
POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Implementation of a PKI-based security

communication and Value Added Service

for EV charging using ISO 15118 standard

Supervisors

Prof. Marcello CHIABERGE

Eng. Alberto SEVEGA

Candidate

Filippo D’AGOSTINO

April 2023

This research paper (“Thesis”) has been produced in the context of an internship
program that Filippo D’Agostino (the “Intern”) has attended within Accenture
Spa. The Thesis is confidential and cannot be used other than by the Intern for
the purpose of presenting his/her work. It must not be disclosed other than to
Politecnico di Torino’s professors on a confidential basis and to the extent required
for Politecnico di Torino to carry out an evaluation and assess the Intern’s final
exam. In preparing this document, the Intern acknowledges that he/she has relied
on confidential information provided by Accenture only for the purposes of producing
the Thesis. The Intern shall defend, indemnify and hold harmless Accenture from
and against any claim, demands, actions, judgments, awards, settlements, fees,
liabilities, losses, damages, costs and expenses (including and without limitation
attorneys’ fees and court costs) (“Obligations”) arising out of or relating to any
allegation or claim that the Thesis or any use thereof infringes, misappropriates
or otherwise misuses or violates the Intellectual Property or other rights of any
Person. Accenture shall have the right, in its sole discretion, to participate in
the defense of any such allegations or claims at its expense with a counsel of its
choosing. The Intern shall not compromise or settle any such allegation or claim,
or agree to binding arbitration thereof, in any manner without Accenture’s prior
written consent, unless such settlement is solely monetary in nature, and releases
all Accenture Indemnified Parties from all Obligations with no admission of liability
and has no adverse effect on any of them. This paper was written for my university
thesis and is my personal work. The views expressed are my own and may not
necessarily reflect those of Accenture.

ii

Summary

Nowadays, the world is facing an energy transition phase towards full decarboniza-
tion and a 100 percent energetic sustainable situation. One of the big steps, that
could be crucial for the ecological changeover, is involving the vehicle passage from
ICE to electric vehicles. In this field, technological progress is moving towards the
V2G technology, a method that enables the bidirectional electrical power flow at
the charging station.

This thesis aims to implement the digital communication between an Electric
Vehicle (EV) and a Charging Point as a Proof-of-Concept in a full-simulated
charging process in order to lay the foundations for the V2G technology to work
smoothly. In particular, it will focus on the digital security field; thus, it will take
care of identification, protection and authentication of the data transfer.
The communication itself is ruled by the ISO 15118 standard which has been
applied, in this case, using a Java stack protocol called Rise-V2G. The simulation
environment has been built using 2 Raspberry Pi 4 on which are developed a series
of Python scripts to manage the data flow. All the communication necessary data
are shown on 2 touchscreen displays.
On the digital security side, it requires to integrate a PKI-based protocol that is
normalized by the already quoted ISO standard and the VDE-AR-E 2802-100-1
guide. The latter provides the application of an asymmetric encryption and a
2-way digital certificate identity check for all Entities involved in the charging

iv

process. Besides the generation of customized certificates, the 2 main objectives
are the usage of the installation and update of new certificates. This represents a
key role since it allows the Plug and Charge mode, which differs from the modern
identification method, through RFID, by simply plugging in the connector.
A further implementation that has been developed in this project is the execution
of a Value Added Service (VAS) during the charging process. This process has
been developed in the stack Java script, as regarding the description and for its
possible selection by the user, and in a Python script for its real execution.

v

Acknowledgements

I would like to thank my supervisors Eng. Alberto Sevega and Prof. Marcello
Chiaberge for the opportunity to collaborate with Accenture Spa and take part in
this innovative project.
I also thank my former supervisor Ph.D. Massimo Reineri for supporting me during
the first half of this experience.

If at first you don’t succeed, laugh until you do...

vi

Table of Contents

List of Tables xi

List of Figures xii

Acronyms xv

1 Introduction 1

1.1 Evolution of EV market . 1
1.1.1 Historical evolution of the EV 1
1.1.2 Economical evolution of the EV market 2

1.2 EV world . 5
1.2.1 EV main families . 5
1.2.2 Structure and main functional components of an EV 7
1.2.3 EVSE world . 9
1.2.4 Smart charging . 14
1.2.5 Overview on newest standard ruling the eMobility charging

process communication . 15

2 Digital security guide for ISO 15118 implementation 16

2.1 Overview on Public Key Infrastructure (PKI) 16
2.1.1 Security concepts . 18
2.1.2 Digital certificates and keys 19

viii

2.1.3 Signature generation . 20
2.2 VDE-AR-E 2802-100-1 . 21

2.2.1 eMobility Panorama . 21
2.2.2 Certificates types and main features 25
2.2.3 Certificate validation . 29
2.2.4 Certificate Installation and Update 31

3 DIN EN ISO 15118 standard: Vehicle-To-Grid Communication
Interface 35

3.1 DIN EN ISO 15118 standard: Vehicle-To-Grid Communication In-
terface . 36

3.2 ISO 15118-2 standard . 39
3.2.1 Overview and objectives . 39
3.2.2 Structure of the standard 40
3.2.3 Message Signature . 46
3.2.4 State, messages and types 47

3.3 Base of Plug and Charge . 53
3.3.1 What does PnC usage entail 53
3.3.2 Certificate Installation . 54
3.3.3 Certificate Update . 56

4 ISO15118-PoC: hardware and software implementation 58

4.1 General Demo organization . 58
4.1.1 High-Level Architecture . 59
4.1.2 Hardware components . 60

4.2 Java software components . 61
4.2.1 RISE-V2G: original... 61
4.2.2 RISE-V2G: ...and developments 76

4.3 Python software components . 80
4.3.1 Graphical User Interface (GUI) 80

ix

4.3.2 Power Flow Simulator (PFS) 85
4.3.3 Business Logic (BL) and Property file 93
4.3.4 Additional secondary files 102

5 Testing results 104
5.1 Test case: AC mode standard charging session simulation using

Plug&Charge payment option . 105
5.2 Test case: DC mode standard charging session simulation using

Plug&Charge payment option . 109
5.3 Test case: Certificate handling . 112

5.3.1 T.1: Certificate Installation 112
5.3.2 T.2: Certificate Update . 114

6 Conclusions 115
6.1 Achievements . 115
6.2 Future developments . 117

Bibliography 118

x

List of Tables

1.1 Charging levels illustrating the type of supply, voltage, current and
the necessary charging time for each one. 10

1.2 Charging modes illustrating each general characterization. 11

3.1 Digital certificate fields according to X.509v3-certificate. 42

4.1 evseController and evController folder structure and content. 73
4.2 main folder structure and content. 73
4.3 misc folder structure and content. 73
4.4 session folder structure and content. 74
4.5 states folder structure and content. 75
4.6 transportLayer folder structure and content. 75
4.7 Business Logic initialized Threads. 95

xi

List of Figures

1.1 EVs stock global trend between 2010 and 2020.[1] 3

1.2 Charging points global trend between 2010 and 2020.[1] 3

1.3 ICE vehicles global sales from 2015 and future predictions by 2030. 4

1.4 EV sales prediction by 2030. 5

1.5 EV schema of the main components. 9

1.6 comparison between Charging Levels and Charging Modes. 12

1.7 plug types based on the region and the charging mode. 13

2.1 Single PKI structure. 22

2.2 Overview of PKI ecosystem. [8] . 25

2.3 Schema of every certificate chain involved in PKI. 28

2.4 Overall system approach to facilitate the Plug and Charge process. 31

3.1 ISO 15118 standard implementation on the OSI Model. 39

3.2 Macro scheme of the ISO 15118-2 objective. 40

3.3 Example of a SECC-EVCC communication sequence. 41

3.4 Scheme of general communication states from an EVCC perspective. 43

3.5 V2GTP Message structure. 45

3.6 XML representation of the AuthorizationReq. 47

3.7 Sequence communication states for AC V2G messaging (left SECC,
right EVCC). 48

xii

3.8 Sequence communication states for DC V2G messaging (left SECC,
right EVCC). 49

3.9 Example of a complex type and its sub-components. 51
3.10 Overview on Identification Modes and Message Sets. 52

4.1 Demo software general structure. 59
4.2 Hardware components assembled. 61

5.1 AC Request-Response Message Sequence PnC payment option. . . . 105
5.2 EV GUI page of the selection of the payment option. 106
5.3 EV GUI pages of departure time and charging profiles selection. . . 107
5.4 EV (left) and EVSE (right) GUI charging loop page. 108
5.5 DC Request-Response Message Sequence PnC payment option. . . . 110
5.6 GUI page of the end of the charging session. 111
5.7 Disconnection cable GUI page. 112
5.8 Certificate Installation GUI page. 113
5.9 Certificate Update GUI page. 114

xiii

Acronyms

BEV

Battery Electric Vehicle

BL

Business Logic

CCB

Contract Certificate Bundle

CCP

Contract Certificate Pool

CPO

Charging Point Operator

CPS

Certificate Provisioning Service

CSMS

Charging Station Management System

CSR

Certificate Signing Request

xv

EIM

External Identification Mode

eMAID

eMobility Authentication Identifier

eMSP

eMobility Service Provider

EV

Electric Vehicle

EVCC

Electric Vehicle Communication Controller

EVSE

Electric Vehicle Supply Equipment

EXI

Efficient XML Interchange

GUI

Graphical User Interface

HEV

Hybrid Electric Vehicle

ICE

Internal Combustion Engine

MO

Mobility Operator

xvi

OEM

Original Equipment Manufacturer

OSI

Open System Interconnection

PCID

Provisioning Certificate ID

PCP

Provisioning Certificate Pool

PFS

Power Flow Simulator

PHEV

Plug-in Hybrid Electric Vehicle

PKI

Public Key Infrastructure

PLC

Power Line Communication

PnC

Plug and Charge

PoC

Proof-of-Concept

SA

Secondary Actor

xvii

SECC

Supply Equipment Communication Controller

SoC

State of Charge

TCP

Transmission Control Protocol

TLS

Transport Layer Security

UDP

User Datagram Protocol

V2B

Vehicle-To-Building

V2G

Vehicle-To-Grid

V2GTP

Vehicle-To-Grid Transfer Protocol

V2H

Vehicle-To-Home

VAS

Value Added Service

XML

eXtensible Markup Language

xviii

Chapter 1

Introduction

1.1 Evolution of EV market

The modern world scene is ruled by the research and development of a possible
solution to the impending problems of climate change and energy crisis, and this
scenario brings the current global automotive landscape into a deep changing phase.
This is witnessed by the recent European Parliament’s approval of the European
Commission’s proposal to ban the production of endothermic cars from 2035. It
represents a strong change of course which is translating into a discreet increase in
the electric vehicles market.

1.1.1 Historical evolution of the EV

The first appearance of an electric vehicle on the market is registered in the first
half of the XIX century. Its production slightly increases till the next century, when
EVs’ diffusion peaks. In 1900-1910, EVs were the main means for short trips around
the cities. However, the availability of electricity was only guaranteed in the areas
with a high-density population. Moreover, in the same years, Ford’s gas-powered
model-T changed completely the focus of cars; in fact, the cars based on gasoline as

1

Introduction

a power source were cheaper, and affordable for a larger population and they have
much longer autonomy. Another reason that affected the EV disappearance was
the development of a better system of roads and interconnections between cities.
Over the next 30 years, electric vehicles entered a sort of dark age with little
advancement in this technology. Cheap and plentiful gasoline and the continued
improvement of the internal combustion engine have negatively impacted the de-
mand for alternative fuel vehicles.
In the early 1970s, an accretion of oil prices and gasoline shortages determined
a push in exploring options for alternative fuel vehicles, including electric cars.
Nevertheless, the vehicles developed and produced in the 1970s still suffered from
drawbacks compared to gasoline-powered cars. EVs had limited performance, usu-
ally topping at speeds of 72 km/h, and their typical range was limited to 64 km
before needing to be recharged.
The real revival of the electric vehicle took place at the beginning of the XXI
century when its market took off due to various factors. Initially, it was 2 companies
that started this trend: the newly established Tesla Motors in Silicon Valley and
Toyota in Japan. In addition, many environmental incentives were created and new
technological steps were taken. Some of these represented major improvements in
battery performance, such as in charging infrastructures and charging times.
As these core vehicle-related technologies improved, new challenges quickly took
their place, such as how to manage the energy balance, how to distribute and locate
charging points across countries, how to make the charging process user-friendly,
etc. Questions like these guaranteed a bright future for electric vehicle development.

1.1.2 Economical evolution of the EV market

Considering the EVs evolution from the economical point of view and how quantita-
tively the automotive market changes, I will focus on analyzing the data collected
in the last 10 years since this is the period in which has been recorded the biggest

2

Introduction

variation in terms of how much the main product, in our case the vehicles, is
changed in favor of a second one with a different power source.
In the early 10s, the stock of electric vehicles was about 17000 BEV units and 400
PHEV units. After a decade, these figures increased exponentially, reaching 11
million for BEVs and 5.2 million for PHEV.
The growing trend of charging points can be observed; they increased from the
value of 3700 units of slow CPs and 310 units of fast ones to account for over 1.2
million for the slow units and 560000 units for the fast ones.
The charts below show in more detail these 2 tendencies.

Figure 1.1: EVs stock global trend between 2010 and 2020.[1]

Figure 1.2: Charging points global trend between 2010 and 2020.[1]

3

Introduction

At the same time, ICE vehicles have undergone an initially stronger increase
than EVs one, but at the end of the decade, it almost stabilizes. The future of
vehicles based on the combustion engine will not be characterized by a different
trend; indeed, the predictions of ICE vehicles will fall by about 9.9 million units by
2030.
The following bar chart shows hypothetically how the ICE car global sales could
change in the next 10 years and it compares these values to the ones registered in
the last 5 years.

Figure 1.3: ICE vehicles global sales from 2015 and future predictions by 2030.

With regard to the predicted number of EV sales in the next 10 years, strong
growth can be expected. In particular, the estimated value of EV sales by 2030
will be over 45 million units. This is a likely scenario based on the technological
advancements achieved until now and the past and present vehicle market evolution.
However, it should not be explained that electric motors and batteries will remain
the leading power resource used in the transport field since the countries, hosting
the world heading companies, are released incentives for the research.
Also, in this case, the IEA offers a chart accurately describing the future possible

4

Introduction

progression of EV sales.

Figure 1.4: EV sales prediction by 2030.

1.2 EV world

As already mentioned, the world surrounding the electric vehicle is a technological
front in constant evolution and it has not already reached its maximum potential.
The modern EVs are spaced out a lot from their original prototype especially
differentiating themselves under some specific structural or functional characteristics.
This section aims to analyze and describe the common line that ties up all the
categories and underline the different aspects for which they can be discriminated.

1.2.1 EV main families

There exist 4 macro categories [2] into which electric vehicles may be divided:

• Battery Electric Vehicle (BEV):
it is also called All-Electric Vehicle (AEV) and it relies exclusively on a battery
and the electric drive train as power source and its transmission. It can operate
in 2 modes:

5

Introduction

– direct mode, activated during the acceleration, simply provides the car’s
move using the energy from a big battery pack to one or multiple electric
motors;

– inverse mode, activated during deceleration when the brakes are pressed,
the motor becomes an alternator converting the move into current, sending
it back to recharge the battery.

• Hybrid Electric Vehicle (HEV):
it is also called a standard or parallel hybrid. Its power source is the cooperation
between an ICE and an electric motor. Therefore, it has both a battery and a
gasoline tank.
The first main feature that distinguishes this type of e-vehicle is that the
batteries cannot be charged through an external port using a power grid, but
only through the motion of the wheels, through the ICE or a combination of
both. The second distinguishing feature is the movement of the vehicle, which
can be powered by its own 2 motors.

• Plug-in Hybrid Electric Vehicle (PHEV):
often called series hybrid, is a type of hybrid vehicle that has both ICE and
electric motor. The difference with the HEV type set in the recharging process;
the battery pack of the PHEV can be charged by an external port using a
Charging Station.
Typically PHEV can run in 2 modes:

– all-electric mode, in which the motor and battery provide all the car’s
energy;

– hybrid mode, in which both electricity and gasoline are employed.

As an observation, we can notice that smaller engines can be mounted in the
case of PHEV since the electric motor supplements the engine’s power.

6

Introduction

• Fuel Cell Electric Vehicle (FCEV):
also known as Fuel Cell Vehicle (FCV) or Zero Emission Vehicle, is charac-
terized by the integration of a fuel cell to generate the electricity to run the
vehicle.

1.2.2 Structure and main functional components of an EV

The main architectural components of an EV are dictated by the typology of the
EV briefly explained in the previous subsection. However, the majority of the
fundamental elements are actually the same for every modern EV. These machinery
are listed and concisely described below.

• Traction battery pack:
it is the most important and in some cases the only energy storage system in
the form of direct current (DC).
Actually, the battery pack is the macro element that provides energy, but
it consists of smaller sub-elements. The basic unit is made up of individual
batteries, also called cells, which are grouped into modules to save space so
they can deliver a larger voltage. These modules complete the battery pack.
Nowadays, many types of batteries can be used, and it is highly recommended
to install a system to keep them under control; this type of system is called
Battery Management System (BMS). It measures 3 essential parameters of
the battery pack: current, voltage and temperature. It constantly compares
these values with the safety limits and shuts down the load when they exceed
the limits. Apart from safety purposes, the BMS is also used for some compu-
tational purposes; in particular, it measures 2 important values:

– State of Charge (SOC)–>tells how far you can drive before recharge

– State of Health (SOH)–>tells you when it’s time to replace your batteries

The other BMS aim is to maximize the life cycle of the battery pack.

7

Introduction

• Power Inverter:
electrical component with the function of modifying the current coming from
the battery DC in AC so that it can drive the electric motor. In addition, it
also has the function of converting the AC current into DC current during
regenerative braking and then using it to charge the battery.

• Controller:
essential element with the primary function of controlling energy flows and
basic parameters useful for the correct car operation. As the brain of the
vehicle, it controls the motor’s speed and the DC voltage coming out of the
battery pack. All its inputs come from the user like the throttle, breaks
pressure, etc.

• DC/DC Converter:
electronic element used to convert the battery pack voltage down to 12 volts
such that the services, like infotainment, wipers, mirror controls, etc., can be
made usable.

• Charger:
allows charging processes from outside sources like grids. As a consequence of
the different categories to which a car belongs, it is immediately noticed that
not all vehicles own a charger. For example, all the HEV does not have it, but
it is not valid the vice versa. The charger can be on-board if it is installed
inside the vehicle, or off-board if it is installed in the Charging Station; this
argument will be clarified in the next section.

• Many other components are shared in common between the EVs, but are
less relevant for the scope of this thesis. Some of them are thermal systems
(cooling), charge ports and mechanical transmission.

8

Introduction

Figure 1.5: EV schema of the main components.

1.2.3 EVSE world

The charging process of an electric vehicle is performed by the Charging Station,
also called Charging Point or Electric Vehicle Supply Equipment (EVSE). It is
referred to the device that supplies the electrical energy required to charge the
electric vehicle’s battery and communicates with the vehicle to ensure an adequate
and safe flow of electricity. Without going into too much negligible detail, a brief
description of the principal components is provided below.

• The power electronics assembly is the heart of a charging station. Physically,
it consists of wires, capacitors, transformers, and other electronic components.
Functionally, it provides the power for the onboard or offboard charger for
electric vehicles.

• The charge controller acts as the charge station’s "street smarts". It oversees
basic charging functions, such as turning the charger on/ off, measuring power
consumption, and storing important real-time and event data.

9

Introduction

• The network controller allows the station to communicate with its network via
a built-in telecommunications device so managers can monitor it and review
historical event data. It also controls user access to a charging station through
a series of white (authorized) or black (unauthorized) lists.

• The cable and connector assembly plugs into the EV inlet using the EV coupler;
this provides the physical interface EV-EVSE.

The development in the field of e-mobility not only led to a technological im-
provement of the vehicle itself, but also inevitably entailed the development of
charging
On modern roads, the user of an electric vehicle has the possibility of charging
the batteries by choosing between different modalities, which essentially depends
on how much time he has available to charge the vehicle. These modalities are
classified according to the amount of energy delivered to the vehicle. They are, of
course, regulated and are designated differently depending on.

They are called Levels if they are defined by SAE J1772 and they count 3:

Type of Supply Voltage(V) Current(A) Charging Time
Level 1

Slow Charging
Single-phase AC 120 15-20 8-20 hours

Level 2
Quick Charging

Single/Three-phase AC 208-240 20-50 3-8 hours

Level 3
Fast Charging

Single/Three-phase DC 208-480 <=125 15-30 mins

Table 1.1: Charging levels illustrating the type of supply, voltage, current and
the necessary charging time for each one.

Stage 1 has a charging load of 1.4- 1.9 kW and is most commonly used in the
home, as it can be plugged into a standard household outlet.

10

Introduction

Level 2 offers a charging power of up to 22 kW. It is mainly used in residential
areas, parking zones, work and commercial areas and requires special household
and public installation due to the high power supply.
Level 3 offers a charging load of 48 kW at 80 A and 400 kW at 400 A. This charging
station is much larger than the others because it is designed to contain the AC
/DC charger; in fact, it directly supplies DC power to the EV and is also therefore
faster in the charging process. However, its production cost is also the highest of
the 3. There is even a fourth neo-level (Level 4) which again works in DC and is
only used for certain configurations and outlets like CHAdeMO.
In other words, we can distinguish furtherly the EV into 2 categories: AC-capable
charging, which has the AC/DC charger on board, and DC-capable charging, which
has it outside of the vehicle.
If they are defined by IEC 61851-1, they are called Modes counting to 4:

Characteristics

Mode 1 AC charging, low current, no communication

Mode 2
AC charging, for temporary solutions, using in cable control box
on a standard household socket; communication by using
Pulse Width Modulation (PWM)

Mode 3
AC charging with additional features.
Charging power can be controlled over high-level communication

Mode 4
DC and AC charging with high-level communication.
Off-board charger enables very fast charging speeds for DC charging

Table 1.2: Charging modes illustrating each general characterization.

Despite the charging classes being called by different names, they can be seen
as their own correspondents, as shown in the figure below.

11

Introduction

Figure 1.6: comparison between Charging Levels and Charging Modes.

EVSE software is designed to manage charging stations and their networks
and should not be confused with EV applications designed to monitor the vehicle.
EVSE network software promotes rapid setup and configuration of EV charging
stations and facilitates a bi-directional data flow between the charging station and
the cloud-based network control center. This functionality enables operators to
remotely configure, manage and update charging point software, set up and control
driver access to charging, set pricing, manage billing and generate usage reports.
The software applications also allow drivers to easily find and reserve available
charging stations. The software tools can also be configured to send notifications
to operators (hardware/software issues) and e-drivers ("charging complete" and
"charging station available")

The last EVSE component that needs a description is the plug. It changes form
depending on the geographic region and the charging level.

12

Introduction

Figure 1.7: plug types based on the region and the charging mode.

The 2 main connectors families are classified according to the charging level [3]:

• AC Charging:

– AC Type 1–>designed for single-phase AC from 6 to 32 A and thus allows
charging capacities of up to 7.4 kW.

– AC Type 2–>developed for 3-phase AC, for charging battery EVs at 3–50
kW. A 1-phase charging process can also be carried out via the Type-2
connector.

• DC Charging:

– DC GB/T–>mainly used in China, is based on the communication protocol
defined by GB/T 27930.

– CHAdeMO–>mainly used in Japan, uses CAN for the DC charging
communication.

13

Introduction

– Combined Charging System (CCS)–>extension for the AC Type-1 and
Type-2 plug for high DC charging capacities, which additionally has 2
large power contacts.
For high-level communication for smart charging, a powerline communica-
tion (PLC) is overlaid on the CP pin.

– Combo 1 (North America and Japan) and Combo 2 (Europe) connectors
to provide power at up to 350 kW.

1.2.4 Smart charging

In recent years, technological progress in the electric vehicle ecosystem has moved
strongly in a specific direction, such as batteries and charging systems. The latter
is evolving in favor of the user. In other words, companies are trying to develop
new services to make charging the vehicle faster and easier, and to meet customer
needs with different services.
Thus, one of the latest and most important steps in the field of charging options
is the so-called smart grid. It can basically be defined as an intelligent electrical
network that combines electrical systems and smart digital communication technol-
ogy. It is a self-sufficient electrical network system based on digital automation
technology for monitoring, control, and analysis within the supply chain.
Essentially, for a grid to be called smart, it must provide 2-way communication
between electric utilities and consumers. A smart grid is capable of controlling
electrical energy at any single point on a power system and from multiple and
widely distributed generation sources. This means that a smart grid must respond
digitally to users’ changing demand for electricity.
The consequence of this feature is a more balanced electrical power supply; in fact,
smart grids allow for better efficiency in power transmission. Normally, problems
with the power grid occur when there is an unbalanced factor. The smart grid
helps to avoid these disturbances and keep the ratio
between supply and demand almost constant In addition, one of the biggest positive

14

Introduction

effects of smart charging in today’s world is helping to integrate renewable energy
systems into the grid and manage them.

In addition to the benefits that smart charging brings to the energy network,
it also affects the way operators can manage the digital network and maintain
control over the parameters of the charging stations; thanks to the dense digital
network, they can monitor the number of EVSE in operation, their current status
and their individual events. They can also monitor the billing and payment process
without having to intervene because the companies’ goal is to achieve a higher
level of system automation that minimizes both the operator’s and the user’s actions.

1.2.5 Overview on newest standard ruling the eMobility
charging process communication

In the context of this eMobility panorama, the need arose to unify and, above all,
regulate all the actors involved in the charging process of an electric vehicle. In
particular, the communication between the Electric Vehicle Communication Con-
troller (EVCC) and the EVSE controller, called Supply Equipment Communication
Controller (SECC), has been regulated in a new document, along with all other
standards: ISO 15118.
It is flanked by a second guide called VDE-AR-E 2802-100-1, which defines the
roles of all the actors involved in the eMobility panorama and the measures for the
specific area regarding the security protocols applied in the communication.

15

Chapter 2

Digital security guide for
ISO 15118 implementation

2.1 Overview on Public key Infrastructure (PKI)

Public Key Infrastructure (PKI) [4] is a system of processes, technologies, and
policies that allows you to encrypt, decrypt and sign data. It creates a secure
connection for public web pages, private systems and other services that support
MFA (Multi-Factor Authentication), a type of authentication method for which
the user shall provide 2 or more verification factors to gain access to a resource.
The majority of use cases in which PKI is applied are: web page security, files and
emails/messages encryption, authentication and identification of VPN connections.
However, its usage shall not be thought strictly related to web security, but it has
great potential for the IoT sector.

The explanation of the broad topic of PKI results is more understandable once
its main features and working points are clarified. It is based on 2 digital tools:
certificates and keys. The first ones can be thought of as trusted licenses which
identify the owner and authorize him to make some active and/or passive actions

16

Digital security guide for ISO 15118 implementation

like interacting with or receiving documents.
The other pillar upon the PKI stands is represented by the encryption keys. They
are usually numbers with the purpose of being encrypted and/or decrypted once
associated with a mathematical formula.
The high-level working actors are 2: Certificate Authority (CA) and Regis-
tration Authority (RA). The latter is the entity providing digital certificates to
users on a case-by-case basis. All of the certificates that are requested, received,
and revoked by both the Certificate Authority and the Registration Authority are
stored in an encrypted certificate database while certificate history and information
are kept in a certificate store, which is usually grounded on a specific computer
and acts as a storage space for all memory relevant to the certificate history. The
release of a new certificate by the RA shall be approved by the CA.
The main characteristic the highest authority in PKI must guarantee is trustwor-
thiness. It deals with the issuance of digital certificates and acts as a guarantor of
the owner’s identity.
Hence, the following key points are recognizable by what has just been said until
now:

• Customizability: digital certificates can size up or down to accommodate
any type of device.

• Scalability: PKI easily scales so you can manage high volumes of certificates
effectively.

• Competitivity: IoT certificates are cost-effective and priced for high-volume.

• High-security level: PKI shows an extremely valuable identification encryp-
tion/decryption method both in terms of the micro-number of possibilities
to break through either compared to the time quantity dedicated for the
identification.

17

Digital security guide for ISO 15118 implementation

2.1.1 Security concepts

The 2 biggest problems to deal with, when we are talking about digital security, are
the protection of sensible and confidential data and the verification of the parties’
identity.
In order to make as hard as possible the purpose of breaking one of these security
cores, encryption plays a crucial role in guaranteeing the following goals:

• Confidentiality:
service keeping the content of information secret from all except those autho-
rized to have it

• Data Integrity:
service addressing the unauthorized alteration of data. To ensure data integrity,
then it must include the ability to detect data manipulation by unauthorized
parties

• Authenticity:
service applying to both entities and information itself. This aspect usually is
divided into 2 major classes: entity authentication and data integrity. It is
strictly related to the identification.

• Reliability/Availability:
Property of service of being available and working reliably

• Non-repudiation/Accountability:
service preventing an entity from denying previous commitments and actions.

• Privacy:
service protecting personal data, where for personal data we mean any infor-
mation relating to an identified or identifiable natural person, so one who can
be identified, directly or indirectly,

18

Digital security guide for ISO 15118 implementation

2.1.2 Digital certificates and keys

Public Key Infrastructure founds its ability to authenticate on digital certificates.
These are digital tools acting as an identity profile. In PKI, their structure is
dictated by the X.509 standard [5] setting specific mandatory and optional fields
and their "physical" characteristics. These features are described better in the
VDE-AR-E 2802-100-1 guide which will be analyzed in more detail later. For now,
it is basic to observe that every X.509 certificate includes a public key, digital
signature, and information about both the identity associated with the certificate
and its issuing certificate authority (CA).
In particular, the public key is a part of the other tool that works synergistically
with digital certificates which is the key pair.
In general, a key pair, also called cryptographic key pair, is a couple of data strings
used to lock and unlock cryptographic functions like authorization, authentica-
tion and encryption/decryption. The key pair can be divided into 2 categories
corresponding to 2 encryption methods:

• symmetric-key algorithm: 2 equal keys are used to encrypt and decrypt a
message or a signature. This method works with a high computational speed,
but the security level is quite low.

• asymmetric-key algorithm: 2 different keys are used; the private key,
secretly stored by the owner is used to encrypt, while the public one is used by
the external actor to decrypt the object and vice versa if the communication
flow goes reversely.

Focusing on the second encryption method, adopted in the PKI environment, the
private key can only be accessed by the owner of a digital certificate, and they can
choose to whom the public will be distributed. Then, a certificate is essentially a
way of handing out that public key to users that the owner wants to have it.
The asymmetric key pairs ensure a higher level of security given the fact that files
encrypted by the private key can only be decrypted by the public key and vice

19

Digital security guide for ISO 15118 implementation

versa. If the public key can only decrypt a specific file that has been encrypted by
the private key, it means that the file assures the intended receiver and sender took
part in the informational transaction. Most often used for one-way communication,
asymmetric encryption utilizes separate keys that are mathematically connected;
whatever is encrypted in the public key can only be decrypted by its corresponding
private key and vice versa.

2.1.3 Signature generation

A fundamental tool of digital security is the concept of Signature. It applies
not only to a certificate but also to a message, as will be shown later. A digital
signature is an alphanumeric series that attests to the authentication of an object
and guarantees that it has not been tampered.
A further distinction must be done before proceeding. There exist 2 certificate
types:

• Self-signed Certificate: the certificate owner can sign the certificate itself
without relying on a CA.

• Signed Certificate: the certificate owner shall send a Certificate Signing
Request (CSR) to a CA or Sub-CA to sign its own certificate and allow the
signature generation.

In this case, let’s consider an entity able to self-sign its own digital certificate using
an asymmetric-key method. The signature is simply derived by taking the certificate
in a human-reading format and applying sequentially 2 encryption algorithms. The
first is a hash algorithm (SHA-256, ...). It is a widespread mathematical function
that takes as input an object, whatever it is either readable or already encrypted,
and converts it into an alphanumeric series. This process is irreversible.
The second encryption method sees the use of the private key to encrypt the hashed
certificate. The inverse process is possible only using the public key. What the

20

Digital security guide for ISO 15118 implementation

owner obtains, is the certificate signature.
It demonstrates the authenticity of the certificate since, when attached to the
original certificate and received by a second party, this can apply the corresponding
public key and return it to the hashed certificate.
The final check is done by hashing the original certificate with the same algorithm
and comparing the 2 obtained hash series.
A signed certificate is created in the same way with the difference that the key pair
and the signature are produced by the CA receiving the CSR.

2.2 VDE-AR-E 2802-100-1

The VDE application guide [6] establishes the framework for creating a certificate
policy and/or Certification Practice Statement document in the context of the
Plug&Charge process described in DIN EN ISO 15118 (all parts), which specifies
an authentication, authorization, and billing process. Moreover, it applies to the
use of certificates in the expanded scope of this standard including the so-called
Secondary Actors (SAs), described in section 2.2.1.
Additionally, the leading core is to put forward possible technical alternatives for
the installation and the update of a contract certificate in the vehicle.

2.2.1 eMobility Panorama

The concept of Public Key Infrastructure [7] is applied to the modern eMobility
market. It is referred to as a PKI ecosystem, an environment hosting all the players
involved in the eMobility panorama. A PKI ecosystem includes single PKIs, each
with a specific structure and a definite number of SAs, ruled by ISO15118 standard.

21

Digital security guide for ISO 15118 implementation

Figure 2.1: Single PKI structure.

The diagram above describe simply which are the main roles inside a single PKI.
Going into details:

• End customer:
the one who is going to use the EVSE. He has access to a charging and
billing process with the greatest possible degree of automation, so installation
and replacement of any necessary charging contracts in the form of a digital
certificate in the EV (contract certificate).
The user may wish to have the option of using more than one charging contract
in his EV and selecting the appropriate charging contract and associated sales
tariff to suit his purposes.

• Vehicle Manufacturer (OEM):
the company releasing the Electric Vehicle. It shall enable end customers to
conduct automated charging and billing processes.

• E-Mobility Service Provider (eMSP):
Company in charge of offering EV charging services to the end users. They
provide access to the eMSPs network making the customers sign one or more
charging contracts with which they can conduct automated charging and billing

22

Digital security guide for ISO 15118 implementation

processes using the most comprehensive charging infrastructure possible.
Providers of mobility services are the contract parties with which end customers
issue digital X.509 contract certificates. Through the use of contract certificates,
end customers can authenticate and authorize themselves via their EVs at
Charging Points. An eMSP may be also called MSP or MO, and it has the
possibility to act as a Trust Anchor for its certificate chain.

• Charging Point Operator (CPO):
company acting in 2 roles:

– Commercial CPO: purchases electricity for the Charging Points and
provides their infrastructure. Its objective is to grant access to its charging
framework to as many customers as possible.

– Technical CPO: provides IT system for the Charging Station and installs
Trust Anchors (V2G Root CA and MO root CA certificates), CPO
certificates and the associated certificate chains. The IT network back
from the EVSE is called "backend".

• Certificate Provisioning Service (CPS) operator:
provides an IT system to receive the Contract Certificate Bundle from MOs,
process the data and create a Signed Contract Certificate Bundle, then made
it available to the CCP.
Required to ensure that the Contract Certificate Bundle received from MOs
is valid.

• Contract Certificate Pool (CCP) operator:
handles the messages for installing and updating new contract certificates;
they are called CertificateInstallationRes and CertificateUpdateRes.
The CCP operator provides an IT system to receive precompiled messages
(XML format) from the CPS as part of the Signed Contract Certificate Bundle
and has the responsibility to store this data and deliver the corresponding

23

Digital security guide for ISO 15118 implementation

EXI-encoded and Base64-encoded CertificateInstallationRes and Certificate-
UpdateRes messages to the requesting CPO backend or OEM backend.

• OEM Provisioning Certificate Pool (OEM PCP) operator:
provides an IT system to transfer Vehicle Data to an authenticated MO upon
request.

• V2G Root CA operator:
the lead of the PKI pyramid, it is a company in charge of issuing and revoking
digital certificates, acting as trust anchors compulsory for CPO and optionally
for MO and OEM.
The V2G Root CA performs the following tasks:

– issuing and revoking V2G Root CA certificates.

– providing a root certificate pool for centrally retrieving and filing the root
CA certificates and implementing an authentic connection between the 2.

– providing a central message broker to exchange status messages of the
processed data entities such as contract certificates or OEM provisioning
certificates. The status values exchanged through this message broker
reflect the processing state of the sent data.

24

Digital security guide for ISO 15118 implementation

Figure 2.2: Overview of PKI ecosystem. [8]

2.2.2 Certificates types and main features

Digital certificates play a key role in realizing recognition and mutual trustwor-
thiness. To this end, there is not only one certificate for each party, but a chain
structure with different "trust levels" such that if even one link in a chain loses its
trust or has been compromised, all certificates would be revoked in cascade from
that point.
It should be noted, however, that the chain can not be too long to avoid memory
shortage problems, i.e., each chain must have no more than 4 levels. The certificates
at the top are called trust anchors. In the middle there are 2 Sub-CA certificates,

25

Digital security guide for ISO 15118 implementation

while at the end there is the leaf certificate. It is the end of the chain and it is
important to emphasize that its associated private key shall not be used to sign
anything.
A last clarification shall be done before focusing on each certificate. Not for all the
chains the trust anchors has to be the V2G Root CA. EMSPs and OEMs may act
as CAs as well. All the possible certificates involved in the e-mobility ecosystem
are briefly described below:

• V2G Root CA certificate:
issued by V2G Root CA is used as the basis for verifying all other derived
certificates to ensure that they are genuine and trustworthy. It may be used
as a top-level trust certificate for any chain, but is only binding for the CPO
and CPS.
The corresponding private key is held by the respective certificate authority
(root CA).
OEMs shall ensure that the vehicle’s memory contains at least the V2G
Root CA certificates that cover the vehicle purchaser’s primary driving areas,
including roaming to neighboring countries; in the situation where the vehicle
does not have a suitable V2G Root CA certificate stored, an error must be
reported and the vehicle manufacturer or user shall make an effort to verify
and store the V2G Root CA certificate.

• MO root CA certificate:
EMSP uses this certificate as the MO’s top-most trust anchor.

• OEM root CA certificate:
OEM uses this certificate as the OEM’s top-most trust anchor.

• Contract certificate:
it is associated with a charging contract. It shall be stored inside the EV,
together with its private key, in the interest of proving to the charging point
the existence of a valid contract with the EMSP.

26

Digital security guide for ISO 15118 implementation

It is the certificate core allowing Plug and Charge.
Contract certificate is issued, possibly, by a MO/V2G Sub-CA 2.

• Charging Point Certificate (SECC certificate):
provides the authentication of the charging station to the EV.
It shall be derived from a V2G Root CA and it shall be stored in the EVSE.

• OEM Provisioning certificate:
issued individually for and saved in each EV and it is used to verify the identity
of the EV when provisioning a contract certificate. It shall be possible to
renew the provisioning certificate in the vehicle if it’s revoked. This process
can be done by a workshop or by means of an online process using the OEM
backend and telematics link of the EV. It is derived from an OEM/V2G Root
CA.

• Certificate Provisioning Service (CPS) leaf certificate:
uses the private key belonging to the leaf certificate to sign parts of the
Contract Certificate Bundle received from the MO (including the contract
certificate and the associated private key). Based on this signature, the EV
determines the authenticity of the contract certificate and associated private
key to be installed in the vehicle.

• Private operator root CA certificate:
it is stored by a private operator in its charging infrastructure (no V2G
root CA) located in a private environment (PE). The corresponding private
key associated with the private operator root CA certificate is held by the
respective private operator root CA.
No Sub-CA certificates are used in a PE. This means that the Private operator
root CA directly issues and signs charge point certificates for a privately used
charging infrastructure.

27

Digital security guide for ISO 15118 implementation

Figure 2.3: Schema of every certificate chain involved in PKI.

In this PKI scenario, the only self-signed certificates are the Root ones. All the
other Subs and Leaf certificates and signed using a CSR by their upper-level entity.
Besides the certificate types, some other objects need to be defined a priori in sight
of the installation/update process description.

• Provisioning Certificate ID (PCID): it is a unique alphanumeric identifier
associated to a specific EV.

• E-Mobility Authentication Identifier (EMAID): it is a unique alphanu-
meric identifier that associates the vehicle’s PCID with an eMSP Charging
Contract.

• Contract Certificate Bundle (CCB): contains data elements the EMSP
sends to the CPS to create a signed CertificateInstallationRes and Certifica-
teUpdateRes message. Once the CPS sends it to the CCP, then it becomes
SignedCCB.

28

Digital security guide for ISO 15118 implementation

• Vehicle Data: contains data elements that the OEM provides to the OEM
PCP.

• XSD schema version: it is the unique namespace URI of an XSD schema
that is related to the DIN EN ISO 15118 (all parts) version used in the EV in
which the contract certificate and private key need to be installed or updated.

The "physical" certificate values must be set for the ISO 15118 application. Their
dimensions are ruled by the X.509v3 format according to which the certificate’s
size shall not exceed 800 bytes. The number of V2G Root CA stored in the EV
shall be between 1 and 5, while the maximum number rises to 10 for the EVSE.

2.2.3 Certificate validation

The term certificate validation indicates the action required by an entity to verify
the trustworthiness of the certificate and of the CA and Sub-CAs behind it.
The leaf certificate is the last link in the chain and is directly involved in the
validation process as a starting point. It can be trusted if several conditions are
met.
The first states that its content shall not be altered after issuance; this check can
be performed to confirm the signature up to the trust anchor level and thus the
integrity of the signed content. Of course, the expiration date shall not have expired
and all fields of the X.509v3 format are not empty and valid. The last item that
needs to be valid and acceptable is the subject ID.

The policy for checking validity is referred to as a validity model. Usually, there
exist 3 different types of validation models:

• Shell model:
a signature for a leaf certificate is valid if the higher-level CA certificates in

29

Digital security guide for ISO 15118 implementation

the certificate path up to the root certificate are valid at the time of the check
(the current time).

• Chain model

• Shell-chain hybrid approach

In the VDE and ISO 15118 context, the shell model is applied. The main
advantage of its use is getting simpler the certificate check since it does not require
that the signature for a leaf certificate shall not be valid for any longer than its
higher-level CA certificates. However, the other coin side is represented by the
unavailability of the certificate infrastructure if its CA has been revoked; then, a
revocation "en masse" is the result.
More precisely in ISO 15118, the X.509v3 certificate format has been adopted
and it has been accepted the use of "Basic Path Validation", where The algorithm
checks a certificate in respect of the current date and the current time (shell model).
PKIX certificate and CRL profile (PKIX profile) have been listed in ISO 15118
standard for normalizing all the certificate types.

An important difference between all the certificates involved in the process of
validation is the expiration date. It may result differently and usually shortens its
time interval in the leaf certificate direction.
The longest expiration date is owned by the V2G Root which must be renewed
as rarely as possible and it is set to 40 years. For the CPO/CPS Sub-CA1s the
validation period is 4 years and half of it for CPO/CPS Sub-CA 2s. MO and OEM
are in charge of their own certificates and of their Sub-CAs.
The expiration dates of the 2 remaining leaf certificates are: 3 months for the
SECC certificate and from a maximum of 4 years and a minimum amount of time
of 4 weeks for the contract certificate.

30

Digital security guide for ISO 15118 implementation

2.2.4 Certificate Installation and Update

The process of certificate installation and update is a complex trial that involves a
lot of actors. Considering a single PKI ecosystem, the full certificate generation is
clearly described with the following schema:

Figure 2.4: Overall system approach to facilitate the Plug and Charge process.

This high-level flow chart is the main and more understandable diagram to
follow the path for the generation of a contract certificate between the user’s EV
and the eMSP (MO).

The VDE guide is written in order to face all the certificates’ journeys from
the EV creation to their installation. Thus, a brief overview of the context before
the actual certificate installation and update in the EV is going to precede a more

31

Digital security guide for ISO 15118 implementation

detailed final part, which is the focus of this project and it is the key point that
makes the Plug&Charge work.
As highlighted in Figure 2.4, it is useful to divide the full certificate generation
process into sub-processes:

• Preparing contract-based public charging and billing:

1. Providing root certificates for public charging and contract-based billing

2. Producing the vehicle and signing the contract

3. Assigning the vehicle to a contract

• Providing a contract certificate for automated billing:

1. Providing a contract certificate

2. Delivering a contract certificate upon request

Vehicle Production, Contract sign-up and Vehicle assignment

The entire process starts with all the SAs creating and depositing their identity,
under the form of Root certificate, in the RCP.
In the meantime, the user has to complete 2 tasks: order his new EV and sign a
contract with an eMSP entity.

• EV production the OEM has to carry out the generation of the PCID and
the registration of the OEM Provisioning Certificate in the PCP, in addition
to producing and delivering the required vehicle.

• submit of a Charging Contract the user has to choose an eMSP and issue
a contract with it, generating a ContractID.

The PCID and the ContractID are collected by the user and sent to the eMSP
which is going to validate them. Then, the PCID is sent to the PCP to create
a data pack called Vehicle Data. It contains the OEM certificate chain that the
OEM shall provide to the PCP.

32

Digital security guide for ISO 15118 implementation

The Vehicle Data is sent back to the eMSP such as the Provisioning Certificate
can be validated and the new vehicle can be assigned to the user’s contract. In
this step, the eMSP adds another important element for the PnC gear; it generates
the eMAID.

Provisioning of Contract Certificate Bundle

The second step involves the creation of a Contract Certificate Bundle (CCB) by
the eMSP using the eMAID and some other data derived from previous processes.
At this point, it is kicked in the CPS where it is signed and sent it to the CCP.
This signing process implies the draft of the 2 messages required by the ISO15118-
2 standard, calledCertificateInstallationRes or CertificateUpdateRes, besides the
contract certificate chain validity check and the CCB decryption. The VDE
application guide specifies also the exact procedure to create the signature of these
2 messages, better defined in Chapter 3.
Once the data pack has been received, the CCP thins out the data storing only the
PCID, the eMAID, the XSDSchemaVersion, useful for further decryption in the EV-
EVSE communication, and the CertificateInstallationRes or CertificateUpdateRes
message.

Delivery of CertificateInstallationRes/CertificateUpdateRes

The ISO 15118-2 standard imposes restrictive timing requirements on the time with
which the Contract Certificate shall be installed or updated. Therefore, the role of
the CCP is critical to ensure prompt delivery of one of these response messages
when the Charging Point will require them.

The last step takes place when the EV arrives at the Charging Point and a
Certificate Installation or Update session is required. The request is forwarded by
the Charging Station to the Charging Station Management System (CSMS). In
particular, the CPO must receive the request from the vehicle to issue or update

33

Digital security guide for ISO 15118 implementation

the contract certificate in the form of an EXI-encoded CertificateInstallationReq
or CertificateUpdateReq message. The Charging Station shall then forward this
request to the CPO, using a Base64 encoding format. The forwarded request shall
also include the XSD schema version used by the EV so that the CCP is able to
properly decode the EXI message. The CPO shall then forward the EXI-encoded
CertificateInstallationReq or CertificateUpdateReq message and the XSD schema
version to the CCP using the Base64 encoding format. This means that there
is no need for the CPO to further process the message itself, it simply acts as a
forwarding gateway to the CCP.
Decoding the Request message using the XSDSchemaVersion allows the CCP to
get the Response message, encrypt it and send it so that it gets back to the EV.
The actual installation or update of the contract certificate and especially the com-
position of the CertificateInstallation and CertificateUpdate request and response
messages are better explained in the next chapter.

34

Chapter 3

DIN EN ISO 15118
standard: Vehicle-To-Grid
Communication Interface

With the arrival of EV technology and its spread all over the world, came out the
need to unify and regularize the components of this newborn business area. In
other words, it was necessary to introduce rules on digital communication networks
and on physical connectors, from the electrical components inside the charging
points to the digital messages interchanging between EV and EVSE.
In particular, the set of norms dealing with the bidirectional communication be-
tween the Electric Vehicle Communication Controller (EVCC) and the EVSE
controller called Supply Equipment Communication Controller (SECC) is called
ISO 15118 standard.

35

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

3.1 DIN EN ISO 15118 standard: Vehicle-To-
Grid Communication Interface

The ISO15118 standard protocol imposes all the use cases, listed in detail in its
first part [9], and the requirements that need to be satisfied to implement digital
communication between an electric vehicle and a Charging Point [10]. The standard
defined them at all levels and follows the basic template of the Open Systems
Interconnection Model (OSI Model).
The latter describes 7 layers that computer systems use to communicate over a
network.
In the following there is a brief description of every layer:

1. Physical layer –> lowest layer, responsible for the physical connection
between devices. The physical layer contains information in the form of bits.
It is responsible for transmitting raw bit stream over the physical medium.

2. Data layer –> responsible for the node-to-node delivery of the message. The
main function of this layer is to make sure data transfer is error-free from one
node to another, over the physical layer.

3. Network layer –> works for the transmission of data from one host to the
other located in different networks. It also takes care of packet routing. The
sender and receiver’s IP addresses are placed in the header by the network
layer.

4. Transport Layer –> provides services to the application layer and takes
services from the network layer. It is responsible for the End to End Delivery
of the complete message and provides the acknowledgment of the successful
data transmission and re-transmits the data if an error is found.

5. Session layer –> responsible for the establishment of connection, maintenance
of sessions, authentication, and also ensures security.

36

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

6. Presentation layer –> also called Translation layer, extracts data from the
application layer and manipulates them as per the required format to transmit
over the network.

7. Application layer –> top layer, implemented by the network applications.
Data produced by them has to be transferred over the network. This layer
also serves as a window for the application services to access the network and
for displaying the received information to the user.

The ISO 15118 is based on the OSI model and to cover all the levels (Figure 3.1), it
is divided into 7 parts and a new section which is the update of the second section:

• ISO 15118-1[9] General information and use cases definition:
It is the basis for the other parts of the ISO 15118 series and specifies terms
and definitions, general requirements and use cases for conductive and wireless
High-Level Communication (HLC) between the EVCC and the SECC. It is
applicable in both cases V2G provides.

• ISO 15118-2[10] Network and application protocol requirements:
The core of the entire international standard: it defines all the messages and
related technical requirements that are necessary to implement the use cases
defined in ISO 15118-1. IP-based communication between EVCC and SECC.
It defines messages, data model, XML/EXI-based data representation format,
and usage of V2GTP, TLS, TCP, and IPv6.

• ISO 15118-3 Physical and Data link layer requirements:
It specifies the requirements of the physical and data link layer for high-level
communication, directly between EV and modes 3 and 4 of EVSEs, based on a
wired communication technology and the fixed electrical charging installation
used in addition to the basic signaling.
It covers the overall information exchange between all actors involved in the
electrical energy exchange.

37

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

It addresses how powerline communication (PLC) is used to modulate the
digital information specified in ISO 15118-2 onto the Control Pilot pin inside
the connectors. Part 3 also describes a mechanism called SLAC (Signal Level
Attenuation Characterization), which is used by the EV and the Charging
Station to establish the data link between each other.

• ISO 15118-4 Network and application protocol conformance tests:
It specifies conformance tests in the form of an Abstract Test Suite (ATS) for
a System Under Test (SUT) implementing an EVCC or SECC according to
ISO 15118-2.

• ISO 15118-5 Physical and Data link layer conformance tests:
It specifies conformance tests in the form of an ATS for a SUT implementing
an EVCC or SECC with support for PLC-based High-Level Communication
and Basic Signaling according to ISO 15118-3.

• ISO 15118-8 Physical and Data link layer requirements for wireless commu-
nication:
It specifies the requirements of the physical and data link layer of a wireless
HLC between EV and EVSE. Wireless communication technology is used as
an alternative to wired communication technology as defined in ISO 15118-3.
It is applicable for conductive charging as well as Wireless Power Transfer
(WPT).

• ISO 15118-9 Physical and Data link layer conformance tests for wireless
communication:
This specification provides conformance tests for the use cases in part 8 and
completes the current list of required conformance tests for both wired and
wireless communication.

• ISO 15118-20[11]: second generation network and application protocol
requirements:

38

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

It is an updated version of ISO 15118-2, with additional features like wireless
charging, bidirectional energy transfer (V2G and V2H), and charging buses
via pantographs. This standard will be deepened in the last chapter.

Figure 3.1: ISO 15118 standard implementation on the OSI Model.

3.2 ISO 15118-2 standard

This section is focused on analyzing the structure and on what are requirements the
EVCC-SECC system communication needs to satisfy so that it can be considered
valid. The most important features and services that this section implements, and
that will be explained in more detail, are the already quoted smart charging, the
Plug and Charge (PnC), the data security system PKI-based, Renegotiation during
charging processes and the Value Added Services (VAS).

3.2.1 Overview and objectives

Quoting literally what the standard says: "This part of ISO 15118 specifies the
communication between battery electric vehicles (BEV) or plug-in hybrid electric
vehicles (PHEV) and the Electric Vehicle Supply Equipment. The application
layer message set defined in this part of ISO 15118 is designed to support the

39

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

energy transfer from an EVSE to an EV. ISO 15118-1 contains additional use case
elements (Part 1 Use Case Element IDs: F4 and F5) describing the bidirectional
energy transfer. The implementation of these use cases requires enhancements of
the application layer message set defined herein. The definitions of these additional
requirements will be subject of the next revision of this International Standard"[10].
The purpose of this part is to describe in detail the communication between an EV
and an EVSE. Aspects are specified to detect a vehicle in a communication network
and enable an Internet Protocol (IP) based communication between EVCC and
SECC.

Figure 3.2: Macro scheme of the ISO 15118-2 objective.

3.2.2 Structure of the standard

The standard is divided into 8 chapters in which the first 4 clarify what are the
terms and the symbols used, introduce some definitions and conventions and state
the scope of the document. The fifth and the sixth chapter define some other basic
acknowledgments as definitions of OSI-based service, notations for XML schema
diagrams and a brief document overview.
The most interesting chapters are the last ones since they go into the merits of
what shall be effective and what shall be the digital structure of the EVCC-SECC
communication.
For this reason, these 2 are also the longest and the most complex. Thus, to explain
them as clearly as possible, it is possible to ideally group subsections based on the
arguments they handle.
Chapter 7 faces 3 big fundamental features: security, the main state flow of the

40

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

communication and the structure of the messages.
A little premise is necessary to clarify how the communication is organized according
to the standard. The Charging Station (SECC) always acts as a server while the
Electric vehicle (EVCC) always behaves as a client. These 2 communicate using
different protocols that will be described later, but it is important to keep in mind
that their communication is based on a TLS handshake. As the last thing, the 2
parties’ communication is based on a well-determined messages exchange; during
this process, the server and the client pass through individual "phases", each with
defined characteristics, called states.
The figure below shows an example of the flow model.

Figure 3.3: Example of a SECC-EVCC communication sequence.

As described in Chapter 7, the first argument introduced is the digital security.

41

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

The security concept provides a basic transport-based protection mechanism. The
usage of Transport Layer Security (TLS) always may be applied, but it is not
mandated for all scenarios. The expected version of the TLS is 1.2 or later.
The main notion of security in ISO 15118-2 standard is digital certificate-based
or PKI-based security. The authentication and the protection of data inside mes-
sages are done by the verification of these certificates, and in some cases of their
signatures, to different levels. This argument will be faced with a very high level of
detail at the end of this chapter. Thus, the only information needed to understand
the following process is the basic characteristics of the certificates.
There exist different types of the certificate, but for all of them it is mandatory
the structure of X.509v3-certificate: The other requirements the standard impose

Certificate field Description
Version Version of certificate (for 15118 shall be v3 = 0x2)

Serial Number Unique certificate number (within the domain of the issuer)
Signature Algorithm Used signature algorithm

Issuer Entity, who has issued and signed the certificate
Validity Period Time period, in which the certificate is valid

Subject Entity, to which the certificate is issued
Public Key Public key corresponding to a private key
Issuer UID Optional issuer unique identifier

Subject UID Optional subject unique identifier
Extensions Optional fields
Signature Signature of the certificate generated by the issuer

Table 3.1: Digital certificate fields according to X.509v3-certificate.

are the dimension of the certificates, but, as it has already been said, a separate
chapter will be dedicated to it.

Chapter 7 goes on to impose in which cases the TLS handshake is mandatory
and when it results optional. The only case in which the latter case happens is
when an External Identification Mode (EIM) is required by the user.

42

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

The term EIM refers to one between QR code or RFID identification mode; it
continues with the classical smart charging process. The other identification
modality is called Plug and Charge (PnC) and is the main innovation point that
the standard introduces in the SECC-EVCC communication together with V2G
connection.
It is essentially referred to as an identification process that takes place without
the user’s action and the only requirement that it needs is the connector plugged
in. The following macro-argument is the sequence of states. Actually, it shows
only the general communication states of the V2G communication from an EVCC
perspective (Figure 3.4).

Figure 3.4: Scheme of general communication states from an EVCC perspective.

For complete comprehension, it results necessary to underline that the code on

43

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

the line in the figure named ’V2G2-XXX’ refers to the requirements in the document.

At last, it presents the explanation of how the OSI Layer is covered by the stan-
dard starting with the description of communication protocols implementation.
The OSI Transport Layer sees the implementation and the requirements of the
following 3 protocols:

• Transmission Control Protocol (TCP):

– allows applications of V2G entities to establish a reliable data connection
to other entities,

– exchanges reliable and proper delivery of data between senders and re-
ceivers,

– provides flow and congestion control.

• User Datagram Protocol (UDP):
connectionless protocol which does not provide the reliability and ordering
already guaranteed by TCP. Packets may arrive out of order or may be lost
without notification from the sender or receiver. However, UDP is faster and
more efficient for many lightweight or time-sensitive purposes.

• Transport Layer Security (TLS):
provides the "real" data security system. This allows to establish an au-
thenticated and encrypted (ensures integrity protection and confidentiality
protection) channel between the EVCC and the SECC. For ISO 15118 security
it was agreed to use unilateral authentication where SECC acts always as
server (the EVCC authenticates the SECC).

A further protocol called V2G Transfer Protocol (V2GTP) dictates the
structure of a transmitted message. It is a compact communication protocol to
transfer V2G messages between 2 V2GTP entities, which consists of SECC and
EVCC in this case. Its Protocol Data Unit (PDU) mainly consists of a header

44

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

and payload definition (Figure) that allows the separation and process of V2G
messages efficiently.
V2GTP is based on TLS+TCP which uses a pair of IP addresses (source address
and destination address) and a pair of port numbers (source port and destination
port) to establish and identify a connection for the bidirectional exchange of byte
streams.

Figure 3.5: V2GTP Message structure.

Therefore, a message shall be subject to a sub-distinction of its single fields
based on simple and complex types, which will be described in Chapter 8. To
describe the V2G Message Set the Presentation Layer uses the widely adopted
XML data representation accordingly the document defines messages (i.e. data
structures and data types) based on XML Schema which allows the type-aware use
of XML and enables simplified validity estimation of exchanged messages.
The Efficient XML Interchange (EXI) format allows using and process of XML-
based messages on a binary level. Thus, the EXI format increases the processing
speed of XML-based data as well as reduces memory usage. Basically, EXI is a
W3C recommendation. The EXI format uses a relatively more simple grammar-
driven approach, than the basic XML format, which achieves very efficient encoding
for a broad range of use cases. To meet the demands in ISO 15118 in terms of
efficient processing, fewer resource usage, message size, and message extensibility
schema-aware settings should be selected.

45

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

3.2.3 Message Signature

The Request-Response messages contain sensitive information about the user, its
charging contract, charging parameters and services data. They shall be kept
private and confidential and do not have to be altered by third parties.
Message security is provided by W3C-recommended XML Signature, which satisfies
the authenticity requirements of some data fragments of XML-based V2G. XML
Signature defines a mechanism by which messages and message parts can be digitally
signed to ensure integrity, that the data has not been tampered with, and to verify
the identity of the message originator.
The message signature works exactly as the certificate one analyzed in Chapter 2,
but, in this case, it uses different encryption algorithms.
The encoding procedure sees 2 main steps: reference generation and signature
generation. Reference generation includes all the steps required to add some XML
data to be signed to the SignedInfo XML element. The signature generation then
calculates the signature value. Each internal step is explained as follows:

• add the Reference XML element: the URI attributes are set to the
message ID and the data is EXI encoded using the EXI schema based on
V2G_CI_MsgDef schema.

• hash and encryption of the EXI stream: use the SHA-256 algorithm to
hash the EXI-encoded message. This value is then Base64 encoded and added
to the SignedInfo as DigestValue.

Once the reference generation has been completed, the signature generation shall
be performed. For this final step, only the SignedInfo data is needed.

• EXI encoding of the SignedInfo element: the SignedInfo (URI+reference
digest) is EXI encoded based on the XMLdsig schema.

• hash and encryption of the EXI stream: the EXI stream is hashed using
the SHA-256 algorithm and then used as input for the ECDSA signature

46

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

algorithm with secp256r1. The signature generation is done by means of the
private key.

• final encoding and message completion: the encrypted value is Base64
encoded and finally added to the Signature XML data as SignatureValue.

The following message shows what a final message looks like with an XML
representation.

Figure 3.6: XML representation of the AuthorizationReq.

3.2.4 State, messages and types

The core of the standard is defined in its eighth chapter where is specified in more
detail what has been already anticipated about the syntax of the communication
itself.
Its organization is based on 3 macro-categories: states, messages and types.

• State:
is a condition/status that characterizes at which point of the communication
cycle the EVCC or the SECC are placed. Although the sequence of states is
not linear, it can show some ramifications, and its general structure is strictly
mandatory. Figures 3.6 and 3.7 may clarify this point.

47

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

The first difference can be made between the 2 communication controllers.
The SECC always acts as server and the EVCC as client. There is one more
distinction, consisting of some different message types and it depends on
whether the charging mode is AC or DC.

Figure 3.7: Sequence communication states for AC V2G messaging (left SECC,
right EVCC).

48

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

Figure 3.8: Sequence communication states for DC V2G messaging (left SECC,
right EVCC).

• Message:
is the object interested in transmitting the data and parameters between
EVCC and SECC bidirectionally.
There exist 2 kinds of messages:

– Request message "-Req":
sent by the EVCC to the SECC, contains EV information or the customer’s
chosen parameters. It is welcomed and read by the corresponding "WaitFor-
" state;

49

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

– Response message "-Res":
sen by the SECC to the EVCC, contains EVSE-offered services or details
about the charging process. It is received and read by the corresponding
"WaitFor-" state.

ISO 15118-2 defines a common structure for all messages. It is composed by:

– Header:
includes generic information for protocol flow and is not directly related
to the semantics of each particular message.

– Body:
provides the actual semantics of each message. In other words, it contains
all the actual values and parameters that shall be transmitted to the other
side.

The body structure is organized into sub-fields which contain the information
necessary to be transmitted. These elements are obviously different for every
message and some of them are encoded before being sent. The encoding
applied is the Base64 and the EXI scheme. Only in some specific cases, the
messages are also encoded, but generally, they are simply exchanged in XML
format.

• Type:
is the most low-level element that composes the communication syntax. Ev-
erything above, except for the states, is based on types; it means that every
message and each sub-field of it belongs to a well-defined type.
There exist 2 kinds:

– Simple Type:
it is a basic object in informatics, like Integer, String, Long, Byte, etc.

50

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

– Complex Type:
it is a composition of 2 or more simple and/or complex types.

Figure 3.9: Example of a complex type and its sub-components.

Combining these 3 elements together, the ISO 15118-2 document founds the
basis for a solid and compact communication syntax and flow. It results as much
clear, readable, but especially ’implementation-friendly’ as possible also with the
purpose of avoiding misunderstandings and errors in the use cases application.

All the services described in this document present comparable behaviors and
their semantics is quite similar. However, there is one particular service, called
Value Added Service (VAS) which is barely touched but never deepened.
It refers to the possibility to create and include an additional set of services. What
actually has been said by ISO 15118 regarding the VAS is how it can be imple-
mented inside the messages, but a separate state is not provided by the standard.
The messages providing information and the selection of VAS are ServiceDiscov-
eryRes, ServiceDetailReq, ServiceDetailRes and ServicePaymentSelectionReq. The
VAS implementation requirements are the following: TLS 1.2 (or higher) shall be
used, as a cryptographic communication protocol, and the parameterSetID, with
which the service is identified, shall stay between 60001 and 65535.
The Value Added Service is more developed in terms of communication syntax in
the ISO 15118-20 standard.

51

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

There is one last feature extremely important to understand how the standard
works. It is the Identification Mode. The distinction has been made between 2
modalities:

• External Identification Mode (EIM):
is the modality implemented by all the installed charging station. The customer
identifies himself using an RFID card or a QR code at the charging point.

• Plug and Charge (PnC):
this brand new mode requires the user to plug simply the cable into the
Charging Station and the identification will happen automatically through
the digital certificates cross-check between EV and EVSE. The novelty is the
digital info passage inside the charging cable, which was not possible before.

Moreover, inside this 2 macro-category, shall be made a further classification
between AC and DC charging modes. Thus, the final result is 4 possible sets of
communication strategies.

Figure 3.10: Overview on Identification Modes and Message Sets.

The AC/DC Charging mode is mandatory by the EV type, the choice is not up to
the driver unlike the use of PnC or EIM which is a user’s free choice.
The message Sets expected for each of the 4 situations are mostly the same with

52

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

some exceptions. The interest of this project falls on 3 of them: CertificateInstalla-
tionReq/Res, CertificateUpdateReq/Res, AuthorizationReq/Res.
The VAS is excluded since in this protocol version it has no message or its own
Message Set.

3.3 Base of Plug and Charge

Before talking in detail about the Message Sets for the Plug%Charge, shall be done
an overview of what this new feature offers and how it works from the user’s point
of view.

3.3.1 What does PnC usage entail

Compared with the modern charging operation, PnC impacts at different levels,
experiencing benefits in several processes of the charging session:

• identification:
the EV driver shall only plug the cable into the Charging Station without
showing any type of card/code. The personal credentials for the recognition
and permission to start the charging session are taken directly from the vehicle
using a cross-check of the respective certificates.
From the user’s point of view, this identification modality offers a faster
identification phase and makes him to avoid the handle of a further card.
Moreover, it prevents digital bugs from happening during the operation.

• billing handle:
as happens for the first step-phase, also the billing handle is carried over
autonomously, affecting the user with the previously quoted benefits.

• data security:
confidential data are kept private and out of reach of external parties. No unin-
vited reader and no data manipulation are allowed thanks to the cryptographic

53

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

tools of the PKI-based security protocol required by ISO 15118.

• smart grid implementation:
PnC fully integrates the smart grid technology features; so it can boast also
all the advantages that came out with smart charging.

To work properly, Plug&Charge needs the execution of 2 Messages well-defined in
the ISO 15118-2 document. They are referred to as CertificateInstallationReq/Res
and CertificateUpdateReq/Res, handling respectively the installation and the update
of the contract certificate.

3.3.2 Certificate Installation

The installation of a new contract certificate results necessary if, for example, the
old certificate is expired, revoked or simply there is none stored inside the EV.
The SECC may have to request the certificate from a SA and they may have to be
created by this SA. After the installation of this certificate, the charging process at
the EVSE may start.
As it applies to every message, a request and a response message can be distinguished
and they will be analyzed separately.

CertificateInstallationReq

By sending the CertificateInstallationReq the vehicle requests the SECC to deliver
the certificate that belongs to the currently valid contract of the vehicle.
The Body message contains 2 fields:

• OEMProvisioningCert:
contains an EV-specific certificate that was earlier installed in the EVCC
typically by an OEM. It is used to identify the currently valid contract of the
EV. It is transmitted in Base64 to encrypt the message later on.

• ListOfRootCertificateIDs:

54

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

contains a list of Certificate IDs belonging to all the Root Certificates currently
installed in the EV.

The CertificateInstallationReq shall be signed by its own OEM Provisioning
Certificate and then sent to the SECC.

CertificateInstallationRes

After receiving the Request, the SECC sends the CertificateInstallationRes including
the requested certificate. Then, the EVCC installs this certificate. There is only
one certificate delivered to the EVCC: the one for signing messages. It belongs to
the currently valid contract of the EV.
The elements contained in the body message are the following:

• SAProvisioningCertificateChain:
the certificate chain used by the EVCC to verify the signature in the message
header.

• ContractSignatureCertChain:
new certificate chain for signature purposes that has to be installed in the
EVCC.

• ContractSignatureEncryptedPrivateKey:
the private key that belongs to the new certificate for signature purposes. It
has to be installed in the EVCC as well.
Since it is secret data, it shall be encrypted by the element identified using the
provided OEM Provisioning Certificate of the EVCC and using the calculated
DH secret for encryption.

• DHpublickey:
Diffie Hellman public key from the SA for generating the session key at the
EVCC to encrypt the Contract Signature Private Key at the SA and decrypt
it at the EVCC.

55

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

• eMAID:
also called ContractID, is the element identifying the charging contract.

The CPS shall sign the 4 last body elements using the Provisioning Service
Certificate. The EVCC shall verify the signature of the CertificateInstallationRes
using the signer certificate chain SAProvisioningCertificateChain, validate said
chain, and ensure that it traces back to a valid V2G Root Certificate.
The ContractSignatureCertChain received in the Response Message shall be stored
persistently in such a way, that it can be applied later on to verify tariff tables.

3.3.3 Certificate Update

Updating the certificate to the EVCC is required when the certificate is still valid,
but is about to expire. In this use case, the EVCC requests a new contract certificate
from the SECC to be installed into the EVCC.
The request and the response message shall be implemented in the update sequence.

CertificateUpdateReq

In this message, the vehicle requests the SECC to deliver a new contract certificate
that belongs to the currently valid contract of the vehicle.
The elements of the message are the following.

• ContractSignatureCertChain:
contains the currently available signature certificate including the certificate
chain in the EVCC. The SECC uses this certificate chain to check the message
signature included in the header of the message.

• eMAID

• ListOfRootCertificateIDs

56

DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface

CertificateUpdateRes

After receiving the CertificateUpdateReq, the SECC retrieves the requested certifi-
cate from the SA. Therefore, it needs to establish an online connection. Then the
SECC sends the CertificateUpdateRes including the new contract certificate to the
EVCC. Finally, the EVCC installs this certificate.
The body message encloses the following elements; they are the same as in Certifi-
cateInsallationRes.

• SAProvisioningCertificateChain

• ContractSignatureCertChain

• ContractSignatureEncryptedPrivateKey

• DHpublickey

• eMAID

The procedure is the same as in the Certificate Update case, so it is the encryption
by CPS and the signature verification and storing action that needs to be done by
the EVCC after it receives the message.

57

Chapter 4

ISO15118-PoC: hardware
and software implementation

In this chapter, the high-level software architecture will be analyzed with a brief
overview of each unit. The hardware components used to make the simulation
between the EV and EVSE will be also reported. The project consists of a Proof-
of-Concept (PoC) of a full charging sequence ruled by ISO15118-2 standard focused
on the Plug and Charge feature and with particular attention to the certificate
handling.

4.1 General Demo organization

In its final aspect, the resulting PoC has been implemented as a Demo of how
effectively works a charging session for real, or better how could work if PnC would
be implemented. The charging process has been developed under both points of
view of the end customer (EV) and the Charging Station (EVSE).

58

ISO15118-PoC: hardware and software implementation

4.1.1 High-Level Architecture

The PnC-Demo consists of 2 firmware implemented on 2 hardware sets, one
simulating the Electric Vehicle infotainment and the second one simulating the
Charging Point.
The 2 firmware are mirrored if analyzed with a high point of view. In fact, each of
them is based on a central script, working as a hub for sorting and handling data,
and 4 satellite scripts, each equipped with specific functionalities (Figure 4.1).

Figure 4.1: Demo software general structure.

Each code unit is assigned to play a specific role:

• EV/EVSE-BL (Business Logic):
acts as the brain of the whole system. It is responsible for handling data
coming in and out of the system, coordinating and managing the satellite
units.

• EV/EVSE-GUI (Graphical User Interface):
makes the Demo usable and interactive with the human tester. It is tasked with
taking the input commands and values and showing the output information
to the user.

• EV/EVSE-PFS (Power Flow Simulator):
handles all the data about involved energy values, parameters defining the
generation of the charging profiles and their expression on a Cartesian diagram.

59

ISO15118-PoC: hardware and software implementation

• EVCC/SECC-Properties:
contains all the global variables used by the python units.

• RISE-V2G (EV/EVSE):
Java open-source stack protocol ruled by ISO 15118-2 developed by the Switch
Company. It handles the actual communication and message exchange between
SECC and EVCC.

4.1.2 Hardware components

The software execution has been tested on the laptop at first and then it has been
carried on hardware supports such that the simulation may have a more realistic
footprint.
For this scope, each software pack is integrated on a Raspberry Pi 4, one simulating
the EVCC and the other one the SECC. In the same way, the Graphical User
Interface is displayed to the tester through a couple of display touchscreen mounted
on the RPIs assembled with a Raspberry case.
In order to implement the External Identification Mode, as an alternative for the
PnC, on the EVSE side, a Raspberry Camera module must be integrated such that
a simulated RFID or QR code can be visualized and recognized by the SECC.
Finally, the usual cable connecting the electric vehicle to the Charging Point is
simulated using an Ethernet cable that must be plugged into the RPIs at the
beginning of the charging process.

60

ISO15118-PoC: hardware and software implementation

Figure 4.2: Hardware components assembled.

4.2 Java software components

The Java open-source stack protocol, called RISE-V2G, si a runnable program
that emulates the communication session between an EV and a Charging Point
according to ISO15118-2 standard protocol. It works as a starting point to build the
entire simulation. In fact, every Python unit has been added afterward reasoning
mainly on the working principles of the stack protocol, although in the final result,
it shall be read as a simple satellite unit.

Inside the firmware, RISE-V2G covers the role of the communication unit.
It applies the ISO15118-2 protocol setting up the communication server-client
(SECC-EVCC), handling all the expected parameter values, messages and their
signatures.

4.2.1 RISE-V2G: original...

RISE-V2G has been programmed with the 2 "main" scripts called "StartSECC "
and "StartEVCC " each of which is encapsulated inside its corresponding folder,
described more in detail below. This program has been designed also for running

61

ISO15118-PoC: hardware and software implementation

separately and without using any IDEs. It is possible to run the EVCC and the
SECC in a real demonstration of messages exchange since RISE-V2G has been
created as Maven project, and it allows the generation of .jar files to be executed.
As RISE-V2G was thought by their creators, it provides 5 leading folders. They
are the following:

• RISE-V2G-Certificates

• RISE-V2G-EVCC

• RISE-V2G-PARENT

• RISE-V2G-SECC

• RISE-V2G-Shared

The structure of each folder is similar for all. This statement is especially true
for the EVCC and SECC folders that are almost mirrored from a high-level point
of view and it makes exceptions Certificates folder.

RISE-V2G-Certificates

RISE-V2G-Certificates has been created with the scope of simulating the certificate
generation and distribution described in the VDE-AR-E 2802-100-1 application
guide; obviously, the majority of the flow chart branches, in which the process is
described, are cut-off from this emulation. This shortage happens because all the
different Companies, other than a Roaming platform and a CSMS, would be needed
if a full and literal implementation is made. Thus, the RISE-V2G-Certificates
folder generates all the certificate chains and the respective key pairs.
It presents a completely different range of files if compared with the other folders:

• passphrase.txt:
contains a password to open and view the certificate chain once it is generated.

62

ISO15118-PoC: hardware and software implementation

• configs sub-folder:
contains a list of .cnf files for every necessary certificate that shall be generated.
They contain all the information the certificate must contain.

• generateCertificates.bat and generateCertificates.sh:
batch and shell file to be used on their respective OS for generating all the
certificate chains and the cryptographic key pairs.
At the beginning of the file, the validity period of each certificate is set.

• copyNewCertsAndKeys.bat and copyNewCertsAndKeys.sh:
batch and shell file to be used on their respective OS to copy the generated
certificate chains and their keys and paste them into the appropriate directory.

The operation of generateCertificates.bat, or generateCertificates.sh, is the focus
of the RISE-V2G-Certificate folder. The output of this executing file is the following
sub-folders:

• csrs:
contains all the certificates taken from the "configs" folder in a .csr format.

• certs:
contains all the certificates in .der, .pem and .p12 format. The reason behind
the necessity to have all these format files is due to a conversion issue; the
ISO15118-2 protocol requires its certificates to be stored as .der files.

• keystores:
contains the OEM and CPO certificate chains in .p12 format, and the containers
into which the certificate chains and the keys are stored in the EVCC and
SECC. They are called evccKeystore.jks, evccTruststore.jks, seccKeystore.jks
and seccTruststore.jks

• privateKeys:
contains the private keys associated to each certificate.

63

ISO15118-PoC: hardware and software implementation

RISE-V2G-Certificates makes an exception for what concerns a specific file
contained in all the other folders. This file is called pom.xml. It includes all the
dependencies and information for generating the .jar files.

RISE-V2G-PARENT

RISE-V2G-PARENT creates all the necessary .jar files and settings needed for the
IDEless execution. It contains the "pom.xml" file that allows generating the target
folder respectively in RISE-V2G-EVCC and RISE-V2G-SECC only using a single
command. This folder works like a shortcut that avoids the user to browse through
folders and generate the target folder in loco.

RISE-V2G-Shared

The remaining 3 folders are the containers of the actual simulation program. All
the 3 of them collect 227 java files. Actually, the majority of these scripts are
stored in the RISE-V2G-Shared folder. Analyzing more in detail this latter one
includes all the classes, methods and schemas that are used by either EVCC and
SECC. In fact, the "Shared" name gets already an idea of what is inside it. It can
be assumed that this folder stores all the scripts defining classes and methods like
"raw materials" such that they can be adapted to the context.
Due to a large number of scripts and especially the complexity of the code, there
will be analyzed only the java files that allows an understanding of the program’s
working flow of the program.

Watching directly inside RISE-V2G-Shared, "pom.xml", "LICENSE.txt" are
located, which are already explained, together with src folder. Inside it starts a
directory common between the "Shared", "EVCC" and "SECC" folders; it is the
working directory where all the Java scripts are actually stored. The working
directory is the following one: "\src\main\java\com\v2gclarity\risev2g\X".

64

ISO15118-PoC: hardware and software implementation

The "X" sub-folder takes its name from the top-level folder; then it could be "evcc",
"secc" or "shared", in this case.
The directory described above contains the following sub-folders:

• enumerations:
group and define within itself all the enum types that will e used in the
program. they have defined in the following scripts:

– CPStates.java

– GlobalTypes.java

– GlobalValues.java: defines the alias for the certificate chain and for the
stores previously characterized.

– MessageSets.java

– PKI.java

– V2GMessages.java: defines the alias for every name of the messages
exchanged between EVCC and SECC, whether it is a Request and Re-
sponse.

• ExiCodec:
contains all the methods and classes used for encrypting and decrypting EXI
messages.

• messageHandling:
defines some actions that can affect the state of the session, like a Pause, a
Termination, etc.

• misc:
stores the basic JAVA files used for the instances regarding sessions, states
and messages structure. They are:

– State.java: set the State class and its basic methods. In particular, the
following are the most interests for our case:

65

ISO15118-PoC: hardware and software implementation

1 import . . .
2

3 pub l i c ab s t r a c t c l a s s State {
4

5 pr i va t e Logger l o g g e r = LogManager . getLogger (t h i s .
g e tC la s s () . getSimpleName ())

6 pr i va t e State nextState = n u l l ;
7 pr i va t e MessageHandler messageHandler ;
8 pr i va t e V2GCommunicationSessiocommSessionContext ;
9 pr i va t e HashMap<Str ing , byte [] >

xmlSignatureRefElements ;
10 pr i va t e ECPrivateKey s ignaturePr ivateKey ;
11

12 pub l i c State (V2GCommunicationSession
commSessionContext) {

13 setCommSessionContext (commSessionContext) ;
14 setMessageHandler (commSessionContext .

getMessageHandler ()) ;
15 setXMLSignatureRefElements (new HashMap<Str ing , byte

[] >()) ;
16 }
17

18 pub l i c ab s t r a c t ReactionToIncomingMessage
processIncomingMessage (Object message) ;

19

20 pub l i c SendMessage getSendMessage (
21 BodyBaseType message ,
22 V2GMessages nextExpectedMessage) {
23 i n t timeout = getTimeout (message , nextExpectedMessage

) ;
24 re turn getSendMessage (message , nextExpectedMessage , "

" , t imeout) ;
25 }
26

66

ISO15118-PoC: hardware and software implementation

27 pub l i c SendMessage getSendMessage (
28 BodyBaseType message ,
29 V2GMessages nextExpectedMessage ,
30 St r ing opt i ona lLogge r In f o) {
31 i n t timeout = getTimeout (message , nextExpectedMessage

) ;
32 re turn getSendMessage (message , nextExpectedMessage ,

opt iona lLogger In fo , t imeout) ;
33 }
34

35 . . .
36

37

– TimeRestrictions.java

– V2GCommunicationSession.java: set the communication Session class
and its methods, like the logger, etc.

1 import . . .
2

3 pub l i c ab s t r a c t c l a s s V2GCommunicationSession extends
Observable {

4

5 pr i va t e Logger l o g g e r = LogManager . getLogger (t h i s .
g e tC la s s () . getSimpleName ()) ;

6 pr i va t e HashMap<V2GMessages , State> s t a t e s ;
7 pr i va t e State cu r r en tS ta t e ;
8 pr i va t e State s t a r t S t a t e ;
9 pr i va t e MessageHandler messageHandler ;

10 pr i va t e byte [] s e s s i on ID ;
11 pr i va t e V2GTPMessage v2gTpMessage ;
12 pr i va t e V2GMessage v2gMessage ;
13 pr i va t e boolean t l sConnec t ion ;
14

67

ISO15118-PoC: hardware and software implementation

15 pub l i c V2GCommunicationSession () {
16 s e t S t a t e s (new HashMap<V2GMessages , State >()) ;
17 setMessageHandler (MessageHandler . g e t In s tance ()) ;
18 s e tSe s s i on ID (n u l l) ;
19 setV2gTpMessage (n u l l) ;
20 }
21 . . .
22

The abstract class V2GCommunicationSession takes advantage of the
Observable library in order to be sure the session is notified when a certain
event triggers it.

– V2GImplementationFactory.java

– V2GTPMessage

• utils:
includes 4 Java scripts that do not have actually anything in common, but
they become very useful at a lot of points along the code.

– ByteUtils.java: set all the functions that deal with the conversion from or
to byte type.

– MiscUtils.java: one of the most important scripts in the whole RISE-
V2G pack. It is responsible for handling all the parameters involved in the
EV-EVSE charging simulation required by ISO15118. It accomplishes its
task by building a get() method exploiting the java.util.Properties library.

1 import . . .
2

3 pub l i c s t a t i c Object getPropertyValue (S t r ing
propertyKey) {

4 Object returnValue = n u l l ;
5 St r ing propertyValue = " " ;

68

ISO15118-PoC: hardware and software implementation

6

7 t ry {
8 propertyValue = g e t P r o p e r t i e s () . getProperty (

propertyKey) . r e p l a c e A l l (" \\ s " , " ") ;
9 } catch (Nul lPo interExcept ion e) {

10 getLogger () . warn ("No entry found in the
p r o p e r t i e s f i l e f o r property ’ " + propertyKey + " ’ " , e) ;

11 re turn n u l l ;
12 }
13 switch (propertyKey) {
14 case " network . i n t e r f a c e " : // EV + EVSE property
15 returnValue = propertyValue ;
16 break ;
17 case " s e s s i o n . id " : // EV property
18 returnValue = propertyValue ; // a hexadecimal

s t r i n g r e p r e s e n t i n g a byte array
19 break ;
20 . . .
21 d e f a u l t :
22 getLogger () . e r r o r ("No property with name ’ " +

propertyKey + " ’ found ") ;
23 }
24 re turn returnValue ;
25 }
26 pub l i c s t a t i c Prope r t i e s g e t P r o p e r t i e s () {
27 re turn p r o p e r t i e s ;
28 }
29

This Java script also owns other secondary methods developed for reading
a file storing the simulation parameters, storing the parameter into a file
and determining the link-local IPv6 address, set the port for UDP, TCP
and TLS connection.

– SecurityUtils.java: the most important file-storing tools concerning

69

ISO15118-PoC: hardware and software implementation

digital certificates, encryption keys and signatures. The main actions it
has to cover are the following:

∗ get every type of certificate, certificate chain, certificate attributes
(eMAID, ...) public or private key and Signature

∗ save the contract certificate chain

∗ generate digests, signatures and encryption keys.

∗ encrypt and decrypt

∗ verify the certificates’ validity, signatures and if a certificate installa-
tion or update is needed.

– SleepUtils.java

• v2gMessages:
it contains 2 files called "SECCDiscoveryReq.java" and "SECCDiscoveryRes.java"
which initialize some variable attributes of the messages read and sent by the
SECC. Moreover, it includes 2 additional sub-folders. One is called apProtocol,
but "msgDef", the second one, is what really matters for this analysis.
Inside this sub-folder are set all the simple and complex types described in the
ISO15118-2 protocol which is the basis of every state, message and message
field. Thus, it builds their general structure by setting protected attributes,
defining them also as XML elements, and defining get and set methods. The
CertificateInstallationType is reported as an example:

1 import . . .
2

3 @XmlAccessorType (XmlAccessType . FIELD)
4 @XmlType(name = " Cert i f i cateCha inType " , propOrder = {
5 " c e r t i f i c a t e " ,
6 " s u b C e r t i f i c a t e s "
7 })
8

70

ISO15118-PoC: hardware and software implementation

9 pub l i c c l a s s Cert i f i cateCha inType {
10 @XmlElement (name = " C e r t i f i c a t e " , r equ i r ed = true)
11 protec ted byte [] c e r t i f i c a t e ;
12 @XmlElement (name = " S u b C e r t i f i c a t e s ")
13 protec ted SubCert i f i ca te sType s u b C e r t i f i c a t e s ;
14 @XmlAttribute (name = " Id " , namespace = " urn : i s o : 1 5 1 1 8 : 2 : 2 0 1 3 :

MsgDataTypes ")
15 @XmlJavaTypeAdapter (Col lapsedStr ingAdapter . c l a s s)
16 @XmlID
17 @XmlSchemaType(name = " ID")
18 protec ted St r ing id ;
19

20 pub l i c byte [] g e t C e r t i f i c a t e () {
21 re turn c e r t i f i c a t e ;
22 }
23 pub l i c void s e t C e r t i f i c a t e (byte [] va lue) {
24 t h i s . c e r t i f i c a t e = value ;
25 }
26 pub l i c SubCert i f i ca te sType g e t S u b C e r t i f i c a t e s () {
27 re turn s u b C e r t i f i c a t e s ;
28 }
29 pub l i c void s e t S u b C e r t i f i c a t e s (SubCert i f i ca te sType value) {
30 t h i s . s u b C e r t i f i c a t e s = value ;
31 }
32 pub l i c S t r ing get Id () {
33 re turn id ;
34 }
35 pub l i c void s e t I d (S t r ing value) {
36 t h i s . id = value ;
37 }
38 }
39

The files developed inside the RISE-V2G-Shared are purposely designed without
characterization since they shall work as a template, a workframe able to be adapted

71

ISO15118-PoC: hardware and software implementation

to the EVCC and SECC needs. Intuitively, implementing RISE-V2G-SECC and
RISE-V2G-EVCC is as similar as possible such that the characterization of the
classes and methods in the Shared folder result is more feasible.

RISE-V2G-SECC and RISE-V2G-EVCC

At the first level of SECC and EVCC, the files are basically the same, without
considering the values inside. They contain:

• pom.xml

• LICENSE.txt

• SECCConfig.properties/EVCCConfig.properties: .properties file con-
taining global parameters of SECC and EVCC respectively. They work like a
key-value list to which Miscutils.java allows access to get and set the values.

• "\src\main\java\com\v2gclarity\risev2g\X": The "X" sub-folder is re-
ferred to "secc" for the SECC and "evcc" for the EVCC. It is the folder where
the code parts characterizing the 2 controllers are stored.

The structure of the sub-folder containing the scripts is again almost the same. A
single analysis can be conducted, without treating them separately, making some
exceptions.
The following sub-folders are organized in the following folder-java files structure:

• evseController/evController: contains files aimed at managing controller
parameters.

SECC EVCC

DummyACEVSEController.java
DummyEVController.java

DummyDCEVSEController.java
IACEVSEController.java IACEVController.java

72

ISO15118-PoC: hardware and software implementation

SECC EVCC

IDCEVSEController.java IDCEVController.java
IEVSEController.java IEVController.java

Table 4.1: evseController and evController folder structure and content.

The "Dummy" files create the class structure and its attributes while the "I"
files deal with the set() and get() methods for them.

• main: contains the runnable file that allows starting the charging session.

SECC EVCC

StartSECC.java StartEVCC.java

Table 4.2: main folder structure and content.

They follow 3 steps. At first, initialize the logger manager. Then, a load
function is called on the MiscUtils.GlobalValues.java file in order to set the
correct path for the Config.properties files. Finally, they start the UDP, TCP,
TLS server and clients as Threads creating a new Communication Session.

• misc:

SECC EVCC

SECCImplementationFactory.java EVCCImplementationFactory.java

Table 4.3: misc folder structure and content.

They aim to create the BackendInterface, the respective "I" Controller for
SECC and EVCC applied the current Communication Session.

• session: contains files aimed at defining the Communication Session specific
to each controller and all of its attributes and methods.

73

ISO15118-PoC: hardware and software implementation

SECC EVCC

V2GCommunicationSession-
HandlerSECC.java

V2GCommunciationSession-
HandlerEVCC.java

V2GCommunicationSessionSECC.java V2GCommunicationSessionEVCC.java

Table 4.4: session folder structure and content.

They are the Java scripts fit to set up the specific Communication Session for
the specific controller and create the appropriate methods() needed by the
Session to handle its data.

• states:

SECC EVCC

ForkState.java /
ServerState.java ClientState.java

WaitForAuthorizationReq.java WaitForAuthorizationRes.java
WaitForCableCheckReq.java WaitForCableCheckRes.java
WaitForCableCheckReq.java WaitForCableCheckRes.java

WaitForCertificateInstallationReq.java WaitCertificateInstallationRes.java
WaitForCertificateUpdateReq.java WaitForCertificateUpdateRes.java

WaitForChargeParameterDiscoveryReq.java WaitForChargeParameterDiscoveryRes.java
WaitForChargingStatusReq.java WaitForChargingStatusRes.java
WaitForCurrentDemandReq.java WaitForCurrentDemandRes.java
WaitForMeteringReceiptReq.java WaitForMeteringReceiptRes.java
WaitForPaymentDetailsReq.java WaitForPaymentDetailsRes.java

WaitForPaymentServiceSelectionReq.java WaitForPaymentServiceSelectionRes.java
WaitForPowerDeliveryReq.java WaitForPowerDeliveryRes.java

WaitForPreChargeReq.java WaitForPreChargeRes.java
WaitForServiceDetailReq.java WaitForServiceDetailRes.java

74

ISO15118-PoC: hardware and software implementation

SECC EVCC

WaitForServiceDiscoveryReq.java WaitForServiceDiscoveryRes.java
WaitForSessionSetupReq.java WaitForSessionSetupRes.java
WaitForSessionStopReq.java WaitForSessionStopRes.java

WaitForSupportedAppProtocolReq.java WaitForSupportedAppProtocolRes.java
WaitForWeldingDetectionReq.java WaitForWeldingDetectionRes.java

Table 4.5: states folder structure and content.

They define all the possible States the Communication Session may join. For
each state, the content and the operation code are different.

• transportLayer: contains files aimed at managing controller parameters.

SECC EVCC

ConnectionHandler.java /
StatefulLayerServer.java StatefulLayerClient.java

TCPServer.java TCPClien.java
TLSServer.java TLSClient.java
UDPServer.java UDPClient.java

Table 4.6: transportLayer folder structure and content.

They are concerned with message handling. They work like receivers and
senders of messages. Moreover, inside the transportLayer sub-folder, the UDP,
TCP and TLS server and client are defined.

In addition to the folders described above, RISE-V2G-SECC contains a further
sub-folder called "backend". It contains 2 files:

• DummyBackendInterface: load Secondary Actor (SA) Schedule List con-
taining parameters of all the simulated charging profiles and the simulated
certificate chains.

75

ISO15118-PoC: hardware and software implementation

• IBackendInterface: load get() and set() methods applied on the simulated
charging profiles and certificate chains.

The "backend" sub-folder works like a really simple simulation environment of
CPO, eMSP and Roaming Platform, more in general, every actor upstream of the
Charging Point. In fact, the simulated backend plays 2 main roles: handles the
certificate chains and their movements behind the EVSE and loads the parameters
needed to build the charging profiles.

4.2.2 RISE-V2G: ...and developments

RISE-V2G taken as a "raw" stack protocol works in terms of the messages exchanged
and all the functioning machines that the ISO15118-2 requires to be applied.
However, it remains a pure simulation with some deficiencies. First of all, it does
not give the possibility for the user to interact with it, but the charging process is
carried out automatically. Moreover, this automatization implies the inability of
choosing and changing parameters during the process, whether it would be in the
authorization, pre-charging and charging phases.
In order to overcome these problems some code developments have to be made.
In particular, following the high-level architecture already explained, what is
missing in the Java program is a local communication interface with the ability to
exchange real-time information with the Python central unit such that RISE-V2G
is decentralized and used only as the communication interface between SECC and
EVCC.
The solution which better fixes the issue is the creation of a socket able to send
and receive data.
The socket in question is implemented in the Java part and is recognized as the
client. Its role is to connect to the Python socket Server sending data about the
current state and the useful parameter’s value and reading the returning data about
the updated parameters value.
The Java socket client [12] is initialized with the following lines:

76

ISO15118-PoC: hardware and software implementation

1

2 pub l i c s t a t i c void C l i en t (S t r ing CurrentState) {
3 Socket rp iSocke t = n u l l ;
4 DataInputStream in = n u l l ;
5 PrintStream out = n u l l ;
6 St r ing hostName = " l o c a l h o s t " ;
7 i n t portNumber = 5560 ;
8

9 t ry {
10 rp iSocke t = new Socket (hostName , portNumber) ;
11 out = new PrintStream (rp iSocke t . getOutputStream ()) ;
12 in = new DataInputStream (new BufferedInputStream (rp iSocke t

. getInputStream ())) ;
13 } catch (UnknownHostException e) {
14 System . e r r . p r i n t l n ("Don ’ t know about host : hostname ") ;
15 } catch (IOException e) {
16 System . e r r . p r i n t l n (" Couldn ’ t get I /O f o r the connect ion to

: hostname ") ;
17 }

The host port number is set arbitrarily to 5560 for the SECC client and 5561
for the EVCC client, but otherwise, the rest of the code is exactly the same.
The input information consists of a simple String type. Client class takes the State
in which the Controller is currently in and it is the first parameter that will be
passed every time to the Python server.
The next step is to define under which structure the data are gathered in the
message. The JSON format is chosen since it is compact and easy to write. For
this purpose, the "gson" library by Google is used. The JSON object is used only
for generating the message and reading its response fields, but what is actually
exchanged in the server-client communication is a String representing the JSON.
The code setting up the JSON object is the following:

77

ISO15118-PoC: hardware and software implementation

1 // c r e a t e the JSON ob j e c t
2 JsonObject obj = new JsonObject () ;
3 obj . addProperty (" key_1 " , " value_1 ") ;
4 obj . addProperty (" key_2 " , " value_2 ") ;
5 obj . addProperty (" key_3 " , " value_3 ") ;
6

7 // convert the JSON ob j e c t to a s t r i n g and send i t to the s e r v e r
8 Gson gson = new Gson () ;
9 St r ing j s onS t r = gson . toJson (obj) ;

10 out . p r i n t l n (j s onS t r) ;

The key-value pairs are taken from the respective Config.properties file on which
additional parameters are added to be able to set them and modify their values
in a more comfortable and flexible way. Consequently also the MiscUtils method
"getpropertyValue(...)", previously described, must be integrated in order to take
the new parameter values.
The first key-value pair is always represented by the CurrentState and its name is
taken from the homonymous parameter. The successive JSON fields change either
in terms of key-value and in terms of quantity. It depends on the current State.
For this reason, it is mandatory to set an if-else if condition list which works as a
sorter such as different key-value pairs can be set for each message sent.

1 switch (CurrentState) {
2 case " WaitForPaymentServiceSelect ionRes " :
3 obj . addProperty (" CurrentState " , CurrentState) ;
4 obj . addProperty (" key_2 " , (S t r ing) getPropertyValue (" key_2 ")) ;
5 obj . addProperty (" key_3 " , (S t r ing) getPropertyValue (" key_3 ")) ;
6

7 // convert the JSON ob j e c t to a s t r i n g and send i t to the
s e r v e r

8 Gson gson = new Gson () ;

78

ISO15118-PoC: hardware and software implementation

9 St r ing j s onS t r = gson . toJson (obj) ;
10 out . p r i n t l n (j s onS t r) ;
11

12 . . .

The second Java client’s duty is to read the response coming from the Python
server. As it was done before, again in this case, the necessity to set an if-else
condition list is required to read correctly the JSON content. Inside every if(), the
String response is converted back into a JSON Object and the response parameter
is updated in the Config.properties file from the key-value pairs.

1 byte [] bytes = new byte [1 0 2 4] ;
2 in . read (bytes) ;
3 St r ing r ep ly = new St r ing (bytes , "UTF−8") ;
4

5 Gson gson = new Gson () ;
6 JsonObject j sonObject = gson . fromJson (r ep ly . tr im () , JsonObject .

c l a s s) ;
7

8 i f (j sonObject . get (" CurrentState ") . getAsStr ing () . equalsTo ("
WaitForPaymentServiceSelectionReq ")) {

9 g e t P r o p e r t i e s () . s e tProper ty (" Config_key_2 " , j sonObject . get (" key_2
") . getAsStr ing ()) ;

10 } e l s e i f (. . .) {
11 . . .

The Client class is set up in the MiscUtils.java file and it is called every time a
new message is received by the controller. In this way, the parameters contained in
the Config.properties file are updated at their newest version, in case the upcoming
message modifies them, and, on the other hand, their values can still be taken
and changed externally by the user through the socket before sending a response
message.
This logic mechanism is applied both for SECC and EVCC states, but there is an

79

ISO15118-PoC: hardware and software implementation

exception. In the EVCC state called "WaitForChargeParameterDiscoveryRes", the
received corresponding message contains the charging profiles generated by the
EVCC, but they are in form of an XML and they are too long to be passed using a
String anyway. In this case, the XML is saved as an XML file and analyzed in the
EV_PFS using a Python library.

4.3 Python software components

The high-level architecture of the Python units contains the homonymous Python
files. Then, the resulting code files show in the following structure:
EVSE/EV_GUI –> EVSE/EV_GUI.py
EVSE/EV_PFS –> EVSE/EV_PFS.py
EVSE/EV_BL –> EVSE/EV_BL.py
SECC/EVCC_Properties –> SECC/EVCC_Properties.py

The Python code structure is the same for both the SECC and the EVCC.
Thus, the code will be analyzed only one time in general for both the controllers
and, in case exceptions exist, they are deepened apart, as it has been done for the
RISE-V2G.

4.3.1 Graphical User Interface (GUI)

The Python unit responsible for the Graphical User Interface is the EVSE/EV_GUI.py.
It stimulates the infotainment on the EV and the information display at the Charg-
ing Point. It plays 3 roles:

• makes the progress of the charging session viewable and easy-understandable
to the user.

• gathers all the inputs from the user in the decision-making charging steps and
communicates them to the Central unit (BL).

80

ISO15118-PoC: hardware and software implementation

• keeps the user up to date on the background action and the exchanged charging
parameters of the current charging session.

The Python library used for achieving these objectives is called customtkinter.
It is the upgraded version of the widespread Tkinter library. It adds new features
and improves the already existing ones in addition to making the interface more
visually appreciable. Furthermore, the Image and ImageTk packets of the pillow
library have been imported in order to manage pictures.

The code structure has been thought of such that every page has its own class
with its own methods and attributes. However, the GUI is required to constantly
display a page without interruptions during page transitions.
To achieve this purpose, a "main" frame is set up and then passed to the page class
that needs to be opened:

1 c l a s s main_page (customtk inter .CTk) :
2 WIDTH = 800
3 HEIGHT = 400
4 customtk inter . set_appearance_mode (" dark ")
5 customtk inter . set_default_color_theme (" blue ")
6

7 de f __init__(s e l f) :
8 super () . __init__ ()
9 s e l f . t i t l e (’EVCC’)

10 s e l f . geometry ((f " {main_page .WIDTH}x{main_page .HEIGHT} "))
11 zero_page (s e l f)

The "main_page" owns default attributes that every page must have as page
dimensions, background color and word colors. In its __init__(self) method, title
and page geometry are fixed and a default page is called passing as a parameter
the "main_page" itself.
Besides the structure, each page class expects an argument to be passed when it is

81

ISO15118-PoC: hardware and software implementation

called. This is the initially created "main_page" frame.
The page structure follows the logic dictated by the customtkinter library. It plans
to take the default main page received as an argument and divide it into frames, so
creating a kind of grid table. Then, every frame is further divided into sub-frames.
The result is a template page consisting of a grid table with X frames and each
frame is sub-divided into a grid with different numbers of rows and columns. The
possibility to create an uneven table gives a high level of freedom from a design
point of view since it allows inserting widgets in different positions along the page.
Below is reported the example of the page that will open if PnC as payment option
method is chosen:

1 c l a s s PnC_page () :
2 de f __init__(s e l f , window) :
3 s e l f . PnC_page(window)
4

5 de f PnC_page(s e l f , window) :
6 # CREATION OF FRAMES 2− l e f t ,1− r i g h t (2 x2) #
7 window . gr id_rowconf igure (0 , weight=1)
8 window . gr id_columnconf igure (1 , weight=1)
9

10 window . frame1 = customtk inter . CTkFrame(master=window ,
corner_radius =15)

11 window . frame1 . g r id (row=0, column=0, columnspan=2, padx=10,
pady=10, s t i c k y=" nswe ")

12

13 # frame #
14 window . frame1 . gr id_rowconf igure (12 , weight=1)
15 window . frame1 . gr id_columnconf igure (0 , weight=1)
16

17 # empty rows with mins ize as spac ing
18 window . frame1 . gr id_rowconf igure (0 , mins i ze =10)
19 window . frame1 . gr id_rowconf igure (3 , mins i ze =5)
20 window . frame1 . gr id_rowconf igure (4 , mins i ze =20)

82

ISO15118-PoC: hardware and software implementation

21 window . frame1 . gr id_rowconf igure (5 , mins i ze =20)
22 window . frame1 . gr id_rowconf igure (7 , mins i ze =10)
23 window . frame1 . gr id_rowconf igure (8 , mins i ze =20)
24 window . frame1 . gr id_rowconf igure (9 , mins i ze =10)
25 window . frame1 . gr id_rowconf igure (10 , mins i ze =10)
26 window . frame1 . gr id_rowconf igure (11 , mins i ze =10)
27

28 . . .

The noteworthy widgets mostly used in the GUI script are the CTkLabel and
CTkButton. The first one is widespread along the code since it allows appending
tags either if they are passive and images. The second widget allows the interaction
between the controller and the user. In fact, it accepts one or more functions that
will be activated when the button will be pressed by the user. A further interactive
widget is the CTkComboBox. Unlike what happens to push the button, it offers a
selection.

1 . . .
2 de f button_1 (s e l f) :
3 EVCC_Properties . Chosen_SA_schedule = 1
4 EVCC_Properties . RiseContinue = True
5 . . .
6 de f cha rg i ng_pro f i l e (s e l f , window) :
7 . . .
8 PATH1 = ’C: / Users / ’+s t r (EVCC_Properties . UserDir)+’ /Demo−PnC/

workspace /DEMO_EVCC/ISO15118−Demo/ Charg ingPro f i l e1 . png ’
9 PATH2 = ’C: / Users / ’+s t r (EVCC_Properties . UserDir)+’ /Demo−PnC/

workspace /DEMO_EVCC/ISO15118−Demo/ Charg ingPro f i l e2 . png ’
10 PATH3 = ’C: / Users / ’+s t r (EVCC_Properties . UserDir)+’ /Demo−PnC/

workspace /DEMO_EVCC/ISO15118−Demo/ Charg ingPro f i l e3 . png ’
11 p r o f i l e 1=ImageTk . PhotoImage (Image . open (PATH1) . r e s i z e

((260 ,240)))

83

ISO15118-PoC: hardware and software implementation

12 p r o f i l e 2=ImageTk . PhotoImage (Image . open (PATH2) . r e s i z e
((260 ,240)))

13 p r o f i l e 3=ImageTk . PhotoImage (Image . open (PATH3) . r e s i z e
((260 ,240)))

14

15 window . button1 = customtk inter . CTkButton (master=window . frame1
, image=p r o f i l e 1 , t ex t=" " , text_font=(" Roboto Medium" , −15) ,
corner_radius =50, fg_co lor=" black " , t ext_co lo r=" green4 " ,
border_width=1, border_color=" green4 " , width =20, he ight =40,
command=lambda : [s e l f . button_1 ()])

16 window . button1 . g r id (row=2, column=1, padx=20, pady=10)
17

18 window . l a b e l 1 = customtk inter . CTkLabel (master=window . frame1 ,
t ex t=" P r o f i l e 1 " , f g_co lor=" black " , t ext_co lo r=" green4 " , text_font
=(" Roboto Medium" , −30))

19 window . l a b e l 1 . g r i d (row=3, column=1, padx=10, pady=10)
20 . . .

The last observation about the GUI script comes from some non-constant values.
There are some labels, like the EV SoC, that must be updated constantly since
they will change during the charging session. In the meantime, this requirement
needs to be compliant with the real-time update requirement of the GUI. This is
possible for the nature of how the customtkinter library has been thought of.
In general, the current page of a Graphical User Interface is built in such a way
that it remains in an infinite loop such that the code structure to generate it will be
executed continuously. It has a regeneration frequency rate so high that the page
will result in static to an external point of view, even if it is constantly re-compiled.
In this implementation, the Python library requires the "main_page", built using
the "customtkinter.CTk", has to be initialized in the main loop of the runnable
script.
This process will be described later when the Business Logic unit flow is analyzed.
In terms of how the changing values have to be shown, this objective can be

84

ISO15118-PoC: hardware and software implementation

achieved by self-calling the function suitable for showing these values.

1 de f EV_ssoc (s e l f , window) :
2 window . s soc = customtk inter . CTkLabel (master=window . frame1 ,

t ex t=" Battery s t a t e o f charge : " + s t r (EVCC_Properties . e v r e s s s o c)
+ "%" , t ext_co lo r=" white " , text_font=(" Roboto Medium" , −30))

3 window . s soc . g r id (row=10, columnspan=3, padx=10, pady=0,
s t i c k y="we")

4 window . s soc . a f t e r (1000 , lambda : [s e l f . EV_ssoc (window)])

The only other Python script imported by the Python GUI unit is the Prop-
erties.py file. It is essential because every user action implies a modification of a
global variable such that the edit can be communicated to the Central unit.

4.3.2 Power Flow Simulator (PFS)

The Power Flow Simulator (PFS) unit manages the energy parameters and the
charging profiles. Unlike what happens with the GUI unit, the EVSE_PFS is
structurally different from the EV one. In general, these units consist of a single
class containing several methods according to the controller’s specific needs.

EVSE_PFS

It covers 2 functions:

• set the EVSE characteristic energy values: they comprehend the nominal
voltage, the current ripple, the maximum and minimum voltage, current and
power values.
These values are set in the SECC_Properties.py script as global variables.

• generate the charging profiles: the ISO15118 standard set some require-
ments that shall be satisfied in the creation of a charging profile. It is
represented by a 2D Cartesian diagram in which the x-axis corresponds to the

85

ISO15118-PoC: hardware and software implementation

time and the y-axis matches an ePriceLevel. The latter is an integer value
that corresponds to a timely-variable energy price. The standard protocol
does not allow real price values in the EVCC-SECC communication.
Each ePriceLevel is linked to other 3 parameters: relativePricePercentage,
RenewableGenerationPercentage and CarbonDioxideEmission. Thus, each
point provides 4 charging data at every time instant.
These values should be provided by the CPO backend which in turn should
be generated by the eMSP based on the energy market. However, they are
randomly simulated in the EVSE_PFS following a Gaussian curve.

1 de f gen_EPriceLevels (s e l f) :
2 EPr i c eLeve l sL i s t = [1 , 2 , 3 , 4]
3 # random . c h o i c e s (ePr i c eL i s t , we ights =(10 ,30 ,20 ,10) , k=4)
4 value = random . sample (EPr i ceLeve l sL i s t , k=4)
5 EPriceLeve l s = value
6 re turn EPr iceLeve l s
7 de f gen_Renewables (s e l f , mean , var i ance) :
8 VecRenewables = [0 , 0 , 0 , 0]
9 f o r i in range (0 , 4) :

10 value = round (random . gauss (mean , var iance))
11 VecRenewables [i] = value
12 re turn VecRenewables
13 de f gen_Carbon (s e l f , mean , var i ance) :
14 VecCarbon = [0 , 0 , 0 , 0]
15 f o r i in range (0 , 4) :
16 value = round (random . gauss (mean , var iance))
17 VecCarbon [i] = value
18 re turn VecCarbon
19

One last, method is implemented to actually call the previous methods and

86

ISO15118-PoC: hardware and software implementation

store the simulated values in the respective global variables to be passed to
the EVCC.
The ISO15118 standard limits the number of charging profiles that can be
proposed to the user to a maximum of 3 schedules.

1 de f generate (s e l f) :
2 t i m e I n t e r v a l s=round (i n t (SECC_Properties . departure_time)

/4)
3 SECC_Properties . EVSE_VecTimes1=[0 , t i m e I n t e r v a l s ∗1 ,

t i m e I n t e r v a l s ∗2 , t i m e I n t e r v a l s ∗3]
4 SECC_Properties . EVSE_VecTimes2=[0 , t i m e I n t e r v a l s ∗1 ,

t i m e I n t e r v a l s ∗2 , t i m e I n t e r v a l s ∗3]
5 SECC_Properties . EVSE_VecTimes3=[0 , t i m e I n t e r v a l s ∗1 ,

t i m e I n t e r v a l s ∗2 , t i m e I n t e r v a l s ∗3]
6

7 # Charging P r o f i l e 1
8 SECC_Properties . EVSE_VecEPriceLevels1=s e l f .

gen_EPriceLevels ()
9 SECC_Properties . EVSE_VecRenewables1=s e l f . gen_Renewables

(50 ,10)
10 SECC_Properties . EVSE_VecCarbon1=s e l f . gen_Carbon (5 , 1)
11

12 # Charging P r o f i l e 2
13 SECC_Properties . EVSE_VecEPriceLevels2=s e l f .

gen_EPriceLevels ()
14 SECC_Properties . EVSE_VecRenewables2=s e l f . gen_Renewables

(30 ,5)
15 SECC_Properties . EVSE_VecCarbon2=s e l f . gen_Carbon (3 ,10)
16

17

18 # Charging P r o f i l e 3
19 SECC_Properties . EVSE_VecEPriceLevels3=s e l f .

gen_EPriceLevels ()

87

ISO15118-PoC: hardware and software implementation

20 SECC_Properties . EVSE_VecRenewables3=s e l f . gen_Renewables
(70 ,10)

21 SECC_Properties . EVSE_VecCarbon3=s e l f . gen_Carbon (4 , 5)
22

EV_PFS

The number of functions that must be covered in the case of the EV Power Flow
Simulator is a little higher than the previous one. They are again defined as
methods in a single class. They are described as follows:

• set the EV characteristic energy values: they comprehend the charging
mode, maximum, limit and target values of voltage, current and power, and
the State of Charge. These values are set in the EVCC_Properties.py script
as global variables. The State of Charge of the EV battery is simulated by
simply taking a random Gaussian value when the EV arrives at the Charging
Point.

• read and store values of the charging profiles: when the ChargeParame-
terDiscoveryRes is received by the EVCC, it is saved on the current repository
as an XML file. It contains the 3 offered to charge schedules.

1 de f readXML(s e l f , S a l e s T a r i f f) :
2 VecTimes = [0 , 0 , 0 , 0]
3 VecEPriceLevels = [0 , 0 , 0 , 0]
4 VecPricePercentage = [0 , 0 , 0 , 0]
5 VecRenewables = [0 , 0 , 0 , 0]
6 VecCarbon = [0 , 0 , 0 , 0]
7 t r e e=et . parse (’C: / Users / ’+s t r (EVCC_Properties . UserDir)+’ /

Demo−PnC/ workspace /DEMO_EVCC/ISO15118−Demo/ ’+s t r (S a l e s T a r i f f))
8 root=t r e e . g e t roo t ()

88

ISO15118-PoC: hardware and software implementation

9 S a l e s T a r i f f I D = root . f i n d (’ {urn : i s o : 1 5 1 1 8 : 2 : 2 0 1 3 :
MsgDataTypes} S a l e s T a r i f f I D ’)

10 index=0
11 f o r Sa l e sT a r i f fEn t ry in root . f i n d a l l (’ {urn : i s o

: 1 5 1 1 8 : 2 : 2 0 1 3 : MsgDataTypes} Sa l e sTa r i f fEn t ry ’) :
12

13 Relat iveTimeInte rva l = Sa l e sTa r i f fEn t ry . f i n d (’ {urn :
i s o : 1 5 1 1 8 : 2 : 2 0 1 3 : MsgDataTypes} Re la t iveTimeInte rva l ’)

14 s t a r t = Re la t iveTimeInte rva l . f i n d (’ {urn : i s o
: 1 5 1 1 8 : 2 : 2 0 1 3 : MsgDataTypes} s t a r t ’)

15 VecTimes [index]= i n t (s t a r t . t ex t)
16

17 EPriceLevel = Sa l e sTa r i f fEn t ry . f i n d (’ {urn : i s o
: 1 5 1 1 8 : 2 : 2 0 1 3 : MsgDataTypes} EPriceLevel ’)

18 VecEPriceLevels [index]= i n t (EPriceLeve l . t ex t)
19

20 ConsumptionCost = Sa l e sTa r i f f En t ry . f i n d (’ {urn : i s o
: 1 5 1 1 8 : 2 : 2 0 1 3 : MsgDataTypes}ConsumptionCost ’)

21 s ta r tVa lue = ConsumptionCost . f i n d (’ {urn : i s o
: 1 5 1 1 8 : 2 : 2 0 1 3 : MsgDataTypes} s ta r tVa lue ’)

22 M u l t i p l i e r = star tVa lue . f i n d (’ {urn : i s o : 1 5 1 1 8 : 2 : 2 0 1 3 :
MsgDataTypes} M u l t i p l i e r ’)

23 Unit = star tVa lue . f i n d (’ {urn : i s o : 1 5 1 1 8 : 2 : 2 0 1 3 :
MsgDataTypes}Unit ’)

24 Value = star tVa lue . f i n d (’ {urn : i s o : 1 5 1 1 8 : 2 : 2 0 1 3 :
MsgDataTypes}Value ’)

25

26 Cost = ConsumptionCost . f i n d (’ {urn : i s o : 1 5 1 1 8 : 2 : 2 0 1 3 :
MsgDataTypes}Cost ’)

27 costKind=Cost . f i n d (’ {urn : i s o : 1 5 1 1 8 : 2 : 2 0 1 3 :
MsgDataTypes} costKind ’)

28 amount=Cost . f i n d (’ {urn : i s o : 1 5 1 1 8 : 2 : 2 0 1 3 : MsgDataTypes}
amount ’)

29 i f (costKind . t ex t == ’ r e l a t i v e P r i c e P e r c e n t a g e ’) :
30 VecPricePercentage [index]= i n t (amount . t ex t)

89

ISO15118-PoC: hardware and software implementation

31 e l i f (costKind . t ex t == ’ RenewableGenerationPercentage
’) :

32 VecRenewables [index] = i n t (amount . t ex t)
33 e l i f (costKind . t ex t == ’ CarbonDioxideEmission ’) :
34 VecCarbon [index] = i n t (amount . t ex t)
35 index += 1
36 s e l f . memo_SalesTarif fValues (S a l e s T a r i f f I D . text , VecTimes ,

VecEPriceLevels , VecPricePercentage , VecRenewables , VecCarbon)
37

38 de f memo_SalesTarif fValues (s e l f , Sa l e sTar i f f ID , VecTimes ,
VecEPriceLevels , VecPricePercentage , VecRenewables , VecCarbon)
:

39

40 i f (S a l e s T a r i f f I D == ’ 1 ’) :
41 EVCC_Properties . EVSE_VecTimes1 = VecTimes
42 EVCC_Properties . EVSE_VecEPriceLevels1 =

VecEPriceLevels
43 EVCC_Properties . EVSE_VecPercentages1 =

VecPricePercentage
44 EVCC_Properties . EVSE_VecRenewables1 = VecRenewables
45 EVCC_Properties . EVSE_VecCarbon1 = VecCarbon
46

47 e l i f (S a l e s T a r i f f I D == ’ 2 ’) :
48 EVCC_Properties . EVSE_VecTimes2 = VecTimes
49 EVCC_Properties . EVSE_VecEPriceLevels2 =

VecEPriceLevels
50 EVCC_Properties . EVSE_VecPercentages2 =

VecPricePercentage
51 EVCC_Properties . EVSE_VecRenewables2 = VecRenewables
52 EVCC_Properties . EVSE_VecCarbon2 = VecCarbon
53

54 e l i f (S a l e s T a r i f f I D == ’ 3 ’) :
55 EVCC_Properties . EVSE_VecTimes3 = VecTimes
56 EVCC_Properties . EVSE_VecEPriceLevels3 =

VecEPriceLevels

90

ISO15118-PoC: hardware and software implementation

57 EVCC_Properties . EVSE_VecPercentages3 =
VecPricePercentage

58 EVCC_Properties . EVSE_VecRenewables3 = VecRenewables
59 EVCC_Properties . EVSE_VecCarbon3 = VecCarbon
60

The xml.etree.ElementTree is imported. It allows to easily go back to take
the child elements in the XML structure. For a clean and compact solution,
the process of storing them in local variables is coded in a for loop. Once it is
finished, a simple storing method is called. It works by operating on passing
the charging schedule ID and the local variables in order to store them in the
global parameters.

• generate the piecewise functions: it is needed a method for each schedule
that may correlate the time instance to the correct value, returning it.

1 de f f 1 (s e l f , x) :
2 i f (x>=EVCC_Properties . EVSE_VecTimes1 [0] and x<=

EVCC_Properties . EVSE_VecTimes1 [1]) :
3 re turn f l o a t (EVCC_Properties . EVSE_VecEPriceLevels1

[0])
4 i f (x>EVCC_Properties . EVSE_VecTimes1 [1] and x<=

EVCC_Properties . EVSE_VecTimes1 [2]) :
5 re turn f l o a t (EVCC_Properties . EVSE_VecEPriceLevels1

[1])
6 i f (x>EVCC_Properties . EVSE_VecTimes1 [2] and x<=

EVCC_Properties . EVSE_VecTimes1 [3]) :
7 re turn f l o a t (EVCC_Properties . EVSE_VecEPriceLevels1

[2])
8 i f (x>EVCC_Properties . EVSE_VecTimes1 [3] and x<=

EVCC_Properties . departure_time) :
9 re turn f l o a t (EVCC_Properties . EVSE_VecEPriceLevels1

[3])

91

ISO15118-PoC: hardware and software implementation

10

• generate Cartesian graphs of the charging profiles:

1 de f show_pro f i l e s (s e l f , PATH_1, PATH_2, PATH_3) :
2 #Charging P r o f i l e 1
3 x1=numpy . l i n s p a c e (0 , EVCC_Properties . departure_time ,1000)
4 y1=numpy . v e c t o r i z e (s e l f . f 1) (x1)
5 matp lo t l i b . use (’ agg ’)
6 f ig_1 = pyplot . f i g u r e (1)
7 pyplot . p l o t (x1 , y1)
8 pyplot . x l a b e l ("Time ")
9 pyplot . y l a b e l (" EPr iceLeve l s ")

10 pyplot . t ex t (0 , EVCC_Properties . EVSE_VecEPriceLevels1
[0] −0 .1 , " Renewables : "+s t r (EVCC_Properties . EVSE_VecRenewables1
[0])+" \n "+" Carbon : "+s t r (EVCC_Properties . EVSE_VecCarbon1 [0]))

11 pyplot . t ex t (EVCC_Properties . EVSE_VecTimes1 [1] ,
EVCC_Properties . EVSE_VecEPriceLevels1 [1] −0 .1 , " Renewables : "+
s t r (EVCC_Properties . EVSE_VecRenewables1 [1])+" \n "+" Carbon : "+s t r
(EVCC_Properties . EVSE_VecCarbon1 [1]))

12 pyplot . t ex t (EVCC_Properties . EVSE_VecTimes1 [2] ,
EVCC_Properties . EVSE_VecEPriceLevels1 [2] −0 .1 , " Renewables : "+
s t r (EVCC_Properties . EVSE_VecRenewables1 [2])+" \n "+" Carbon : "+s t r
(EVCC_Properties . EVSE_VecCarbon1 [2]))

13 pyplot . t ex t (EVCC_Properties . EVSE_VecTimes1 [3] ,
EVCC_Properties . EVSE_VecEPriceLevels1 [3] −0 .1 , " Renewables : "+
s t r (EVCC_Properties . EVSE_VecRenewables1 [3])+" \n "+" Carbon : "+s t r
(EVCC_Properties . EVSE_VecCarbon1 [3]))

14 pyplot . s a v e f i g (PATH_1)
15 pyplot . c l o s e (f ig_1)
16 . . .
17

The above process generating the first schedule diagram is repeated with the

92

ISO15118-PoC: hardware and software implementation

same logic also for the other 2 profiles.
The operations carried forward in this Python unit are implemented using
"numpy" and "matplotlib" libraries.

• simulate the SoC: in order to make the simulation as realistic as possible it is
not enough to emulate the backend interface, but also the EV frontend. Then,
a method used for mimicking the battery charging process is needed. It results
are necessary also for technical purposes. RISE-V2G provides a message
called "CurrentDemandReq" containing a mandatory parameter linked to the
SoC value (EVRESSSOC). The method of implementing this functionality is
structured as follows:

1 de f s tar t_charg ing () :
2 whi le (EVCC_Properties . e v r e s s s o c < 100 and (EVCC_Properties .

Risev2g_State==" WaitForChargingStatusRes " or EVCC_Properties .
Risev2g_State == ’ WaitForCurrentDemandRes ’)) :

3 time . s l e e p (1)
4 EVCC_Properties . e v r e s s s o c += 3
5 i f EVCC_Properties . ev r e s s soc >100:
6 EVCC_Properties . e v r e s s s o c =100
7

4.3.3 Business Logic (BL) and Property file

The Business Logic (BL.py) Unit is so-called given its duties. It covers 3 fundamental
required actions:

• manage and coordinate the other satellite unit calls,

• handle the socket server communication,

• run the full stack code.

93

ISO15118-PoC: hardware and software implementation

The last objective is covered in the same script calling the "__main__" to the
interpreter:

1 i f __name__ == ’__main__ ’ :
2 GUI = EVSE_GUI. main_page ()
3 BL(GUI)
4 GUI . mainloop ()

Firstly, the GUI "main_page" is generated such that can be passed as an argument
to the BL class and the GUI loop can be called.
The "customtkinter" library claims compulsorily the page is in the main loop.

The logic with which the BL class has been designed is the same either for
the EVCC and SECC; so, its methods will be analyzed singularly in different
sub-sections due to the complexity of the BL.py.
The BL() class accepts one argument to be passed called "window". It is the already
created "main_page" of the GUI unit.
When initialized, it launches 4 mainThreads [13]. The Central Python unit consists
of a single class initialized by launching 4 Threads.

1 c l a s s BL() :
2 de f __init__(s e l f , window) :
3 Thread_PlugConnection = thread ing . Thread (t a r g e t=s e l f .

plug_connection)
4 Thread_BL_loop = thread ing . Thread (t a r g e t=s e l f . BL_loop , args

=[window])
5 Thread_socket = thread ing . Thread (t a r g e t=s e l f . s o ck e t t)
6 Thread_rise = thread ing . Thread (t a r g e t=s e l f . s t a r t _ r i s e)
7

8 Thread_PlugConnection . daemon = True
9 Thread_BL_loop . daemon = True

10 Thread_socket . daemon = True

94

ISO15118-PoC: hardware and software implementation

11 Thread_rise . daemon = True
12

13 Thread_PlugConnection . s t a r t ()
14 Thread_BL_loop . s t a r t ()
15 Thread_socket . s t a r t ()
16 Thread_rise . s t a r t ()

The 4 Threads roles are briefly introduced in the table below and described
more in detail in the following sub-section.

Thread Semantics

PlugConnection check continuously if the cable is plugged in or not

BL_loop
call the appropriate action depending on which is
the communication current state

socket handle the socket server communication

rise
run the JAR execution and restart it every time
a charging sequence will end

Table 4.7: Business Logic initialized Threads.

Plug Connection Thread

It exploits the "psutil" library. The method simply consists of taking a list of
booleans associated with different available connections, checking the one referring
to the Ethernet cable and verifying it.

1 de f plug_connection (s e l f) :
2 f l a g _ f i r s t = True
3 whi le (True) :
4 netSta t s=p s u t i l . ne t_i f_stat s ()
5 l i stName=l i s t (ne tS ta t s . keys ())
6 ETH=listName [0]
7 i f (ne tS ta t s [ETH] . i sup == False) :

95

ISO15118-PoC: hardware and software implementation

8 SECC_Properties . Plug_connected = True
9 e l i f (ne tSta t s [ETH] . i sup == True) :

10 SECC_Properties . Plug_connected = False
11 e l i f (f l a g _ f i r s t == True and netSta t s [ETH] . i sup == False) :
12 f l a g _ f i r s t = Fal se
13 s e l f . open_page ((’ waiting_for_setup_page ’))
14 EVCC_Properties . RiseContinue = True

It is relevant to highlight the global flag on the last line called "RiseContinue".
It is used to pause the execution of the communication between the BL unit and
RISE-V2G when it is set to False and make it restart once it changes to True. In
particular, it affects the functioning of the socket server. Its specific operating logic
of it will be explained in the next sub-section.

Socket Server Thread [14]

It imports "socket" and "json" Python libraries. The structure of the socket server
is the same as the one described for the client, but with the reading and sending
process inverted in the flow. However, some differences exist.
The server shall be always available for the client to connect; in order to do so, an
infinite while loop is initialized.

1 de f s o cke t t (s e l f) :
2 host = ’ ’
3 port = 5561
4

5 s o c k s i z e = 1024
6 s = socket . socke t (socket .AF_INET, socket .SOCK_STREAM)
7 s . bind ((host , port))
8 pr in t (" Server s t a r t e d on port : %s " % port)
9 s . l i s t e n (1)

10 whi le True :
11 f l ag_socke t = True

96

ISO15118-PoC: hardware and software implementation

12 pr in t ("Now l i s t e n i n g . . . \ n ")
13 conn , addr = s . accept ()
14

15 pr in t (’New connect ion from %s :%d ’ % (addr [0] , addr [1]))
16 data = conn . recv (s o c k s i z e)
17 data = data . decode (’ ut f −8 ’)
18 data = data . s t r i p ()
19 j son_dict = j son . l oads (data)
20

21 EVCC_Properties . RiseContinue = False
22 . . .

When the client connects to the server and it receives the message, the "loads()"
method deserializes the incoming data to Python Object in order to be read by the
socket. It distinguished the message by taking the CurrentState in the first field
and checking it using a switch list.

1

2 match j son_dict [’ CurrentState ’] :
3 . . .
4 case ’ WaitForCurrentDemandReq ’ :
5 SECC_Properties . Risev2g_State = json_dict [’

CurrentState ’]
6 SECC_Properties .EVRESSSOC = json_dict [’EVRESSSOC ’]
7 SECC_Properties . EVSENoti f icat ion = json_dict [’

EVSENoti f icat ion ’]
8 f l ag_socke t = True
9 . . .

In the second section, a second while loop is set, but at this time, the "flag_socket"
provides a way out if it is changed to False. This operation can be done only once
the parallel operation on the "BL_loop", the GUI unit and PFS are finished and
the global flag "RiseContinue" is set again to True.

97

ISO15118-PoC: hardware and software implementation

1 whi le f l ag_socke t == True :
2 i f EVCC_Properties . RiseContinue == True :
3 EVCC_Properties . RiseContinue = False
4 f l ag_socke t = False
5 match EVCC_Properties . Risev2g_State :
6 . . .
7 case " WaitForCurrentDemandReq " :
8 SECC_Properties .EVRESSSOC = json_dict [’EVRESSSOC ’]
9 SECC_Properties . EVSE_Notification = json_dict [’

EVSENoti f icat ion ’]
10 message = { ’ CurrentState ’ : SECC_Properties .

Risev2g_State ’ , EVRESSSOC ’ : SECC_Properties .EVRESSSOC, ’
EVSENoti f icat ion ’ : SECC_Properties . EVSENotif icat ion }

11 r ep ly = j son . dumps(message)
12 . . .
13

14 conn . s e n d a l l (bytes (rep ly , ’ ut f −8 ’))

The socket server ends up composing the reply message and sending it back to
the Java client.

Business Logic Loop Thread

If the socket Thread is the connection between the Business Logic and RISE-V2G,
the BL_loop method is what connects the Central system to the GUI and PFS
units.
It presents a simple code design. An infinite while loop is needed to keep the
controllers awake. A second while loop using the "Plug_connected" flag is built
in order to keep checking in which state the charging session is and, consequently,
which operation shall be executed.

98

ISO15118-PoC: hardware and software implementation

1 de f BL_loop (s e l f , window) :
2 s e l f . open_page (’ f i r s t_page ’ , window)
3 whi le (True) :
4 whi le (SECC_Properties . Plug_connected == True) :
5 i f (SECC_Properties . Risev2g_State == ’

WaitForServiceDiscoveryReq ’ and SECC_Properties .
f l ag_Serv iceDiscoveryReq == 0) :

6 s e l f . set_value (SECC_Properties . Risev2g_State)
7 s e l f . open_page (’ payment_selection_page ’ , window)
8 . . .

The method represented above includes some additional methods to hold some
functionality more compactly.

• set_value(self, Risev2g_State) method: for each current state owns
associated parameters that have to be set by default or taken from the GUI
unit.

1 de f set_value (s e l f , Risev2g_State) :
2 match Risev2g_State :
3 case ’ WaitForServiceDiscoveryReq ’ :
4 SECC_Properties . f l ag_Serv iceDiscoveryReq = 1
5 case ’ WaitForPaymentServiceSelect ioReq ’ :
6 SECC_Properties . f lag_PaymentServ iceSe lect ionReq =

1
7 . . .
8

• open_page("page_name", window) method: some states require to
open its corresponding GUI page. This method uses the window argument
taken from the BL_loop Thread in order to open the single pages having the
main one.

99

ISO15118-PoC: hardware and software implementation

1 de f open_page (s e l f , page_name , window) :
2 i f (page_name == ’ zero_page ’) :
3 EVSE_GUI. zero_page (window)
4 e l i f (page_name == ’ f i r s t_page ’) :
5 EVSE_GUI. f i r s t_page (window)
6 . . .
7

• charging_option_selection(self, option_selected): the method used
if Renegotiation, Pause or Stop is selected. It reset the appropriate flags
depending on the charging option selected.
The Renegotiation, Pause and Stop options involve a turning back in the
charging flow re-proposing some states.

1 de f charg ing_opt ion_se l ec t ion (s e l f , opt i on_se l e c t ed) :
2 match opt ion_se l e c t ed :
3 case ’ ReNegot iat ion ’ :
4 SECC_Properties . f lag_ChargeParameterDiscoveryReq

= 0
5 . . .
6 case ’ Pause ’ :
7 . . .
8 case ’ Stop ’ :
9 . . .

10

• reset_flags(self) method: this method is used when the charging session
ends. All the flags will be reset in order to be prepared for a new charging
session.

100

ISO15118-PoC: hardware and software implementation

1 de f r e s e t _ f l a g s (s e l f) :
2 SECC_Properties . f l ag_Serv iceDiscoveryReq = 0
3 SECC_Properties . f l ag_Serv i ceDeta i lReq = 0
4 . . .
5

• contractCertChangeself method: the method used when a CertificateUp-
date message is required. It deletes the current Contract Certificate stored in
the SECC and substitutes it with the new one such that it can be sent to the
EVCC by RISE-V2G unit.

1 de f contractCertChange (s e l f) :
2 oldPath = ’C: / Users / ’+s t r (SECC_Properties . UserDir)+’ /Demo

−PnC/ workspace /DEMO_SECC/ r i s e −v2g −1.2.6/RISE−V2G−SECC/ ta r g e t /
moCertChain . p12 ’

3 newPath = ’C: / Users / ’+s t r (SECC_Properties . UserDir)+’ /Demo
−PnC/ workspace /DEMO_SECC/ r i s e −v2g −1.2.6/RISE−V2G−SECC/ ta r g e t /
moCertChain_New . p12 ’

4

5 os . remove (oldPath)
6 os . rename (newPath , oldPath)
7

JAR execution Thread

The last Thread is involved in the execution of the RISE-V2G unit. It shall be
executed using the JAR files respectively of the RISE-V2G-SECC and RISE-V2G-
EVCC. It shall be launched as the last Thread in order to already have all the
units ready for the EVCC to start the charging session. The JAR file is executed
only when the cable is plugged in.

101

ISO15118-PoC: hardware and software implementation

1 de f s t a r t _ r i s e (s e l f) :
2 whi le (True) :
3 i f (SECC_Properties . Plug_connected == True) :
4 SECC_Properties . Plug_connected = False
5 Pathh = ’C: / Users / ’+s t r (SECC_Properties . UserDir)+’ /Demo−

PnC/ workspace /DEMO_SECC/ r i s e −v2g −1.2.6/RISE−V2G−SECC/ ta r g e t ’
6 os . chd i r (Pathh)
7 os . system (" java −j a r r i s e −v2g−secc −1 . 2 . 6 . j a r ")

4.3.4 Additional secondary files

Some procedure steps slow down the process of creating the new Contract Cer-
tificate, setting up the simulated backend and frontend certificate chains and
generating the executable RISE-V2G EVCC and SECC JAR files.
Making the charging session flow faster and simpler to run is an important point
to reach to make the demonstration as smooth as possible.
Thus, before running the EVSE_BL.py and EV_BL.py a compact file that will
accomplish the previous functions is needed. The most suitable is a batch file, for
a Windows simulation, and a shell file, for a Linux environment.
These will contain the same commands in different languages; so, only the first one
will be analyzed.

1 @echo o f f
2 cd %U s e r P r o f i l e%\Demo−PnC\ workspace \DEMO_SECC\ r i s e −v2g −1.2.6\RISE

−V2G−C e r t i f i c a t e s
3 c a l l g e n e r a t e C e r t i f i c a t e s . bat
4 c a l l copyNewCertsAndKeys . bat
5 c a l l generateNewContrac tCer t i f i ca te . bat
6

102

ISO15118-PoC: hardware and software implementation

7 cd %U s e r P r o f i l e%\Demo−PnC\ workspace \DEMO_SECC\ r i s e −v2g −1.2.6\RISE
−V2G−PARENT

8 c a l l mvn c l ean i n s t a l l
9

10 cd %U s e r P r o f i l e%\Demo−PnC\ workspace \DEMO_EVCC\ r i s e −v2g −1.2.6\RISE
−V2G−PARENT

11 c a l l mvn c l ean i n s t a l l
12

13 cd %U s e r P r o f i l e%\Demo−PnC

In the script, 3 sections are present. In the first one, the batch files involving the
certificate generation are called. They generate all the necessary certificate chains
gathering them in the Keystores and Truststores. Then, they are moved to the
appropriate SECC and EVCC repositories. Finally, the new Contract Certificate is
created and stored in the SECC directory.
The second and third sections act to generate RISE-V2G-SECC and RISE-V2G-
EVCC JAR files. The last code line returns to the working directory.
The "%UserProfile%" keyword is used for generalizing the script and making it
applicable to every working machine.

An additional batch file is built to end all the Java and Python background
processes to be sure there will not be conflicts with a new run.

1 t a s k k i l l /IM java . exe /F
2 t a s k k i l l /IM python . exe /F

It kills forcefully the Java and Python open processes.

103

Chapter 5

Testing results

A set of different use cases are simulated in order to verify the whole program
works as planned and its design results are suitable for a PoC implementation.
The following test cases will not take into account the EIM payment option through
a QR code. It will be proposed in the actual simulation and the code is set up to
cover that use case, but for interest grounds, it will not be analyzed.
As regards the certificates handling, the scenario involving the revocation of the
contract certificate using the Certificate Revocation List (CRL) has been considered
as Out-of-Scope.
Further consideration shall be made about the difference of how the PoC simulation
is built and how actually should work with a real customer. In the following test
cases, the user has the maximum choice capability, especially for parameters that
will be set by default in a real implementation. In a real scenario, the only choice
given to the driver will be the possibility to stop the charging session. A custom
user experience can be thought of such that the user can select the charging profile
and the renegotiation as a charging option to change his mind.

104

Testing results

5.1 Test case: AC mode standard charging ses-
sion simulation using Plug&Charge payment
option

In the standard Plug&Charge scenario, the SECC will stay in listening mode for
the EVCC to plug in the Ethernet cable. In the meanwhile, the EVSE backend
simulator is loaded together with its certificate chains. When the EVCC connects
to the SECC, the following procedure will be proposed:

Figure 5.1: AC Request-Response Message Sequence PnC payment option.

The first 2 sets of messages contained in the Communication Setup section run
in the background without the intervention of the driver.

105

Testing results

The next message sequence provides the Identification, Authentication and Autho-
rization of the EV by the SECC. It is the core of the PnC feature technological
revolution.
In this phase, the driver is required to select the Payment Option and if he wants
to approve further actions on the contract certificates if needed.

Figure 5.2: EV GUI page of the selection of the payment option.

Once the PnC has been chosen during the PaymentServiceSelection Request-
Response sequence, the real identification procedure can take place. In this test
case, the contract certificate is already installed and it is still valid such that the
Authorization process starts. In terms of the check method used by the communica-
tion interface, the homonymous messages simply exchange a random alphanumeric
identifier called genChallenge, installed in the EV during the PaymentDetails. The
contract certificate is checked by the EV itself and the call to the SECC starts
directly by the EVCC when it is triggered by the expiration date or the absence of
it.
In addition, together with the genChallenge the message SignatureValue is checked.

The next step involves the choice of the departure time, which can be set to 24
hours or with a 15-minute gap, and the charging profile. The proposed charging

106

Testing results

schedules are 3 and represent the SalesTariffs passed by the SECC in the ChargePa-
rameterDiscoveryRes.
The "Charge Scheduling" section is completed by the exchange of the PowerDelivery
message couple set. It works like a "ready flag" for the EVCC to confirm the chosen
charging profile and its readiness to start the charging session.

Figure 5.3: EV GUI pages of departure time and charging profiles selection.

During the charging session, a message exchange loop is required. In the AC
mode, the couple ChargingStatus and MeteringReceipt messages are provided in the
loop. The first one is mandatory while the other one is optional. The compulsory
message is used mostly by the SECC to keep alive and under control its status,
while the metering info of the current charging session is considered with the
optional one.

107

Testing results

During the charging loop, the EV infotainment and the EVSE screen show 2 types
of information: passive data, like State of Charge, VIN, charging profile selected,
timestamp and labels, and active data. The second ones are interactive and are
displayed as buttons. In the EVSE display, the Renegotiation and the Stop are
proposed, while in the vehicle infotainment, the Pause option is added.

Figure 5.4: EV (left) and EVSE (right) GUI charging loop page.

If none of the options are selected, the charging session ends with a SessionStop
message exchange with which all the communication protocols are closed.
Otherwise, the following procedure will be followed:

• Stop: the end of the charging session is forced and the SessionStop messages
are exchanged. It can be triggered either by EVCC or SECC.

• Renegotiation: it consists of re-proposing updated charging profiles to the

108

Testing results

driver. Thus, it involves the re-start from the ChargeParameterDiscovery
Request-Response sequence. It may be forced either by EVCC or SECC.

• Pause: it consists of an interruption in the charging session. When it
restarts, the communication resumes from ChargeParameterDiscovery Request-
Response sequence.

5.2 Test case: DC mode standard charging ses-
sion simulation using Plug&Charge payment
option

The Request-Response message sequence in a DC mode charging scenario is de-
scribed in the following flow chart:

109

Testing results

Figure 5.5: DC Request-Response Message Sequence PnC payment option.

The first 2 blocks involve the same message sequence as in AC mode. Therefore,
the steps are not more analyzed, but they are assumed to be the same.
Actually, in GUI there are also no differences between the 2 charging modes. The
choices offered to the driver are the same, what changes is the message flow. In
fact, from ChargeParameterDiscovery message forward, the ISO15118-2 protocol
requires different messages.
CableCheck and PreCharge are the message sets responsible for communicating the
target voltages and especially the EV and EVSE status.

110

Testing results

The Charging loop consists only of a single message exchange called CurrentDe-
mand. Acting on these message fields, the SECC may trigger the Renegotiation or
the Stop. The rest of the communication is the same as well as the selection of
Renegotiation, Pause or Stop options.

The final GUI page summarizes the most important parameters for the driver
to know (Fig. 5.7).

Figure 5.6: GUI page of the end of the charging session.

A further optional scenario shall be described. There is the possibility that the
cable will be unplugged before the end of the charging session. In this case, the
CableCheck verifies that the cable is actually locked and plugged. Otherwise, a
GUI page (Fig. 5.8) is displayed either on the EV infotainment and EVSE screen.

111

Testing results

Figure 5.7: Disconnection cable GUI page.

5.3 Test case: Certificate handling

The last test case concerns the contract certificate handling. 2 actions are provided
for this type of certificate: its installation in the EV and its update.
They are treated in the same way either in the AC scenario and in DC charging
mode, so the message sequences are the same in both cases.

5.3.1 T.1: Certificate Installation

The installation of the contract certificate is triggered by the EVCC in the first
place. Choosing the Plug&Charge feature triggers a vehicle internal check on the
presence and the validity of the Contract Certificate inside the Truststore.jks.
The first time the EVCC connects itself to the EVSE and chooses the PnC as the
payment option the Contract Certificate installation page (Fig. 5.9) is displayed
on the screen.

112

Testing results

Figure 5.8: Certificate Installation GUI page.

Choosing to install the new Contract Certificate, the CertificateInstallation
Request-Response sequence will take place. At first the EVCC load the Certifi-
cateInstallationReq with its XML representation filling its fields with the OEM
Provisioning certificate chain and the List of Root Certificate IDs. This latter
contains the Issuer name and the serial number of the V2G Root.
In addition, the Signature for this message is generated using the procedure de-
scribed in Chapter 2.
Once the SECC receives the Request message, it verifies the signature and, if it
results valid, the CertificateInstallationRes is prepared.
The Response message stores the new Contract Certificate, its associated encrypted
private key and contract signature, the eMAID, DHpublickey and the certificate
chain of the Secondary Actor, so the eMSP in this case. Again, in this case, the
Signature is generated and attached to the message.
It is sent back to the EVCC which verifies the Signature and stores its new Contract
Certificate.

113

Testing results

5.3.2 T.2: Certificate Update

The update of the Contract Certificate is triggered by the EVCC in first place.
Choosing the Plug&Charge feature triggers a vehicle internal check on the presence
and the validity of the Contract Certificate inside the Truststore.jks.
If the EV verifies positively the presence of the Contract Certificate, a further check
on its validity period is done. If it results near the expiration date, the certificate
update is required; so the appropriate GUI page (Fig. 5.10) is displayed:

Figure 5.9: Certificate Update GUI page.

If the driver answers positively to the GUI page, the CertificateUpdateReq is
built. It is sent to the SECC once a message signature is generated and attached
to it. When the EVSE receives it, verifies the signature and, if it results valid,
the CertificateUpdateRes is generated. As it has been done for the Installation,
the same correspondent fields are filled in the XML Response message together
with the signature. The EVCC receives it and installs the new Contract Certificate
erasing the old one.

114

Chapter 6

Conclusions

This last chapter serves as a summary of the entire project highlighting the
strengths and weaknesses. The expected results achieved, the tasks that are still to
be developed and the improvable parts.

6.1 Achievements

The design of this Proof-of-Concept covers most of the assumed and desired ob-
jectives, with one exception for the Value Added Service, but this point will be
analyzed later.
The charging simulation meets all the requirements specified by ISO15118-2. Al-
though RISE -V2G leaves some undeveloped, they are not among the tools required
to make the code functional and compliant. The missing "TODO" items address
functional or linkage issues between the code parts, but do not impact the compli-
ance with the ISO15118 protocol
The biggest shortcoming is the backend mock-up. For the current simulation, its
integration resulted inevitably, as an implementation that could be considered close
to reality would have required a lot of working time and the involvement of all
the stakeholders presented in the VDE-AR -E application guide. In addition, the

115

Conclusions

implementation of backend message communication would also have required the
study and integration of multiple protocols such as OCPP, OCPI, and OSCP.
For these reasons, a simplified local backend version was loaded on the EVSE site.
The goals set a priori by the project have been achieved almost for their entirety.
In fact, the implementation claims the following features:

• strong data security:
all the requirements of security levels are guaranteed, from the message
encoding to the certificate handling.

• high customizable charging session:
the driver has the maximum capability to adapt the charging session parame-
ters to his needs.

• strong code flexibility:
the code is well-organized, easy-to-use and it owns good adaptability.

The only target that cannot be developed is the integration of the VAS feature
as an additional service for the Plug&Charge charging option. Here the limit is not
technological, but is represented by the protocol version. In fact, ISO15118-2 has
introduced the concept of Value Added Service and also provides the possibility
to exchange it as a field in the messages dedicated to the information about the
services. However, version -2 does not provide a state or message type to implement
an actual addition.
A possible solution could be to extend the code with a further Python unit capable
of providing additional services, but the risk is overcome by the communication
protocol. Therefore, compliance with the standard should be prioritized.

The other improvable part is the test environment. The testing results are
extrapolated by simply running the firmware on the Raspberry Pi boards and
looking that all test cases worked properly. An appropriate and customized test
platform will be able to give better feedback for sure.

116

Conclusions

6.2 Future developments

The ISO15118 standard already knows the new -20 upgrade version [11]. Like the
-2, it represents a great advancement in the eMobility world from more points of
view:

• V2G technology[15]:
states and messages are adapted to welcome the V2G requirements. The
advantages of using this technology are numerous. They apply to a small
environment like a private house recycling and minimizing the energy waste
till bigger scenarios, like corporate and public buildings. It will help also the
interconnected energy market to stabilize the energy Demand-Response.

• Certificate handling:
multiple contract certificates can be stored in a single EV. These certificates will
be able to be sent in the same message. It implies also greater interoperability
between PKI ecosystems.

• Value Added Service:
dedicated states and messages are required to integrate VAS. The eMSPs will
be able to offer to the driver a series of additional secondary services accessible
during the charging session.

• Energy Flexibility:
a new dynamic charging mode will be available for the driver. It involves the
dynamic adaptation of the charging power in the proposed charging schedule
to satisfy the energy grid needs.

117

Bibliography

[1] IEA. «Electric Vehicles». In: (2022) (cit. on p. 3).

[2] Sesha Gopal Selvakumar. «Electric and Hybrid Vehicles – A Comprehensive
Overview». In: 2021 IEEE 2nd International Conference On Electrical Power
and Energy Systems (ICEPES). 2021, pp. 1–6. doi: 10.1109/ICEPES52894.

2021.9699557 (cit. on p. 5).

[3] Navpreet Hans. «Trends In Electric Vehicle (EV) Charging and Key Technol-
ogy Developments». In: International Journal of Engineering Research and
V9 (Sept. 2020). doi: 10.17577/IJERTV9IS090042 (cit. on p. 13).

[4] Lonneke Driessen and Paul Klapwijk. «Public Key Infrastructure for ISO15118:
Freedom Of Choice For Consumers & An Open Access Market». In: (June
2022), p. 196. doi: 10.13140/RG.2.2.11878.09282 (cit. on p. 16).

[5] X.509 : Information technology - Open Systems Interconnection - The Di-
rectory: Public-key and attribute certificate frameworks. ITU, 2019. url:
https://www.itu.int/rec/T-REC-X.509-201910-I/en (cit. on p. 19).

[6] VDE-AR-E 2802-100-1 Anwendungsregel:2019-12 Handling of certificates
for electric vehicles, charging infrastructure and backend systems within the
framework of ISO 15118. DKE, 2019. url: https://www.vde-verlag.de/

standards/0800642/vde- ar- e- 2802- 100- 1- anwendungsregel- 2019-

12.html (cit. on p. 21).

118

https://doi.org/10.1109/ICEPES52894.2021.9699557
https://doi.org/10.1109/ICEPES52894.2021.9699557
https://doi.org/10.17577/IJERTV9IS090042
https://doi.org/10.13140/RG.2.2.11878.09282
https://www.itu.int/rec/T-REC-X.509-201910-I/en
https://www.vde-verlag.de/standards/0800642/vde-ar-e-2802-100-1-anwendungsregel-2019-12.html
https://www.vde-verlag.de/standards/0800642/vde-ar-e-2802-100-1-anwendungsregel-2019-12.html
https://www.vde-verlag.de/standards/0800642/vde-ar-e-2802-100-1-anwendungsregel-2019-12.html

BIBLIOGRAPHY

[7] Vincent Lozupone. «Analyze encryption and public key infrastructure (PKI)».
In: International Journal of Information Management 38.1 (2018), pp. 42–44.
issn: 0268-4012. doi: https://doi.org/10.1016/j.ijinfomgt.2017.

08.004. url: https://www.sciencedirect.com/science/article/pii/

S0268401217303195 (cit. on p. 21).

[8] Minho Shin, Hwimin Kim, Hyoseop Kim, and Hyuksoo Jang. «Building an
Interoperability Test System for Electric Vehicle Chargers Based on ISO/IEC
15118 and IEC 61850 Standards». In: Applied Sciences 6.6 (2016). issn:
2076-3417. doi: 10.3390/app6060165. url: https://www.mdpi.com/2076-

3417/6/6/165 (cit. on p. 25).

[9] BS EN ISO 15118-1:2019. BSI Standards Limited 2019, May 2019. url:
https://www.iso.org/standard/69113.html (cit. on pp. 36, 37).

[10] BS EN ISO 15118-2:2019. BSI Standards Limited 2019, May 2019. url:
https://www.iso.org/standard/84207.html (cit. on pp. 36, 37, 40).

[11] BS EN ISO 15118-20:2022. BSI Standards Limited 2022, 2022. url: https:

//www.iso.org/standard/77845.html (cit. on pp. 38, 117).

[12] GeeksforGeeks. Socket Programming in Java. Accessed 2022, https://www.

geeksforgeeks.org/socket-programming-in-java/?ref=gcse. n.d. (Cit.
on p. 76).

[13] GeeksforGeeks. Thread-based parallelism in Python. Accessed 2022, https:

//www.geeksforgeeks.org/thread-based-parallelism-python/?ref=

gcse. n.d. (Cit. on p. 94).

[14] GeeksforGeeks. Socket Programming in Python. Accessed 2022, https://

www.geeksforgeeks.org/socket-programming-python/?ref=gcse. n.d.
(Cit. on p. 96).

[15] Byungchul Kim. «Smart charging architecture for between a plug-in electrical
vehicle (PEV) and a smart home». In: 2013 International Conference on

119

https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2017.08.004
https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2017.08.004
https://www.sciencedirect.com/science/article/pii/S0268401217303195
https://www.sciencedirect.com/science/article/pii/S0268401217303195
https://doi.org/10.3390/app6060165
https://www.mdpi.com/2076-3417/6/6/165
https://www.mdpi.com/2076-3417/6/6/165
https://www.iso.org/standard/69113.html
https://www.iso.org/standard/84207.html
https://www.iso.org/standard/77845.html
https://www.iso.org/standard/77845.html
https://www.geeksforgeeks.org/socket-programming-in-java/?ref=gcse
https://www.geeksforgeeks.org/socket-programming-in-java/?ref=gcse
https://www.geeksforgeeks.org/thread-based-parallelism-python/?ref=gcse
https://www.geeksforgeeks.org/thread-based-parallelism-python/?ref=gcse
https://www.geeksforgeeks.org/thread-based-parallelism-python/?ref=gcse
https://www.geeksforgeeks.org/socket-programming-python/?ref=gcse
https://www.geeksforgeeks.org/socket-programming-python/?ref=gcse

BIBLIOGRAPHY

Connected Vehicles and Expo (ICCVE). 2013, pp. 306–307. doi: 10.1109/

ICCVE.2013.6799811 (cit. on p. 117).

120

https://doi.org/10.1109/ICCVE.2013.6799811
https://doi.org/10.1109/ICCVE.2013.6799811

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Evolution of EV market
	Historical evolution of the EV
	Economical evolution of the EV market

	EV world
	EV main families
	Structure and main functional components of an EV
	EVSE world
	Smart charging
	Overview on newest standard ruling the eMobility charging process communication

	Digital security guide for ISO 15118 implementation
	Overview on Public Key Infrastructure (PKI)
	Security concepts
	Digital certificates and keys
	Signature generation

	VDE-AR-E 2802-100-1
	eMobility Panorama
	Certificates types and main features
	Certificate validation
	Certificate Installation and Update

	DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface
	 DIN EN ISO 15118 standard: Vehicle-To-Grid Communication Interface
	ISO 15118-2 standard
	Overview and objectives
	Structure of the standard
	Message Signature
	State, messages and types

	Base of Plug and Charge
	What does PnC usage entail
	Certificate Installation
	Certificate Update

	ISO15118-PoC: hardware and software implementation
	General Demo organization
	High-Level Architecture
	Hardware components

	Java software components
	RISE-V2G: original...
	RISE-V2G: ...and developments

	Python software components
	Graphical User Interface (GUI)
	Power Flow Simulator (PFS)
	Business Logic (BL) and Property file
	Additional secondary files

	Testing results
	Test case: AC mode standard charging session simulation using Plug&Charge payment option
	Test case: DC mode standard charging session simulation using Plug&Charge payment option
	Test case: Certificate handling
	T.1: Certificate Installation
	T.2: Certificate Update

	Conclusions
	Achievements
	Future developments

	Bibliography

