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Abstract

Hypertension is a significant risk factor for cardiovascular diseases (CVDs), which
are a leading cause of death around the world. Continuous monitoring of blood
pressure (BP) is a proven tool to support patient care and when used in combination
with other vital parameters such as heart rate, breath frequency, and physical
activity, it can be highly effective in the prevention of CVDs. However, invasive
methods are currently the most reliable way to continuously monitor BP, despite
the potential for discomfort and damage to the patient. Non-invasive techniques
are currently not considered optimal for continuously monitoring BP trends, as
they can only return BP values every few minutes.

In this thesis work, cuff-less estimation of continuous BP through Pulse Transit
Time (PTT) and Heart Rate (HR) using boosting regression techniques is investi-
gated. This method achieves non-invasive estimation of BP with an acceptable low
error, according to the AAMI guideline. The study introduces several methods,
including the use of electrocardiographic (ECG), photoplethysmographic (PPG)
signals and ABP (Arterial blood pressure) signals extrapolated from the MIMIC
III online database, and the implementation of preprocessing of the ECG and PPG
signals, and the research and processing of the features related to them in order
to continuously monitor BP in a non-invasive way, exploiting boosting regression
techniques. Recent studies have demonstrated that HR and PTT can be linearly
combined to obtain BP values, manipulation of these two parameters is key to non-
invasively estimating reliable BP values. The goal of this research is to examine
the use of boosting regression techniques to estimate continuous blood pressure in
a non-invasive way that equally depends- able with respect to current methods and
easy for the patient to carry out, The user experience of this technology allows for
the patient to easily and comfortably measure their blood pressure at various times
throughout the day, regardless of their location, even if they are not in a clinical
setting. This proposed approach can be viewed as the initial step towards the in-
corporation of these algorithms into wearable devices, particularly those developed
for the SINTEC project.
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Chapter 1

Introduction

The high prevalence of hypertension and its association with adverse cardiovascular
outcomes make it crucial to have reliable and accurate methods for blood pressure
monitoring. The importance of non-invasive technologies for monitoring health
parameters cannot be overstated, especially for tracking conditions such as hyper-
tension. This thesis focuses on examining the performance of boosting regression
algorithms on the estimation of blood pressure by utilizing physiological signals col-
lected from the MIMIC III online database. SINTEC-Soft Intelligence Epidermal
Communication Platform is a European project launched in June 2019, with the
goal to create a modern technology for tracking the health of its user[1]. The final
product should be capable of returning the subject’s heart rate, systolic (SBP),
and diastolic blood pressure (DBP) during periodic monitoring. This research was
conducted at LINKS Foundation, which has been operating for approximately two
decades in both the national and international sphere, with the purpose of promot-
ing, leading, and enhancing innovation processes through research projects that
possess a strong innovative potential, and has the capacity to generate an impact
on public production sectors whilst being competitive in an international context[2].

SINTEC aims to meet the need for the development of new interconnected tech-
nologies that are non-invasive and do not interfere with people’s daily lives mean-
while speed is a key factor. Therefore the optimization of the algorithm was further
investigated. Besides improvements in hardware devices, we need to promote esti-
mation algorithms so that reaching trust-able estimated blood pressure.

1.1 Main goal

This research will explore the boosting regression algorithms in depth. The initial
section of the work integrated an algorithm for extracting physiological parameters
such as heart rate, pulse transit time, and systolic and diastolic blood pressure, and
then the algorithms have been tested. The main focus of the LINKS Foundation in
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Introduction

the SINTEC project is its applicability in a clinical and hospital setting. Currently,
only intrusive procedures are reliable for continuous blood pressure monitoring;
they involve the insertion of invasive arterial catheters (that bring potential risks
to patients such as infection and vascular damage [5]. The chance to have reliable
non-invasive continuous blood pressure monitoring provides a significant benefit
regarding prevention and reduction of risks associated with cardiovascular diseases
where hypertension is the main risk factor [6].

1.2 Hypertension and associated monitoring tech-
niques

Hypertension is often referred to as the ”silent killer” due to its difficulty in diagno-
sis before the signs and symptoms become visible, leading to potentially irreversible
damage [7]. Despite the widely publicized advantages of lowering blood pressure
(BP), a significant portion of the population still has high BP as a primary risk
factor for illness and disability, with the number of people affected constantly in-
creasing [8]. Chronic hypertension is characterized by elevated baseline BP for long
periods of time [9]. It is recommended that all adults over 18 years of age have their
blood pressure monitored for the purpose of diagnosing hypertension and accurately
calculating cardiovascular risk [10]. More than 90% of cases of hypertension are
attributable to poor nutrition, obesity, and physical inactivity. Additionally, rising
blood pressure in older adults is linked to changes in arterial structure and increased
arterial stiffness [10, 11].

Moreover, there is a close correlation between the increase in BP and cardiovas-
cular risk and all evidence indicates that treating older adults hypertensive patients
will reduce the risk of cardiovascular events [13].

The BP monitoring process typically involves the utilization of two distinct
methodologies: invasive and noninvasive. The commonly implemented solutions in
these cases are as follows:[14][52]

• The invasive arterial catheter method is employed for ongoing surveillance, but
it presents potential hazards to patients in the form of infection and various
vascular injuries. (Figure1.1)

• In order to intermittently monitor blood pressure, a sphygmomanometer - an
arm cuff that occludes - is utilized. Blood pressure can be obtained through
manual means, such as by auscultation of Korotkoff sounds or palpation, or
automatically through oscillometry (palpation) or automatically (by oscillom-
etry) [15]. The Holter blood pressure monitor (HBPM) allows for periodic
readings at intervals of 15 or 30 minutes, over a duration of up to 48 hours.
[10].
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However, there are clinical scenarios in which it is either hard to measure blood
pressure with traditional cuff-based devices or difficult to safely conduct invasive
arterial monitoring [9]. The principles and techniques employed in the measure-
ment of blood pressure without the use of a cuff have been debated and studied
for decades [16]. There is a need to develop more precise methods of measuring
blood pressure, to promote harmony between international hypertension guidelines,
bolster diagnostic reliability and accuracy, facilitate better clinical decisions, and
ultimately improve patient clinical outcomes [17]. Identifying secure and reliable
estimation techniques is imperative for early diagnosis and mortality reduction in
hypertension. A model incorporating these features would significantly advance the
monitoring and prevention of cardiovascular disease. We hope to have a revolution-
ary effect on the lives of patients with CVDs with the help of these hypotheses, by
giving people a convenient and accurate way to monitor their blood pressure [18].
This may prevent the emergence and damage of cardiovascular diseases, which are
still the primary cause of death globally.

Figure 1.1: ABP signal recorded invasively[52]

1.3 Advancement Beyond the Existing

Traditional methods for estimating blood pressure, such as the auscultatory method
or oscillometric method, rely on simple formulas or guidelines to determine blood
pressure values. These methods can be affected by measurement errors, observer

12



Introduction

bias, and inter-observer variability, which can result in inaccurate estimations of
blood pressure. In contrast, ML regression algorithms can learn complex patterns
in data, account for patient-specific factors, and provide personalized and accurate
predictions.

Another method for estimating blood pressure is invasive arterial blood pressure
monitoring, which involves inserting a catheter into an artery to directly measure
blood pressure. While this method is considered the gold standard for blood pres-
sure monitoring, it is invasive and carries a risk of complications such as bleeding,
infection, or arterial damage. ML regression algorithms can provide non-invasive
and continuous monitoring of blood pressure, reducing the risks associated with
invasive monitoring.

In addition, ML regression algorithms can provide real-time monitoring and
updates, allowing clinicians to quickly respond to changes in blood pressure values.
This is in contrast to other methods that may provide a one-time estimation of
blood pressure, which may not reflect the patient’s current health status.

The major objectives are:

• Improved accuracy: ML regression algorithms can learn complex patterns
in data and make predictions based on these patterns. This can result in more
accurate blood pressure estimations compared to traditional methods that rely
on simple formulas or guidelines.

• Personalized predictions: ML algorithms can be trained on large data sets
to identify patient-specific factors that influence blood pressure, such as age,
sex, comorbidities, and medications. This allows for personalized predictions
that can better reflect the individual patient’s health status and needs.

• Real-time monitoring: ML algorithms can be designed to continuously
monitor and update blood pressure predictions in real time based on the latest
patient data. This can provide clinicians with up-to-date information and help
them make timely interventions if necessary.

• Reduced errors and variability: Traditional methods for estimating blood
pressure may have a higher degree of measurement error or variability, which
can lead to miss classification and inaccurate diagnoses. ML algorithms can
reduce these errors and variability, improving the accuracy of blood pressure
estimations

• Reduced workload for clinicians: ML algorithms can automate the process
of blood pressure estimation, reducing the workload for clinicians and allowing
them to focus on other aspects of patient care.
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1.4 Physiological signals

Recent advancements in ECG and PPG technology enable BP estimation with a
satisfactory degree of accuracy [24]. PWV, PTT(Figure 1.2), and PWA-based tech-
niques are some of the most widely used approaches for detecting continuous blood
pressure without a cuff [32]. Overall, PTT has demonstrated excellent potential
and delivered the best outcomes in terms of reliability and MEA. PTT can be deter-
mined by analyzing ECG and PPG signals [34, 35]. PTT is defined as the amount
of time the pressure wave needs to travel from a proximal to a distal location of
the body [33].

Figure 1.2: Time interval between R-peak and S-peak [52]

Previous research has established a connection between PTT and BP since the
early 2000s, and machine-learning methods have been explored to address the poor
accuracy of PTT [25, 26]. Subsequent investigations into the biomechanical prop-
erties of vessels and their impact on the self-regulating mechanism of blood flow led
to the application of one of Moens-Korteweg’s fluid dynamic laws to link PWV to
DBP and SBP. Calibrations can be used to obtain pressure values for a particular
subject under evaluation, as Poon and Zhang demonstrated through mathematical
approximations [27]. To ensure accuracy over short- and long-term periods, multiple
calibrations were necessary for the process [28, 29, 30]. DBP (also called minimum
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pressure), the diastolic value of blood pressure is the value observed when the heart
of an individual relaxes between heartbeats [31]. SBP (or maximum pressure) is the
Blood Pressure value when an individual’s heart contracts, thus the Blood Pressure
value with each heartbeat [31].

1.4.1 ECG

The ECG signal can be acquired through a non-invasive procedure and is a visual
representation of the electrical and chemical activity of cardiac muscle fibers during
the cardiac cycle. The QRS complex, consisting of three waves (Q, R, and S)
which are produced by ventricular depolarization after atrial depolarization, plays
an essential role in this process [36].( Figure 1.3). In this study, the R-peaks (which
corresponds to left ventricle depolarization) are featured in (Figure 1.4). With the
time interval,∆t, between two consecutive R−peaks established, it is possible to
determine the HR [37] via the following equation:

HR =
1

∆t
(1.1)

Figure 1.3: ECG wave form [75]

1.4.2 PPG

PPG instead is a simple and low-cost optical technique used to detect blood volume
changes in the microvascular bed of tissue at the skin surface level [38].
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Figure 1.4: Time interval between two consecutive R−peaks[52].

PPG is an optical technique that utilizes a IR light sensor to measure fluctuations
in peripheral blood volume [39, 40].

As light is more readily absorbed by blood than tissue, variations in the intensity
of light can be transduced as changes in blood flow. The sensitivity of the sensor
allows for even minor changes in blood volume to be detected. The PPG waveform
is composed of alternating (AC) and direct (DC) components (Figure 1.5) [41].

• The AC component represents blood volume cardiac variation in each heart-
beat, and it is attributed to the pulsatile behavior of the heart

• The DC component is highly correlated to central and periphery venous pres-
sure [42]. The average blood volume experiences gradual changes over an
extended period, however, abrupt fluctuations can arise due to multiple fac-
tors, e.g.breathing, the presence of a disease, vasomotor activity, sympathetic
nervous system activity, and thermoregulation [43].

Utilizing this waveform, it is feasible to calculate the PTT as time interval between
an ECG, R-peak, and the closest S-peak of the PPG signal (Figure1.2)

1.4.3 ABP

The arterial blood pressure signal reflects the pressure wave moving through the ar-
teries, showing different rates of diffusion and morphology depending on the artery’s
cross-sectional area.

is the pressure exerted by the blood on the walls of arteries. Arterial blood pres-
sure is one of the most important vital signs in clinical practice, and it is routinely
measured in the intensive care unit (ICU) to monitor the cardiovascular health
of critically ill patients. Physiologically, a pressure wave traveling through a vis-
coelastic tube is progressively weakened as it moves with an exponential reduction
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Figure 1.5: AC and DC components of the PPG waveform[76].

in speed. However, when the tube branches off into different diameters, signal am-
plification occurs due to reflections. In clinical settings, ABP is recorded invasively
in the least rigid vessel - the aorta - where reflections are minimal [44]. From this
signal, it is possible to calculate systolic blood pressure and diastolic blood pressure,
which correspond to the maximum and minimum values of the signal respectively.
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Chapter 2

Materials and methods

2.1 Materials

This study exploited the MIMIC III database, the most popular non-invasive pres-
sure estimation database, created by the MIT Lab for Computational Physiology.
It contains more than 60,000 acquisitions from ICU (Intensive Care Unit) patients.
The database includes information such as vital signs, medications, laboratory re-
sults, demographics, and other clinical data.

The rationale for our decision is supported by the abundant availability of signals
such as ECG, PPG, and ABP, which enabled us to successfully deploy the system
[45], and signals are sampled at 125 Hz. In order to ensure that only records
containing all of the relevant signals (ECG, PPG, ABP) and a sufficient number of
samples (at least 1 min of recorded signal) were used.

2.2 Methods

It has been demonstrated in [47] that there is a strong correlation between PTT
and BP. This is based on the Bramwell–Hills and Moens–Kortweg equation [48]:

PWV =
L

PTT
=

s
hE

ρd
(2.1)

In the academic context, it is noted that vessel wall thickness (h), blood density
(ρ ), vessel diameter (d), length (L), and vessel elastic modulus (E) are significant
factors in the study of vascular mechanics. Interestingly, Leslie A. Geddes found
in 1991 that there is an exponential correlation between E and pressure ρ [26],
specifically:

E = E0e
−αd (2.2)
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By replacing Equation (2.2) in the Bramwell–Hills and Moens–Kortweg’s Equation
(2.1), PWV can be written as:

PWV =
L

PTT
=

s
hE0e−αd

ρd
(2.3)

Which leads to:

eαd =
ρdL2

hE0

× 1

PTT 2
(2.4)

and to:

P =
1

α
ln

 
ρdL2

hE0

!
− 2

α
ln(PTT ) (2.5)

The relationship between BP and PTT can thus be simplified as [47]:

BP = a ln(PTT ) + b (2.6)

Chan et al. [27] postulated that if the variation of d with the BP is negligible and
if the change in the arterial wall tone (E0) is slow enough, then the second term
of the right hand side of Equation (2.6) can be regarded as constant during the
observation window, and it is possible that:

∆BP =
2

αPTT
∆(PTT ) (2.7)

A linear approximation for Equation (2.7) was suggested:

BP = αPTT + b (2.8)

Since numerous studies demonstrate the enhancement brought about by includ-
ing heart rate (HR) in the equation, the mathematical relationship between BP
and PTT becomes [48]:

BP = αPTT + bHR + C (2.9)
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The parameters a, b, and c are specific to each subject and require calibration
for determination. The linear regression model used in this research is represented
by the last equation. In order to assess the maximum and minimum blood pressure
values, we conducted an analysis of arterial blood pressure by breaking down the
estimation into diastolic and systolic blood pressure, as outlined in the following
equation (2.10):

(
SBP = asPTT + bsHR+ cs
DBP = adPTT + bdHR+ cd

(2.10)

This method was utilized due to the satisfactory results that were obtained.
However, these results could be augmented particularly in regard to predicting
more dynamic signals. The continuity of the signal was employed to address this
issue. As the signal is consistent, its extracted characteristics are also continuous.
It was decided to contemplate the values within a certain observation window. The
duration of this observation window was determined by a trial-and-error approach.

2.2.1 Data Collection

In this work, an algorithm was initially developed that uses the signals present on
the MIMIC III online database [49].

In this study, a selection process was performed during the data collection pro-
cess, a total of 99 signals were obtained. The selection criteria involved :

• verifying the presence of three specific signals, namely ECG, PPG, and ABP.

• the signals were analyzed for the existence of peaks or periodicity that persisted
for more than 5 seconds.

• Each signal has a length of approximately 50 seconds.

In this study, 61 signals were further analyzed to identify the peaks and extract
HR and PTT features [46]. Continuous BP measurement during various activities
is necessary and we suggested using HR and PTT features within a specific time
window to enhance performance.

Should any of the following criteria be met, the batch of ECG, PPG, and ABP
signals pertaining to a single individual was excluded:
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• Absence of any peaks (leading to an erroneous estimate of HR and PTT fea-
tures) was noticed for more than 1 s.

• The estimation of HR or PTT following this procedure was deemed unfeasible
in physical terms. (e.g., DBP reaches 0 mmHg).

• Possible lack of synchronization between the signals.

2.2.2 Data Processing

Filtering of Signals
Band-pass filtering [50] was applied to ECG and PPG signals from the MIMIC
database; this filter was not necessary for ABP signals. The 5th-order Butterworth
filter utilized had upper (fH) and lower (fL) cutoff frequencies as follows: (Figure2.1)

• fL = 1Hz

• fH = 10Hz

2.2.3 Feature Extraction

In the literature, there is a well-known correlation between PTT and HR for the
estimation of BP. The relationship between PTT and HR is related to changes
in blood pressure (BP). When BP increases, blood vessels become more rigid and
less compliant, which leads to an increase in PTT. Conversely, when BP decreases,
blood vessels become more compliant, leading to a decrease in PTT. As HR in-
creases, PTT decreases. This is because a faster heart rate results in a shorter
time between each heartbeat, which means that the pulse wave travels a shorter
distance between the heart and the peripheral artery. As a result, PTT is inversely
proportional to HR.
To acquire the signals from the MIMIC III database, features were collected over
a time span of 1.5 seconds corresponding to two cardiac cycles. The proposed
reference formula, which is an extension of Equation (2.11), is a generic formula:

BPi =
NX
k=0

αkPTTi−k +
NX
k=0

bkHRi−k (2.11)

Where N denotes the total number of samples taken during the time T and index
i denotes the signal’s i-th sample.
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(a)

(b)

Figure 2.1: ECG signal before and after filtering with Butterworth filter.

HRi =
60

Rpeak(i+1) −Rpeak(i)

(2.12)
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In order to obtain PTT, it is necessary to accurately identify the R-peaks of the
ECG and the PPG (see Figure 1.2). The signals need to be synchronized to the
millisecond, however, this criterion is met in database [51].

2.2.4 Extraction of MIMIC III Database

Extracting the PPG peaks (S-peaks) can be challenging, as each signal of the
MIMIC III database has a different amplitude, suggesting inter-subject variability
in the PPG [53].

To detect peaks in arrays containing both ECG and PPG values, we developed
a Python software that utilizes the scipy.signal.find peaks() method. The
method enables our algorithm to identify all peaks that surpass a given threshold
value, which may vary between different subjects but should remain constant for
measurements taken from the same individual. We also perform an additional check
to ensure that no more than one peak is identified within a 0.5-second time window.
Detected peaks are then stored in two different zero arrays that are of the same
length as the reference timestamp array.

As signals had to be normalized to make the software applicable to any shape,
multiple incorrect peaks were identified when searching for the S-peak of the PPG.
To ensure that only S-peaks were detected, a kernel density estimation (KDE) of
peak amplitudes was calculated and plotted (Figure 2.2 ) [52]. If there are two peaks
in the distribution, as shown in (Figure 2.2), then only peaks above the minimum
of these two values were kept. Subsequently, SBP was extracted as maximum of
ABP and DBP was obtained as minimum of ABP, as shown in (Figure 2.3 c).

Figure 2.2: Peak finder and estimated probability density function (KDE) of the
amplitude of peaks.
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A more detailed flowchart of this part of the algorithm is reported in (Figure
2.4)

Figure 2.3: (a) Rpeaks, (b) Speaks, and (c) maxima and minima detection in signals
from the MIMIC III database.
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Figure 2.4: Detailed R-peaks and S-peaks detection flowchart.

25



Chapter 3

The algorithm

3.1 Regression Process

Signals extracted from the MIMIC III database were used to retrieve blood pressure
(BP) measurements. The regression process was structured in two phases: training
and testing [53]. In the training phase, a lagged technique has been used.

creating lagged columns process is creating new columns that represent lagged
values of the original columns, which will be used as predictors in a regression
model. By including lagged values as predictors, the model can take into account
the temporal relationship between the variables and potentially improve its accu-
racy. The process of creating lagged columns in a data frame for regression analysis
involves several steps. For each column in the Data Frame, new lagged columns are
created by shifting the values of the original column by different lag indices. This
involves creating new columns, shifting values, and naming the new columns with
the original column’s name and the lag index. The data frame is then cleaned by
dropping rows with missing values, and an intercept column of ones is added for
the regression model. Finally, the columns for the regression analysis are updated
to include the lagged columns and the intercept column(see Figure 3.1)[74].

The HR and PTT values were obtained by measuring the difference between each
consecutive R-peak indices, then dividing this value by the sampling frequency to
obtain the value in seconds (Equation (2.12)).

The PTT values were estimated by analyzing the ECG and PPG signals and
comparing the positions of their peaks. Specifically, assuming that each R-peak is
followed by an S-peak, only those values that adhere to this pattern are considered
to be valid. The MIMIC III database’s HR and PTT signals were divided into ten
windows, and the mean and standard deviation (SD) were evaluated for each win-
dow. To eliminate outliers potentially caused by hardware malfunctions, all points
located outside of the range of mean ± SD were substituted with a blank space,
and then interpolated using the Python pandas.interpolate (method = ’polynomial’,
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Figure 3.1: Lagged process for preparing signals from the MIMIC III database for
the regression process.
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order =1 ) function (order = 5 for HR, order = 1 for PTT).
A first-order polynomial regression can accurately fit a straight line to the data,

whereas a fifth-order polynomial regression can provide a more intricate curve.
While higher-order polynomials have the capacity to capture more complex trends,
there is an increased risk of overfitting, whereby the interpolating function follows
the noise in the data rather than the underlying pattern and thus yields unreliable
results when applied to fresh data.

In the end, PTT and HR values are interpolated along the whole signals’timestamp
array, ready for the feature reduction process. Also for this algorithm section, a
more detailed flowchart is reported (Figure 3.2) [54].

3.2 Regression analisys

Linear regression has been around for a considerable amount of time and continues
to be a commonly utilized statistical learning approach [55].

This work is based on a straightforward, simple linear approach for predicting
a quantitative response, Y, on the basis of one or more predictor variables, X. It
assumes there is an approximately linear relationship between X and Y [56]. To
account for two predictors (PTT and HR), a multivariate regression model needs
to be used with the regression line given in Equation (3.1). The intercept, β0, and
other β coefficients represent the average effect on Y of a one-unit increase in its
respective predictor X while holding the other predictors fixed.

y = β0 + β1x1 + β2x2 (3.1)

For the purpose of the work, the algorithm implements three different regression
processes, from the scikit-learn, xgboost [62] and catboost Python libraries, were
used for the estimation of both DBP and SBP values: each one with two distinct
divisions of data sets:(Figure 3.3 )

• the first (75%) of the sample (about 40 s of signal) for each batch was used
for model construction

• the other (25%) (about 10–15 s of signal) for testing the algorithm

3.3 Machine learning algorithms

Gradient boosting regression trees is an ensemble method derived from a decision
tree structure. This hierarchical tree structure has the potential to create overfitted
models if the depth is too deep. As a remedy, ensemble methods combine multiple
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Figure 3.2: Detailed feature extraction flowchart.

decision trees instead of a single one (Figure 3.4). Random forest and GB are two
well-known algorithms under this category; while random forest builds multiple
trees through splitting datasets based on random numbers, GB is a technique that
repeatedly adds decision trees to correct the error of previous ones. Although GB
requires more precise parameter settings for training, it can potentially generate
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Figure 3.3: Test phase and training phase of the algorithms for the MIMIC III
database signals : (a) interpolation of the input values, (b,c) results of regression,
and (d) MAE values for the selected measurement.

better test results than a random forest with proper configuration.
The three different implemented regression processes are the following:

Figure 3.4: The architecture of Gradient-Boosting Decision Tree[73]

3.3.1 Gradiant Boosting Regression (GBR)

The concept of boosting originated from the question of whether a weak learner
could be enhanced to improve its performance [57]. The Gradient Boosting algo-
rithm is employed to generate an ensemble model through the aggregation of weak
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predictive models. This algorithm can be utilized to construct models for both re-
gression and classification problems. Specifically, the Gradient Boosting Regression
algorithm is used to fit a model that predicts a continuous value.

Gradient Boosting creates an additive model by utilizing multiple decision trees
of a fixed magnitude as weak predictive models.
Gradient Boosting Regressor is a powerful machine learning algorithm that is widely
used for regression problems. The algorithm involves building an ensemble of de-
cision trees, each of which is trained to correct the errors of the previous tree. In
this way, the algorithm gradually improves the accuracy of the predictions until a
satisfactory level is reached.

Let’s take a deep dive into the mathematical details of GBR:

Step 1: Initialization

The algorithm starts by initializing the prediction function as a constant value,
typically the mean of the target variable. Let’s denote this as:

F0(x) =
1

n

nX
i=1

yi (3.2)

where x represents the input features, y is the target variable, and n is the
number of training samples.

This initialization step sets the baseline prediction for the target variable, and
the subsequent steps aim to improve this prediction by iteratively building decision
trees.

Step 2: Building Trees

In each iteration, the algorithm builds a new decision tree that predicts the
residuals (errors) of the current prediction function Fm−1(x). The residual is defined
as the difference between the true target value and the current prediction:

rim = yi − Fm−1(xi) (3.3)

where m denotes the iteration number and i is the index of the training sample.

The decision tree is built using a technique called ”gradient boosting”. The
idea is to fit a tree to the negative gradient of the loss function with respect to
the current prediction function. In other words, we want to find the tree that best
corrects the errors of the previous prediction function.
The negative gradient is given by:
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− ∂Fm−1(xi)

∂L(yi, Fm−1(xi))
(3.4)

where L is the loss function that measures the difference between the true target
value and the predicted value.
The negative gradient represents the direction and magnitude of the error i.e., how
much the current prediction needs to be adjusted to reduce the error. By fitting a
tree to the negative gradient, we aim to find the best split points that reduce the
error the most.

Step 3: Tree Fitting

The decision tree is fitted to the negative gradient using a process called ”boost-
ing”. The boosting process involves fitting the tree to the negative gradient using a
technique called ”gradient descent”. In each iteration of the boosting process, the
tree is fit to the negative gradient by minimizing the following objective function:

Xn

i=1

(γjm − rim)
2

wi

(3.5)

where j is the index of the tree node, m is the iteration number, γjm is the
predicted value of the tree node, and wi is the weight of the training sample.

The weight wi is a function of the current prediction function Fm−1(xi) and the
iteration number m. It is given by:

wi =
1

1 + exp(−2yiFm−1(xi))
(3.6)

The weight function is designed to give more weight to samples that are harder to
predict, i.e, those that have a larger error in the current prediction.
The tree is fit using a greedy algorithm that recursively splits the data into two parts
based on a threshold value that maximizes the objective function. The splitting
process continues until a stopping criterion is met, e.g, when the maximum depth
of the tree is reached or when the minimum number of samples per leaf node is
reached.

Step 4: Updating the Prediction Function

After the tree is built, its predictions are added to the current prediction func-
tion Fm−1(x) in a weighted manner. The weight of the tree αm is determined by
minimizing the following objective function:
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Xi=1

n
L(yi) (3.7)

Step 5: Learning Rate

In each iteration of the GBR algorithm, the contribution of the new tree to the
prediction function is scaled by a learning rate η, which is a value between 0 and
1. The learning rate controls the step size of the optimization process and helps
prevent overfitting. The updated prediction function is given by:

Fm(x) = Fm−1(x) + ηhm(x) (3.8)

where hm(x) is the new decision tree.

A smaller learning rate reduces the impact of each tree on the final prediction,
which can help prevent overfitting. However, a smaller learning rate also increases
the number of iterations required to converge.

Step 6: Regularization

To prevent overfitting, the GBR algorithm includes several regularization tech-
niques, such as:

• Tree Depth: The maximum depth of the decision trees is limited to prevent
them from becoming too complex and overfitting the training data.

• Minimum Samples per Leaf: The minimum number of samples required to
make a split at a leaf node is limited to prevent overfitting to noise.

• Subsampling: A fraction of the training data can be randomly sampled without
replacement at each iteration to reduce variance and improve generalization.

• Feature Subsampling: A fraction of the features can be randomly sampled
without replacement at each split point to reduce correlation and improve
generalization.

Step 7: Convergence

The GBR algorithm continues to iteratively build decision trees until the loss
function converges or until a predefined maximum number of iterations is reached.
The loss function measures the difference between the true target value and the
predicted value, and it is used to evaluate the performance of the model.

The parameter, n_estimators, determines the quantity of decision trees to be
implemented in the boosting stages. Gradient Boosting is distinct from AdaBoost
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[58] as it utilizes decision trees of a fixed magnitude rather than decision stumps
(one node and two leaves) which are used in AdaBoost. Friedman extended this
framework [59] to create Gradient Boosting Machines, which are also known as
Gradient Boosting or Gradient Tree Boosting.
All in all, Gradient Boosting utilizes differentiable loss functions generated by weak
learners in order to extrapolate. At every boosting phase, the learner is employed to
reduce the loss function in accordance with the current model. Boosting algorithms
can be utilized for either regression or classification purposes.
The primary steps for implementing Gradient Boosting Regression are as follows:

• Select a weak learning model

• Utilize an additive model

• Establish a loss function

• Minimize the identified loss function

3.3.2 Extreme Gradient Boosting(XGBooste)

XGBoost, which stands for Extreme Gradient Boosting, is a parallelized and opti-
mized version of numberient boosting algorithm. By parallelizing the entire boost-
ing process, the training time is significantly reduced. Rather than training a single
model on the data (as done in traditional methods), XGBoost trains thousands of
models on various subsets of the training dataset and then combines them to create
the best-performing model(Figure3.5). It is a popular implementation of gradient
boosting that is optimized for both computational efficiency and predictive accu-
racy.
Gradient boosting is an ensemble learning method that combines multiple weak
learners (usually decision trees) to create a strong learner. In XGBoost, the weak
learners are decision trees, and the algorithm learns the optimal weights for each
tree so that the final model predicts the target variable with high accuracy.
The XGBoost algorithm uses a gradient boosting approach, where it adds new mod-
els to the ensemble sequentially. At each iteration, the algorithm fits a new tree to
the residual errors from the previous iteration. This process is repeated until the
algorithm has reached a stopping condition, such as a maximum number of trees
or when the improvement in the objective function is below a certain threshold.

XGBoost is designed to be highly customizable and flexible, allowing users to
tweak many hyperparameters to achieve the best performance on their specific
problem. Some of the most important hyperparameters in XGBoost include:

• Learning rate (eta): This controls the contribution of each tree to the final
prediction. A smaller learning rate will result in slower learning but may lead
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Figure 3.5: The architecture of- Extreme Gradient Boosting [81].

to better performance, while a larger learning rate will result in faster learning
but may lead to overfitting.

• Maximum depth (max depth): This limits the depth of each decision tree
in the ensemble. A deeper tree can model more complex interactions in the
data but may overfit to the training data.

• Number of trees (n estimators): This controls the number of decision trees
in the ensemble. Increasing the number of trees can improve performance but
may lead to longer training times and overfitting.

• Subsample: This controls the fraction of the training data used to fit each
tree. A smaller subsample can reduce overfitting but may increase variance.

• Column subsampling (colsample bytree): This controls the fraction of
features used to fit each tree. A smaller fraction can reduce overfitting but
may increase bias.

• Regularization parameters (lambda, alpha): These control the strength
of L1 and L2 regularization applied to the weights of the decision trees. Regu-
larization can help prevent overfitting and improve generalization performance.

Objective function
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In XGBoost, the objective function is a sum of two components: a loss function
that measures the error between the predicted values and the true values, and a
regularization term that penalizes complex models. The loss function is problem-
specific and can be chosen from a variety of options, such as mean squared error
(MSE) for regression problems or log loss for binary classification problems.

Mathematically, the objective function of XGBoost can be written as:

Obj(θ) =
nX

i=1

l(yi, ŷi) +
X

j = 1mΩ(fj) (3.9)

where θ represents the model parameters, l(yi, ŷi) is the loss function that mea-
sures the error between the predicted value ŷi and the true value yi, m is the number
of trees in the ensemble, fj represents the j-th tree, and Ω(fj) is the regularization
term that penalizes the complexity of the model.

To optimize this objective function, XGBoost uses gradient descent to iteratively
update the model parameters θ in the direction of the negative gradient of the
objective function. This process is known as gradient boosting, where each new
tree is trained to minimize the residual errors from the previous trees. The final
prediction is a weighted sum.

Regularization

To prevent overfitting, XGBoost also includes several regularization techniques:

1. Max Depth:

It controls the maximum depth of the tree By limiting the depth of the tree.
Limiting the maximum depth of each decision tree to prevent it from becoming
too complex so the model can avoid overfitting to the training data.

2. L1 regularization (Lasso): It adds an L1 penalty term to the cost function,
which penalizes the model for using too many features or for using features
that are not important. This technique helps to reduce the complexity of the
model and can be used for feature selection.

3. L2 regularization (Ridge): It adds an L2 penalty term to the cost function,
which penalizes the model for using large weights. This technique helps to re-
duce the impact of any individual feature and can be used to avoid overfitting.

4. Min Child Weight: It controls the minimum sum of weights of all obser-
vations required in a child. By setting this parameter, the model can avoid
overfitting to noisy data.

5. Gamma: It controls the minimum loss reduction required to make a further
partition on a leaf node of the tree. By setting this parameter, the model can
avoid overfitting to noisy data.

36



The algorithm

6. Subsample: It controls the fraction of observations to be used for each tree.
By setting this parameter, the model can avoid overfitting to the training data.

7. Colsample bytree: It controls the fraction of features to be used for each
tree. By setting this parameter, the model can avoid overfitting to the training
data.

By using these regularization techniques, XGBoost can reduce overfitting and
improve the performance of the model on unseen data.

In this step, I’ll provide a step-by-step explanation of how XGBoost works,
including the mathematical details of each step.

Step 1: Initialization:

The first step in XGBoost is to initialize the ensemble model with a constant
prediction value. This value is typically set to the mean of the target variable for
regression problems, or to the ratio of the number of positive and negative instances
for binary classification problems. Let’s call this constant prediction value ŷ0.

Step 2: Compute the Residuals:

The next step is to compute the residuals for each training instance. The residual
ri for the i-th instance is defined as the difference between the true target value yi
and the current prediction ŷm(xi) of the ensemble model at the m-th iteration:

ri = yi − ŷm(xi) (3.10)

At the first iteration (m = 0), the current prediction is the initialization value ŷ0
for all instances, so the residuals are simply the differences between the true target
values and the mean (for regression problems) or the ratio of positives and nega-
tives (for binary classification problems).

Step 3: Train a Weak Learner:

The next step is to train a weak learner (usually a decision tree) to predict the
residuals. This weak learner is trained on the features X and the residuals r com-
puted in the previous step. Let’s call this weak learner hm(x).

Step 4: Compute the Scaling Factor:

The next step is to compute a scaling factor γm that minimizes the loss function
L for the residuals ri and the predictions ŷm−1(xi). This scaling factor represents
the contribution of the new decision tree hm(x) to the overall prediction of the
ensemble model. Mathematically, the scaling factor is computed as follows:
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γm = argmin
γ

nX
i=1

L(yi, ŷm−1(xi) + γhm(xi)) (3.11)

This minimization problem can be solved using gradient descent, since the loss
function L is typically differentiable.

Step 5: Update the Prediction:

The final step is to update the prediction of the ensemble model using the new
decision tree and the scaling factor. The new prediction ŷm(x) is computed as
follows:

ŷm(x) = ŷm− 1(x) + ηγmhm(x) (3.12)

In this equation, ŷm−1(x) represents the prediction of the ensemble model at the
m− 1-th iteration for the input x, hm(x) represents the new decision tree added to
the ensemble model at the m-th iteration for the input x, γm represents the scaling
factor computed in the previous step, and η represents the learning rate, which
controls the contribution of the new decision tree to the overall prediction.

Some other important features of XGBoost are:[70][71][72]

• Parallelization:The implementation of the model allows for training with
multiple CPU cores.

• Non-linearity: XGBoost can identify non-linear data trends and learn from
them.

• Cross-validation:installed by default and ready-to-use .

Furthermore, by utilizing the Python implementation, users have access to a
range of internal parameters that can be adjusted to optimize accuracy and preci-
sion [60, 61]

The two goals of the project align with the two objectives of using XGBoost.

• Execution Speed.

• Model Performance.

3.3.3 Categorical Boosting (CatBoost)

CatBoost is a highly effective gradient boosting algorithm applied to supervised
machine learning tasks, with certain exclusive traits that set it apart from other
boosting algorithms [62].
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This specific assortment of Gradientgradient-boostingons has the capacity to
manage categorical variables and data in general. The CatBoost object can process
categorical or numeric variables, as well as datasets with a variety of types; in a
more efficient and accurate manner. It was developed by Yandex and was made
open-source in 2017 [77].

In traditional gradient boosting, categorical features need to be preprocessed
and converted into numerical features before they can be used in the model. This
is typically done by one-hot encoding, where each category is transformed into a
binary vector indicating its presence or absence. However, one-hot encoding can
lead to high-dimensional feature spaces and may result in overfitting, especially
when dealing with sparse or high-cardinality categorical features.

CatBoost addresses this issue by implementing a novel algorithm that can di-
rectly handle categorical features without the need for one-hot encoding or other
preprocessing steps. The algorithm is based on the idea of ordered boosting, where
categories are sorted based on their target statistics and are split into subsets using
the optimal threshold.

Furthermore, it is able to exploit unlabelled examples and analyze the impact
of kernel size on speed during training. The Ordered Boosting (OB) algorithm is
a novel method of encoding categorical features, which has been demonstrated to
improve performance on datasets with categorical features. This algorithm encodes
the categories based on the target variable’s mean and variance values, rather than
relying on frequency as a basis for encoding.
The CatBoost algorithm consists of the following steps:

• Initialization: A constant prediction value is set for all instances, which is
typically the mean or median value of the target variable.
For each iteration compute the negative gradient of the loss function with
respect to the predictions of the previous iteration Fm−1.

• Gradient computation: The gradient of the loss function with respect to
the prediction is computed for each instance.

• Sorting and splitting of categorical features: Categorical features are
sorted based on their target statistics (e.g. mean, sum) and are split into
subsets using the optimal threshold.

• Tree building: A decision tree is trained on each subset of categorical features
and the numerical features. Each leaf node of the tree represents a categorical
feature value or a numerical range.

• Gradient update: The negative gradient of the loss function with respect
to the prediction is computed for each instance and is used to update the
prediction values.
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• Regularization: A regularization term is added to the objective function to
penalize complex models and prevent overfitting.

The objective function of CatBoost can be expressed as:

obj(Θ) = L(y, F (Θ)) + Ω(Θ) (3.13)

where Θ denotes the model parameters, y denotes the true values, F(Θ) denotes
the predicted values, L is the training loss function, and ω is the regularization
term.
In CatBoost, the training loss function is typically the log loss function for binary
classification or the multinomial log loss function for multiclass classification.
catBoost works by iteratively adding decision trees to the model. At each iteration,
the algorithm fits a decision tree to the gradient of the loss function with respect
to the predictions of the previous iteration.

Some key features of CatBoost:

• Handling categorical features: CatBoost’s main benefits over conventional
gradient boosting are its capacity to handle categorical features without pre-
processing and its effective implementation, which can drastically reduce train-
ing time and memory requirements. It is widely used in both industry and
academics and has been demonstrated to deliver state-of-the-art performance
on a variety of datasets.[78].

• Regularization: To further prevent overfitting, CatBoost uses two types
of regularization: L2 regularization and a novel technique called Categorical
Feature Combination. L2 regularization penalizes large weights in the decision
trees and helps to reduce overfitting. Categorical Feature Combination, on the
other hand, works by combining the categorical values into new, higher-level
features. This reduces the number of features in the model and improves its
generalization ability.

• Robust to outliers: CatBoost is robust to outliers in the target variable,
making it suitable for noisy data.

• Handling missing values: Handling missing values in categorical boosting
involves making a decision about how to treat missing data, such as ignoring
them, imputing them, or creating a separate category. The best approach will
depend on the nature of the data and the goals of the model.

• GPU support: CatBoost can utilize GPUs to speed up the training process.

CatBoost Regressor is an effective algorithm that is capable of accommodating
large datasets with categorical features and has been commonly used in various
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domains such as finance, health care, and marketing [63].

All in all Boosting algorithms can offer several advantages for estimating blood
pressure from ECG and PPG signals. Some of these advantages include:

1. Improved accuracy: Boosting algorithms, such as XGBoost and CatBoost,
can improve the accuracy of predictions by reducing bias and variance in the
model. This can be particularly useful when estimating blood pressure from
ECG signals, which can be complex and noisy signals.

2. Handling of non-linear relationships: Boosting algorithms can capture
non-linear relationships between the ECG signals and blood pressure values.
This can be useful in cases where the relationship between the two variables
is not linear, as is often the case in medical applications.

3. Handling of missing data: Boosting algorithms, such as CatBoost, can han-
dle missing data effectively, reducing the need for imputation and minimizing
the impact of missing values on the accuracy of the model.

4. Handling of categorical data: CatBoost can handle categorical data effec-
tively, which can be useful in cases where ECG signals are categorized based
on their characteristics.

5. Fast computation: Boosting algorithms are known for their fast compu-
tation time, which can be important in medical applications where time is
critical.

3.3.4 Hyper parameters Selection

In boosting regression, hyperparameters are tuning parameters that are set before
training the model and can greatly affect the model’s performance. The best values
for hyperparameters depend on the specific data and problem at hand and can be
found through a process called hyperparameter tuning [79].

There are several approaches to finding the best hyperparameters in boosting
regression. Finding the best hyperparameters in boosting regression involves ex-
ploring different values for each hyperparameter and selecting the combination that
yields the best performance. Different approaches such as grid search, random
search, Bayesian optimization, and ensemble methods can be used to find the
optimal hyperparameters. It is important to keep in mind that the best hyper-
parameters may vary depending on the specific data and problem being solved,
and hyperparameter tuning should be performed carefully to avoid overfitting the
training data [80].

in this work, we select hyperparameters with a grid search. Grid search in-
volves specifying a range of values for each hyperparameter and then exhaustively
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searching through all possible combinations of hyperparameters to find the best
combination. While this approach can be computationally expensive, it is simple
to implement and can be effective in finding the best hyperparameters.
Some advantages of using grid search are:

• Comprehensive: Grid search systematically searches over a range of hyper-
parameters and evaluates all possible combinations, ensuring that no param-
eter configuration is overlooked.

• Easy to implement: Grid search is a simple and easy-to-implement method
for hyperparameter tuning, making it accessible to both beginners and experts.

• Reproducible: Grid search is a reproducible method, as it evaluates all possi-
ble hyperparameter combinations, ensuring that the optimal set of parameters
is selected each time.

• Can handle multiple metrics: Grid search can be used to optimize multiple
metrics simultaneously, allowing for more complex model evaluations.

We define a parameter grid to search using different values for the regressor
hyperparameters. Then create an instance of the regressor and an instance of
GridSearchCV, passing the regressor and the parameter grid as arguments. We
fit the GridSearchCV instance on our data and then print the best parameters.
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Results

The algorithm has been tested for all the measurements in the database.

4.1 Algorithm test

The prediction performance was assessed by utilizing the Mean Absolute Error
(MAE) value. [64, 65, 66].
In order to determine the validity of measurements, one must refer to the AAMI
/ESH/ISO guidelines. According to these guidelines, a pass/fail criterion should
be applied to general population samples (at least 85 measurements) as well as
populations with a smaller sample size (at least 35 measurements). This criterion
requires that the mean difference between test and reference blood pressure mea-
surements be less than or equal to 5 mmHg with a standard deviation of 8 mmHg
or less for both systolic and diastolic blood pressure values.[68](

MAE ≤ 5mmHg
SD ≤ 8mmHg

(4.1)

In this study, all of the algorithms were evaluated using data from 90 patients in
the MIMIC III database showed an average error value below 5 mmHg for both
DBP and SBP values [69](Table 4.1).and almost in (98%) of them avarage of MAE
is less than 2 in dbp error and less than 3 in sbp error.

In this study, all regression methods are considered suitable since they yield nearly
equal Mean Absolute Error (MAE) and Standard Deviation (SD) values for each
prediction.

Compared to previous works boosting regression could be chosen because it is
characterized by a shorter computational time. From a first glance to figure 3.4 it
can be seen that these regressors are able to follow the trend of the signal testing
phase, being able to recognize the variability, also demonstrated stability when the
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Table 4.1: Average MAE and average SD values in the testing phase with signals

AVERAGE MAE (mmHg) ± AVERAGE SD (mmHg)

Gradiant Boosting XG Boosting CAT Boosting

SBP 2.9± 2.8 3.1± 2.7 3± 3

DBP 2.2± 2.8 2.3± 2.7 2.3± 3

input feature values were quite dissimilar to the previous ones.

4.2 Calibration Time

In order to evaluate the calibration time in this work, for a test vector with a fixed
length (25%), of the total data set in the first step, just (10%) of the length of the
training set vector was considered and the length of training set was increased in
each iteration. As shown in( Figures 4.1, 4.2, 4.3, 4.4 ), in comparison with Linear
regression these boosting algorithms have better calibration time and even with a
limited amount of data they can estimate blood pressure with MAE less than 5
mmHg.
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Figure 4.1: Training first (10%) of original training set and test last (25%) of data
set .

Figure 4.2: Training first (30%) of original training set and test last (25%) of data
set .
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Figure 4.3: Training first (70%) of original training set and test last (25%) of data
set.

Figure 4.4: Training first (85%) of original training set and test last (25%) of the
data set.
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Figure 4.5: Training of first (95%) of original training set and test last (25%) of
the data set.
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Conclusion

The high prevalence of hypertension and its association with negative cardiovas-
cular outcomes necessitates reliable and accurate methods for monitoring blood
pressure. The importance of non-invasive technologies for tracking health parame-
ters, especially hypertension, cannot be overstated. The purpose of this thesis was
to identify an approach for non-invasive monitoring of blood pressure. This goal
was accomplished by pre-processing electrocardiogram (ECG) and photoplethys-
mography (PPG) signals and utilizing boosting regression techniques with related
features, namely heart rate and pulse transit time.

The study revealed that the boosting algorithms provide BP values with an
acceptable error rate (in accordance with the AAMI/ISO/ESH guidelines) using a
large number of measurements taken from the MIMIC III online database[64].

Previous research has demonstrated that similar processing of electrocardiogram
(ECG), photoplethysmograph (PPG), and arterial blood pressure (ABP) signals
extracted from MIMIC III database can be performed[52], estimation of blood
pressure values with an error of less than 5mmHg are returned, but slower and
with longer calibration time.

5.1 Future developments

There are aspects that could be improved.

Comparison with other non-invasive methods:
While the proposed method is shown to have an acceptable low error, it would be
useful to compare it with other non-invasive methods of continuous blood pressure
monitoring, such as pulse wave analysis and photoplethysmography. This will help
to determine which method is the most reliable and accurate.

Long-term monitoring:
Continuous monitoring of blood pressure over a long period of time is important for
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the prevention of cardiovascular diseases. Future research could focus on developing
methods that can reliably monitor blood pressure over a longer period of time,
without causing discomfort or damage to the patient.

Clinical trials:
In order to validate the effectiveness of the proposed method in a clinical setting,

clinical trials could be conducted. This will help to determine the usability, relia-
bility, and accuracy of the proposed method and its potential for wider adoption
in clinical practice.

Investigating the impact of physical activity:
As mentioned before, continuous monitoring of blood pressure when used in

combination with other vital parameters such as heart rate, breath frequency, and
physical activity, can be highly effective in the prevention of CVDs. Therefore,
future research could investigate the impact of physical activity on the accuracy
of the proposed method. This could help to determine whether the method is
equally reliable during periods of physical activity and whether adjustments to the
algorithm are needed to improve accuracy.

Further development of the algorithm:
While the proposed method is shown to have an acceptable low error, future re-
search could focus on the further development of the algorithm to improve accuracy.
This could involve the incorporation of additional physiological signals or the use
of more advanced machine learning techniques.
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Appendix A
This appendix displays the Python code that was used to implement the complete
algorithm.

1

2

3

4

5

6 # from math import nan

7 # from typing import final

8 # from numpy. core.fromnumeric import ptp

9 from sklearn.model_selection import GridSearchCV

10 # import csv

11 import os

12 import numpy as np

13 import pandas as pd

14 import matplotlib.pyplot as plt

15 import matplotlib as mplt

16 import scipy.fft

17 import scipy.signal

18 from scipy import stats

19 from pprint import pprint

20 from sklearn.linear_model import Ridge

21 from sklearn.svm import SVR

22 from sklearn.metrics import mean_absolute_error ,

mean_squared_error

23

24 from sklearn.model_selection import train_test_split ,

cross_val_score

25 from sklearn import datasets , ensemble

26 import xgboost

27 from xgboost import XGBRegressor

28 from catboost import CatBoostRegressor

29

30 import time

31

32

33 # sklearn.metrics has a mean_squared_error function with a

squared kwarg (defaults to True). Setting squared to False

will return the RMSE.

34

35

36 class SintecProj(object):

37 """ docstring for SintecProj """
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38 def __init__(self):

39 self.fs = 125

40 self.mmHg_thresh = [5,10]

41 self.PREV_VAL = 15 # X * 0.1 = [s]

42 self.patient_path = str(os.getcwd ())+'\\
Patients '

43 self.dataset_path = str(os.getcwd ())+'\\
Dataset '

44 self.plot_setup ()

45 self.save_figure = False

46 self.signal_list = [

47 '3001689 ','3001203 ','3000714 ','
3515650 ','3516310 ','3510820 ',

48 '3513879 ','3513631 ','3511504 ','
3512125 ','3513230 ','3503726 ',

49 '3509498 ','3509505 ','3508696 ','
3508299 ','3506991 ','3505101 ',

50 '3507993 ','3508009 ','3505162 ','
3505174 ','3503945 ','3503406 ',

51 '3503404 ','3502786 ','3403213 ','
3700665 ','3700837 ','3703763 ',

52 '3703856 ','3703872 ','3704307 ','
3704658 ','3704803 ','3705715 ',

53 '3705993 ','3402408 ','3402291 ','
3600293 ','3602237 ','3602666 ',

54 '3600490 ','3600620 ','3601272 ','
3403274 ','3604430 ','3604660 ',

55 '3604404 ','3605744 ','3904308 ','
3603256 ','3604217 ','3607634 ',

56 '3608436 ','3608706 ','3609155 ','
3609182 ','3609463 ','3606882 ',

57 '3602521 ','3602766 ','3602772 ','
3603658 ','3604352 ','3607711 ',

58 '3605724 ','3904396 ','3606358 ','
3607077 ','3907039 ','3607464 ',

59 '3606909 ','3609839 ','3800183 ','
3800350 ','3900487 ','3901160 ',

60 '3901339 ','3905772 ','3903282 ','
3901654 ','3902124 ','3902445 ',

61 '3902729 ','3902894 ','3905695 ','
3904550 ','3902994 ','3904246 ']

62

63

64 def create_path(self , path):

65 if not os.path.exists(path):
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66 os.makedirs(path)

67

68 def plot_setup(self):

69 self.figsize = (15 ,9)

70 self.create_path("Plots")

71 self.plot_path = os.getcwd ()+'\\ Plots '
72 plt.style.use('seaborn -darkgrid ')
73

74 def plot(self , df , pat_name):

75 fig , axs = plt.subplots (2,1,sharex=True)

76 fig.set_size_inches(self.figsize)

77 axs [0]. set_ylabel('ABP [mmHg]')
78 axs [1]. set_ylabel('[mV]')
79 df['ABP'].plot(ax=axs [0])
80 plt.suptitle(f'Patient: {pat_name}')
81 df[['II','PLETH ']]. plot(ax=axs [1])
82 plt.tight_layout ()

83 if self.save_figure: plt.savefig(f'{self.
plot_path }\\{ pat_name }.png')

84 plt.close()

85 if pat_name in self.signal_list: self.save_df

(df,pat_name)

86

87 def save_df(self ,df ,pat_name):

88 self.create_path("Dataset")

89 df.to_csv(f'{os.getcwd ()}\\ Dataset \\{ pat_name
}.csv')

90

91 def data_reader(self):

92 for n,file in enumerate(os.listdir(self.

patient_path)):

93 pat_name = file.split('_')[0]
94 print(f'Patient: {pat_name} - {n}\{

len(os.listdir(self.patient_path))

}')
95 df = pd.read_csv(f'{self.patient_path

}\\{ file}',quotechar="'",sep=',',
skiprows =[1])

96

97 if df.iloc [0][0][0] == '"':
98 df.columns = [x.replace('"',"

") for x in df.columns]

99 df.columns = [x.replace("'","
") for x in df.columns]

100
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101 df['Time '] = df['Time ']. apply
(lambda x: x[3: -2])

102 df[df.columns [-1]] = df[df.

columns [-1]]. apply(lambda

x: x[:-1])

103 df = df.replace('-', np.nan)

104 df.index = df['Time ']
105

106 def_columns = []

107 for x in df.columns:

108 if 'ABP' in x or x=='
II' or 'PLETH ' in

x:

109 def_columns.

append(x)

110 df = df[def_columns]

111 df = df.astype(float)

112 self.plot(df ,pat_name)

113

114 else:

115 df['Time '] = df['Time ']. apply
(lambda x: x[1: -1])

116 df.index = df['Time ']
117 df = df.replace('-', np.nan)

118 df = df[['ABP','PLETH ','II']]
119 df = df.astype(float)

120 self.plot(df ,pat_name)

121

122 def peak_finder(self):

123 self.create_path('Plots\\ Peaks ')
124 tmp_path = self.plot_path+'\\ Peaks '
125 file_lst = [x for x in os.listdir(self.

dataset_path) if x.endswith('.csv')]
126 # file_lst = [x for x in os.listdir(self.

dataset_path) if '3601140 ' in x]

127

128 for file in file_lst:

129 patient = file.split('.')[0]
130 print(f'Patient: {patient}')
131 print ()

132 df = pd.read_csv(f'{self.dataset_path
}\\{ file}').dropna ()

133 df.index = range(0,len(df))

134

135 #print(df)
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136 #plt.plot(df['II '])
137 #plt.xlabel('Time (s) ')
138 #plt.ylabel('(mV) ')
139 #plt.title(' ECG Signal ')
140 #plt.show()

141

142 # Filtering the signal

143 b, a = scipy.signal.butter(N=5,

144 Wn=[1,10],

145 btype='band ',
146 analog=False ,

147 output='ba',
148 fs=125

149 )

150 ecg_filt = scipy.signal.filtfilt(b,a,

df['II'])
151 ecg_diff = np.gradient(np.gradient(

ecg_filt))

152 ppg_filt = scipy.signal.filtfilt(b,a,

df['PLETH '])
153

154 #plt.plot(ecg_filt)

155 #plt.xlabel('Time (s) ')
156 #plt.ylabel('(mV) ')
157 #plt.title('Filtered ECG Signal ')
158 #plt.show()

159

160 #find DBP/SBP points

161 DBPs ,_ = scipy.signal.find_peaks(-df[

'ABP'],prominence =.5, distance =60,
width =10)

162 SBPs ,_ = scipy.signal.find_peaks(df['
ABP'],prominence =.5, distance =60,
width =10)

163 x_abp , kde_abp , kde_pks = self.

gaussian_distributions(df['ABP'],
np.concatenate ((DBPs , SBPs), axis=

None))

164

165 #print(SBPs)

166

167

168 #find R peaks

169 Rs ,_ = scipy.signal.find_peaks(

ecg_filt ,distance =60)
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170 Rs_diff ,_ = scipy.signal.find_peaks(-

ecg_diff ,distance =60) #discarded

because of patient 3600490

171 x_ecg , kde_ecg , kde_rs = self.

gaussian_distributions(ecg_filt ,Rs

)

172 x_ecg1 , kde_ecg1 , kde_rs1 = self.

gaussian_distributions(ecg_filt ,

Rs_diff)

173

174 #find SP peaks

175 SPs ,_ = scipy.signal.find_peaks(

ppg_filt ,prominence =.05, width =10)

176 SPs_new , [kde_ppg , kde_sp , x_ppg ,

min_] = self.PPG_peaks_cleaner(

ppg_filt , SPs)

177 # print(SPs_new)

178 if True:

179 plt.style.use('default ')
180 fig , axs = plt.subplots (3,2,

sharex=True)

181 fig.set_size_inches(self.

figsize)

182 gs = mplt.gridspec.GridSpec

(3, 2, width_ratios =[3,

1])

183

184 # PLOT

185 axs[0,0] = plt.subplot(gs

[0,0])

186 axs [0,0]. plot(df['ABP'],label
='ABP')

187 axs [0,0]. scatter(DBPs ,df['ABP
'][DBPs],label='DBP',c='r'
)

188 axs [0,0]. scatter(SBPs ,df['ABP
'][SBPs],label='SBP',c='g'
)

189 axs [0,0]. set_ylabel('ABP[mmHg
]')

190

191 # Gaussian dist. - ABP

192 axs[0,1] = plt.subplot(gs

[0,1])

193 axs [0,1]. plot(kde_abp(x_abp),

x_abp ,label='KDE of ABP')
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194 axs [0,1]. plot(kde_pks(x_abp),

x_abp ,label='KDE of ABP

peaks ')
195

196 axs[1,0] = plt.subplot(gs

[1,0])

197 axs [1,0]. plot(ecg_filt ,label=

'ECG Filtered ')
198 # axs [1]. plot(df['II '],label

='ECG ')
199 axs [1,0]. scatter(Rs_diff ,

ecg_filt[Rs_diff],label='R
peaks - with gradient ',s

=100,c='r')
200 axs [1,0]. scatter(Rs ,ecg_filt[

Rs],label='R peaks ',c='y')
201 axs [1,0]. set_ylabel('ECG [mV]

')
202

203 # Gaussian dist. - ECG

204 axs[1,1] = plt.subplot(gs

[1,1])

205 axs [1,1]. plot(kde_ecg(x_ecg),

x_ecg ,label='KDE of ECG')
206 axs [1,1]. plot(kde_rs(x_ecg),

x_ecg ,label='KDE of R

peaks ')
207 axs [1,1]. plot(kde_rs1(x_ecg1)

,x_ecg1 ,label='KDE of R

peaks - with gradient ')
208

209 axs[2,0] = plt.subplot(gs

[2,0])

210 axs [2,0]. plot(ppg_filt ,label=

'PPG Filtered ')
211 # axs [2]. plot(df['PLETH '],

label='PPG ')
212 axs [2,0]. scatter(SPs ,ppg_filt

[SPs],label='SP peaks -

first evalutation ',s=100,c
='r')

213 axs [2,0]. scatter(SPs_new ,

ppg_filt[SPs_new],label='
SP peaks - after KDE',c='y
')
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214 axs [2,0]. set_ylabel('PPG [mV]

')
215

216 # Gaussian dist. - PPG

217 axs[2,1] = plt.subplot(gs

[2,1])

218 axs [2,1]. plot(kde_ppg(x_ppg),

x_ppg ,label='KDE of PPG')
219 axs [2,1]. plot(kde_sp(x_ppg),

x_ppg ,label='KDE of SP

peaks ')
220

221 if min_ != None:

222 axs [2,1]. axhline(min_

,c='red',label='
Threshold ')

223 axs [2,0]. axhline(min_

,c='red',label='
Threshold ')

224

225 [axs[x,0]. legend(loc='lower
left ', facecolor='white ',
framealpha =.8) for x in

range (3)]

226 [axs[x,1]. legend(facecolor='
white ', framealpha =.8) for

x in range (3)]

227 [axs[x,1]. set_yticklabels ([])

for x in range (3)]

228

229 x_ticks = np.arange(0,len(

ppg_filt)+1 ,500)

230 for x in range (3):

231 axs[x,0]. set_xlabel('
Time [s]')

232 axs[x,0]. set_xticks(

x_ticks)

233 axs[x,0].

set_xticklabels ((

x_ticks/self.fs).

astype(int))

234

235 # print(f'ECG vector: {

ecg_filt }')
236 # print(f'PPG vector: {

ppg_filt }')
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237 plt.suptitle(f'Patient: {

patient}')
238 plt.tight_layout ()

239 if self.save_figure: plt.

savefig(f'{tmp_path }\\{
patient}')

240 plt.show()

241

242 dataset = self.find_PTT(ecg_filt ,Rs ,

ppg_filt ,SPs_new ,patient)

243 df.index = np.array(list(df.index))/

self.fs

244 print(df)

245 print(dataset)

246 dataset['DBP'] = df['ABP'].iloc[DBPs]
247 dataset['SBP'] = df['ABP'].iloc[SBPs]
248

249 print(dataset)

250 regr_path = self.dataset_path+'\\
Regression '

251 self.create_path(regr_path)

252 dataset.to_csv(f'{regr_path }\\{
patient }.csv')

253

254 dff = pd.read_csv(f'{regr_path }\\{
patient }.csv')

255 print(dff)

256

257 def gaussian_distributions(self ,curve ,peaks):

258 x = np.arange(min(curve),max(curve) ,.001)

259 kde_curve = stats.gaussian_kde(curve)

260 kde_peaks = stats.gaussian_kde(curve[peaks ])

261 return x, kde_curve , kde_peaks

262

263 def PPG_peaks_cleaner(self , ppg , SP):

264 check_plot = False

265

266 x_ppg , kde_ppg , kde_sp = self.

gaussian_distributions(ppg , SP)

267 if check_plot: plt.figure ()

268 peak_sp ,_ = scipy.signal.find_peaks(kde_sp(

x_ppg))

269 n_peaks = len(peak_sp)

270 minimum = None

271

272 if n_peaks == 2:
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273 # sp_idx = np.argmin(kde_sp(x_ppg)[

peak_sp ])

274 minimum = scipy.signal.find_peaks(-

kde_sp(x_ppg)[peak_sp [0]: peak_sp

[1]])

275 minimum = x_ppg[peak_sp [0]: peak_sp

[1]][ minimum [0]][0]

276 if minimum < .90* max(x_ppg):

277 SP = [x for x in SP if ppg[x]

> minimum]

278 if check_plot:

279 plt.plot(x_ppg ,

kde_sp(x_ppg))

280 plt.plot(x_ppg[

peak_sp [0]: peak_sp

[1]], kde_sp(x_ppg)

[peak_sp [0]:

peak_sp [1]])

281 plt.plot(x_ppg[

peak_sp [0]: peak_sp

[1]],- kde_sp(x_ppg

)[peak_sp [0]:

peak_sp [1]])

282 plt.axvline(x_ppg[

peak_sp [0]],ls='--
',label='1st peak '
)

283 plt.axvline(x_ppg[

peak_sp [1]],ls='-.
',label='2nd peak '
)

284 plt.axvline(minimum ,

label='Minimum ')
285 plt.legend ()

286 else: minimum = None

287

288

289 curves = [kde_ppg , kde_sp , x_ppg , minimum]

290 if check_plot: plt.show()

291

292 return SP , curves

293

294 def find_PTT(self ,ECG ,ECG_peaks ,PPG ,PPG_peaks ,patient

):

295 #ECG_peaks ,PPG_peaks: vectors containig

indices of peaks
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296 #ECG ,PPG: vectors containig ECG/PPG curves

297 plt.style.use('seaborn -darkgrid ')
298 self.create_path('Plots\\HR and PTT')
299 tmp_path = self.plot_path+'\\HR and PTT'
300

301 #transofrm in time series:

302 ecg_TS = np.array(ECG_peaks)/self.fs

303 ppg_TS = np.array(PPG_peaks)/self.fs

304 # print(f'ECG in seconds :{ ecg_TS}')
305 # print(f'PPG in seconds :{ ppg_TS}')
306

307 #HR evaluation:

308 HR = 60/( ecg_TS [1::] - ecg_TS [0: -1])

309 # print(f'HR:{HR}')
310

311 plt.close('all')
312 fig , axs = plt.subplots (2,1,sharex=True)

313 fig.set_size_inches(self.figsize)

314

315 axs [0]. plot(ecg_TS [1:],HR ,label='Heart Rate ')
316 axs [0]. set_title(f'HR and SP peaks cleaning

for patient: {patient}')
317

318 #HR cleaning:

319 LEN_WDW = int(len(HR)/5)

320 for x in range (10):

321 HR_tmp = HR[int(LEN_WDW*x*.5):int(

LEN_WDW *(1+x*.5))]

322 if np.std(HR_tmp) > 3:

323 up_bound , low_bound = np.mean

(HR_tmp)+np.std(HR_tmp),

np.mean(HR_tmp)-np.std(

HR_tmp)

324 # axs [0]. axhline(np.mean(

HR_tmp),c='r',lw=4, label

='Mean Value ')
325 axs [0]. fill_between(ecg_TS

[1:][ int(LEN_WDW*x*.5):int

(LEN_WDW *(1+x*.5))],

low_bound , up_bound , alpha

=0.15 , color='tab:red', lw

=4)
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326 # else: axs [0]. fill_between(

ecg_TS[int(LEN_WDW*x*.5):

int(LEN_WDW *(1+x*.5))],

low_bound , up_bound , alpha

=0.15 , color='tab:red ', lw

=4)

327 nan_idx = np.concatenate ((np.

argwhere(HR_tmp <= low_bound

),np.argwhere(HR_tmp >=

up_bound)))

328 nan_idx = list([int(LEN_WDW*x

*.5)+y[0] for y in nan_idx

])

329 HR[nan_idx] = np.nan

330 HR = pd.DataFrame(HR).interpolate(method='
polynomial ',order =5)

331 axs [0]. plot(ecg_TS [1:],HR.values.tolist (),

label='HR - cleaned ',c='g')
332 axs [0]. legend ()

333 axs [0]. set_ylabel('HR [mmHg]')
334 # print(f'HR: {HR}')
335

336 #PTT evaluation:

337 time = np.arange(0,max(max(ECG_peaks),max(

PPG_peaks)) ,1)

338 #print(time)

339 real_time = time/self.fs

340

341 y = time*0

342 for k in time:

343 if time[k] in ECG_peaks:

344 y[k]=1

345 if time[k] in PPG_peaks:

346 y[k]=2

347

348 index = np.argwhere(y>0).flatten ()

349 yy = list(y[index ])

350 time1 = time[index]

351

352 results = []

353 b = [1,2]

354 results = [i for i in range(len(yy)) if yy[i:

i+len(b)] == b]

355 index_rf = time1[np.array(results)]

356 index_spf = time1[np.array(results)+1]

357
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358 time_rf = real_time[index_rf]

359 time_spf = real_time[index_spf]

360

361 # rf_diff = np.diff(time_rf)

362 ptt = time_spf - time_rf

363

364 #PTT cleaning:

365 axs [1]. hlines(ptt , xmin=real_time[index_rf],

xmax=real_time[index_spf], colors='tab:
green ', linestyles='solid ', label='ptt')

366 # print(f'PTT: {pd.DataFrame(ptt)}')
367 for x in range (10):

368 PTT_tmp = ptt[int(LEN_WDW*x*.5):int(

LEN_WDW *(1+x*.5))]

369 # print(PTT_tmp)

370 if np.std(PTT_tmp) > .05:

371 print(np.std(PTT_tmp))

372 up_bound , low_bound = np.mean

(PTT_tmp)+np.std(PTT_tmp),

np.mean(PTT_tmp)-np.std(

PTT_tmp)

373 # axs [0]. axhline(np.mean(

HR_tmp),c='r',lw=4, label

='Mean Value ')
374 # axs [1]. fill_between(ecg_TS

[1:][ int(LEN_WDW*x*.5):int

(LEN_WDW *(1+x*.5))],

low_bound , up_bound , alpha

=0.15 , color='tab:red ', lw

=4)

375 nan_idx = np.concatenate ((np.

argwhere(PTT_tmp <=

low_bound),np.argwhere(

PTT_tmp >= up_bound)))

376 nan_idx = list([int(LEN_WDW*x

*.5)+y[0] for y in nan_idx

])

377 ptt[nan_idx] = np.nan

378 TEMP = pd.DataFrame(columns =['Before ','After '
])

379 TEMP['Before '] = ptt

380 # print(f'Before: {ptt}')
381 ptt = pd.DataFrame(ptt).interpolate(method='

polynomial ',order =5)
382 TEMP['After '] = ptt

383
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384 axs [1]. set_ylabel('PTT [s]')
385 axs [1]. plot(ecg_TS ,ECG[ECG_peaks],'o-',label=

'R peaks ')
386 axs [1]. plot(real_time[index_rf],ECG[index_rf

],'o-',label='R peaks - newly found ')
387 axs [1]. plot(ppg_TS ,PPG[PPG_peaks],'o-',label=

'SP peaks ')
388 axs [1]. plot(real_time[index_spf],PPG[

index_spf],'o-',label='SP peaks - newly

found ')
389 axs [1]. hlines(ptt , xmin=real_time[index_rf],

xmax=real_time[index_spf], colors='tab:red
', linestyles='solid ', label='ptt - newly

found ')
390 axs [1]. legend ()

391 plt.tight_layout ()

392 if self.save_figure: plt.savefig(f'{tmp_path
}\\{ patient}')

393

394 tmp_df_hr = pd.DataFrame(HR)

395 tmp_df_hr.index = ecg_TS [1:]

396

397 tmp_df_ptt = pd.DataFrame(ptt)

398 tmp_df_ptt.index = real_time[index_rf]

399

400

401 df = pd.DataFrame ({'Time ':real_time })
402

403 df.index = df['Time ']
404 #rint(df)

405

406 df['HR'] = tmp_df_hr

407 #print(df)

408 df['PTT'] = tmp_df_ptt

409 #print(df)

410

411 return df.drop('Time ',axis =1)
412

413 def regression_process(self):

414 from sklearn.preprocessing import

PolynomialFeatures

415 from sklearn.linear_model import

LinearRegression

416 from sklearn.ensemble import

RandomForestRegressor

417 from sklearn.datasets import make_regression
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418

419 TRAIN_PERC = .75

420 regr_path = 'Dataset \\ Regression '
421 dbp_errors , sbp_errors = pd.DataFrame (), pd.

DataFrame ()

422 file_lst = os.listdir(regr_path)

423 final_dict_dbp , final_dict_sbp = {}, {}

424 # file_lst = file_lst [40::]

425 # file_lst = [x for x in os.listdir(regr_path

) if '3601140 ' in x]

426 for file in file_lst:

427 patient = file.split('.')[0]
428 final_dict_sbp.update ({ patient :{}})

429 final_dict_dbp.update ({ patient :{}})

430 print(f'Patient: {patient}')
431

432 fig , axs = plt.subplots (2,1,sharex=

True)

433 fig.set_size_inches ((16 ,9))

434

435 df = pd.read_csv(regr_path+'\\'+file)
.set_index('Time ')

436 df = df.dropna(how='all')
437 #print(df)

438 x_final = np.arange(0, 60,.1)

439 for i in x_final:

440 try:

441 df.loc[i]

442 except:

443 df.loc[i] = [np.nan ,

np.nan ,np.nan ,np.

nan]

444 df = df.sort_values(by='Time ')
445

446

447 df[['HR','SBP','DBP']]. plot(style='o'
, ax=axs [0])

448 df[['PTT']]. plot(style='o', ax=axs

[1])

449 df[['HR','SBP','DBP']] = df[['HR','
SBP','DBP']]. interpolate(method='
polynomial ',order =1)

450 df['PTT'] = df['PTT']. interpolate(
method='polynomial ',order =5)

451

452
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453 df = df.loc[x_final ]. dropna ()

454 print(df)

455

456 [axs [0]. plot(df[x],'*',alpha=.4, label
=y) for x,y in zip(['HR','SBP','
DBP'],['HR - resampled ','SBP -

resampled ','DBP - resampled '])]
457 axs [1]. plot(df['PTT'],'*',alpha =.4,

label='PTT - resampled ')
458 [axs[i]. legend () for i in range (2)]

459 axs [1]. set_xlabel('Time [s]')
460

461

462 plt.tight_layout ()

463 self.create_path('Plots \\
interpolation ')

464 if self.save_figure: plt.savefig(f'
Plots\\ interpolation \\{ patient }.

png')
465 plt.show()

466

467 plt.close()

468

469 #REGRESSION

470 fig , axs = plt.subplots (4,1)

471 fig.set_size_inches ((16 ,9))

472 axs [1]. sharex(axs [0])

473 axs [2]. sharex(axs [0])

474

475 train_cols = ['HR','PTT']
476 axs [0]. set_ylabel('HR [bpm]', color='

tab:red')
477 axs [0]. plot(df['HR'],c='tab:red')
478 axs [0]. tick_params(axis='y',

labelcolor='tab:red')
479 axs_b = axs [0]. twinx ()

480 axs_b.set_ylabel('PTT [s]', color='
tab:blue ')

481 axs_b.plot(df['PTT'],c='tab:blue ')
482 axs_b.tick_params(axis='y',

labelcolor='tab:blue ')
483 [x.grid() for x in [axs[0], axs_b ]]

484

485 for x in train_cols:

486 for y in range(1,self.PREV_VAL):
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487 df[f'{x}-{y}'] = df[x]. shift(

y)

488 df = df.dropna ()

489 print(df.head (20))

490 df['ones '] = np.ones(len(df))

491

492 train_cols = ['HR','PTT','ones ']
493 for x in range(1,self.PREV_VAL):

494 train_cols.append(f'HR -{x}')
495 train_cols.append(f'PTT -{x}')
496 # final_cols = df.columns

497

498 # f = scipy.signal.resample(df , 550)

499 # beg ,end = df.index[0],df.index [-1]

500 # xnew = np.linspace(beg ,end , 550,

endpoint=True)

501 # df = pd.DataFrame(f)

502 # df.index = xnew

503 # x_final = np.arange(5, 60,.1)

504 # tmp_df = pd.DataFrame(np.nan , index

=x_final , columns=df.columns)

505 # df = df.append(tmp_df)

506 # df = df.sort_index ().interpolate(

method='polynomial ',order =3)
507 # df = df.loc[x_final ]. dropna ()

508 # df.columns = final_cols

509

510 #print(df)

511 #dfs=int (.10* len(df.index))

512 #df=df.iloc [0:dfs]

513 print(df)

514

515 #DBP Prediction

516 test_size = int(TRAIN_PERC*len(df.

index))

517 calib_size=int(1* test_size)

518 X_train_dbp ,y_train_dbp = df[

train_cols ].iloc [0: calib_size], df

['DBP'].iloc [0: calib_size]
519 X_test_dbp ,y_test_dbp = df[train_cols

].iloc[test_size ::], df['DBP'].
iloc[test_size ::]

520

521 X_dbp ,y_dbp=df[train_cols] , df['DBP'
]

522
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523 #SBP Prediction

524 X_train_sbp ,y_train_sbp = df[

train_cols ].iloc [0: calib_size], df

['SBP'].iloc [0: calib_size]
525 X_test_sbp ,y_test_sbp = df[train_cols

].iloc[test_size ::], df['SBP'].
iloc[test_size ::]

526

527 X_sbp ,y_sbp=df[train_cols] , df['SBP'
]

528

529 # axs [0]. plot(X_train_dbp['HR '],'o ')
530 # axs [1]. plot(X_train_dbp['PTT '],'o ')
531 # axs [2]. plot(y_train_dbp ,'o ')
532 # # plt.show()

533 axs [1]. plot(y_train_sbp ,label='Train '
)

534 axs [2]. plot(y_train_dbp ,label='Train '
)

535 maes_dbp , maes_sbp = [],[]

536 DEV_sbp ,DEV_dbp = [],[]

537 count_dbp , count_sbp = [],[]

538 x_labs = []

539

540

541

542 #============================================================

543 #gradient boosting

544 nTrees =[100]

545 [x_labs.append(f'GB: n_stimators ={x}'
) for x in nTrees]

546 for trees in nTrees:

547 regr=ensemble.

GradientBoostingRegressor(

n_estimators=trees ,

learning_rate =0.1,

max_depth=5,loss='lad')
548 y_hat_dbp = self.regression(

regr ,y_train_dbp ,

X_train_dbp ,X_test_dbp)

549 # y_hat_dbp = regr.predict(

X_test_dbp)
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550 axs [2]. plot(y_test_dbp.index ,

y_hat_dbp ,label=f'GB:
n_stimators ={trees}')

551 MAE_dbp = round(

mean_absolute_error(

y_test_dbp , y_hat_dbp) ,2)

552 count_dbp.append(self.

count_diff(y_test_dbp ,

y_hat_dbp , 'GB-DBP'))
553 maes_dbp.append(MAE_dbp)

554 #DEV_dbp.append(,DEV_dbp)

555

556 regr.fit(X_train_sbp ,

y_train_sbp)

557 y_hat_sbp = self.regression(

regr ,y_train_sbp ,

X_train_sbp ,X_test_sbp)

558 axs [1]. plot(y_test_sbp.index ,

y_hat_sbp ,label=f'GB:
n_stimators ={trees}')

559 MAE_sbp = round(

mean_absolute_error(

y_test_sbp , y_hat_sbp) ,2)

560 count_sbp.append(self.

count_diff(y_test_sbp ,

y_hat_sbp , 'GB-SBP'))
561 maes_sbp.append(MAE_sbp)

562 #DEV_sbp.append(DEV_sbp)

563

564 scoresg = cross_val_score(

regr , X_dbp , y_dbp , cv=5)

565 scoresg = np.abs(scoresg)

566 mean_scoreg = np.mean(scoresg

)

567 std_scoreg = np.std(scoresg)

568

569 # Print the mean and standard deviation of

the scores

570 print("Mean scoreg: {:.2f}".

format(mean_scoreg))

571 print("Standard deviation:

{:.2f}".format(std_scoreg)

)

572

573

574
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575

576

577 #===========================================================

578 #XG boosting

579 nTrees =[100]

580 [x_labs.append(f'XGB: n_stimators ={x}

') for x in nTrees]

581 for trees in nTrees:

582 regr=XGBRegressor(

n_estimators=trees ,

learning_rate =0.1,

max_depth=5,eta=0.1,

subsample =0.7,

colsample_bytree =0.8)

583 y_hat_dbp = self.regression(

regr ,y_train_dbp ,

X_train_dbp ,X_test_dbp)

584 #y_hat_dbp = regr.predict(

X_test_dbp)

585 axs [2]. plot(y_test_dbp.index ,

y_hat_dbp ,label=f'XGB:
n_stimators ={trees}')

586 MAE_dbp = round(

mean_absolute_error(

y_test_dbp , y_hat_dbp) ,2)

587 count_dbp.append(self.

count_diff(y_test_dbp ,

y_hat_dbp , 'XGB -DBP'))
588 maes_dbp.append(MAE_dbp)

589

590 regr.fit(X_train_sbp ,

y_train_sbp)

591 y_hat_sbp = self.regression(

regr ,y_train_sbp ,

X_train_sbp ,X_test_sbp)

592 axs [1]. plot(y_test_sbp.index ,

y_hat_sbp ,label=f'XGB:
n_stimators ={trees}')

593 MAE_sbp = round(

mean_absolute_error(

y_test_sbp , y_hat_sbp) ,2)

594 count_sbp.append(self.

count_diff(y_test_sbp ,

y_hat_sbp , 'XGB -SBP'))
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595 maes_sbp.append(MAE_sbp)

596

597 scores = cross_val_score(regr

, X_dbp , y_dbp , cv=5)

598 scores = np.abs(scores)

599 mean_score = np.mean(scores)

600 std_score = np.std(scores)

601

602 # Print the mean and standard deviation of

the scores

603 print("Mean score: {:.2f}".

format(mean_score))

604 print("Standard deviation:

{:.2f}".format(std_score))

605

606 #============================================================

607 #CAT boosting

608 nTrees =[100]

609 [x_labs.append(f'CAT: n_stimators ={x}

') for x in nTrees]

610 for trees in nTrees:

611 regr=CatBoostRegressor(

iterations=trees ,

learning_rate =0.1, depth

=5, verbose=False)

612

613 y_hat_dbp = self.regression(

regr ,y_train_dbp ,

X_train_dbp ,X_test_dbp)

614 # y_hat_dbp = regr.predict(

X_test_dbp)

615

616 axs [2]. plot(y_test_dbp.index ,

y_hat_dbp ,label=f'CAT:
n_stimators ={trees}')

617 MAE_dbp = round(

mean_absolute_error(

y_test_dbp , y_hat_dbp) ,2)

618 count_dbp.append(self.

count_diff(y_test_dbp ,

y_hat_dbp , 'CAT -DBP'))
619 maes_dbp.append(MAE_dbp)

620
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621 regr.fit(X_train_sbp ,

y_train_sbp)

622 y_hat_sbp = self.regression(

regr ,y_train_sbp ,

X_train_sbp ,X_test_sbp)

623 axs [1]. plot(y_test_sbp.index ,

y_hat_sbp ,label=f'CAT:
n_stimators ={trees}')

624 MAE_sbp = round(

mean_absolute_error(

y_test_sbp , y_hat_sbp) ,2)

625 count_sbp.append(self.

count_diff(y_test_sbp ,

y_hat_sbp , 'CAT -SBP'))
626 maes_sbp.append(MAE_sbp)

627

628 scores1 = cross_val_score(

regr , X_dbp , y_dbp , cv=5)

629 scores1 = np.abs(scores)

630 mean_score1 = np.mean(scores1

)

631 std_score1 = np.std(scores1)

632

633 # Print the mean and standard deviation of

the scores

634 print("Mean score1: {:.2f}".

format(mean_score1))

635 print("Standard deviation:

{:.2f}".format(std_score1)

)

636

637 #============================================================

638 # Linear regression

639 start_time = time.time()

640 w_dbp = (np.linalg.inv(X_train_dbp.

values.T@X_train_dbp.values))@(

X_train_dbp.values.T@y_train_dbp.

values)

641 print("Training time of dbp in Linear

regression : ", time.time() -

start_time , "seconds")

642 y_hat_dbp = X_test_dbp.values@w_dbp

643 print("Prediction time of dbp in

Linear regression : ", time.time()

- start_time , "seconds")
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644 axs [2]. plot(y_test_dbp.index ,

y_hat_dbp ,label='Linear ')
645 MAE_dbp = round(mean_absolute_error(

y_test_dbp , y_hat_dbp) ,2)

646 maes_dbp.append(MAE_dbp)

647 count_dbp.append(self.count_diff(

y_test_dbp , y_hat_dbp , 'Lin -DBP'))
648

649

650 w_sbp = (np.linalg.inv(X_train_sbp.

values.T@X_train_sbp.values))@(

X_train_sbp.values.T@y_train_sbp.

values)

651 y_hat_sbp = X_test_sbp.values@w_sbp

652 axs [1]. plot(y_test_sbp.index ,

y_hat_sbp ,label='Linear ')
653 MAE_sbp = round(mean_absolute_error(

y_test_sbp , y_hat_sbp) ,2)

654 maes_sbp.append(MAE_sbp)

655 count_sbp.append(self.count_diff(

y_test_sbp , y_hat_sbp , 'Lin -SBP'))
656 x_labs.append(f'Linear ')
657

658

659

660

661 #============================================================

662 axs [0]. set_title(f'Prediction vs.

Test for patient {patient}')
663

664 # axs [0]. sharex(axs [2])

665 width = 0.35

666 axis = np.arange(len(maes_dbp))

667 axs [3]. bar(axis+width/2,maes_dbp ,

width ,label='DBP')
668 axs [3]. bar(axis -width/2,maes_sbp ,

width ,label='SBP')
669 axs [3]. set_ylim (0,15)

670 axs [3]. set_title('MAE for each

algorithm ')
671 # x_labs = [f'POL: {x}' for x in

pol_orders]

672 # [x_labs.append(f'SVR: {x}') for x

in Cs]

673 # x_labs.append('SVR: Best ')
674 axs [3]. set_xticks(range(len(x_labs)))
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675 axs [3]. set_xticklabels (( x_labs))

676 axs [3]. set_ylabel('MAE [-]')
677 axs [3]. legend ()

678

679 axs [1]. plot(y_test_sbp ,label='Test ',
ls='--',lw=2,c='tab:blue ')

680 axs [1]. set_ylabel('SBP [mmHg]')
681 axs [1]. set_ylim(min(df['SBP']) -10,max

(df['SBP'])+10)
682 axs [1]. legend(ncol =3)

683

684 axs [2]. plot(y_test_dbp ,label='Test ',
ls='--',lw=2,c='tab:blue ')

685 axs [2]. set_ylabel('DBP [mmHg]')
686 axs [2]. set_ylim(min(df['DBP']) -10,max

(df['DBP'])+10)
687 axs [2]. set_xlabel('Time [s]')
688 axs [2]. legend(ncol =3)

689 for ax in plt.gcf().axes [0:2]:

690 try:

691 ax.label_outer ()

692 except:

693 pass

694

695 #print(df)

696 plt.tight_layout ()

697 self.create_path('Plots \\ Regression ')
698 if self.save_figure: plt.savefig(f'

Plots\\ Regression \\{ patient }.png')
699 dbp_errors[patient] = maes_dbp

700 sbp_errors[patient] = maes_sbp

701 for lab ,err_sbp ,err_dbp in zip(x_labs

,count_sbp ,count_dbp):

702 for cnt ,thresh in enumerate(

self.mmHg_thresh):

703 # print(lab ,err)

704 final_dict_sbp[

patient ]. update ({f

'{lab} > {thresh}'
:err_sbp[cnt]})

705 final_dict_dbp[

patient ]. update ({f

'{lab} > {thresh}'
:err_dbp[cnt]})

706 plt.show()

707
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708 pd.DataFrame(final_dict_sbp).to_excel(f'{self
.dataset_path }\\ sbp_thresh_errors.xlsx ')

709 pd.DataFrame(final_dict_dbp).to_excel(f'{self
.dataset_path }\\ dbp_thresh_errors.xlsx ')

710 dbp_errors.index = x_labs

711 sbp_errors.index = x_labs

712 # print(dbp_errors)

713 # print(sbp_errors)

714 dbp_errors.to_excel(f'{self.dataset_path }\\
dbp_errors.xlsx ')

715 sbp_errors.to_excel(f'{self.dataset_path }\\
sbp_errors.xlsx ')

716

717

718 def regression(self ,clf ,y_train ,X_train ,X_test):

719 from sklearn.preprocessing import

RobustScaler

720 scaler_x = RobustScaler ()

721 # scaler_y = StandardScaler ()

722 # print(y_train)

723 X_train = (scaler_x.fit_transform(X_train))

724 # y_train = scaler_y.fit_transform(np.array(

y_train).reshape (1,-1))

725 # print(y_train)

726 clf.fit(X_train , y_train)

727 pred = clf.predict(scaler_x.transform(X_test)

)

728 # pred = scaler_y.inverse_transform(np.array(

pred).reshape (1,-1))

729 return pred

730

731 def GS_regression(self ,clf ,params ,y_train ,X_train ,

X_test):

732 clf = GridSearchCV(clf , params)

733 clf.fit(X_train ,y_train)

734 pred_gs = clf.predict(X_test)

735 return pred_gs

736

737 def count_diff(self , test , pred , alg_type):

738 count_perc = []

739 for thresh in self.mmHg_thresh:

740 test , pred= np.array(test), np.array(

pred)

741 diff = np.abs(test - pred)

742 count = sum(i > thresh for i in diff)
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743 count_perc.append(round (100* count/len

(test) ,1))

744 #print(f '{count_perc }[%] > {thresh} [mmHg]

for {alg_type }')
745 #print()

746 return count_perc
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