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Summary

Dyscalculia is one of the most common developmental disorders, and it leads to
difficulties in learning mathematics, arithmetic operations and in representing and
manipulating quantities. As all these areas are used constantly in everyday life,
identifying and treating such condition at a young age can have a great impact in
the school experience of those affected by it. A possible way to do so is through
the use of suitably designed gaming applications, which were shown to be effective
in helping children with mathematical difficulties on several publications. This
thesis will present a new application of such kind, called “The Number Farm”,
that implements a numerical comparison task aimed at training the perception of
numerosity in children affected by Dyscalculia. As a novelty with respect to previous
works however, the proposed project makes use of a study conducted in 2018, named
"Learning to Focus on Number", which proposes a new model for how children
perceive non-symbolic quantities. In particular the paper states that, whenever
asked to indicate the more numerous out of two sets of elements, individuals are
influenced not only by the ratio of the cardinalities involved, but also by non-
numerical properties of the displayed information, such as the size or placement
of the items composing the sets. Moreover, the experiments analyzed within the
paper also suggest that the degree of these influences can vary between children
affected by Dyscalculia and those who are not. To implement these discoveries into
the design of The Number Farm, an AI-based system was developed, with the goal
of understanding the player’s ability in coherence with the paper’s theory while
also offering a balanced gaming experience in terms of difficulty. In this thesis, the
design of this Artificial Intelligence will be thoroughly discussed, and with the help
of a suitable testing environment, its capabilities will be shown to be up to the
task: these results enforce the belief that The Number Farm can truly be helpful
in the detection, and possibly treatment, of Dyscalculia.
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Chapter 1

Introduction

Learning disorders are a persistent condition that hinder one of the most human
defining features, which is the ability to learn and improve not only through stimuli
and experience, but also through formal education.

The process of absorbing knowledge from oral or textual teachings is one of the
key factors of humanity’s progress, and with the passage of time it is becoming more
and more a mean to establish oneself. An obstacle in this process can greatly affect
the way an individual experiences growth as a person, as it is, rightfully, a daily
activity starting from a very early age. School is in fact the most important place
to understand how to behave in the world and with other people; experiencing
difficulty in such an ambient, other than hampering education, can both have
a negative effect regarding inter-personal relationships as well as leading to an
underestimation of one’s capabilities, especially when such difficulty is caused by
an undetected neurological issue.

One of these conditions is Dyscalculia, which specifically affects the ability to
acquire basic arithmetic skills [1] and results in difficulty in understanding numbers,
learning how to manipulate them, performing mathematical calculations, and
remembering concepts related to mathematics. As mathematical operations are
a part of everyday life, the effects of such disorder should not be underestimated,
since it is also shown to persist in adulthood [2], and especially because dyscalculia
is also often comorbid to other learning and developmental disorder such as dyslexia
[3] and ADHD [4].

Identifying these disorders is of fundamental importance, and doing so at an
early age can both improve the child’s experience at school while encouraging
possible treatments. In the case of dyscalculia, a widespread theory is that it “is
at heart a deficiency of basic Number Sense” [5], which is the ability to understand
and manipulate quantities. Based on this observation, it is believed that sharpening
this skill can greatly help dyscalculic children overcoming the symptoms; a suitable
tool for achieving this is represented by gaming applications aimed at children, as
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they provide an experience that can be both educational as well as entertaining.
An example of such gaming apps can be found in The Number Race [6], which was
observed to be successful in increasing the number sense of several children with
mathematical difficulties. This study was in fact the first of many regarding the
matter of Dyscalculia and it was able to inspire the development of many more
gaming applications, despite its short duration and the limited knowledge about
the disorder available at that time.

Following its result, it became clear that a continuous use of a gaming app at an
early age could be an interesting case of study for the treatment of dyscalculia. The
idea that time and practice could help with the internal representation of numerosity
and with sharpening the number sense has been established for quite some time and
has been explored extensively [7]. However, in more recent times, an alternative
hypothesis on how children improve with time and education was proposed in the
paper Learning To Focus On Number [8] with the name of “sharpening and
filtering hypothesis”, according to which the children “improve to focus on the
relevant dimension of number and to avoid interference from irrelevant but often
co-varying quantitative dimensions”. In the paper, this hypothesis was validated
through the analysis of data belonging to a number comparison task, in which
several people of different ethnic and age groups were asked to discriminate two set
of elements with different irrelevant properties (i.e. size of each element, distance
between them etc.) by selecting the more numerous one. To create a model of the
subject when proposed with such kind of question, the paper also proposes also
defines parameters, named α and σ within this thesis’ work, that are indicative of
the effect of the irrelevant non numerical properties and of the noise in the internal
perception of numerosity in the comparison process.

Given that the aforementioned concepts were still not explored in the context
of gaming applications, the project described in this thesis is a possible first
implementation of its principles. The Number Farm is in fact a game targeted
at kids that attend the last years of kindergarten or the first years of primary
school, whose main novelty is the contribution in its design of the theory explained
in Learning to Focus on Number. The aim is to provide a way to detect some
of the symptoms of dyscalculia as well as a mean to train dyscalculic children in
order to reduce them, all while providing an engaging experience tailored around
its target audience. Moreover, as the game is meant to be played over an extended
period of time, the application will give the opportunity to better understand how
individuals improve over time in their perception of numerosity, in a way that is
compatible with the parameters defined by Learning to Focus on Number. Just as
in the paper, the game therefore consists in a number comparison task, which in
this case is translated in a setting that can be appealing to its target. In short, the
player will be presented with two fences, each of which contains a certain amount
of animals, and will be asked to tell which of the two contains more animals. As
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time passes, the player will be proposed with several different trials of this kind,
and their responses will be collected. Similarly to many other applications before
it, The Number Farm will also make use of techniques belonging to Artificial
Intelligence and Machine Learning, with the purpose of evaluating the player
as well as adapting the difficulty of the game to their level.

As this project has been in development for several years, this thesis will focus
mainly on the candidate’s contribution, which is focused on (but not limited to)
the development of an AI that follows the theory of Learning to Focus on Number
in order to achieve the aforementioned goals. To aid this process, a simulation
environment was also implemented, consisting of a component capable of emulating
the behavior of a child according to the sharpening and filtering hypothesis.

In order to discuss each one of the project’s aspects, this thesis is structured as
follows:

• Dyscalculia. The problem of dyscalculia is explained in detail in chapter
2. The chapter presents a discussion of its symptoms and its impact on the
mathematical skills developed by individuals, and also presents some ways
this disorder can be diagnosed and treated. Moreover, an in depth description
of Learning to Focus on Number will be carried out, focusing on the relevant
aspects for this project.

• The State of the Art. The state of the art of previous training apps
meant to treat dyscalculia is discussed in chapter 3, where a few examples of
applications will be described.

• General Aspects of the Project. Chapter 4 is dedicated to the general
description of the project. To better explain the individual contribution of
the candidate, the project’s structure will be analyzed, and the starting point
of the application will also be discussed.

• The AI. Chapter 5 is where the new AI developed by the candidate will be
presented. Its functionalities will be explained, and particular focus will be
given on how it uses the knowledge gained from Learning to Focus on Number
in order to carry out its tasks.

• The Simulation Environment. The previously mentioned simulation
environment will be discussed in section 6. All its functionalities will be
showcased, and an assessment of the AI’s capabilities will also be made
through its use.

• Conclusions and Future Works. Lastly, chapter 7 will be reserved for the
conclusions and to discuss what possible other improvements can be brought
to the project by future members.
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Chapter 2

Dyscalculia

As explained in the introduction, before going into the details regarding the project
it’s worth to elaborate on the core problem that it is trying to solve. This section is
dedicated to giving dyscalculia a proper introduction, ranging from its symptoms
to its treatments. Also, a thorough explanation of Learning to Focus on Number
will be made, as it is the paper that inspired this project the most.

2.1 Main Characteristics
Developmental Dyscalculia, often abbreviated to DD, is categorized as a
Specific Learning Disorder (SLD) that results in difficulties learning number-related
concepts or performing arithmetic calculations. As all SLDs, it is a developmental
disorder that shows its first symptoms at an early age and that generally persists
throughout the individual’s whole life. In the following paragraphs, a possible
theory for its cause is described, as it’s particularly relevant for this thesis’ work,
which is followed by a brief explanation of its symptoms and treatments.

2.1.1 The root in the Number Sense
Despite its effect on the mathematical abilities of the individual, the cause for DD
lies on a more fundamental concept than arithmetical skills, which is defined in
several papers as the “Number Sense”. Such concept is described as a “short-
hand for our ability to quickly understand, approximate, and manipulate numerical
quantities” [9], and is a core skill that is normally functioning automatically
within an individual. According to its theorizer, in fact, individuals have the
ability to understand numerosities in a way that is detached from the actual
symbolic representations of number, and the mechanism that allows for their
internal representation is called “Approximate Number System” (ANS);
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starting from this definition, a possible cause for DD has been therefore identified
in deficits in the acuity of this system.

This theory assumes the name of “Magnitude Representation Hypothesis”, and
its implications have been particularly explored within tasks related to numerosity
comparisons: the acuity of the ANS is in fact observable from the ability of the
individual in comparing non-symbolic numerosities, with the ratio of the two
compared quantities being a measure of the difficulty of the task. Slowness or
inaccuracy in these kind of operations when the two quantities are close in number
can be viewed as a deficit in the acuity of the ANS. Moreover, since such acuity is
often observed to be co-related to math achievements, this suggests that the presence
of a mathematical disorder like Dyscalculia is deeply liked with the individual’s
skills in numerical comparisons. This piece of information will be very useful
in the next chapters, as The Number Farm proposes a mini-game representing a
non-symbolic numerical comparison task; as for the effects of dyscalculia, a brief
overview will be given in the subsequent paragraphs.

2.1.2 The Symptoms
The symptoms brought by dyscalculia are several, and are not limited to just
difficulties in performing mathematical operations. In the following, the most
important ones mentioned in previous publication are summarized:

• Difficulty in subitizing which is the ability to know, without explicitly
counting, how many objects there are in a small group [10]

• Difficulty in comparing numbers correctly, as described in previous paragraphs.

• Difficulty in relating mathematical concepts to normal life situations.

• Difficulty in handling different representations of number (ex. symbolic,
number words etc.)

• Inconsistent results and exertion when performing arithmetic operations.

• Difficulty in estimating and approximating numbers.

• Problems in telling time and reading analog clocks.

• Difficulty in remembering mathematical concepts.

• Lose of focus during mentally intensive tasks.

All these symptoms greatly influence working areas related to mathematics,
while also presenting problems in every day life. As both of these things can also
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have an impact in the individual’s academic and career path in adulthood, it is
vital to promptly detect these symptoms so that action can be taken starting at
an early age.

2.1.3 Diagnosis and Treatment
Dyscalculia is widely considered to be at its fundamental level a deficit in the
development of arithmetical and mathematical skills [11], but as of now, there is
no widely accepted criteria for diagnosing it. Moreover, the world of mathematics
is rather complex, as even at early stage of education it involves several different
concepts like arithmetic and geometry: due to this variety in areas affected by
dyscalculia, researches identified several ways to diagnose the disorder.

Generally, the diagnosis procedures involve the analysis of domain-specific tests,
that are meant to understand the child’s capability in executing specific functions
or to hold numerical information in mind. Such tests are generally analyzed
jointly with evaluations coming from the school teachers, as they allow for a
more comprehensive diagnosis. As an alternative way to diagnose dyscalculia, an
analysis of the child’s brain activation patterns can also be performed. In fact,
dyscalculic children have been demonstrated to show differences in the activation
of the prefrontal cortex[12]; as these procedures generally have a high cost and
require time to be performed, it is however unlikely that this method will be used
as a general criteria for diagnosis, despite being very effective.

Moving on to the treatments, the focus of research has been mainly devolved into
training basic number concept in the children. At first, methodologies involving in-
teractions between specifically trained teachers and small groups of individuals were
shown to be successful among children with generalized math learning difficulties.
Due to practical reasons however, the research quickly moved to computer-based
methodologies, with the goal of achieving similar results while also providing a
mean to practice more than it would be possible with dedicated teachers.

Under this idea, many software-based programs were developed with the purpose
of training children with numerical disabilities, by implementing games where the
player would have to practice with operations related to number manipulations. An
example of these games can be found in The Number Race, which will be discussed
more in detail in chapter 3: the general approach of these games is to develop
mini-games aimed at training specific areas affected by dyscalculia; moreover, the
game’s difficulty is generally controlled by adaptive algorithms, which are aimed at
understanding the ability of the player. As these training programs have proven to
be effective among children with general difficulties in mathematical development,
The Number Farm has been designed to follow in their step; however, a difference
with previous works lies in its theoretical principles: the project proposed in this
thesis is in fact based on the theory of the paper “Learning to Focus on Number”,

6



Dyscalculia

of which the main points are explained in the next section.

2.2 Learning To Focus On Number
Now that the general aspects of dyscalculia have been introduced, the last section
of this chapter will be focused around Learning to Focus on Number, a paper
published in 2018 that strongly inspired the development of this project. As will be
shown, the paper borrows from the theory of the “Number Sense” and reiterates
on the importance of the performances in non-symbolic numerical comparisons in
the context of dyscalculia.

2.2.1 Premises
Learning to Focus on Number is a study mainly focused on how age and education
change the way individuals perceive numerosity, whether dyscalculic or not, and how
such changes happen with maturation. As an established methodology, the acuity of
such perception can be assessed based on the subjects’ decisions when proposed with
a numerical comparison or discrimination tasks, which is generally implemented
in the form of a non-symbolic numerical comparison. Several studies prior to the
paper have demonstrated that, even in the absence of training or education, the
perception of number is present in infants similarly to other quantitative dimensions
of the environment[13]; however, when it comes to numerical discrimination tasks,
infants can discern well only sets that differ in numerosity by 300%, while accuracy
improves drastically with adults, who usually are able to differentiate numerical
changes within 15% and 20%.

Given that education is also considered to play a role [14] [15], the most accepted
explanation for this behavioral improvement is the so called “sharpening hypothesis”,
according to which maturation and education make the internal representation and
the perception of numerosity more accurate. In the paper however, an alternative
possibility is explored, suggesting instead that the difference in performance is due
to a gap in the ability of discarding task-irrelevant features while focusing only on
the numerical quantity of the two sets. This hypothesis, referred to as “filtering
hypothesis”, is validated by previous publications, showing that individuals are less
accurate in number comparison tasks when the “size of the items or the inter-item
distance was incongruent with number”[16].

The paper introduces the principles of these two hypotheses and proposes a
mathematical model of their implications. Moreover, their plausibility is discussed
from a series of experiments involving groups of individuals of different ages and
education levels, where each participant was asked to solve a numerical comparison
task implemented as a series of “trials” as described in figure 2.1.
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Figure 2.1: Two examples of trial presented within the experiments. The partici-
pants were shown a picture consisting of two arrays of dots with different numerical
and non numerical features (see subsection 2.2.2) and were asked to indicate,
without counting, the area that contained more of them. In the picture, the trial
on the left is defined as “Congruent”, which means that its more numerous set
also presents predominant non numerical features, whereas the trial on the right
presents the opposite situation, defined as “Incogruent”. No information regarding
the congruity of the trials was disclosed to the participants during the experiments.

2.2.2 The Filtering and Sharpening hypotheses
According to Weber’s law [17], the difficulty of non- symbolic numerical comparison
tasks such as the one described in the paper is related to the logarithmic ratio of
the numerosities of the two sets: this quantity will be referred to as the Numerical
Dimension, ND in short, for the given trial. The introduction of the filtering
hypothesis however assumes several other quantities that contribute to the overall
difficulty of the task. These are referred to as non-numerical dimensions, which
are related to each single set of elements shown within the trials, and were designed
starting from a set of dimensions used in previous literature [18], namely:

• Item Surface Area. Abbreviated to ISA, it is a measure of the area occupied
by a single dot.

• Field Area. Abbreviated to FA, it is the area of the white disc where dots
are placed into

• Total Surface Area. Abbreviated to TSA it is the total area occupied by
the dots within the disc.

• Sparsity. It is a measure of the distance between each element, computed as
the ratio between FA and the number of dots within the disc, abbreviated as
Spar

By applying dimensionality reduction (see appendix B for details), it is possible
to compute a single dimension that summarizes the orthogonal component with
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respect to number of all of these non-numerical dimensions into a single variable. In
the same way as the purely numerical value, the authors defined as Non-Numerical
Dimension, abbreviated to NND, the log ratio of the two non-numerical variables
extracted from the two discs of the same trial. As a convention, both ND and NND
for a given trial are computed by using the related quantity of the element shown
in the right as the numerator of the logarithmic ratio.

The sign of ND and NND formalizes the concept of congruity introduced in
figure 2.1: congruent trials are in fact trials characterized by an ND and NND
with the same sign, and a measure of congruity of a trial can be also defined as the
numerical distance of the two values. Moreover it is now possible to describe each
trial proposed during the task inside a two dimensional space with ND and NND
as its axes, as shown in figure 2.2.

Figure 2.2: The ND-NND space for trials. In the picture, each dot represents
a trial, while the “2” and “1” suffixes are used to describe the numerosity and
the summarizing non numerical variable for the right and the left area of the trial
respectively

With this new representation, it is now easier to delve into the details of the
sharpening and the filtering hypotheses:

• The sharpening hypothesis, as stated before, implies that maturation and
education increase the accuracy with which the individual perceives and
internalizes numerical quantities. In the ND-NND space, the participant is

9



Dyscalculia

considered to be able to discriminate trials based solely on their ND variable,
and can therefore be considered as a linear classifier with a decision boundary
coinciding with the y axis; however, since human perception is never perfectly
accurate, each individual is also characterized by an internal noise that acts
on their representation of the trial in terms of its ND and NND values. This
hypothesis therefore states that this internal noise is the only factor that
determines the quality of the numerical decisions made by the individuals;
as an explanation to the improvement of said quality, the hypothesis instead
suggests that generally such noise is very high at an early age and tends to
decrease with the age and education.

• The filtering hypothesis suggests instead that the individual’s perception of
numerosity is also affected by the other non numerical features of the two
sets. In this case, the participant’s response can be modelled as a linear
decision boundary passing through the origin of the ND-NND space that is
characterized by an angle with respect to the y axis: if the angle is high,
the participant’s decision is likely to be influenced by the NND variable of
the proposed trial; as the angle decreases however, the decision boundary
approaches the y axis, which represents the optimal decision boundary for the
given task as it completely filters out non numerical information. With this
premise, the better performances of older and more educated groups reported
in other papers is not explained by a decrease of the internal noise for the
numerical representation, but rather by a decrement of this angle.

Figure 2.3: Visual representation of the effect of development according to the
filtering and the sharpening hypotheses in a numerical representation task

With these premises, the authors of the paper made some predictions regarding
what the analysis of the collected data would show according to each hypothesis.
If only the sharpening hypothesis is valid, the groups of participants taken into
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consideration will give significantly different answers only for the trials that are
close to the y axis in the ND-NND space, with an overall improvement in terms of
accuracy for older or more educated groups. In the case where only the filtering
hypothesis is correct, it is instead expected that these group will perform better
only for incongruent trials, while for congruent trials they may even show a decrease
in accuracy as they can no longer rely on non-numerical helping variables. Finally,
the third possibility is that the filtering and sharpening hypotheses are not mutually
exclusive: the individuals improve according to both hypotheses, and will therefore
achieve better results both in incongruent and congruent trial conditions.

2.2.3 Methods
The data on numerical comparison trials was collected from several groups, consist-
ing of subjects of different ages, education and culture: 44 Italian kindergartners
(ranging from 3.6 to 6.2 years old); 29 Italian school-aged children (between 8
and 12 years old); 20 Italian educated adults (aged between 22 and 33 years);
25 Italian dyscalculic children (between 8 and 12 years old), and 38 Mundurucù
Indians with a wide age range (from 3 to 62 years, averaging at 24.6 years old).
The experiments were performed in occasion of previous publications [14] [19], but
were previously only analysed according to the Weber’s law regarding solely the
numerical dimension of the trials.

The stimuli space of the trials consisted in, as mentioned earlier, two arrays of
dots with different numerical and non numerical features. For one of the two arrays,
the number of elements could be either 16 or 32, while the second array could
assume a value between 10 and 22 or 20 and 44 respectively. Moreover, the trials
were generated in order to provide a balance between congruent and incongruent
situations, spanning a wide range of values for each of the four non numerical
features described in previous literature (FA, ISA, TSA and Spar). Moreover all
four of them were expressed in terms of number of pixels and turned into a single
variable orthogonal to number, as explained in appendix B.

2.2.4 Analyses and Results
At first, an analysis focused solely around accuracy was performed. From the
collected data it emerged that the overall accuracy was significantly better in
congruent trials with respect to incongruent ones for all age groups except for the
10 year old school kids. In any case it is worth noting that accuracy was still higher
in congruent conditions and that, with respect to preschooler children, the 10 year
old kids showed a slight decrease in accuracy for congruent trials and a significant
increase for incongruent ones, which is precisely what was predicted regarding
the filtering hypothesis.
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On the other hand, another analysis of the participant’s performances was carried
out following both a logistic regression approach as well as a mutual information
approach (also known as Shannon Information). In particular, in the case of logistic
regression, the authors trained some models for each of the groups of participants
by using the collected trial data (with suitable pre-processing) as the training
dataset. After the models had been trained, the authors then extracted for each
group the best fitting decision boundary in the ND-NND space of trials, which was
assumed to be a line passing through the origin characterized by its angle with
respect to the NND axis, as mentioned previously.

This analysis showed that such angle was close to the optimal 90° value for
the adults and 10 year old children (~85°), while the kindergarteners and the
Mundurucù groups presented a lower angle representing a less optimal decision
boundary for the task (~54° and ~75° respectively), which further validates
the filtering hypothesis. An interesting result would also involve the dyscalculic
children, who demonstrated an angle of around 10° less than the non-dyscalculic
kids of the same age.

In conclusion, the paper proposed and gave empirical evidence for the filtering
hypothesis, cementing it as a relevant mechanism in non-symbolic numerical decision
making and as the main object of improvement during development, although the
sharpening hypothesis is still necessary to account for the trends shown in previous
papers. Moreover, the analysis of the data showed that dyscalculic children tend
to be affected by non numerical data more than other kids of the same age, thus
detecting a new possible symptom of such condition. The concepts introduced
in this paper represent valuable knowledge for the purpose of this thesis’ project.
However, before discussing how this paper is used by The Number Farm, it can be
useful to first take a look at some other applications that were aimed at treating
dyscalculia, which will be the main topic of chapter 3.
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Figure 2.4: The measured decision boundary in the ND-NND space for the group
of dyscalculic Italian children (left) and the group of 10 year old children (right).
As shown in the figures, the group of dyscalculic children was defined by a less
optimal decision boundary
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Chapter 3

The State of the Art

The proposed gaming app is, of course, not the first one of its kind. Several game
apps targeted at kids were in fact developed prior to it with the aim of either
teaching a concept or, more specifically and similarly to this project’s objective,
helping them getting used to arithmetic and mathematical concepts. Gaming apps
are exceptionally suitable for this as they provide an engaging environment where
the kid can have fun while learning the core skill that is being taught.

Before delving into this thesis’ game, it can be useful to analyze the standard of
applications aimed at treating DD: in this chapter, an introduction to both The
Number Race and Calcularis will be carried out, as they both share several
aspects in common with the project developed by the candidate.

3.1 The Number Race

3.1.1 General Aspects
The Number Race is a gaming application developed in 2006 by Wilson et al. [20],
and is one of the first example of games based on an adaptive algorithm with the
purpose of training children with dyscalculia and mathematical deficits in general.
The goals of the application were in fact to help them improve on several aspects
that are affected by the disorder, all while keeping the experience as entertaining
as possible by adjusting the difficulty of each stage with respect to the skill of the
player. In detail, the authors had three main objectives:

• Enhance number sense. As discussed previously, the Number Sense has
been identified as an important factor in mathematical and arithmetical skills.
For this reason, the game implements a game where the children have to
estimate numerosity without counting explicitly.
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• Cementing the links between representations of number. Among the
issues of dyscalculic children there is also a difficulty in learning the relations
between symbolic representations of number (i.e. Arabic symbols, words etc.)
with the concept of numerosity itself. Hence, the authors also implemented
the game so that the player has to deal with both symbolic and non-symbolic
representations of number in order to reach their goal.

• Conceptualizing and automatizing arithmetic. Since dyscalculic children
also tend to show a developmental delay in procedures related to simple
additions and subtractions, an additional mechanic was added in the game
that would include these kind of operations as a way to help children automate
them over time.

To meet all of these requirements, the core game mechanic was implemented as a
number comparison task, which is encapsulated in a broader board game where
the player’s performances in the comparisons mini-game allow them to advance
and eventually win against a CPU-controlled opponent. As an incentive to keep
playing, the player is also rewarded with new playable characters the more times
they win the game.

In the comparison mini-game, the player has to choose the set with more
elements, as shown in figure 3.1. Sometimes the mini-game involves also performing
an addition or a subtraction in order to get the correct value for the number
of elements; moreover, in order to prevent the player from counting explicitly, a
limited amount of time is provided to make the decisions, after which the opponent
(the CPU) will choose the more numerous set for itself. Depending on how many
elements the player and the CPU selected, they will advance of a proportional
amount in the board game, with the goal of reaching the end of the board before
the opponent.

3.1.2 The adaptive algorithm
Regarding the adapting algorithm that controls the difficulty of the mini-game, the
authors identified three dimensions to regulate it:

• The distance, intended as a measure of how the two sets differ in terms of
number.

• The speed, which determines the time available for the player to make the
decision.

• The conceptual complexity, which is a composite dimension whose difficulty
is increased by decreasing the ratio of non-symbolic to symbolic information
available and by introducing additions and subtractions.
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Figure 3.1: Screenshots taken taken from the game. The two top figures show
the comparison mini-game (both with and without arithmetic operations), while
the one at the bottom displays the board game.

The combination of these three dimensions defines a three dimensional “learning
space” by giving each one of them a difficulty coefficient between zero and one.
Each trial will be represented as a point in this space, and the adaptive algorithm
was designed to understand how likely each player will provide the correct answer
based on their displayed skills in each dimension. More in detail, the algorithm
tries to estimate the “knowledge space” of the player, which is a subspace of
the aforementioned learning space and defines the set of trials that have a high
probability of being guessed correctly. Out of that knowledge, the algorithm will
then propose trials so that the player can improve gradually on each dimension
while achieving an overall satisfying accuracy.

16



The State of the Art

3.1.3 Results
The algorithm was first tested through a simulation environment able to reproduce
the behavior of a child with a certain knowledge space. The simulations were both
performed by keeping the knowledge space fixed and by setting different levels of
learning rates for each dimension, in order to assess the performances also in the
case of a player who improves over time.

Figure 3.2: Graphs produced after the simulations. Both of the plots use
the “knowledge volume” as the main metric, which stands for the volume of the
knowledge space estimated by the algorithm. In panel b. each curve represents
different simulations with a given limit for all three knowledge dimension of the
simulator. In panel c. instead are shown simulations with varying learning rates
for the simulator’s knowledge space, without any limit on the actual knowledge
volume

.

As shown in figure 3.2, the algorithm was able to estimate fixed knowledge
spaces relatively well while also being able to adapt to several different learning
rates for each knowledge dimension.

Moreover, the game was also tested on a group of 9 children with difficulties in
learning mathematics. After a 5 week study, the collected data proved that the
accuracy eventually converged to the desired fixed quantity (75%) for all children,
and that some of them did experience an increase in their estimated knowledge
volume, as shown in figure 3.3 and figure 3.4.

In addition to these results, the group of children who participated in the
playthrough were also examined on their performance in several tasks such as
counting, symbolic comprehension and arithmetical operations [6]. The assessments
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Figure 3.3: the accuracy attained by the players, measured as a running average
of the last 20 trials for each child, and averaged across all nine participants

.

were made both before and after the use of the software, which leads to the
most relevant results of this study: not only the adaptive algorithm was able to
understand the children’s skills, but the exposure of the children to the game also
led to an overall improvement in other mathematical tasks that were not strictly
related to the game, thus validating the effect of gaming apps in the treatment of
Developmental Dyscalculia.

3.2 Calcularis
3.2.1 Main Principles
Calcularis [21] is another computer-based training program targeted at children
with DD or difficulties in learning mathematics, with an heavy inspiration from
another game named “Rescue Calcularis” [22]. Just like The Number Race, the
game combines the training of basic numerical cognition with the training of
arithmetical abilities through the use of an adaptive algorithm.

The program was designed with 3 design principles in mind:

• Design of numerical stimuli. In order to strengthen the links between
various representations of numbers, properties such as colors and shape are
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Figure 3.4: The estimated knowledge volumes over time for all the children
.

consistently used to give visual cues on the quantities displayed by the several
mini-games.

• Adaptability and scaffolding. As every individual learns at their own pace,
the program is designed in order to teach fundamental knowledge first, and to
later introducing more advanced and difficult concepts, when the player has
shown sufficient abilities to understand them.

• Different types of knowledge. The training program has the aim to help
children both with acquiring conceptual knowledge as well as with automating
mathematical operations.

Following these principles, the authors developed several mini-games that can
be divided in three hierarchically ordered areas:

1. Number Representations. In this area, the games involve tasks aimed
at strengthening the links between the various representations of numbers
(i.e. Arabic symbols, number words etc.). The authors also established
the cardinality (quantity), ordinality (position in a sequence) and relativity
(difference between two numbers) as the main factors related to the difficulty
of these games.

19



The State of the Art

2. Arithmetic operations. This area focuses on training arithmetic skills, with
task difficulty being determined by the magnitude of numbers involved and
by the visual aids provided to the player.

3. Word problems. An area where the player is given verbal instruction, out of
which they have to understand both the quantities involved and the operations
to be performed.

It is worth noting that the second and third area require a good understanding
of the topics belonging to the previous ones in order to be dealt with properly.
Additionally, the games can also be categorized on their relative complexity, with
some games requiring a combination of abilities to be solved, while other ones
only train specific skills within their area. A typical training path would therefore
consist in playing games from each area by also spanning several intervals of possible
cardinalities of the numbers used.

Figure 3.5: Examples of games implemented in the training program. Panel A
and B show games related to the Number Representation area with cardinality
in the range of 0 to 100. In panel C and D it’s possible to see two other games
belonging to the area of Arithmetic operations, with relatively simple cardinality in
the range from 0 to 10. It’s worth noting that tens are coloured in blue while units
are colored in green, according to the numerical stimuli principle mentioned before.

3.2.2 How to model the player
Regarding the adaptive algorithm, it is based on a student model and a controller
which were developed starting from concepts already established by previous
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literature [23].

The player’s mathematical knowledge is modelled as a directed acyclic graph,
where each node represents a skill and the links represent dependencies between each
of them. Skills are therefore linked with a “precursor and successor” relationship,
where successor skills are more complex, but require that their precursor ones are
already achieved in order to be mastered. The controller will consider each skill
as either “learnt” or “not learnt” based on the player’s performances on the tasks
assigned to said skill, and at each input from the player it can decide whether to
keep training the current skill (to understand better if it has been learned or not),
to go back to one of its precursor skills (if it’s likely that they were not achieved)
or to go to one of the successor skills (when the current skill has been established
as learned). For more details, refer to figure 3.6.

Figure 3.6: The knowledge graphs for two different areas in the cardinality interval
from 0 to 100. Panel A shows the graph for the Number Representation area, where
the various representations are colored in blue, the trans-coding skills in red and
the ordinal ones in yellow. Panel B shows instead the sub-graph for the addition
skill with examples of related tasks, where the root node represents easy operations
while successors require more difficult tasks to be achieved

.
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3.2.3 Results
The effects of the training program were assessed on a group of 41 children, which
were divided into a training group (n = 20) completing a training of 12 weeks and a
(n = 21) starting after a rest period of 6 weeks. The mathematical abilities of each
group were evaluated by means of computer-based tests and HRT (Heidelberger
Rechentest), which were performed at three different points in time during the
training: at the start, after 6 weeks and at the end of the program. Moreover,
the children were asked to play the game at least 5 times per week for at least 20
minutes per session, and were asked to fill a feedback questionnaire at the end of
the training.

Based on the estimated knowledge graphs and the performance tests, the children
were already able to solve more complex subtractions after a training period of
6 week, and also showed an improvement in the response time for these kind of
questions. An overall increase of accuracy was also reached for number ordering
tasks, and even if such trend was not replicated for number comparison ones, the
authors observed that this was due to ceiling effects (i.e. children were already
quite capable to begin with). Moreover, the prolongation of the program from 6
to 12 weeks was observed to be mostly beneficial, and according to the feedback
questionnaire the program was able to adapt well to the skills of the players, since
the difficulty was mostly described as appropriate by the children themselves.

Despite these beneficial effects however, the authors also pointed out how an
appropriate comparison among the children was difficult to do due to the nature
of the program: given the proposed adaptive algorithm and the wide set of skills
that were subject of training, each child followed a different training path during
the training period, which could lead to training some specific skills more than
others; moreover, the training time for each specific skill is reduced due to their
high number, which was given as an explanation for the benefit of an extended
training period. Nevertheless, these observation are not meant to devalue the
results of the game, but rather to enforce the fact that further research in computer-
based program can provide a valuable alternative to conventional treatments for
mathematical disorders.

In conclusion, just like The Number Race, Calcularis represents an important
example of how a carefully designed training application should be. Now that their
aim and design principles have been discussed, it is time to delve into the main
topic of this thesis, which is the gaming application developed by the candidate in
collaboration with the University of Essex.
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Chapter 4

General Aspects of the
Project

Now that both the problem of Dyscalculia and the state of the art have been
described, it is now time to delve into the main subject of this thesis’ work. The
following sections will be dedicated to an overview of the general aspects regarding
the proposed game, which is named The Number Farm. First of all the user
experience will be treated, which is followed by the discussion of the theoretical
aspects and of the project structure. Finally, to better understand the candidate’s
individual contribution, a section will be dedicated to describing the project state
before the beginning of this thesis’ work.

4.1 The User Experience
As a first step in the introduction to The Number Farm, it may be useful to discuss
what is the kind of experience that the game wants to provide to its target users,
which consist mainly in preschool children as well as dyscalculic children who have
difficulty in performing operations related to mathematics.

Other than providing a mean to training mathematical skills, the game was
designed also in order to be an entertaining activity for the player, as to increase
motivation without the risk of them losing interest in the game. For this reason,
the game has been decided to be set in a farm, just like the name suggests: this is
because children are exposed to such environment from a very young age, be it at
school or by other entertainment media.

The player will first interact with the owner of the farm, a character named
James, who will ask for help with a task involving different types of animals that
can be easily recognized by the player. Moreover, since it may be possible that the
target audience is not yet able to read or may have difficulty in doing so, the amount
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Figure 4.1: The main screen of the game.
.

of text within the game has been reduced to a minimum, which is complemented
by full voice-acting of farmer James who will guide the player through the game.

The idea is to develop several mini-games that pertain different areas affected by
dyscalculia, all encapsulated into a broader game taking place within the farm. As
of now, a number comparison mini-game has been implemented, where the player
has to help farmer James to understand which one out of two fences contains more
animals. To make the mini-game clearer to the player, a brief tutorial is displayed
before its start, where farmer James briefly explains the rules of the game. The
animals that appear within the mini-game can be either chickens or cows, and the
two sets of animals will differ according to features related to the ones described in
section 2.2.2, as shown in figure 4.2. Additionally, there are two other parameters
that can vary between trials, which are the show time for the animals, and the
maximum time provided to the player to decide which fence to pick.

The game rewards the player with a success screen whenever they are able to
perform the task correctly; when the answer is wrong however, a secondary screen
is displayed where the player is asked to count the animals explicitly by dragging
them at the side of the fence, as shown in figure 4.3. This is done to both provide
a secondary activity to the game and to help the player understanding better when
a mistake is made.

In order to provide an experience as accessible as possible, the game is also
meant to be played from a mobile device. Because of this, all actions required
to play the game are designed to be compatible with touch screen devices, as
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Figure 4.2: The screen where the comparison mini-game takes place.
.

Figure 4.3: The counting mini-game displayed when the comparison task is
unsuccessful.

.

it is believed to be a more motivating and intuitive technology for children [24].
Finally, although the game is split in a client-server fashion, no registration or
authentication is required in order to load the player’s progress, as such procedures
are done automatically through characteristics of the device itself.
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4.2 Theoretical Aspects
To summarize, the aim of the project is to offer a way to both detect symptoms of
dyscalculia at a young age and to treat it in the case where it has already been
diagnosed. As discussed in chapter 2 and 3, a possible way to do so is by putting the
children in an environment where they need to manipulate numbers and quantities,
so that they can get used to operations related to them.

It is however not wise to come up with a training program from scratch; hence,
before describing how the project is structured and performs its task, some more
attention will be dedicated to what is exactly used out of the theory that was
discussed so far.

4.2.1 The contribution of Learning to Focus on Number
The main inspiration and difference with respect to previous similar works to The
Number Farm is definitely the contribution brought by Learning To Focus on
Number. In fact, this almost 2 years old project has been developed with the paper
as its main reference since its early stages, and the theory regarding the filtering
and sharpening hypotheses was included in almost all aspects of the game, starting
from the visual components up to the AI.

As already mentioned in the previous section, in fact, the main game consists in
a number comparison task, which was implemented to be as similar as possible to
the one explained in section 2.2: the player is presented with two sets of elements
displayed in the form of animals within a fence, and they have to decide which one
of the two sets contains more by also avoid the influence of other features that have
a correlation with the numerosity itself. The concept of Numerical Dimension
ND, Non-Numerical Dimension NND as well as congruity will be borrowed
from the paper and will be used to describe each trial in the related ND-NND
space. Same can be said about the non-numerical features that characterize each
of the trial’s fences, that are reported here for completeness:

• Item Surface Area, or ISA.

• Field Area, FA in short

• Total Surface Area, abbreviated to TSA.

• Sparsity, also called Spar

A difference however lies in how these features are displayed from the client
[25] [26]. In the paper all of these features were measured in terms of pixels, but
since in the current project all of the assets are three dimensional, another set of
parameters had to be designed in order to capture the non-numerical dimensions
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of each set, without losing their relationship with respect to the parameters used
in literature. This matter was handled by the candidate’s direct predecessors, who
came up with the following set of parameters to define each trial within the client:

• Size of the Animals. This is strictly related to the ISA, but is expressed in
a different measure.

• Circle Radius. A property that defines the space in which the animals will
be placed within each fence.

• Average Space Between. Defines how spaced the animals will be between
each other. It is also used to assign a position to the animals.

All three of them are directly related to the non-numerical features described in
Learning to Focus on Number, more specifically to ISA and FA. For this reason,
the candidate’s predecessors decided to let the AI process the NND in terms of
these two non-numerical features, while the client will translate both of them in its
internal dimensions. More details on how the NND is computed within the project
are explained in appendix B.

Figure 4.4: An example of incongruent trial. The two sets of animals differ both
in numerosity, size of the animals and circle radius, with the non-numerical features
being less prominent in the more numerous set on the left

.

Finally, the paper brings its most important discovery as contribution to this
project: the AI, which will be described and showcased in chapter 5 and chapter 6
respectively, is in fact modelled after the filtering and the sharpening hypotheses.
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The player is modelled as a classifier defined by both a filtering angle and a noise
related to their internal representation of number within the ND-NND space, and
the role of the AI will be to estimate these two parameters and propose suitable
trials according to such estimation. Moreover, as the paper implies, the player will
be considered to be able to improve, both according to the filtering and sharpening
model.

4.2.2 Relationship with the State of the Art
The proposed game draws heavy inspiration from both the previously described
training programs, since all of them are aimed at training children in mathematical
operations.

Just like The Number Race, The Number Farm has the purpose of training
the number sense through a number comparison mini-game, although devoid of
the additional difficulty of having to perform additions and subtractions as the
game progresses. This is done in order to better conform to the target of the
game, which also comprehends kindergarteners who are not yet introduced with
arithmetic operations. Training arithmetic skills and the links between the various
representations of number are therefore not the objectives of this project, although
mini-games related to such tasks may be introduced in the future. As a compromise
however, the peculiarity of The Number Farm consists in the acknowledgement
of the influence of non-numerical features in the comparison decisions, which is
unprecedented for previous training applications. Together with that, the proposed
game also is the first one to make use of the filtering hypothesis when it comes to
the way children improve over time, as discussed in the previous section.

As already stated, The Number Farms aspires to be a full game comprised
of several mini-games, each pertaining to a certain area related to mathematical
understanding just like Calcularis. This is not only because it’s vital to treat every
aspect of dyscalculia, but also because introducing variety in the game-play is also
the key to keep the player interested in the activity over a long period of time. It’s
worth noting however that The Number Farm already presents a step forward in
that direction with respect to Calcularis, as it brings all such activities in a setting
that can easily be appreciated by young children.

Another thing that sets The Number Farm apart from the two proposed prede-
cessors is how the game is meant to adapt to its player: while The Number Race
and Calcularis defined an adaptive algorithm in order to do so, The Number Farm
has the goal of using tools related to Artificial Intelligence. Details on the AI
will be discussed in the related chapter, and will exploit both Machine learning
techniques as well as Genetic Algorithms to perform its task. Due to the lack of
data specific to the filtering hypothesis, Deep Learning options were not explored
within this thesis, although they may be taken into consideration in the case where

28



General Aspects of the Project

the game is distributed to a first batch of children, which is entirely possible thanks
to its accessibility.

4.3 Project Structure
Before talking about the main features developed by the candidate, it can be
useful to give some context about how the game works from the point of view
of implementation. In section 4.1 it was stated that the game is supposed to be
played from a mobile device; however, as the game requires AI methodologies in
order to work properly, enclosing all the game’s features inside a single mobile
application can be highly impractical. Moreover, operations such as collection of
data related to the game would be hard to manage if each device can only store the
application’s data locally. For these reasons, the game has been split into two parts
following a client and server approach, both being managed as a single project by
several contributors through the use of Git.

4.3.1 The Client
The client is the part of the game that runs in the user’s device, and although the
candidate was not in charge of its development, it’s important to discuss briefly its
main functionalities. Due to its compatibility with a wide range of devices, the
client was developed inside the Unity game engine (version 2020.1.9f1), by using
C# to write the scripts that manage all the Game Object of the application. All
graphical aspects were developed inside this part of the project, with all asset being
three-dimensional and with proper animations. In order to create them and related
models, the candidate’s predecessors used Blender and Maximo, due to their ease
of use, while the UI was made by using several software including Photoshop and
Premiere Pro [25].

The client’s code is split in several scenes, each of them composed of several
Game Objects with their related scripts. Other than showing the user the graphical
aspects of the game, the client also needs to manage user input and to run the
comparison mini-game. The server’s contribution is however fundamental for
running such mini-game, so right after displaying the tutorial, the client opens a
TCP connection with the server which either authenticates or registers the user
based on its IP address. To facilitate development and testing of the devices
running the client, a screen dedicated to specifying the server’s IP address as well
as the amount of trials to play within the gaming session has been added to the
game, as shown in figure 4.6

After the connection has been established, the client will refer to a set of
commands in order to communicate with the server, which are handled by a suitable
script (named ClientToServer.cs, handling the connection from both directions):
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Figure 4.5: The models used for the chickens and for farmer James

Figure 4.6: The settings menu, which can be opened from the main screen, where
it is possible to specify the server’s IP address and the amount of trials that will
be proposed during the session

.

• “TRIALS”. This command can be used to ask for the next trial that needs
to be shown to the player. The decision of the numerical and non-numerical
features of each trial is in fact made by the server which, after receiving this
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command, selects a suitable trial, translates the features of each of its sets in
the parameters used in Unity, and sends it to the client as a JSON object, so
that it can be easily displayed inside the mini-game.

• “COMPLETE”. After the player has selected one of the two fences for
the proposed trials by touching on one of the fences, the client runs a quick
validation to understand if the answer was correct or not. The command
“COMPLETE” is reserved to notify the server of the trial’s outcome, and is
therefore sent together with a JSON object containing details on the player’s
response, which are used by server to update its internal statistics.

• “END”. This command is sent when the player closes the game, and is used
to communicate the server that it’s possible to close the TCP connection.

The client therefore alternates between the TRIALS and the COMPLETE
command, proposing the trials to the player and communicating the answer to the
server. When the player’s answer is incorrect, the client also runs the counting
mini-game, for which the server’s intervention is not required.

4.3.2 The Server
The server is the part of the project under the candidate’s supervision, and its
functionalities can be summarized in three main points:

1. Manage client connections.

2. Generate and send trials to each connected client.

3. Interact with the Database

In order to accommodate for each of these requirements, the server’s code has
been developed in Python, as it provides packages to handle TCP communications
through python sockets, database queries as well as several libraries related to
Artificial Intelligence. All the required python packages are listed in a dedicated
file, to facilitate their installation. MySQL was chosen to run the database, which
needs to be installed in the same machine running the server, and requires to be
initialized with a set of scripts in order to create all the tables required by the
application.

After all requirements are met, the server can be launched through a script
(main.py). Moreover, as the server needs to work under several different conditions,
the main script accepts also a set of arguments (defined in argument_parser.py),
of which the main ones are listed in the following:
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• use_lan. Specifies that the python socket clients can connect to has to be
bound to the machine’s local IP address. It allows the server to be reachable
from its local area network, which is necessary whenever the client is run from
a mobile device. If this argument is not specified, the server’s socket is bound
on the localhost IP address and can be reached only by processes running on
the server’s machine (i.e. Unity IDE, for testing purposes). As for the port
number, the socket is bound to a default port in all cases.

• evaluator. As will be discussed in the following section, the server implements
two different versions for the AI. This parameter can be used to specify which
one needs to be used.

• usability_test. Launches the server in usability test mode: the server will
treat every connection as a separate user, even when coming from the same
device, and will save separate entries in the database for each of them.

For completeness, the implementation for each of the server’s main functions
will now be briefly explained.

Managing client connections

The server has to be able to support communications with several different clients,
as the game is meant to be played by several users at the same time. In order
to do that, the main script instantiates an object of the GameServer class, whose
main method binds a python socket to the IP address and port specified from the
arguments. After that, the server’s main thread starts a loop where a non-blocking
check is made on the socket. Whenever a new connection is accepted, the main
thread creates a new socket linked to the client and checks whether their IP address
is already present in the database: if it is present, it determines the related user
and their current progress; if not, the server performs a query in order to register
it.

Once that is done, the main thread launches a new thread that will take care of
the client that requested a connection, which is managed by the PlayerHandler
class. In its initialization method, this thread will instantiate an object of a
class implementing the PlayerEvaluator interface, which will be referred to as
evaluator, and will define methods for all tasks that need to be performed by
the AI. The player thread then runs a loop with a blocking read operation on the
client’s socket: whenever the client sends one of the commands listed in the previous
section, the PlayerHandler thread will be unblocked and deal with the request.
Once the “END” command is received, the player thread will finally terminate,
and the server’s main thread will release its resources.

32



General Aspects of the Project

Generate and send trials to each connected client

The server’s most important task consists in the generation of trials to be sent
to clients, so that they can be proposed to the end users. This is done whenever
the “TRIALS” command is received by the PlayerHandler thread. As already
mentioned, this class instantiates an object of one of two classes implementing the
PlayerEvaluator interface, based on the arguments provided to the main script.
These two classes are named SimpleEvaluator and PDEP_Evaluator, and each
of them implements a working version of the AI: the SimpleEvaluator will be
explained better in the next section, and represents the AI prior to the candidate’s
contribution; the PDEP_Evaluator will be instead discussed in chapter 5, and is
the main topic of this thesis’ work.

Both the AI classes take care of the generation of trials and the player’s evaluation
in their own ways; however, before forwarding the generated trials, they both need
to interact with another component, which will be referred to as “Lookup Table”.

To better explain the role of this component, it should be pointed out that the
client is not able to handle trials with just any set of numerical and non-numerical
features. In fact, due to the size of the screen, the client can only place a certain
amount of animals inside each fence, which can vary based on their non-numerical
features like their size. As the client trusts blindly the server’s generation of each
trial, the AI has to be able to generate trials where each set of elements can be
shown inside the fences, in order to avoid interpenetration of the models or even a
crash on the client side.

This problem has been solved by the candidate’s predecessors. As a first step,
they analyzed the client’s implementation for all the admissible values of the number
of animals and of the non-numerical parameters, namely the Size of the Animals,
the Circle Radius and the Average Space Between, as explained in subsection
4.2.1. These ranges of values were then translated into the space of features used
within the server, which are the same FA and ISA used in Learning to Focus on
Number together with the numerosity of the set: this translation therefore defines
a subspace of admissible feature combinations that can be easily processed by the
server’s AI, as shown in figure 4.7.

Going back to the Lookup Table, it is basically a CSV file containing a subset
of all the trials that can be displayed within the client: starting from the afore-
mentioned admissible values for each fence, this subset is in fact generated by
combining some of them into pairs. Each entry of the Lookup Table therefore
contains a triplet {number, ISA, FA} for each of the two fences, along with other
features related to the trial like its ND and NND values. Moreover, after receiving
some feedback from a psychologist, a secondary Lookup Table was also generated,
which was meant to be used for younger players as it comprised trials with an
overall lower amount of animals.
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Figure 4.7: The 3D surface defining all possible combinations of features. Every
point below the curve represents a triplet of number, FA and ISA that can be
displayed within a fence in the client

.

The default behavior of the AI will therefore consist of generating a trial following
its internal rules, and then to pick the actual trial that will be proposed to the
client from the Lookup Table, according to some inter-trial distance criterion: after
translating the trial in the set of parameters used in Unity, the server can safely
send it without risking any unwanted behavior from the side of the client.

Interacting with the Database

The Number Farm is a game meant to follow the player as they grow, in order to
better understand their skill in handling numerosity and whether the interaction
with the game is useful in improving them. This implies that the game has to be
played over a long period of time, where the data related to the player’s answers
has to be collected so that it can be processed by the game’s AI.

For this reason, the server requires also the support of a database, which is
installed inside the server’s machine through MySQL. The application’s database
contains a table for the players (identified through their IP address) as well as
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two different sets of tables related to the two versions of the AI used withing the
application. To summarize, the data stored in the database concerns the history
of trials proposed to the player, together with their response and with additional
statistics internal to the selected AI version.

Other than the main table for players, which is handled by the server’s main
thread, the tables related to the AI are updated by the PlayerHandler’s thread.
A specific class, named DBConnector, has been developed to interact directly with
the MySQL database, and implements all possible queries required by the AI. A
single object of this class is instantiated in the main script, and a reference to it is
passed to each player thread; then, whenever the client sends the “COMPLETE”
command, the player thread first lets the evaluator object process the response,
and finally calls the methods of the evaluator that, by accepting the DBConnector
object as an argument, will take care of updating the database with the required
data.

4.4 The Starting Point
As inferred from the previous sections, The Number Farm has been in development
since before the candidate’s arrival. This project was in fact started back in 2021
as an initiative of the University of Essex, and its first contributor already laid
out a first version of the client and the server [27]. The project was then led by
a working group comprised of students both belonging to Politecnico di Torino
and University of Essex, including the candidate himself. In this section, the state
of the game at the beginning of this thesis’ activity will be described, with some
emphasis also on the work performed by the candidate regarding general matters.

4.4.1 Overall Structure
At the start of this thesis’ activity, the client was already implementing all the
required main functionalities, with all assets used being three-dimensional [25].
The tutorial as well as the mini-game were already present, together with the
client-server communication within the same machine. The user experience did
receive some tweaks after the candidate’s arrival, with the addition of voice over
for all parts of the game as well as quality of life changes; these changes were added
by other contributors however, as the development of the client side was not the
candidate’s area of responsibility. Therefore, the candidate’s contribution on the
side of the client is limited to the communication between client and server over
a remote connection, which allowed the installation and testing of the game on
mobile devices.

Regarding the server’s code [26], the connection with clients had already been
dealt with along with most of the database interaction; only some adjustments were
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performed by the candidate to allow for the correct handling of multiple clients at
the same time. The admissible combinations of features for the trials were already
detected by previous contributors, and a first version of the Lookup Table was
already available. Moreover, all the code regarding the pre-processing of the trials
before being sent to the client had already been developed, and remained nearly
unchanged over the course of this thesis’ activity. Some additional scripts were
also present to run simulations of the server’s code, but in this case they were
re-implemented from scratch by the candidate, as reported in chapter 6.

4.4.2 The initial state of the AI
At the time of the candidate’s arrival, a single version of the AI was already
implemented and working [28]. This version was based on the concept of “filtering
and sharpening difficulty”, according to which the trial, defined by its ND
and NND, could be assigned two different difficulty coefficients between 0 and 1
related to the filtering and sharpening hypotheses: the filtering difficulty could
be summarized as a normalized measurement of the congruity of the trial; the
sharpening difficulty was instead simply a normalized value that was inversely
proportional to the ND of the trial. In figure 4.8 are reported some graphical
interpretations of the filtering difficulty.

Figure 4.8: Graphical representation of the filtering difficulty for trials in the
ND-NND space. In these figures, the line passing through the origin forms a 45°
angle with both the ND and NND axis. The filtering difficulty is the angle (α in
the figure) between this line and the line connecting the origin with the trial. The
part of the line from which the angle is computed depends the NND of the trial,
which brings some inconsistencies in this difficulty coefficient as discussed in the
next subsection

In this version, the player is modelled with two parameters, the filtering and
sharpening skill. More in detail, they are both a number between 0 and 1 and
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are strictly related to the aforementioned concepts of difficulty: for example, if
the player has a filtering skill equal to 0.5, the AI will consider them to be able
to answer correctly to trials that have a filtering difficulty lower than such value,
while trials with higher filtering difficulty will be considered to be hard; the same
relation exists between the sharpening skill and the sharpening difficulty. The role
of the AI is therefore to estimate the sharpening and filtering skills of the player,
and to use these estimated values in order to generate balanced trials to be sent to
the client.

The criterion for generating suitable trials and to estimate the two skills can be
summarized in the following steps:

1. First, the AI selects a “mode”, that can be either related to the filtering or
sharpening difficulty. The method for selecting the mode was initially a simple
alternation, and was later changed into a more complex function by other
participants of the project [29].

2. Given the mode, the related filtering or sharpening skill that was estimated
so far for the player is selected.

3. A search in the Lookup Table is then performed: as each one of its entries
contains the parameters for the related trial together with its two difficulty
coefficients, the AI selects the trial whose difficulty related to the current
mode is the closest to the skill selected in step 2, and forwards it to the client.

4. Once the player’s response is received, the AI updates the estimated skill
of step 2 by increasing or decreasing it by a fixed amount, based on the
correctness of the answer.

4.4.3 The first activities
The first period of this thesis’ activity consisted in studying the theory behind the
paper Learning to Focus on Number and in understanding the general structure
of the project, as the candidate was appointed to be the main contributor of the
entirety of the server’s code.

Soon after, the candidate’s first contributions were brought to the project which,
other than the aforementioned remote connection between client and server, were
related to the database support for the AI mentioned in the previous subsection. As
the candidate was in charge of the development of the AI, a thorough assessment of
the current version’s capabilities was then carried out, with the aim of understanding
whether expanding on its principles would benefit the application or not. The
assessment was conducted by taking the theory behind Learning to Focus on
Number into account, and therefore required recomputing the Lookup Table with
the addition of the ND and NND values for each trial.
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Unfortunately, some inconsistencies were found within the AI’s working principles.
First of all, the alternation of the proposal procedure in the two working modes
led to an important problem in the generation of the trials and on the update of
the player’s estimated parameters. The trial to be proposed was in fact chosen
according only to the current mode, and the update was applied only to the related
player’s skill: the possibility that the player answers incorrectly because the trial is
too difficult according to the other “inactive” mode can’t be, in principle, neglected;
yet, this version of the AI could potentially propose very imbalanced trials in terms
of the inactive mode, and still penalize the current mode’s skill in the case of
an incorrect answer. Moreover, other than being hard to relate to the theory of
Learning to Focus on Number, the principles behind the sharpening and filtering
difficulties led to some further problems, which are discussed in figure 4.9 and 4.10.

Figure 4.9: An inconsistency of the filtering difficulty. The figure shows two trials
within the ND-NND space and a line passing through the origin with a 45° angle
with respect to both axes. In red is instead reported the filtering difficulty for both
trials: it’s easy to see that, although the two trials are very close in the ND-NND
space, they are assigned with two completely different filtering difficulties. This is
because such metric depends on two different angles based on the NND of the trial:
if positive, the angle is measured with respect to the part of the line in the first
quadrant; if negative, the angle is instead measured with respect to the part of the
line in the third quadrant

.

Moreover, a primitive version of the simulation environment described in chapter
6 was developed, and was used to test this AI’s performances: the various simula-
tions proved that the AI was not able to come up with consistent estimations for
the player’s skills and therefore couldn’t propose balanced trials to the player.
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Figure 4.10: An incongruence of the sharpening difficulty with respect to the
filtering hypothesis. In the two figures is shown the same trial that, having a ND
value close to zero, has a high sharpening difficulty coefficient. However, according
to the filtering hypothesis, the player’s decision boundary (the blue line in the two
figures) does not necessarily coincide with the NND axis, and is instead defined
by an angle with respect to it. The shown example identifies a problem in the
definition of the sharpening difficulty because the player with a less optimal decision
boundary (right) is very likely to answer correctly to the proposed trial, as it’s very
distant from its decision boundary, while the more skilled player (left) can possibly
give a wrong answer due to their noise in numerical representation.

For these fundamental reasons, the candidate decided that instead of improving
the current AI, it could be wise to design a new version from scratch that would
follow the filtering and sharpening hypotheses more rigorously. This decision was
not to be taken lightly however: The Number Farm is in fact a project expanding
in several different directions, and some contributors were still working on the
initial version of the AI. Moreover, a usability test where the game had to be used
by real children in the project’s laboratory was scheduled around in the middle
of this thesis’ activity. As the new AI was estimated to take some time to be
finished, these factors meant that its development could not just replace the one of
the starting AI, but rather had to go in parallel while the latter was still
maintained by the candidate.

This led to the necessity of reorganizing the whole code related to the AI and to
its interaction with the rest of the server’s code. First of all, the set of arguments
mentioned in subsection 4.3.2 were introduced to distinguish the several operating
modes of the server, including the desired AI version. Then, a new package
solely related to the AI was brought in the project, and the PlayerHandler class
was changed to interact with the PlayerEvaluator super-class contained in it
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as an interface for accessing the functionalities of the AI. Finally, all the code
related to the AI was moved inside the proper package, and two subclasses of
PlayerEvaluator were introduced: the first one, called SimpleEvaluator, stands
for the initial version of the AI, and implements its trial proposal and statistics
update procedures in a way that is compatible with the super-class; the second one,
named PDEP_Evaluator, was instead meant to implement the new AI’s behavior.

In this way, the candidate was able to leave the initial AI in an accessible and
working state and to maintain it in collaboration with other contributors. Moreover,
this version of the AI, implemented as the SimpleEvaluator, was the one used
during the aforementioned usability test. This, of course, was done in parallel with
the development of this thesis’ main topics: the PDEP_Evaluator which will be
described in detail in the following chapter, and its simulation environment, that
will be discussed in chapter 6.
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Chapter 5

The AI

As this thesis’ title suggests, the main topic of the candidate’s work is related to
the AI, for which they are the sole developer. This chapter is therefore the most
important of this thesis, as it’s meant to describe the principles of such AI together
with the implementation of its functionalities. For simplicity and for coherence with
respect to the actual implementation, this version of the AI will be referred to as
PDEP_Evaluator. This chapter will therefore start by introducing the general ideas
behind the PDEP_evaluator, followed by a detailed explanation of how it performs
its functionalities. Moreover, a section will be dedicated to how it interacts with
the client, while the chapter will be closed with the explanation of how it adapts
to the changes in the player’s ability.

5.1 Introduction
In the previous chapter the main idea behind The Number Farm was explained.
The game is in fact meant to provide a non-symbolic number comparison game
where the player is asked to select one of two fences containing more animals, and
in doing so, the game has to follow the theory of Learning to Focus on Number.
Within this system, the AI has the role of generating the trials to be proposed to
the client so that their difficulty is balanced and adapted to the player’s skills. The
contribution of Learning to Focus on Number was already discussed regarding the
entirety of the project; now, for completeness, its concepts that are fundamental
for the understanding of the PDEP_evaluator are reiterated in greater detail:

• The trials, which are composed of two sets of animals, can be described by
two properties named ND and NND: the former is defined as the logarithmic
ratio of the number of elements respectively of the right fence over the left
one; the latter is instead the logarithmic ratio of the non-numerical features
(i.e. the FA and the ISA reduced to a single value) of the set displayed on
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the right fence over the ones of the set displayed on the left fence. These two
values allows trials to be visualized as points in the ND-NND space, where the
ND’s value determines the correct answer to each trial: if ND is greater than
zero, the correct answer for the trial is “right”, as in this case the right fence
is the one containing a greater number of animals; if ND is instead negative,
the correct answer will therefore be “left” for similar reasons.

• The player can be modelled as a linear classifier in the context of the proposed
mini-game that, by receiving as input the trials in the ND-NND space, is
meant to label each one of them as either “left” or “right” according to the
player’s perception. This perception is modelled as the combination of a linear
decision boundary (i.e. a line passing through the ND-NND origin) and of
a numerical representation noise: the former is characterized by the angle
formed with the NND axis, which will be called α, and represents the influence
of the NND in the player’s decisions mentioned by the filtering hypothesis; the
latter instead is an interpretation of the sharpening hypothesis and is modelled
as a two-dimensional Gaussian noise in the classifier’s perception of the trial
within the ND-NND space. Moreover, the aforementioned Gaussian noise will
be considered to have a covariance matrix equal to the identity matrix times
a constant, which represents its standard deviation σ. This model allows to
represent the player through the couple of parameters {α, σ}.

• The player is considered to be able to improve with time and practice according
to both the filtering and sharpening hypotheses. Given the modelling of the
player of the previous point, this can be considered as a decrease in the player’s
α and σ parameters as the game is being played.

These principles define a solid set of rules for the PDEP_Evaluator, as they allow
the AI to interpret the game and the player in a space that is easier to analyze
while still being consistent with the theory. As opposed to the SimpleEvaluator,
this new version will “think” in the ND-NND space, normalized in the range [−1,1]
for simplicity, by generating the trials as points within it; moreover, the definition
of their difficulty will not just be a fixed property related to their position, but
it will also depend on the player’s α and σ parameters. It goes without saying
that, in order to properly adapt to the player’s skill, the AI will also have to
estimate these two parameters, which are considered to be in the range of [0, 90]°
and [0.0, 0.5] units respectively, based on the player’s answers to the previously
proposed trials. Additionally, the evaluator will also have to understand whether
the player is improving as they are playing, and if they do, it’s also important to
understand how fast they are learning: reaching such understanding can greatly
help the α and σ estimation by giving a criterion on how much and how old the
trial data used should be.
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Figure 5.1: Graphical representation of the theoretical principles in the ND-NND
space. The blue line represents the player’s decision boundary, with the red arcs
representing the α angle. Each point represents a trial, with green ones being
labelled as “right” and red ones as “left”. Each trial is surrounded by a blue disk
with radius equal to σ, which represents the standard deviation of the noise applied
to them: this makes the classifier’s labelling less accurate for trials near to its
decision boundary

.

To perform these tasks properly, the PDEP_Evaluator can be divided logically
into several interacting components, whose typical workflow is described in the
following:

• Difficulty Controller. In order to be effective, the training program has
to both provide easy and difficult trials, according to a certain criterion. At
each mini-game iteration, this component generates a set of parameters that
define the requested difficulty of the current trial, based on the difficulty of
the previously proposed ones.

• Trial Proposer. This component takes as input the currently estimated
values for α and σ together with the difficulty parameters generated by the
Difficulty Controller, and uses them to generate a pair of values related to
the ND and the NND, both representing the next trial to be proposed to the
client.

• Trial Adapter. It takes the trial generated by the Trial Proposer as in-
put and processes it: first, the trial is translated into a suitable couple of
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{Number, FA, ISA} parameters, following the requirements for its admissi-
bility; then the component will interact with the rest of the server’s code to
translate the trial into the parameters used in Unity.

• Player Estimator. By defining the trial proposed at the ith mini-game
iteration as ti and the related player’s response as ri, this component’s input
at the nth iteration will be represented by the sets {tn−x, tn−x+1, ...tn} and
{rn−x, rn−x+1, ...rn}, where x is an integer value dependent on the player’s
improvement rate for both α and σ. This component will have the task
of estimating both the α and σ parameters after every trial proposed, as
accurately as possible so that the Trial Proposer can perform its task properly.

Each of these components will be described in detail in the following sections.

Figure 5.2: Graphical illustration of the AI’s components and their interactions.
.

While the SimpleEvaluator proposes trials by only considering the player’s
skill, the PDEP_Evaluator is designed to both acknowledge the player’s α and σ
parameters as well as a degree of difficulty for the proposed answer. The “PDEP”
belonging to its name stands for “Perceived Difficulty and Error Probability”, which
is exactly the principle implemented by the Difficulty Controller and followed by
the Trial Proposer at trial generation time. In the following section, this idea
will thoroughly explained, while the way it’s used by the Trial Proposer will be
discussed in section 5.3.

5.2 Controlling the Difficulty
The Perceived Difficulty (PD) and the Error Probability (EP) are the two
main ideas behind the difficulty calibration of the trials proposed by the application.
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Each one of them is expressed by the Difficulty Controller as a single value in
the range [0, 1], and are meant to both control the spontaneity of the player’s
answer as well as the overall accuracy reached by the player as they play the game.
Moreover, other than calibrating the difficulty of the proposed trials, the Difficulty
Controller has also a secondary goal: as will be described in the following sections,
the difficulty parameters determine the distribution of the ND-NND values of the
proposed trials, which are required to reasonably span the ND-NND space so as
to provide the Player Estimator with sufficiently good data to work with. Before
discussing how the Error Probability and the Perceived Difficulty are interpreted
by the Trial Proposer, it’s worth discussing the meaning of these two metrics and
how they are regulated by the Difficulty Controller.

5.2.1 The Error Probability
The Error Probability is rather self explanatory: whenever a new trial has to be
proposed to the client, the Difficulty Controller will select a value between 0 and 1,
called target error probability. This value represents the desired probability
that the player answers incorrectly to the current proposal, which is later used by
the Trial Proposer together with the player’s estimated α and σ to generate a trial
reflecting such probability. The value is picked in a Round-Robin fashion according
to the following simple procedure:

1. At initialization time, an array of N “candidate values” for the target error
probability is generated.

2. The first time the player starts the game, the first target error probability p1
is selected randomly from the N candidate values, while also being removed
from the array of candidate values.

3. p1 is used as the target error probability for a certain amount of mini-game
iterations, which will be referred to as M.

4. At the iteration number M+1, p1 is discarded, and a new value p2 is selected
randomly out of the N-1 values left in the array of candidate values, from
which it is then removed.

5. Step 4 is repeated is repeated until the array of candidate values becomes
empty, and each time the selected value is used as the target error probability
for M trial proposition iterations.

6. After that, the Difficulty Controller will keep selecting the values from the
original array of candidates based on which one was used the most further
back in time. As usual, the selection will last for M trial propositions.
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The array of candidate values is generated so that its mean value is equal to the
desired overall accuracy to be achieved by the player: if the Trial Proposer is good
enough at following the Difficulty Controller’s guidelines, the player’s accuracy
should in fact converge to the array’s average value. Moreover, the Trial Proposer
is considered to be able to reasonably perform its task: the Difficulty Controller
does not use in any way the actual accuracy measured during the playthrough.

As of now, the AI allows to calibrate the overall desired accuracy to either 50%
or 70%. Although the implementation can be easily changed to allow a generic
value for the target overall accuracy, the array of candidate values is hard-coded
for both the provided difficulty calibrations: this was done to carefully control
the difficulty of each trial proposed to the player, but also to completely avoid
certain values from being selected as the target error probability. In fact, as will be
later discussed, target values too close to 0.5 imply trials that go too in contrast
with the other difficulty metric, which is the Perceived Difficulty; moreover, trials
generated with such target error probability generally are not very useful for the
Player Estimator, as will be explained in section 5.5.

5.2.2 The Perceived Difficulty
If the Error Probability is meant to control how “tricky” the trial has to be to
the current player, the Perceived Difficulty is instead a metric that is supposed to
define how hard it should be for the player to give an answer to it, regardless of its
correctness. To better explain this concept, here’s an example: assuming a fixed
target error probability, a trial with a low Perceived Difficulty is a trial that should
be answered instinctively by the player; a trial with a high perceived difficulty is
instead supposed to not be intuitive to the player, and should be perceived as more
challenging regardless of the outcome of the answer.

Just like the target error probability, the Perceived difficulty is expressed as a
number between 0 and 1, named target perceived difficulty. In principle, this
value should not be co-related with the Error Probability, and most importantly it
should not affect the overall desired accuracy scheduled by the Difficulty Controller.
Given the player’s model described in previous section, this idea could be put into
practice by, for example, assigning a higher perceived difficulty value to trials with
higher cardinality of the numerical feature, as the ND of the trial is dependent
just on the ratio of the cardinality of the two fences. In practice, however, such
relationship cannot just be assumed by the candidate, but should rather be inferred
from real data related to a similar task as the proposed comparison game: a possible
way to do so would be, in fact, to relate the perceived difficulty to the time taken
by the player to come up with an answer, which can then be used as a label to
understand what kind of features of the trial have an impact on the overall response
time.
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As already mentioned before, however, no data coming from real number com-
parison experiments was provided for the development of the AI; for the time, the
candidate therefore came up with a reasonable mathematical meaning for the target
perceived difficulty, which is rather similar to the concept of sharpening difficulty
of the SimpleEvaluator. The Difficulty Controller keeps it at a fixed low value, and
the way it is used by the Trial Proposer will be discussed in the following section,
along with its implications.

5.3 Generating the trial
In section 5.1 it was stated that the generation of the trials was handled by the
Trial Proposer, by using as input both the estimated α and σ parameters of the
player as well as the difficulty parameters produced by the Difficulty Controller.
Now that also the target error probability and the target perceived difficulty
have been discussed, it is now time to explain how these parameters are used by
the Trial Proposer to generate suitable trials in the ND-NND space following their
specifications.

5.3.1 Computing the Difficulty for a generic trial
The Difficulty Controller tells the Trial Proposer the set of properties that the
generated trial should have, expressed as the probability of being guessed incorrectly
by the current player and the “perceived difficulty” that such player will experience
when giving the answer; how these two metrics are computed for a generic trial is
however still an open question, which will be answered in the following.

Computing the Error Probability

Let’s address first the computation of the error probability. At this point, the
Trial Proposer is made available of the α and σ parameters for the player that were
estimated during the previous mini-game iteration: given these two parameters
and a generic trial t in the ND-NND space, its perception by the classifier can be
graphically explained by figure 5.3.

For simplicity of the explanation, the same situation is also proposed in figure
5.4, which also displays the normal vector n⃗ to the player’s decision boundary.

Given the normal vector, a more rigorous interpretation to the player’s labelling
procedure can be defined. By considering the trial as a vector t⃗, in the ND-NND
space, the player’s labelling is related to the sign of the projection of t⃗ onto n⃗:
when it has a positive sign, the trial is labelled as “right”; if negative, the label
“left” is instead provided as an answer. This procedure can be also viewed as
the translation of the trial in a new set of coordinates, with its axis translated
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Figure 5.3: Graphical 3D representation of the trial’s perception by the player,
from two different points of view. The red and green axis represent the ND and
NND, while the z axis represent a probability density. Moreover, the blue plane
represents the player’s decision boundary characterized by α. The trial, due to
the noise related to the σ parameter, can be seen within the ND-NND space as a
random variable characterized by a two dimensional Gaussian distribution centered
on the trial’s ND-NND coordinate and with uniform standard variation equal to σ

.

Figure 5.4: Simplified representation of figure 5.3. The arrow represent the
unit vector that is perpendicular to the decision boundary, which by convention is
considered to always lie in the first quadrant

.
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with respect to the ND-NND ones by an angle α and representing the decision
boundary and its normal vector: in this set of coordinates, the aforementioned
projection is represented by the trial’s component with respect to n⃗, which can
also be interpreted as the signed distance of the trial with respect to the decision
boundary.

Going back to the trial shown in the figure, it can be observed that it has a
negative ND value, which means that the correct answer for it would be “left”:
through the aforementioned interpretation of the labelling, it’s easy to see that
the trial should be normally labelled correctly; due to the σ parameter however,
the trial has only a limited probability of being perceived on the correct side of
the ND-NND plane, that in the figure is numerically equal to the volume of the
Gaussian bell below the player’s decision boundary.

Given these observations, it is possible to give a more concrete definition to
the Error Probability for a generic trial, which is the fraction of volume of the
Gaussian bell on the “wrong” side of the decision boundary, where the
wrong side is defined by the ND of the trial in question (i.e. the side of n⃗ when
ND is negative, and the one hosting −n⃗ when ND is positive).

As the python’s scipy library provides a set of functions to perform two-
dimensional integration, the first implementation of the Error Probability compu-
tation was designed to compute explicitly the fraction of volume of the bell. This
implementation was rather computationally demanding, and although it was not
shown to impact the user experience significantly, it was considered to be too slow
when simulations of the game had to be run. For this reason, the computation
was further optimized, as shown in figure 5.5. Basically, as the bell’s covariance
matrix has been assumed to be equal to the identity matrix times σ (i.e. similarly
to a multivariate Gaussian distribution defined as N (t, σI)), the problem is mathe-
matically equivalent to its one-dimensional visualization where the trial is defined
solely by its signed distance d with respect to the decision boundary :
the noise in the representation of the trial is just viewed with according to its
distance with respect to the boundary, and is now interpreted as a one-dimensional
Gaussian distribution N (d, σ). With this interpretation of the problem, the Error
Probability can be easily computed through the use of the erf function, suitably
adjusted to the aforementioned distribution. Although no proof is provided for the
equivalence of the two methods for computing the Error Probability, its correctness
has been verified empirically through a set of experiments, where both methods
would produce nearly identical values under various conditions.

Computing the Perceived Difficulty

As mentioned earlier, the current interpretation of the Perceived Difficulty is rather
similar to that of the “sharpening difficulty” described in subsection 4.4.2, but with
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Figure 5.5: Graphical explanation for the optimized Error Probability computation
for several trials. In the top figure, the trials are shown in the ND-NND space,
with the player’s α and σ being represented by the decision boundary and the disks
around the points. In the bottom figure lies the one-dimensional simplification for
the Error Probability of each point, where its value is represented by the red areas.
It’s worth noting that trials with a high error probability (i.e. > 0.5) must lie in
the space between the boundary and the NND axis.
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the additional feature of being dependent also on the player’s α parameter: instead
of being inversely proportional to the distance with respect to the NND axis, it is
in fact computed as 1 minus the normalized distance of the trial with respect to
the player’s decision boundary, as shown by figure 5.6.

Figure 5.6: The Perceived Difficulty computed for several trials, which depends
on their distance with respect to the decision boundary in the ND-NND space

.

Given all the background explained in the previous paragraphs, it shouldn’t
be necessary to explain the details on how this value is computed. However, as
anticipated in section 5.2, its definition is not perfectly fit for being used in the
current application as by design it depends on the distance with respect to the
decision boundary, which is a quantity that the Error Probability also depends
on. This means that, although the Error Probability depends also on the sign of
this distance and on the ND variable of the trial, optimizing the Trial Proposer’s
choice according to the target perceived difficulty may go against the optimization
for the target error probability. This can happen when, for example, the target
perceived difficulty is set to be low, but the target error probability is a value close
to 0.5: optimizing for the first metric requires moving the chosen trial far from
the boundary, which changes its Error Probability; optimizing for the target error
probability instead requires the trial to be as close as possible to the boundary,
which makes the trial’s Perceived Difficulty become close to its maximum value.
To mitigate for this, the target error probability is never chosen to be too close to
0.5, while the target perceived difficulty is always kept at a low value; moreover, as
will be shown in the next subsection, the target perceived difficulty is treated as a
secondary criterion for the proposal’s optimality, with the target error probability
being the main one. When a new method for computing the Perceived Difficulty
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will be introduced, possibly disentangled by any dependence on the ND and NND
values of each trial, it will be possible to perform a separate optimization for
the target perceived difficulty, possibly being regulated by the player’s measured
response time.

5.3.2 Searching the ND-NND space
Since the way the two difficulty metrics are computed for a generic trial has been
explained, it is now time to discuss how these two are combined into an optimality
score, and how the actual search for an optimal trial within the ND-NND space is
performed.

Obtaining the Optimality Score

Finding an exact solution for the optimization of the target error probability
and the target perceived difficulty may be, in principle, possible. The problem
is in fact tied to several mathematical relationships that can be probably solved
from a mathematical point of view, given some criterion. Implementing an ad hoc
solution for that, however, would make this part of the AI lacking in scalability,
and as the definition of Perceived Difficulty will likely change in the future, it’s
simply not wise to design an algorithm from scratch to perform the optimization.

For this reason, it may be a better idea to follow a more modular approach,
where the optimization algorithm is independent of the actual quantity that it is
trying to optimize. The usual starting point for such approaches is the definition
of a function that takes as input a generic solution, which is a trial in this case,
and outputs a numerical measure of its quality. By naming the target error
probability and the target perceived difficulty as Tep and Tpd respectively and by
joining them with α and σ into a single set of parameters named Θ, the candidate
decided to define the Optimality Score SΘ for a trial t as

SΘ(t) = wep|Tep − EPΘ(t)|+ wpd|Tpd − PDΘ(t)| (5.1)

where EPΘ and PDΘ represent the Error Probability and the Perceived Difficulty
of a generic trial given the α and σ parameters contained in Θ, while wep and
wpd represent two weights in the range [0,1]. The proposed score can be simply
seen as a weighted sum of the distances of a generic trial’s Error Probability and
Perceived difficulty from the two respective target values. Moreover, as anticipated
in subsection 5.3.1, the dominating term in this score is the one pertaining to the
Error Probability, since its weight wep has been chosen to be equal to 1 as opposed
to the weight wpd, which is instead equal to 0.2.

The proposed Optimality Score represents a function that can be used as the
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objective function for a suitable solver implementing a minimization optimiza-
tion: in fact, the closer the trial’s properties are to the respective target values,
the closer the actual score is to zero. For reasons that will be clearer in the next
paragraphs, it is better to also define the Fitness F for a generic trial t as

FΘ(t) = 1
SΘ(t) (5.2)

which is the inverse of the Optimality Score. As such, this function is suited for
a maximizing optimizer, as optimal trials will be characterized by a high Fitness,
and is exactly the objective function that will be used by the optimizing procedure
chosen by the candidate. Moreover, the range of values that can be attained by
this function are not reported, since it is simply going to be used as a comparison
metric between different trials.

Figure 5.7: Optimality Scores of several trials for a player with α equal to 45° and
σ equal to 0.3. On the left, the target error probability is set to 0.1, which leads to
very congruent trials being more optimal. On the right, the target error probability
is instead set to 0.8, which leads to the trial located between the decision boundary
and the NND axis to have the lowest Optimatlity Score.

Performing the Optimization

Now that the Fitness function has been defined, the last thing that needs to be
addressed regarding the proposition of the trials is how the ND-NND space is
searched for local maxima of the Fitness given the set of parameters Θ. With this
in mind, it’s best to point out some observations first:

• The solution is not unique. There is, in principle, more than one trial in
the space reaching the maximum value for the Fitness.

53



The AI

• Diversity is a requirement. As the Difficulty Controller keeps the same
target error probability for several trial propositions, it is also important that
the the optimization procedure doesn’t always produce the same trial over
and over when performed with respect to the same set of parameters Θ.

• There is noise in the Θ parameters. Θ in fact contains also the α and σ
parameters estimated by the Player Estimator, which should be considered
to not be perfectly accurate. Because of this, it’s important to note that a
perfect optimization will not necessarily lead to a perfect result.

• The Fitness is not differentiable over the whole ND-NND space.
This is clear by simply considering the Error Probability, as it depends on the
trial’s correct answer which is in turn dependent from the sign of its ND.

These observations, together with the fact that a compromise has to be reached
in terms of computational time, suggest that the goal of the optimization is not to
find the trial corresponding to the global maximum of the Fitness, but rather to
find suitably good local optima. The diversity requirement is also exceptionally
important for the Player Estimator, as it needs to be provided with meaningful
trial data in order to work properly. Moreover, the last observation suggest that
gradient-based methodologies are not suited for solving this kind of optimization.

As foreshadowed by the chosen objective function’s name (i.e. the Fitness), the
candidate therefore identified a possible way to perform the optimization by using
a Genetic Algorithm (GA). As a meta-heuristic that makes no assumptions on
its objective function, GAs in fact provide a good compromise in terms of quality
of the solution and computational time, as well as a way to introduce randomness,
and therefore diversity, during the search for the local maxima of the Fitness over
different iterations.

A thorough description of GAs is not within the scope of this thesis, which is
instead provided to the interested readers in the bibliography [30]. In any case, in
the following is provided a basic description of how the proposed GA achieves the
optimization procedure by maximizing the Fitness function, which was implemented
by using the pygad python library:

1. At initialization time, as set of N “candidate solutions” is generated randomly
at the beginning of the GA, with each solution representing a trial in terms of
its ND-NND values. As part of the initialization for the first iteration, the
Fitness is also computed for each of these trials.

2. At the beginning of the iteration, a subset of these candidate solutions is
selected according their quality in terms of Fitness. This subset of trials will
be referred to as “parent solutions”.
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3. The parent solutions are organized in pairs, and a “recombination operator” is
applied to each one of these pairs: by taking as input both parents, the operator
generates a new trial, named offspring, whose features are a recombination of
the parents’ ones (ex. it will be characterized by the first parent’s ND and by
the second one’s NND). The parents are regrouped and recombined until a
set of offspring trials of size M has been generated.

4. The offspring trials undergo a “mutation operator” with a given probability p
equal to 0.1: the operator takes as input the single offspring trial and performs
a random change to either its ND or NND value (ex. by adding a random
value).

5. The Fitness is calculated for all the generated offspring trials, and they are
collected together with the parent solutions into a single set of N+M trials.

6. A “selection operator” is applied to this newly formed set of trials: the top N
trials with the highest Fitness are kept as the “candidate solutions” for the
next iteration, while the M trials with the lowest Fitness are discarded.

7. Step 2 to 6 are then repeated for a fixed number of iterations K.

8. Finally, the trial with the highest Fitness among the candidate solutions pro-
duced after the last iteration is provided as the final answer of the optimization
process.

As a trade-off between computational time and quality of the generated trials, the
values N, M and K were chosen to be equal to 6,4 and 10 respectively. Moreover, the
search space has been limited to the subspace of the ND-NND plane characterized
by a positive NND value: in order to generate trials also with a negative NND, a
simple mirroring transformation with respect to the ND-NND origin is performed
to the generated trial with a probability equal to 0.5, as it preserves the Fitness of
the transformed trial.

Some examples of trials generated by this procedure with varying target error
probability are shown in figure 5.8: as it’s possible to see, the GA can find several
different trials with reasonably similar properties, while also adapting to different
values for the player’s α and σ parameters.

With these last bits of information, the role of the Trial Proposer has been
thoroughly discussed. Since the entirety of its functionalities depends on the α
and σ estimation performed by the Player Estimator, it may seem that the Trial
Proposer completely depends on its result. As it will be shown however, the
interdependence of these two components is not asymmetric: the Player Estimator
does not simply provide its results to the Trial Proposer, but it’s also dependent on
the data generated by it with the help of the Difficulty Controller. Proceeding the
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Figure 5.8: Trials generated by varying the set of parameters Θ. From top
to bottom, the α and σ parameters increase from {30◦, 0.2} to {45◦, 0.3}. From
left to right, the target error probability increases from 0.1 to 0.6 to 0.9. The
trials generated by the GA are both diverse while maintaining the same difficulty
properties.

discussion of the PDEP_Evaluator however, it is first necessary to explain the task
performed by the next component of the AI’s workflow, which is the Trial Adapter.

5.4 Interacting with the Client
In the previous section it was made clear that, although the trials can be represented
according to different sets of features, the AI treats trials simply as points within
the ND-NND space. In fact, that is the format in which they are generated at the
end of the Trial Proposer’s task, and as will be shown in the section regarding the
Player Estimator, the same counts even when the response to the trial is received
and processed by the AI. By recalling the concepts introduced in chapter 4, the
two other representations of the trials used by the whole application are:

1. The set of {number, ISA, FA} for each of the two fences. This is
the representation from which the actual ND and NND feature depend, as
explained in detail in appendix B.

2. The set of {number, SizeofAnimals, CircleRadius, AverageSpaceBetween}
for each of the two fences. This is the set that can be interpreted by the
client side and is directly related to the set of representation 1.
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With that being said, the Trial Adapter is simply the component that takes
care of finding a trial in accordance to the first representation that is suitably close
the input trial generated by the Trial Proposer, which is instead defined just by
its ND and NND values. This can be viewed as a dimensionality expansion
task, starting from a two dimensional space and ending in a six-dimensional one:
as there are infinite trials that can reproduce the desired ND and NND values,
the Trial Adapter simply has to select one of them according to some possible
additional criteria. Once that is done, the rest of the server’s code will perform the
translation of said trial in the second representation, and will later forward it to
the client so that it can be shown to the player.

5.4.1 Selecting a suitable trial
As explained in subsection 4.3.2, the AI cannot just propose any trial to the client,
but rather has to be careful in selecting only those ones that can be shown within
it. Moreover, a sufficiently big subset of these trials has already been stated to be
present inside the Lookup Table, with each one of its entries representing a single
admissible trial. In the following, all the information contained in these entries is
reported:

1. The set of {number, ISA, FA} for the trial’s left fence.

2. The set of {number, ISA, FA} for the trial’s right fence.

3. The filtering and sharpening difficulty coefficients used by the SimpleEvaluator,
along with other related parameters.

4. The ND and NND values for the trial, computed from the parameters of the
two fences as described in appendix B.

Obviously, the PDEP_Evaluator makes no use of the two difficulty coefficients,
as it was developed specifically to overcome their limitations. On the other hand,
the Trial Adapter can exploit the ND and NND information to meet two of its
requirements at the same time: by finding an entry whose ND and NND values are
close to the input ones, the Trial Adapter is immediately made available of one of
their possible realization in the target six-dimensional space; moreover, by being
selected from the Lookup Table itself, such trial will also be admissible for being
shown to the client.

The only thing that is left to do is defining a criterion for selecting an entry
based on the ND and NND of the input trial. As it also determines a vicinity in
terms of the Error Probability for the selected trial, the chosen entry is the one
with the smallest Euclidean Distance in the ND-NND space between its trial
and the input one.
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The implementation is done through the functionalities made available by the
pandas python library, as it allows to efficiently manipulate large CSV files like
the Lookup Table. In detail:

1. At initialization time, the Trial Adapter is told which version of the Lookup
Table needs to be used, which is later read and stored in a DataFrame object
allowing its management.

2. At each mini-game iteration, the DataFrame computes the Euclidean Distance
between each entry’s ND and NND values with respect to the input trial.

3. The DataFrame sorts the whole Lookup Table in ascending order according
to said distance.

4. By cycling through the sorted Lookup Table, the Trial Adapter selects as its
final proposition the first trial that passes a set of additional controls.

This means that the Trial Adapter will try to find the closest trial in the Lookup
Table in a best-effort fashion: in principle, it can’t be guaranteed that the Trial
Adapter will find trials that are extremely close in the ND-NND space to the
target one. This represents a limitation that can’t be completely removed from the
application without changing the client, as shown in figure 5.9.

5.4.2 Additional Controls and Observations
In order to complete the description of the Trial Adapter, it is also necessary to
mention what other checks are performed on the final trial, so as to complement
the aforementioned distance criterion.

First and foremost, the Euclidean distance alone can bring to an important
problem: in the case where the Trial Proposer gives an input trial with a ND
value close to 0, the Trial Adapter may possibly find as its closest trial in the
Lookup Table an entry with a different sign for its ND value. In this case, the Trial
Proposer’s intention to propose a trial with a certain Error Probability would be
completely averted, as the change in the sign of the ND value implies a change in
the actual correct answer. As a mitigation for this, the Trial Adapter doesn’t just
choose the closest entry in the ND-NND space, but it first discards any entry with
a different sign for its ND value.

Other than this, the Trial Adapter also takes precautions related to the user
experience, which are mainly related to additional controls to explicitly avoid
reproposing the same entry within the same gaming session. Moreover, the compo-
nent manages which one of the two Lookup Tables mentioned in subsection 4.3.2
needs to be used, by properly communicating with the rest of the server’s code.
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Figure 5.9: The coverage of the normalized ND-NND space attained by the trials
present in the Lookup Table. The green points represent possible input trials of the
Trial Adapter, while the red ones represent its related output. The output trials
are linked to the respective input ones through the displayed blue lines. As shown
in the figure, the Trial Adapter can reasonably accommodate for a wide range of
input trials, but struggles when these are strongly congruent: this is because the
client’s limitations don’t allow to show these kind of trials, as sets of animals with
too high non-numerical features tend to occupy more space and can be shown only
in a limited amount within a fence

.

As it is not the most important component of the PDEP_Evaluator and it is
mainly based on concepts already explained in chapter 4, this is basically all there
is to know about the Trial Adapter. Some more words can be spent however on
its future developments: as this component has direct access to the numerical and
non-numerical features of the trials, this is likely where a possible optimization for
the target perceived difficulty will take place in the future; moreover, a more fine-
grained control on the maximum value for the numerical features of the proposed
trials will be probably added, as this is currently done manually in the main script
by specifying which Lookup Table needs to be used.
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With these last words, it is time to move on with the next section, which will
conclude this chapter with the discussion of one the most important components
of the AI: the Player Estimator.

5.5 How to Evaluate the Player
Even though the Player Estimator is the last component in the PDEP_Evaluator’s
pipeline, it is definitely one of the most important parts of the whole AI. In section
5.1 it’s stated that this component’s task consists in the estimation of the player’s
α and σ parameters at every iteration of the mini-game, while in sections 5.2 and
5.3 it was anticipated that in order to do so, the Player Estimator uses the trials
proposed during the playthrough together with the player’s responses. The basic
idea behind this component is therefore to understand the player’s parameters at
different points in time, which is done both to propose more balanced trials in the
subsequent iterations and also to understand whether the player shows signs of
improvements over time according to the sharpening and filtering hypotheses.

Some more remarks were made to the fact that the Difficulty Controller and the
Trial Proposer were designed also in order to generate meaningful trial data for this
component to work properly: in the following paragraphs, the general procedure for
estimating α will be explained, which will make this statement clearer; following
such explanation, an overview of the estimation procedure of σ will be carried out,
which will be shown to depend on α’s estimation. Given this need of trial data
in order to work, at the beginning the Player Estimator returns a default value
for both α and σ for a certain amount of mini-game iterations, so that the Trial
Proposer can still reasonably perform its task without being provided with actual
estimated values. After these iterations are over, the Player Estimator will then
start executing the estimation procedures from the trial data produced so far.

Moreover, a distinction has to be made in the estimation procedure, which
comes in two versions:

• The first one, named first pass estimation, is a version that is only partially
addressing the possibility of an improving player.

• The second version, named second pass estimation, instead is also adaptive
to the player’s learning rate and it is based on the first pass estimation’s result.

As both these versions share a lot in common, the general procedure for the
first pass estimation will be explained in the next subsections, while this section’s
last part will be dedicated to the additions brought by the second pass estimation.
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5.5.1 Estimating the Alpha angle
The first part addressed by the Player Estimator during the first pass estimation is α,
the parameter derived from the filtering hypothesis that represents the influence of
non-numerical features in the player’s decision. As shown in previous sections, this
parameter is strictly related to the player’s decision boundary, which is assumed to
be a line passing through the ND-NND origin, and numerically represents the angle
between such boundary and the NND axis within the ND-NND space. Following
this definition, the problem at hand can be interpreted under a new light: rather
than trying to explicitly estimate the α angle, it can be more convenient to estimate
the boundary itself instead, similarly to how the procedure was carried out in the
paper Learning to Focus on Number. Before moving on, it is worth to make some
observations:

• The trial data produced over several mini-game iterations can be seen as a
dataset of pairs {ti, yi}, where ti represents a feature vector composed of the
ND and NND value of the ith proposed trial, while yi represents the player’s
answer, which is a label representing either “left” or “right”.

• The aforementioned dataset contains data that, due to the design of the
Difficulty Controller and the Trial Proposer, is centered at the origin and
reasonably spans the whole ND-NND space.

• The player is assumed to be able to improve over time, which means that trial
data that is too old may not necessarily be beneficial to the current iteration’s
estimation.

From these observations, it follows that the current problem can be solved
through traditional machine learning techniques, since what needs to be done
is basically solving a binary classification task with the additional tweak that only
a subset of the whole dataset can be used. In particular, the first pass
estimation’s main goal is to not introduce any old polluted data to the actual
dataset used for training, so the amount of data used at each iteration is limited to
the last N trials proposed in previous ones, with N suitably small (i.e. 180 in the
implementation). The dataset obtained from these N trials will be called DN , and
by definition, it varies at every mini-game iteration.

As for the machine learning technique used to model the player’s decisions, the
choice fell on SVM with a linear kernel: not only do linear SVMs perform explicitly
the estimation of the required boundary, but they are also suitable for dealing with
noise, which can be widely present in DN proportionally to the player’s actual σ
parameter. As for the hyper-parameter C required for their functioning, an ablation
study has been performed to generate a mapping between the pair {αi−1, σi−1}
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found in the previous iteration and the optimal C leading to the best estimation,
of which the details are discussed more in detail on appendix A.

The implementation was designed by using the sklearn python library, which
provides access to classes implementing SVMs for classification tasks with a linear
kernel. In order to force the related class into finding a separation boundary passing
through the origin, the dataset DN is first pre-processed through a mirroring
augmentation transformation, which doubles the size of the dataset by adding, for
each trial, its specular one with respect to the origin. Moreover, in the unlikely
case that the estimation would produce a boundary defined by an angle outside
of the [0, 90]° interval, the value found would be clipped to be within such range.
Figure 5.10 shows an example of boundary estimation, according to the procedure
described just now.

Figure 5.10: The SVM’s estimation of the player’s decision boundary. The data
were generated from the Trial Proposer as if the player had a fixed α and σ equal
to 45° and 0.2 respectively, while the labelling, represented as green dots for “right”
and red ones for “left”, was produced from a player model coherent with those
parameters. The blue line represent the actual player’s boundary, while the orange
one is the boundary estimated by the SVM

.
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Once the boundary has been estimated, it comes in the form of a vector
starting at the origin, from which the related α angle can be easily derived through
trigonometric formulas.

It is now clearer why the Difficulty Controller and the Trial Proposer had to
provide diverse trials at proposition time: the presence of multiple trials with the
same ND-NND values within DN does not help the SVM algorithm, and it may
even harm the estimation in the case where their labels are different due to the
σ parameter, as that would bring further noise within the dataset without the
advantage of leveraging from more data.

5.5.2 Estimating the Sigma standard deviation
The decision boundary is not the only factor composing the player’s model as,
from the beginning of this chapter, the σ parameter has also been identified as
the main factor representing the sharpening hypothesis. Recalling its definition,
the σ parameter is the standard deviation of the noise in the player’s internal
representation of the trial within the ND-NND space, and together with the player’s
decision boundary, it defines an Error Probability for each trial that represents
how likely the player will answer incorrectly to it.

Looking back at the interpretation of the previous subsection, the σ parameter
can be seen as a measure of the noise within the dataset DN . So, how can this
noise be estimated?

Generally, machine learning techniques are not aimed at estimating the noise
within the data, but rather at filtering it out and produce models that are as
least as possible affected by it. Therefore, instead of searching for a mathematical
formula or for a library implementing this task for this specific problem, the
candidate decided to design an ad hoc solution starting from some solid theoretical
background. Therefore, given that

1. At this point the estimated decision boundary has already been computed.

2. There is a well established and optimized way to compute the Error Probability
and its complementary for each trial.

the problem has been interpreted as a Maximum Likelihood Estimation for
the σ parameter given the newly estimated separation boundary (identified by α)
and the dataset DN .

Defining the Likelihood function

As the knowledgeable reader would know, the Likelihood is a widely used term
in statistics to define a specific kind of probability related to random variable
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realizations, which is also used in the field of machine learning to define certain
kinds of model estimations. In the context of the proposed estimation procedure,
the Likelihood L of a dataset D can be defined in its most generic formulation as

L(D|α, σ) = P (D|α, σ) (5.3)

which can be read as “given α and σ, the Likelihood of a dataset D is equal to
the probability of observing D from a model defined by the parameters
α and σ”. This is not to be intended as the probability of generating D itself but
rather to generate the labels contained in D for each one of its elements. To have
a clearer idea, it is possible to relate this formula to the dataset reserved for the
first pass estimation DN , which is recalled to be composed of the set of couples
{ti, yi} representing the ND and NND values of each proposed trial together with
the player’s labelling. In that case, by considering each yi as independent from all
the others, equation 5.3 can be written as

L(DN |α, σ) = P (Y1 = y1, ..., Yn = yn|α, σ) (5.4)

L(DN |α, σ) =
NÙ

i=1
P (Yi = yi|α, σ) (5.5)

where Yi is the random variable related to the player’s prediction of trial ti.
This formula is already detailed enough to be computed by the Player Estimator,
as each term of the product can be derived in a similar way to how the Error
Probability is computed for each trial by the Trial Proposer. However, in order to
describe more in detail the actual implementation in code, some more changes can
be made to the equation. As a preliminary operation, the dataset DN is divided
into two parts, named Dc and Dw, of which a graphical representation is shown in
figure 5.11: the former is the set of trials where the noise due to σ did not play a
role in the label assigned by the player; the latter is instead the set of trials whose
labelling was influenced also by the noise.

It’s worth to point out that the separation of these two datasets is done according
to the player’s estimated decision boundary and that it is performed without
taking into account the actual correctness of the labels in the comparison mini-game.

With that being said, equation 5.5 can now be written as

L(DN |α, σ) =
DcÙ
di

(erf|di|,σ(0)) ∗
DwÙ
di

(1− erf|di|,σ(0)) (5.6)

where di is the “signed distance” of the ith trial from the estimated decision
boundary introduced in section 5.3.1 (which depends on α), and erf|di|,σ is defined
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Figure 5.11: Examples of the Dc (left) and the Dw (right) datasets. Both of
them were generated from the same dataset DN displayed in figure 5.10, with the
labelling following the same rules and with the blue line representing the estimated
separation boundary. As shown in the right figure Dw collects all trials that,
because of the noise due to σ, were labelled as “left” while being on the “right”
side of the decision boundary and vice-versa. In the left instead is shown that Dc

contains all trials that were seemingly labelled without the influence of the noise.

as the integral of a normal distribution with mean |di| and standard deviation σ
computed in the range [x, + inf].

Finally, as a general good practice to avoid numerical problems, the Likelihood
is just turned into a Log-Likelihood defined as

l(DN |α, σ) = ln L(DN |α, σ) =
DcØ
di

ln erf|di|,σ(0) +
DwØ
di

ln 1− erf|di|,σ(0) (5.7)

which is the sum of the log-probabilities of each single trial’s labelling and
represents the final function that will be maximized by varying the parameter σ.

Maximizing the Log-Likelihood

Given equation 5.7 it is now time to design a way to perform the Maximum
Likelihood Estimation for the parameter σ. In other words, by keeping α fixed
to the estimated value in the previous subsection, this implies finding the value σe

that maximizes the Log-Likelihood function for the datasets Dc and Dw. This can
be written as
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σe = arg max
σ

(l(DN |α, σ)) = arg max
σ

(
DcØ
di

ln erf|di|,σ(0) +
DwØ
di

ln 1− erf|di|,σ(0))

(5.8)
where σe is also the value for σ that is provided as the final estimation for the

current iteration.
Equation 5.8 can probably be simplified further, but as the computation of

the Log-Likelihood has been deemed to be sufficiently optimized, the candidate
decided to perform the Maximum Likelihood Estimation as a simple linear search
by generating an array of candidate values Vσ in the range [0, 0.5] and by selecting
the one that would attain the highest Log-Likelihood.

As a closure to the explanation of the first pass estimation, the whole procedure
is summarized in pseudo-code in algorithm 1.

5.5.3 Handling a player that improves over time
Now that the first pass estimation has been explained, it is time to discuss what
the second pass estimation does differently in order to adapt for the possible
changes in the player’s abilities in terms of α and σ.

When it comes to the algorithms used for the estimation of both parameters,
the first and second pass estimations share a lot in common, as all the procedures
that take care of that are exactly the same. The idea, however, is that the second
pass estimation will be adaptive with respect to the player’s improvements by using
a different different dataset: while the first pass estimation uses DN , which is
the dataset composed of the trial data related to the previous N propositions, the
second pass estimation will use a dataset Dz, which instead comprehends the last
z proposed trials. As the second pass estimation has to be adaptive with respect
to different players, z will therefore be a variable number depending on the player’s
estimated improvement rate for both α and σ.

The assumptions

Before going into the details of how this improvement rate is estimated, it’s better
to first explain how the player is assumed to improve over time.

As stated by the filtering and sharpening hypotheses, children are considered to
be able to improve in their acuity in numerical representation and in the filtering
of the non-numerical features in numerical comparison tasks. These improvements
are supposed to happen thanks to time and practice, and have already been stated
to be modelled as a decrease of the player’s α and σ values over time; however, how
the AI models the decrease of both these parameters was still not given a proper
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Algorithm 1 The first pass estimation of αi and σi performed by the Player
Estimator at the ith iteration

1: procedure Estimation(DN , i, αi−1, σi−1, Vσ)
2: ▷ Mirroring Augmentation
3: DN ←MA(DN)
4:
5: ▷ Find the optimal C for the SVM from αi− 1 and σi−1
6: C ← OC(αi−1, σi−1)
7:
8: ▷ produce the SVM model
9: model← SV M(DN , C)

10:
11: ▷ Use the model to produce Dc and Dw from DN

12: Dtemp ← classify(model, DN)
13: Dc, Dw = CS(DN , Dtemp) ▷ Compare and Separate
14:
15: ▷ Extract αi

16: αi ← EXα(model)
17:
18: ▷ Find optimal σ
19: σbest ← −1
20: llbest ← − inf
21:
22: for σcurr in Vσ do
23: ▷ Find Log-Likelihood for current σcurr

24: llcurr ← l(Dc, Dw|αi, σcurr)
25:
26: ▷ Compare and swap
27: if llcurr ≥ llbest then
28: llbest ← llcurr

29: σbest ← σcurr

30: end if
31: end for
32:
33: σi ← σbest

34: return αi, σi

35: end procedure
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explanation. The set of assumptions made by the AI to model such changes are
therefore listed in the following:

• Other than possible temporary fluctuations, the player is assumed to improve
following a linear trend, which can be characterized by a fixed value named
learning rate.

• The player can improve independently according to the two hypotheses. This
means that the AI will have to estimate two different learning rates, one
related to α and one related to σ

• No explicit assumption is made on the “sign” of the learning rate, which means
that the AI can handle also situations where the player gets worse in time.

In reality, it’s more likely that a player may improve according to non-linear
relationships that may be better described for example by exponential functions,
and only until a certain limit. For simplicity however, the current version of the AI
assumes that the player’s α and σ over time can be described as a function of the
kind

f(x) = max(ax + c, 0) (5.9)

where c represent the starting value for the related parameter, a represents its
learning rate and x is a quantity representing both the passage of time and the
amount of practice done by the player.

Estimating the improvement rate

In equation 5.9, the meaning of x was left unclear. According to the filtering and
sharpening hypotheses, an improvement has to be related to either the passage of
time or the education received by the child. By design, the AI is made to be unaware
of these two factors explicitly, but it can still model them through the amount
of mini-game iterations executed since the start of the playthrough: the
game is in fact meant to be played over a long period of time, and at each one
of its iterations the player is effectively made to exercise by solving the related
trial proposed by the AI. Moreover, as each iteration implies the proposal of a
single trial, these two concepts will be used interchangeably to refer to this internal
representation of the passage of time.

According to this interpretation, the learning rate will be measured internally
as the increment or decrement of the related quantity per each mini-game it-
erations performed, expressed as either degrees/it or UND−NND/it for α and σ
respectively,where UND−NND represents the unit of measure of the ND-NND space.
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The main idea on how AI estimates these learning rates is rather simple: since
the Player Estimator already performs a first estimation of α and σ after every trial
proposal, the result of the first pass estimation can be used as a general indicator
of the learning rate for both parameters. This is done by performing two steps:

1. First, the first pass estimation is visualized in the value-iteration space, for
each of the two parameters

2. Then, the AI fits a polynomial function of degree equal to one (i.e. a line)
through all these points, for each parameter separately.

This is implemented through the polyfit function of the numpy python library,
which returns the slope of the line in the value-iteration space that best describes
the input data. Moreover, as the AI will need to compare the two estimated learning
rates, this fitting is done with respect to the vector of normalized estimated
values for both α and σ, obtained by dividing the actual data vectors by 90° and 0.5
respectively. By doing so, the procedure therefore provides two normalized slopes
that represent the normalized learning rates of the two parameters.

This procedure implies that the results of the first pass estimation from the first
to the current iteration have to be available; furthermore, leveraging from more of
these kind of data will rightfully lead to a better estimation of the learning rates.
This, together with the fact that the second pass estimation will be used for a
different purpose than the first pass one, leads to the AI performing this procedure
only when explicitly requested, rather than executing it automatically at every
mini-game iteration.

Selecting the right z

At this point, the normalized learning rates for the player’s α and σ parameters
have already been estimated. What is left to do now is mapping both of these
learning rates to the optimal amount z of trials to be used for the second pass
estimation.

The first step to do so consists in understanding which of the two learning rates
is steeper, as it would represent a more restrictive condition on the amount of usable
trials: in fact, the same dataset Dz will be used for estimating both parameters
just like in the first pass estimation. As the two learning rates extracted during
the learning rate estimation come in a normalized form, this procedure is trivial.

Once the steeper learning rates has been identified, the last thing that needs to
be done is mapping such normalized learning rate to an optimal amount
of trials z to be used for the estimations: as a general idea, steeper learning
rates will limit the value z, as trial data generated more further back in time is
likely too old to be used; if instead the more restrictive learning rate has a low
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absolute value, the Player Estimator will allow the usage of more data for the
estimation, thus leading to results that are much more accurate than the first pass’
ones. The mapping of the normalized learning rate with the optimal amount of
trials is discussed in appendix A, of which the main result is reported in figure 5.12

Figure 5.12: Optimal values of z for different normalized learning rates. Learning
rates that are lower in absolute values (less steep) are mapped to higher values z, as
the AI can afford to use older data without hindering the quality of the estimations.
On the other hand, steeper learning rates force the Player Estimator to use less
trials, as using data that is any older would mean introducing trials whose labelling
is too incoherent with respect to the current player’s parameters

.

How the second pass estimation is used

As already anticipated, the second pass estimation is more accurate at the later
stages of the playthrough, when more data have been generated by the AI that can
be used to perform the learning rate estimation. This, along with the fact that the
learning rates have been assumed to be constant in time, somewhat incentivizes the
usage of the second pass estimation only at the later stages of the playthrough.
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In addition to this, the candidate empirically assessed that the result of the first
pass estimation, although not as accurate as the second pass one’s, still allows the
Trial Proposer to guarantee the Error Probability requirements as dictated by the
Difficulty Controller. As such, the actual α and σ parameters used as the input of
Trial Proposer were kept to be the ones produced by the first pass estimation also
in the later stages of development.

With that being said, the second pass estimation should not be seen as the
main mechanism allowing the AI to work, but rather as the main tool for
understanding the player’s abilities at different points in time. For
this reason, the second pass estimation is not performed automatically at every
iteration, but is made available by the AI whenever it is requested by the player or
by the simulation environment. In detail, whenever the request is made the Player
Estimator will:

1. Estimate the learning rates by using the entirety of the α and σ data
derived by the first pass estimation from the start of the playthrough until
the current iteration, referred to as ic.

2. Find the optimal amount of trial zc to be used according to said estimation.

3. Perform the second pass estimation for all iterations {i0, ...ic} by using zc

at every point in time.

This means that the AI will use the most accurate knowledge available about
the player’s learning rate to retroactively reinterpret the entirety of the
playthrough.

With the introduction of these last concepts, all the aspects related to the theory
and the implementation of the AI have been presented. It is therefore time to see
how these methodologies perform in practice, which is the main topic of the next
chapter together with the description of the simulation environment that is meant
to aid this process.
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The Simulation Environment

Whenever an application like The Number Farm is in development, the correctness
of its design and of its implementation is never sufficient to understand how well it
will perform in a real use-case scenario. The way the application behaves when it
is used by a real person, in fact, is not something that can be normally tested by
the developer alone, and in the particular case of AI-related functionalities, it is
not easy to understand whether the application is capable of doing what it was
designed to do.

The client side and the related user experience had already been tested on a
series of occasions, by holding usability tests in the laboratory room dedicated to
the project. In these usability tests, several groups of children were invited in the
University of Essex to play a certain amount of rounds of the mini-game with a
dedicated mobile device: at the end of these tests, the candidate’s predecessors and
colleagues would ask the children to answer several questions regarding how the
game felt to be played and other aspects related to the user experience. As it is
not the main topic of this thesis, the client side can be therefore considered to be
sufficiently good in regards of the user interaction.

When it comes to the candidate’s area of responsibility however, the discussion
of this thesis cannot lack an in depth description of the additional work required for
testing its capabilities. While in general the server’s code is not very “intelligent”
and requires only minimal testing regarding the correctness of its implementation,
the same can’t be said with respect to the AI, as it came in a new version developed
by the candidate. So, how can the AI’s performances be assessed?

In the field of machine learning and deep learning, the usual approach is to
design suitable procedures that test the generated models on a dedicated dataset,
that generally contains data related to the task that needs to be solved. In this
thesis’ activity however, no such data was provided, regardless of whether it could
be used for testing purposes. Moreover, it is needless to say that using real children
for testing the AI’s performance would be highly impractical, as the game is meant

72



The Simulation Environment

to be played for long periods of time. There is therefore only one way to perform a
thorough assessment of the AI, which was already employed by previous applications
as mentioned in chapter 3: given a certain mathematical model of the player, a
suitable component that simulates their behavior has to be implemented; after that,
this simulator is made to interact with the AI in several different simulations; finally,
from the results of these simulations, a first assessment of the AI’s performances
can be performed.

This chapter is dedicated to the Simulation Environment developed by the
candidate in order to do so. The chapter will begin with the discussion of the
Child Simulator, which is the component taking care of emulating a child playing
the game; following that, a brief explanation of the environment connecting the
Child Simulator with the PDEP_Evaluator will be carried out; finally, this chapter
will find its closure with an overall discussion of how the AI behaves when in contact
with the Child Simulator.

6.1 Simulating the Behavior of a Child
Section 5.1 already contains a thorough explanation of the contributions of Learning
to Focus on Number in the design of the AI. In particular, the section defines the
trial’s ND-NND space in the context of the application and proposes a model for
the player, whose main principles are briefly recalled in the following:

1. The player is a classifier that takes trials in the ND-NND space as input and
outputs a label for each of them, that can be either “right” or “left” and
represents the player’s perception of which fence contains more animals.

2. This classifier is characterized by a decision boundary in the form of a line
passing through the ND-NND origin, and labels the input trials based on
the sign of their projection with respect to the boundary’s normal vector n⃗.
Moreover, the boundary is defined by its angle with respect to the NND axis,
named α, that can assume a value in the range [0, 90]°.

3. Together with the boundary, the player’s model is also characterized by a noise
in their representation of the trials within the ND-NND space. The noise is
assumed to have a Gaussian distribution, centered at the input trial and with
a uniform standard deviation along both axes, named σ.

4. With the passage of time and education, which are represented internally
as the number of mini-game iterations done by the player, both of these
parameters are supposed to decrease with a trend that is assumed to be linear
by the AI. The magnitude of such decrease is named learning rate, which is
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distinct for both α and σ, and is defined the slope of the line representing the
parameter over the course of the aforementioned iterations.

Keeping in mind that all these principles are coherent with the theory of
Learning to Focus on Number, they can be used to come up with a component
that simulates exactly this player model: if the actual children do follow
the sharpening and filtering hypotheses when playing the game, then a simulator
implementing these behaviors can be taken as a reasonably good component for
testing the AI’s capabilities.

Therefore, the Child Simulator was developed by following these assumptions
to the letter. In detail:

• At instantiation time, the Child Simulator is provided with four fundamental
parameters: the starting α, the starting σ and the learning rates related
to both of them.

• In its initialization method, the objects taking care of the parameter’s im-
provements are instantiated, while the α parameter is processed in order to
extract a matrix, that will be referred to as M . By naming the unit vector
in the second quadrant forming an α angle with the NND axis as b⃗, and by
defining its perpendicular vector in the first quadrant as n⃗, M represents the
transformation matrix mapping trials from the ND-NND space to the new set
of coordinates whose axes are defined by the vectors {n⃗, b⃗, }

• Whenever the Simulator is asked to play an iteration of the mini-game, the
entry in the Lookup Table corresponding to the proposed trial has to be
provided as input.

• After that is done, the Child Simulator extracts the trial’s ND and NND values
from the entry and stores them into a vector. Moreover, it applies the noise
related to σ to such vector, thus obtaining an array representing the noised
trial: for simplicity, this is implemented with the addition of an another
vector, whose two values are extracted from the same normal distribution
N (0, σ).

• Then, the vector representing the noised trial undergoes a dot product with
respect to M: from a mathematical point of view, the second value of the
resulting vector represents the component with respect to n⃗, i.e. the signed
distance d of the noised trial with respect to the boundary.

• Finally, the Child Simulator returns its prediction depending on d: if positive,
it returns the label corresponding to a “right” prediction; if negative, the “left”
label is returned. Once that is done, the simulator performs a change in the α
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and σ parameters according to their learning rates and recomputes M , after
which it is ready for a new mini-game iteration.

In figure 6.1 are shown examples of predictions performed by simulators defined
by different α and σ parameters. As for the improvement of parameters, an example
is shown in figure 6.2

Figure 6.1: Simulator’s responses with varying α and σ. Green dots represent
trials with correct answers, while red dots represent wrong answers

.

According to the explained procedure, the Child Simulator takes as input a
whole Lookup Table entry, comprised of the two fences’ {number, ISA, FA}, but
only makes use of the ND and NND values provided: this is because, for now, the AI
does not see beyond the trial’s ND-NND values. As a possible future development,
the Child Simulator can also be made to model the time required for answering,
which will be dependent on other details besides the ND-NND values, and will be
possibly used by the AI to regulate the Perceived Difficulty of the proposed trials.
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Figure 6.2: The plot of the α parameter for three Child Simulators with different
learning rates. As in the internal AI’s representation, the learning rate is represented
in terms of degrees per performed iteration, and is mathematically equal to the
slope of the line in the degree-iteration space for the attained values of α

.

6.2 A Tool to Evaluate the AI
Having defined the Child Simulator, it is now time to describe the environment in
which it can interact with the PDEP_Evaluator. As will be shown in the following,
such simulation environment was designed in order to properly assess the AI’s
performances, both by controlling the interactions between the two components
and by producing all required data regarding each performed simulation.

6.2.1 General Aspects
The Number Farm, as recalled multiple times, is a game that is meant to be played
for long period of times. As in the case of Calcularis, in fact, each player is supposed
to exercise on a daily basis through the application for several weeks or months;
differently from such game however, The Number Farm is a much smaller game
and is meant to be played for about 4-5 minutes per day, since it only contains a
single mini-game for now.

This means that, in order to extensively assess the behavior of the AI, the
simulation environment has to condense the equivalent of several weeks of play-time
in a much more reasonable fraction of time, so as to allow the developer to test the
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AI under several conditions. This calls for the need to detach the PDEP_Evaluator’s
code from the client side, and even from the rest of the server code, as attempting
to access it indirectly from the application’s regular working mode would increase
significantly the time taken to perform each simulation.

The candidate’s predecessors had already developed a first simulation environ-
ment doing something similar, although it was merely done to visualize trials that
were proposed in a completely random way. As such implementation was even older
than the first version of the SimpleEvaluator, the candidate decided to implement
a new simulation environment from scratch that was tailored to work around the
PDEP_Evaluator.

As such, the Simulations Runner was developed: this component, accessible
from a dedicated script (simulate_main.py), takes as input more than 25 parameters
and contains a method that manages simulations of playthroughs in their entirety,
which are referred to as “Player Cycles”. Among these parameters, the most
important are:

1. The starting α and σ for the Child Simulator that will be instantiated for the
simulation.

2. The learning rates for both the aforementioned parameters.

3. The length of the simulation expressed in days.

4. The number of trials, and therefore of mini-game iterations, played by the
Child Simulator each day.

5. The name of the simulation and of the folder in the local file system where
the simulation’s results will be stored.

6. The difficulty calibration that, as stated in section 5.2, can be regulated so
that the player achieves an overall accuracy either equal to 70% or 50%

As the actual passing of time is not relevant for the AI, the number of trials per
day is generally kept at a fixed value of 30, which stands for a daily play time close to
the desired 4 minutes, while the actual amount of mini-game iterations is controlled
through the number of days of the simulation. For the sake of simplicity, it is
therefore possible to represent each simulation from the set of its main properties:
in principle, the notation {α0, σ0, lrα, lrσ, Ndays} can be used to quickly define the
main parameters of each described simulation; however, in the case where the
two learning rates are equivalent in their normalized form, an even more compact
notation can be derived where lrα and lrσ are condensed into a single parameter
˜lrn representing the normalized daily learning rate of both α and σ. As the

latter situation will occur much more often in the rest of this thesis, its related
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compact notation will be used to quickly indicate the main characteristic of the
various performed simulations. It’s worth noting that the difficulty calibration is
not considered as a main parameter, as it will be be kept as to achieve an accuracy
equal to 70% unless stated otherwise.

When required, the Simulations Runner also allows to access low-level properties
of the PDEP_Evaluator’s components (ex. the Difficulty Component), in order
to better understand the performances of each them taken individually: In those
cases, the objective of the simulation will be described explicitly.

Finally, the Simulations Runner also contains the procedures related to the
ablations studies that allow the Player Estimator to work under optimal conditions,
as they use the results of several simulations in order to arrive at their results. As
this section will focus solely on the simulations themselves, the discussion of the
ablation studies is postponed to appendix A.

6.2.2 Collected Information
As stated before, the Simulations Runner takes as input also the name of the folder
where the simulations’ results will be stored. In fact, the mole of data produced by
each simulation is considerably large, and is not suitable for just being displayed at
run-time. This subsection is dedicated to describing all the information collected
by the simulations, that were selected in order to provide the developer with all
relevant data without the need to re-run the related player cycles every time.

The Proposed Trials

Every certain amount of simulation days, the Simulations Runner takes a snapshot
of the trials proposed during said day, and saves a plot of them as shown in figure
6.3.

These plots provide a graphical representation of the trials proposed within the
simulation, as well as how close the estimated values are to the Child Simulator’s
ones. Moreover, the Simulations Runner also produces a 3D representation of both
these informations, as shown in figure 6.4

The Parameters over Time

All the parameters related to the Child Simulator and to the AI’s estimations are
also shown in suitable plots, where the actual simulator’s values are compared
with respect to the ones produced by the first pass estimation and by the
second pass estimation. Plots are generated in two versions, one with the single
gaming-iteration as the x axis (figure 6.5), and one for better readability where
the x axis represents the days of the simulation (figure 6.6). In the latter case, the
plotted curves are computed as the average value found within the day.
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Figure 6.3: Snapshots of the trials proposed at several days for a simulation of
the kind {55◦, 0.3,−0.01, 65}. Red dots represent trials labelled incorrectly by the
Child Simulator, while the green ones represent the correct answers. The figure
shows also the decision boundary and the σ noise of both the Child Simulator (in
blue) and the AI’s estimation (orange). Both of the displayed values together with
the target error probability in the title are snapshotted at the beginning of the day,
so the trials displayed may have been generated according to different combination
of these values. The red annotations for each trial instead display value for the
Optimality Score computed at trial generation time by the Trial Proposer

All the values required to generate these plots are also saved as .npy files, so
that additional studies can be done with the actual data at hand (ex. comparisons
between several simulations).

Accuracy and Others

As it’s vital to get a concrete assessment of the Trial Proposer’s performances, plots
of the accuracy are also generated by the Simulations Runner, showing both the
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Figure 6.4: 3D plot summarizing the same simulation of figure 6.3. The plot
represents a subset of the proposed trials and of the estimated and actual values
for the α and σ parameters over time (represented in the z axis). The plot can be
viewed at run-time from different angles

.

Figure 6.5: Plots of the simulator’s α and σ along with the first and second
pass estimation values with iteration granularity. In the figure, the simulation was
defined by the set {55◦, 0.3,−0.006, 65}

accuracy attained by the Child Simulator within the day as well as the cumulative
accuracy measured since the start of the player cycle. Two examples are shown in
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Figure 6.6: Plots for the same simulation of figure 6.5, but plotted against each
simulation’s day

figure 6.7

Figure 6.7: Accuracy plots for two simulations with different difficulty calibration.
On the left is a simulation calibrated to achieve 70% accuracy, while on the right
is shown the plot for a simulation with a sightly higher difficulty aimed at reaching
50% accuracy. It’s worth noting that the local accuracy (i.e. the accuracy achieved
during the day) is a rather inconsistent value: this comes from a design choice, as
the Difficulty Controller changes the target error probability in a way that doesn’t
average within the single day to the overall desired value.

Finally, the simulation environment also produces tables summarizing the most
important aspects of the simulations, that are stored directly in LATEXformat.
As shown in table 6.1, the tables include several aggregated statistics that are
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computed on a monthly basis as well as for the whole simulation. These tables
allow for easy comparisons of the two estimation modes, namely the first pass
estimation and the second pass estimation.

Month FP Avg Dist FP Dist Std FP Max Dist SP Avg Dist SP Dist Std SP Max Dist
1 8.49 15.62 73.47 3.95 7.66 35
2 3.63 2.4 16.21 0.53 0.24 1.77
3 4.11 2.42 10.07 0.29 0.36 1.7
4 3.3 2.96 11.8 1.14 0.89 2.77
5 5.16 2.98 15.57 1.84 0.5 2.81
6 4.4 2.85 14.15 1.11 0.5 2.81
All 4.85 7.07 73.47 1.48 3.39 35

Table 6.1: Example of a produced table for the estimation of alpha. All values
are expressed in degrees, while “FP” and “SP” stand for first pass estimation
and second pass estimation values respectively. For each of the two, the distance
of the estimated values with respect to the simulator’s ones is measured as the
absolute value of their difference, and is analized in terms of average value, standard
deviation and maximum value.

Now that the simulation environment and the Child Simulator have been
discussed, it’s now time to put them to use together with the PDEP_Evaluator. In
the next section, a thorough discussion of the AI’s performances will be therefore
carried out, all while analyzing its performances with respect to different Child
Simulators.

6.3 Results and Discussion
While the design principles of the PDEP_Evaluator have been explained in chapter
5, no statements about its actual performances have been made. Having described
of the tools used for assessing the AI, the rest of this chapter will be dedicated
to a complete analysis of the PDEP_Evaluator in terms of its ability to propose
balanced trials and of the accuracy in its estimated values. The assessment will
be carried out by analyzing the PDEP_Evaluator’s main components singularly
as well as the AI as a whole, all done through the use of the Simulations Runner
with varying configurations regarding the Child Simulator’s starting α, σ and its
learning rates.

6.3.1 The consistency of the Trial Proposer
The most important components of the PDEP_Evaluator are definitely the Trial
Proposer and the Player Estimator, which have already been stated to be inter-
dependent. However, even if the Trial Proposer cannot perform its task without
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the estimated α and σ values, it’s rather easy to detach this component from the
rest of the AI: all that needs to be done by the Simulations Runner is providing
it with “fake” values for all its inputs, which allows to assess the quality of its
proposed trials regardless of the rest of the AI.

The main idea behind the following analysis therefore consists in providing the
Trial Proposer with the Child Simulator’s real α and σ and in keeping fixed the
value for the target error probability for the whole player cycle: by doing so,
it is possible to understand whether the Trial Proposer can keep proposing trials so
that the Child Simulator fails in accordance to the selected probability. In
order to not introduce any influence from other parts of the AI, the trials will also
be forwarded to the Child Simulator without passing through the Trial Adapter,
as this would introduce limitations on the final generated trial.

The performed simulations will not be required to be particularly long, and
as the Trial Proposer does not store any information about previous mini-game
iterations, the learning rates of the Child Simulator can also be kept at 0 for
simplicity. The set of simulations performed for this analysis will therefore be of
the kind {α0, σ0, 0.0, 30}, and will be performed by exploring different values for
the target error probability.

Figure 6.8 shows the accuracy plots from four simulations characterized by
different α0 and σ0 and by keeping the target error probability fixed at 0.1.

Figure 6.8: Accuracy plots for different simulation with target error probability
fixed at 0.1

.

In reality, many more simulations were performed, but regardless of the different
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starting parameters, they all demonstrated the same trend: the Trial Proposer is
fully capable of generating trials with a 10% error probability, which leads to an
overall accuracy of the Child Simulator that very quickly converges to 90%. A
similar trend is shown for simulations that have a fixed target error probability
equal to 0.3%, as shown by figure 6.9.

Figure 6.9: Accuracy plots for different simulation with target error probability
fixed at 0.3

.

Even in this case, the Trial Proposer has no trouble with calibrating the difficulty
of trials so as to achieve the desired overall accuracy: no matter the degree of the σ
noise of the Child Simulator or the inclination of its decision boundary, the overall
accuracy is made to converge to 70%, as expected from the design.

Things do slightly change when the target error probability is instead fixed to a
value greater than 0.5. When the starting α is large enough, the Trial Proposer
shows no sign of problems; when instead it becomes too small, the proposed trials
do not reflect the desired error probability, as shown in figure 6.10.

In both the two figures, the target error probability is kept fixed at 0.8; however
the Trial Proposer can’t seem to achieve the desired accuracy in those situations,
since the accuracy converges to 30% for the simulation with σ0 = 0.1, and to 40%
for the one with σ0 = 0.4. This, however, doesn’t happen because of flaws in
the design: the issue doesn’t stem from the fact that the Trial Proposer can’t
find suitable trials within the ND-NND space, but it is instead due to the lack
of such trials to begin with. Trials with an Error Probability greater than
50% are in fact, mathematically, bound to be located in the subspace between
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Figure 6.10: Accuracy plots for two simulations showing the Trial Proposer’s
limitations. The simulation on the left has parameters {10◦, 0.1, 0.0, 30}, while the
simulation on the right is characterized by the set {10◦, 0.4, 0.0, 30}.

the player’s decision boundary and the NND axis. With the player improving in
terms of its α parameter, this space becomes increasingly smaller, and since σ
also defines a certain minimum distance from the boundary to achieve the desired
Error Probability, the proposal of very difficult trials becomes mathematically
unfeasible under the displayed circumstances. For simplicity, this concept is
given a graphical explanation in figure 6.11.

The only way to fix this problem is to program the Trial Proposer so that the
search space is wider than the currently used [−1,1] bounds of the normalized
ND-NND space; however, another problem would arise in that case, which is the
lack of highly unbalanced trials in the NND dimension inside of the Lookup Table:
this is due to client limitations, so such problem cannot be entirely solved without
performing changes to the client’s code.

Other than this hard-to-solve issue, it is rather safe to say that, as long as it
receives accurate estimations for the player, the Trial Proposer can perform its
task rather well for a wide range of parameters for the Child Simulator.
This can be attained in practice only if the Player Estimator is sufficiently good at
performing its task, which is the main topic of the next subsection.

6.3.2 The AI’s estimations
The other components that requires an in depth discussion is the Player Estimator,
as its proper functioning determines not only the generation of balanced trials but
also the actual assessment of the player’s abilities over time.

Separating this component from the rest of the AI is, however, not as simple as

85



The Simulation Environment

Figure 6.11: Generated Trials from two simulations with fixed target error
probability equal to 0.8 that differ in terms of the α angle. From the figure on
the right, it is clear that trials with such Error Probability are characterized by
a non negligible distance with respect to the decision boundary; in the figure on
the left, it can be seen that such distance cannot be guaranteed without crossing
the NND axis, which in turns changes the actual correct answer for the trial and
overthrows the related Error Probability. The result is that the trials are still
generated within the correct part of the ND-NND space, but are associated with
an Error Probability that is much closer to 50% than it is to 80%

in the case of the Trial Proposer: this component is in fact designed to receive as
input large amounts of data that is produced by the Trial Proposer itself; moreover,
providing it data that was not directly generated from the rest of the AI might lead
to misleading results in terms of its performances. Therefore, the analysis carried
out in this subsection will require the full functionality of the PDEP_Evaluator’s
pipeline, minus the Trial Adapter as it’s not strictly necessary outside of the client
interaction.

Another difference with respect to the Trial Proposer lies in the fact that the
Player Estimator also makes use of data generated in several different iterations: for
this reason, an analysis has to be carried out also with configurations for the Child
Simulator with non-zero learning rates. As for the target of the analysis, the aim is
not to actually confirm whether the desired overall accuracy is being achieved, but
rather to understand if the AI can reasonably estimate the player’s ability in
terms of its α and σ parameters. In order to get a numerical representation of
that, a measurement will be consistently reported based on the average distance
of the estimated value with respect to the actual simulator’s one, which
represents the average error in percentage after being normalized with respect to
the maximum values of either α or σ.
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The first pass estimation

As a first step, it’s worth analyzing the results of the first pass estimation in
simulations where the Child Simulator’s learning rates are set to zero. For this
purpose several simulations characterized by different starting parameters have
been performed.

As shown by figures 6.12 and 6.13, the Player Estimator is fairly able to estimate
the Child Simulator’s parameters regardless of the α angle when the value for σ is
kept low.

Figure 6.12: Plots for the first pass estimation of α versus the actual Child
Simulator’s value for simulations with different α0. In all the simulations, the value
of σ0 is equal to 0.1, with both learning rates being set to zero

.

More in detail, it can be stated that simulations with different values for α0
did not lead to significant changes in terms of performances. In fact,
regardless of the chosen value for α0, all the simulations led to both the estimated
parameters having an average distance from the real value lower than 3%. This
can be considered as a very good result, since this measurement includes also the
first part of the simulation where the Player Estimator is simply returning default
values to the Trial Proposer. When the σ noise increases however, the estimation
for both parameters becomes more inconsistent, as shown in figure 6.14.

In such cases, the average error in the estimations reaches 5.7% and 6.6% for the
estimation of the α and σ parameters respectively, which although is not particularly
bad as a result, it’s still considerably worse than in the previous simulations. In
any case, this outcome is rather expected, as the Child Simulator is characterized
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Figure 6.13: Sigma first pass estimation for the same simulations shown in figure
6.12. In all simulations the σ parameter was kept constantly equal to 0.1, and the
AI was able to find such value regardless of the different configurations chosen for
α0

.

Figure 6.14: Plots for first pass estimation for both α and σ for a simulation
characterized by the set {10◦, 0.4, 0.0, 65}. As σ0 is higher than before, both
estimations appear to be less consistent in time

by a higher σ noise which leads to the generated trial data to be much more noisy:
generally, the presence of a high noise within a dataset is not something that can be
easily overcome without introducing large amounts of data, which explains why
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the first pass mode that uses only 180 trials obtains these sub-optimal
estimations.

The results of the second pass estimation

It is now time to discuss the performances attained by the second pass estimation,
which in the rest of this thesis is considered to be performed at the end of the
player cycle. As it’s designed to adapt also to situations like the one shown in
figure 6.14, it is worth comparing the results reported in the previous paragraphs
with the ones produced by the second pass estimation. Both these results are
compared in figure 6.15, where the displayed simulation was run with the same
configuration as before.

Figure 6.15: Plots for the same simulation of 6.14, with the addition of the second
pass estimation’s result

In all cases the Player Estimator is able to understand that, since the player’s
parameters are observed to not change significantly in time, it is possible to
leverage also from older data in order to perform the second pass
estimation. As should be expected, the second pass estimations therefore shows
estimated values that are much closer to the actual Child Simulator’s ones, reaching
estimation errors below 1.5% for simulations with low σ, and bringing the error
down to less than 3.5% for the high σ simulations shown in the figure.

Performances with an improving player

Some more discussions have to be made about simulations that are characterized
by non-zero learning rates. For this purpose, a set of simulations of the kind
{55◦, 0.3, ˜lrs, 65} will be analyzed, where maximum value considered for ˜lrs results
in the Child Simulator parameter’s convergence before the end of the player cycle.
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Figure 6.16: Plots of the estimated values for a simulations with lrn = −0.0022

As shown in figure 6.16, the presence of a small normalized learning rate for both
parameters does not represent a significant problem for the AI. While the average
error is still slightly higher than simulations with null learning rates, the average
error for the first pass estimations is in fact within reasonable values, being equal
to 3.4% for α and to 4.6% for σ. Also in this case, the second pass estimation
improves greatly both results, as instead both the errors go as low as 2.5%.

Even when the slope reaches high magnitudes, the Player Estimator can still
manage to provide quite good estimations, as shown in figure 6.17

Figure 6.17: Plots of the estimated values for a simulations with lrn = −0.01

In this case, the first pass estimation and the second pass one attain very similar
results, as in the latter the Player Estimator understands that, in order to not
introduce outdated data, it is better to use a limited amount of trial data
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similarly to the first pass estimation. Moreover, although the first part of the
simulation appears to be more noisy, the estimations of both α and σ reach quite
good results, as they attain an error of around 2.2% for the estimation of α and of
3.5% in the case of σ.

6.3.3 General Considerations

In general, the PDEP_Evaluator’s components have shown to be able to perform
their tasks reasonably well: in fact, the Trial Proposer can in principle follow
the instructions provided by the Difficulty Controller by generating very balanced
trials; on the other hand, the Player Estimator is able to provide reasonably good
estimates to the Trial Proposer, with an average error that is around 3% for several
different Child Simulator configurations. As a closure to this section, it is worth
making considerations about the PDEP_Evaluator pipeline as a whole, by analyzing
both the estimations and the achieved accuracy from different simulations.

Figure 6.18: Plots for the second pass estimation of α for several simulations
with varying learning rates. The learning rate (named “Slope” in the figure) is
expressed as the daily decrease of the Child Simulator’s α in degrees

.
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As shown in figure 6.18, the AI is able to distinguish fairly well the abilities
of players with different learning rates, as the plot shows estimated values
that decrease proportionally to each simulation’s learning rate.

The same goes for the estimation of the σ parameter, although the AI demon-
strates greater difficulty in some situations: in fact, when the learning rate is
rather high and the Child Simulator’s σ is still high enough to influence estimations
performed on a small dataset, the σ estimations appears to be more noisy. The fact
that, as shown in figure 6.19, the estimation for σ is not always as consistent over
time as the one for α is however a rather expected result. In fact, the latter is
done according to well established procedures in the field of machine learning (i.e.
SVM) while the former is performed through an ad hoc algorithm designed by
the candidate. In addition to that, the σ estimation is also reliant on the result
of the one performed for α: if noise is present in the estimated boundary during
the current iteration, such noise will be propagated directly to the estimated σ
value, thus enforcing the fact that the σ estimation can’t achieve better results
than the α one by design.

Figure 6.19: Plots for the second pass estimation of σ for several simulations
with varying learning rates. The simulations from which this plot is generated are
the same used for making the plot shown in figure 6.18

.
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Having said that, the slightly sub-optimal results obtained in such cases should
not be seen as a major problem. In fact, the simulations show remarkable results in
terms of the simulator’s accuracy, as shown in figure 6.20: no matter what learning
rate for both parameters is given to the Child Simulator, the AI is still able to
make the player answer correctly according to the desired probability
since very early stages of the simulation.

Figure 6.20: Cumulative accuracy achieved by the Child Simulator according to
different learning rate. The simulations are the same mentioned in figure 6.18 and
6.19, and all show an overall accuracy quite close to the desired value of 70%

.

Even in the last days of high learning rate simulations, the lack of very hard
trials within the ND-NND space is still not enough to significantly influence the
AI’s propositions, as the presence of this problem only brings to a change of about
7% in the final overall accuracy at the end of the simulation with lrs = −0.01.

As a closure to this chapter, the accuracy plot for a similar set of simulations
to the ones shown so far is displayed in figure 6.21, with the difficulty being
calibrated as to achieve an overall accuracy of 50%: as the more balanced target
error probabilities provided by the Difficulty Controller allow the proposed trials
to span more uniformly the whole ND-NND space, the aforementioned
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problem appears visibly only in the latest days of the simulations, even if reaching
an overall lower accuracy should be mathematically more difficult for the AI.

Figure 6.21: Cumulative accuracy plot for the same simulations mentioned in
figure 6.20 but with different difficulty calibration.

.
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Chapter 7

Conclusions and Future
Works

With the conclusion of this thesis, The Number Farm has almost reached its second
year of development: since its start, several students belonging to both Politecnico
di Torino and University of Essex have brought their own contributions, allowing
it to grow little by little into what it is today.

This thesis’ work is no exception, as the game has finally reached several of its
main objectives ever since its first phases of development. As a closure to this work,
it is therefore wise to report the main additions that were brought to the game
ever since the candidate’s arrival in the project.

By going chronologically, the first main feature brought by the candidate con-
sisted in the implementation of the remote connection between the client and
the server. The Number Farm has always been designed to be playable from a
mobile device, and now that it is possible to run the server on its separate machine,
the rest of the project’s contributors were able to create builds for the client side
that could run on Android devices. This was followed by a proper handling of
multiple clients from the server’s code, which makes The Number Farm a step
closer to becoming a fully operational game.

The second contribution is also the most important brought by this thesis: the
development of an AI that can adapt to the player’s ability. This game has in fact
been intended to be based on Artificial Intelligence ever since its conception, and
with the introduction of the PDEP_Evaluator, it is no understatement to say that
this goal has finally been achieved. While borrowing some ideas from other previous
applications, the AI has finally come to a state where it can provide a balanced
training experience to its players: by using well-established techniques in the
field of machine learning as well as some others developed purposefully for this
project, the AI is able to understand the player’s ability according to the sharpening
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and filtering hypotheses described in Learning to Focus on Number; starting from
this knowledge, it is additionally capable of proposing numerical comparison trials
that are tailored around the player, by following a criterion designed around reaching
an overall satisfying accuracy while also avoiding excessive exertion to produce
an answer. As it’s also one of the main points of the filtering and sharpening
hypotheses, the PDEP_Evaluator was also designed to follow and estimate how
each player improves with time and practice, which can open new paths in the
study of Dyscalculia and on how it can be treated.

Finally, the addition of the Simulations Runner also introduces a long-awaited
feature in the project. In fact, the Child Simulator was immediately identified
as one of the key points of this thesis, as the implementation of a component
able to simulate the behavior of a player has always been considered necessary to
continue with the development of the AI. Moreover, the candidate developed it in
accordance to the filtering and sharpening hypotheses, which is the main distinctive
trait of The Number Farm. This component, together with the whole simulation
environment, allows to properly study the behavior of the AI under several
different conditions: thanks to them, the development of the PDEP_Evaluator
could be accompanied by a complete testing procedure, which led to the satisfying
demonstrations of its capabilities discussed in the last part of this thesis.

That being said, the development of The Number Farm still hasn’t reached its
end. As already mentioned in the rest of this thesis, there are still some aspects
regarding the AI that still need improvements, namely:

• A more concrete definition for the Perceived Difficulty. As discussed in the
previous chapters, it would be best if this metric could be inferred from real-life
data, by possibly relating it to the time taken by the player to answer to the
proposed trials.

• A proper modelling of such response time inside of the Child Simulator, which
would in turn allow to test the optimization for the aforementioned Perceived
Difficulty.

• Some possible tweaks to its design, after a proper assessment has been done
by testing the application with real children on a sufficiently long period of
time.

Other than these aspects, it is rather safe to say that the number comparison
mini-game is very close to its final state. As at its core it is meant to be a broad
and entertaining game, a possible direction for future developments of The Number
Farm may be found in the implementation of other mini-games, as done by other
previous applications. Dyscalculia is in fact an issue affecting several areas of
mathematical development in children, so taking care of some other of its aspects,
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such as arithmetic operations or symbolic representation of number, can be another
step forward in making The Number Farm a valuable application in the field of
software-based training programs. Moreover, the impact that this would have on
the overall user experience should not be underestimated. The hope is, after all,
to alleviate the issues caused by Dyscalculia, and providing an entertaining and
engaging game can surely improve the success of The Number Farm while also
motivating children to play and possibly improve their mathematical abilities.
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Appendix A

Ablation Studies for the AI

In the field of Artificial Intelligence and machine learning, the term "hyper-
parameter" is widely used to indicate additional inputs required by algorithms and
models other than the actual input data. As these hyper-parameters affect the
quality of the end result, a primary study has to be generally conducted, with the
aim of finding the optimal hyper-parameters maximizing the performances for the
specific task at hand.

The proposed project, as made clear in section 5.5, is no stranger to such
concepts, as the Player Estimator performs two different tasks that require an
optimization of their related hyper-parameter. This appendix is therefore dedicated
to the two ablation studies related to such procedures, namely:

• The selection of the optimal C during the estimation of the α parameter, as it
is required in order to run the SVM algorithm.

• The optimal number of trials z used during the second pass estimation given
the estimated learning rates of the player.

A.1 Finding the optimal C
In general, SVMs are not used exactly as they were within the project. In the
field of machine learning, they are in fact trained in order to generate a model
for classification or regression by using a pre-determined training set, so as to
generalize its labelling patterns and reproduce them in real use-case scenarios where
the label is not provided. As they also require an hyper-parameter C acting as a
regularization parameter (i.e. control the effects of over-fitting), an ablation study
is generally performed in order to find its best value. This is done by training
several models with varying value for C, and by analyzing them through the use of
a validation dataset: simply, the various models are used to label the validation
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dataset, and the one achieving the best results also tells which is the optimal C
parameter for the task at hand.

In the proposed project however, the AI uses SVMs to estimate α in a way that
differs to the aforementioned approach regarding two aspects:

1. The "training dataset" D is not a pre-determined collection of data, but it is
an ever changing set produced according to the design of the Trial Proposer
and of the Difficulty Controller.

2. The performance attained by the procedure is not measured by how well the
resulting classifier can reproduce the labelling pattern, but rather as how close
the estimated values are to the Child Simulator’s ones. As such, together with
the fact that the implemented SVM uses a high-bias linear kernel, no validation
dataset is required as the performances can be immediately measured from
the resulting classifier alone.

So, how should the Player Estimator choose the proper value for C at each of
its iterations?

As a starting point, it is possible to make an important assumption by looking
at how the dataset D is generated. In fact, such dataset is generated by the Trial
Proposer by receiving the α and σ parameters estimated in previous iterations
together with the Difficulty Controller’s target error probability and target perceived
difficulty: given that the Difficulty Controller provides all possible input parameters
in the span of few iterations, it can be assumed that large datasets (i.e. with size
greater than 180) are distributed within the ND-NND space depending on the
α and σ provided as input to the Trial Proposer. In other words the idea
is that, by feeding the same α and σ to the Trial Proposer for a large number
of iterations, it is possible to produce a large training dataset. Moreover, this
dataset is, in principle, similar to the datasets produced during normal use
when the same α and σ are being estimated: by finding the value of C leading
to the best estimations for this training dataset, it is likely that such value will
also be the optimal one during the normal use-case.

Starting from this assumption, the candidate came up with an ablation procedure
that is described in the following steps:

1. At first, a set of configurations {P0, P1, ...Pn} is generated. Each configuration
Pi represent a set of parameters {αi, σi}, with each configuration differing with
respect to all the others for at least one of these two parameters. Together with
that, a set of candidate C values {C0, C1, ...Ck} are generated, logarithmically
spanning the range of [0.001, 1000].

2. At the beginning of the ith iteration of the procedure, the configuration Pi is
selected.
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3. By selecting a Cj value among the candidate values, a certain number M of
simulations was run by using Cj as the hyper-parameter for the SVM. Given
the current configuration Pi, each of these M simulations were run with the
set of parameters {αi, σi, 0.0, 80}, following the notation introduced in section
6.2.1.

4. For each of the M simulations, the average error of the first pass estimation
is measured with respect to both the Child Simulator’s normalized α and σ
values. Just like the metric defined in section 6.3.2, such error is computed as
the normalized average distance of the estimated value with respect to the
Child Simulator’s one.

5. All errors related to each of the M simulations are summed: the resulting value
will be named Eij, and it represent a measure of the overall error attained
in both the α and σ estimations while using configuration Pi and Cj as the
SVM’s hyper-parameter.

6. Step 3 to 5 are repeated, until the set {Ei0, Ei1, ...Eik} has been computed.

7. Out of this set, the minimum value Eio is extracted: the C value identified by
the index o is therefore selected as the optimal C for configuration Pi.

8. Step 2 to 7 are then repeated for each configuration, until the optimal C value
has been found for all of them.

At the end of this ablation procedure, the pair {Pi, Ci} representing the optimal
C value for the ith configuration has been generated for all the studied configurations,
which is graphically shown in figure A.1

As the several configurations have been generated in order to reasonably span
the whole space of possible values that can be estimated by the AI, the procedure
to extract the optimal C during normal operation is rather simple: first, the α and
σ values estimated during the previous iteration are collected and normalized, thus
producing the pair {α̃, σ̃}; then, the euclidean distance of this pair is computed with
respect to each P̃i configuration, which is the set of configurations defined in the
ablation study after undergoing normalization; finally, the normalized configuration
that is the closest with the pair {α̃, σ̃} is selected, and the optimal value of C
related to it is chosen as the C to be used in the estimation of the current iteration.

There is a drawback in this procedure however: although the Trial Proposer
is assumed to produce similar datasets when the same α and σ are provided as
input over several iterations, the same can’t be said when the difficulty calibration
performed by the Difficulty Controller is changed. In fact, by varying the overall
target accuracy that has to be achieved by the player, the way the generated
trials are distributed in space does change as well. This means that the ablation
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Figure A.1: 3D plot for the ablation study of the C hyper-parameter. The x and
y axes represent the normalized values of α and σ defined by each configuration,
while in the Z axis is reported the exponent related to the power of 10 that leads
to the optimal result when used as the C hyper-parameter

procedure has to be carried out for each available difficulty calibration, which is
part of the reason why only two of them are currently provided by the AI.

A.2 Finding the optimal z

When the second pass estimation was explained in subsection 5.5.3, the computation
of the mapping between the steepest estimated slope and the optimal amount of
trials z for the estimation was only briefly mentioned. As this appendix is dedicated
to talk about these ablation procedures, it is now time to discuss how such mapping
was found by the candidate.

The objective is to come up with pairs {S̃i, Zi}, where S̃i is a normalized slope
representing the decrease of either the normalized α or σ value after each mini-game
iteration, and Zi represents the optimal amount of trials to use for estimating the
parameters of a player improving according to such slope. Moreover, as the goal is
basically to understand how "fast" the proposed data becomes too old to be used,
each S̃i is considered to be negative: in the case that the AI finds a player that is
getting worse over time with a positive slope, the mapping is done with respect to
the closest S̃i in terms of its absolute value. The overall procedure is rather similar
to the one for the C hyper-parameter, and it is summarized in the following steps:

1. Before starting the procedure, two arrays are instantiated: the first one
is composed of the set of {S̃0, S̃1, ...S̃n}, and represent a series of possible
values for the aforementioned normalized slope; the second is instead a set of
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candidate z values {Z0, Z1, ...Zk}. Moreover, the former is generating in order
to span logarithmically the range [3.3−6, 3.3−4], while the latter uniformly
spans the range [100, 1800].

2. At the beginning of the ith iteration of the procedure, the slope S̃i is se-
lected and a certain amount M of simulations is performed with parameters
{80◦, 0.4, S̃i ∗ 30, 80}. Note that the S̃i is being multiplied by 30 (i.e. the
amount of trials performed per day of simulations) before being used as a
simulation parameter. This is because, as defined in section 6.2.1, that value
should represent the normalized daily learning rate for both α and σ, while
S̃i represent the learning rate over the single trial proposition.

3. For each of the M simulations, both the generated trials and the result of the
first pass estimations are collected.

4. By selecting a Zj value among the ones defined in step 1, the second pass
estimation is performed for each of the M simulations. For each of them, the
related first pass estimation data and the generated trials are provided as
input, while the amount of trials used for the estimation is set to be equal to
Zj.

5. From the results of all these second pass estimations, a measure of the average
error Eij is extracted, in a similar way to how it was computed at step 4 and
5 of the ablation study for parameter C. Eij therefore represents a measure
of the average error attained by using Zj as the z value for the second pass
estimation while having a player that improves according to S̃i.

6. Step 4 and 5 are repeated until the set {Ei0, Ei1, ...Eik} is computed.

7. Out of this set, the minimum value Eio is extracted, and the corresponding
Zo is found as the optimal z to be used when the slope S̃i is encountered.

8. Steps 2 to 7 are repeated for each of the candidate slopes defined in step 1,
until the optimal z value has been found for each of them.

It’s worth noting that the ablation procedure does not take into account various
configuration of the starting parameters for the Child Simulator, as they are not
supposed to play a role in the usability over time of the proposed trials. Instead,
values close to the maximum ones were used as initialization for the Child Simulator,
as to allow the simulation to finish without either α or σ reaching the minimum
possible value regardless of the considered learning rate. The set of pairs {S̃i, Zi}
generated by this procedure is shown in figure A.2
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Figure A.2: The optimal value of z for each of the candidate slopes considered
within the ablation study. Note that the x axis represents the loss of either the
normalized α or σ parameter per each mini-game iteration: as should be expected,
higher slopes in absolute value limit the amount of usable trials for the estimation,
while lower slopes allow the AI to leverage from older data

.

Similarly to the case of the C hyper-parameter, the optimal z is selected during
normal operation by taking the estimated learning rates for both α and σ, normal-
izing them and selecting the most restrictive (i.e. the highest in absolute value).
After that, the closest S̃i with respect to this value among the ones considered in
the ablation study is selected, and its related value for z is also provided as the
optimal z for the current iteration of the second pass estimation.
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Computation of ND-NND
variable

During the course of this thesis, the concept of the ND and NND values for trials
related to number comparison tasks has been widely used. These two values
are in fact vital to describe the trials according to the filtering and sharpening
hypothesis; however, the actual computation for these two values from the actual
trial’s parameters has only been mentioned, especially when it comes to the NND
value.

Since such computation is not extremely relevant for the PDEP_Evaluator and
it was already partially implemented before the candidate’s arrival, its discussion
has been relegated to this appendix. Before continuing, two different versions for
these computations can be identified:

• The computation according to the paper Learning to Focus on Number.

• The computation adapted to this project.

Since the second version is derived from the first one, this appendix will first treat
the computation as described in the paper, and only later the aspects regarding
the version used in the server’s code will be explained.

B.1 ND and NND within Learning to Focus on
Number

In section 2.2 the theoretical concepts behind numerical comparison tasks have been
described in their broadest form. As explained by the authors, the trials related to
such tasks are defined by two sets of elements, each of which is characterized by a
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set of dimensions that can both represent numerical and non-numerical features of
said trial. For completeness, these dimensions are briefly recalled in the following
together with their abbreviation:

• N: the number of elements in the set.

• ISA: the area occupied by each single element.

• TSA: the total area occupied by all elements.

• FA: the area of the disk where the elements are located.

• Spar: the average distance between each element.

Of the aforementioned dimensions, only the first one is related to numerical
features of the trial, while the remaining four are considered to be as non-numerical
dimensions co-related to the numerical one.

The N dimension already allows to compute the ND value for the given trial, as
it is simply computed as the logarithmic ratio of the N value for the right set over
the N of the set displayed in the left.

Regarding the NND however, the procedures requires some more steps. In
fact, at first all four non-numerical dimensions have to be reduced into a single
dimension, that will be used to summarize the non-numerical features of each of
the two sets of elements.

To do so, the authors of the paper preformed the following two steps:

1. First, the four non-numerical dimension were transformed into their component
orthogonal to the N dimension. This was done by subtracting from each
dimension its component parallel with respect to number.

2. From the new set of non-numerical dimensions produced in this way, a di-
mensionality reduction in the form of PCA was performed starting from the
dataset used within the experiments, out of which only one dimension was
extracted.

The dimension obtained in this way would therefore be orthogonal with respect to
the N dimension while being the most describing of the four non-numerical features
of the trials. According to the authors, this component explained 98.9% of the
variance of the 4 different non-numerical dimensions within the used dataset, and
since the PCA procedure found a set of weights equal to {0.557, 0.487, 0.473, 0.467}
which are related respectively to the Spar, ISA, TSA and FA, they could also
conclude that all original non-numerical dimensions were being loaded equally into
the found summarizing dimension.

By naming this dimension as SD, it is finally possible to define the NND as,
simlarly to the ND value, the logarithmic ratio of the SD of the set shown in the
right over the SD of the one on the left.
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B.2 The ND and NND within the project
As described in chapter 5, the AI makes decisions and estimations within the ND-
NND space, as it’s how the trials are represented by its most relevant components,
namely the Trial Proposer and the Player Estimator.

The way these two values are computed is irrelevant when it comes to these
two components, as they are designed to function regardless of the meaning of the
ND-NND space. However, when the server code has to interact with the client side,
the Trial Adapter has to translate the trials generated by the Trial proposer into
the set of parameters used within the client: as already explained, this is done by
choosing a trial within the Lookup Table, according to its vicinity in the ND-NND
space to the input trial.

The Lookup Table is therefore required to contain the ND and NND value for
each one of its entries; however, the non-numerical dimensions used to describe
trials in the Lookup Table are slightly different from the ones used in Learning to
Focus on Number, due to the need of adapting them to the client side parameters.
More in detail, each fence of each trial within the Lookup Table is represented by
the triplet of dimensions defined by {N, FA, ISA}, each of which having the same
meaning as the corresponding ones described in the previous section.

Despite the relationship of these three dimensions defines a set of constraints
when it comes to the trials displayable within the clinet, it can be observed that
both the FA and ISA are already orthogonal with respect to N by definition.
Therefore, in the case of the project, the summarizing dimension SD was simply
computed as the first dimension found by the PCA applied to the set of possible
combinations of FA and ISA that could be found within the Lookup Table. This
procedure is performed for both the Lookup Tables used within the application,
and just like in the paper, the PCA found similar weights for both the FA and
ISA, meaning that also in this case both dimensions contribute equally to the
computation of the SD.

As for the actual ND and NND values, the same procedures used in the paper
are followed, starting from the N and SD dimensions suitably defined in the context
of the project.
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