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Abstract

Satellite Communication (SatCom) enables Internet access in remote locations
where conventional infrastructure is unavailable or too expensive to be deployed.
In a SatCom connection, a customer uses a parabola to connect to a satellite, which
sends all of the customer’s traffic to a ground station, which relays the traffic to the
Internet. Unlike traditional infrastructures, where the latency to retrieve content
is on the order of tens of ms, SatCom’s latency is much higher: ∼ 550ms for the
satellite link to reach the ground station, plus the time it takes for the ground
link to reach the content. In this scenario, the Quality of Experience (QoE) of
customers is significantly impacted by the SatCom connection, as slowdowns in
the satellite or ground link can severely impair the QoE of customers. In order
to identify and investigate such impairments, it is of utmost importance for the
SatCom operator to build models to estimate the customers’ QoE leveraging only
network flows generated by the customers. These models are really useful for the
Internet Service Provider (ISP) because in case of poor QoE it can take action
with the purpose of increasing customer satisfaction.

Thus, the goal of this thesis is to develop a method for assessing customer
QoE while browsing the web. I develop a machine learning model to estimate the
Speed Index or the onLoad, two of the metrics used to measure Web QoE, from
data flowing through the operator’s network. This data is collected by Tstat, a
custom flow monitoring software installed in the operator’s ground station. Tstat
captures all IP packets and groups them into flows to track the evolution of TCP
and UDP flows.

The proposed work focuses on different parts: (i) to investigate metrics for
measuring QoE in web browsing and tools for automatic benchmark (ii) to create
a testbed for automatic collection of network and QoE data in web visits, (iii) to
investigate the state of the art in machine learning techniques for regression and
classification (iv) the creation of models to investigate QoE prediction capabilities
in a real scenario.

The final dataset is created by merging two datasets: one active, collected on
the client side, which contains the label (the metric used to measure Web QoE) and
other information such as website and URL, and a second one passive, collected
by Tstat on the ISP ground station, which contains the intercepted network flows.
Relevant features are extracted from these data and used as predictors for the
machine learning models.

The work considers both regression models, such as linear regression or random
forest regression and classification models, such as support vector machines or
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random forest classification. Although the problem can intuitively be viewed as
a regression, I can also formulate it as a classification problem, e.g., by defining
categories for QoE: good, medium, and poor.

The proposed model achieves promising performance in predicting Web QoE
metrics on independent test sets. By further investigating aspects of real-world
visits, such as the presence of local cache, and simulating typical browser visits,
the performance decreases.
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Chapter 1

Introduction

This chapter acts as an introduction for the thesis work. The first part describes
the satellite communication. The second part focuses on QoE description and the
third part contain the description of the task proposed in this work. Finally, an
overview of the SatCom network and related work in this field is presented.

1.1 Satellite Communication
Satellite communication (SatCom) is one of the main means for international and
domestic communications over long or moderate distances. The main reason for
using SatCom is that a single satellite spans over a third of the Earth’s surface
[11]. SatCom is composed by two main components (Figure 1.1):

• Ground segment

• Space segment

The sender (transmitter) uses a parabolic dish antenna on the ground to trans-
mit the signal up to the communication satellite. Then the communication satellite
receives the signal from the transmitter’s antenna and amplifies it. The receiver
receives the signal from the satellite using a parabolic dish antenna on the ground
station. The signal is then amplified and processed to remove any noise or dis-
tortion. Once the signal has been received, the data is demodulated and decoded
before being processed by the receiver’s computer or communication device.

Satellite Communication plays an important role in different applications:

• DHT or Satellite Television

• Satellite radio

• GPS

1



Introduction

Figure 1.1. Satellite communication scheme, taken [16]

• Military application

• Weather condition monitoring

• Satellite Internet access

Our work concerns the last application. Over the last few years the growth of the
internet makes Internet Service Providers one of the largest costumers for satellite
services.

Satellites can be classified by their orbit distance. Geostationary (GEO) satel-
lites are the most widely used solution. Those satellites orbits the Earth at an
altitude of about 36 000 km in a circular orbit, and have the same angular velocity
of the Earth’s rotational speed. In this way it is possible to establish a connection
between the satellite and a ground station because the satellite appears to remain
stationary in the sky as viewed from a fixed point on the ground. This makes it
easier to maintain a continuous connection, particularly for applications such as
television broadcasting, where a constant signal is required. However, the high
altitude of GEO satellites also means that there is a higher latency in the commu-
nication as signals have to travel a longer distance, resulting in a delay between
the transmission and the reception of data.
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There are also satellites that have a different orbit, low Earth orbit (LEO),
typically between 160 km to 2000 km of altitude. Because of their lower altitude,
LEO satellites can provide faster communication and lower Earth-to-sat latencies,
around 25 to 35 ms, compared to GEO satellites. But unlike GEO, LEO satellites
does not stay in a fixed position in the sky since they are moving at a much
faster speed. So a continuous connection is not guaranteed, but there is a need for
protocols to switch between satellites. Also, they have a much smaller coverage
area because of the distance, there is therefore a need a satellite constellation to
cover the same area. A satellite constellation consists of a high number of satellites
in orbit, so LEO systems are more expensive compared to GEO systems because
they require more satellites to be effective.

In addition, there are several differences between SatCom networks and terres-
trial network:

• Coverage: With SatCom it is possible to cover each and every corner of the
earth like rural areas or territory of underdeveloped countries; SatCom can
provide also polar coverages. The cost is not dependent of the coverage area
since a single satellite with geostationary orbit can cover entire continents;
instead, terrestrial networks provide coverage area over a limited geographical
area.

• Bandwidth: Terrestrial networks generally offer higher bandwidth compared
to SatCom networks. GEO SatCom suffer from limited capacity due to the
limitations of satellite technology, a single beam have a capacity on the order
of 10 Gb/s.

• Latency: The distance from earth forces a Earth-to-sat round trip time above
550 ms in geostationary orbit, in addition to the terrestrial delay. This is the
most important difference, because the added latency is substantial.

• Weather dependency: SatCom networks are more susceptible to weather con-
ditions such as rain, snow, and thunderstorms, which can affect the signal
quality and lead to disruptions in communication.

• Mobility: SatCom networks can provide communication services to mobile
platforms such as ships, airplanes, and vehicles, while terrestrial networks are
limited to stationary locations.

• Security: Terrestrial networks can be more secure due to the physical control
and protection of the network infrastructure, while SatCom networks are
more susceptible to interference and hacking due to the open nature of the
communication channel.

3



Introduction

1.2 Quality of Experience
According to the definition of COST Action QUALINET, Quality of Experience
(QoE) is:

[...]The degree of delight or annoyance of the user of an application or
service. It results from the fulfillment of his or her expectations with
respect to the utility and/or enjoyment of the application or service in
the light of the user’s personality and current state.[5]

Quality of Experience refers to a user’s overall satisfaction with the use of a product
or service. It encompasses subjective factors such as perception, emotion, and
cognition, as well as objective factors such as performance and functionality. QoE
is often used to evaluate the quality of multimedia services, but it can also be
applied to other types of products and services.

QoE is important for ISPs because it is a measure about how users are satisfied
with the quality of their service which in this case depends on many factors, such
as latency, jitter and percentage of packets lost. In this way ISPs are able to im-
prove their service in order to increase costumer satisfaction and buisness growth.
ISPs want to maximize the Quality of Experience of users to avoid problems, mis-
behavior of the service and, as a result, churning by users. ISPs are responsible
for delivering high-quality services to their customers, whether it’s a home user
browsing the internet or a business relying on the internet for critical operations.
If the QoE is poor or inconsistent, customers may switch to a different provider,
resulting in a loss of revenue for the ISP. The QoE depends on several factors, not
only on the connection of the partecipants, but also on the network architecture
and the in-network management. [15]

QoE measurement methods can be classified into two classes:

• Subjective Measurements: They are based on human ratings, they in-
volve collecting feedback directly from users through subjective means such
as surveys, interviews, or questionnaires. The goal is to gather information
on the user’s perception of the quality of the product or service, as well as
their experience using it. This method provide rich and detailed data about
the user’s experience. However, they can be time-consuming and expensive
to conduct, and the results may be influenced by factors such as the user’s
mood, expectations, and biases. A widely used measure is the Mean Opinion
Score (MOS), an opinion score is a score on a predefined scale that a user
assigns to his opinion of the performance of a system, MOS is the average of
this values. [19]

• Objective Measurements: They provide an automated alternative to sub-
jective tests. These methods involve collecting data directly from the system

4
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or application itself, without relying on user feedback. This may include met-
rics such as response time, error rate, or network performance. The advantage
of objective methods is that they are more objective and less susceptible to
user bias. However, they may not fully capture the user’s experience or sat-
isfaction, and may not provide detailed insights into specific aspects of the
user’s experience.

Both subjective and objective methods have their strengths and weaknesses, and
often a combination of both methods is used to obtain a more comprehensive
understanding of QoE.

1.3 Motivation and Objectives
Due to the limited capacity and high latency of satellite communication, it is of
great importance to have an estimate of customer satisfaction. There are several
ways to do this, but because of the limitation of the SatCom connection it would
be complicated to take the network data directly from the user. This causes an oc-
cupation of the user’s precious bandwidth and can cause delays in communication.
So data can be taken after the ground station, when the satellite connection ends
and the terrestrial connection begins. The goal of this research is to create a ma-
chine learning model that is able to predict the QoE of web-browsing. This would
be very useful for Internet Service Providers whose can have a score of navigation
quality thus being able to take action on the state of the network. The proposed
approach entails obtaining scores by using supervised machine learning models. In
particular we wish to find a connection between network traffic and QoE in web-
browsing seen by the user. Because this is a supervised task we need a method to
capture QoE scores then tie them with the right flows in the network. Once the
data collection process is finished, we need to pre-process the raw data in order to
get a good result and extract features from the network flow information. Then
we focus on trying various machine learning models (Linear Regression, Random
Forest, Support Vector Machine) on several types of dataset and see the results.

Lastly we focus on the real case scenario, it is a tough scenario because we have
multiple overlapping visits and it is difficult to distinguish the right packets that
belong to a visit.

1.4 Overview of the SatCom network
The satellite navigation system is the same as that described in the work of Perdices
et al. [14]. This work focuses its analysis in passive traffic characterization of a
global SatCom network. It takes in consideration thousands of costumers using a
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GEO satellite network. This technologies, as mentioned before, have a limited and
shared with several costumers bandwidth and an RTT of at least 550 ms. GEO
satellite have directional beams, each one enables efficient space and frequency
multiplexing providing a total channel capacity on the order of 10 Gb/s. The
operator has deployed a satellite infrastructure consisting of GEO satellites and
a ground infrastructure. As we can see in Figure 1.2, costumers use a dedicated
equipment, i.e., CPE (Costumer-premises Equipment), in order to connect their
devices to the SatCom network. The satellite acts as a relay for subscriber traffic
which reaches the ground station that forwards the traffic to the internet.

Figure 1.2. Overview of our setup using SatCom Network.

On the shared uplink channel, the first time that the CPE needs to transmit
a packet it makes use of a complicated MAC protocol. To avoid collision, a Time
Division Multiple Access (TDMA) scheduling protocol is used to establish connec-
tion between the CPE and the satellite. The latter forwards all the packets to the
ground station via a dedicated high-capacity beams.

On the download channel, packets take the reverse path from the uplink channel,
so the ground station send the packets directly to the satellite, which transmits
them to the CPE by selecting the correct frequency and beam. Here the packets
are broadcasted to all receivers, so CPE filters those intended for it. To have a
reliable connection, the SatCom operator implements a Forward Error Correction
(FEC) and an Automatic Repeat Request (ARQ) mechanisms.

Moreover, to limit the disadvantages of high latency, a Performance Enhancing
Proxy (PEP) is implemented improving the TCP performance. PEPs work by
intercepting and analyzing network traffic between a client and server, and making
various optimizations to improve the speed and efficiency of data transfer. For
example, a PEP may compress data, prioritize certain types of traffic, or optimize
the use of network resources to reduce latency.

As we can see in Figure 1.3 the subscriber CPE acts as a transparent TCP
proxy. It intercepts the connection between the end-user and the internet, then it
forwards TCP payload to the ground station via a bidirectional reliable tunnel over
UDP. Also the ground station works as a L4 proxy since when it receives a connect
request it establishes a new TCP connection to the actual destination server. This
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works only with TCP traffic and not with UDP traffic which is forwarded as is.

Figure 1.3. Division of the total RTT: Home RTT (Ground RTT #1), Satellite
RTT and Ground RTT (Ground RTT #2).

Additionally, the ground station acts as a Network Address Translation (NAT)
box and DNS resolver. The SatCom operator also uses Quality of Service sched-
ulers to prioritize interactive traffic.

The authors installed a passive probe at the operator’s ground station in Italy in
order to collect passive measurements. The traffic is collected after the operation
of the PEP. All user traffic from that segment of the satellite passes through here.
Each user is identified by his SatCom CPE IPv4 IP address. The server runs
Tstat (TCP STatistic and Analysis Tool [22]), a traffic measurements software
that generates various information in real time from the processed data packets.
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Here the estimation of the TCP Round Trip Time (RTT) is not accurate because
of the presence of PEP, indeed as we can see in Figure 1.3 the total RTT is divided
into three parts:

• Home RTT: between the user’s device and the user’s SatCom CPE.

• Satellite RTT: between the user’s SatCom CPE and the ground station (PEP
tunnel). For the estimation of this time the authors use the information
provided by the TLS handshake protocol taking the measure of the time
between the Server Hello message and the next Client Key Exchange message
/Change Cipher Spec message. This time also contains the Home RTT, but
it can be considered insignificant compared to the satellite.

• Ground RTT: between the ground station and the destination server. Here
Tstat uses the information of the TCP handshake protocol, indeed the TCP
connection is initiated by the ground station PEP

1.5 Related work
In recent years, satellite communication has become increasingly important be-
cause of its ability to provide reliable, and global connectivity that is critical for
a range of applications and industries. Therefore many studies have been done in
this area.

In [10] the performance of modern web protocols over satellite links was evalu-
ated. In particular, technologies such as VPNs and new protocols such as QUIC.
PEPs pep cannot go into action when TCP connection are encripted within VPNs.
Moreover, QUIC has encrypted transport layers by design and also in this case
PEPs cannot be used. The work of J, K-S, and R shows that HTTP/1.1 does not
perform well, in all the case scenario (with or without PEPs); instead, HTTP/2
has much better results if it uses PEPs; HTTP/3 and QUIC achieved worse per-
formance than HTTP/2 with PEPs.

Several research papers have already studied Quality of Experience under dif-
ferent perspectives [6]. In [13] the authors investigate the connection between the
QoE in various wireless services and the network and channel condition. The pa-
per proposes the MLQoE, a modular algorithm for user centric QoE prediction.
Empirical measurements based on network metrics (average Delay, packet loss,
average jitter, average burst Interarrival-packets...) are used as predictors. As
predicted outcome, subjective opinion scores reported by actual users are used.
The MLQoE achieves good results compared to the ML alghotitms, in fact it
predicts fairly accurately the QoE score.

The work done by Alreshoodi and Woods study the existing correlation models
which attempt to map Quality of Service (QoS) to Quality of Experience (QoE)
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for multimedia services. [1]. The term QoS is determined by deterministic net-
work parameters, and this paper analyses a number of previous works that seek
techniques that can reliably calculate weighting coefficients for QoS/QoE mapping.
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Chapter 2

Testbed

In order to satisfy the purpose of this research a dataset need to be generated. The
data collection work is divided into two parts: passive measurements (network
data) and active measurements (QoE data in web visits).

Figure 2.1. Measurements setup overview. Active measurements gener-
ated by the terminal and Passive measurements generated by capturing
flows after the ground station.

2.1 Passive Measurements
This dataset is built from the work done by Perdices et al. [14]. As mentioned above
a custom flow monitoring software (Tstat) is used. A passive probe is installed
at the operator’s ground station capturing all the data after the PEP operation.
Since PEP operates like a proxy server, in the case of TCP connection, the client
sends a request to establish a connection to the proxy server instead of the intended
destination server. The proxy server then forwards this request to the destination
server on behalf of the client. When the server responds to the request, it sends
the response back to the proxy server, which then forwards it back to the client.
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So in our case, Tstat intercepts and creates statistics about the communication
between the PEP and the web server.

2.1.1 Tstat
Tstat (TCP STatistic and Analysis Tool [24]) is a passive sniffer developed by the
networking research group at Politecnico di Torino. It is developed in ANSI C
to have good efficiency and it has an highly flexible design with several plugin
modules.

Tstat captures all IP packets and groups them in flows, according to some rules.
Both TCP and UDP flows are identified. This grouped packets are analyzed by
Tstat, which gives several summary information such as packet and byte counters.
This information is calculated for both sent and received packets in order to give
statistics for client-to-server and server-to-client flow.

Tstat creates different LOG files:

• log_tcp_complete: reports every TCP connection that has been tracked
by Tstat.

• log_udp_complete: reports every tracked UDP flow pair.

• log_video_complete: reports every TCP Video connection that has been
tracked.

• log_mm_complete: reports statistics for the RTP and RTCP flows.

• log_chat_complete: reports statistics for MSN Messenger, Yahoo! Mes-
senger and Chat based on XMPP Protocol flows

All these statistics are stored in different TXT files where each row corresponds
to a different flow and each column is associated to a specific measure.

In Tables 2.1 and 2.2, we have respectively relevant information for TCP flows
and for UDP flows. This data is used to construct our features.

2.2 Active Measurements
This dataset is created from the data generated by the terminal connected to the
internet through SatCom connection. Specifically, the client visits several web
pages collecting metrics that describe the Web QoE for each visits. So, this part
of the data gives us information about the target variable (dependent variable)
of our machine learning model. The WebQoE metrics used are speedindex and
onLoad. The experiments were done in an automated way through browsertime
and docker, as will be explained later.
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Column Description
s/c_ip IP addresses of the server/client
s/c_port TCP port addresses for the server/client
First Absolute time in ms of first packet of flow
s/c_first Time of first server/client packet with payload since the

first flow segment
s/c_rtt_avg Average RTT computed measuring the time elapsed be-

tween the data segment and the corresponding ACK
s/c_rtt_min Minimum RTT observed during connection lifetime
s/c_rtt_max Maximum RTT observed during connection lifetime
s/c_rtt_std Standard deviation of the RTT
s/c_ttl_min Minimum Time To Live
s/c_ttl_max Maximum Time To Live
c_tls_SNI For TLS flows, it is the server name indicated by the

client in the Hello message extensions
s/c_sit_n With n equal from 1 to 9. It is the interarrival time

between the n packet and the n-1 packet sent by the
server/client

Table 2.1. List and description of the relevant column in the
log_tcp_complete file. [24]

Column Description
s/c_ip IP addresses of the server/client
s/c_port UDP port addresses for the server/client
s/c_first_abs First server/client packet in absolute time
quic_SNI For QUIC flows(QUIC integrates TLS), it is the server

name indicated by the client in the Hello message ex-
tensions

s/c_sit_n With n equal from 1 to 9. It is the interarrival time
between the n+1 packet and the n packet sent by the
server/client

Table 2.2. List and description of the relevant column in the
log_udp_complete file. [24]
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2.2.1 Speed Index
Introduction

Speed Index (SI) is one of the metrics that is used as outcome of our Regression
model. It is expressed in milliseconds and it measures how quickly content is
visually displayed during page load. Speed Index can give a solid idea of a site’s
overall speed, efficiency , and performance. It is also used by Google’s PageSpeed
Insight that defines it as "how quickly the contents of a page are visibly populated".
SI does not take into account when the browser renders all elements, but only the
visible parts of a webpage to be displayed.

Figure 2.2. WebPageTest captures video of the page loading, showing the per-
centage of visually complete.

WebPageTest [26] is one of the most popular tools for measuring and analyzing
the performance of web pages and it added the Speed Index metric in 2012. Web-
PageTest records a video of the page is loading and then it analyzes each video
frame (10 frames per second). It assigns a certain percentage of completion to
each frame, so the score is 0% for a blank screen and 100% for a visually complete
page. In Figure 2.2 we can see an example.

Measuring Visual Progress

There are two main methods to calculate the completeness of each video frame:
Visual Progress from Video Capture and Visual Progress from Paint Events.

Visual Progress from Video Capture is a technique that take histograms of
the colors in the image and just look at the overall distribution of the colors in the
page. The difference between the histogram of the first frame and the histogram
of the last frame is calculated and used as the baseline. Then for each frame is
calculated the difference between its histogram and that of the first video frame.
This technique works well in most of the cases but it is very sensitive to the end
state and it has problems with video playing on pages or slideshows animating.

Visual Progress from Paint Events is a more recent technique and it uses
the Paint Events that are exposed by Webkit through the developer tools timeline.
It does not require capturing video. The process requires a fair bit of filtering and
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weighting. In the end the visual progress is calculated by adding each paint’s
contribution to a running total, approaching the overall total.

Measuring Speed Index

Figure 2.3. Example of Visually Complete Progress Graph

After calculating the percentages of completeness they are plotted over time
obtaining a graph like the one in Figure 2.3. The formula for quantifying Speed
Index is:

SpeedIndex =
Ú end

0
1 − x

100dx

where end is the end time in millisecond, and x is the percentage of visually
complete.

As we can see in Figure 2.4, the Speed Index is the area above the complete
progress curve. Left pictures in Figure 2.4 shows page renders very late, instead
right picture shows page starts rendering earlier; in this way the user can imme-
diately see most of the elements on the page, showing good user experience.

2.2.2 Page Load Time (onLoad) and other metrics
The Page Load Time is measure used to estimate the QoE of Web users. Also
this metric is expressed in milliseconds and it is always higher than Speed Index.
It is easily measurable since it measures the time it takes for the page to fully
load. It is still used as the main indicator of performance in most recent scientific
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Figure 2.4. Measuring Speed Index through Visual Progress

work [2]. OnLoad is less realistic than SpeedIndex since the last object may not
be important for the page rendering, but SI suffers with dynamic pages and it is
computational intensive to measure.

Figure 2.5. Metrics to express user perceived quality of web browsing, taken [2]

In Figure 2.5 we can see the most important metrics used to measure quality
of Web users experience. Quality of Experience is intrinsically subjective, so it is
hard to find a metric able to measure it. Some of them are even not correlated
each other as we can see in figure 2.6.

The user experience can be measured by an opinion score and summarized with
the MOS, so onLoad and SI cannot directly capture the QoE. However, the work
done by Hora et al. shows that the onLoad and Speed Index are correlated with
users’ QoE [8]: onLoad show a strong (0.81) Pearson correlation with MOS.
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Figure 2.6. Pearson correlation between pairs of WebQoE metrics, taken [2]

2.3 Tool Description

2.3.1 Docker
Docker[7] is a software platform, it was released as open-source in 2013 and is
developed by Docker, Inc., a Platform-as-a-Service (PaaS) provider company. In
May 2016 an analysis showed that also organizations like Cisco , Google, Huawei,
IBM, Microsoft and Red Hat are contributors to Docker in addition to The Docker
Team itself.

Docker brings several advantages: Docker lets standardize application opera-
tions, easily move code, and save money by improving resource utilization.

The concept of container is the hearth of Docker, it is a small unit that contain
the software and all the needed dependencies and context to run it making it
possible to run the software regardless of the underlying environment. The key
to its success is that a container virtualize applications in a lightweight way also
because of each container shares the OS of the host machine.

Docker uses a client-server architecture. As we can see in Figure 2.7, the Docker
client interacts to the Docker daemon using a REST API. The Docker daemon
manages Docker object such as containers, images, network and volumes. Users
interact with Docker through the Docker client which can comunicate with more
than one daemon.
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Figure 2.7. Docker architecture, taken [7]

A Docker image is a read-only template, it is the starting point to create con-
tainers since a container is a running instance of an image. Since images do not
contain the kernel, which is shared with the underlying OS, they are not so heavy
and slow. Image registries store all the Docker images.

2.3.2 Browsertime
Browsertime is an open-source product that is part of the family of tools site-
speed.io [17]. It is built upon other Open Source tools such as Selenium or Visual-
Metrics. Sitespeed.io allows us to monitor the performance of a website, simulating
real users connectivity.

Browsertime is the main tool of sitespeed.io, it handles everything with the
browser, in this work only Chrome browser is used but it supports several browsers
such as Chrome, Firefox, edge and Safari. During the visit of the page it records
a video of the Browser screen, this video is used to calculate Visual Metrics.

In order to understand how Browsertime works, sitespeed.io gives us an example
of what happens when a test of a URL in browsertime is started:

1. Browsertime is run with the configuration you want.

2. Through Selenium it start Chrome or Firefox depending on your configura-
tion.
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3. Browsertime starts recording a video of the browser screen using FFMPEG.

4. The browser connects to the site via the desired URL.

5. After visiting the page it collects the timing metrics through the default
JavaScript timing metrics.

6. Browsertime saves all request/responses on the page in a HAR file.

7. It stops recording a video, from which Visual Metrics like Speed Index are
taken.

Moreover another advantage of browsertime is that you can run browsertime
using a Docker containers, this makes it easy to deploy. Indeed the sitespeed.io
team have Docker images with Browsertime, Firefox and Xvfb.

Browsertime gives as output an HAR (HTTP Archive format) that is a JSON
formatted file and it is used by several HTTP session tools to export the captured
data. An HAR file contains several information such as:

• All the end to end HTTP requests/responses

• Headers

• Timings

• URL

• Headers

• Cookies

• Speed Index

• onLoad

• onContentLoad

Browsertime is highly configurable, of particular importance is the option chrome.args.
Through this option it is possible to give the user data directory to chrome. This
directory contains profile data such as cookies, bookmarks, history and other in-
formation.
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Figure 2.8. Example of the end to end HTTP requests/responses in an HAR file.

2.4 Browser cache and cookies
Chrome saves the cached pages and images in the a folder named Cache, which is
itself inside the user data directory. Cookies are stored in a SQLite database file,
Cookies.sqlite, still within the user data directory.

The cache is a component used to temporarily store data for faster future
access. The browser cache stores different types of contents like html, images, java
script etc. Chrome uses at least five files: one index file and four data files. The
index file contains an hash table used to locate entries on the cache [20]. When the
browser requests data from the web server, if it is available in the cache then the
browser loads the data directly from its cache, without retrieving it from the web
server. Through specific HTTP headers it is possible to instruct the web browser
when to cache a resource, when not to, and for how long [9]. The Last-Modified
header of a cached asset is the time a document last changed; through the If-
Modified-Since request header field, web browser can query the server if that asset
has changed over time.

Cookies are small blocks of data that a web server sends to the browser, which
places this data on the memory or disk. When the browser requests an object from
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the same web server in the future , the browser will send the data blocks back on
the web server. In this way, a website can identify a particular user. Cookies are
useful for:

• Session management: Web servers recognize users and recall their individ-
ual login information and preferences.

• Personalization: Websites can customize the page according to user pref-
erences, thus showing personalized advertisements.

• Tracking: Shopping sites use cookies to track users’ web browsing habits,
such as items previously viewed.

Browsertime every time it loads a web page, it loads it as if it were being
displayed for the first time, without using either cookies or the browser cache. In
order to make the automatized tool for testing closer to the real case, there is the
need to use cookies and cache also in our test. In fact, on the first visit to many
websites, a small pop-up notifications (cookie banners) appear, covering the rest of
the page. This cookie banner asks for users’ consent before using cookies. Visiting
web pages in this way would skew our tests, since in the real case scenario a user
would have already accepted cookies and filled the browser cache.

In this context Browsertime comes to meet us with the chrome.args option
used to refer to the user data directory. The cache is filled simply by making an
initial visit to the desired site. As for cookies, the issue is more complicated in
that you have to accept them once you visit the site. But here again browsertime
helps us by providing Test by scripting [4], which makes it possible to measure a
user journey through JavaScript. A user can login, visit multiple pages and click
on HTTP items such as the Accept All button of cookie banners. By accepting
cookies, they will be saved inside the user data directory.

With these two expedients we can now make real visits to web sites, simulating
being real users.

2.5 Creation of the dataset
At this point we have a series of HAR files from the active measurements and a
series of csv files from the passive measurements. As a first step we concatenate
all the file of passive and active measurements respectively, obtaining two different
datasets. Then we need to merge these two datasets, to do this to each row of the
passive dataset (a single flow traced by tstat) we assign an active measurement.
In order to do this we need to know the IP address of our machines since Tstat
traces all the IP packets passing through the ground station of the ISP.
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Since Tstat anonymize IP addresses through Crypto-PAn (Cryptography-based
Prefix-preserving Anonymization) the IP addresses of our machines are obtained
through reverse engineering work by visiting not very popular sites and then search
in the passive dataset the IP that have visited that sites on a given day and time.

After filtering the data by IP address, the pairing is made based on the Server
Name Information (SNI), it is an extension to the TLS protocol that allows a
browser to indicate which hostname it is trying to connect at the start of the
handshake process. So if we are browsing www.google.com, the first flow with SNI
equal to google.com will be the trigger for the start of the visit in the passive
data. Then every flow that falls in the measurement interval of the active data is
assigned to that same measurement. In Figure 2.9 there is a summary of the data
set process flow.

Figure 2.9. Dataset process flow

Each row of the merged data set is a single flow traced by tstat accompanied
by the information from the active data set, such as Speed Index, onLoad, URL
and website. We have the label needed by our regressor (Speed Index or onLoad)
and the information given by tsat that need to be processed to extract relevant
features.

21



Chapter 3

Methodologies

3.1 The Regression problem
Regression refers to predictive modeling problems that involve predicting a numeric
value. It is one type of supervised learning problem which wants to find the
relationship between a dependent variable and one or more independent variables.
In other words, given a set of input variables X and their corresponding output
values Y, the goal of the regression problem is to find a function f(X) that maps
the inputs to the outputs with the least amount of error or loss.

Yi = f(Xi, β) + ei

where β is an unknown parameter, Xi are the independent variables, Yi the de-
pendent variables and ei the error terms.

Regression models can be linear or nonlinear, depending on the nature of the
relationship between the input and output variables. In Figure 3.1 we can see
the differences between linear and nonlinear regression. The main difference be-
tween linear and nonlinear regression is the shape of the relationship between the
dependent variable and the independent variables. Linear regression models as-
sume a linear relationship, while nonlinear regression models assume a nonlinear
relationship. In general, nonlinear regression models can capture more complex
relationships between variables than linear regression models. However, nonlinear
regression models can also be more difficult to estimate and interpret than linear
regression models.

3.1.1 Linear Regression
Linear regression assumes that there is a linear relationship between the dependent
variable and one or more independent variables. The linear equation takes the form
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Figure 3.1. Linear vs Non-linear regression.

of y = mx + b, where y is the dependent variable, x is the independent variable,
m is the slope or coefficient of x, and b is the y-intercept.

The goal of linear regression is to estimate the values of m and b that best fit the
observed data. This line is the one which minimize an error measured using a loss
function. Error is the distance between the point to the regression line. Typically,
to estimate the parameters m and b a technique called least squares regression is
used, it minimizes the sum of the squared differences between the predicted and
observed values of the dependent variable.

Once the linear equation has been fitted to the data, it can be used to make
predictions about the dependent variable based on the values of the independent
variable.

3.1.2 Random Forest Regressor
Random forests is a popular ensemble learning technique used for both classifi-
cation and regression tasks. It is one of the most used methods thanks to its
robustness and ease of use. Random Forest Classifier (RFC) is used for classifi-
cation problems, where the goal is to predict a categorical variable. On the other
hand, Random Forest Regressor (RFR) is used for regression problems, where the
goal is to predict a continuous variable. The method is based on the creation of a
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forest of decision trees and the random selection of attributes.
RFR builds multiple decision trees and combines their predictions to obtain

a more accurate and stable prediction. A Decision Tree is a type of supervised
learning algorithm, it creates a tree-like model of decisions and their possible
consequences. It divides the dataset into smaller subsets by creating decision nodes
that split the data based on specific conditions. Each decision node corresponds
to a test of some attribute, and each leaf node represents a label. The decision
trees in a Random Forest are constructed using a random subset of the training
data and a random subset of the features. The final prediction is then calculated
by averaging the predictions of all the individual decision trees.

Building a Random Forest Regressor involves the following steps:

1. Random subset of data: Randomly select a subset of the training data, with
replacement. This is known as a bootstrap sample.

2. Random subset of features: Randomly select a subset of features from the
dataset. This subset of features is used to determine the best split at each
node in the decision tree.

3. Build decision tree: Using the selected data and features, construct a decision
tree. This tree is built recursively by splitting the data into subsets based on
the selected features and finding the best split.

4. Repeat steps 1-3: Repeat steps 1-3 to build multiple decision trees.

5. Combine predictions: For a new data point, obtain the prediction from each
of the decision trees and average the predictions to obtain the final prediction.

This steps are summarized in Figure 3.2. The randomness helps in building an
uncorrelated forest of trees, and model fits the input data in a shorter time as each
decision tree is independent, making parallel computing and modeling possible
[25].

This methods has an high accuracy and efficiency, it is also scalable both in
training set size and attribute number. RFR can also handle missing values and
outliers, and it is less prone to overfitting than decision trees. However, it can be
computationally expensive, especially for large datasets with many features.

3.1.3 Regression metrics
These metrics are used to evaluate how well the predictions made by the regression
model match the actual values in the test data, and they can help you to determine
whether the model is accurate and reliable enough for practical use. The metrics
that we used to evaluate regression models are:
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Figure 3.2. The scheme of Random Forest algorithm, taken [25]

R-squared (R2 Score)

R-squared, or coefficient of determination, is the proportion of the variance for a
dependent variable that is predictable by an independent variable or variables. It
normally ranges between 0 and 1, but it is possible to have negative values. An
R-squared of 1 means that all of the observed variation can be explained by the
model’s input.

To calculate R2 score let us suppose we have a set of n predicted value y1, ..., yn

and a set of n fitted value f1, ..., fn. We define the residuals as:

ei = yi − fi

And the mean of the observed data as:

y = 1
n

nØ
i=1

yi
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The residual sum of squares is the unexplained variation:

SSres =
Ø

i

e2
i

The total sum of squares is the total variation:

SStot =
Ø

i

(yi − y)2

So the R2 score can be calculated by :

R2 = 1 − SSres

SStot

R-squared will give a good estimate of how well the regression predictions ap-
proximate the real data points. However it does not necessarily indicate that the
model has a good fit, it is possible to have a good R2 score and have a poorly
fitted model and vice versa.

Mean Absolute Error (MAE)

Mean absolute error is calculated as the sum of absolute errors divided by the
sample size.

MAE =
qn

i=1 |ei|
n

Where ei are the residuals, defined above.
MAE is very easy to interpret, it makes a comparison of predicted and observed

value. Moreover each error contributes to MAE in proportion to the absolute value
of the error.

Mean Absolute Percentage Error (MAPE)

The mean absolute percentage error is an evaluation metrics that measures the
prediction accuracy of a method. It is commonly used as a loss function for
regression problems and in model evaluation. MAPE is defined by the formula:

100%
n

nØ
i=1

-----yi + fi

yi

-----
where yi is the predicted value and fi is the forecast value.

MAPE gives a very intuitive interpretation in terms of relative error, but it has
problems with zero or close to zero values and it puts a heavier penalty on negative
errors (when yi < fi), than on positive errors.
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Root Mean Square Error (RMSE)

The root-mean-square error of root-mean-square deviation represents the square
root of the second sample moment of the residuals.

RMSE =
óqn

i=1(ei)2

n

RMSE possesses disadvantages in interpretability over MAE. Also, each error
does not influence RMSE in direct proportion, but RMSE accounts for both sys-
tematic and random events, which is not the case for MAE.

3.2 The Classification problem
Classification is a supervised learning problem which find a mapping from the
space of input vectors representing the object to a discrete set of labels. It is an
example of pattern recognition problem.

Figure 3.3. Binary vs multi-class classification.

Given (x1, y1), (x2, y2), ..., (xn, yn), classification search a function f(x) to predict
y given x, where y is categorical. x can be multi-dimensional, each dimension
corresponds to an attribute. We have a binary classification if there are two classes,
so y can assume only two values (0 and 1 for example). Instead we have a multiclass
or multinomial classification if there are three or more classes. In figure 3.3 we
can see two distinct clusters for the left picture and three distinct clusters for the
other one.

The most used algorithms for binary classification are:
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• Logistic Regression

• k-Nearest Neighbors

• Support Vector Machine (SVM)

• Decision Trees

Algorithms like SVM or Logistic Regression are specifically designed for binary
classification, but they can be adapted for multi-class problems using two tech-
niques:

• One vs. All: There are N-binary classifier models, one for each class.

• One vs. One: For each pair of classes we have a binary classifier model
(N ∗ N−1

2 models)

3.2.1 Random Forest Classifier
Random Forest Classifier (RFC) uses a very similar method to that already men-
tioned for the RFR. The main differences between Random Forest Classifier and
Random Forest Regressor are:

• Output: The output of Random Forest Classifier is a class label, while the
output of Random Forest Regressor is a numerical value.

• Splitting criterion: In Random Forest Classifier, the splitting criterion used
to build decision trees is usually based on information gain or Gini index. In
Random Forest Regressor, the splitting criterion is usually based on reducing
the variance of the target variable.

• Handling outliers: Random Forest Classifier is less sensitive to outliers in
the data because the final classification decision is based on a majority vote
from the ensemble of decision trees. In contrast, Random Forest Regressor
is sensitive to outliers because it uses the mean value of the predictions from
the ensemble of decision trees to make the final prediction.

3.2.2 Support Vector Machines
Support Vector Machines (SVMs) were developed by Cortes & Vapnik in 1995,
originally only for binary classification but later they were also applied to the multi-
class classification problem through the One-vs-All or the One-vs-One technique.

We now consider two classes that are linearly separable, as we can see in Figure
3.4 we have an infinite number of separating hyperplanes. SVM looks for the

28



Methodologies

Figure 3.4. Infinite number of linear separation hyperplanes for two
classes (linearly separable).

optimal separating hyperplane by maximizing the margin between the two classes.
The margin is defined as the distance of the closest point with respect to the
separation hyperplane. The points lying on the boundaries are called support
vectors.

In the non-ideal case where classes are not linearly separable, we want to min-
imize the points on the wrong side of the margin (soft margin). In order to do
this a parameter C is introduced, it determines the trade-off between margin and
errors on the side of the margin.

One advantage of SVM is that is possible to train a SVM in a large (even
infinite) dimensional Hilbert space having a complexity that depends only on the
number of training points. We can map the data from the original space to the
expanded space and then we linearly separate the data in this expanded space,
which corresponds to a non-linear separation surface in the original space.
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3.2.3 Classification metrics
Confusion Matrix

Confusion matrix is a table used in classification problems to visualize the perfor-
mance of an algorithm. It is really useful for visualizing how much the algorithm
is confusing the classes.

Actual Class
Class A Class B

Predicted
Class

Class A True Positive False Positive
Class B False Negative True Negative

Table 3.1. Binary confusion matrix.

True Class
Class A Class B Class C

Predicted
Class

Class A TPA EBA ECA

Class B EAB TPB ECB

Class C EAC EBC TPC

Table 3.2. Multi-class confusion matrix.

In Tables 3.1 and 3.2, we have an example of binary confusion matrix and
multi-class confusion matrix respectively. Each row of the matrix represents the
instances in a predicted class, instead each column represents the instances in an
actual class.

In the case of a three-class classification problem, as in Table 3.2, TPA is the
number of true positive samples in class A, EAB and EAC are misclassified samples.
So it is possible to calculate FNA, the number of False Negative in the class A as
FNA = EAB + EAC .[21]

From this matrix it is possible to calculate several common metrics such as
accuracy, precision, recall, and F1 score as we will see below.

Accuracy

Classification accuracy is a metric useful for evaluating the performance of a clas-
sification model. It is one of the most used metric because of it is very intuitive
to understand and easy to calculate.

Starting from the confusion matrix the formula for quantifying binary accuracy
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is:
Accuracy = TP + TN

TP + TN + FP + FN

Where:

TP = True Positive;
TN = True Negative;
FP = False Positive;
FN = False Negative

More in general, in the case of 3 or more classes, accuracy can be calculated as:

Accuracy = correct classifications

all classification

Accuracy ranges from zero to one, it works as a percentage, so high value of
accuracy indicate high classification performance. Accuracy is sensitive to the
imbalanced data, when the samples of one class outnumber the samples of the
other classes. Since this metric uses values from both columns of the confusion
matrix, if the distribution of the data changes, also the value of the metric itself
changes regardless of the classifier performance. [21]

F1-score

F1 − score, also called F-measure, can be calculated from precision and recall.
Recall, or True positive rate (TPR), and precision, or positive prediction

value (PPV) are defined as:

Recall = TP

TP + FN

Precision = TP

FP + TP

F1 − score represents the harmonic mean of precision and recall, defined as:

F1 − score = 2 × Precision × Recall

Precision + Recall
= TP

TP + 1
2(FP + FN)

Precision, recall ad F1-score are computed per-class, so in multi-class classifica-
tion F1 score is computed for each class in a One-vs-Rest approach. For example,
if we have three class then we have three F1 scores, one for each class.

It is more convenient to have a single number to describe overall performance,
there are three different average F1 scores:
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• Macro average: It is calculated using the arithmetic mean of all per-class
F1-scores.

• Weighted average: It is computed by taking the mean of all per-class F1
scores while considering the number of each class samples.

• Micro average: It corresponds to the proportion of correct classification out
of all classification, that is the same definition of accuracy.

The F1 score ranges from 0 to 1, with a higher score indicating better performance
of the model. It is particularly useful when the classes are imbalanced or when
both precision and recall are important for the problem at hand.

3.3 Feature Selection
As we will see later, the dataset will have a large number of features. To improve
the performance of a model, it can be very useful to reduce the dimensionality of
the data.

Feature selection is the process of selecting a subset of relevant features from a
larger set of features that will be used as input for a predictive model. The goal
of feature selection is to remove irrelevant or redundant features and retain only
relevant features in order to improve the performance of the model, reduce the
computational cost, reduce the dimensionality of the problem and, in some cases,
improve the performance of the model by avoiding overfitting. It is also useful
to improve the interpretability of the model by focusing on the most important
features. The output of any feature selection method can be either a subset of
features or a ranked list of features.

Also Feature Selection algorithms, such as learning models, can be divided
in supervised, unsupervised and semi-supervised. In supervised feature selection
the class/label information is contained in the data available and it is used for
determining the feature quality. Unsupervised feature selection does not contain
the label information, its basic idea is to cluster data such that similar objects are
grouped together and dissimilar objects are separated [12].

There are several methods for Feature Selection:

• Filter methods: These methods select features based on statistical measures
such as data consistency or mutual information between the feature and the
target variable.

• Wrapper methods: These methods use a specific learning algorithm to evalu-
ate the importance of each feature. It can be quite costly because it needs to
build a classifier every time when a feature is considered. Recursive feature
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elimination (RFE) is a popular wrapper method that recursively removes less
important features until the optimal subset of features is identified.

• Embedded methods: These methods combine the feature selection process
with the model training process. For example, decision trees and random
forests have built-in feature selection mechanisms that assign importance
scores to each feature based on how much they contribute to the accuracy
of the model.

Recursive Feature Elimination (RFE) is a wrapper method, so it uses a
specific machine learning algorithm to evaluate the importance of each feature.
The method recursively removes less important features until the optimal subset
of features is identified. It is one of the most popular feature selection algorithm
since it is easy to use, it is a flexible method that can be applied to any machine
learning algorithm and it can handle non-linear relationships between features and
the target variable. On the other hand, it can be computationally expensive and
it may not work with highly correlated features.

The working mechanism of RFE algorithm is:

1. A machine learning model is trained on the current set of features.

2. The importance of each feature is determined based on its contribution to the
accuracy of the model.

3. The n least important features is removed, where n is the step parameter of
the algorithm.

4. Steps 1-3 are repeated until the desired number of feature is reached.

The optimal number of features is determined by the cross-validation performance
of the machine learning model with different subsets of features. The final subset
of features selected by RFE is the one that yields the highest cross-validation score.

The Beiman’s paper [3] describe the possibility to get the importance of vari-
ables with Random Forests. The feature importance in Random Forest is calcu-
lated based on the Gini impurity or mean decrease impurity of each feature. The
Gini impurity is a measure of the probability of misclassifying an observation, it
measures of how often a randomly chosen sample would be incorrectly classified
based on the distribution of the target variable in the samples. The mean decrease
impurity of a feature is the total reduction of the impurity that results from split-
ting the data based on that feature. In other words, it measures how much each
feature contributes to the reduction in impurity when splitting the data.

The feature importance values are then normalized to sum up to 1, so that they
can be compared and ranked. The higher the feature importance value, the more
important the feature is for making accurate predictions.
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3.4 Validation
To help assess of performance of a model the process of validation is introduced.
Validation refers to the process of evaluating the performance of a trained model
on a dataset that was not used for training. This is done to assess how well the
model can generalize to new, unseen data.

The purpose of validation is to check if the model has learned the underlying
patterns and relationships in the data and can accurately predict outcomes on new
data. If the model performs well on the validation set, it is likely to generalize
well to new data. If the performance is poor, it indicates that the model may have
overfit to the training data and needs to be improved.

Cross-validation is the most commonly used method for validation. In k-fold
cross-validation the data is divided into k equal sized subsamples. The model is
trained on k-1 folds and validated on the remaining fold. This process is repeated k
times, with each fold being used as the validation set once. The performance of the
model is then averaged over the k-folds to obtain an estimate of its generalization
performance.

K-fold cross-validation is a widely used technique for model selection, hyper-
parameter tuning, and performance evaluation in machine learning. It provides a
more reliable estimate of a model’s performance than a single train-test split, as
it uses all the available data for both training and validation.

Stratified k-fold cross-validation is a variant of k-fold cross-validation that is
commonly used for classification problems when the dataset is imbalanced, mean-
ing that some classes have significantly fewer examples than others. Stratified
k-fold cross-validation ensures that each fold contains approximately the same
proportion of samples from each class as the original dataset. This is achieved by
first dividing the data into groups based on their class labels and then sampling
from these groups to create each fold. It is a more appropriate technique for eval-
uating classifiers on imbalanced datasets than standard k-fold cross-validation, as
it provides a more reliable estimate of the classifier’s performance.

3.5 TF - IDF
When approaching to the real case scenario, it is possible to overlap flows belonging
to different web page visits. Therefore, there is a need to find a way to identify and
then aggregate flows belonging to the same visit. In this context, Term Frequency
- Inverse Term Frequency can help identify to which visit the streams belong.

Term Frequency–Inverse Document Frequency (TF-IDF) [18] is one of the most
popular term-weighting schemes. It is a statistical measure used to evaluate how
important a word is to a document in a collection of documents or a corpus. It
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is based on the idea that the importance of a word in a document increases as
the frequency of occurrence of the word in the document increases, but is offset
by the number of documents in the collection containing that word. The main
idea behind this measure is to give more relevance to the terms that appear in the
document, but which in general are infrequent.

The TF-IDF value of a term t in a document d is calculated as the product of
two factors, the term-frequency and the inverse-document-frequency:

TF − IDF (t, d, D) = TF (t, d) × IDF (t, D)

where t is a term, d is the document in which t appears, and D is the set of
documents.

Term Frequency (TF):It measures how frequently a term t occurs in a docu-
ment d. It is calculated as the number of times the term t appears in the document
d divided by the total number of terms in the document d.

Inverse Document Frequency (IDF): It measures how rare a term t is in
the corpus:

IDF (t, D) = log |D|
1 + |d ∈ D : t ∈ d|

where |D| is the total number of documents in the corpus and the denominator
indicates the number of documents where the term t appears, adjusted (it is in-
creased by one) to avoid division by zero if t is in none of the documents.

The higher the TF-IDF value of a term, the more important it is to the docu-
ment. Terms with high TF-IDF values are typically those that are frequent in a
particular document but rare in the overall corpus, and thus they provide signifi-
cant meaning and context to the document.
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Chapter 4

Dataset

4.1 No cache dataset

It consists of browsing 87 main pages of different sites. It is an horizontal dataset,
because we have a lot of sites but we do not go in depth, indeed we do not navigate
to internal pages of sites.

In Table 4.1 there is the list of the 87 sites. In total, we have about 45k
active experiments distributed over the different sites. These visits were collected
between April and July 2022, and they are made without the use of browser cache
and acceptance of cookies.

The dataset can be characterized from different points of view, by analyzing
the statistics of the Speed Index and onLoad.

Figure 4.1. Cumulative Distribution Functions and histograms of onLoad and
Speed Index of the no cache dataset.
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20minutos.es 3bmeteo.it accuweather.com adobe.com
amazon.com amazon.fr amazon.it atuuat.africa

autotrader.co.za belgium.be briefly.co.za canva.com
corriere.it csir.co.za daft.ie dailymaverick.co.za

elmundo.es eltiempo.es facebook.com fakaza.com
focus.de game.co.za giallozafferano.it github.com

google.co.za google.com google.de google.es
google.fr google.it gumtree.co.za honda.co.za

indeed.com independent.ie instagram.com iol.co.za
leboncoin.fr lefigaro.fr legossip.net lequipe.fr
linkedin.com live.com mediaset.it mg.co.za

microsoft.com news24.com netflix.com nedbank.co.za
office.com otto.de payfast.co.za paypal.com

pinterest.com pornhub.com reddit.com privateproperty.co.za
repubblica.it spiegel.de samsung.com sacoronavirus.co.za

sport.es twitter.com standard.be standardbank.co.za
thefuse.co.za telenet.be telkom.co.za techpoint.africa
thejournal.ie tiktok.com timeslive.co.za stackoverflow.com

uct.ac.za unisa.ac.za vodacom.co.za vrt.be
web.de welt.de whatsapp.com wikipedia.org

woww.co.za xnxx.com xvideos.com yahoo.com
youtube.com zdf.de zoom.us

Table 4.1. List of the sites in the no cache dataset.

In Figure 4.1 there are the Cumulative Distribution Functions (CDFs) of onLoad
and Speed Index. The CDF of a random variable X is defined as:

FX(x) = P (X ≤ x), ∀x ∈ R

So CDF is the probability that X will take a value less or equal than x. The CDF
takes values between 0 and 1, inclusive, and is non-decreasing, meaning that as x
increases, the probability of X being less than or equal to x also increases.

The histogram in Figure 4.1 gives us a good overview of the data. Histogram is
a graphical representation of the distribution of a dataset. It displays the frequency
of values falling into a specified interval, called a bin. The horizontal axis of the
histogram represents the range of values in the dataset, divided into contiguous
and non-overlapping bins, while the vertical axis represents the frequency or count
of values falling into each bin. At a glance, we can see that the Speed Index data
are skewed distributed, the peak is around 8 seconds. Histogram of the onLoad
can identify bimodal distribution with two peaks, one at 10 seconds and the other
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at 15 seconds. Both distributions extend further into the higher values than to the
lower values.

4.2 Dataset with cache and accepted cookies
The dataset with cache and accepted cookies consists of browsing 12 popular web-
sites(Table 4.2). In this dataset the navigation is more vertical, there are fewer
sites but for each site also more internal page in addition to the main page. In to-
tal, we have 40k active experiments, distributed over the different sites and URLs.
With this dataset we wanted to get closer to the real case by accepting cookies
where we have an invasive banner and by using the browser cache. The data were
collected in two different periods: between 23 December 2022 and 9 January 2023
and between 24 January 2023 and 8 February 2023.

The selection of internal pages was made by covering as much as possible the
different types within a website. For example, in site like youtube, there are URLs
of videos, channels and users.

Site Number
of URLS

Cookies
accepted

Invasive cookies
banner

accuweather.com 4 Yes Yes
amazon.com 8 No No
google.com 11 Yes Yes
indeed.com 8 Yes Yes
lefigaro.fr 15 No Yes
lequipe.fr 10 Yes Yes

pornhub.com 10 No No
repubblica.it 10 Yes Yes
wikipedia.org 14 No No

xnxx.com 8 Yes Yes
xvideos.com 8 Yes Yes
youtube.com 15 Yes Yes

Table 4.2. List and description of the sites in the dataset.

Table 4.2 also shows information about accepted cookies. In fact, not all sites
accepted cookies because it is not necessary in all of them; in some sites the banner
to accept cookies is absent or not invasive.

In this dataset the histogram 4.2 of Speed Index becomes more like a bimodal
distribution. The peak moved from 8 to 4 seconds, this may be due both to the
change of sites but also to the fact that caching is used in these experiments,
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Figure 4.2. Distribution of onLoad and Speed Index of the dataset with
cache and accepted cookies.

speeding up the visits.

Figure 4.3. Distribution of onLoad and Speed Index of the dataset with
cache and accepted cookies.

Another interesting analysis is to see the value of Speed Index and onLoad on
the different sites. The CDFs in Figure 4.3 summarize the variation of onLoad
and Speed index respectively in the different websites. In many sites, data are
almost normally distributed despite the fact that there are several internal pages
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for each site. In other website, such as google.com or lefigaro.fr, a knee is present,
marking the difference between different pages. Summing up, different websites
have different distributions.

Figure 4.4. Heatmap: Summary of onLoad and Speed Index variation across
different internal pages for each website. The data come from the dataset with
cache and accepted cookies.

To further explore the variation in our metrics within a given website, Figure
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4.4 summarize this variation across different internal pages. Each row describes
a specific website and each column is an internal page of that website. The first
column is always the main page (e.g for google is www.google.com). The value in
a cell is:

V = µURL

µwebsite

=
1

NURL

qNURL
i=1 xi

1
Nwebsite

qNwebsite
i=1 xi

where µURL is the mean value of onLoad or Speed Index in an internal page of a
website, µwebsite is the mean value of onLoad or Speed Index in a website; nwebsite

is the total number of experiments on that website, nURL is the total number of
experiments on that site’s URL. xi is the onLoad or Speed Index value of one
experiment.

So for instance the mean value of onLoad in the main page of amazon is 1.3
times slower than the average of that site. The first column always represents
the main page of the site, then the internal pages are sorted by increasing value.
Pornhub.com and lequipe.fr have little variation of onLoad between pages, which
makes us think that a single model for the whole website might work. Instead,
the pages of amazon have a high variance, particularly an internal page seems to
be very light compared to the others. Wikipedia.org’s onLoad is the one with the
most variation across pages, this makes life complicated for the model since within
the same site there can be different behaviors.

As explained in Section 2.2.2, onLoad measures the time at which all bytes of
payload have been received, so the more heavy objects a page has the higher the
onLoad value will be. Images and videos are to be considered as heavy objects.
Instead, Speed Index takes into account only the visible parts of a webpage to
be displayed. Therefore, in pages without moving elements Speed Index is more
stable and less subject to change.

4.3 Parallel dataset
The parallel dataset consists of browsing 2 websites: lequipe.fr and pornhub.com.
In this dataset the navigation on the two websites is done in parallel. There is no
form of dependence between the two visits, two scripts run in parallel, each script
iteratively runs a browsertime docker image. For both lefigaro.fr and pornhub.com
various URLs are available, so a single URL is selected for each run of the docker
image.

In total, we have 12k active experiments, distributed over the two websites. Also
in this dataset the browser cache is used and the cookies of lequipe.fr are accepted.
Pornhub.com does not have an invasive banner and therefore the cookies are not
accepted. This dataset is intended to get even closer to the real case, by having
the flows from the two different sites mixed with each other.
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Figure 4.5. Cumulative Distribution Functions and histograms of onLoad and
Speed Index of the parallel dataset.

In Figure 4.5 we have the distribution of the onLoad on this dataset. The
distribution of lequipe.fr onLoad is almost normally distributed. Meanwhile, porn-
hub.com has a small peak at 4.5 seconds because in few occasion the main page is
faster. Then it is right skewed distributed, with a very high peak.

4.4 Pipeline workflow
Starting from the previously created final dataset, the Machine Learning pipeline
workflow (summarized in Figure 4.6) contains 4 steps:

1. Feature Extraction: The extracted features depend on the traffic consid-
ered: TCP features and UDP features. From the statistics generated by Tstat
we extract several values that we will provide as input to our model. Several
timing information are considered. This operation introduces us a parameter,
so we will study the best value to assign to it.

2. Feature Selection: For TCP there are 52 features, not many but not all
of them useful for our model. An algorithm, Recursive Feature Elimination
(RFE), is then used to reduce the number of features. At the end of this step,
the top 20 features are selected.

3. ML Model: We focus mainly on regression models such as Linear Regression
(LR) or Random Forest (RFR). We also try classification models like Support
Vector Machine (SVM) or again Random Forest but in classification version
(RFC).
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Figure 4.6. Machine learning pipeline to predict QoE.

4. Performance: Here we see whether our models are doing well or badly.
We will try different experiments on the different datasets and then make
considerations on these.

4.5 Feature Extraction

The dataset obtained by merging the active data and passive data contains the
data captures by Tstat and the information about the labels, website and URL
extracted by browsertime. While for the latter there is no need to reprocess the
data, passive data are raw and therefore need to be processed.

Since browsertime closes the browser and the running docker container stops
when the page loads we cannot use all the flow information related to the end of
the flow, such as the duration or the time of the end of flows. This is because the
duration of a flow could be equal to one of our metrics, the onLoad, only on our
test set. In the real case a user may have a page open for an indefinite time. So
in our model we use only information related to the beginning of the flow.
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4.5.1 TCP flows
We now focus on TCP flows and then to udp flows. For each experiment only the
first n TLS (with s_port equal to 443) flows are taken, where the choice of nflows

will be determined later by comparing several possible values. From this row we
take the following column described by the Table 2.1:

• First: It is the absolute time of first packet of flow, it is an epoch, the time
in milliseconds since January 1, 1970. Since epoch cannot be used directly
by our model it is reworked: the epoch of the first flow of the experiment is
saved so each epoch of all flows in the experiment is subtracted by this value.
In this way it is obtained the time difference in milliseconds between the start
of the first flow with the start of all other flows.

• s_first and c_first: Respectively the elapsed time from the first packet to
the first server packet with payload and to the first client packet with payload.
For each flow the difference between s_first and c_first is taken, obtaining
the time from the first client packet with payload and the first server packet
with payload.

• c_rtt: Tstat gives us several statistics on RTT, computed measuring the
time elapsed between the data segment and the corresponding ACK. Min-
imum, maximum, average and standard deviation are calculated. c_rtt is
approximable to the ground rtt, the time between the ground station and the
web server. s_rtt can be approximated to 0, since it is the time between the
PEP and the passive probe, which are ideally located in the same place.

• s_ttl: Minimum and maximum Time To Live are calculated, only on server
side, it is the number of hops that a packet is set to exist inside a network
before being discarded by a router. Each packet has a TTL count that starts
from a certain value (255 in our case), every time a router receives a packet,
it subtracts one from the TTL count; if this count reaches 0 the packet will
be discarded by the router. The hops between the provider’s PEP and the
web server are measured, doing 255−countT T L. In this case, c_ttl is not used
because it is always equal to 254, between the PEP and Tstat probe there is
only one hop.

• s_sit and c_sit: They are nine values for the client and nine for the server.
They are the interarrival time between the packet and the previous packet.
Two lists (one for the client sit and one for the server sit) are created with all
values of all the flows in the experiment. Therefore, the lists have a length
of 9 × n elements, with n equal to the number of TLS flows taken. These
lists are filtered, values equal to 0 are removed. But this information is

44



Dataset

saved, s/c_sit_0_count is the number of sit equal to 0. Then, on this two
lists several functions are computed: minimum, maximum, average, standard
deviation and percentiles (25, 50, 75, 90).

In total when nflows = 5, the number of features is 52, later we will see how to
decrease it.

4.5.2 UDP flows

Figure 4.7. Percentage of websites in httparchive that announce support to
http/3, separately by IETF draft. Taken [23].

Although TCP still remains the most widely used transport layer protocol on
the Web, UDP is gradually gaining in importance thanks to the HTTP/3 protocol
(Figure 4.7). HTTP/3 adopts a more efficient header compression schema and
replaces TCP with QUIC (Quick UDP Internet Connections), is a multiplexed and
encrypted transport protocol that is designed to provide low-latency and secure
communication between clients and servers over the internet. It operates over
UDP (User Datagram Protocol), which allows it to avoid some of the congestion
and delay issues that can arise with TCP (Transmission Control Protocol). The
use of QUIC in HTTP/3 helps to improve the speed, reliability, and security of
web communications [23].
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To take only QUIC flows, UDP flows are filtered by s_port, in fact QUIC uses
port 443 as the default port for compatibility with existing web infrastructure (it
is the default port for HTTPS traffic). Similar to what was done with TCP flows,
only the first n QUIC flows are taken for each experiment. Since UDP flows have
less information rather than TCP flows, a lower number of features are obtained.
The same features as for TCP flows remain except for: First, c_rtt and s_ttl.

4.6 From the Regression problem to the Classi-
fication problem

There are several ways to convert a regression problem to a classification one:
• Binning: One approach is to bin the continuous numerical value into a set

of discrete categories or intervals. For example, if the target variable is a
numerical value representing the onLoad, we can divide the onLoad range
into several bins such as "0-10000", "10000-20000", "20000-30000", and so on.
Then, we can treat the problem as a classification task where the objective is
to predict the appropriate bin for a given input.

• Thresholding: Another approach is to apply a threshold to the continuous
numerical value, and then map the values above the threshold to one class,
and the values below the threshold to another class. For example, again, if
the target variable is still the onLoad metric, we can define a threshold such
as 30000ms and then predict whether the onLoad of a visit is above or below
this threshold.

• Ranking: We can convert a regression problem into a ranking problem by
assigning a rank to each data point based on its numerical value. For example,
we can rank the onLoad values from highest to lowest, and then predict the
rank of a given input.

• Log transformation: Sometimes, a regression problem can be transformed
into a classification problem by applying a logarithmic transformation to the
target variable. This can be useful when the target variable is skewed to-
wards higher values, and the logarithmic transformation can help to make
the distribution more symmetrical.

In this work it is chosen the binning approach. In order to select the classes
different bins need to be created. For this purpose, dataset is split into three class
according to the onLoad value for each website. Percentiles are used: a percentile
is a statistical measure used to indicate the value below which a given percentage
of observations or data points in a distribution fall. In other words, it represents
the point below which a certain proportion of the data lies.
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• Class 0 (good): All experiments with an onLoad between 0 and the 50th
percentile belong to this class.

• Class 1 (medium): All experiments with an onLoad between the 50th
percentile and the 75th percentile belong to this class.

• Class 2 (poor): All experiments with an onLoad between the 75th percentile
and the maximum value belong to this class.

4.7 Number of flows in an experiment
The first parameter examined is the number of the first flows taken in the feature
extraction. The lower this parameter is then the less information will be captured,
so it is more difficult for the model to have a correct prediction. On the other
hand, not all experiments have a high number of flows, so in the training and
testing dataset, experiments where n is greater than the number of flows within
it are eliminated, thus resulting in smaller datasets. In the real case scenario the
problem becomes even more complicated, in fact by taking more flows there is
more risk of also collecting flows not belonging to that visit. This then worsens
the performance of the model in the real case scenario.

Figure 4.8. On the left the performance of the model using r2 as metric
and on the right the number of experiments taken w.r.t. the number of the
flows taken in features extraction. % Experiments is the percentage of the
available experiments.

In Figure 4.8 there is the trend of the performance of the model (R-squared
metric) as the number of captured flows increases on the different sites. For each
site there is a model, trained and tested on the data of that site of the dataset
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with cache and accepted cookies. The target value used is the onLoad metric and
the model is validated on 3 fold. The Figure on the right depicts the number of
the experiments eliminated on the dataset with cache and accepted cookies by
taking the first n flows; it is the percentage of the experiments used, calculated as
%Experiments = Experimentsn

Experiments1
, where Experimentsn is the number of experiments

when n flows are taken.
In general, this results are consistent with what was expected: as the number

of flows increases, performance increases but the number of experiments decreases.
In repubblica.it and lequipe.fr the number of available experiments does not de-
crease, so for each experiment there are at least more than 10 flows available.
Google.com and youtube.com have few TCP flows since they make massive use
of QUIC. Therefore, with 10 flows taken more than 60% of the experiments are
eliminated. Instead, wikipedia.org has few flows because it is a lightweight site as
we also saw from the CDF in Figure 4.3 where it has very low onLoad values. For
sites with a larger number of flows in each experiment, the model performance re-
mains fairly constant from a number of flows of 5 and up. The trend of the curves
of models performance is monotonically increasing for almost all sites, except for
lefigaro. which has a reduction in performance due to the reduction in the number
of samples.

So it is needed to find the right trade-off between performance and the number
of experiments. Thus, a number n equal to 5 is selected.

4.8 Feature Selection
In the case of TCP flows, and where the number of flows in an experiment is
equal to 5, the number of features is 52, many of which may be redundant or even
irrelevant. It would be very useful to remove these features and understand how
much each feature affects the outcome.

In this context, Recursive Feature Elimination (RFE) is used to remove
unimportant features, and also Random Forests are used to assign importance
scores to each feature.

Figure 4.9 shows the different performances of a Random Forest Regression
model, validated with a 3-fold cross-validation method, with different number of
features on the dataset with cache and accepted cookies. The metric used to
evaluate the model is the R-squared. Since a 3-fold approach is used three results
are obtained, the boxplot shows the minimum, the median, the maximum and
the first and third quartiles. From what we can see, initially when features are
removed, the performance of the model does not change until 20 features. So 20
features are more than enough for a good result, but even with a number of 10
there is not a big loss in the result. Thus, most of the features turn out to be
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Figure 4.9. Recursive Feature Elimination, model performance for the different
number of features selected.

irrelevant.
As reported in Figure 4.10, a rank of feature importance is shown by using

a Random Forest Regressor model with a 3-fold validation and the dataset used
is still the second one. s_ttl_min_list_0 is the most important feature, it is the
minimum Time To Live observed during the first flow of the experiment. Since each
web server is in a specific position, it has a different TTL. Indeed it is particularly
important for the first flow which is the flow with the Server Name Information
equal to the contacted web server.

Also s_sit_max has a high importance, it is the maximum interarrival time
of packets sent by the server and received by the client. Since the onLoad is a
time metrics, it makes sense that it is correlated with the maximum time between
packets, The longer this time, the greater the delay can be.

In Figure 4.11 we can see a heatmap for Pearson correlation between features.
A heatmap for Pearson correlation is a visualization technique used to represent
the correlation between two variables in a graphical form. It provides a color-
coded matrix to represent the degree and direction of the correlation between each
pair of variables. Pearson correlation is a statistical measure that assesses the
linear relationship between two continuous variables. It takes a value between -1
and 1, where -1 represents a perfect negative linear relationship, 0 represents no
linear relationship, and 1 represents a perfect positive linear relationship. In this
Figure we can see that features that are generated from the same data type show
a significant correlation, such as first_rel features or c_sit_max and c_sit_std.
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Figure 4.10. Rank of feature importance on an Random Forest Regressor model.
The RFR model is trained on the dataset with cache and accepted cookies.

The correlation is a linear one, so this heatmap can not tell us everything, even
if a feature is linearly uncorrelated with the target metric it may contain useful
information for the machine learning model.

Moreover, the two target metrics shows a positive correlation with the majority
of the features, but they show a negative correlation with c_sit_0_count; in fact
this feature counts the number of interarrival time equal to 0, and the higher this
number is, the faster a visit might be, thus resulting in a lower value of onLoad or
Speed Index. Consistent with what we is seen in Figure 4.10, s_ttl_min_list_0
has the maximum correlation (0.4) with the onLoad metric. In general, all features
except for the first_rel ones have sufficient correction with both the target metrics.

4.9 Models Parameters
Choosing machine learning parameters is an important step in building an effective
and accurate machine learning model. In fact, most machine learning models have
parameters that when set correctly improve the performance of the algorithm
itself. Hyperparameters are parameters that are not learned by the model during
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Figure 4.11. Heat map showing the Pearson correlation coefficient between 10
features selected with RFE and the two target metrics.

training, but instead are set manually before training.
In this context, Grid search technique is used. It search for the best combina-

tion of hyperparameters for a machine learning model. In a grid search, a grid of
possible hyperparameter values is created, and the model is trained and evaluated
for each combination of hyperparameters in the grid. The hyperparameter com-
bination that produces the best performance on a validation set is chosen as the
final set of hyperparameters for the model.

In a grid search, a grid of possible hyperparameter values is created, and the
model is trained and evaluated for each combination of hyperparameters in the
grid. The hyperparameter combination that produces the best performance on a
validation set is chosen as the final set of hyperparameters for the model.

In building a Random Forest Regressor or Classifier model, the best combination
of hyperparameters is sought. A grid search with cross-validation is created and
it includes the following hyperparameters and their possible values:

• max_depth: 1, 2, 4, 8, 16, None;

• max_features: "auto", "sqrt", "log2";
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• min_samples_leaf: 1, 2, 4;

• min_samples_split’: 2, 4, 8;

• n_estimators’: 10, 50, 100, 200, 400.

Instead, for Support Vector Machine the hyperparameters and their possible
values are:

• C: 0.1, 1, 5, 10;

• coef0: 0.01, 0.1, 1, 10;

• gamma: ’auto’, ’scale’.

The grid search train and evaluate the model for each combination of hyper-
parameters using cross-validation. Then the best hyperparameters are chosen for
the different models.
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Chapter 5

Metodologies and Results

In this chapter the results of the different models are presented. The chapter is
divided into three sections, in the first a description of the results of the models
applied on the no cache dataset, together with some considerations, are reported.
The second one instead contains the results of the models applied on the dataset
with cache and accepted cookies. The last section describe the results on the
parallel dataset, the one closest to the actual case.

5.1 No cache dataset
As first results, regression models (Random Forest Regressor and Linear Regres-
sion) are reported. OnLoad and Speed Index are considered as target variable
by building one model for each of them and a stratified 3-fold approach is used
for validation. Stratified sampling is a sampling technique where the samples are
selected in the same proportion as they appear in the population. In this case, for
each fold, data for a given site are distributed equally between the train and the
test set.

Target metric Model R2 MAE MAPE RMSE

onLoad RFR 0.86 2245.28 13.15% 5049.78
LR 0.44 6054.76 40.25% 10228.35

Speedindex RFR 0.91 1351.96 11.64% 3084.08
LR 0.55 3845.00 35.12% 6939.83

Table 5.1. Results of regression models on the no cache dataset. Both
models (Random Forest Regressor and Linear regression) are used for both
metrics (onLoad and Speed Index). A stratified (per site) 3-fold validation
approach is used.
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Random Forest Regressor was found to offer the best compromise in terms of
R-squared, Mean Absolute Percentage Error and Root Mean Square Error. The
superiority of this algorithm over Linear Regression lies in the ability to capture
non-linear relationships between the dependent and independent variables, it is less
sensitive to outlier and it can often provide better accuracy than Linear Regression,
especially for datasets with complex relationships between the variables.5.1. With
both target metrics, RFR performs very well having an R2 Score of 0.86 for onLoad
and 0.91 for Speed index. Also MAPE, that is easier to understand than the other
metrics, is very low, showing a good performance of the model.

Figure 5.1. True vs predicted density plot, result of regression models on the no
cache dataset. The model used is a Random Forest Regressor and it is validated
through a stratified (per site) 3-fold validation.

The density plots in Figure 5.1 show the predicted vs. actual values for the two
regression models on the two target metrics. The true value is the actual value
of the onLoad or Speed Index, while the predicted value is the value estimated
by the models. The accuracy of the prediction can be assessed by comparing the
position of the point relative to the line in red. In fact, all points lying on this line
have the true value and the predicted value equal, the further the point is from
the line, the larger the error will be.

In addition, point density information is also reported. A Gaussian KDE
technique is used for this purpose. It is a specific type of Kernel Density Estimation
(KDE) that uses a Gaussian kernel to estimate the probability density function.
The kernel density at any point is calculated by summing up the values of all
the Gaussian kernels placed at each data point. The final estimate of the density
function is obtained by normalizing the sum of the Gaussian kernels by dividing
by the total number of data points and the volume of the kernel. In this case, a
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red color means high density, blue color means low density.

Website Exper
iments Target R2 MAE MAPE RMSE

accuweather.com 665 onLoad 0.33 2229.93 16.01% 2626.38
Speed Index 0.76 550.32 6.31% 765.35

amazon.com 683 onLoad 0.41 1587.85 11.79% 2980.38
Speed Index 0.43 1014.83 9.79% 1649.01

google.com 212 onLoad 0.80 443.72 5.64% 606.79
Speed Index 0.67 225.01 5.40% 368.92

indeed.com 700 onLoad 0.90 564.55 4.26% 785.24
Speed Index 0.94 345.81 3.20% 470.51

lefigaro.fr 208 onLoad 0.57 1678.77 10.10% 2140.76
Speed Index -0.00 3359.26 38.60% 4203.67

lequipe.fr 666 onLoad 0.88 573.96 4.00% 838.85
Speed Index 0.45 564.23 12.19% 835.94

pornhub.com 712 onLoad 0.92 685.63 5.24% 1374.05
Speed Index 0.75 413.95 5.71% 788.82

repubblica.it 680 onLoad 0.88 565.56 3.29% 971.63
Speed Index 0.81 462.74 5.36% 662.38

wikipedia.org 132 onLoad 0.71 172.92 4.31% 268.01
Speed Index 0.67 168.76 4.69% 261.20

xnxx.com 688 onLoad 0.94 385.18 2.71% 619.96
Speed Index 0.90 388.04 4.00% 637.46

xvideos.com 699 onLoad 0.92 447.93 2.95% 844.99
Speed Index 0.84 494.84 5.29% 785.52

youtube.com 216 onLoad 0.48 1785.59 11.54% 2302.63
Speed Index 0.75 495.13 5.86% 688.53

Table 5.2. Results on the no cache dataset. For each website a model is created
and trained and tested on the data of that website. The model used is Random
Forest Regressor and the target metrics are both onLoad and Speed Index. Each
model is evaluated through a 3-fold validation approach.

Another important experiment is to see how a model made for only one site
behaves. Therefore one model per each site is built, once again with onLoad and
Speed Index as target variable. The validation used is a 3-fold approach, not
stratified in this case since for each model the dataset contains only one site. In
particular, it can be seen in Table 5.2 that the performance of the model depends
strongly on the site. In some sites, such as indeed.com or pornhub.com, the model
performs quite well on both the target metrics; but for other sites, like amazon.com,
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it does not work very well, showing an R2 of 0.41 on the prediction of the onLoad.

5.2 Dataset with cache and accepted cookies
5.2.1 Regression
Like what was seen above, this dataset is collected using the browser cache and
having accepted cookies. For this reason it contains fewer flows within an experi-
ment and therefore less information are available making prediction more difficult.

One Model for all websites

Target metric Model R2 MAE MAPE RMSE

onLoad RFR 0.76 3261.44 30.57% 5545.61
LR 0.49 5615.41 55.11% 8051.17

Speedindex RFR 0.63 1351.96 50.84% 4538.96
LR 0.43 2841.38 35.12% 6939.83

Table 5.3. Results of regression models on the dataset with cache and ac-
cepted cookie. A unique model for all the website in our dataset is created.
The model used is Random Forest Classifier and the target metrics used are
both onLoad and Speed Index. Each model is evaluated through a stratified
(per site) 3-fold validation approach.

Indeed, in Table 5.3 we can see that worse result are obtained. For both model
and for both target metrics a lower R2 is obtained. Specifically, in the prediction
of the Speed Index, Random Forest Regressor reaches an R2 of 0.63, much lower
than that seen for the no cache dataset (0.91). Again, in both cases, LR gets worse
results than RFR. Since onLoad metric seems to be more stable it is used as target
variable from here on. Speed Index suffers with web pages with video or moving
content making the value high. In Table 5.4, the same model as in Table 5.3 is
used (where the model is RFR and target metric is the onLoad). However, in this
case, the results are reported by site.

One Model per website

In Table 5.5 there are the results of how model behaves when trained and tested
only on data from one site. Once again one model for each website is built and
a 3 fold approach is used as validation. As for the more generic model, results
are worse when compared with those of the no cache dataset. The model still
works well on sites like accuweather.com, lequipe.fr and pornhub.com but suffers
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Website Experiments R2 MAE MAPE RMSE
accuweather.com 1650 0.66 3533.30 16.22% 5469.03

amazon.com 3723 0.38 5445.82 64.09% 7783.18
google.com 3399 -0.10 4208.92 115.51% 5439.98
indeed.com 3761 0.33 3914.83 26.88% 6105.96
lefigaro.fr 5032 0.33 2414.88 27.46% 4443.41
lequipe.fr 4882 0.76 1510.64 5.87% 3624.23

pornhub.com 4261 0.74 1313.69 9.44% 2454.15
repubblica.it 4427 0.27 6989.46 20.71% 10616.29
wikipedia.org 4100 0.01 2173.08 45.54% 3307.49

xnxx.com 3880 0.66 2486.99 22.87% 3582.16
xvideos.com 3856 0.57 2670.65 21.65% 3830.98
youtube.com 3033 0.16 3249.12 23.74% 4893.63

Table 5.4. Results of regression models on the dataset with cache and ac-
cepted cookie. A unique model for all the website in our dataset is created.
The model used is Random Forest Classifier and the target metric is the on-
Load. The model is evaluated through a stratified (per site) 3-fold validation
approach. Per site results are reported.

Website Experiments R2 MAE MAPE RMSE
accuweather.com 1659 0.73 3273.53 16.53% 4600.99

amazon.com 3808 0.44 5005.04 57.80% 7145.39
google.com 3479 0.08 3530.63 86.08% 4665.82
indeed.com 3796 0.49 3247.04 22.22% 4589.70
lefigaro.fr 5026 0.55 1878.77 20.57% 3066.82
lequipe.fr 4922 0.86 1246.27 5.16% 2642.32

pornhub.com 4282 0.75 1179.17 8.35% 2336.71
repubblica.it 4428 0.36 6547.28 20.02% 9916.32
wikipedia.org 4902 0.20 1811.44 37.11% 2630.79

xnxx.com 3915 0.68 2424.05 22.75% 3430.08
xvideos.com 3871 0.57 2721.06 22.75% 3717.80
youtube.com 3026 0.34 2914.87 23.34% 4172.74

Table 5.5. Results of regression models on the dataset with cache and accepted
cookie. For each website a model is created. The used model is Random Forest
Classifier and the target metric is the onLoad.

greatly with sites like google.com and youtube.com. The R2 of wikipedia.org is also
very low, this could be due to the fact that, as we saw in Section 4.2, the internal
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pages of the site are very different from each other and tend to be fast loading.
Comparing Table 5.5 and 5.4 we can see that making one model per site improves
the results of all sites. This is reasonable because within the same website we have
less variation in the onLoad value than we would for different sites.

Figure 5.2. True vs predicted density plot, results of regression models on
two sites: lequipe and google.

The density plot in Figure 5.2 shows the true vs predicted values for the regres-
sion models of two different sites: lequipe.fr and google.com. From this Figure we
can clearly see that the model on lequipe data works very well, quite the opposite
for google. In fact, on the latter the values predicted by the model are all between
5 s and 10 s, while the actual values have a wider range.

In Figure 5.3 we have the same heatmap shown in Section 4.2. This time,
however, the value within the cell is the R2 recorded on that given URL. Internal
pages are still sorted by increasing average onLoad value. Here we can see how
in sites where performance is good, this is good for almost all internal pages; in
contrast, sites such as wikipedia.org and amazon.com, which also showed significant
onload variation within pages, perform very differently on different URLs and
therefore generally much worse.

One Model per website: TCP + UDP

Since google and youtube massively use HTTPv3, which as a transport protocol
uses QUIC, it is interesting to analyze also the UDP features extracted by the
information of Tstat. In addition, the case where both types of flows are combined
is also investigated. The target metric used is still the onLoad and the estimator
used is still a Random Forest Regressor.
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Figure 5.3. Heatmap: Summary of R2 across different internal pages for each
website. The data come from the dataset with cache and accepted cookies. Re-
sults of regression models on the dataset with cache and accepted cookie. For
each website a model is created. The used model is Random Forest Classifier and
the target metric is the onLoad.

Website Type Experi
ments R2 MAE MAPE RMSE

google.com
TCP 3479 0.08 3530.63 86.08% 4665.82
QUIC 3377 0.11 3273.03 77.78% 4272.59

QUIC+TCP 1996 0.13 3264.13 79.95% 4381.73

youtube.com
TCP 3026 0.34 2914.87 23.34% 4172.74
QUIC 4590 0.46 2228.24 19.47% 3453.61

QUIC+TCP 2004 0.55 2112.41 15.71% 3442.11

Table 5.6. Results of regression models on google.com and youtube.com, compar-
ison between the use of the different type of flows: TCP, QUIC and TCP+QUIC.
The used model is a Random Forest Classifier and the target metric is the onLoad.
Each model is evaluated through a 3-fold validation approach.

As we can see in Table 5.6, the use of QUIC improves results for both websites.
The use of only QUIC flows is the best model in terms of R2 for google, but it
still does not get satisfactory results; indeed MAE, MAPE and RMSE shows that
the model using QUIC and TCP data together brings a better result. Youtube
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Figure 5.4. True vs predicted density plot, results of regression models on
youtube data. Difference between the results obtained using only TCP data
and using TCP and QUIC data combined.

benefits a lot from using QUIC data, the model goes from being poor to being
good, it manages to achieve an R2 of 0.55 and a MAPE of 15.84%. In Figure
5.4, the dots in the right image tend to be closer to the red line showing good
prediction ability. However, it is visible that with values that deviate enough from
the mean value the predictor has more difficulty.

Past data for Training Future for Testing

Since websites change and update the content within them over time, it is im-
portant to check whether the model is efficient in predicting along time. Content
updates are the main factor that can contribute to changes in a website, but these
changes are often isolated to only one part of the page. A more complex case may
be design changes, in fact a website’s design may need to be updated over time to
keep up with changing design trends, improve usability, or to better align with the
brand’s visual identity; this type of updates imply a big change in the behaviour
of the site. In such extreme cases the model may work wrong since they may look
like two totally different sites.

In this context, another experiment is done: for each website a model is built,
training it on data belonging to a period from 23 December 2022 to 9 January
2023, and testing it on data ranging from January 24 to February 8 2023.

Results in Table 5.7 shows that for some sites, there is no clear deterioration
in performance. In fact, if we compare the results with those in Table 5.5 we see
that for some sites the R2 deviates little from the value in this table. However,
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Website Experiments R2 MAE MAPE RMSE
accuweather.com 589 0.72 3469.48 16.47% 4596.22

amazon.com 1384 0.13 6885.32 86.72% 9103.91
google.com 2526 -0.86 4476.46 143.06% 5138.09
indeed.com 1448 0.04 4965.86 27.69% 6659.37
lefigaro.fr 1165 0.50 2096.91 19.60% 3323.89
lequipe.fr 1849 0.86 1162.45 4.51% 2250.96

pornhub.com 1548 0.81 927.59 5.52% 1889.89
repubblica.it 1747 0.22 6878.45 17.62% 10163.59

xnxx.com 1458 0.75 2084.79 17.88% 2860.52
xvideos.com 1451 0.59 2517.79 20.40% 3452.18
wikipedia.org 3489 -2.61 3004.75 82.17% 3541.37
youtube.com 1818 0.04 3550.46 31.59% 4817.84

Table 5.7. Results of regression models on the dataset with cache and ac-
cepted cookies. The dataset is splitted in two parts that differ from the
collection period. The training is done on the data of older period, and the
testing on the latest data. The used model is Random Forest Regressor and
the target metric is the onLoad.

for sites like amazon.com, indeed.com, google.com and wikipedia.org, there is a big
deterioration in the results. This suggests that these websites need update data for
training, then the model, as time goes by, must perform training with new data.

Predict Unseen websites

Now let is see how new sites, that are not within the train set, perform. For each
website, the training is done on the data of the dataset with cache and accepted
cookies that contain all the experiments of all websites except that one. The testing
is done on the data of that website. This test tells us whether we can apply the
model (trained on our data) on generic sites, not within our dataset.

From results in Table 5.8 we can see that for most sites the model produces bad
results and it is unable to generalize. The models cannot predict unseen websites.
Thus, the idea of using the model on generic data in the network is not feasible,
it is always necessary to train the model on the data of the site on which we want
to make predictions.

The model seems to work decently only on porn sites. The reason is that they
are very similar sites, so the data of one website is not so different from another
site’s data. Particularly, xnxx.com and xvideos.com have a server IP with the same
IP location (Netherlands Amsterdam Serverstack Inc.) and the same Autonomous
System Network (ASN): AS46652 SERVERSTACK-ASN, US.
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Website Experiments R2 MAE MAPE RMSE
accuweather.com 1683 0.05 6120.40 24.21% 9105.45

amazon.com 3818 -4.41 20600.04 290.33% 22815.51
indeed.com 3815 -1.77 9814.35 72.29% 12595.95
lefigaro.fr 5033 -2.97 9497.16 132.11% 10835.81
lequipe.fr 4935 0.43 3261.90 12.27% 5650.68

pornhub.com 4289 0.56 2117.84 16.78% 3182.40
repubblica.it 4432 -1.06 14415.30 37.00% 18037.93

xnxx.com 3922 0.63 2719.20 26.72% 3762.17
xvideos.com 3879 0.44 3057.68 25.84% 4378.64
youtube.com 3033 -0.63 5163.36 35.98% 6806.94
google.com 3487 -2.10 8008.24 253.19% 9101.62

wikipedia.org 4913 -2.53 5436.59 133.84% 6350.87

Table 5.8. Results of regression models on the dataset with cache and accepted
cookies. For each site the model is trained on the dataset containing all the
sites except that one and tested on that site. The used model is Rnadom Forest
Regressor and the target metric is the onLoad.

5.2.2 Classification
Since as an end result we need to know whether the QoE of navigation in that
visits is good or not, the regression problem was simplified by turning it into
a classification problem. This section analyzes the results of the classification
models.

Based on numerical data of Table 5.9, taking only into consideration the weighted
average of F1 score, some comparison can be made. Already from this first anal-
ysis it emerges that, among the two used models, the Random Forest Classifier
provide better results for our research, and therefore the Support Vector Machines
model must be excluded.

Moreover, the sites on that the models perform well are the same as those seen
in the regression problem; in this case in the data of pornhub.com we have the best
results and in google.com the worst results in terms of weighted F1 score.

Taking in consideration also Precision and Recall scores, we can see that in the
class 0 (good) the models always perform better, this is because class 0 is the most
populated class since, as it is explained in Section 4.6, is twice as large as the other
two classes. Class 1 (medium) is the most challenging, since it lies in between the
other two, misclassification errors are more frequent. In fact, in Figure 5.5 we can
see that in the lequipe.fr ’s results the misclassified errors come from neighboring
classes. Errors from predicting poor class instead of good class and vice versa
are very low. These errors come from neighboring onLoad values that have been
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Website Exper
iments Model

F1 we
ighted
avg

Precision Recall

0 1 2 0 1 2

accuweather.com 1683 RFC 0.73 0.80 0.57 0.74 0.91 0.40 0.77
SVM 0.65 0.69 0.65 0.66 0.91 0.25 0.64

amazon.com 3818 RFC 0.67 0.71 0.58 0.72 0.88 0.40 0.57
SVM 0.66 0.68 0.62 0.72 0.92 0.37 0.51

google.com 3487 RFC 0.40 0.54 0.28 0.31 0.92 0.04 0.11
SVM 0.38 0.52 0.48 0.41 0.98 0.01 0.05

indeed.com 3815 RFC 0.65 0.69 0.58 0.68 0.92 0.36 0.50
SVM 0.60 0.65 0.56 0.67 0.92 0.37 0.33

lefigaro.fr 5033 RFC 0.68 0.71 0.57 0.76 0.87 0.35 0.70
SVM 0.62 0.66 0.54 0.67 0.88 0.27 0.57

lequipe.fr 4935 RFC 0.76 0.82 0.60 0.81 0.91 0.50 0.76
SVM 0.77 0.83 0.60 0.83 0.90 0.56 0.73

pornhub.com 4289 RFC 0.80 0.84 0.73 0.81 0.92 0.58 0.82
SVM 0.77 0.83 0.62 0.79 0.87 0.64 0.69

repubblica.it 4432 RFC 0.59 0.64 0.45 0.71 0.89 0.24 0.46
SVM 0.49 0.55 0.55 0.83 0.98 0.06 0.30

wikipedia.org 4913 RFC 0.45 0.56 0.31 0.34 0.79 0.16 0.22
SVM 0.37 0.52 0.00 0.55 0.98 0.00 0.06

xnxx.com 3922 RFC 0.72 0.84 0.55 0.66 0.88 0.48 0.68
SVM 0.72 0.85 0.52 0.66 0.86 0.53 0.62

xvideos.com 3879 RFC 0.66 0.77 0.50 0.61 0.83 0.37 0.67
SVM 0.64 0.75 0.56 0.55 0.83 0.33 0.66

youtube.com 3033 RFC 0.52 0.60 0.34 0.59 0.79 0.09 0.71
SVM 0.50 0.55 0.34 0.60 0.84 0.09 0.56

Table 5.9. Results on different sites of classification models on the dataset with
cache and accepted cookies. Two models are used: Random Forest Classifier and
Support Vecotor Machines. The metrics used are: the weighted average F1 score,
the precision and the recall of the three classes. Each model is evaluated through
a stratified (per class) 3-fold validation approach.

assigned to different classes. Different discussion regarding google.com, in fact here
the model does not work. It mostly predict all class as good class, this leads to
bad results for the other two classes.

In creating a single model for all sites in our dataset, it would not make sense
to use the previously created classes. For exmaple, an experiment that belongs
to class 2 of wikipedia.org could have an onLoad value of 10 seconds, repubblica.it
instead could have a value of 50 seconds. So it would not make sense to consider
them as belonging to the same class.

Therefore, the idea is to normalize the data by site and then create a single
classification model. A Standard Scaler is used to normalize the data. It is a
preprocessing technique used in machine learning to transform numerical data so
that it has a mean of 0 and a standard deviation of 1. This technique is commonly
used when working with datasets that contain features with different scales or
units of measurement, which could cause problems for certain machine learning
algorithms. The standard scaler works by subtracting the mean value of each
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Figure 5.5. Confusion Matrix of the results of RFC applied on the data of
lequipe.fr and google.com of the dataset with cache and accepted cookies. The
model is validated through a stratified (per class) 3-fold approach.

feature from each data point, and then dividing by the standard deviation of the
feature. This ensures that each feature has a similar scale and range of values,
making it easier for machine learning algorithms to work with the data.

For each site, all features and also the onLoad are normalized, then the data
of all sites are aggregated and the dataset is splitted into three class according to
the normalized onLoad value. The splitting is done again through percentiles, as
described in Section 4.6.

Model
F1
weighted
average

Precision Recall

0 1 2 0 1 2
RFC 0.65 0.70 0.56 0.68 0.89 0.35 0.57
SVM 0.62 0.68 0.49 0.65 0.88 0.31 0.50

Table 5.10. Results of classification models on the dataset with cache and ac-
cepted cookies. All features are normalized through a Standard Scaler. Also
onLoad are normalized, before creating the classes. Two models are used: Ran-
dom Forest Classifier and Support Vecotor Machines. The metrics used are: the
weighted average F1 score, the precision and the recall of the three classes. Each
model is evaluated through a stratified(per class) 3-fold validation approach.

In Table 5.10 we can see the results of the models Random Forest Classifier
and Support Vector Machine applied on this dataset. Looking at the F1 score,
the results are not so good. Also here, RFC outperforms SVM, proving that
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Figure 5.6. Confusion Matrix of the results of RFC and SVM applied on the
dataset with cache and accepted cookies. The data are normalized through
Sandard Scaler and also onLoad are normalized, before creating the classes.

models with decision trees are better for our purpose. In Figure 5.6 we can see
the confuzion matrix of the two models. As for the models seen above, many of
the misclassification errors are those that the moldels predict as good instead of
medium or poor.

Turning problem into classification brought no benefit over regression, in fact
the problem arises that two neighboring onLoad values can be assigned to two
different classes. Also, for data where it is more difficult to make a prediction, the
model almost always tends to predict the experiment as class 0. So there is no
point in investigating further the above problem.

5.3 Parallel dataset
With this dataset we get even closer to the real case. There are only two website:
lequipe.fr and pornhub.com, which are the sites with the best performance by
the model in the previous tests. As described in Section 4.3,in this dataset the
flows belonging to a single lequipe.fr experiment might actually be the flows from
pornhub.com. This introduces inaccuracies in the data, since information of a flow
of pornhub.com could be included in lequipe.fr data.

The idea is to filter flows based on the Server Name Idndication (SNI) field. It is
an extension to the Transport Layer Security (TLS) protocol that allows multiple
domain names to be served over HTTPS from the same IP address. SNI enables
a client to indicate the hostname it is attempting to connect to, which allows the
server to present the appropriate digital certificate for that hostname during the
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TLS handshake.
For our purpose, The flows are not filtered based on the full SNI but only on

the domain name. For example, if the SNI is www.lequipe.fr the domain name is
lequipe.fr. For each site a list is created with the best domain names and then the
TLS flows are filtered based on that list. In this context, as introduced in Section
3.5, Term Frequency-Inverse Document Frequency (TF-IDF) can help in selecting
the best domain names. Starting from the dataset with cache and accepted cookies
4.2, a rank of the domain names with highest TF-IDF value is created for each
website. In addition, it is also created a rank of the domain names with highest
TF value. Then, taking into consideration only the nDN with highest value, the
flows of each experiment in the parallel dataset are filtered.

Figure 5.7. Performance comparison between different values of the number of
domain names for both methods for selecting the best domain names (TF and
TF-IDF). A Random Forest Regressor is trained and tested for each site through
a 3-fold validation on the parallel test.

In Figure 5.7 several possible values of nDN are tested. The domain name of the
site is always taken: for example, in lequipe the domain name lequipe.fr is always
taken. So, when nDN = 1, in the case of lequipe.fr, the flows taken are only those
with the domain name as lequipe.fr. In the case of pornhub.com, it is impossible to
produce results with nDN = 1, there are not 5 flows for each experiment with the
domain name equal to pornhub.com. Even when adding the first domain name, the
number of experiments with at least 5 flows are less than half. For this reason, it
is chosen to use nDN = 3 (belonging domain name + the two best domain names).

Table 5.11 reports a comparison between the performance of the model over
different data. Results are also reported for the dataset with cache and accepted
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Site dataset type Exper
iments R2 MAE MAPE RMSE

lequipe.fr

cached RAW 4922 0.86 1246.27 5.16% 2642.32
TF-IDF 4878 0.91 1101.36 4.58% 2123.67

parallel
RAW 5473 0.61 1983.32 10.71% 3146.32
TF 5384 0.74 1485.58 8.17% 2552.32

TF-IDF 5382 0.77 1377.57 7.71% 2438.32

pornhub.com

cached RAW 4282 0.75 1179.17 8.35% 2336.71
TF-IDF 4278 0.82 1003.30 7.18% 1965.88

parallel
RAW 6461 0.35 1375.72 16.19% 2552.76
TF 6426 0.47 1244.14 15.05% 2240.43

TF-IDF 6426 0.48 1236.09 14.96% 2229.75

Table 5.11. Performance comparison over different dataset (dataset with
cache and accepted cookies and the parallel dataset) and over different ways
to filter the flows for each website. The model used is the Random Forest
Regressor, validated with a 3-fold approach.

Figure 5.8. True vs Predicted density plot, results of regression models on the
parallel dataset. Results obtained from the different ways of filtering flows through
the value of the domain name. Random Forest Regressor is used and the target
metric is the onLoad.The model is validated through a 3-fold approach.

cookies in case the flows are filtered through the value of the domain name. Already
with this dataset we can see a slight improvement on all evaluation metrics for
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both sites. Turning to the parallel dataset, there is a clear improvement in results,
whether using TF or TF-IDF to filter the domain names. For lequipe.fr, TF-IDF
seems to provide better results, while for pornhub.com TF and TF-IDF select the
same best domain names.

In Figure 5.8 we can see the differences between lequipe.fr and pornhub.com
results. Although the results of data filtered with TF and TF-IDF are very similar
they visibly improve over those without filtering data. The model still works well
on lequipe.fr but not as well on pornhub.com. Thus, proper filters may improve
the performance and only on a subset of the website can good performance be
achieved, based on the SNIs that characterize it.

68



Chapter 6

Conclusions

The limitations introduced by satellite navigation such as limited bandwidth and
high latency create the need to measure the user satisfaction while browsing the
web. In this context the work done is intended to create a mechanism that allows
the ISP to know the quality of a given user’s browsing from data passing through
its network. The approach proposed involves the prediction of WebQoE metrics,
as onLoad and Speed Index, from the network data after ISP ground station.

The works started by studying the several metrics used for measuring the cos-
tumer satisfaction in web browsing. Speed Index and onLoad, the widely used
metrics in this context, are used because they have proven to be the most suitable
and the most reliable in measuring the QoE. But Speed Index showed inaccuracy
in measurement in the case of web pages with video or moving content.

To study and create machine learning models, a measurement collection has
to be done. So a testbed for automatic collection of network and QoE data in
web visits is created. Browsetime is used for collecting timing metrics of web
sites since it is easy to deploy using docker and it is highly configurable. Tstat is
used for collecting the network flows. For each visit on a website an experiment
is created by aggregating different information of the belonging flows. A large
number of features are extracted from this dataset, which will later be selected
through feature selection techniques such as RFE.

The work then turned forward finding the preferred model for this type of
dataset. Random Forest Regressor was found to offer the best compromise in terms
of R-squared, Mean Absolute Percentage Error and Root Mean Square Error. The
superiority of this algorithm over Linear Regression lies in the ability to capture
non-linear relationships between the dependent and independent variables, it is less
sensitive to outlier and it can often provide better accuracy than Linear Regression,
especially for datasets with complex relationships between the variables.

In addition, the use of the browser cache led to a degradation of the result, many
objects are downloaded directly from the cache, without taking them from the
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network, decreasing the number of flows per experiment. Having less information
it is logical that the model works worse, negatively impacting the results. Per-site
results show that the proposed model works well with only some sites such as
lequipe.fr, pornhub.com or accuweather.com, while for others it does not prove to
be a reliable method for QoE prediction. Google.com and Youtube.com make heavy
use of HTTPv3 protocol, which is why a model was created on UDP data. This
models gives acceptable results on youtube.com, achieving a great improvement
over the previous model created on TCP data.

Moreover, to approach the real case scenario tests have been done showing that
the per-site model woks well on unseen data of the same site, in fact, the second
dataset contains data from different time periods. On the other hand, in the case
of the one model for all websites, the predictions of the data of a website that is
not in the training data are inaccurate, thus the model can only be applied to sites
within the dataset used in the training phase.

Finally, transforming the problem from regression to classification does not
bring benefits, in fact it leads to worse results than the original problem. Classifi-
cation models perform quite well on the sites where regression models perform well.
However, even here the random forest proved to be the best model, outperforming
SVM.

Despite the contributions that this work has made towards our understanding
on the correlation between the SatCom network flows and the WebQoE, there
remain several areas that require further investigation. One limitation of the study
is the limited sample size, which may have influenced the generalizability of our
findings. Future research should aim to replicate our study with a larger and more
diverse sample to assess the validity and reliability of our results. For example, we
need to check whether the model also works on the data of other users, who are
in a different place from the client used to create our dataset.

Another area of future research could involve examining the long-term results
of the machine learning models on new data. This would require continuing to
collect data on the same sites in our dataset and testing the models on these.

A lot of work still have to be done, in order to allow ISPs to predict the QoE
of the users, anyway, as always, the best has yet to come.

70



Bibliography

[1] Mohammed Alreshoodi and John Woods. «Survey on QoE\QoS correlation
models for multimedia services». In: arXiv preprint arXiv:1306.0221 (2013).

[2] Enrico Bocchi, Luca De Cicco, and Dario Rossi. «Measuring the Quality of
Experience of Web Users». In: 46.4 (Dec. 2016), pp. 8–13. issn: 0146-4833.
doi: 10 . 1145 / 3027947 . 3027949. url: https : / / doi . org / 10 . 1145 /
3027947.3027949.

[3] Leo Breiman. «Random Forests». In: Machine Learning 45.1 (Oct. 2001),
pp. 5–32. issn: 1573-0565. doi: 10.1023/A:1010933404324. url: https:
//doi.org/10.1023/A:1010933404324.

[4] Browsertime Scripting: https : / / www . sitespeed . io / documentation /
sitespeed.io/scripting/.

[5] Patrick Le Callet, Sebastian Möller, and Andrew Perkis. «Qualinet White
Paper on Definitions of Quality of Experience». In: European Network on
Quality of Experience in Multimedia Systems and Services (COST Action IC
1003) (Mar. 2013).

[6] Pedro Casas and Sarah Wassermann. «Improving QoE prediction in mobile
video through machine learning». In: 2017 8th International Conference on
the Network of the Future (NOF). 2017, pp. 1–7. doi: 10.1109/NOF.2017.
8251212.

[7] Docker: https://www.docker.com/.
[8] Diego Neves da Hora, Alemnew Sheferaw Asrese, Vassilis Christophides, Re-

nata Teixeira, and Dario Rossi. «Narrowing the Gap Between QoS Metrics
and Web QoE Using Above-the-fold Metrics». In: Passive and Active Mea-
surement. Ed. by Robert Beverly, Georgios Smaragdakis, and Anja Feld-
mann. Cham: Springer International Publishing, 2018, pp. 31–43.

[9] How the browser cache works: https://pressidium.com/blog/browser-
cache-work/.

71

https://doi.org/10.1145/3027947.3027949
https://doi.org/10.1145/3027947.3027949
https://doi.org/10.1145/3027947.3027949
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://www.sitespeed.io/documentation/sitespeed.io/scripting/
https://www.sitespeed.io/documentation/sitespeed.io/scripting/
https://doi.org/10.1109/NOF.2017.8251212
https://doi.org/10.1109/NOF.2017.8251212
https://www.docker.com/
https://pressidium.com/blog/browser-cache-work/
https://pressidium.com/blog/browser-cache-work/


BIBLIOGRAPHY

[10] Deutschmann J, Hielscher K-S, and German R. «Performance of modern
web protocols over satellite links». In: 38th International Communications
Satellite Systems Conference (ICSSC 2021). Vol. 2021. IET. 2021, pp. 154–
158.

[11] Jo Kenneth. «Satellite Communication Network Design and Analysis». In:
Artech house, 2011. url: https : / / ieeexplore . ieee . org / document /
9100166.

[12] Huan Liu. «Feature Selection». In: Encyclopedia of Machine Learning. Ed.
by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, 2010,
pp. 402–406. isbn: 978-0-387-30164-8. doi: 10.1007/978-0-387-30164-
8_306. url: https://doi.org/10.1007/978-0-387-30164-8_306.

[13] Maria Papadopouli, Paulos Charonyktakis, Maria Plakia, and Ioannis Tsamardi-
nos. «On User-Centric Modular QoE Prediction for VoIP Based on Machine-
Learning Algorithms». In: IEEE Transactions on Mobile Computing 15 (Jan.
2015), pp. 1–1. doi: 10.1109/TMC.2015.2461216.

[14] Daniel Perdices, Gianluca Perna, Martino Trevisan, Danilo Giordano, and
Marco Mellia. «When Satellite is All You Have: Watching the Internet from
550 Ms». In: Proceedings of the 22nd ACM Internet Measurement Conference.
IMC ’22. Nice, France: Association for Computing Machinery, 2022, pp. 137–
150. isbn: 9781450392594. doi: 10.1145/3517745.3561432. url: https:
//doi.org/10.1145/3517745.3561432.

[15] Gianluca Perna, Dena Markudova, Martino Trevisan, Paolo Garza, Michela
Meo, Maurizio M. Munafò, and Giovanna Carofiglio. «Online Classification
of RTC Traffic». In: 2021 IEEE 18th Annual Consumer Communications &
Networking Conference (CCNC). 2021, pp. 1–6. doi: 10.1109/CCNC49032.
2021.9369470.

[16] Satellite Communication scheme. https://byjus.com/physics/satellite-
communication/.

[17] Sitespeed.io: https://www.sitespeed.io/.
[18] Robertson Stephen. «Understanding inverse document frequency: on theo-

retical arguments for IDF». In: Journal of Documentation 60.5 (Jan. 2004),
pp. 503–520. issn: 0022-0418. doi: 10 . 1108 / 00220410410560582. url:
https://doi.org/10.1108/00220410410560582.

[19] Robert C. Streijl, Stefan Winkler, and David S. Hands. «Mean Opinion Score
(MOS) revisited: Methods and applications, limitations and alternatives». In:
Multimedia Systems 22 (2016), pp. 213–227.

[20] G S Suma, S Dija, and Arun T Pillai. «Forensic Analysis of Google Chrome
Cache Files». In: (2017), pp. 1–5. doi: 10.1109/ICCIC.2017.8524272.

72

https://ieeexplore.ieee.org/document/9100166
https://ieeexplore.ieee.org/document/9100166
https://doi.org/10.1007/978-0-387-30164-8_306
https://doi.org/10.1007/978-0-387-30164-8_306
https://doi.org/10.1007/978-0-387-30164-8_306
https://doi.org/10.1109/TMC.2015.2461216
https://doi.org/10.1145/3517745.3561432
https://doi.org/10.1145/3517745.3561432
https://doi.org/10.1145/3517745.3561432
https://doi.org/10.1109/CCNC49032.2021.9369470
https://doi.org/10.1109/CCNC49032.2021.9369470
https://byjus.com/physics/satellite-communication/
https://byjus.com/physics/satellite-communication/
https://www.sitespeed.io/
https://doi.org/10.1108/00220410410560582
https://doi.org/10.1108/00220410410560582
https://doi.org/10.1109/ICCIC.2017.8524272


BIBLIOGRAPHY

[21] Alaa Tharwat. «Classification assessment methods». In: Applied Computing
and Informatics 17.1 (Jan. 2021), pp. 168–192. doi: 10.1016/j.aci.2018.
08.003. url: https://doi.org/10.1016/j.aci.2018.08.003.

[22] Martino Trevisan, Alessandro Finamore, Marco Mellia, Maurizio Munafo,
and Dario Rossi. «Traffic analysis with off-the-shelf hardware: Challenges and
lessons learned.» In: IEEE Communications Magazine 55.3 (2017), pp. 163–
169.

[23] Martino Trevisan, Danilo Giordano, Idilio Drago, and Ali Safari Khatouni.
«Measuring HTTP/3: Adoption and Performance». In: 2021 19th Mediter-
ranean Communication and Computer Networking Conference (MedCom-
Net). 2021, pp. 1–8. doi: 10.1109/MedComNet52149.2021.9501274.

[24] Tstat - TCP STatistic and Analysis Tool. http://tstat.polito.it/.
[25] Hongdong Wang, Lei Mingfeng, Chen Guanhua, Li, and Zou. «Intelligent

Identification of Maceral Components of Coal Based on Image Segmentation
and Classification». In: Applied Sciences 9 (Aug. 2019), p. 3245. doi: 10.
3390/app9163245.

[26] WebPageTest by catchpoint: https://www.webpagetest.org/.

73

https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1016/j.aci.2018.08.003
https://doi.org/10.1109/MedComNet52149.2021.9501274
http://tstat.polito.it/
https://doi.org/10.3390/app9163245
https://doi.org/10.3390/app9163245
https://www.webpagetest.org/

	List of Tables
	List of Figures
	Introduction
	Satellite Communication
	Quality of Experience
	Motivation and Objectives
	Overview of the SatCom network
	Related work

	Testbed
	Passive Measurements
	Tstat

	Active Measurements
	Speed Index
	Page Load Time (onLoad) and other metrics

	Tool Description
	Docker
	Browsertime

	Browser cache and cookies
	Creation of the dataset

	Methodologies
	The Regression problem
	Linear Regression
	Random Forest Regressor
	Regression metrics

	The Classification problem
	Random Forest Classifier
	Support Vector Machines
	Classification metrics

	Feature Selection
	Validation
	TF - IDF

	Dataset
	No cache dataset
	Dataset with cache and accepted cookies
	Parallel dataset
	Pipeline workflow
	Feature Extraction
	TCP flows
	UDP flows

	From the Regression problem to the Classification problem
	Number of flows in an experiment
	Feature Selection
	Models Parameters

	Metodologies and Results
	No cache dataset
	Dataset with cache and accepted cookies
	Regression
	Classification

	Parallel dataset

	Conclusions

