and to put an accent to the solution
that gets better performances, based on simulations. Regarding the first method,
an Extended Kalman Filter (EKF) has been designed in Simulink, while in the
one-step procedure a Direct Virtual Sensor (DVS) is engineered using Simulink, the
System Identification Toolbox and neural networks. Through the simulations, the
results got in terms of root-mean-square error, do give evidence that the proposed
one-step procedure may be better than the two-faces described above.
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Chapter 1

Introduction

Target tracking estimation is employed in many application areas. The estimation
of position and velocity is performed by a huge number of radar applications such as
inertial navigation systems, surveillance systems, remote sensing and environmental
monitoring systems, global positioning systems, differential positioning systems,
air traffic control, and satellite orbit determination. Using emitted electromagnetic
radiation and analyzing the echo coming from reflecting objects, the targets, a
radar operates. Knowledge about the target may be gleaned from the echo signal’s
characteristics. The duration needed for the radiation to reach the target and
back provides the range or distance from the target. A directional antenna (e.g.
with limited bandwidth) is used to identify the arrival angle of the echo signal
to determine its angular location. A radar can determine the target’s track, or
trajectory, and can estimate its future location if it is moving. Although a sta-
tionary echo signal could be several orders of magnitude larger than the moving
target, a radar can differentiate between desired moving targets (like aircraft) and
unwanted stationary targets (like land and sea clutter) because of the shift in
frequency of the obtained echo signal caused by the Doppler effect induced by a
moving target. A radar can determine details about the size and shape of the
target, given a sufficiently high resolution. Unlike a large amount of optical and
infrared sensors, a radar is an active instrument that includes its transmitter, and it
does not rely on environmental radiation. The main benefit of the radar over other
sensors is its ability to accurately state a target’s range throughout all weather
conditions and regardless its distance from reference. Range, angle, or both may be
employed to evaluate the accuracy of the radar: large bandwidth is recommended
for range resolution and angle resolution involves employing large antennas. A
huge chuck of radar application development is supported by military and defense
applications. Nevertheless, radar has found large use also in civil applications,
including safe navigation of ships, planes and spacecraft, environmental remote
sensing, self-driving vehicles, and weather monitoring. Due to the exponential
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Introduction

growth of this radar applications usage, the technical improvements have been
challenging plenty of engineers during the last years [1][2]. As previously stated,
the measurements of a target position in a radar system are addressed in polar
coordinates (its range and azimuth), but the target dynamics are modeled in
Cartesian coordinates. The transformation from spherical coordinates to Cartesian
ones may generate bias in measurements error. To figure out this problem, a
tracking filter may be designed. A large number of filters are used in literature.
The Extended Kalman Filter (EKF), which is the expansion of the Kalman Filter
(KF), is used to deal with nonlinear functions. The EKF deals with Taylor series
expansion to linearize nonlinear states or/and measurement equations. The EKF is
unable to claim the KF’s optimal solution for the linear-Gaussian system, because
of the approximation. However, the EKF is the most used filter because it is easy
to set up and simple to use in many samples, including radar and sonar tracking
applications. The Unscented Kalman Filter (UKF) estimates the variable’s distri-
bution using a sampling technique that gathers a set of samples nearly the mean
of the estimation variables. The aligned distributions are faithfully depicted by
any nonlinear transformations, such as the measurements and state dynamics. The
mean measurement covariance and state estimates are instantaneously propagated.
Just a minimal number of predetermined particles known as sigma points are
employed by the UKF to establish initial densities. Unlike the EKF, those points
may compute the mean and covariance of the nonlinearity at least second order,
and the Jacobian matrix computation is not required. Although if the UKF has a
more refined approach and is derivative-free regards to the EKF, it has two main
downside. Firstly, the nonlinearity could be so severe that predicting mean and
covariance might need even higher order accuracy than the UKF can offer. The sec-
ond problem is that even though the first two instants may be precisely computed,
the densities might be significantly non-Gaussian, allowing them inadequate. The
Particle Filter (PF) or Sequential Monte Carlo (SMC) explains problems of nonlin-
earity and the problem of localization if there are no sciences about the position of
the target. To depict densities, the PF propagates an ensemble of particles. The
Monte Carlo method runs and these particles are chosen randomly. The number
of particles required to depict the pdf is greater than the sigma point of UKF.
Furthermore, the PF is simpler to implement than the EKF, but its main problem
is the computational difficulty. The PF is available in an large number of varieties,
such as the Regularized Particle Filter (RPF), Markov Chain Monte Carlo step
Particle Filter (MCMC-PF), classical Sequential Importance Resampling (SIR), and
Auxiliary Sequential Importance Resampling (ASIR) particle filter [3][4][5][6][7][8].
In the case of knowledge of differentiable equations of the system to be studied and
the observability of the variable to estimate, a state observer/filter might be
designed. But, in real-world application, the system to be filtered is not known.
However, a set of experimental data is known a priori, so a standard approach is to
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first identify the model from that data set and then design a filter from identified
model. This procedure, known as two-step approach, has multiple faults: the
identified model is only approximated, and a filter that is optimal for the identified
model could have a large estimation error when applied to the real system. Dealing
with a nonlinear system, only an approximate filter can be derived, which stability
is not yet guaranteed [9]. To avoid this inconvenience a new filter design may be
adopted, through a one-step approach. The filter is directly designed from the
experimental data set, without identifying first the model structure. This direct
approach allows to skip problems coming from the model estimation. The Kalman
Filter’s performance degradation owing to modeling errors may be substantially
greater, hence it can not guarantee a comparable result. An example of this Direct
Filtering (DF) is the Direct Virtual Sensor (DVS), which is good for designing
also nonlinear systems. Hence, the direct approach marks a paradigm leap in filter
design, allowing to develop of the best filter even for nonlinear systems, while resolv-
ing crucial issues like model uncertainty and nonlinear filter approximation [6][9][10].

In this thesis, both a two-step approach and a one-step approach are consid-
ered. In the first approach, an EKF is designed using Simulink, using the main
block after defining useful functions and parameters, while in the second one, a
DVS is implemented using the System Identification Toolbox in MATLAB and
neural networks (a default number of sigmoid functions). Differences between
the two main approaches are defined in terms of root-mean-square error, and the
validations are performed for both the positions x and y and both the velocities
vx and vy. Simulation results show that in DVS case the RMSE values are better
for every reference taken into account than the EKF obtained values.

In chapter 2 the two-step approach and the use of the EKF are presented, in
chapter 3 a theoretical view of the two different approaches is presented, in both
cases of LTI and nonlinear system, in chapter 4 some radar theory and examples
are submitted, in chapter 5 the two-step and one-step procedure are well explained,
in particular the design of DVS is accounted, in chapter 6 the simulations results
and the performances of the proposed tracking filters are presented, in chapter 7
conclusions are summarized.
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Chapter 2

Two-step approach: using
the Extended Kalman Filter

The Kalman filter algorithm estimates unknown variables from a set of data that
is collected over time and corrupted by noise. The KF is largely used in the orbit
calculation field, target tracking and navigation, tracking of maneuvering targets,
and positioning of GPS. The KF is a linear optimal status estimation method.
Since the Kalman filter is pertinent only for linear systems, when dealing with
nonlinear systems the most used observer is the Extended Kalman Filter. The
core concept of the EKF is to obtain a linear equation from a nonlinear system,
by focusing on the value of a first-order nonlinear Taylor expansion around the
estimated status. Taylor expansion is a linear process, hence the EKF outcomes
are widely close to the true value, if the system status and observation equations
are linear and continuous. Note that the filtering result is corrupted by the status
and measurement noise [11]. Consider the discrete-time nonlinear system [12]:

xk+1 = f(xk, uk) + dk (2.1)
yk = h(xk) + dy

k (2.2)

where:

• k ∈ Z is the discrete time;

• xk is the state;

• uk is the input;

• yk is the output;

• dk is a disturbance;
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• dy
k is a measurement noise.

Dealing with a linear system, it is possible to enunciate:

f(xk, uk) = Fkxk + Gkuk (2.3)
h(xk) = Hkxk (2.4)

where yk, uk are measurable. A huge number of state observers work to compute a
prediction xp

k of the state xk, using:

xp
k = f(x̂k−1, uk−1), (2.5)

then adjust the prediction using the current output measurement:

x̂k = xp
k + Kk∆yk (2.6)

where:
∆yk = yk − h(xp

k). (2.7)

Regarding linear systems (Equation 2.3 and Equation 2.4) the gain matrix Kk is
chosen to lessen the variance of the estimation error norm (E[∥xk − x̂k∥2

2]). If the
system is nonlinear, it is linearized along the trajectory to get the matrices, so Fk

and Hk are the Jacobian matrices:

Fk := Jf (xk, uk) =


δf1
δx1

. . . δf1
δxnx

δf1
δu1

. . . δf1
δxnu

. . . . . . . . . . . . . . . . . .
δfnx

δx1
. . . δfnx

δxnx

δfnx

δu1
. . . δfnx

δxnu

 (xk, uk) ∈ Rnx,nx+nu (2.8)

Hk := Jh(xk) =


δh1
δx1

. . . δh1
δhnx

. . . . . . . . .
δhny

δx1
. . .

δfny

δxnx

 (xk) ∈ Rny ,nx (2.9)

The following quantities are so defined:

• x̂k is the estimate of xk, computed at step k;

• x̂p
k is the prediction of xk, computed at step k − 1;

• Pk
.= E[(xk − x̂k)(xk − x̂k)T ] is the covariance matrix of xk − x̂k;

• Qd .= E[(dkdT
k )] is the covariance matrix of dk;

• Rd .= E[(dy
k(dy

k)T )] is the covariance matrix of dy
k;
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Firstly, Qd and Rd must be initialized as diagonal matrices, with dk and dy
k on the

diagonal. Note that a trial and error procedure may be required if poor information
are given from the dk and dy

k. Then, the estimated initial state x̂0 (typically 0)
and the estimated initial covariance matrix P0 (typically I) are initialized. The
EKF algorithm may be summarized in the two following steps:

Prediction:

xp
k = f(xk−1, uk−1) (2.10)

Pk = Fk−1Pk−1FT
k−1 + Qd (2.11)

Update:

Sk = HkPp
kHT

k + Rd (2.12)
Kk = Pp

kHT
k S−1

k (2.13)
∆yk = yk − h(xp

k) (2.14)
x̂k = xp

k + Kk∆yk (2.15)
Pk = (I − KkHk)Pp

k (2.16)

In the prediction step, a preliminary estimate of the state is obtained from the
model equations. Lastly, in the update step, the preliminary estimate is corrected
according to the current output measurement.
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Chapter 3

Filter design from data:
two-step vs. one-step

Considering a discrete-time system S, [9] described by the following state equations:

xt+1 = F(xt, ũt) + wt
x (3.1)

ỹt = Hy(xt, ũt) + wt
y (3.2)

z̃t = Hz(xt, ũt) + wt
z (3.3)

where:

• xt ∈ X ⊆ Rnx is the state;

• ũt ∈ U ⊆ Rnu is the known input;

• ỹt ∈ Y ⊆ Rny is the measured output;

• z̃t ∈ Y ⊆ Rnz is the variable to estimate;

• wt
x is the process noise;

• wt
y and wt

z are the output noise.

The aim is designing a filter that, knowing the inputs ũt and ỹt, τ ≤ t, gives an
estimate of z̃t. The filter is denoted as DVS. Notice that the direct approach,
despite of the two-step procedure, allows to design finest filters, without uncertainty
model problems and nonlinear filter approximation. Assuming as basic assumptions:
(F, Hy) observable, the functions F, Hy and Hz in Equation 3.1, Equation 3.2, and
Equation 3.3 not known, an available set of data {ũt, ỹt, z̃t, t = 1,2, . . . , T}, the wt

x,
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wt
y and wt

z as stochastic variables, and Ēvt .= limT →∞
1
T

qT
t=1 Evt, knowing that

E is the mean value.
The two-step procedure involves to identify the mathematical model from data set,
and design the filter from the model. In the first step, the model is stated as:

M(θM) : θM ∈ ΘM (3.4)

where ΘM is a subset of RnθM and nθM is the number of parameters of the model
structure. The model structure outlines the model set:

M .= {M(θM) : θM ∈ ΘM} (3.5)

From the above data set, a model M̂ is identified:

DM
.= {ũt, (ỹt, z̃t), t = 1,2, . . . , T} (3.6)

In Equation 3.6 ũt is the input of the model, while (ỹt, z̃t) are the output. Then a
filter K̂ ≡ K(θ̂M ) is designed to estimate z̃t. The filter K̂ gives an output which is
an estimate ẑt

K of z̃t. A relevant note is that, in the two-step approach the filter
structure can not be chosen, but it depends on the identified model.
In direct approach, the filter is identified from data set, not from the mathematical
model. In this second procedure a structure is selected:

V(θV ) : θV ∈ ΘV (3.7)

where ΘV is a subset of RnθV and nθV is the number of parameters of the filter
structure. The filter set defined from the filter structure is:

V .= {V(θV ) : θV ∈ ΘV } (3.8)

So, a filter V̂ is identified from the following data set:

DV
.= {ũt, (ỹt, z̃t), t = 1,2, . . . , T} (3.9)

Even if both the sets DM and DV use the same data, they are different each other.
With the respect to the two-step approach, where the filter K̂ can not be chosen, in
one-step procedure, the filter V̂ can be chosen. This filter is the Direct Virtual
Sensor (DVS). In following sections differences between one-step and two-step
approaches are explained in linear and nonlinear cases.

3.0.1 Linear system
The case of linear system S is examined. Given a linear model M(θM) of order
nM , the equivalent KF K(θM) is linear, stable of order nM . Hence, if V(θM) is

8
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a filter of order nM , then K(θM) ∈ V. The following theorem is presented if the
assumptions in Section 3.1 in [9] are verified.
Theorem 1
Noted probability equal to 1 as T → ∞, the obtained results are:

1. V̂ = arg minV (θV ) Ē∥z̃t − ẑt
V ∥2.

2. If K̂ ∈ V , then Ē∥z̃t − ẑt
V ∥2 ≤ Ē∥z̃t − ẑt

K∥2.

3. If S = M(θ0
M) ∈ M and K(θ0

M) ∈ V, then V̂ is a minimum variance filter
among all linear casual filter mapping (ũt, ỹt) → z̃t, τ ≤ t.

4. If S = M(θ0
M) ∈ M and K(θ0

M) ∈ V, M(θM) is globally identifiable, S is
stable, and the data are informative enough, then Ē∥z̃t − ẑt

V ∥2 = Ē∥z̃t − ẑt
K∥2.

When the system S is stable, the filter K̂, under the assumption that the model
structure fit perfectly the system, is asymptotically optimal. While dealing with
an unstable system S, the filter V̂ is resulting better than K̂.

3.0.2 Nonlinear system
The case of nonlinear system S is examined [9]. A filter structure V(θV ) is taken
into account, which satisfy condition M1 (see Appendix of [9]) and it is related to
the following regression equation:

ẑt
V = fV (θV , ẑt−1

V , . . . , ẑt−nV
V , ỹt, . . . , ỹt−nV , ũt, . . . , ũt−nV ) (3.10)

Note that, also the minimum variance filter K̂ can be described by the regression
equation:

ẑt
K = fV (θ̂V , ẑt−1

V , . . . , ẑt−nV
V , ỹt, . . . , ỹt−nV , ũt, . . . , ũt−nV ) (3.11)

After verifying the assumption in [9] in Section 3.2, the following theorem can be
stated:
Theorem 2
Noted probability equal to 1 as T → ∞, the obtained results are:

1. V̂ = arg minV (θV ) Ē∥z̃t − ẑt
V ∥2.

2. If K̂ ∈ V , then Ē∥z̃t − ẑt
V ∥2 ≤ Ē∥z̃t − ẑt

K∥2.

3. If S = M(θ0
M) ∈ M and K(θ0

M) ∈ V , then V̂ is a minimum variance filter.
After studying the Theorem 2, the advantages of one-step procedure compared
to the two-step in linear case, are extended also in the case of nonlinear systems.
In this last case, the minimum variance filter K̂ can not be computed, but only
approximations of that. Thence, the improvement of direct approach is more
evident for nonlinear system with respect to the linear case.

9
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3.1 DVS design procedure
Knowing the following set of data DV

.= {ũt, (ỹt, z̃t), t = 1,2, . . . , T}, if the set of
Equations 3.1, 3.2, 3.3 are linear, a linear filter could be stated (e.g. ARX, OE,
ARMAX), while if the cited equations are nonlinear, a nonlinear one could be
designed (e.g. NARX, NOE, NARMAX) and the function fV in Equation 3.10 has
to be chosen taking into account some parameterizations (e.g. neural networks,
polynomials functions, etc.). The design of DVS is different depending on the
linearity or nonlinearity of the system S. If S is linear, the DVS has design:

ẑt
V = θ̂V · (ẑt−1

V , . . . , ẑt−nV
V , ỹt, . . . , ỹt−nV , ũt, . . . , ũt−nV ) (3.12)

While, if the system S is nonlinear, the designed DVS is stated as:

ẑt
V = fV (θ̂V , ẑt−1

V , . . . , ẑt−nV
V , ỹt, . . . , ỹt−nV , ũt, . . . , ũt−nV ) (3.13)

Note that, in both Equations 3.12 and 3.13 the θ̂V ∈ Rnz×nV (nz+ny+nu).
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Chapter 4

Principles of radar

4.1 Measurements of a radar
A radar is an electrical device that emits radiofrequency (RF) electromagnetic
(EM) waves in the direction of a target area, then get and recognizes the EM waves
which are reflected from detecting objects [13]. The main subsystem requires a
transmitter, an antenna, a receiver, and a signal processor: the transmitter
allows to generate the EM waves, the antenna, as a subsystem, receives as input
these EM waves from the transmitter and places them into the propagation medium
(e.g. the atmosphere). The antenna and the transmitter are connected each other
via a transmit/receive device (T/R device). The T/R device provides a connection
point, enabling simultaneous attachment of both the transmitter and the receiver
to the antenna, and it includes also isolation between the two, to preserve receiver
components from the high-powered transmit signal. In the target domain, the
transmitted signal is propagated, and in the target itself currents are induced
by the EM waves, so it re-radiates these currents in the surrounding area. The
signal may be re-radiated also by other surfaces on the ground, these unwanted
signals are called clutter. The radar antenna "captures" the piece of the signal
that is reflected from the object which propagates back to the radar antenna,
applying it to the receiver circuits. Receiver’s components amplify the received
signal, transform the RF signal into an intermediate frequency (IF), apply the
signal to an analog-to-digital (ADC), and finally apply the signal to the signal/data
processor.
Discussing the received target signal, the presence of the interference must be a
case of study. The interference may occur in different forms:

• Internal and external electronic noise;

• Reflected EM waves from undesired objects, called clutter;
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• Unwanted external EM waves sorted by human-made source, like the electro-
magnetic interference (EMI);

• Intentional jamming from an electronic countermeasures (ECM) system.

Estimating the presence of a target, and dealing with noise, clutter, and jamming
is one of the main task of the radar’s signal processor [13].

4.1.1 Fundamental of radar measurements
The electromagnetic energy emitted by a radar allows the target’s echo to be used
to analyze and receive information about the target. The localization of a target is
obtained after collecting information about it, and it is developed in 3 dimensions or
2 dimensions. To localize the target position, accurate measurements are required:
distance and angle (azimuth and elevation) with respect to the reference point.
Estimate a Radar Cross Section (RCS) and radial velocity of the target is a desirable
plus. Moreover, using the observed range, transmitted and received pulse powers,
and a propagation model (radar range equation), a radar calculated the RCS. Polar
(spherical) coordinates are obtained due to the estimation of azimuth and elevation
angular direction. Several parameters may be obtained:

• Range (R), which is estimated by calculating the two-way time delay of the
transmitted signal;

• Range rate (Ṙ) or radial velocity, which is calculated by determining the
Doppler shift of the echo signal;

• Angular position, which is determined by comparing the signal strength of
several antenna beams offset in angle from another one and obtained either
with an antenna design that constitutes multiple offset beams (like mono-pulse),
or by examining a single beam across or close to the target.

The target tracking process involves repeatedly taking the radar range, angle, and
radial velocity measurements, combining them through kinematic state estima-
tion, or filtering the measurements to produce more accurate two-dimensional
position and velocity or three-dimensional position, velocity, and acceleration es-
timates. Track filtering algorithms are the results of combining those individual
measurements [13].

4.1.2 Model for radar signal
To provide radar measurements, voltage signals are often used. As a result, modeling
and analysis of the measurements for tracking studies, require the voltage form of
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the radar signal. A general model of the RF echo signal which is received by the
radar, in both cases of a conventional antenna or the sum channel of a mono-pulse
coming from a single target, may be stated due to the proportionality of the voltage
and the square root of power, so:

s(t) = 2
ó

Pt

(4π)3
λ

R2ξV
2
s(θ,ϕ)p(t) cos(ωct + ωdt +ψ) + ws(t) (4.1)

where:

• Pt is the transmitted power;

• λ is the wavelength;

• R is the range to the target;

• ξ is the voltage reflectivity of the target;

• Vs(θ,ϕ) is the voltage gain of the antenna at the angles (θ,ϕ);

• (θ,ϕ) is the angular location of the target relative to antenna boresight;

• p(t) is the envelope of the matched filter output for the transmitted pulse;

• ωc is the carrier frequency of the transmitted waveform;

• ωd is the Doppler shift of the received waveform;

• ψ is the phase of the target echo;

• ws(t) is the receiver noise.

The voltage reflectivity ξ of the target is related to σ (RCS):

σ = ξ2

2
(4.2)

Due to the square of the term Vs(θ,ϕ) in Equation 4.1, it is stated a priori that the
normalized antenna voltage gain model is the same in transmission and reception.
The Vs(θ,ϕ) is assumed to be:

Vs(θ,ϕ) = W(θ)U(ϕ) (4.3)

where W(θ) and U(ϕ) are the elevation and azimuth voltage patterns.
The measured amplitude of the signal s(t) may be reduced due to two main faults
[13]:
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1. If s(t) is combined with ωc instead of ωc +ωd, in the related filter a frequency
mismatch arises, generating a Doppler loss (a loss in SNR). If a radar is
originally designed for air targets and it used for detect and track while
traveling space targets when velocity is high, the Doppler loss could have a
significant value to prevent detection;

2. The output of the matched filter must be sampled regularly in fast time at
the bandwidth of the signal throughout the range interval (range window) of
interest, due to the necessity to identify targets at a priori unknown ranges
and to detect multiply and close together objects in the same dwell. One of
the samples may or may not fall on the peak of the matching filter response.
Besides that, the target echo’s energy may be absorbed in closed samples that
cross the peak, reducing the respective SNR (this reduction is often noted
as straddle loss). Moreover, the signal in the neighboring cells may increase
range estimate precision beyond resolution and decrease straddle loss.

4.1.3 Estimation of parameters
Estimation of the different target characteristics reflected in the signal is the purpose
of the radar measurement process in the signal s(t). Before explanations on the
measurements and estimation of the parameters including reflectivity amplitude,
ξ, the Doppler shift, ωd, the angular direction to the target, (θ,ϕ), and the time
delay to the target, it is necessary to discuss the estimator and his precision [13].

Estimators

A sum of the target component s(t) and noise component w(t) deals in the observed
signal y(t):

y(t) = s(t) + w(t) (4.4)
The y(t) is a function of one or more parameters (αi) (i.e. time delay, amplitude,
Doppler shift, or angle of arrival (AOA) of the target component). An estimator is
designed to estimate the parameter values if a set of observations of y(t) is known.
A vector of N observations is obtained considering a sampled multiple timed the
signal y(t):

Y = {y1, y2, . . . , yN} (4.5)
The data Y is a random vector that depends on the parameter α, and a conditional
pdf p(Y|α) relates the Y. An estimator f of a parameter α, based on a Y data is:

α̂ = f(Y) (4.6)

The estimator is unbiased and consistent, so the estimate’s variance drops to zero
when additional measurements are available, and the estimate’s expected value is
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equal to the parameter’s actual value:

E{α̂} = αi (4.7)
lim

N→∞
{σ2

α̂} → 0 (4.8)

So, an optimal estimator has accurate estimates and his precision enhances dealing
with more data.
In literature, a large amount of estimators exist. The most used are minimum
variance (MV) estimators and maximum likelihood (ML) estimators. The
minimum variance, or minimum variance unbiased (MVU) estimator is un-
biased and it reduces the mean square error between the estimated value of the
parameter and the actual value. The maximum likelihood (ML) estimator
chooses α̂ to maximize the likelihood of the observed data values Y. Since it is
rather simple to identify its form, the ML estimator is often an excellent practical
choice. Moreover, it is comparable to the MV estimator in the case of Gaussian
noise, so it is the ideal estimator. As was already discussed, the measurement
precision is described by the standard deviation of the estimation error. Starting
from the chosen estimator, the standard deviation is so derived, but it can be
difficult to calculate for a certain estimator.

4.1.4 Range measurements
After explaining the outcomes of resolution and sampling, in the following subsec-
tions additional methods and accuracy analysis are discussed. Range and angle
measurements are the main topics of the resolution and sampling discussion, but
these tasks also concern phase and Doppler measurements [13].

Resolution and Sampling

Typically, a radar gathers target returns all over a limited time delay or range
window for each pulse that is transmitted. The resolution of the range may be
expressed as:

∆R = α
c

2B
(4.9)

where B is the waveform bandwidth, α stands as the degradation in range resolution
from system errors or range side lobe reduction techniques (e.g. windowing), and
1 < α < 2. The B/α is bandwidth of the intermediate frequency (IF) filters and
it defines the Nyquist sampling rate when the output of matched filter occurs.
Precisely location of a closely spaced targets and the differentiation between them
is bounded depends on the resolution of the radar system. A radar angular and
range resolution may be depicted as a system whence a 3 dB beamwidth coming
from the system and it is bounded by two ideal black lines. It is denoted by θ3
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and it is subdivided into some range bins, named range gates. As an example,
in these range bins may occur some targets. A sample of the output of the filter
which is matched to is associated with each range bin, is used to pass the received
echo signal through. If the output of the matched filter overtakes the detection
threshold, an estimation of the range and angle is obtained. As an example three
types of situations may be described, considering as target an airplane: (1) the
airplane is smaller than the range cell, but it stands along two range cells, so the
echoed energy from the aircraft is split between two adjacent range cells causing
straddle loss, (2) two closed airplanes stand in the same range cell, so only one
measurement with energy from both target outcomes, (3) the larger airplane stands
over three range cells, so significant echoes from the airplane are observed in three
consecutive matched filter’s samples, these targets are often called extended targets.
In radar tracking, deciding whether sequence of detection is one extended target or
multiple closely spaced targets is a portion of the challenge.

4.1.5 Phase measurement
If the Doppler shift is known, the signal phase may be estimated. If the frequency
in known, the Equation 4.1 may be stated as:

s(t) = p(t) cos(ωt + ϕ) (4.10)

where ω is the frequency, and ϕ is the carrier phase. About the phase, in literature,
is demonstrated that the best estimator is:

ϕ̂ = − tan−1 Ps

Pc

(4.11)

Ps =
Ú

p(t) sin(ωt) dt (4.12)

Pc =
Ú

p(t) cos(ωt) dt (4.13)

If the SNR is large enough, the RMS error is:

σ2
ϕ̂

≥ 1
SNR · τB

(4.14)

where τB is the pulse time-bandwidth product [13].

4.1.6 Doppler and range rate measurements
Usually, pulsed Doppler waveforms which include a periodic sequence of pulses,
are used to achieve range rate measurements. During the processing, using the
whole range window for each pulse for time delay esteem, the matched filter output

16



Principles of radar

is sampled. The estimation of the Doppler frequency fd, and the related radial
velocity v = 2fd/λ, is performed through a discrete Fourier transform processing
the samples of the matched filter output coming from the multiple pulses at each
range. The range rate, Ṙ, is the negative of the radial velocity. The inverse of
the duration of the pulse-Doppler waveform dwell time Td is the inverse of the
peak-to-null (Rayleigh) Doppler resolution:

∆fd = 1
Td

(4.15)

Since fd = 2v/λ, the velocity resolution and the range rate resolution are:

∆v = ∆Ṙ = λ

2Td

= c
2Tdft

(4.16)

where ft is the carrier frequency of the transmitted waveform. Potential ambiguities
in range and range rate may occur in a pulse-Doppler waveform. So, the minimum
range (not considering ambiguities) is:

Rua = cT
2

(4.17)

where T is the slow-time sampling interval (PRI). The interval which causes
ambiguity in Doppler frequency is 1/T Hz. The maximum unambiguous Doppler
frequency, velocity, and range rate, if interested frequencies are both positive and
negative, are given by:

fdua = ± 1
2T

= ±PRF
2

(4.18)

vua = Ṙua = ±λ
2

PRF = ± c
2f t

PRF (4.19)

Where PRF is the pulse repetition frequency [13].

4.1.7 Angle measurements
The angular location of the target is not obtained when an EM echo is received
from a standard antenna system, in this case only information about the possible
localization in the main lobe of the beam are gathered. Once a target has a
high RCS, it may not stand in the 3 dB beamwidth of the antenna pattern. The
amplitudes of the echoed signals are acquired for multiple positions of the antenna
boresight as it scans by the target in a huge number of radars that rotate to scan
the field of vision, and centroiding is used to determine the angular location of the
target. Since many beam positions are required to overcome the RCS fluctuations
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of the target while reaching an accurate angle-of-arrival estimate, centroiding the
signal for multiple positions of the antenna pattern is not an optimal solution;
this fault refers to tracking radars that support control functions, radars which
measure two angular coordinates and electronically scanned radars which scan while
tracking. One of the early strategy employed to improve the angle measurements
of these radars is the so-called sequential lobing, which involves two consecutive
steps to enhance each angular measurement. After identifying the target, the
antenna’s boresight is facing slightly to one side of the target’s predicted location
while estimating the first measurement, then the boresight is facing to the other
side of the predicted position while estimating the second measurement. Thanks to
this procedure a better evaluate the predicted angle of the target is obtained. Note
that this sequential lobing is useful since it is sensitive to pulse-to-pulse amplitude
fluctuations of target echos, a common behavior of radar measurements [13].

4.1.8 Coordinate system
The target location is determined by a radar system using spherical coordinates
relatively the boresight of a radar antenna:

• Range, R;

• Azimuth angle, θ;

• Elevation angle, ϕ.

The azimuth angle and elevation angle are measured in orthogonal planes when
a coordinate system is centered on the antenna. The following layout is initially
stated: the x direction is the "horizontal" dimension of the antenna, the z direction
is the "vertical" dimension of the antenna, and the y dimension is the normal in
relation to the antenna face. The azimuth angle is measured in the horizontal
x-y plane, while the elevation angle is measured from the horizontal x-y plane
in the vertical plane. Typically, operating in a Cartesian coordinate system is
preferable than using the spherical coordinates. So, a Cartesian system (x-y-z) can
be centered on the radar platform or to any reference point. In Equation 4.20,
Equation 4.21, and Equation 4.22, the transformation from the angle computation
to the antenna-centered Cartesian coordinates is shown:

x = R cos θ cos ϕ (4.20)
y = R sin θ cos ϕ (4.21)
z = R sin θ (4.22)

An important notice is the representation of the coordinates in 3-dimensions.
Starting from the spherical coordinate errors, a nonlinear combination of them
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explains the measurement errors in Cartesian coordinates. These errors are coupled:
the error in x, the error in y, and the error in z are dependent each other. So, the
conversion in polar coordinates is explicated as [13]:

R =
ñ

x2 + y2 + z2 (4.23)

θ = tan−1 y

x
(4.24)

ϕ = cos−1 z

R
(4.25)

4.2 Frequencies of radars
The radar frequencies have no inherent limits. A radar is any device that detects
and locates a target by emitting electromagnetic radiation and using the reflected
echo from the target, no matter what frequency it operates. Radars is applied to
deal both with a few megahertz and with the ultraviolet region of the spectrum.
The fundamental principles are the same, no matter the frequency, but the actual
implementation is different. Each frequency range has unique characteristics
which make it more suitable for some applications than others. The different
electromagnetic spectrum bands are explained below. Note that the distinctions
between the frequency areas are not so stringent in real-world applications [2].

HF (from 3 to 30 MHz). A number of disadvantages deal whit radar applications
using this frequency band. Huge antennas are needed to accomplish narrow
beamwidths, the level of the natural ambient noise is high, the accessible bandwidths
are limited, and this region of the electromagnetic spectrum is heavily used and
constrained. Additionally, because of the long wavelength, a large number of
potential targets may be in the Rayleigh region, where the target’s dimensions
are small compared to the wavelength; as a result, the radar cross section of the
target is small with respect to the (HF) wavelength and it may be lower than
the cross section when microwave frequencies are considered. According to the
ionosphere’s current condition, HF electromagnetic waves have the crucial quality
of being refracted by it, going back to the Earth at distance between 500 and 2000
nmi (Nautical Mile). The aircraft over the horizon may be detected due to this
property. The HF region of the spectrum is interesting for the radar monitoring of
regions (such as oceans) where it is difficult to use conventional microwave radar
due to the large over-the-horizon ranges which are achievable.
VHF (from 30 to 300 MHz). Similar to the HF region, the VHF (Very High
Frequency) region is overflowed, bandwidths are reduced, external noise may be
high, and beamwidths are large. An enhancement in the maximum range against
some aircraft may deal when constructive interference occurs between direct wave
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and reflected wave, with horizontal polarization over a good reflecting surface.
Since the range is rising due to the constructive interference, the coverage of other
elevation angles is aborted by the coupled destructive interference, and the energy
at low angles is reduced. This frequency range is useful for lower-cost radars and
long-range radars. Furthermore, since the drawbacks are more evident than the
advantages, this radar type is no longer used.
UHF (from 300 to 1000 MHz). This frequency band has the same properties
as the previous one, but the natural external noise has fewer drawbacks and the
beamwidths are tinier than the ones of VHF. If the antenna is large, dealing with
a reliable long-range surveillance radar it is a good frequency area. It is good for
AEW (Airborne Early Warning), e.g. airborne radar which uses AMTI (Airborne
Moving Target Indication) to detect the aircraft.
L Band (from 1.0 to 2.0 GHz). The surveillance radars which are land-based
and long-range are optimal in this frequency area, e.g. the 200 nmi radars used
for the control of the air traffic. In this frequency area, it is feasible to obtain
high power with narrow-beamwidth antennas and strong MTI performance. Low
external noise is present. Large radars which must identify extraterrestrial targets
at long-range use the L-band.
S Band (from 2.0 to 4.0 GHz). As noted in the previous frequency range,
the surveillance radar may deal also with S-band, but long-range can be more
challenging to achieve than lower frequencies. When a huge number of MTI radars
arise as the frequency increase, some blind speeds occur and MTI are less adequate.
A defect may occur with bad weather conditions (e.g. rains) since the range of
S-band might be reduced, but this frequency area is the most used in weather
radars. So, this band is the most common for long-range weather radars and it is
also good for medium-range air surveillance applications (e.g. airport surveillance
radar (ASR) in air terminals). Military 3D radars and height-finding radars are
found in this frequency area, due to tighter beamwidths which supply good angular
accuracy and resolution. Also, the main beam jamming can be reduced, in the
military radar case. An important notice is the usage of this band also in the
long-range airborne air surveillance pulse Doppler radars (e.g. Airborne Warning
and Control System (AWACS)). Regarding frequency areas, the lower frequency
band with respect to the ones of S-band is useful for air surveillance, but the
higher frequency band are better for information gathering (i.e. the high data rate
precision tracking). The S-band is also an optimal trade-off if a single frequency
must be used for both air surveillance and precision tracking.
C Band (from 4.0 to 8.0 GHz). This frequency band is a good compromise
between the S-band and the X-band. Long-range air surveillance radars do not
perform in this frequency area, which is optimal for long-range precision instrumen-
tation radars (e.g. the ones used for missile tracking). Multi-function phased array
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air defense radars and medium-range weather radars also use this frequency band.
X Band (from 8.0 to 12.5 GHz). Civil applications and military weapon control
radars use this frequency area. In the X band the piloting and shipboard navigation,
weather avoidance, Doppler navigation, and the radar speed gun work. The band
is pretty large and it allows the generation of short pulses, the tight bandwidth
obtained through small-size antennas, thus it is an advantage in information
gathering and high-resolution radar cases.
Ku, K and Ka Bands (from 12.5 to 40 GHz). In the beginning, the K-
band radars were centered to a wavelength close to the resonance wavelength
of water vapor, in which the absorption may reduce the radar range. So, the
K-band has been split into two bands: Ku is the lower frequency band, Ka is the
higher frequency band. A good reminder is the wide bandwidths and the tighter
beamwidths, which may be obtained through small apertures. Dealing with higher
frequencies, limitations due to rain clutter and attenuation are difficult. Some
radars like the airport surface detection radar used to localization and control of
ground traffic in the airports, use the lower frequency band (Ku).
Millimeter Wavelengths (above 40 GHz). The millimeter-wave radars work
in a frequency region between 40 and 300 GHz. Serious applications are not
feasible around 60 GHz of frequency due to the high attenuation induced by the
atmospheric oxygen absorption line. So, the 94 GHz frequency band is typically
noted as the "normal" frequency regarding the millimeter radar. No radar, for years,
has been produced above the Ka band. An important notice is that the propagation
window at 94 GHz has a greater attenuation regarding the one at water-vapor
absorption line at 22.2 GHz. The millimeter-wave region can be interesting in space
applications, short-range applications within the atmosphere.
Laser frequencies. The usage of laser in the infrared, optical, and ultraviolet
regions of the electromagnetic spectrum can provide coherent power of a great mag-
nitude and efficiency, as well as tight directive beams. Lasers are optimal choices for
target information-gathering applications because of their good angular resolution
and range resolution. Measurements of profiles of atmospheric temperature, water
vapor, and ozone, measurements of cloud height and of tropospheric wind are some
examples of laser applications. The main fault of laser applications is the difficulty
to operate in particular weather conditions, such as rain, clouds, or fog.

4.3 Radar tracking algorithms
Estimating the trajectory of a track starting from some measurements is a track-
ing problem. The process of track filtering is divided into: track filtering and
measurements-to-track data association.
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The track filtering approach involves the estimation of the trajectory (position,
velocity, and sometimes acceleration) and the estimation of a track from measure-
ments (range, bearing, elevation). To predict the next measurement, the position
and velocity estimates are used.
The measurements-to-track data association involves assigning a measurement
to an existing track or identifying a new target or a false signal.
Note that as measurements to the measurements-to-track data association and
track filtering are matched the range estimation, the angle of arrival, and range
rate [13].

4.3.1 Track filtering fundamentals
In the most used radar systems, the target motion is described in Cartesian
coordinates, while the radar measurements are provided in polar or spherical
coordinates. The basic idea is to filter the track by using the Cartesian coordinates,
so the radar measurement is used as a linear observation of the corresponding
kinematic state. The algorithms used for track filtering may be divided into two
main groups: the first deals with a parametric estimation approach in which the
model is assumed to be coherent with the target motion and the data distortion
is predicted by using a consistent time period. The more the covariance drops to
zero, the more the processing of new data will drop to zero. The second group
deals with a stochastic state estimation approach which uses a non-perfect model
for target motion. This non-perfect model depends on the use of a random process,
which is not able to give an accurate estimation of the kinematic state [13].

4.3.2 Motion models
The state of a target is displayed in Cartesian coordinates in which the reference
frame is relative to the platform space location. The equation which describes that
target motion is:

xk+1 = Fkxk + Gkvk (4.26)

where xk stands as the following state vector, in 2D

xk = [xk ẋk yk ẏk]T (4.27)

where (xk, yk) are the target positions, while (ẋk, ẏk) are the target velocities.
However the state vector may be a function of a 3D model, including also the zk

position and the żk, but tracking with surveillance radars which measure only the
range target and the bearing target the Cartesian space may be referred only to
the main measurements xk and ẋk [13].
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4.3.3 Measurements models
The measurements coming from a radar system are polar or spherical. In most
measurement cases, the radar computes the velocity of the target all along the
range vector which stands between the target and the antenna. The measurement
equation is:

zk = hk(xk) + wk (4.28)

where the zk is the measurement vector at time tk, and the wk is the measurement
error at time tk (wk ∼ N(0, Rk)). The target state estimate is often retained in
a Cartesian reference frame which is related to any motion of the radar antenna.
To define a correlation between the two coordinate systems, an affine transform is
sometimes used, so:

zk = hk(Mkxk + Lk) + wk (4.29)

where the Mk is the matrix that rotates the target state vector into the frame of
the antenna at time tk, and the Lk is the vector that translates the target state
vector into the frame of the antenna at time tk [13].

4.3.4 Radar track filtering
The estimation of the kinematic state of a target is done after the data identification
and the assignment of a measurement to a track. The radar measurements are
obtained in spherical or polar coordinates, while the target motion is described in
Cartesian coordinates. Due to inaccurate results which may deal by converting
the polar coordinates to the Cartesian ones, one of the methods to overcome this
problem is to design an EKF to estimate the states. In this case, a parametric
approach is used, and as more data are coming as more the state estimate covariance
approaches zero. To use this approach the main methods are the nonlinear least
square or the maximum likelihood estimation [13].

Extended Kalman Filter

The EKF is the nonlinear extension of the KF since in real-world applications the
radar system must deal with nonlinear measurements. The measurement equation
is the same as Equation 4.28, and the motion model is:

xk+1 = Fkxk + Gkvk (4.30)

where Gk is the input matrix at time tk for target motion, the vk is the white
noise error (vk ∼ N(0, Qk)). The EKF state prediction and state update are
respectively:

23



Principles of radar

State prediction:

xk|k−1 = Fk−1xk−1|k−1 (4.31)
Pk|k−1 = Fk−1Pk−1|k−1FT

k−1 + Gk−1Qk−1GT
k−1 (4.32)

State update:

xk|k = xk|k−1 + Kkz̃k (4.33)
z̃k = zk − hk(xk|k−1) (4.34)

Pk|k = [I − KkHk]Pk|k−1 (4.35)
Kk = Pk|kHT

k S−1
k (4.36)

Sk = HkPk|k−1HT
k + Rk (4.37)

The EKF does not give an optimal estimate of the target state, since the measure-
ments are a nonlinear function of the target state and so, the filter deals with a
linearized output matrix for hk(xk) in the covariance update. Usually, the target
estimation state is retained in a Cartesian reference frame which is not affected
by any motion of the radar antenna. An affine transformation is used to define a
correlation between the two coordinate systems (see Equation 4.29). So the EKF
measurement update is given by:

Update of the state estimate with the measurement:

xk|k = xk|k−1 + Kk[zk − hk(Mkxk|k−1 + Lk)] (4.38)
Pk|k = [I − KkHkMk]Pk|k−1 (4.39)
Kk = Pk|k−1MT

k HT
k S−1

k (4.40)
Sk = HkMkPk|k−1MT

k HT
k + Rk (4.41)

where:
Hk =

C
δhk(xk)
δxk

D
Xk=Mkxk|k−1+Lk

(4.42)

Converted Measurement Filter

About the Converted Measurement Filter, an important notice is the linear rela-
tionship between the state and the measurements. The measurement equation is
a function of zk, when working with a converted measurement filter in Cartesian
space:

zk =

xm
k

ym
k

zm
k

 =

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 xk +

wxk

wyk

wzk

 = Hxk + Wk (4.43)

where:
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• xm
k is the measured x coordinate at time tk;

• ym
k is the measured y coordinate at time tk;

• zm
k is the measured z coordinate at time tk;

• wxk is the error in x-coordinate at time tk;

• wyk is the error in y-coordinate at time tk;

• wzk is the error in z-coordinate at time tk.

Note that the measurements (xm
k , ym

k , zm
k ) are calculated from the spherical or

sine space measurements, while the measurements error (wxk, wyk, wzk) are cross-
correlated and non-Gaussian. Due to this last feature, the Kalman filter is no
longer the optimal choice.

4.4 Radar applications
Radar technology may be used for a huge array of remote sensing applications
since its main goal is to search/detect, track, and image. Radar has a wide range
of applications: ground-penetrating systems, in which the maximum range is a
few meters, long-range-over-the-horizon search systems, which can identify targets
many kilometers away, collision avoidance. Radar applications may be split into
two categories: military and commercial/civil applications. However, some basic
tasks are applied in both cases [13][14].

4.4.1 Civil applications
During the last decades, some experiments in the automotive field have been
performed. The idea is to develop radar applications in the frequency 17 GHz,
24 GHz, 35 GHz, 49 GHz, 60 GHz, and 77 GHz. The goal is to avoid collisions
between vehicles and to develop a field of automatic driving cars. Over the
years significant expertise are acquired in the field of microwaves and radar signal
processing. Between 1990 and 2000, the commercialization of automotive radar was
possible by the significant improvements in semiconductor microwave sources and
the accessible computation power of microcontrollers and digital signal processing
units. The radar sensors are fundamental because of their potential detection of
the surrounding environment. Future vehicles may be completely automated or
at least highly automated due to the strong development of sensor technology.
Radar sensors are surely one of the main factors in self-driving technology. The
most popular radar sensor is the ultrasonic one, but there are several others radar
[15][14].
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Figure 4.1: Equipment for self-driving car. Author: Alena Nesterova, CC BY-SA
4.0.

Ultrasonic ranging

Via the transmitter, ultrasonic sensors generate mechanical waves which own a
greater frequency than the range of audible sound waves for human hearing. The
waves are acquired by the receiver after the reflection. The most used frequencies
are 40 kHz, 48 kHz, and 58 kHz. When dealing with a high frequency, more sensor
precision is obtained. The ultrasonic sensor may transmit the signal as rays because
of the sensor’s tiny diffraction and strong directivity. It is mostly employed in
low-speed driving situations such as automatic parking radars.

Millimeter wave radar sensor

The millimeter wave radar sensor works at 30 ∼ 300 GHz. This radar has properties
of both the infrared waves and the microwaves due to its long wavelength. It can
adapt to different climatic situations since the wave is not vulnerable to external
climatic conditions. By using measurement techniques, it is possible to separate
the millimeter wave radar into pulse mode and frequency modulation continuous
wave mode.

26



Principles of radar

Light Detection and Ranging (LIDAR)

By emitting a laser beam, LIDAR is used to estimate the location of the target.
This laser light is an electromagnetic wave, which is different from the mechanical
waves. LIDAR has two scanning modes: two dimensions and three dimensions.
The basic idea behind the measurement is to determine the distance by timing
the interval between the laser’s emission and the object’s reflection. Notice that
the more the number of radar mechanical structures decreases the more the radar
reliability and integration increase.

Figure 4.2: Leica terrestrial LIDAR (light detection and ranging) scanner (TLS).
Author: David Monniaux, CC BY-SA 3.0.

4.4.2 Military applications
Military systems are developed by the U.S. military arm for army equipment. The
AN/xxx-nn is the used nomenclature. About the "xxx": the first letter stands for
the installation type, the second letter indicates the equipment type, and the third
letter designates the specific applications. The "nn" is a numerical sequence. Some
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examples of radars are: the AN/TQP-36 which is a ground-based transportable
special purpose radar, the AN/SPY-1 used for surveillance and fire control radar
(FCR) system [13].

Search Radars

Two independent radar systems are used to perform the search requirements and
the track ones. This is the study case dealing with ground-based or surface ship
systems, but sometimes some applications do not allow the use of multiple radars.
Some examples of application radars which do not enhance the employment of
two different radars are airborne application and electronically scanned antenna
systems.

Two-Dimensional Search. Several volume search systems achieve the search
using a "fan"-shaped antenna pattern, typically in the azimuth and range dimensions.
Due to the antenna aperture, it will be horizontally large while vertically tiny, so the
azimuth beamwidth results tight while the elevation beamwidth outcome is wide.
An example of 2D radar is the AN/SPS-49, which is a 2D air search radar that
operates in the UHF band (850-942 MHz). The AN/SPS-49 can acquire air targets
in the sea due to its huge mechanically stabilized truncated parabolic antenna.
This 2D radar has a good amount of features that enhance radar performance,
such as clutter maps and automatic target detection with pulse-Doppler processing.
In the last years, a new version of this radar (the SPS-49A (V)1) consists in an
estimation of all the targets performing single-scan radial velocity. The beamwidths
of SPS-49 are 3,3° in azimuth and 11° in elevation. The antenna may rotate at 6
rmp or 12 rmp, and rmp stands for "revolution per minute". The radar may also
operate in both large-range and short-range mode. Dealing with the long-range
small target at around 200 miles may be detected, while regarding the short-range
mode, low-flying targets and missiles may be detected.

Three-Dimensional Search. The 3D search radar has multiple examples of
applications and used technologies. The AN/SPS-48, which was produced by
ITT Gilfillan, has a square planar array as antenna which is based on a slotted
waveguide. A serpentine structure stuck with the planar array is supplying the
antenna. The frequency sensitivity able to elevation scanning is supplied by the
serpentine. The scanning of the radar is performed in elevation, by an angle up
to 65°. The reference frequency area of the AN/SPS-48 is the S-band (2 GHz - 4
GHz) considering an average rated power of 35 kW. The combat system of some
shipboards holds control of the SPS-48, and provides measurements like range,
azimuth, elevation, and speed. It is a very good radar in the defense area.
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Figure 4.3: An AN-SPS/49 radar on USS Abraham Lincoln. Author: Don S.
Montgomery, USN (Ret.), public domain.

Figure 4.4: An AN-SPS/48 radar on USS Theodore Roosvelt. Author: PH2
Tracy Lee Didas, public domain.
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Air Defense Radars

Two main examples are reported. The AN/TPS-75 has functionality very similar to
the 3D radars. Frequency scanning is the essential method to compute mechanically
the azimuth direction and electronically the elevation dimension. This radar is
based on a long and tiny antenna that investigates the observed target to obtain
an IFF response. In the interest of IFF interrogation to occur quickly following
target detection while the antenna spins in azimuth, the IFF antenna angle stands
a bit back with respect to the azimuth one. An important notice is the different
position of the IFF antenna angle rather than the one of azimuth, since the IFF
examination may occur not long after the target identification while the antenna
rotates in azimuth. The AN/MPQ-64 Sentinel is provided to the U.S. Army and
U.S. Marine Corps. This radar is an X-band system used when airborne dangers
follow. The system is used to detect, track and identification of airborne threats.

Figure 4.5: An AN-TPS/75 radar. Author: Steve Grzezdzinski, public domain.

Over-the-Horizon Search Radars

The goal of the design of the Over-the-Horizon (OTH) search radar is to detect
ballistic missiles which are located many miles away. These radars use the iono-
sphere’s refractive effect to identify objects located at long range. Furthermore, the
OTH’s frequency stands in HF band (3 MHz - 30 MHz). Due to the need to have
a tight beamwidth, dealing with low frequencies the antenna must be very large.
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Figure 4.6: An OTH radar station. Author: US Navy, public domain.

Figure 4.7: US Navy Relocatable Over-the-Horizon radar station. Author: US
Navy, public domain.

31



Chapter 5

EKF and DVS
implementation

The main idea of this thesis is to design a DVS and an EKF to estimate target
trajectory by using radar measurements. Then, the obtained performances in terms
of RMSE are compared, and the best method is highlighted. To navigate all around
the possible location of the target, multiple data sets (reference data) are initialized.
Designing a proper model means dealing with a good amount of data sets. An
amount of 25 data sets (identification data sets) are initialized, the first 15 sets
are generated using a random wave, while the final 10 sets are generated using a
sine wave. The random wave is the most used due to its capability to be able to
seize a larger domain in the space. The two-step procedure is pursued by designing
an Extended Kalman Filter using the proper Simulink block (see Section 5.4).
Instead, the one-step approach is performed by designing a Direct Virtual Sensor
using the System Identification Toolbox by merging the 25 data sets previously
obtained. Then, after properly obtaining an optimal EKF model and the best DVS
model (linear or nonlinear), the performances in terms of RMSE are compared by
using a different 20 data sets (validation data sets) (see Section 5.5).

5.1 Main model for radar localization systems
A target is usually managed as a point object without a shape in tracking, mainly
in target dynamic models. The most used maneuvering target tracking meth-
ods assume that the target motion and its observations can be stated as known
mathematical models. So, the state-space model is:

ẋk+1 = fk(xk, uk) + wk (5.1)
zk = h(xk) + vk (5.2)
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where xk is the target state, zk is the observation, uk is the control input vector
and they are computed in discrete time tk; wk is the process noise sequence and
vk is the measurement noise sequence. Finally, the fk and hk are the vector value
functions. Note that usually a discrete-time system is derived dealing with target
tracking, by discretizing the following continuous-time system:

ẋ(t) = f(x(t), u(t), t) + w(t) (5.3)
z(t) = h(x(t), t) + v(t) (5.4)

Some basic assumptions related to the previous system are:

• xk = x(tk);

• zk = z(tk);

• vk = v(tk);

• hk(xk) = h(x(tk), tk);

• The control input is assumed to be piece-wise constant, so uk = u(t);

• The time term tk ≤ t < tk+1.

When approaching target tracking the input u is usually not known. Furthermore,
it is relevant to state the following equation system:

wk /= w(tk) (5.5)
fk(xk, uk, wk) /= f(x(tk), u(tk), w(tk), tk) (5.6)

A 2D scenario, in which the altitude z is not considered, may be depicted considering
the following models:

ẋ(t) = ACV x(t) + BCV w(t) (5.7)
xk+1 = FCV xk + GCV wk (5.8)
xk+1 = FCV xk + wk (5.9)

The above models are known as the continuous-time, discrete-time, and constant
velocity (CV) models. CV models are so named since the accelerations along x
and along y are not declared but are noted as Gaussian white noise terms. When
is unnecessary, an optimal choice is to not include some components in the state
vector (e.g. accelerations), since the tracking performance may degrade [16]. The
state vector form in the 2D scenario is:

x(t) = [x1(t), x2(t), x3(t), x4(t)]
= [x(t), ẋ(t), y(t), ẏ(t)],

(5.10)
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In Equation 5.10, the terms x(t), y(t) are the Cartesian coordinates used to describe
the motion of the system [1]. The state equations are:

ẋi(t) = xi+1(t)
ẋi+1(t) = vi(t)

J
for i = 1,3 (5.11)

5.2 Target dynamics
The 2 dimensions (x and y) target tracking assumes constant velocities in the
respective dimensions (CV models). So, the state vector xn contains 4 variables:

xn = [xn, yn, vx,n, vy,n]T (5.12)

In the state vector (Equation 5.12), xn and yn are the positions of the target, while
vx,n and vx,n are the velocities of the target. So, the discretized motions equations
are: 

xn+1
yn+1

vx,n+1
vy,n+1

 =


1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1




xn

yn

vx,n

vy,n

 +


T 2

s /2 0
0 T 2

s /2
Ts 0
0 Ts


C
ax,n

ay,n

D
(5.13)

The vector [ax,n, ax,n]T is composed of the two terms stationary Gaussian random
distributed with zero-mean and well-known variance. The Ts is the sampling
time, while the accelerations in x and y coordinates are mutually statistically
independent. Equation 5.13 may be stated in matrix notation:

xn+1 = Fxn + Gvn (5.14)

where xn+1 is the next step-state vector, F is the transition matrix, xn is the
state vector, G is the noise gain matrix and vn is the noise process sequence with
zero-mean and covariance Qd.

5.3 Radar measurements
Using a radar to compute the position of a target in 2D space, the measurements
are got in spherical or polar coordinates, the range and the azimuth. The relation
between the polar coordinates and the Cartesian ones is reported below:C

rn

θn

D
=

C ñ
x2

n + y2
n

arctan(yn/xn)

D
+

C
wr,n

wθ,n

D
(5.15)

where rn and θn are the measured range and azimuth, the xn and yn are the
states which correspond to the respective position and wr,n and wθ,n are the
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white Gaussian measurement noise. Note that, the range and the azimuth are
uncorrelated and they are corrupted by a noise covariance Rd. The matrix notation
of Equation 5.15 is:

zn = h(xn) + wn (5.16)

where zn is the polar coordinates vector, h(·) is the transformation from Cartesian
to polar coordinates and wn is the zero-mean white Gaussian noise.

5.4 Two-step approach: design of Extendend
Kalman Filter (EKF)

To estimate the states of the discrete-time nonlinear system, the EKF Simulink
block depicted in Figure 5.1 is used.

Figure 5.1: The Extended Kalman Filter block used in Simulink.

Using the state transition function and the measurement functions of the nonlinear
system and the basic Extended Kalman filter algorithm, this Simulink block pro-
duces the state estimates x̂, referred to current time step.
The used state transition function is described below and the process noise covari-
ance is Qd, specified as a diagonal matrix Ns − by − Ns, where Ns is the number
of states of the system.

Listing 5.1: State transiction function.
1 f unc t i on stateNext = stateModel ( s t a t e )
2 dt = 0 . 2 ;
3 F = [1 0 dt 0 ;
4 0 1 0 dt ;
5 0 0 1 0 ;
6 0 0 0 1 ] ;
7 stateNext = F∗ s t a t e ;
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The built measurement function is depicted below and the measure noise covariance
is Rd.

Listing 5.2: Measurement function.
1 f unc t i on z = measureModel ( s t a t e )
2 ang le = atan ( s t a t e (2 ) / s t a t e (1 ) ) ;
3 r = norm ( [ s t a t e ( 1 : 2 ) ] ) ;
4 z = [ ang le ; r ] ;

The estimated state is so obtained from the block and the state of motion of a
detected object is known. To better evaluate the truth of the obtained value and the
consistency of the estimated states with respect to the nominal ones, a comparison
between the two is performed. In the following figures, using both a random wave
and a sine wave as a reference, the true trajectory and the estimated trajectory are
compared.

Figure 5.2: Comparison of trajectories using a random wave reference.
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Figure 5.3: Comparison of trajectories using a sine wave reference.

5.5 One-step approach: design of Direct Virtual
Sensor design (DVS)

The DVS design involves the identification of a model directly using data sets. To
estimate such a model, the System Identification Toolbox in MATLAB is used.
After importing the identification data sets, the 25 data sets are merged to properly
obtain an optimal model. The aim is to obtain the simpler and the best model
to compare the obtained performances with the ones obtained by estimating an
EKF. In the trial and error procedure, primarily some linear (polynomial) models
(ARX, ARMAX, OE) are estimated. An initial screening of the accuracy of the
model may be done by evaluating the best-fit parameter of the respective model.
This screening is useful to discard the non-coherent models. Unfortunately, no
polynomial models overcome the first screening. Then, some nonlinear ARX models
are designated. In the identification settings, it is possible to modify the number
of terms of input and output channels and to choose the type of nonlinearity (see
Section 5.6). The choice is to only deal with sigmoid networks as nonlinearity. In
the first step, some NARX models are designated and, as the previous computation
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on polynomial models, a trial and error procedure, by adjusting and increasing the
number of terms in the regressors and the number of units in the nonlinear block,
is performed. From the best-fit values, some models seem to be coherent, so they
are imported in Simulink area and model validation is executed. To validate such
a model, validation data sets are gathered. Since those NARX do not give good
results in terms of performance, another trial and error procedure is performed,
and the obtained best estimator is a non-autoregressive NARX. In Figure 5.4 and
in Figure 5.5 the measured and simulated model output is reported, while in Figure
5.6 and in Figure 5.7 some details are highlighted. The mentioned figures refer to
the best estimator in the x position. In Section 6.2 the optimal filter features are
well explained.

Figure 5.4: Model output of the x position considering a random wave.

Figure 5.5: Model output of the x position considering a sine wave.
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Figure 5.6: Detail of model output of the x position considering a random wave.

Figure 5.7: Detail of model output of the x position considering a sine wave.
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5.6 NARX structure and neural networks
Nonlinear ARX models (NARX) are the nonlinear extension of the linear ARX
models. To design these models, flexible nonlinear functions are used [17]. To
compute the nonlinear ARX model it is useful to start approaching the linear SISO
ARX model, which has the following structure:

y(t) + a1y(t − 1) + a2y(t − 2) + · · · + anay(t − na) =
= b1u(t) + b2u(t − 1) + · · · + bnb

u(t − nb + 1) + e(t)
(5.17)

where u is the input, y is the output and e is the noise. From Equation 5.17, the
current output y(t) is the predicted term according to the weighted sum of past
output values and current and past input values. So, referring to Equation 5.17,
the na is the terms of the past outputs, while the nb is the past input terms used
to predict the current output. The last equation may be detailed as:

yp(t) = [−a1, −a2, . . . , −ana , b1, b2, bnb
]·

· [y(t − 1), y(t − 2), . . . , y(t − na), u(t), u(t − 1), . . . , u(t − nb − 1)]T
(5.18)

where y(t − 1), y(t − 2), . . . , y(t − na), u(t), u(t − 1), . . . , u(t − nb − 1) are the
regressor terms. To compute a nonlinear ARX model:

• A more flexible function F is used instead of the weighted sum of the regressor
terms:
yp(t) = F(y(t − 1), y(t − 2), y(t − 3), . . . , u(t), u(t − 1), u(t − 2), . . . ) (5.19)

F may represent one of the nonlinear functions explicated in the next para-
graphs;

• The regressors of the nonlinear ARX models may be both input-output
variables and nonlinear expressions of delayed input and output variables.

The structure of nonlinear ARX models is based on a block containing the regressor
terms and an output function, which may hold mapping objects for each model
output. Note that the output of the function block may state one or more mapping
objects, so it is described as:

F(x) = LT (x − r) + g(Q(x − r)) + d (5.20)
where x is the regression vector, LT(x − r) is the block output of linear function
one, g(Q(x − r)) is the output of the nonlinear function block, r is the vector of
the regressor mean, Q is a projection matrix and d is the scalar offset.
g(x) is a function like a sum of n units, nonlinear [18]:

g(x) =
nØ

k=1
αkκ(βT

k (x − γk)) (5.21)

where:
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• βk is a vector, so βT
k (x − γk) is a scalar;

• κ is representing a function.
An example of κ(s) is the unit step function:

κ(x) =
0 for x < 0

1 for x ≥ 0
(5.22)

Regarding the step function in Equation 5.22, a smooth step, like Sigmoid Func-
tion can be initialized:

κ(s) = 1
1 + e−s (5.23)

However, the form of F(x) depends on the chosen mapping objects.

5.6.1 One layer sigmoid network
A sigmoid network function is implemented by a idSigmoidNetwork object. The
network function operates on a ridge combination of inputs: x(t) = [x1(t), x2(t), . . . , xm(t)]T
which are mapped to a scalar output y(t):

y(t) = y0 + (x(t) − x)T PL + S(x(t)) (5.24)

where:
• x(t) ∈ Rm is the vector of regressors with mean x;

• y0 ∈ R is scalar offset;

• P ∈ Rm,p, m ≥ p is a projection matrix (p is the number of linear weights);

• L ∈ Rp is a vector of weights;

• S(x) is a sum of dilated and translated sigmoid functions:

S(x) =
nØ

i=1
sif((x − x)T Qbi + ci) (5.25)

where:

– n is the number of units;
– Q ∈ Rm,q, m ≥ q is a projection matrix;
– the si ∈ R are the output coefficients;
– the bi ∈ Rq are the dilatation coefficients;
– the ci ∈ R are the translations;
– f(z) is the sigmoid functions as defined above.
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5.6.2 Wavelet network
A wavelet network function is implemented by a idWaveletNetwork object. The
network function operates on radial combination of inputs: x(t) = [x1(t), x2(t), . . . , xm(t)]T
which are mapped to a scalar output y(t):

y(t) = y0 + (x(t) − x)T PL + W(x(t)) + S(x(t)) (5.26)

where:
• x(t) ∈ Rm is the vector of regressors with mean x;

• y0 ∈ R is scalar offset;

• P ∈ Rm,p, m ≥ p is a projection matrix (m is the number of regressors p is
the number of linear weights);

• L ∈ Rp is a vector of weights;

• W(x) is a sum of dilated and translated wavelets:

W(x) =
dwØ
i=1

wifw(bi(x − x)T Q − ci) (5.27)

where:

– Q ∈ Rm,q, m ≥ q is a projection matrix;
– the wi ∈ R are the wavelet coefficients;
– the bi ∈ R are the wavelet dilations;
– the ci ∈ Rq are the wavelet translations;
– fw(x) = exxT /2 is the radial function.

• S(x) is a sum of dilated and translated scaling functions:

S(x) =
dsØ

i=1
sifs(bi(x − x)T Q − ei) (5.28)

where:

– Q ∈ Rm,q, m ≥ q is a projection matrix;
– the si ∈ R are the scaling coefficient;
– the bi ∈ R are the scaling dilations;
– the ei ∈ Rq are the translations;
– f(z) is the sigmoid functions as defined above.
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5.6.3 Tree partition
A tree-partitioned nonlinear function is implemented by a idTreePartition ob-
ject. The network function operates on radial combination of inputs: x(t) =
[x1(t), x2(t), . . . , xm(t)]T which are mapped to a scalar output y(t).
The function F(x) is explained in 5.29.

F(x) = xL + [1, x]Ck + d (5.29)

where:

• x belongs to the partition Pk

• L ∈ Rm

• Ck ∈ Rm+1

• Pk is a partition of the x − space

Note that the mapping of F is computed as:

1. Given the value of J, it is initialized a dyadic tree with J levels and N = 2J−1;

2. Each node at level 1 < j < J has two descendants at level j + 1 and one
parent at level j − 1:

• The root node at level 1 has two descendants;
• Nodes at level J are terminating leaves of the tree and have one parent.

3. One partition element is associated with each node k of the tree:

• Using the observations on the partition element Pk, the vector of coefficient
Ck is computed;

• The partition element Pk is cut into two to obtain the partition elements
of descendant elements when the node k is not a terminating node.

4. When the value of the mapping F is computed at x, an adaptive algorithm
selects the active node k of the tree.
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Simulations

6.1 Use of an optimal control LQR
Dealing with target tracking means trying to give an estimate of the target trajectory.
This can be a difficult task, and so to try to restrict the target’s region a control
technique is implemented. A Linear-Quadratic Regulator (LQR) is designed.
Dealing with discrete-time systems the LQR computes the state-feedback control:

un = −Kxn (6.1)

which minimizes the following cost function:

J =
∞Ø

n=0
xT Qx + uT Ru + 2xT Nu (6.2)

related to the system dynamics:

xn+1 = Axn + Bun (6.3)

In Figure 6.1 is well explained the usage of the LQR controller:

Figure 6.1: Controller implentation in Simulink.
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In the studied case:

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 (6.4)

B =


0 0
0 0
1 0
0 1

 (6.5)

Q =


10 0 0 0
0 10 0 0
0 0 10 0
0 0 0 10

 (6.6)

R =
C
0.1 0
0 0.1

D
(6.7)

6.2 Simulation results
The considered case refers to a NARX model with the following assumptions:

• Using sigmoid networks as nonlinearity, the number of units used in the
nonlinear block is 30;

• In standard regressors bot input channels has 28 terms, while the output
channel has 0 terms.

As noted in the above model settings, a non-autoregressive NARX is the right choice,
by imposing 0 on the number of regressors of the output channel. Since the usual
NARX models identified are not optimal to reach the goal, a non-autoregressive
model is the optimal final choice. The RMSE values obtained from designing a
DVS and an EKF are depicted in the tables below, in particular:

• In Table 6.1 there is the RMSE comparison referring to the position x;

• In Table 6.2 there is the RMSE comparison referring to the position y;

• In Table 6.3 there is the RMSE comparison referring to the position vx;

• In Table 6.4 there is the RMSE comparison referring to the position vy;

Notice that the used multiple validation data set is the same in estimating
both the performances coming from position and velocities.
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Simulations

In Table 6.1, the obtained performances by stating the x position are depicted.
An overall of 20 multiple validation data sets are initialized. Some random waves
and sine waves are used as reference functions in the validation data set. From
the obtained values there is evidence of a small improvement while using the DVS
instead of the EKF. The worst and the best case are illustrated below:

Worst case. In the worst case, an enhancement of 0,1312 meters is gained.
Best case. In the best case, an enhancement of 1,2421 meters is gained.

By estimating the average of percentage error of best cases, an improvement of
28% is obtained. This is a very good result when dealing with small RMSE values.
To better validate the models, different amplitude, bias, and frequency values are
used while stating the reference functions.

Reference number Reference type EKF RMSE DVS RMSE

1 Random wave 4.4249 3.3132
2 Random wave 4.7231 4.2089
3 Random wave 4.6492 4.2167
4 Random wave 4.6800 4.2126
5 Random wave 4.0649 3.2740
6 Random wave 4.1099 3.6965
7 Random wave 4.0566 3.8680
8 Random wave 4.7352 4.2082
9 Random wave 4.7093 4.2099
10 Random wave 4.6920 4.2124
11 Sine wave 4.4748 3.2327
12 Sine wave 4.5614 4.4125
13 Sine wave 4.4822 3.2601
14 Sine wave 4.4320 3.8916
15 Sine wave 4.5382 3.3247
16 Sine wave 4.4921 3.3191
17 Sine wave 4.4962 3.4049
18 Sine wave 4.5591 4.4279
19 Sine wave 4.5253 3.7192
20 Sine wave 4.5393 3.9260

Table 6.1: List of the 20 RMSE values obtained from EKF computation and DVS
computation of position x.
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Simulations

Two charts are represented to better figure out the obtained RMSE values, referred
to the x position and coming from the design of the EKF and the DVS. The
orange lines are the RMSE amounts obtained from the EKF design, while the blue
lines are the RMSE amounts coming from the DVS design. The overall RMSE
measurements coming from the DVS design are lower (and so, better) than the
ones coming from the EKF design.

Figure 6.2: Histogram of RMSE values referred to the x position.

Figure 6.3: Line chart of RMSE values referred to the x position.
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Simulations

In Table 6.2, the obtained performances by stating the y position are depicted.
An overall of 20 multiple validation data sets are initialized. Some random waves
and sine waves are used as reference functions in the validation data set. From
the obtained values there is evidence of a small improvement while using the DVS
instead of the EKF. The worst and the best case are illustrated below:

Worst case. In the worst case, an enhancement of 0,0583 meters is gained.
Best case. In the best case, an enhancement of 1 meter is gained.

By estimating the average of percentage error of best cases, a value of the 21% is
obtained. This is a very good result when dealing with small RMSE values. To
better validate the models, different amplitude, bias, and frequenct are used while
stating the reference functions.

Reference number Reference type EKF RMSE DVS RMSE

1 Random wave 4,5010 4,2768
2 Random wave 4,5497 4,1002
3 Random wave 4,4776 4,4193
4 Random wave 4,5077 4,2417
5 Random wave 4,4943 4,3151
6 Random wave 4,4893 4,3449
7 Random wave 4,5869 4,1301
8 Random wave 4,5616 4,0922
9 Random wave 4,5363 4,1278
10 Random wave 4,5195 4,1860
11 Sine wave 4,4438 3,6936
12 Sine wave 4,4428 3,6958
13 Sine wave 4,4379 3,6893
14 Sine wave 4,3883 3,9043
15 Sine wave 4,3608 4,1795
16 Sine wave 4,3734 4,0435
17 Sine wave 4,4765 4,0274
18 Sine wave 4,4737 3,9857
19 Sine wave 4,4682 3,9097
20 Sine wave 4,7483 3,7483

Table 6.2: List of the 20 RMSE values obtained from EKF computation and DVS
computation of position y.
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Simulations

Two charts are represented to better figure out the obtained RMSE values, referred
to the y position and coming from the design of the EKF and the DVS. The
orange lines are the RMSE amounts obtained from the EKF design, while the blue
lines are the RMSE amounts coming from the DVS design. The overall RMSE
measurements coming from the DVS design are lower (and so, better) than the
ones coming from the EKF design.

Figure 6.4: Histogram of RMSE values referred to the y position.

Figure 6.5: Line chart of RMSE values referred to the y position.
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Simulations

In Table 6.3, the obtained performances by stating the vx velocity are depicted.
An overall of 20 multiple validation data sets are initialized. Some random waves
and sine waves are used as reference functions in the validation data set. From
the obtained values there is evidence of a small improvement while using the DVS
instead of the EKF. The worst and the best case are illustrated below:

Worst case. In the worst case, an enhancement of 1,1370 meters is gained.
Best case. In the best case, an enhancement of 7,2028 meters is gained.

By estimating the average of percentage error of best cases, a value of the 58% is
obtained. This is an excellent result when dealing with a small RMSE values. To
better validate the models, different amplitude, bias, and frequency values are used
while stating the reference functions. Notice the higher improvement in random
cases than sine wave cases.

Reference number Reference type EKF RMSE DVS RMSE

1 Random wave 12,3614 5,2432
2 Random wave 12,4915 5,2887
3 Random wave 12,2989 5,2276
4 Random wave 12,3792 5,2484
5 Random wave 10,5755 4,6896
6 Random wave 7,8327 4,2760
7 Random wave 11,6905 5,0279
8 Random wave 10,7098 4,7839
9 Random wave 12,4555 5,2744
10 Random wave 12,4106 5,2584
11 Sine wave 5,5817 3,6738
12 Sine wave 5,5816 3,6738
13 Sine wave 6,5112 3,6686
14 Sine wave 4,9980 3,8610
15 Sine wave 5,5764 3,6706
16 Sine wave 5,5825 3,6736
17 Sine wave 5,5955 3,6702
18 Sine wave 5,6399 3,6672
19 Sine wave 5,6287 3,6674
20 Sine wave 5,6170 3,6702

Table 6.3: List of the 20 RMSE values obtained from EKF computation and DVS
computation of velocity vx.
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Simulations

Two charts are represented to better figure out the obtained RMSE values, referred
to the vx velocity and coming from the design of the EKF and the DVS. The
orange lines are the RMSE amounts obtained from the EKF design, while the blue
lines are the RMSE amounts coming from the DVS design. The overall RMSE
measurements coming from the DVS design are lower (and so, better) than the
ones coming from the EKF design.

Figure 6.6: Histogram of RMSE values referred to the vx velocity.

Figure 6.7: Line chart of RMSE values referred to the vx velocity.
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Simulations

In Table 6.4, the obtained performances by stating the vy velocity are depicted.
An overall of 20 multiple validation data sets are initialized. Some random waves
and sine waves are used as reference functions in the validation data set. From
the obtained values there is evidence of a small improvement while using the DVS
instead of the EKF. The worst and the best case are illustrated below:

Worst case. In the worst case, an enhancement of 0,0848 meters is gained.
Best case. In the best case, an enhancement of 6,7353 meters is gained.

By estimating the average of percentage errors of best cases, an improvement
of the 65% is obtained. This is an excellent result when dealing with relative
small RMSE values. To better validate the models, different amplitude, bias, and
frequency values are used while stating the reference functions. Notice the higher
improvement in random cases than sine wave cases.

Reference number Reference type EKF RMSE DVS RMSE

1 Random wave 10,3585 3,6400
2 Random wave 10,4646 3,7293
3 Random wave 10,3076 3,6019
4 Random wave 10,3731 3,6516
5 Random wave 9,0266 3,8347
6 Random wave 6,9565 4,5919
7 Random wave 9,8751 3,7775
8 Random wave 9,1325 3,9237
9 Random wave 10,4352 3,7034
10 Random wave 10,3986 3,6724
11 Sine wave 4,5617 2,2734
12 Sine wave 4,5616 2,7432
13 Sine wave 4,3885 4,3037
14 Sine wave 4,6749 3,0509
15 Sine wave 4,5629 2,7490
16 Sine wave 4,5610 2,7440
17 Sine wave 4,5613 2,7545
18 Sine wave 4,5524 2,7780
19 Sine wave 4,5525 2,7769
20 Sine wave 4,5551 2,7642

Table 6.4: List of the 20 RMSE values obtained from EKF computation and DVS
computation of velocity vy.
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Simulations

Two charts are represented to better figure out the obtained RMSE values, referred
to the vy velocity and coming from the design of the EKF and the DVS. The
orange lines are the RMSE amounts obtained from the EKF design, while the blue
lines are the RMSE amounts coming from the DVS design. The overall RMSE
measurements coming from the DVS design are lower (and so, better) than the
ones coming from the EKF design.

Figure 6.8: Histogram of RMSE values referred to the vy velocity.

Figure 6.9: Line chart of RMSE values referred to the vy velocity.
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Chapter 7

Conclusions

The aim of this thesis is to design a state observer/filter which is able to track a
target using radar measurement. Some simulated data sets are used. A two-step
procedure is usually pursued by identifying a system model from an experimental
data set, and then by designing the filter (EKF) based on the identified model. To
better deal with nonlinearities in the system, an alternative option is the so-called
one-step procedure. This approach involves the direct design of the filter (DVS)
from the data set. The Extended Kalman Filter is schemed using a proper Simulink
block, while the Direct Virtual Sensor is planned by using the System Identification
Toolbox. Both the obtained models have been validated using Simulink. The
obtained performances, in terms of root-mean-square estimation error from the two
filters, are compared. The results from the simulations show better performances of
the DVS than the ones of the EKF. Considering the motivations described above,
the proposed process (one-step procedure) is the best choice.

54





Bibliography

[1] Wing Ip Tam. «Tracking filters for radar systems». PhD thesis. 1999 (cit. on
pp. 2, 34).

[2] Merrill I Skolnik. «Introduction to radar». In: Radar handbook 2 (1962), p. 21
(cit. on pp. 2, 19).

[3] «Converted state equation Kalman filter for nonlinear maneuvering target
tracking». In: Signal Processing 202 (2023), p. 108741. issn: 0165-1684. doi:
https://doi.org/10.1016/j.sigpro.2022.108741 (cit. on p. 2).

[4] Steven Zollo and Branko Ristic. «On polar and versus Cartesian coordinates
for target tracking». In: ISSPA’99. Proceedings of the Fifth International Sym-
posium on Signal Processing and its Applications (IEEE Cat. No. 99EX359).
Vol. 2. IEEE. 1999, pp. 499–502 (cit. on p. 2).

[5] Inam Ullah, Xin Su, Jinxiu Zhu, Xuewu Zhang, Dongmin Choi, and Zhenguo
Hou. «Evaluation of localization by extended Kalman filter, unscented Kalman
filter, and particle filter-based techniques». In: Wireless Communications and
Mobile Computing 2020 (2020), pp. 1–15 (cit. on p. 2).

[6] Carlo Novara, Fredy Ruiz, and Mario Milanese. «Direct filtering: A new ap-
proach to optimal filter design for nonlinear systems». In: IEEE Transactions
on Automatic Control 58.1 (2012), pp. 86–99 (cit. on pp. 2, 3).

[7] Lianmeng Jiao, Quan Pan, Yan Liang, and Feng Yang. «A nonlinear tracking
algorithm with range-rate measurements based on unbiased measurement
conversion». In: 2012 15th International Conference on Information Fusion.
IEEE. 2012, pp. 1400–1405 (cit. on p. 2).

[8] Caglar Yardim, Peter Gerstoft, and William S Hodgkiss. «Tracking refractivity
from clutter using Kalman and particle filters». In: IEEE Transactions on
Antennas and Propagation 56.4 (2008), pp. 1058–1070 (cit. on p. 2).

[9] Mario Milanese, Carlo Novara, Kenneth Hsu, and Kameshwar Poolla. «The
filter design from data (FD2) problem: Nonlinear Set Membership approach».
In: Automatica 45.10 (2009), pp. 2350–2357. issn: 0005-1098. doi: https:
//doi.org/10.1016/j.automatica.2009.06.014 (cit. on pp. 3, 7, 9).

56

https://doi.org/https://doi.org/10.1016/j.sigpro.2022.108741
https://doi.org/https://doi.org/10.1016/j.automatica.2009.06.014
https://doi.org/https://doi.org/10.1016/j.automatica.2009.06.014


BIBLIOGRAPHY

[10] M Milanese, C Novara, K Hsu, and K Poolla. «Nonlinear virtual sensors
design from data». In: IFAC Proceedings Volumes 39.1 (2006), pp. 576–581
(cit. on p. 3).

[11] Qiang Li, Ranyang Li, Kaifan Ji, and Wei Dai. «Kalman filter and its appli-
cation». In: 2015 8th International Conference on Intelligent Networks and
Intelligent Systems (ICINIS). IEEE. 2015, pp. 74–77 (cit. on p. 4).

[12] Carlo Novara. «Nonlinear Control and Aerospace applications: lecture notes».
In: Politecnico di Torino (2020) (cit. on p. 4).

[13] Mark A Richards, Jim Scheer, William A Holm, and William L Melvin.
Principles of modern radar. Vol. 1. Citeseer, 2010 (cit. on pp. 11–19, 22, 23,
25, 28).

[14] Martin Schneider. «Automotive radar-status and trends». In: German mi-
crowave conference. Citeseer. 2005, pp. 144–147 (cit. on p. 25).

[15] Liu Zhaohua and Gao Bochao. «Radar sensors in automatic driving cars». In:
2020 5th International Conference on Electromechanical Control Technology
and Transportation (ICECTT). IEEE. 2020, pp. 239–242 (cit. on p. 25).

[16] X Rong Li and Vesselin P Jilkov. «Survey of maneuvering target tracking.
Part I. Dynamic models». In: IEEE Transactions on aerospace and electronic
systems 39.4 (2003), pp. 1333–1364 (cit. on p. 33).

[17] The MathWorks Inc. System Identification toolbox. Natick, Massachusetts,
United States. url: https://it.mathworks.com/help/ident/index.
html?s_tid=CRUX_lftnav (cit. on p. 40).

[18] Ljung Lennart. System Identification: Theory for the User. Prentice Hall PTR,
1999. isbn: 0136566952 (cit. on p. 40).

57

https://it.mathworks.com/help/ident/index.html?s_tid=CRUX_lftnav
https://it.mathworks.com/help/ident/index.html?s_tid=CRUX_lftnav

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Two-step approach: using the Extended Kalman Filter
	Filter design from data: two-step vs. one-step
	Linear system
	Nonlinear system

	DVS design procedure

	Principles of radar
	Measurements of a radar
	Fundamental of radar measurements
	Model for radar signal
	Estimation of parameters
	Range measurements
	Phase measurement
	Doppler and range rate measurements
	Angle measurements
	Coordinate system

	Frequencies of radars
	Radar tracking algorithms
	Track filtering fundamentals
	Motion models
	Measurements models
	Radar track filtering

	Radar applications
	Civil applications
	Military applications


	EKF and DVS implementation
	Main model for radar localization systems
	Target dynamics
	Radar measurements
	Two-step approach: design of Extendend Kalman Filter (EKF)
	One-step approach: design of Direct Virtual Sensor design (DVS)
	NARX structure and neural networks
	One layer sigmoid network
	Wavelet network
	Tree partition


	Simulations
	Use of an optimal control LQR
	Simulation results

	Conclusions
	Bibliography

