
POLITECNICO DI TORINO

Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Architectural exploration of
Logic-in-Memory systems with

DExIMA-CAD

Supervisors
Prof. Maurizio Zamboni
Prof. Mariagrazia Graziano
Prof. Giovanna Turvani

Candidate
Cristian Neagu

student ID: 284734

April 2023

This work is subject to the Creative Commons Licence

Summary

In the past years, the “memory wall problem” has questioned the feasibility of
the traditional von Neumann architecture for new electronic systems. Due to sev-
eral technological concerns, a performance bottleneck is found in the memory sub-
system. As regards power consumption, energy is wasted in the processor-memory
data traffic. Many beyond von Neumann alternatives are found in the scientific lit-
erature. For instance, in Logic-in-Memory (LiM) arrays, memory cells are endowed
with computational capabilities, creating a naturally-parallel processing element.
Thus, such structures may support Single-Instruction, Multiple-Data (SIMD) op-
erations and may successfully accelerate a large variety of algorithms. In addition,
as the processing is carried out within the memory array, less energy is wasted in
the processor-memory data traffic.

At the VLSI laboratory of the Politecnico di Torino, researchers have been study-
ing LiM solutions, proving their effectiveness in mitigating the memory wall prob-
lem. The research work highlighted the need of new software tools to support the
design flow for LiM architectures and to characterize their main figures of merit.
Thus, a LiM development toolchain was born, which includes several components.
Octantis is a High-Level Synthesis (HLS) tool, which compiles an input algorithm to
produce a LiM array. DExIMA (Design Explorer for In-Memory Architectures) is
a C++ figures of merit estimator, which has been conceived to evaluate the critical
path, the area occupation and the power consumption of a LiM array. DExIMA-
CAD is the Python Graphical User Interface (GUI) front-end for DExIMA and it
provides an environment for the structural description of a LiM array.

The aim of this thesis is twofold. Firstly, the functionalities of DExIMA CAD
are expanded, improving its structural description and the architectural exploration
capabilities, in order to provide a more robust support for the LiM design flow. Sec-
ondly, the revisited front-end is employed to implement a variety of LiM structures
and algorithms, possibly fostering the SIMD paradigm.

The structural description capabilities of DExIMA CAD are largely enriched by
the introduction of array interconnections. Horizontal interconnections provide a

3

communication route for all cells belonging to a memory row, enabling the in-row
implementation of such operators as ripple-carry adders and bit-wise shift registers.
Vertical interconnections may be deployed to connect any pair of array elements,
creating arbitrary data movement patterns within the LiM array. A new dedicated
module offers a set of interconnections-related analysis and synthesis functionali-
ties, which are used to expand the processing abilities of a LiM array.

In DExIMA CAD, the simulation-time behaviour of a LiM array is defined by a
micro-programmed control unit based on an algorithm Read-Only Memory (ROM).
The procedure for defining the content of this ROM was particularly cumbersome
and inefficient: a set of improvements is thus introduced in the algorithm descrip-
tion module. In the revisited DExIMA CAD, the operating modes of the LiM array
elements are defined by nano-instructions, which assign a mnemonic to a set of val-
ues for the required control signals. Nano-instructions may be combined together
to form a scalar control, which is extended to a set of array elements by means
of an activation pattern, enabling a true in-memory Single-Instruction, Multiple-
Data (SIMD) processing. The new Graphical User Interface (GUI) features of the
algorithm description module largely ease the ROM programming procedure, mak-
ing it easier for the designer to specify the simulation-time behaviour of a LiM array.

As regards the architectural exploration capabilities of DExIMA CAD, the sup-
port for multi-array scenarios is introduced in the uppermost architectural level of
the complete LiM system. In the revisited DExIMA CAD, the top level can host
multiple instances of different LiM array types, and near-memory sections may
be created by the allocation of library components and arbitrarily-complex sub-
systems. The large variability of the uppermost architectural level is supported
by a dedicated module, the top-level analyzer, which offers several analysis and
synthesis tasks, which include, but are not limited to, the automatic configuration
of a UVM testbench and the generation of the HDL code for the complete system.
A top-level simulation dashboard helps define the simulation-time behaviour of the
complete LiM system, easing the simulation process and embedding it in the envi-
ronment of DExIMA CAD.

The effectiveness of the revisited DExIMA CAD is initially proved by the imple-
mentation of existing LiM structures, including the components of an in-memory Bi-
nary Neural Network (BNN) and the Hybrid-SIMD architecture, a general-purpose
LiM co-processor. The new front-end features are then used to implement ex novo
in-memory solutions for the Secure Hash Algorithm (SHA) and the Advanced En-
cryption Standard (AES).

All presented LiM structures would have been unattainable by the previous ver-
sion of DExIMA CAD. Their implementation highlights the increased breadth of the

4

structural description functionalities and the architectural exploration capabilities
of DExIMA CAD, which has become more versatile and efficient in supporting the
implementation of different LiM systems and algorithms. For all proposed imple-
mentations, the main figures of merit, e.g. critical path, static power and dynamic
power, are estimated both by Synopsys Design Compiler and by DExIMA CAD.
The two different estimation processes yield compatible results, further proving the
effectiveness of the tool in handling a variety of LiM structures.

The revisited DExIMA CAD is thus a valid support to the LiM design flow,
helping the exploration of increasingly complex LiM systems.

5

To all the people who
love me.

Contents

I Introduction 11

1 Introduction 13
1.1 Introduction to Logic-in-Memory (LiM) processing 13
1.2 Structure of LiM Development Toolchain 15
1.3 Introduction to DExIMA CAD . 16
1.4 Aim of the thesis . 22

II Additional functionalities in DExIMA CAD 25

2 Graph representations in DExIMA CAD 27
2.1 DExIMA CAD design files . 27
2.2 I/O pins and bit-widths . 28
2.3 Components library . 31
2.4 DExIMA CAD graphs . 33

2.4.1 Structure of a DExIMA CAD graph 34
2.4.2 Graph construction procedure 35
2.4.3 Connectivity analysis . 36

3 LiM array interconnections in DExIMA CAD 39
3.1 Taxonomy of LiM array interconnections in DExIMA CAD 41

3.1.1 Vertical interconnections . 41
3.1.2 Horizontal interconnections 42
3.1.3 Additional interconnections 43
3.1.4 Interconnection input and output pins 44

3.2 Issues and needs . 46
3.3 Array interconnections module . 49

3.3.1 Array manager . 51
3.3.2 Array description parser . 54
3.3.3 Array content parser . 55
3.3.4 Array structure analyzer . 56
3.3.5 Array interconnections analyzer 59

8

3.3.6 Path enumeration in the DExIMA description 63

4 Algorithm description in DExIMA CAD 65
4.1 Existing algorithm description features 65
4.2 New algorithm description features 67
4.3 Algorithm description module . 71

4.3.1 Support classes . 72
4.3.2 Control generator . 73

5 System-level exploration in DExIMA CAD 75
5.1 Changes to the uppermost architectural level 76
5.2 Issues related to the uppermost architectural level 79
5.3 Top-level analyzer . 83

5.3.1 Revisited design flow . 85
5.3.2 Build phase of the top-level analyzer 87
5.3.3 Interaction with the simulation dashboard 89
5.3.4 Source code generation . 90
5.3.5 Configuration of the UVM testbench 91
5.3.6 Generation of the DExIMA Backend description 98

III Implementations in DExIMA CAD 101

6 Case studies implementation in DExIMA CAD 103
6.1 LiM XNOR and LiM ones counter arrays 103

6.1.1 LiM XNOR array . 103
6.1.2 LiM ones counter array . 105

6.2 Logic-in-Memory implementation of a Finite Impulse Response dig-
ital filter . 108
6.2.1 Derivation of the LiM architecture 109
6.2.2 Algorithm description in DExIMA CAD 111

7 Hybrid-SIMD in DExIMA CAD 115
7.1 Overview of the Hybrid-SIMD architecture 115
7.2 Simplifications and assumptions . 118
7.3 Architectural description in DExIMA CAD 121

7.3.1 Structure of the LiM cells 121
7.3.2 Structure of the IRL blocks 123
7.3.3 Structure and geometry of the LiM array 124

7.4 Algorithm description in DExIMA CAD 126

9

8 SHA-1 in DExIMA CAD 133
8.1 Description of the SHA-1 algorithm 133
8.2 Derivation of the LiM architecture 135
8.3 Architectural description in DExIMA CAD 140

9 AES-128 in DExIMA CAD 145
9.1 Introduction and motivations . 145
9.2 Description of the AES-128 algorithm 146

9.2.1 Introduction, notation and encryption algorithm 146
9.2.2 Key schedule algorithm . 150

9.3 Derivation of the LiM architecture 152
9.3.1 State section . 154
9.3.2 Key section . 158
9.3.3 Round constant computation 160

9.4 Architectural description in DExIMA CAD 163

10 Results 171
10.1 Simulation results . 172
10.2 Numerical results . 173

11 Conclusions and future developments 181

A Hybrid-SIMD architecture 183

B LiM SHA-1 architecture 187

C AES-128 architecture 195

Bibliography 201

10

Part I

Introduction

11

Chapter 1

Introduction

1.1 Introduction to Logic-in-Memory (LiM) pro-
cessing

For many years, the von Neumann model has been extensively used to lay out the
structure of electronic systems. In a von Neumann architecture, the structure of
which is presented in Figure 1.1, the computational task are demanded to a Central
Processing Unit (CPU), while storage tasks are fulfilled by a memory sub-system.

CPU Memory

Von Neumann architecture

Figure 1.1: General representation of a von Neumann architecture.

The structure of the two components of a von Neumann architecture mirrors
their functional separation. In fact, micro-processors are designed to offer the
required hardware support for a predefined instruction set, and they typically in-
tegrate low-capacity, fast-access memory elements for the temporary storage. On
the other hand, memory arrays are specifically conceived to act as high-capacity
storage elements with the main drawback of being slower than CPUs.

The performance gap between micro-processors and memory arrays has rapidly
increased over the years. The reason for this behaviour lies in the fact that micro-
processor have a larger performance increase rate with respect to memories. CPUs
become increasingly faster, implying that their throughput is constantly increasing,
but memories cannot cope with very large processing rates because of their latency.

13

1 – Introduction

Such a performance bottleneck, which is evidently found in the memory sub-system,
is typically referred to as ”memory wall problem“.

A further motivation questions the feasibility of the von Neumann architecture
for modern electronic system. Since a micro-processor has very limited storage
capabilities, for most applications data is continuously fetched from the memory
sub-subsystem, transferred to the CPU, elaborated and then brought back to the
memory. In extremely data-intensive applications, a significant data traffic is ob-
served between the processor and the memory, which worsens not only the actual
throughput of the system, but also its power budget, as energy is wasted in trans-
ferring data back and forth.

The scientific literature contains many different examples of ”beyond von Neu-
mann“ alternatives. Typically, the rationale behind this solutions is to involve a
memory array in the computational tasks to some degree. A comprehensive taxon-
omy of this alternatives is presented in [9], which reports four main approaches:

• Computation-near-Memory (CnM), where the computational facilities are kept
as close as possible to the memory sub-system;

• Computation-in-Memory (CiM), where part of the processing takes place in
the peripheral circuits of the storage element;

• Computation-with-Memory (CwM), where the memory array provides results
useful to the computation, e.g. in look-up tables;

• Logic-in-Memory (LiM), where logic elements are integrated in the memory
cells, endowing them with computational capabilities, as hinted for instance
in [2].

In a LiM structure, the array elements are able to implement specific processing
tasks and to elaborate the data they store. As part of the processing is moved in
the LiM array, the processor-memory data traffic is reduced and the power budget
of the system is improved. Moreover, since multiple array elements can execute
the same task, a LiM array is a naturally-parallel processing element, which may
easily used to foster a Single-Instruction, Multiple-Data (SIMD) elaboration. As a
consequence, specific algorithms may benefit from an in-memory implementation,
as their parallel sections may be accelerated, leading to a performance speedup.

LiM solutions have been widely studied by researchers from the ”VLSI lab-
oratory“ of the Politecnico di Torino. In-memory alternatives for implementing
a Convolutional Neural Network (CNN) are detailed in [9], which presents the
Configurable Logic-in-Memory Architecture (CLiMA), and in [11]. A LiM imple-
mentation of the bitmap indexing algorithm is presented in [10]. Hybrid-SIMD,
a general-purpose and modular LiM co-processor, is presented in [16]. A RISC-V
LiM framework is introduced in [17]. This work follows the architectural paradigm
presented in Figure 1.2 and it shows remarkable improvements to the energy budget

14

1.2 – Structure of LiM Development Toolchain

of the system if a LiM approach is used, in spite of a larger area occupation and of
a slightly worse critical path.

CPU LiM

Figure 1.2: Architectural paradigm employed by the work presented in [17]. With
respect to the von Neumann architecture depicted in Figure 1.1, a modified memory
is endowed with computational capabilities, so part of the processing may take place
within the LiM array.

All these works prove that specific algorithms may benefit from an in-memory
implementation and, in terms of performances and power consumption, a LiM
solution may be more favourable than the traditional von Neumann approach. In
addition, they all suggest the need of specific tools to support the design flow for
such systems. As a consequence, researchers from the ”VLSI laboratory“ of the
Politecnico di Torino started the development of the LiM Development Toolchain.

1.2 Structure of LiM Development Toolchain
Figure 1.3 presents a general representation of the LiM Development Toolchain de-
veloped at the Politecnico di Torino, which currently consists of Octantis, DExIMA
Backend and DExIMA CAD.

Octantis is a High-Level Synthesis (HLS) tool able to compile an input algorithm
into a LiM array. Its development was started by [13] and was continued by [18].

DExIMA Backend is a C++ figures of merit estimator, which has been specif-
ically conceived to evaluate the critical path, the area occupation and the power
consumption of a LiM array. The development of DExIMA Backend was started by
[8] and was continued by [15]. The estimation process is made possible by detailing
the structure of a LiM array in a custom-format textual description, namely a .dex
file, which reports the content of all LiM cells, all additional logic elements and
their mutual connections.

The supported DExIMA Backend syntax is thoroughly detailed in [15] and is
versatile enough to enable the description of a large variety of LiM arrays. Nev-
ertheless, as DExIMA Backend is merely an estimator, there was no support for
easing the generation of the .dex file, so the structural description process was
rather burdensome and time-consuming.

15

1 – Introduction

DExIMA CAD

DExIMA
Backend Octantis

LiM Development Toolchain

Figure 1.3: Representation of the LiM Development Toolchain developed at the
Politecnico di Torino.

To help speed up the structural description process and, in turn, the time re-
quired for a complete DExIMA Backend estimation, a Graphical User Interface
(GUI) front-end was developed, leading to DExIMA CAD, which will be intro-
duced in Section 1.3.

1.3 Introduction to DExIMA CAD
DExIMA CAD has been conceived as a vital front-end support to DExIMA Back-
end. A set of Graphical User Interface (GUI) functionalities reduces the burden of
describing the LiM array structure in the back-end input .dex file, speeding up the
estimation process and, in turn, the architectural exploration. Its main features
will be detailed in the following paragraphs.

Structural paradigm The design flow offered by DExIMA CAD is based on a
well-defined structural paradigm for LiM arrays, which is based on LiM cells and
on Intra-Row Logic (IRL) blocks.

In DExIMA CAD, all memory cells are LiM cells, meaning that they may inte-
grate additional components, e.g. logic gates or basic arithmetic circuits, so that
specific computational tasks may be carried out within a memory row: examples
of such tasks include, but are not limited to, bit-wise logic operations and elemen-
tary arithmetic operations, e.g. addition and subtraction. Should a more complex
computational task be required, a memory row may host a further logic module,

16

1.3 – Introduction to DExIMA CAD

i.e. a IRL block, which may be demanded such operations as multiplication, divi-
sion, additional storage and so forth. Memory rows are thus interleaved with IRL
blocks, creating the structure depicted in Figure 1.4. Two different allocation pat-
terns are observed, the LiM cells pattern, which specifies what types of LiM cells
are allocated in the cells matrix, and the IRL blocks pattern.

LiM
cell

LiM
cell

LiM
cell

LiM
cell

IRL
block

LiM
cell

LiM
cell

LiM
cell

LiM
cell

IRL
block

LiM array

Figure 1.4: Structure of a LiM array, as intended by DExIMA CAD.

LiM array template Given that a LiM cell is typically enhanced with addi-
tional arithmetic, logic and routing components, it is expected that its I/O inter-
face should include a set of input control signals, to properly coordinate all in-cell
operations, and a set of output data signals, to provide multiple outputs to the
complete array. Similar considerations also apply to the I/O interface of a IRL
block.

To quickly adapt the description capabilities to new LiM arrays, DExIMA CAD
offers the possibility of selecting a LiM array template, which defines the number
of outputs and control signals for each LiM cell and for each IRL block, as briefly
explained in the following:

• LiM0, LiM1 and so on are the LiM cell outputs;

• IRL0, IRL1 and so forth are the IRL block outputs;

17

1 – Introduction

• S0, S1 and so on are the LiM cell control signals;

• SI0, SI1 and so forth are the IRL block control signals.

LiM cells and IRL blocks design With reference to the structural paradigm
presented in Figure 1.4, DExIMA CAD offers the possibility of quickly describing
the structure of all constitutive elements of a LiM array, i.e. its LiM cells and IRL
blocks, by means of a schematic editor. An example of this functionality is reported
in Figure 1.5.

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

OC

OC

LiM0

LiM0

CK EN RN WR

RD

Memory10

IN0

IN1

S

O

MUX2111

IN0 O

NOT114

IN0 O

NOT115

Figure 1.5: Example of LiM cell described by means of the DExIMA CAD schematic
editor. The presented structure has been conceived for mere representation pur-
poses.

The schematic editor generates a set of files, which may be referred to as ”DEx-
IMA design files“, which contain the structure of an array element. The .lim
extension is used to identify a LiM cell, while the .irl extension is associated to
an IRL block. Despite this difference, the file format is the same in both cases, as
Chapter 2 will thoroughly explain.

LiM array structure With its schematic editor, DExIMA CAD allows to spec-
ify the local structure of a LiM array, i.e. the structure of its constitutive elements.

18

1.3 – Introduction to DExIMA CAD

With reference to the structural paradigm, the LiM cells and the IRL blocks pat-
terns must be specified. In DExIMA CAD, this task is fulfilled by two different
Comma-Separated Values (CSV) files, which may be generated by a GUI function-
ality and which represent the cells and the blocks patterns. An example of such
files is reported in the following.

lim_array.csv | lim_array_intrarow.csv

cell1,cell1,cell1,cell1,cell1,cell1,cell1,cell1 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block
cell2,cell3,cell3,cell3,cell3,cell3,cell3,cell3 | irl_block

It is immediate to understand that the textual description presented in the above
example may be used by DExIMA CAD to infer the global structure of the LiM
array, as presented for instance in Figure 1.4. Moreover, as the generation of the
previously mentioned CSV files is aided by a GUI functionality, it is extremely easy
to handle the structural description process of a large variety of LiM structures.

Simulation-time behaviour of a LiM array In DExIMA CAD, the simulation-
time behaviour of a LiM array is defined by a micro-programmed control unit based
on an algorithm Read-Only Memory (ROM). While the interaction between a LiM
array and its control unit will be thoroughly detailed in Chapter 5, it is important
to point out that a DExIMA CAD GUI functionality may be employed to describe
the algorithm to be implemented by a designed LiM array.

An algorithm comprises a sequence of operations, which are referred to as ”in-
structions“. Each instruction requires a set of values for all control signals in the
LiM array, i.e. the LiM and the IRL control signals. In practice, an instruction
is a ”scalar control“, which specifies the behaviour of an active array element. In
an SIMD-like processing, the same operation is likely to be executed by multiple
array elements at a time: for this reason, each instruction requires an activation

19

1 – Introduction

pattern, which is used to vectorize the scalar control and extend it to a set of array
elements.

All these concepts are exemplified by Figure 1.6, which shows the previously
mentioned DExIMA CAD GUI functionality. Each column is an instruction and it
contains all the required control signals values. For each instruction, an activation
pattern may be selected to extend the scalar control to multiple array elements.

Figure 1.6: DExIMA CAD GUI functionality for defining the simulation-time be-
haviour of a LiM array.

Synthesis tasks When both the structure of the LiM array and its simulation-
time behaviour are defined, DExIMA CAD may carry out its primary synthesis
tasks, which pave the way to the simulation of the designed LiM architecture and
to the estimation of its main figures of merit. For the former activity, the front-
end generates the VHDL code of the complete LiM architecture, which may be
then simulated with a Universal Verification Methodology (UVM) testbench; for
the latter, it creates a .dex description of the LiM array, preparing the estimation
with DExIMA Backend.

20

1.3 – Introduction to DExIMA CAD

Comparison to a traditional von Neumann solution An interesting func-
tionality is integrated by DExIMA CAD to show the effectiveness of the LiM
paradigm for a selected algorithm. To fulfill this analysis task, DExIMA CAD
relies on gem5 [12], an open-source computer architectures simulator, and on Cacti
[1].

The C programming language is used to describe the target algorithm, the exe-
cution of which on a traditional von Neumann architecture may be simulated with
gem5, assuming a RISC-V CPU. This simulation, which requires a prior specifica-
tion of the L1 and L2 cache sizes, is used to extract such quantities as the CPU
execution time, the number of cache accesses and the hit rates. Then, a further
simulation with gem5 is carried out, taking as input the following algorithm.

#include <stdio.h>

int main(){
volatile int memory_content[128] = {0};
volatile int data;

for(int i = 0; i < 128; i++){
data = memory_content[i];

}

return 0;
}

The above algorithm strives to model the architectural paradigm presented in
Figure 1.2, where the memory is actually endowed with computational capabilities.
As a consequence, the CPU is not requested to perform any actual processing,
but is only required to move the to-be-elaborated data to the memory array. This
simulation, which requires a prior specification of the number of rows in the LiM
array (128 in the above example), extracts the same quantities as the previous one,
preparing a comparison process.

With the above simulations, DExIMA CAD is able to evaluate the effect of
the LiM paradigm on the number of memory accesses, on the required processor
instructions and on the execution time. The comparison process is completed by an
interaction with Cacti, leading to an energy-wise evaluation of the LiM processing
for the target algorithm.

Design flow in DExIMA CAD All previous paragraphs have described the
main functionalities of DExIMA CAD, which add up to its design flow. For the
sake of completeness, the design flow is summarized in the following.

• A working directory, or project path, is specified, in which all files generated

21

1 – Introduction

and required by DExIMA CAD will be found.

• A LiM array template is selected, specifying the number of LiM and IRL
control signals and outputs.

• The schematic editor is used to implement the required array elements. All
implemented design units are saved to .lim and .irl files, so that they may
be used at a later stage.

• The LiM array structure is specified in the two previously mentioned CSV
files.

• The functionality presented in Figure 1.6 is used to define the simulation-time
behaviour of the LiM array.

• The VHDL code of the LiM architecture is generated and the design is simu-
lated with the DExIMA CAD UVM testbench.

• The .dex description of the LiM array is generated and is passed to DExIMA
Backend, which estimates its main figures of merit.

1.4 Aim of the thesis
Aim of the thesis The main features of DExIMA CAD and the most significant
details on the design flow it offers have been discussed in Section 1.3. It is note-
worthy to stress that it certainly is an interesting tool, which could be useful in
aiding the design process of a LiM system, although some room for improvement
was noticed.

The aim of this thesis is twofold. Firstly, the functionalities of DExIMA CAD
are expanded, improving its structural description and architectural exploration
capabilities, in order to provide a more robust support for the LiM design flow.
Secondly, the revisited front-end is employed to implement a variety of LiM struc-
tures and algorithms, possibly fostering the SIMD paradigm.

Rationale behind this work Besides the aim of thesis, it is important to stress
the rationale behind all presented work.

Initially, a set of existing LiM architectures was considered. For these struc-
tures (which include [9], [11], [16] and [17]), the feasibility of a complete DExIMA
CAD implementation was analyzed, showing specific flaws which would have made
their description unattainable by the tool. Thus, the required functionalities and
improvements were inferred from these case studies and were then integrated in
DExIMA CAD. The implementation of some of the mentioned case studies, includ-
ing [11] and [16], proves the effectiveness of the new functionalities.

22

1.4 – Aim of the thesis

During the development of the present versions of DExIMA Backend and DEx-
IMA CAD, the front-end has grown to become not only a mere Graphical User
Interface (GUI) overlay, but also a vital support to the back-end. Evidently, the
front-end consists of GUI sections and of computational components. In this con-
text, a ”computational component“ is a module that does not require the full GUI
overlay to carry out its tasks.

The integration of a new functionality in DExIMA CAD requires a certain degree
of modifications to the existing source code: special attention must be paid to
how the new DExIMA CAD code is introduced. In fact, the new modules should
strive to be well-separated from all existing DExIMA CAD modules, with as little
mutual interaction as possible, whilst still guaranteeing the intended behaviour.
This is indeed necessary to avoid interference with already existing functionalities,
to increase the maintainability of the code and to foster future expansions and
improvements.

Within a new module, it would be advisable to provide a clear separation be-
tween its GUI components and its computational sections. From a general point
of view, these types of elements are not expected to directly communicate with
each other. Any new DExIMA CAD module introduced in this thesis prepares an
internal file-based interface, which is typically fed by a set of files generated by the
GUI components; the computational sections do not act on any GUI elements, but
rather on existing files, meaning that they do not require the full DExIMA CAD
GUI overlay. This approach has been specifically followed to foster future scripting
functionalities in DExIMA CAD.

Structure of the thesis The second part of this thesis addresses all changes to
DExIMA CAD, leading to what will be referred to as ”revisited DExIMA CAD“,
which is used in the third part of this thesis to provide some implementations.

The structural description capabilities are enriched by the array interconnections
module presented in Chapter 3, while the architectural exploration capabilities are
enhanced by the top-level analyzer module discussed in Chapter 5: these changes
are supported by underlying graph representations, which are introduced in Chap-
ter 2. The algorithm description facilities, as seen for instance in Figure 1.6, are
improved by the changes detailed in Chapter 4.

Variable-complexity case studies are then implemented in the revisited DExIMA
CAD to show its effectiveness. Chapter 6 presents the components of the in-memory
architecture discussed in [11], while Chapter 7 discusses the full DExIMA CAD
implementation of the Hybrid-SIMD architecture, the general-purpose co-processor
presented in [16].

The new front-end features are then used to implement ex novo in-memory solu-
tions for the Secure Hash Algorithm (SHA) and the Advanced Encryption Standard
(AES), in Chapter 8 and Chapter 9, respectively.

Results, concluding remarks and possible improvements are finally presented in

23

1 – Introduction

Chapter 10 and in Chapter 11.

24

Part II

Additional functionalities in
DExIMA CAD

25

Chapter 2

Graph representations in
DExIMA CAD

The purpose of Chapter 2 is to provide the most significant details on the DEx-
IMA CAD graph representations, which has been introduced to support specific
connectivity-related analysis and synthesis task in DExIMA CAD.

Section 2.1 introduces the structure of a DExIMA CAD design file. Section 2.2
and Section 2.3 present the models used in the graph representation, which is
described in Section 2.4.

2.1 DExIMA CAD design files
To help speed up the design process of a LiM array, DExIMA CAD embeds a
schematic editor, which offers two primary design contexts, the ”LiM cells“ and the
”Intra-Row Logic“ contexts. In the former, the designer can allocate an arbitrary
number of single-bit components, which include logic gates, half-adders, full-adders,
storage and routing elements; in the latter, it is possible to instantiate multi-bit
components, e.g. adders, multipliers, registers, shifters, look-up tables, multiplexers
and so forth. Regardless of the design context, all allocated components may be
connected to one another by means of local connections and, besides, to the external
I/O pins which will be used to interface the designed unit with other external
components.

DExIMA CAD uses a textual description to represent the complete structure
of an array element, i.e. a LiM cell or a IRL block, creating .lim or .irl files.
Hereinafter, these types of files will be referred to as ”DExIMA CAD design files“.

DExIMA CAD design files are generated every time the designer decides to
save the current content of the schematic editor. Despite a different file extension,
both types of files use the same format to track the position and the nature of
each component in the schematic editor and, in addition, the local connections. A

27

2 – Graph representations in DExIMA CAD

simple example of .lim or .irl file format is reported in the following.

BL 720.0 500.0 Ext 9 Input
BL[1] :

CLK 540.0 520.0 Ext 9 Input
CLK[1] :

RST 660.0 520.0 Ext 9 Input
RST[1] :

WL 600.0 520.0 Ext 9 Input
WL[1] :

OC 680.0 840.0 Ext 9 Output
OC[1] :

Memory_19 680.0 660.0 Memory 1
CK[1] : CLK.CLK
EN[1] : WL.WL
RN[1] : RST.RST
WR[1] : BL.BL
RD[1] : OC.OC

In a DExIMA CAD design file, every item in the schematic editor is represented
by an header line, which primarily reports its unique identifier (i.e. a label or a
name), its type and its position in the schematic editor. Two primary types of
items may be identified:

• external I/O pins (BL, CLK, RST, WL and OC in the above example);

• actual components (Memory_19 in the above example), which could either be
single-bit or multi-bit components.

After each item header line, a DExIMA CAD design file reports a set of connec-
tion lines, which are used to specify the necessary local connections. For instance,
with reference to the above example, connection line CK[1] : CLK.CLK indicates
that pin CK belonging to the actual component Memory_19 is connected to the
external input pin CLK.

An equivalent graph representation may be associated to a DExIMA CAD design
file, leading to what will be referred to as ”DExIMA CAD graphs“. Since each
description of an array element may contain either external I/O pins or actual
components, it seems reasonable to model these two different contributions, laying
the groundwork for a complete DExIMA CAD graph representation.

2.2 I/O pins and bit-widths
Section 2.1 has mentioned that a DExIMA CAD design file contains a set of external
I/O pins, for which a proper model should be defined. This model is inspired by the

28

2.2 – I/O pins and bit-widths

traditional port representation in VHDL and in Verilog. Each pin is represented
by a name, a direction, i.e. input or output, and by a bit-width. Several situations
may be encountered, as shown by the following examples.

entity Adder is
generic (

nbit: integer := 8
);
port (

A : in std_logic_vector(nbit-1 downto 0);
B : in std_logic_vector(nbit-1 downto 0);
AS : in std_logic;
SUM : out std_logic_vector(nbit-1 downto 0)

);
end Adder;

entity AES_GalMult2 is
port (

INPUT_BYTE : in std_logic_vector(7 downto 0);
OUTPUT_BYTE : out std_logic_vector(7 downto 0)

);
end entity;

In the first of the above examples, the component I/O interface consists of single-
bit and multi-bit pins. For the latter type, the actual width of the bit vector is
parametric, meaning that it is controlled by a parameter, i.e. a generic.

In the second of the above examples, the component I/O interface consists of
multi-bit pins, but the actual width of the bit vector is no longer parametric, as in
the first example, but rather is fixed.

Besides the previously described situations, a further need arises when managing
the width of multi-bit pins, which is shown by the following example.

entity top is
port (

CLK : in std_logic;
RST : in std_logic;
BL : in std_logic_vector(15 downto 0);
EN : in std_logic;
WL : in std_logic_vector(0 to 15);
queueIN : in std_logic_vector(15 downto 0);
queueWen : in std_logic;
LiMActivate : in std_logic;
MEM : out std_logic_vector(0 to 255)

29

2 – Graph representations in DExIMA CAD

);
end entity;

For multi-bit pins, the bit vector direction must be specified, so to cover two
possible situations:

• std_logic_vector(15 downto 0);

• std_logic_vector(0 to 15).

All the above considerations lead to class PinIO, which may be used to model
any I/O pin in DExIMA CAD and whose structure is summarized in Figure 2.1.

str

str

class BitWidth

name

direction

bitwidth

class PinIO

Figure 2.1: Main attributes of class PinIO.

To model a pin bit-width, a dedicated class, i.e. class BitWidth, is introduced.
In truth, this class represents the root of an inheritance line, which is used to cover
the previously identified situations:

• class BitWidth is the base class, which may be used to model the bit-width
of single-bit pins;

• class BitWidthVector is derived from the base class and it may be used to
represent multi-bit pins;

• class BitWidthVectorFixed is derived from class BitWidthVector and it is
used to model such bit-widths as std_logic_vector(7 downto 0);

• class BitWidthVectorParametric is derived from class BitWidthVector and
it is used to model such bit-widths as std_logic_vector(nbit-1 downto 0),
i.e. parametric bit-widths.

30

2.3 – Components library

2.3 Components library
As specified in the introduction to Section 2.1, a large variety of components can
be allocated in the DExIMA CAD schematic editor. For the purposes of build-
ing a graph representation, DExIMA CAD must know the main features of these
components, including for instance their I/O interface. Thus, each library com-
ponent is associated an equivalent model, and a collection of models is stored by
DExIMA CAD in what will be referred to as ”components library“. In fact, as
Section 2.4 will better clarify, components play a major role in the DExIMA CAD
graph representation and, in this context, their role is twofold;

1. they are part of the DExIMA CAD graph itself, being the graph nodes;

2. they aid the graph construction process, by readily reporting its I/O interface
to the module devoted to this specific task.

The components library is extremely important in constructing a DExIMA CAD
graph, as it provides the blueprint for creating each graph node, which must include
a clear indication of its I/O interface.

Component models A reasonable model of the main component features may
be obtained by mimicking a VHDL entity, which is always represented by a name,
i.e. an unique identifier, and by a description of its I/O interface, indicating what
ports are used to communicate with other external elements. Each port may be
easily represented by a properly set instance of class PinIO, while the entity name
is simply a string. However, one point is still to be addressed. A design may con-
tain several instances of the same library component, hence the need of a further
attribute, acting as an unique identifier. These considerations add up to the struc-
ture presented in Figure 2.2, where type indicates the component type, name is
the unique identifier, while pins_input and pins_output store the references to
instances of class PinIO.

In truth, class Component is the root for a set of derived classes, including:

• class SingleBitComponent, which models single-bit components;

• class MultiBitComponent, which represents multi-bit component.

A multi-bit component may accept a set of parameters, which mimic the VHDL
generic mechanism, so that the bit-width of its ports may be managed in a para-
metric manner. Additional parameters may be required by specific multi-bit com-
ponents, e.g. the shift amount of a shifter.

31

2 – Graph representations in DExIMA CAD

str

str

dict

dict

type

name

pins_input

pins_output

class Component

Figure 2.2: Main attributes of class Component.

Components library All required component models are stored by DExIMA
CAD in a components library, which is defined in one of its internal modules. Since
DExIMA CAD currently supports the NanGate 45 nm library only, the definition
is actually static, meaning the features of all its components are statically written
in the dedicated files.

The following example shows how single-bit components may be handled in the
internal DExIMA CAD library.

component = SingleBitComponent('AND2')
component.appendPin('Input', 'IN0')
component.appendPin('Input', 'IN1')
component.appendPin('Output', 'O')
library_components['AND2'] = component

In the above example, an instance of class SingleBitComponent is created by
specifying the component type, i.e. AND2. Then, the I/O interface is listed with
the appendPin() method which, for single-bit components, only requires the pin
direction and the pin name. Lastly, the created instance is appended to the internal
components library.

The following example shows how multi-bit components may be handled in the
internal DExIMA CAD library.

component = MultiBitComponent('Adder')
component.appendParameter('nbit')
component.appendPin(

'Input',
'A',
BitWidthVectorParametric(

BITWIDTH_DIRECTION_DOWNTO,

32

2.4 – DExIMA CAD graphs

'nbit',
ONE2ONE

)
)
component.appendPin(

'Input',
'B',
BitWidthVectorParametric(

BITWIDTH_DIRECTION_DOWNTO,
'nbit',
ONE2ONE

)
)
component.appendPin(

'Input',
'AS',
BitWidth()

)
component.appendPin(

'Output',
'SUM',
BitWidthVectorParametric(

BITWIDTH_DIRECTION_DOWNTO,
'nbit',
ONE2ONE

)
)
library_components['Adder'] = component

With respect to the previous example, the declaration of a multi-bit compo-
nent is evidently more complex. Similarly to the previous case, an instance of
class MultiBitComponent is created by specifying the component type, i.e. Adder.
Prior to the I/O interface declaration, all required parameters must be defined by
means of the appendParameter() method. Then, all component pins may be added
to the model, by carefully specifying the characteristics of the bit-width. Lastly,
the created instance is appended to the internal components library.

2.4 DExIMA CAD graphs

A DExIMA CAD graph thoroughly models the content of a DExIMA CAD de-
sign file, taking into account not only the actual components and the external I/O
pins, but also their mutual connections. This graph representation has the primary

33

2 – Graph representations in DExIMA CAD

purpose of aiding specific connectivity-related analysis and synthesis tasks imple-
mented in the revisited DExIMA CAD. They thus offer a systematic approach for
tackling connectivity issues. For instance, these graphs may be used by the array
interconnections module (Chapter 3) to quickly identify all components involved in
an array interconnection.

The DExIMA CAD graph representation is supported by the data structures
and the algorithms offered by [5].

2.4.1 Structure of a DExIMA CAD graph
Each graph node is either an actual component or an external I/O pin, while
each graph edge derives from the set of connection lines. Regardless of the actual
implementation, a graph node is characterized by a name, i.e. an unique identifier,
a type, which reports the component type, and a set of input and output pins. An
abstract representation of these concepts is presented in Figure 2.3.

Name Type

Inputs Outputs

MUX21_11 MUX21

IN0
IN1
S

O

BL
Ext

Input

BL

OC
Ext

Output

OC

Figure 2.3: Abstract representation of nodes in DExIMA CAD graphs. In the
top-left corner, a general representation of the class attributes. In the top-right
corner, an example of actual component (a 2-to-1 single-bit multiplexer). In the
bottom-left corner, an example of external input pin. In the bottom-right corner,
an example of external output pin.

All edges in a DExIMA CAD graph represent the local connectivity of the asso-
ciated array element. In this context, an edge must not only indicate what nodes
should be connected, but also what pins are involved in the local connection. As
a consequence, each edge is characterized by its source node, its destination node,
the source pin and the destination pin, as depicted in Figure 2.4.

34

2.4 – DExIMA CAD graphs

Destination
node

V

Source
node

U

E(SrcPin, DstPin)

Figure 2.4: Abstract representation of edges in DExIMA CAD graph. A source node
U and a destination node V are connected by an edge E, which is parametrized by
the source pin SrcPin and by the destination pin DstPin.

All the above considerations eventually lead to the current implementation of a
DExIMA CAD graph, which is represented by an instance of class DExIMAGraph.

2.4.2 Graph construction procedure
The structure of a DExIMA CAD graph is directly inferred from its associated
DExIMA CAD design file, which is parsed and analyzed to return the corresponding
graph representation. The parsing procedure is demanded to a parser, i.e. an
instance of class ParserFileDExIMA, and it consists of two subsequent sub-phases,
which will be detailed in the following.

First sub-phase In the first sub-phase, all connection lines are temporarily dis-
carded and only the item header lines are taken into account. With some format-
specific manipulation, the header line is primarily used to determine the type of
component and its name, so that a proper graph node may be allocated. If an exter-
nal I/O pin is found, the parser allocates an instance of class PinIO. On the other
hand, an actual component will be represented by an instance of class Component.

The allocation of an actual component must be properly handled by the parser,
since in the present format of a DExIMA CAD design file it is not possible to
distinguish input and output pins in a connection line. For this reason, each graph
node of this kind must also report its I/O interface, as depicted in Figure 2.3, which
may not be inferred directly from the DExIMA CAD design file. To fulfill this task,
the parser scans the components library to retrieve a copy of that component, which
contains the pieces of information reported in Figure 2.3.

35

2 – Graph representations in DExIMA CAD

Second sub-phase At the end of the first sub-phase, the graph contains all
required nodes, i.e. actual components and external I/O pins, but edges are still
to be appended. This task is fulfilled by the second parsing sub-phase, in which all
item header lines are discarded and only the connection lines are considered.

For any item in the DExIMA CAD design file, each connection line refers to one
of its pins, which naturally is one end of the edge, and it has a LHS and a RHS:
the former is the item pin, while the latter indicates the other end of the edge, by
specifying the other item involved in the connection and its pin. In some cases, the
RHS may be empty; from a more general point of view, it may contain one or more
items.

The edge direction is actually determined by the considered pin and, more specif-
ically, by its direction: if the pin belongs to the input interface of the component,
then the edge will lead to the component, otherwise it will start from it.

The following example may be considered to clarify the above statements.

FA_28 1080.0 1080.0 FA 6
A[1] : XOR2_22.O
B[1] : XOR2_21.O
C[1] : MUX21_35.O
S[1] :
CO[1] : TO_LEFT.TO_LEFT MUX21_29.IN1

All the above elements are found in the above example. Five connection lines
are associated to component FA_28, which is in fact a full-adder. The first three
connection lines refer to its input pins and will create three graph edges, sharing the
same destination component and originating from components XOR2_22, XOR2_21
and MUX21_35. The last two connection lines refer to the output pins. Two edges
departing from the component will be created, one leading to item TO_LEFT and
one to item MUX21_29.

2.4.3 Connectivity analysis
A DExIMA CAD graph may be useful in carrying out specific connectivity-related
analysis tasks. In fact, the graph representations may help determine whether the
local connectivity is consistent.

In this context, a ”consistent“ graph meets the following conditions:

• no edge should have the same source and destination nodes;

• no edge should have an external input pin as its destination node;

• no edge should start from and external input pin and lead to the output pin
of an actual component;

36

2.4 – DExIMA CAD graphs

• all edges leading to an external output pin must start from the output pin of
a component.

A violation of any of the above rules leads to an ”inconsistent“ graph. A flawed
connectivity must be properly identified in the structural description process, as it
may be responsible for unwanted effects which lead to an incorrect functionality
of the whole LiM array. It should be pointed out that the set of constraints can
be modified at will, so to implement a stricter and more refined consistency check
policy.

An instance of class DExIMAGraph offers the checkConnectivity() method, which
verifies if the above conditions are met and returns the consistency status of the
graph.

37

38

Chapter 3

LiM array interconnections
in DExIMA CAD

The purpose of Chapter 3 is to detail a new functionality in DExIMA CAD, which
is meant to support the integration of interconnections between the elements of a
LiM array.

The global structure of DExIMA CAD fosters a specific LiM processing paradigm.
To endow a memory array with computational capabilities, additional logic ele-
ments may be integrated in the array itself, for instance within or near a memory
row. Nevertheless, the mere allocation of further components is not sufficient to
guarantee a specific set of functionalities in the LiM array. In fact, in virtually any
processing element, e.g. the datapath of a microprocessor, all processing capabili-
ties are determined not only by the allocated sub-systems, but also by their mutual
connections. This considerations also applies to LiM arrays, as the analysis of sev-
eral LiM architectures may show. To prove this statement, some prime examples
may be considered.

• In the Configurable Logic-in-Memory Architecture (CLiMA) presented in [9],
the possibility of integrating additions in the modified memory cells derives
from the interconnections of the in-cell full-adders, creating a link for the prop-
agation of the carry signal and, consequently, a ripple-carry adder architecture.

• In the Hybrid-SIMD architecture presented in [16], the communication be-
tween smart rows, composed of arithmetic memory rows and their respective
row interfaces, and standard memory rows is enabled by specific interconnec-
tions, leading to the implementation of specific data movement patterns.

Connections between the elements of a LiM array are thus essential to provide
specific processing capabilities. Nevertheless, the past version of DExIMA CAD
provided a rather limited support for array interconnections. Figure 3.1 provides a

39

3 – LiM array interconnections in DExIMA CAD

representation of the available interconnections, which are explained in the follow-
ing:

• a LiM cell can be connected to the very next IRL block;

• a IRL block can be forwarded to the input of the very next IRL block.

LiM
cell

LiM
cell

LiM
cell

LiM
cell

IRL
block

LiM
cell

LiM
cell

LiM
cell

LiM
cell

IRL
block

Figure 3.1: Existing array interconnections in the past version of DExIMA CAD.

Because of this very limited support for array interconnections, DExIMA CAD
would struggle in the description of rather complex LiM array architectures, espe-
cially if refined data movement patterns are to be implemented. As a consequence,
new structural description capabilities must be provided to DExIMA CAD.

Section 3.1 introduces a taxonomy of array interconnections. Given the state
of DExIMA CAD and DExIMA Backend, some issues may arise when trying to
integrate array interconnections, as detailed in Section 3.2. The new DExIMA
CAD array interconnections module is then described in Section 3.3.

40

3.1 – Taxonomy of LiM array interconnections in DExIMA CAD

3.1 Taxonomy of LiM array interconnections in
DExIMA CAD

3.1.1 Vertical interconnections
The taxonomical process is started by the analysis of the existing array intercon-
nections in DExIMA CAD, as detailed by Figure 3.1. Apparently, the supported
interconnections only move in the vertical direction, i.e. along the memory rows
and the IRL blocks. Moreover, the available interconnections may only move from
a memory row to its associated IRL block or from a IRL block to its very next
IRL block. These considerations may be already of use in identifying the consti-
tutive elements of a vertical interconnection, namely its source, its destination, its
direction and its displacement.

If the Row-to-IRL block interconnection of Figure 3.1 is considered, then a fur-
ther constitutive element may be identified. In fact, this type of interconnection
may involve any LiM cell output pin, including the OC (Output Cell) pin and the
template output pins, e.g. LiM0, LiM1 and so forth. Besides the above elements,
a vertical interconnection may be also characterized by its source pin. Evidently,
the source pin is template-dependent: should the number of LiM control signals be
increased in the template selection procedure, the designer may select the source
pin from a broader set.

The main limitation of the existing array interconnections in DExIMA CAD is
that their parameters, i.e. their constitutive elements, are rather constrained and
not truly selectable by the designer. In fact, the extent of a vertical interconnection
is always limited to at most one array element, the only allowed destination is a
IRL block and their direction is always ”downwards“. It follows that the flexibility
of DExIMA CAD may be largely increased if the constitutive elements are made
truly parametric.

The taxonomical process thus leads to the vertical interconnection parameters
presented in Table 3.1.

Name Identifier Possible values
Source Source {Row, IRL}
Destination Destination {Row, IRL}
Direction Direction Prev, Next, Fixed
Source pin SourcePin Template- and source-dependent
Displacement Displacement Positive value

Table 3.1: Constitutive elements of a vertical interconnection in DExIMA CAD.

With respect to Figure 3.1, memory rows and IRL blocks can both be the source

41

3 – LiM array interconnections in DExIMA CAD

and the destination of a vertical interconnection, implying that all LiM array el-
ements may be mutually connected. The interconnection pattern that may be
implemented by DExIMA CAD is truly arbitrary, thanks to the parametric man-
agement of both the direction and the displacement of a vertical interconnection.
The parameters of a vertical interconnection are summed up in the interconnection
name, which is derived by concatenating the values of its constitutive elements.
Examples of possible vertical interconnections in DExIMA CAD are presented in
Figure 3.2.

Row(i-2)

Row(i-1)

Row(i)

Row(i+1)

IRL(i-2)

IRL(i-1)

IRL(i)

IRL(i+1)

Sources
@

Direction = Prev

Sources
@

Direction = Next

Destination

Figure 3.2: Examples of vertical interconnections in DExIMA CAD.

In truth, the representation provided by Figure 3.2 is slightly imprecise, as each
arrow actually identifies a set of vertical interconnections, which are based on a
different template-dependent pin. It is important to point out that the coupling
between the LiM array template selection and the parameters of a vertical intercon-
nection is beneficial for the flexibility of DExIMA CAD. Should the designer need
multiple connections between two arbitrary array elements, the output signals may
be increased in the template selection, so that multiple links may be integrated in
the LiM array.

3.1.2 Horizontal interconnections
With respect to the examples presented in the introduction to Chapter 3, an im-
portant matter is still to be addressed. Without any further change to DExIMA
CAD, it would be impossible to tackle the description of the CLiMA architecture

42

3.1 – Taxonomy of LiM array interconnections in DExIMA CAD

presented in [9], as a proper mechanism is still to be devised to provide an inter-
connection between the in-cells full-adders, creating an in-row ripple-carry adder.

To address this issue, horizontal interconnection are introduced in DExIMA
CAD. These interconnections, which are depicted in Figure 3.3, are aimed at
managing the in-memory implementation of bit-wise shift operations and simple
arithmetic operations, e.g. addition and subtraction, and consist of the following
sub-types:

• LSB-to-MSB, propagating a signal from the Least-Significant Bit (LSB) of a
row to its Most-Significant Bit (MSB);

• MSB-to-LSB, propagating a signal from the MSB of a row to its LSB.

LiM LiM LiM LiM LiM LiM LiM LiM

LiM LiM LiM LiM LiM LiM LiM LiM

MSB LSB

MSB LSB

LSB-to-MSB

MSB-to-LSB

Figure 3.3: Examples of horizontal interconnections in DExIMA CAD.

3.1.3 Additional interconnections
In the LiM neural network implementation of [11], two different, yet interfaced,
LiM arrays are employed, namely:

• a XNOR array, which is meant to compute the convolution between an input
feature map and a kernel;

• a ones counter array, which is aimed at calculating how many ones are obtained
in a convolution window.

From the point of view of DExIMA CAD capabilities, the previously mentioned
arrays are rather interesting architectures. In fact, their descriptions would be
possible in DExIMA CAD, but they would rely on the definition of additional
LiM selectors, used as elements of a further data bus, to propagate all data to the
memory array. As a consequence, this solution would have two flaws:

43

3 – LiM array interconnections in DExIMA CAD

• the description would become cumbersome, especially for large memory arrays,
as it would require the implementation of more memory cells than actually
required;

• the implementation would inevitably mix data and control signals, as the
values for the data signals would be specified in the content of the micro-
ROM.

The extent of the above flaws can be reduced if proper interconnection mech-
anisms are devised, proactively changing the input interface of the memory array
itself. In this context, an ”additional“ interconnection consists of two sub-types,
namely a horizontal bus and a vertical bus, which behave as described in the fol-
lowing:

• the bit width of a horizontal bus is equal to the number of columns in the LiM
array, and each the j-th bit of the horizontal bus may be propagated to all the
rows belonging to column j in the LiM array;

• a vertical bus consists of as many bits as the number of rows in the LiM array,
and the i-th bit can be propagated to all columns in row i-th of the array.

As a matter of fact, an horizontal bus is rather similar to a bitline and, alongside
with the vertical bus, it may be used to create a rather simplified interconnection
matrix, as shown in Figure 3.4, which can be effectively employed to speed up the
DExIMA CAD description of the previously mentioned XNOR and ones counter
arrays. The DExIMA CAD implementation of these architectures is deferred to
Chapter 6.

3.1.4 Interconnection input and output pins
A mechanism should be devised to support the allocation of an array interconnec-
tion in the schematic editor of DExIMA CAD. When describing the structure of a
LiM array, the designer must follow a well-defined steps sequence:

• the structure of all LiM cells is defined in the ”LiM cells“ design context of
the DExIMA CAD schematic editor;

• the structure of all IRL blocks is defined in the ”Intra-Row Logic“ design
context of the DExIMA CAD schematic editor;

• the structure of the LiM array is defined by specifying the LiM cells pattern
and the IRL blocks pattern in two separate CSV files.

44

3.1 – Taxonomy of LiM array interconnections in DExIMA CAD

LiM LiM LiM LiM

LiM LiM LiM LiM

LiM LiM LiM LiM

LiM LiM LiM LiM

HBUS[0] HBUS[1] HBUS[2] HBUS[3]

VBUS[0]

VBUS[1]

VBUS[2]

VBUS[3]

Figure 3.4: Representation of the horizontal and vertical busses in DExIMA CAD.

Given the nature of the presently supported structural description process, the
designer may request an array interconnection only when defining the structure of a
LiM cell or of a IRL block. The most straightforward solution is to allocate a special
pin, i.e. an interconnection input pin, which is then connected to the components
allocated in the element under design. Evidently, to enable the description of
complex LiM arrays, multiple interconnections can be activated in the same design
element, including additional, horizontal and vertical interconnections.

In the context of DExIMA CAD, an interconnection input pin is physically intro-
duced by the designer in the schematic editor, it is a placeholder in the destination
array element and it indicates to which components (e.g. full-adders, memory cells,
multiplexers and so forth) the interconnection source must be routed. A pin of this
kind is expected to be connected to the input ports of the destination components.
On the other hand, an interconnection output pin is always a template output sig-
nal (e.g. OC, LiM1 or IRL0) connected to the output port of a source component.
These definitions are better visualized in Figure 3.5.

In a vertical interconnection, the designer may create an interconnection input
pin, whose name is derived from the actual parameters of the interconnection: some
examples are presented in Table 3.2.

The implementation of a horizontal interconnection relies on the definition of

45

3 – LiM array interconnections in DExIMA CAD

Output
pin

Input
pin

Source
component

Destination
component

Source

Destination

Figure 3.5: Interconnection input and output pins, source and destination compo-
nents, source and destination array elements in DExIMA CAD. ”Output pin“ and
”Input pin“ are the output and input pins of the considered array interconnection,
respectively.

Interconnection Output pin Input pin
Next-1-IRL2-to-Row IRL2 NEXT_1_IRL2_TO_ROW
Prev-1-OC-to-Row OC PREV_1_OC_TO_ROW
Prev-1-LiM0-to-IRL LiM0 PREV_1_LIM0_TO_IRL
Fixed-0-OC-IRL OC FIXED_0_OC_TO_IRL

Table 3.2: Examples of input and output pins for vertical array interconnections.

a pair of pins, which can indicate the propagation of a specific signal, as re-
ported in Figure 3.3. For instance, in a LSB-to-MSB interconnection, the input
pin FROM_RIGHT and the output pin TO_LEFT are created in the schematic editor
and can be arbitrarily connected to the components in the LiM cell; a similar con-
sideration holds for a MSB-to-LSB interconnection, with its FROM_LEFT input pin
and its TO_RIGHT output pin.

When a horizontal bus is requested by the designer, DExIMA CAD creates the
interconnection input pins HBUS_int or HBUS_int_IRL, in the ”LiM cells“ and in
the ”Intra-Row Logic“ design contexts, respectively. Similarly, when a vertical bus
is requested, DExIMA CAD creates the interconnection input pin VBUS_int.

3.2 Issues and needs
The elements presented in Section 3.1 lay the groundwork for integrating array
interconnections in DExIMA CAD, by providing a clear taxonomical system and

46

3.2 – Issues and needs

by highlighting the intended behaviour of the new functionalities. The following
paragraphs provide an overview of some of the points to be addressed if array
interconnections are to be effectively integrated in DExIMA CAD.

Design context Subsection 3.1.4 has already introduced a possible solution to
give the designer the possibility of allocating array interconnections in the DExIMA
CAD schematic editor. One of the main consequences of this solution is that the
design context is enriched with the interconnection status, i.e. the set of all active
interconnections in a design context, which must be properly tracked, saved and
restored, respectively during the design phase, when saving the design and when
opening it at a later stage. A possible way of tracking the active interconnections is
by means of a separate interconnection file, which is easily recognized in the project
path thanks to its special extension .intr.

A possible structure for an interconnection file is presented in the following.

HorizontalBus:16
Fixed-85-OC-to-IRL:33
Fixed-86-OC-to-IRL:34
Fixed-87-OC-to-IRL:35
Fixed-88-OC-to-IRL:36
Fixed-84-IRL0-to-IRL:37
Fixed-81-IRL0-to-IRL:38
Fixed-82-IRL0-to-IRL:39
Fixed-83-IRL0-to-IRL:40
Prev-1-OC-to-IRL:18

Each line in a .intr file indicates an active array interconnection, which is easily
recognized by its name. Besides the identifier, each line includes a separator, i.e.
the colon character, and a numerical quantity. This quantity is an index, indicating
the position of the associated interconnection input pin in the DExIMA CAD vector
which stores all items in the schematic editor. In this way, all interconnection input
pins, which are somewhat special pins in DExIMA CAD, may be easily tracked and
identified, so that their dynamic creation and removal may be simplified.

Consistency The allocation of an array interconnection in any array element is
evidently expected to change the global structure of a LiM array. As the process
of requesting an array interconnection is directly started from the designer, a set of
analysis tools must be prepared to check the consistency of the resulting structural
description.

Modularity of the new computational facilities For the purposes of this
description, the complete structure of a LiM array can be conceived as two-layered.

47

3 – LiM array interconnections in DExIMA CAD

The first layer derives from the allocation of all array elements, i.e. LiM cells
and IRL blocks, in the array matrix; the first layer, which will be referred to as
”structural layer“, only includes the local connectivity, i.e. the set of connections
within an array element. The global connectivity is determined by the second
layer, which encompasses all mutual interconnections between the constitutive array
elements and which will be referred to as ”interconnections layer“. These definitions
are better visualized in Figure 3.6.

LiM
cell

LiM
cell

LiM
cell

LiM
cell

IRL
block

LiM
cell

LiM
cell

LiM
cell

LiM
cell

IRL
block

Interconnections layer

Figure 3.6: Structural and interconnections layers in a DExIMA CAD LiM array.
All elements in dark blue belong to the structural layer, while all edges, which on
the light blue container, belong to the interconnections layer.

The two layers are not well-separated, as no interconnection may exist if no
underlying array matrix is created. Nevertheless, it would make sense to demand
the analysis of these layers to separate modules. The new module in DExIMA CAD
should thus strive to comply with this specific observation.

Interconnections description The primary outputs of the DExIMA CAD de-
sign process are the VHDL and the DExIMA Backend descriptions of the designed

48

3.3 – Array interconnections module

LiM array. Evidently, only the interconnections presented in the introduction to
Chapter 3, and more specifically in Figure 3.1, are currently supported. DExIMA
CAD should thus be able to extend the generation capabilities by integrating the
all possible types of interconnections.

As regards the generation of the two different descriptions, it is expected that
the related algorithms will be characterized by different complexities. In fact, the
generation of the VHDL description is supposed to be simpler, as it can rely on
the syntax of a structured, consolidated and powerful Hardware Description Lan-
guage (HDL), while the custom syntax of DExIMA Backend has fewer description
capabilities, leading to a more complex generation policy.

Array interconnections do not lead to further components in the structural de-
scription of the LiM array, so no changes are expected in the logic and the cells
sub-sections in the array .dex file: in fact, array interconnections are indeed sup-
posed to be found only in the map sub-section of the array.

DExIMA CAD must compensate a limitation in the present version of DExIMA
Backend, which derives from how timing analysis is carried out. In fact, DExIMA
Backend only computes the timing for the paths specified in the instructions
sub-section of a LiM array. With respect to the timing paths, the structural layer
is rather straightforward to analyze, as the local connectivity is easily identified by
means of class DExIMAGraph. On the other hand, a large complexity may derive
from the interconnections layer: in fact, the large flexibility of vertical interconnec-
tions requires a larger scope for the timing analysis, which must involve the whole
LiM array. DExIMA CAD must thus be able to enumerate all possible timing paths
in the array, so that DExIMA Backend may carry out its timing analysis.

3.3 Array interconnections module
To integrate array interconnections (as presented in Section 3.1) and tackle the
issues detailed in Section 3.2, DExIMA CAD is expanded by a dedicated array in-
terconnections module, which complies with the principles presented in Section 1.4
and primarily consists of two main elements:

• a set of GUI components, which support the dynamic creation and removal of
interconnection pins in the DExIMA CAD schematic editor;

• a set of computational components, which are demanded interconnections-
related analysis and synthesis tasks.

An instance of class ArrayInterconnections, whose structure is depicted in
Figure 3.7, fixes the interface for the communication with the schematic editor,
which is enabled by special GUI classes, namely class InterconnectsPanelRow and
class InterconnectsPanelIRL, aiding the dynamic creation and removal of inter-
connection pins. The schematic editor notifies the change in the design context

49

3 – LiM array interconnections in DExIMA CAD

to a further class, namely class StatusArrayInterconnections, which tracks the
currently active interconnections.

ArrayInterconnects

InterconnectsPanelRow

InterconnectsPanelIRL

StatusArrayInterconnections

DiagramScene

Figure 3.7: Structure of class ArrayInterconnections and its interaction with the
schematic editor, i.e. an instance of DiagramScene.

An example of vertical interconnection in the DExIMA CAD schematic editor
is presented in Figure 3.8. Having requested a Next-1-IRL0-to-Row vertical inter-
connection, the corresponding interconnection input pin is created in the schematic
editor: this pin may then be used to indicate where the IRL0 pin of the very next
IRL block should be routed in the current design.

An example of LSB-to-MSB horizontal interconnection in the DExIMA CAD
schematic editor is presented in Figure 3.9. Having requested this type of inter-
connection, two different interconnection pins are created in the schematic editor,
namely FROM_RIGHT (input pin) and TO_LEFT (output pin). These pins are con-
nected to the carry in and the carry out signals of a full-adder, respectively.

When the designer decides to save the content of a design context, a .intr
file may be created by class StatusArrayInterconnections. In fact, if a LiM cell
or a IRL block does not require any interconnection, such file is not created. At
a later stage, the designer may decide the open a DExIMA design file, restoring
a prior design. In such event, class StatusArrayInterconnections checks if a
corresponding .intr file exists in the current project path: the absence of such file
indicates that the restored array element does not require any interconnection, so
no interconnection pin should be allocated and tracked.

50

3.3 – Array interconnections module

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

OC

OC

IN0

IN1

S

O

MUX21_11

CK EN RN WR

RD

Memory_12

NEXT_1_IRL0_TO_ROW

NEXT_1_IRL0_TO_ROW

Figure 3.8: Example of a vertical interconnection in the DExIMA CAD schematic
editor.

3.3.1 Array manager
The actual computational capabilities of the array interconnections module derive
from an instance of class ArrayManager, which will be hereinafter referred to as
”array manager“. An array manager is expected to integrate all analysis and syn-
thesis tasks related to the structure of a LiM array, which is represented not only
from the structure of its constitutive elements, but also from their mutual intercon-
nections. Besides answering the needs presented in Section 3.2, an array manager
is also endowed with all VHDL and DExIMA generation tasks, which were pre-
viously demanded to existing DExIMA CAD modules, so to provide a complete
environment for handling a LiM array.

Before any synthesis task may be offered by an array manager, a prior call to its
build() method must be made. The build phase of an array manager consists of
a set of sequential steps, which are demanded to different DExIMA CAD modules.
Should any of these steps fail, the build procedure is immediately interrupted. A
summary of the build phase is reported in the following.

• The array manager infers the global structure of a target LiM array from two

51

3 – LiM array interconnections in DExIMA CAD

BL

BL

CLK

CLK

RST

RST

WL

WL

OC

OC

LiM0

LiM0

A B

C

S

CO

FA11 FROM_RIGHT

FROM_RIGHT

TO_LEFT

TO_LEFT

CK EN RN WR

RD

Memory14

Figure 3.9: Example of a horizontal interconnection in the DExIMA CAD schematic
editor.

CSV files, which describe the LiM cells pattern and the IRL blocks pattern.
This procedure is demanded to an instance of class ArrayDescriptionParser.
Further details are presented in Subsection 3.3.2.

• From the results of the previous step and from all the available DExIMA design
files, the array manager infers the local structure of a target LiM array, i.e. the
precise structure of all LiM cells and IRL blocks in the memory array. This
procedure is demanded to an instance of class ArrayContentParser. Further
details are presented in Subsection 3.3.3.

When the build phase is completed, the array manager may generate its primary
outputs, namely the VHDL and the DExIMA Backend descriptions of the LiM
array. To fulfill such synthesis tasks, the array manager coordinates the action of
further DExIMA CAD modules, including:

• class ArrayStructureAnalyzer;

52

3.3 – Array interconnections module

• class ArrayInterconnectionsAnalyzer;

• class PathEnumerator.

With respect to the definitions presented in Section 3.2, the structural layer is
handled by a structure analyzer, i.e. an instance of class ArrayStructureAnalyzer,
while the interconnection layer is handled by an interconnections analyzer, i.e.
an instance of class ArrayInterconnectionsAnalyzer, and by a path enumerator,
which is nothing but an instance of class PathEnumerator.

An array manager thus represents the uppermost level of a well-defined hierar-
chical structure, in which different DExIMA CAD modules perform separate and
specialized tasks. This hierarchical structure is summarized in Figure 3.10, which
also shows the most meaningful interactions between the array manager and other
elements in DExIMA CAD.

Array
structures

(.csv)

.lim

.irl
.intr

ADP

ACP

Interface
data

structures

ASA

AIA

PE

ArrayManager

ComponentsLibrary

VHDL

DExIMA

Figure 3.10: Hierarchical structure of class ArrayManager and its in-
teraction with the DExIMA design files. ADP is an instance of
class ArrayDescriptionParser, ACP is an instance of class ArrayContentParser,
ASA is an instance of class ArrayStructureAnalyzer, AIA is an instance
of class ArrayInterconnectionsAnalyzer, while PE is an instance of
class PathEnumerator.

53

3 – LiM array interconnections in DExIMA CAD

3.3.2 Array description parser
As already stated in the introduction to DExIMA CAD, the types of cells in the
memory is specified in a CSV file, containing as many rows as the number of rows in
the array and as many columns as the columns in the array; similarly, the required
IRL blocks are specified in a further CSV file, containing as many rows as the num-
ber of rows in the array and one column only. It follows that the complete structure
of the memory can be inferred by parsing these two files, and the array manager
demands this kind of operation to an instance of class ArrayDescriptionParser,
which will be hereinafter referred to as ”description parser“.

The primary purpose of the description parser is to transfer the content of the two
aforementioned CSV files into dedicated data structures, namely a two-dimensional
array for the cells pattern and a one-dimensional array for the IRL blocks pattern,
which are stored within the object and can communicate with the array manager by
means of the interface represented in Figure 3.10. In the following, two simplified
examples of CSV files are reported.

/* lim_array.csv */
cell1,cell1,cell1,cell1
cell2,cell3,cell3,cell3
cell2,cell3,cell3,cell3
cell2,cell3,cell3,cell3

/* lim_array_intrarow.csv */
irl_block
irl_block
irl_block
irl_block

For the above files, the description parser would produce the following data
structures.

pattern_array = [
['cell1', 'cell1', 'cell1', 'cell1'],
['cell2', 'cell3', 'cell3', 'cell3'],
['cell2', 'cell3', 'cell3', 'cell3'],
['cell2', 'cell3', 'cell3', 'cell3']

]

pattern_IRL = [
'irl_block',
'irl_block',
'irl_block',

54

3.3 – Array interconnections module

'irl_block'
]

Besides gathering the content of the memory array, the description parser checks
the consistency of the CSV files by verifying if the following conditions are met:

• both CSV files must have the same number of rows;

• all rows in the CSV files must have the same number of columns;

• the CSV file containing the IRL blocks must have one column only.

As a matter of fact, the consistency check is not crucial, as the structure of the
CSV files is enforced by DExIMA CAD and is supposed to be correct by construc-
tion. Nevertheless, this operation is deemed useful, especially for future DExIMA
CAD developments, where scripting capabilities may be integrated.

3.3.3 Array content parser
To infer the complete composition of the memory array, the analysis of the previ-
ously described CSV files is not actually sufficient. In fact, the array manager must
first gain insight on the local structure of the LiM cells and the IRL blocks. To
achieve this goal, the array manager triggers the intervention of an instance of class
ArrayContentParser, which will be hereinafter referred to as ”content parser“.

The initial task of the content parser is to scan the two arrays produced by
the description parser, in order to gather the types of LiM cells and IRL blocks
required by the memory. Two one-dimensional lists are generated in this phase:
with respect to the CSV files presented in Subsection 3.3.2, the outcome is reported
in the following.

cell_names = ['cell1', 'cell2', 'cell3']
block_names = ['irl_block']

After this step, the content parser is aware of what DExIMA design files in the
project path are actually useful to represent the local structure of a LiM array. The
.intr files can thus be parsed to determine which array interconnections are used
in each array element, as shown in the following example.

cell_interconnections = {
'cell1' : ['Next-1-IRL0-to-Row'],
'cell2' : ['Next-1-IRL0-to-Row',

'Prev-1-OC-to-Row',
'Prev-1-IRL0-to-Row',

55

3 – LiM array interconnections in DExIMA CAD

'Least-to-Most'
],

'cell3' : ['Next-1-IRL0-to-Row',
'Prev-1-OC-to-Row',
'Prev-1-IRL0-to-Row',
'Least-to-Most'

],
}
block_interconnections = {

'irl_block' : ['Prev-1-OC-to-IRL']
}

Lastly, multiple instances of class DExIMAGraph parse all required .lim and
.irl files, to build their equivalent DExIMA graph representations. Before yielding
control of the generation flow back to the array manager, the content parser checks
the local connectivity of all constructed graphs.

3.3.4 Array structure analyzer
As already mentioned in Subsection 3.3.1, a structure analyzer has the primary
purpose of managing the structural layer of a LiM array, i.e. its interconnection-
free structure. This layer must be handled for both the VHDL and the DExIMA
description of the LiM array. In either case, the structure analyzer acts on all the
data gathered by the description parser and by the content parser when explicitly
invoked by the array manager; specific contributions are generated, which are then
passed back to the array manager.

VHDL description The contribution of a structure analyzer to the VHDL de-
scription of a LiM array derives from three of its methods, as described in the
following.

• With the entity() method, the structure analyzer specifies the contribution
of the structural layer to the VHDL I/O interface declaration, i.e. the entity
section of the complete .vhd file. The primary elements of this contribution are
some general signals, e.g. the clock and the asynchronous reset, the template
signals and the actual data/address I/O signals, e.g. bitlines and wordlines.
An example is reported in the following.

CLK : in std_logic;
RST : in std_logic;
BL : in std_logic_vector(MEM_COLUMNS-1 downto 0);
WL : in std_logic_vector(0 to MEM_ROWS-1);
S0 : in std_logic_vector(0 to MEM_ROWS-1);

56

3.3 – Array interconnections module

S1 : in std_logic_vector(0 to MEM_ROWS-1);
S2 : in std_logic_vector(0 to MEM_ROWS-1);
SI0 : in std_logic_vector(0 to MEM_ROWS-1);
SI1 : in std_logic_vector(0 to MEM_ROWS-1);
SI2 : in std_logic_vector(0 to MEM_ROWS-1);
MEM : out std_logic_vector(0 to MEM_ROWS*MEM_COLUMNS-1)

• With the architectureDeclarative() method, the structure analyzer spec-
ifies the contribution of the structural layer to the declarative part of the
architecture. The elements of this contribution are the internal template
output signals, e.g. OC, LiM0, IRL1 and so forth. An example is reported in
the following.

signal OC : Matrix_TypeDef;
signal LiM0 : Matrix_TypeDef;
signal IRL0 : Matrix_TypeDef;
signal IRL1 : Matrix_TypeDef;

• With the architectureExecutive() method, the structure analyzer specifies
the contribution of the structural layer to the executive part of the architecture.
This contribution consists of multiple port map statements, which allocate all
array elements and connect them to the external I/O interface or to the pre-
viously declared internal signals. Two examples are reported in the following:
the first refers to the allocation of a LiM cell, the second represents the allo-
cation of a IRL block.

CELL_69_22 : cell_16to79 port map (
BL => BL(22),
WL => WL(69),
CLK => CLK,
RST => RST,
S0 => S0(69),
S1 => S1(69),
NEXT_1_IRL0_TO_ROW => NEXT_1_IRL0_TO_ROW(69)(22),
PREV_3_OC_TO_ROW => PREV_3_OC_TO_ROW(69)(22),
PREV_8_OC_TO_ROW => PREV_8_OC_TO_ROW(69)(22),
PREV_14_OC_TO_ROW => PREV_14_OC_TO_ROW(69)(22),
PREV_16_OC_TO_ROW => PREV_16_OC_TO_ROW(69)(22),
SHO => SHO(22),
OC => OC(69)(22),

57

3 – LiM array interconnections in DExIMA CAD

LiM0 => LiM0(69)(22)
);

IRL_79 : irl_block_16to79 port map (
CLK => CLK,
RST => RST,
BL => BL,
SHO => SHO,
WL => WL(79),
TOP => TOP(79),
SI0 => SI0(79),
SI1 => SI1(79),
SI2 => SI2(79),
SI3 => SI3(79),
SI4 => SI4(79),
SI5 => SI5(79),
SI6 => SI6(79),
SI7 => SI7(79),
SI8 => SI8(79),
PREV_1_LIM0_TO_IRL => PREV_1_LIM0_TO_IRL(79),
BTM => BTM(79),
IRL0 => IRL0(79),
IRL1 => IRL1(79)

);

In the above examples, the port map statements also involve specific intercon-
nection pins, e.g. NEXT_1_IRL0_TO_ROW or PREV_1_LIM0_TO_IRL. Neverthe-
less, the interconnections layer is not yet involved: these statement are only
meant to transfer the internal I/O pins of an array element to the internal
matrix-like signals.

DExIMA description The contribution of a structure analyzer to the DExIMA
description of a LiM array derives from three of its methods, as described in the
following.

• With the sectionLogic() method, the structure analyzer declares all IRL
blocks in the logic sub-section of a LiM array .dex file.

• With the sectionCells() method, the structure analyzer declares all LiM cells
in the cells sub-section of a LiM array .dex file.

• With the sectionMap() method, the structure analyzer specifies the local con-
nectivity of each array element. Two examples are reported in the following:

58

3.3 – Array interconnections module

the first refers to the local connectivity of a LiM cell, the second represents
the local connectivity of a IRL block.

MUX21_11(1,0).O -> Memory(1,0).WR
Memory(1,0).RD -> FA_12(1,0).B
FA_12(1,0).S -> MUX21_17(1,0).IN0
MUX21_16(1,0).O -> MUX21_11(1,0).IN0
MUX21_17(1,0).O -> MUX21_11(1,0).IN1
MUX21_11(1,1).O -> Memory(1,1).WR

for j in range(0,1,15) {
Reg_13_1.Q[$j] -> Multiplier_14_1.B[$j]

}
for j in range(0,1,15) {

Multiplier_14_1.O[$j] -> Muxnbit_15_1.IN1[$j]
}
for j in range(0,1,15) {

Muxnbit_15_1.O[$j] -> Reg_16_1.D[$j]
}

In all the above cases, the structure analyzer relies on the underlying DExIMA
graph representations, i.e. instances of class DExIMAGraph, to determine what com-
ponents are declared in each array element and their mutual connections, i.e. the
local connectivity.

3.3.5 Array interconnections analyzer
As already mentioned in Subsection 3.3.1, an interconnections analyzer handles the
interconnections layer of a LiM array. Its purpose its twofold: firstly, it is supposed
to analyze the provided description of array interconnections and verify their con-
sistency; secondly, it can generate a description of the required interconnections,
either in VHDL or in DExIMA format.

As regards the consistency of array interconnections, the following conditions
must be met:

• all cells within a row must integrate precisely the same types of array inter-
connections;

• the array interconnections required by a row must be self-consistent and not
ill-defined with respect to the geometrical characteristics of the memory array.

In practice, the former condition tries to enforce as regular a structure as possible
in the memory array, while the latter is primarily meant to exclude two situations:

59

3 – LiM array interconnections in DExIMA CAD

• vertical interconnections with non-existing sources, e.g. unallocated IRL blocks;

• vertical interconnections with absolute or relative displacements exceeding the
boundary of the memory.

An interconnections analyzer is endowed with specific methods to integrate the
required array interconnections in the VHDL and in the DExIMA Backend descrip-
tions of the LiM array. As a further proof of this statement, it should be pointed
out that the intervention of DExIMAGraph is actually required only while generating
the DExIMA Backend description.

Three primary outputs can be provided by the analyser:

• a declaration string, containing the declaration of the required interconnection
signals, to be embedded in the declarative part of the VHDL architecture;

• an assignment string, containing the mutual mappings of all interconnection
signals, to be integrated in the executive part of the VHDL architecture;

• a mapping string, describing the array interconnections in DExIMA format.

The interconnections analyzer acts on all the data gathered by the description
parser and by the content parser when explicitly invoked by the array manager;
specific contributions are generated, which are then passed back to the array man-
ager.

VHDL description The contribution of an interconnections analyzer to the
VHDL description of a LiM array derives from three of its methods, as described
in the following.

• With generateSignalStringForVHDL() method, the interconnections analyzer
provides the declaration of a matrix-like signal for each interconnection type
in the LiM array. An example of such declaration is presented in the following.

signal NEXT_1_IRL0_TO_ROW : Matrix_TypeDef;
signal PREV_3_OC_TO_ROW : Matrix_TypeDef;
signal PREV_8_OC_TO_ROW : Matrix_TypeDef;
signal PREV_14_OC_TO_ROW : Matrix_TypeDef;
signal PREV_16_OC_TO_ROW : Matrix_TypeDef;
signal FROM_RIGHT : Matrix_TypeDef;
signal TO_LEFT : Matrix_TypeDef;

• With the generateMappingStringForVHDL() method, the interconnections an-
alyzer links all interconnection output pins to their corresponding input pins,

60

3.3 – Array interconnections module

by means of a traditional VHDL assignment. For each row in the LiM ar-
ray, the interconnections analyzer gathers the set of active interconnections
and maps them accordingly. In the following, two examples are reported: the
first shows how multiple towards-row interconnections are handled, while the
second shows the management of a horizontal LSB-to-MSB interconnection.

-------------- Towards-Row interconnects @ Row 18 --------------
NEXT_1_IRL0_TO_ROW(18) <= IRL0(18);
PREV_3_OC_TO_ROW(18) <= OC(15);
PREV_8_OC_TO_ROW(18) <= OC(10);
PREV_14_OC_TO_ROW(18) <= OC(4);
PREV_16_OC_TO_ROW(18) <= OC(2);

process(TO_LEFT(80)) is
variable FROM_RIGHT_v : std_logic_vector(31 downto 0);

begin
for j in 0 to (32-1-1) loop

FROM_RIGHT_v(j+1) := TO_LEFT(80)(j);
end loop;
FROM_RIGHT(80) <= FROM_RIGHT_v;

end process;

DExIMA description The generateMappingStringForDExIMA() method is the
contribution of an interconnections analyzer to the DExIMA description of a LiM
array. Since no HDL-like net declaration statement is available in DExIMA Back-
end, all components must be explicitly mapped to one another by specifying the
pins involved in the local connection. In addition, the current DExIMA Backend
does not allow multi-bit assignments, thus each bit from a multi-bit bus must be
managed individually in the description. Furthermore, as LiM cells are naturally
regarded as single-bit components and IRL blocks as multi-bit components, the
syntax with which they described is slightly different, increasing the complexity of
the management algorithm.

The cells pattern and the blocks pattern gathered by the description parser are
scanned by the interconnections analyzer one row at a time, to manage array in-
terconnections leading to memory rows and to IRL blocks, respectively. In this
scan operation, the current element is the destination of any possible array inter-
connection and is readily associated to the set of required interconnections and its
equivalent graph representation, i.e. an instance of class DExIMAGraph. Depending
on the type of array interconnection, the source component is fetched and its graph
is made available to the elaboration. When these data structures are ready, the

61

3 – LiM array interconnections in DExIMA CAD

interconnections analyser implements an algorithm roughly based on the following
steps:

1. identify the interconnection input pin;

2. identify the interconnection output pin;

3. in the destination graph, seek the components whose inputs are connected to
the interconnection input pin (multiple components can be found), effectively
preparing the Right-Hand Side (RHS) of the DExIMA mapping operation;

4. in the source graph, search the component whose output is connected to the
interconnection output pin, effectively preparing the Left-Hand Side (LHS) of
the DEXIMA mapping operation;

5. for all the components found in the destination graph, build a string by con-
catenating the LHS, the mapping operator -> and the RHS.

An example of a Next-1-IRL0-to-Row vertical interconnection is reported in
the following.

---- Next-1-IRL0-to-Row @ ROW 0 ----
Reg_16_0.Q[0] -> MUX21_11(0,0).IN1
Reg_16_0.Q[1] -> MUX21_11(0,1).IN1
Reg_16_0.Q[2] -> MUX21_11(0,2).IN1
Reg_16_0.Q[3] -> MUX21_11(0,3).IN1
Reg_16_0.Q[4] -> MUX21_11(0,4).IN1
Reg_16_0.Q[5] -> MUX21_11(0,5).IN1
Reg_16_0.Q[6] -> MUX21_11(0,6).IN1
Reg_16_0.Q[7] -> MUX21_11(0,7).IN1
Reg_16_0.Q[8] -> MUX21_11(0,8).IN1
Reg_16_0.Q[9] -> MUX21_11(0,9).IN1
Reg_16_0.Q[10] -> MUX21_11(0,10).IN1
Reg_16_0.Q[11] -> MUX21_11(0,11).IN1
Reg_16_0.Q[12] -> MUX21_11(0,12).IN1
Reg_16_0.Q[13] -> MUX21_11(0,13).IN1
Reg_16_0.Q[14] -> MUX21_11(0,14).IN1
Reg_16_0.Q[15] -> MUX21_11(0,15).IN1

An example of a horizontal LSB-to-MSB interconnection is reported in the fol-
lowing.

---- Least-to-Most @ ROW 1 ----
FA_12(1,0).CO -> FA_12(1,1).C
FA_12(1,1).CO -> FA_12(1,2).C
FA_12(1,2).CO -> FA_12(1,3).C

62

3.3 – Array interconnections module

FA_12(1,3).CO -> FA_12(1,4).C
FA_12(1,4).CO -> FA_12(1,5).C
FA_12(1,5).CO -> FA_12(1,6).C
FA_12(1,6).CO -> FA_12(1,7).C
FA_12(1,7).CO -> FA_12(1,8).C
FA_12(1,8).CO -> FA_12(1,9).C
FA_12(1,9).CO -> FA_12(1,10).C
FA_12(1,10).CO -> FA_12(1,11).C
FA_12(1,11).CO -> FA_12(1,12).C
FA_12(1,12).CO -> FA_12(1,13).C
FA_12(1,13).CO -> FA_12(1,14).C
FA_12(1,14).CO -> FA_12(1,15).C

3.3.6 Path enumeration in the DExIMA description
Section 3.3 has provided a thorough description of the new DExIMA CAD array
interconnections module, but details on the behaviour of one of its components, i.e.
the path enumerator, have been deliberately omitted.

Since DExIMA Backend may only compute the timing of a specified path, DEx-
IMA CAD should provide a set of timing paths which must include the critical path
at all costs, so that DExIMA Backend may quantify its length. To fulfill this task,
the path enumerators builds a global graph representation of the LiM array, taking
into account not only its structural layer, but also its interconnections layer.

The content parser creates a limited amount of instances of class DExIMAGraph
(one for each unique array element in the LiM array). The most straightforward
solution would be to replicate these instances for the entire LiM array, creating the
structural layer, and then superimposing the interconnections layer. Unfortunately,
using instances of class DExIMAGraph to model every LiM cell and every IRL block
in the array is too burdensome from a computational perspective, even for limited-
size LiM array.

A possible solution is offered by simplifying the structure of each graph node,
i.e. each library component. In fact, a complete knowledge of the bit-widths and
the parameters of a component are not of interest in this context, so a node may
simply be a string, and no longer an instance of class Component or of class PinIO.
Moreover, for the purposes of identifying timing paths in the LiM array, only the in-
terconnection output and input pins are of interest, so all other internal pins may be
removed from the global graph representation. An instance of class DExIMAGraph
offers a shallowCopy() method, which returns a simplified graph, in which each
node is a string that represents either an actual component or an interconnection
output/input pin.

The path enumerator analyzes the LiM cells and the IRL blocks patterns, re-
questing a shallow graph copy for each array element, which is accumulated in a
global graph representation. When all array elements have been analyzed, this

63

3 – LiM array interconnections in DExIMA CAD

global graph representation provides a model, albeit simplified, of the structural
layer of a LiM array.

The path enumerator then updates the global graph representation by integrat-
ing all necessary array interconnections. For each interconnection, the procedure is
roughly represented by the following steps:

• all components connected to the interconnection output pin, i.e. the source
components, are identified;

• all components connected to the interconnection input pin, i.e. the destination
components, are identified;

• edges are appended to the global graph representation between source and
destination components;

• interconnection output and input pins are eliminated from the global graph.

When the interconnections layer has been handled, the global graph may be used
to identify all timing paths, which start from and end in a synchronous element:
to fulfill this task, a procedure based on the Depth-First Search (DFS) is applied.

The timing paths found by the path enumerator are then specified in the .dex
description, enabling the critical path identification by DExIMA Backend.

64

Chapter 4

Algorithm description in
DExIMA CAD

The purpose of Chapter 4 is to describe a second extension to DExIMA CAD,
which is aimed at enabling a flexible description of the algorithm to be simulated
and implemented by the LiM architecture.

Section 4.1 introduces the existing algorithm description features and discusses
their main limitations. Section 4.2 addresses the new functionalities in the algo-
rithm description module, the structure of which is described in Section 4.3.

4.1 Existing algorithm description features
As already mentioned in Section 1.3, DExIMA CAD integrates an algorithm de-
scription functionality, based on the association of a scalar control and of an ac-
tivation pattern, i.e. the set of active array elements, which is ultimately used to
program the content of the algorithm ROM. Nevertheless, the existing algorithm
description module presents some limitations, which will be briefly addressed in the
remainder of this section.

A first limitation comes from the fact a scalar control word only defines the values
of the LiM and IRL selectors and, as a consequence, it is not possible to activate
a memory row during the simulation. As a matter of fact, the UVM testbench is
directly asked to drive all wordline signals, activating them to initialize the content
of the memory to a set of random values and then deactivating them for the entire
simulation. As a consequence, within the environment of DExIMA CAD, it would
not be possible to simulate such algorithms as those implemented by the Hybrid-
SIMD architecture presented in [16], which require to overwrite the content of the
memory rows whilst the algorithm is executed.

A further limitation may be inferred by taking into account Figure 1.6. In fact,
the existing GUI functionalities for the algorithm description are denoted by a poor

65

4 – Algorithm description in DExIMA CAD

readability, which is significantly worse when the LiM array has lots of LiM and
IRL control signals. For this reason, the designer may find it difficult to specify the
intended behaviour of an active array element.

Furthermore, few activation pattern types are supported by the algorithm de-
scription functionality, as reported in Figure 4.1. The designer can extend the
scalar control word either to all array elements or to a set of list-specified elements;
on top of that, a loop-like activation pattern enables the incremental execution of
an instruction.

ALL CUSTOM(0,1,5,7) INCR

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 4.1: Examples of existing activation patterns in DExIMA CAD. Each row
is a general representation of an array element, i.e. a memory row or a IRL block,
and a shaded row is an active array element. The example of CUSTOM activation
pattern assumes that the list of active elements consists of the values 0, 1, 5 and 7.
As for the example of INCREMENTAL activation pattern, the array elements will be
activated in a sequential fashion.

Many different algorithms consist of a start-up phase and of a kernel phase.
This consideration may especially apply in SIMD processing, where the start-up
phase is used to initialize the storage facilities, possibly ensuring a certain degree
of data replication to allow a truly-parallel processing, while the kernel phase is
responsible for producing the actual results. In most applications, the kernel phase
primarily consists of loops, iterating several algorithm steps a given number of
times. Nevertheless, the existing algorithm description module does not allow to
replicate selected instructions groups, reducing the capabilities of the tool.

66

4.2 – New algorithm description features

4.2 New algorithm description features
The revisited DExIMA CAD should strive to remove the limitations of the existing
algorithm description module, which have been detailed in Section 4.1.

The rationale behind the new algorithm description functionality is to formally
separate the definition of the scalar control from its vectorisation and extension to
the set of LiM array elements. To comply to this principle, the algorithm description
module offers two separate contexts, namely the ”instructions“ and the ”algorithm“
contexts.

Instructions context In the instructions context, the designer can define nano-
instructions, which represent the intended behaviour of an active array element, by
associating a scalar control word to a mnemonic, e.g. an opcode, which is expected
to increase the readability of the produced description. For each nano-instruction,
in addition to the values of the LiM and of the IRL control signals, the designer
can specify if the memory row should be activated for a write operation.

The instructions context produces an output CSV file containing the nano-
instructions defined by the designer. Besides an header line (which is extremely
important, as it provides some pieces of information related to the employed array
template), the file contains as many rows as the number of nano-instructions, while
the number of columns is determined by the number of LiM and IRL control signals.
An example of such file is reported in Figure 4.2.

OPCODE,EN,S0,S1,S2,SI0,SI1,SI2
NOP,0,0,0,0,0,0,0
LOAD,1,0,0,0,0,0,0
SHH,0,0,0,0,1,0,0
MULT,0,0,0,0,0,1,1
ROT,1,1,0,0,0,0,1
SUM,1,0,1,0,0,0,0
SHV,1,1,1,0,0,0,0

Figure 4.2: Example of CSV file produced by the instructions context, assuming to
have three LiM control signals and tree IRL control signals.

While working in the instructions context, the designer should bear in mind
that a nano-instruction is not necessarily expected to fully describe the behaviour
of an active array element. As a matter of fact, some architectures, including the
Hybrid-SIMD array presented in [16], are more easily managed if the operation to
be executed, the source of its input operands and the destination of the computation
are separated and not interdependent. The designer can thus define simpler nano-
instructions, which partially describe the behaviour of an active array element, and

67

4 – Algorithm description in DExIMA CAD

combine them together in the algorithm context. An example of such combination
mechanism is reported in Figure 4.3.

EN
S0
S1
S2
SI0
SI1
SI2

EnRow

1
0
0
0
0
0
0

EN
S0
S1
S2
SI0
SI1
SI2

InNext

0
1
0
0
0
0
0

EN
S0
S1
S2
SI0
SI1
SI2

EnIRL

0
0
0
0
1
0
0

EN
S0
S1
S2
SI0
SI1
SI2

OutSum

0
0
0
1
0
0
0

EN
S0
S1
S2
SI0
SI1
SI2

1
1
0
1
1
0
0

+ + + =

Figure 4.3: Example of nano-instructions composition in the algorithm description
module: the ”simpler“ nano-instructions EnRow, InNext, EnIRL and OutSum are
combined together in the resulting scalar control.

Algorithm context In the algorithm context, the designer can define the com-
putational steps required by the target algorithm. With no difference with respect
to the previous structure of the algorithm description facilities, each computational
step consists of a scalar control and of an activation pattern.

As previously mentioned, the scalar control can be derived from one single nano-
instruction, which completely describes the intended behaviour of the active array
elements, or it can result from a combination of multiple simpler nano-instructions.

The set of supported activation patterns has been extended to include some
new elements, ultimately leading to the comprehensive list reported in Table 4.1;
examples of the new activation patterns are depicted in Figure 4.4. In addition, to
increase the flexibility of the description, a composite activation pattern can be cre-
ated by attaching a CUSTOM activation pattern to a SINGLE, a RANGE, a INCREMENTAL
or a DECREMENTAL activation pattern, as reported in Figure 4.5.

It is important to point out that the above definition of single and compos-
ite activation patterns introduces some redundancy in the description capabilities,
since the same results can be obtained in multiple equivalent ways: in such a early
phase of the development process, this redundancy is regarded as beneficial and
not detrimental to the design of DExIMA CAD.

Besides the new scalar control definition and activation patterns, the algorithm
context offers the designer the possibility of grouping together multiple algorithm
steps, so to iterate their execution a given number of times.

The algorithm context produces an output CSV file containing the algorithm
steps defined by the designer. Besides an header line, the file contains as many
rows as the number of algorithm steps; as for the columns, the first reports the

68

4.2 – New algorithm description features

SINGLE(2) RANGE(2,5) DECR(6,1) EVEN(0,7)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 4.4: Examples of new activation patterns in DExIMA CAD. Each row is a
general representation of an array element, i.e. a memory row or a IRL block, and
a shaded row is an active array element. The example of SINGLE activation pattern
assumes an index of 2, while that of RANGE activation pattern a start index of 2
and a stop index of 5. As for the example of DECREMENTAL activation pattern, the
array elements will be activated in a sequential fashion, assuming a start index of
7 and a stop index of 0.

Pattern Parameters Behaviour
NONE - Do not activate any element
SINGLE P1 Activate element P1
RANGE P1, P2 Activate elements in range P1:P2
INCR P1, P2 Activate elements from P1 up to P2, sequentially
DECR P1, P2 Activate elements from P1 down to P2, sequentially
ALL - Activate all elements
CUSTOM L Activate elements specified in list L
EVEN P1, P2 Activate even-index elements in range P1:P2
ODD P1, P2 Activate odd-index elements in range P1:P2

Table 4.1: Comprehensive description of the activation patterns in DExIMA CAD.
The parameters P1 and P2 and the elements belonging to list L are indexes, therefore
they should comply to the geometrical characteristics of the memory array.

opcode of the desired nano-instruction, the second indicates the associated activa-
tion pattern and the third defines the possible starting points of algorithm groups.

69

4 – Algorithm description in DExIMA CAD

RANGE(1,3)
+

CUSTOM(6)

INCR(0,3)
+

CUSTOM(5)

DECR(4,1)
+

CUSTOM(7)

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 4.5: Examples of composite activation patterns in DExIMA CAD.

The algorithm context offers the possibility of grouping together multiple algorithm
steps, so to iterate their execution a given number of times. Figure 4.6 reports an
example of algorithm CSV which contains an algorithm group.

Expected improvements The new features of the algorithm description module
are expected to remove the limitations presented in Section 4.1.

The introduction of nano-instructions with their associated mnemonics, along-
side with the possibility of combining them, increases the readability of the pro-
duced description, making it easier for the designer to specify the intended simulation-
time behaviour of the LiM array in a given algorithm step.

Since nano-instructions control the wordline signals, the content of the rows in a
LiM array can change during the simulation and, more specifically, whilst executing
the desired algorithm. As a consequence, such algorithms as those implemented by
the Hybrid-SIMD architecture [16] may be simulated in DExIMA CAD.

The new activation pattern types significantly extend the number of ways in
which a scalar control can be extended to the complete LiM array, increasing the
flexibility of the algorithm description module, while the introduction of algorithm
groups offers a very simple feature to iterate specific algorithm steps.

70

4.3 – Algorithm description module

OPCODE,ACTIVATION,GROUP
NOP,NONE,
LOAD,INCR:0:15,
SHH,ALL,
LOAD,INCR:0:15,
LOAD,SINGLE:0,5:2
MULT,ALL,
ROT,ALL,
SUM,INCR:0:15,
SHV,ALL,
NOP,NONE,

OPCODE,ACTIVATION
NOP,NONE
LOAD,INCR:0:15
SHH,ALL
LOAD,INCR:0:15
LOAD,SINGLE
MULT,ALL
ROT,ALL
SUM,INCR:0:15
SHV,ALL
LOAD,SINGLE
MULT,ALL
ROT,ALL
SUM,INCR:0:15
SHV,ALL
NOP,NONE

Figure 4.6: On the left-hand side, example of CSV file produced by the algorithm
context, assuming to have the same pool of nano-instructions of Figure 4.2 and
an algorithm group consisting of five nano-instructions and two iterations. On the
right-hand side, expansion of the algorithm group.

4.3 Algorithm description module
Taking into account the guidelines presented in Section 1.4 for the injection of new
source code in DExIMA CAD, the scheme depicted in Figure 4.7 has been used to
lay out the structure of the algorithm description module.

The algorithm description module consists of a set of GUI components and of
computational elements, which may only communicate by means of a file-based
interface. The GUI components aid the generation of the two CSV files men-
tioned in Section 4.2, i.e. the instructions CSV and the algorithm CSV, which
are then analyzed by the computational section of module, i.e. an instance of
class ControlGenerator, which will be hereinafter referred to as ”control genera-
tor“.

To ease the work of the control generator and reduce the complexity of the
algorithm it implements, additional support classes have been defined, with the
aim of modeling all the elements described in Section 4.2: these classes will be
briefly discussed in Subsection 4.3.1. It is however important to notice that the
hierarchical structure offered by the support classes increases the maintainability
of the source code and can foster future expansions and improvements.

71

4 – Algorithm description in DExIMA CAD

Algorithm description module

GUI
components

Control
Generator

CSV files

Figure 4.7: Top-level view on the algorithm description module

4.3.1 Support classes
Figure 4.8 reports an abstract representation of the support classes mentioned in
Section 4.2.

NanoInstruction ActivationPattern AlgorithmItem

Name

Map

Type

Start Stop

List

Opcodes

Patterns

Figure 4.8: Abstract representation of the modelling classes employed by the algo-
rithm description module.

An instance of class NanoInstruction is used to model a nano-instruction, i.e.
a row in the CSV file resulting from the instructions context. It consists of a string
to represent the opcode and of a map, which defines the values of the worldline and
of the LiM and IRL control signals. When queried, a NanoInstruction object can
return the map values in a structured form that may be directly be used by the
top-level control generator. It is noteworthy to mention that this class supports
the + operator, which has been properly overloaded, to ease the combination of
multiple nano-instructions in the algorithm context, as presented in Section 4.2.

72

4.3 – Algorithm description module

An instance of class ActivationPattern represents an activation pattern. Ev-
ery instance of this class contains a string, which identifies the type of activation
pattern, and additional data structures to model the optional parameters that de-
fine the pattern, as reported in Table 4.1. It is important to stress that, at this level,
there is no distinction between a simple and a composite activation pattern. In fact,
the latter is nothing but a ”concatenation“ of two simple activation patterns, the
first one belonging to the set {SINGLE, RANGE, INCR, DECR}, the second being a
CUSTOM pattern.

An instance of class AlgorithmItem can be used to model an algorithm step, i.e.
a row in the CSV file resulting from the algorithm context. The representation of the
scalar control is demanded to a list of strings which identify the nano-instructions
defined in the instructions context, while one or two ActivationPattern objects
are used to indicate the simple or the composite activation pattern.

In addition to the elements of Figure 4.8, the description of algorithm groups is
enabled by a further class, AlgorithmItem, which is primarily meant to encompass
those algorithm steps that are expected to be iterated a given number of times.
As a matter of fact, isolated instructions, i.e. algorithm steps which do not belong
to any algorithm group, are regarded as a special case of algorithm group, thus a
AlgorithmGroup instance is created for this type of algorithm step as well.

4.3.2 Control generator
To parse the instructions and the algorithm contexts in a systematic way, the
control generator, the internal structure of which is reported in Figure 4.9, coordi-
nates the actions of two sub-modules, namely a ParserInstructions object and
a ParserAlgorithm object, which will be hereinafter referred to as ”instructions
parser“ and ”algorithm parser“, respectively.

The role of the instructions parser is to analyse the content of the CSV file
containing the nano-instructions defined by the designer. The very first row in
the file is used to retrieve the name of the required control signals, which include
the actual wordline and the LiM and IRL selectors; all other rows in the file are
instead used to properly allocate instances of NanoInstruction class, which store
the necessary nano-instructions and allow possible combination of simple nano-
instructions in the algorithm context.

The purpose of the algorithm parser is to scan the content of the CSV file
containing the algorithm context, in order to gather not only the actual steps,
but also the required iteration groups. As it reads the file line by line, the parser
retrieves the opcode and the activation pattern, which could be either of simple
or of composite type, allocates one or two ActivationPattern objects and builds
instances of AlgorithmItem class; any algorithm group declaration is temporarily
pushed into a local queue. When all lines in the file have been processed, the parser
will have created a one-dimensional array of AlgorithmItem objects, without an

73

4 – Algorithm description in DExIMA CAD

ControlGenerator

Parser
Instructions

Parser
Algorithm

Interface

Instructions CSV

Algorithm CSV

Figure 4.9: Internal structure of class ControlGenerator and its interaction with
the CSV-based interface.

explicit reference to the possible algorithm groups. Therefore, the parser still needs
to iterate over the elements of the queue, so to organise the gathered algorithm
items in proper instances of AlgorithmGroup class.

When the instructions and the algorithm parsers have completed their tasks,
the control generator can create a testbench-aimed description of the required al-
gorithm. As a matter of fact, the object is endowed with a method that can program
the content of the micro-ROM which supports the simulation of the algorithm in
the testbench environment.

74

Chapter 5

System-level exploration in
DExIMA CAD

The purpose of Chapter 5 is to describe a set of changes in the way DExIMA
CAD manages the uppermost architectural level of a LiM system, which are aimed
at largely augmenting the system-level exploration capabilities of the tool itself.
With these new functionalities, DExIMA CAD is expected to be able to tackle
increasingly complex LiM systems, paving the way for more refined and thorough
analysis and synthesis tasks.

Chapter 3 and Chapter 4 presented a set of tools whose ultimate scope is the
LiM array itself. In fact, array interconnections increase the set of LiM array
structures which may be attained by DExIMA CAD: the combined use of horizontal,
vertical and additional interconnections allows the implementation of finer data
movement patterns within the array itself, which add up to an enhancement of
its functionalities. On the other hand, the algorithm description facilities allow a
user-friendly and rather straightforward definition of the simulation-time behaviour
of a LiM array, by means of nano-instructions and activation patterns.

If the architectural exploration capabilities of DExIMA CAD are to be aug-
mented, a new set of tools must be introduced and, evidently, its scope should not
be limited to a LiM array, but it should encompass a larger architectural level.
DExIMA CAD should thus be able to treat all designed LiM arrays as basic build-
ing blocks, which may be arbitrarily allocated and interconnected, so that multiple
system-level solutions may be explored by the designer, should

As for the structure of Chapter 5, Section 5.1 outlines the changes to the struc-
ture of the uppermost architectural level of LiM system, as managed by the revis-
ited version of DExIMA CAD. Since both DExIMA Backend and DExIMA CAD
present some minor limitations, the new elements in the management of the up-
permost architectural level lead to specific issues, which are detailed in Section 5.2,
where suggestions on how to solve these problems are discussed. All the required

75

5 – System-level exploration in DExIMA CAD

modifications to DExIMA CAD are then detailed in Section 5.3.

5.1 Changes to the uppermost architectural level
As regards the uppermost architectural level of a designed LiM system, the past
version of DExIMA CAD presented some major limitations, related both the actual
structure of the system and to its simulation.

The structure of the uppermost architectural level in the past version of DExIMA
CAD is depicted in Figure 5.1.

BL

S0
S1
S2
S3
S4
SI0
SI1
SI2
SI3
SI4

WL

MEM

EN
WL
S0
S1
S2
S3
S4

SI0
SI1
SI2
SI3
SI4

queueIN

queueWen

LiMActivate

uROM_Address

uIreg
ROM

BL EN

Figure 5.1: Structure of the uppermost architectural level of a LiM system in the
past version of DExIMA CAD. Although not explicitly indicated, the LiM array
and the memory interface are driven by the same clock and reset signals.

The past version of DExIMA CAD only allowed two types of components in the
uppermost architectural level, namely a LiM array and its micro-programmed con-
trol unit with a dedicated instruction queue: the latter will be hereinafter referred
to as ”memory interface“. Besides a set of internal connections, which hardwired
the memory interface and the LiM array, a standard set of input pins provided the
required I/O interface, which was controlled uniquely by the UVM testbench.

From Figure 5.1, it is straightforward to notice that the array wordline signal was
controlled directly by the UVM testbench. In fact, whilst simulating the design,
this signal was driven by the UVM testbench to initialise the content of the memory
rows to random and unspecified values, before the micro-programmed control unit
could start fetching the algorithm from its associated ROM; when this random
initialisation phase was over, the wordline signal was deactivated by the UVM
testbench for the entire remainder of the simulation.

Evidently, the above approach provided as set of random data for the simulation

76

5.1 – Changes to the uppermost architectural level

of the LiM array. Nevertheless, a major shortcoming is readily found. In fact, as
the worldline is deactivated, it is impossible to deliberately change the content of
any memory row during the simulation, and this makes it impossible to simulate
such architectures as the Hybrid-SIMD array presented in [16].

Internal and external control To overcome this limitation, the memory inter-
face should be able to generate an enable signal, which may allow a write operation
to one or more memory rows during the algorithm itself. If such signal is directly
hardwired to the LiM array, the UVM testbench (or rather any other master com-
municating with the LiM system) would not be able to load random or specific
values in the memory rows of the LiM array. For this reason, a switching mecha-
nism must be devised so that both the UVM testbench and the memory interface
may actually drive the wordline signal, in the initialisation and in the algorithm
execution phases, respectively. This leads to two control sources: the internal con-
trol, deriving from the memory interface, and the external control, deriving from
the UVM testbench.

From an architectural perspective, the most straightforward solution is to al-
locate a two-way multiplexer in the uppermost level of the complete LiM system.
The bit-width of this component is equal to the number of rows in the LiM array,
while its I/O pins are connected as reported in Figure 5.2.

BL

S0
S1
S2
S3
S4
SI0
SI1
SI2
SI3
SI4

WL

MEM

WL
S0
S1
S2
S3
S4

SI0
SI1
SI2
SI3
SI4

queueIN

queueWen

LiMActivate

uROM_Address

uIreg

0

1

ENWL

ROM

BL

Figure 5.2: Introduction of the wordline multiplexer in the uppermost level of a
DExIMA CAD LiM system.

Multiple LiM arrays In the structure of Figure 5.2, only one LiM array may
be effectively instantiated in the uppermost architectural level of the complete LiM

77

5 – System-level exploration in DExIMA CAD

system. Despite being a clear limitation, this assumption simplified the structure
of the past version of DExIMA CADand it was associated to a perfectly feasible
design flow for most case studies.

Nevertheless, as the capabilities of DExIMA CAD are ultimately expected to
increase, it would seem reasonable to remove the above limitation, making it pos-
sible for the designer to allocate multiple LiM arrays, possibly of different types,
in the uppermost architectural level of the complete LiM system. For instance,
Chapter 9 explores the implementation of the AES-128 algorithm in different ar-
chitectural solutions, in which the actual LiM processing may occur either in the
same array or in separate arrays. Furthermore, multiple replicas of the same array
type may be allocated in the top-level, for instance to introduce a larger degree of
parallelism in the processing. To answer these specific needs, the uppermost level
in DExIMA CAD requires a proper support for multiple array types and multiple
array instances.

To simplify the management of the uppermost architectural level in DExIMA
CAD, it has been decided to introduce the following simplifications:

• the uppermost architectural level may support an arbitrary number of array
types;

• for each array type, multiple array instances may be allocated;

• for each array type, each unique instance must have the same behaviour as all
the others.

Given the above assumptions, it immediately follows that all instances of the
same array type must share both the internal and the external controls: to achieve
this, they will be connected to the same memory interface and to the same wordline
multiplexer, respectively. As a consequence, only one memory interface, with its
associated algorithm ROM, is allowed for each array type.

Library components in the top-level It has been mentioned previously that
the past version of DExIMA CAD only allowed one LiM array and its memory
interface in the uppermost architectural level. Nevertheless, the introduction of a
wordline multiplexer is a clear violation of this rule, as a further component must
indeed be instantiated in the top-level. As a consequence, this constraint must be
necessarily removed, making it possible for the designer to allocate a set of library
components in the uppermost architectural level of the complete LiM system.

This change largely increases the architectural exploration capabilities of DEx-
IMA CAD. In fact, if both LiM arrays and other building blocks (including logic
gates, storage elements, arithmetic circuits and more complex sub-systems) may
be allocated in the uppermost architectural level, then the design may explore a
larger set of architectural solutions, in which the required computational tasks are

78

5.2 – Issues related to the uppermost architectural level

demanded to different parts of the system. For instance, all processing may occur
in the same LiM array or in separate LiM array of different kinds; alternatively,
part of the processing may involve a LiM, while the remained may be demanded
to a set of near-memory components.

The structure of the uppermost architectural level in the revisited DExIMA
CAD is summarised in Figure 5.3.

LiM
Array

LiM arrays

Memory
InterfaceROM

Wordline
mux

Library
components

Library
components

Figure 5.3: Structure of the uppermost architectural level of a LiM system in the
revisited version of DExIMA CAD.

5.2 Issues related to the uppermost architectural
level

With the changes detailed in Section 5.1, the structure of the uppermost archi-
tectural level may change greatly depending on the design. DExIMA CAD must
integrate a new set of analysis and synthesis tools, which should be able to tackle
the complexity deriving from the large variability of the complete LiM system.
More specifically, a set of issues arises from the present state of both the front-end

79

5 – System-level exploration in DExIMA CAD

and the back-end. Thus, if the changes to the uppermost architectural level are
to be integrated, DExIMA CAD must be able to overcome these issues, which are
detailed in the following.

Front-end issues In Section 5.1, it has been mentioned that multiple LiM ar-
ray types may be allocated in the uppermost level of the complete LiM system,
but a set of specific rules must be enforced. To fulfill this task, DExIMA CAD
should thus be able to identify all crucial elements in the design, including LiM
arrays, memory interfaces, algorithm ROMs and wordline multiplexers. Moreover,
as the complete LiM system may contain different LiM array types, DExIMA CAD
should be properly interacting with the algorithm description facilities, so that the
behaviour of all memory types may be easily defined by the designer.

Besides the multi-array scenario, Section 5.1 introduced the possibility of allo-
cating library components in the uppermost architectural level of the LiM system.
Evidently, some components, e.g. registers, flip-flops, multiplexers, add/subtract
units or bit-wise shift registers, require specific control signals, which are not neces-
sarily derived from any memory interface in the design and which must be driven,
for the purposes of the simulation, by the UVM testbench. DExIMA CAD should
thus recognize these particular pins, alongside with the external control of all LiM
arrays, so that a proper simulation-time behaviour may be defined by the designer.
In this context, let an active pins be a non-floating input pin belonging to the global
I/O interface of the complete LiM system.

Back-end issues With the new elements presented in Section 5.1, DExIMA CAD
should compensate for some limitations of the current version of DExIMA Backend.
More specifically, these limitations derive from the impossibility of describing any
local connection involving a LiM array. In fact, in the present version of DExIMA
Backend, the internal model of a LiM array does not offer any I/O interface signal,
implying that an explicit connection between a near-memory component and a
memory array may not be provided in the intended section of the DExIMA Backend
.dex input file, i.e. the map section. Despite this, it is important to point out that
the syntax would allow such connections, as shown in the following.

begin constants
BUILT_IN CLOCK 10.0
BUILT_IN SF 0
BUILT_IN AR 3.092783
BUILT_IN VDD 1.1
BUILT_IN BA 0
BUILT_IN PROB 0.5

end constants
begin init

LIM state_key_array(5,8)

80

5.2 – Issues related to the uppermost architectural level

ShiftRegister ShiftRegister_5(8)
end init

...

begin map
ShiftRegister_5.POUT[0] -> state_key_array.HBUS[0]
ShiftRegister_5.POUT[1] -> state_key_array.HBUS[1]
ShiftRegister_5.POUT[2] -> state_key_array.HBUS[2]
ShiftRegister_5.POUT[3] -> state_key_array.HBUS[3]
ShiftRegister_5.POUT[4] -> state_key_array.HBUS[4]
ShiftRegister_5.POUT[5] -> state_key_array.HBUS[5]
ShiftRegister_5.POUT[6] -> state_key_array.HBUS[6]
ShiftRegister_5.POUT[7] -> state_key_array.HBUS[7]

end map

In the previous example, the init section declares a LiM array and a near-
memory bit-wise shift register; the parallel output of the shift register is later
connected to the HBUS pin of the memory array in the map section.

To compensate for the previously described issue, DExIMA CAD must be able
to scan the uppermost architectural level of the complete LiM system and identify
the connections involving the actual LiM arrays. In this way, all near-memory
components interacting with a specific array instance may be declared in the logic
sub-section of the array itself, and their connections to the LiM cells and the IRL
blocks may be embedded in the map sub-section. An example of the intended
outcome of such procedure is shown in the following.

begin state_key_array
begin logic

...
ShiftRegister ShiftRegister_5(8)

end logic
begin cells

...
end cells
begin map

...
ShiftRegister_5.POUT[0] -> ...
ShiftRegister_5.POUT[1] -> ...
ShiftRegister_5.POUT[2] -> ...
ShiftRegister_5.POUT[3] -> ...
ShiftRegister_5.POUT[4] -> ...
ShiftRegister_5.POUT[5] -> ...
ShiftRegister_5.POUT[6] -> ...
ShiftRegister_5.POUT[7] -> ...

81

5 – System-level exploration in DExIMA CAD

end map
end state_key_array

The extent of the previously described limitation is limited to the presence of
any connection involving a LiM array and a library component. Tackling this issue
is essential in the revisited version of DExIMA CAD, as the new changes presented
in Section 5.1 demand the allocation of a wordline multiplexer, i.e. a multi-bit
library component, for each LiM array type in the uppermost architectural level.

A further limitation arises when the structure presented in Figure 5.3 should
be handled by DExIMA Backend. The current syntax of DExIMA Backend would
allow the declaration of multiple LiM arrays in the init section of the .dex file,
while their description would be demanded to specific sections, one for each LiM
array, which should precede the map section of the global .dex file. An example is
shown in the following.

begin constants
BUILT_IN CLOCK 10.0
BUILT_IN SF 0
BUILT_IN AR 3.092783
BUILT_IN VDD 1.1
BUILT_IN BA 0
BUILT_IN PROB 0.5

end constants
begin init

LIM state_array(4,8)
LIM key_array(4,8)

end init
begin state_array

...
end state_array
begin key_array

...
end key_array
begin map

...
end map

In spite of the syntax, the current version of DExIMA Backend encounters a
segmentation fault if multiple LiM sections are found by the parser in the same
.dex file. Because of this issue, in case of a multi-array scenario, DExIMA CAD
must split the description of the complete LiM system in multiple .dex files, one for
each array. In truth, a workaround may be easily found to compress the description
of the complete LiM system in a single .dex file. Nevertheless, the sections in the
resulting .dex description would have an unspecified scope and would lack a proper

82

5.3 – Top-level analyzer

hierarchical organization. For this reason, regardless of the possible workaround,
multiple .dex files are generated, and existing array-to-array connections in the
uppermost architectural level are temporarily discarded.

5.3 Top-level analyzer
To answer the needs of the changes presented in Section 5.1 and tackle the issues de-
tailed in Section 5.2, new computational facilities are introduced in DExIMA CAD:
more specifically, class TopLevelAnalyzer, an instance of which will be hereinafter
referred to as ”top-level analyzer“, is placed at the very top of a well-structured
hierarchical organization, which encompasses both the structural and the algorithm
description facilities in DExIMA CAD.

The top-level analyzer is a purely computational module and is conceived to
primarily interact with existing files in the DExIMA CAD project path and with
other computational modules in DExIMA CAD, including:

• instances of class ArrayManager;

• instances of class ControlGenerator;

• the components library, which is an instance of class ComponentsLibrary.

Thanks to these interactions, the top-level analyzer is able to fulfill different
analysis tasks, which are carried out when its build() method is called and pave
the way for its main synthesis tasks:

• generation of the HDL source code of the complete LiM system;

• configuration of the UVM testbench for the simulation of the complete LiM
system;

• generation of a DExIMA Backend .dex description of the complete LiM sys-
tem.

All analysis tasks implemented by the top-level analyzer are meant to support
the changes presented in Section 5.1 and to simultaneously tackle the issues detailed
in Section 5.2. Since the content of the uppermost architectural level is defined by
a .lim DExIMA design file, the top-level analyzer can infer an equivalent DExIMA
graph representation, which may be used to identify and sort all top-level com-
ponents and their mutual connections. For this reason, class TopLevelAnalyzer
inherits all attributes and methods from class DExIMAGraphArchitecture. Never-
theless, the actual behaviour of the main class method build() is overloaded, so
that the additional top-level tasks can be carried out.

83

5 – System-level exploration in DExIMA CAD

Figure 5.4 reports a summary of all interactions between the top-level ana-
lyzer and previously mentioned DExIMA CAD components. The top-level ana-
lyzer is always linked to the library of components, represented by an instance
of class ComponentsLibrary. All files related to the description of a LiM array
structure are handled by one or more instances of class ArrayManager, while all
algorithm-related files are managed by an instance of class ControlGenerator. The
top-level analyzer directly handles the .csv file with the values of the active pins
and the .lim file representing the structure of the uppermost architectural level.
After its build phase, the top-level analyzer may carry out its synthesis tasks.

LiM cells
IRL blocks

Arrays
structures

(.csv)

ArrayManager ControlGenerator

Arrays
instructions

(.csv)

Arrays
algorithms

(.csv)

Active
pins

(.csv)

Top-level
structure
(.lim)

Interface data structures

ComponentsLibrary

HDL
code

Testbench
configuration

DExIMA
code

Figure 5.4: Interactions between the top-level analyzer and other components in
DExIMA CAD.

Despite it being a purely computational module, the top-level analyzer must
interact with other GUI elements in DExIMA CAD, which are supposed to aid the
generation of part of the required design files. In fact, with respect to Figure 5.4,
the active pins and all algorithm-related files are not available prior to the build
phase, but they ar generated at a later stage of the design flow. More details on
the design flow are presented in Subsection 5.3.1.

84

5.3 – Top-level analyzer

5.3.1 Revisited design flow
The introduction of class TopLevelAnalyzer in DExIMA CAD leads to slight mod-
ifications to the overall design flow, especially for the phases related to the upper-
most architectural level of the complete LiM system.

With respect to the design flow offered by the past version of DExIMA CAD,
no difference is found in the structural description of a LiM array. The structure
of all LiM cells and IRL blocks is fixed by means of the schematic editor, which
produces a set of .lim, .irl and .intr files. DExIMA CAD then infers the actual
layout of the LiM array from two CSV files, which specify the LiM cells pattern
and the IRL blocks pattern.

When all LiM arrays have been designed, the designer may move to the largest-
scope design context, which supports the structure depicted in Figure 5.3. Multiple
LiM arrays may be instantiated, but the designer must comply with the rules pre-
sented in Section 5.1: a wordline multiplexer, a memory interface and an algorithm
ROM must be manually allocated for each array type, and all LiM arrays of the
same kind must be connected in the same manner to their external and internal
control elements. Lastly, should it be necessary, additional library components may
be instantiated in the uppermost architectural level.

At this stage of the design process, besides the previously mentioned files, the
project path should contain the .lim file describing the structure of the uppermost
architectural level of the complete LiM system. The designer may thus invoke the
intervention of the top-level analyzer, which carries out a set of tasks and interacts
with some GUI elements in DExIMA CAD. Figure 5.5 offers a representation of
the remaining design flow phases, which are supported by the top-level analyzer
and will be described in the following.

1. BUILD The designer triggers a top-level analyzer build, which invokes its
build() method. The top-level analyzer scans the content of the uppermost
architectural level to identify all LiM arrays and their associated internal and
external control elements. Further details on this phase are presented in Sub-
section 5.3.2.

2. NOTIFY The designer triggers an intervention of the algorithm description
facilities and of the simulation dashboard. These components require a knowl-
edge of the LiM array types and of the active pins in the uppermost architec-
tural level. The top-level analyzer provides these pieces of information in this
phase.

3. PROGRAM The designer interacts with the algorithm description module
and with the simulation dashboard to specify the nano-instructions and the
algorithm of each LiM array type. Moreover, for each algorithm step, the
designer may force specific values for the available active pins. This phase
generates the following files:

85

5 – System-level exploration in DExIMA CAD

.lim files

.irl files
.intr files

Arrays
structure

.csv
top.lim

Top-level analyzer

Arrays
instructions

.csv

Arrays
algorithms

.csv

Active
pins
.csv

Algorithm description GUI components
Simulation dashboard

2

1

3

4

Figure 5.5: Representation of the last DExIMA CAD design flow phases, as detailed
in Subsection 5.3.1. The first step is the BUILD phase, the second step is the
NOTIFY phase, the third step is the PROGRAM phase, the fourth step is the
GENERATE phase.

• for each LiM array type, a nano-instructions .csv file;
• for each LiM array type, an algorithm .csv file;
• a .csv file with the values of the active pins.

Further details on the simulation dashboard are presented in Subsection 5.3.3.

4. GENERATE At this stage of the design process, the top-level analyzer is
aware of the structure of the complete LiM system at every hierarchical level

86

5.3 – Top-level analyzer

and of its intended simulation-time behaviour. The designer may thus activate
the main synthesis tasks of the top-level analyzer. Further details are presented
in Subsection 5.3.4, Subsection 5.3.5 and Subsection 5.3.6.

5.3.2 Build phase of the top-level analyzer
The build phase of the top-level analyzer is represented by its build() method,
which consists of a set of sequential tasks. Should any of these tasks fail, the build
procedure is immediately interrupted and the outcome is notified to the designer.

As the top-level analyzer is a complex computational module, its internal mod-
ularity is guaranteed by multiple private methods, which provide a separate imple-
mentation of the previously mentioned tasks.

• The local connectivity in the uppermost architectural level is verified. This
task is actually carried out by the inherited method checkConnectivity().

• With the __seekMemoryArrayNodes() method, the top-level analyzer looks for
all memory array instances in the uppermost architectural level. Then, an
association between all array instances and their corresponding types is created
by the __sortMemoryArrays() method. The top-level analyzer is thus aware
of the different LiM array types in the uppermost architectural level. For
each array type, the top-level analyzer creates a dedicated class ArrayManager
instance, which is used to check the consistency of its structural description.

• With the __seekMemoryInterfaceNodes() method, the top-level analyzer looks
for all memory interfaces in the uppermost architectural level. A sorting pro-
cedure, represented by the __sortMemoryInterfaces() method, verifies if only
one memory interface per array type is allocated in the top level.

• The above procedure is then repeated for all algorithm ROMs, more specifically
by the methods __seekAlgorithmROMNodes() and __sortAlgorithmROMNodes().

• The top-level analyzer looks for all active pins in the uppermost architectural
level. The __seekActivePins() method uses the underlying DExIMA graph
representation to identify all non-floating external input pins; specific pins,
including CLK and RST, are discarded, as they should not be directly controlled
by the designer.

• Some active pins have a special purpose in the uppermost architectural level.
The top-level analyzer proceeds to the identification of the following classes of
active pins:

– enable-type active pins are expected to be connected to the selection signal
S of a wordline multiplexer;

87

5 – System-level exploration in DExIMA CAD

– wordline-type active pins are supposed to be connected to the input signal
IN1 of a wordline multiplexer;

– bitline-type active pins are expected to be connected to the BL port of a
LiM array.

These special types of active pins are identified by name. For instance, the
name of a bitline-type active pin must start with BL and may be followed by a
numerical identifier. As an example, the set {BL, BL1, BL2} identifies three
different bitline-type active pins.

• With the __seekWordlineMultiplexers() method, the top-level analyzer looks
for all wordline multiplexers in the uppermost architectural level. For each
array type, the corresponding wordline multiplexer is found if the following
conditions are met:

– a wordline multiplexer is an instance of class MultiBitComponent with
type Muxnbit;

– the selection signal S of a wordline multiplexer must derive from the I/O
interface of the complete LiM system, and it must be an enable-type active
pin;

– the input signal IN1 of a wordline multiplexer must derive from the I/O
interface of the complete LiM system, and it must be an wordline-type
active pin;

– the input signal IN0 of a wordline multiplexer must derive from the mem-
ory interface related to the analyzed array type;

– the output signal O of a wordline multiplexer must be connected to the WL
pin the analyzed array type.

• With the __seekMemoryClusters() method, the top-level analyzer looks for
memory clusters, i.e. the set of components which are connected, in either
direction, to a LiM array. The identification of all memory clusters is essen-
tial for the purposes of generating the DExIMA Backend description of the
complete LiM system, as explained in Subsection 5.3.6.

Figure 5.6 reports an abstract representation of the most meaningful data struc-
tures involved in the build phase of the top-level analyzer. After a call to its build()
method, the top-level analyzer may use its data structures to quickly reference spe-
cific components or connections in the uppermost architectural level, supporting
all remaining phase of the revisited design flow, as specified in Subsection 5.3.1.

88

5.3 – Top-level analyzer

LiM
array

Memory
interface

ENWL

ROM

BL

LiM arrays

Memory interfaces

Algorithm ROMs

Top-level DExIMA graph

Active pins

Wordline multiplexers

Figure 5.6: Simplified representation of the meaningful data structures involved in
the build phase of the top-level analyzer.

5.3.3 Interaction with the simulation dashboard
After its build phase, the top-level analyzer is aware of the different LiM array
types and of the active pins in the uppermost architectural level. This pieces of
information can be notified to the GUI components of the algorithm description
module.

The DExIMA CAD simulation dashboard is a GUI component that allows to
specify the simulation-time behaviour of the complete LiM system. When the
designer requests its intervention, the simulation dashboard creates as many algo-
rithms context as the number of different LiM array types in the uppermost ar-
chitectural level; furthermore, it shows all active pins, as gathered by the top-level
analyzer. The designer may thus decide to add an algorithm step, for which

• in each algorithm context, the designer describes the behaviour of its related
LiM array by combining a set of nano-instructions in a scalar control and by
associating an activation pattern;

89

5 – System-level exploration in DExIMA CAD

• the designer may force specific values on the available active pins.

At any time, the designer may decide to save the current content of the simu-
lation dashboard. This operation is essential for any further synthesis task and it
generates the following files:

• for each LiM array type, an algorithm .csv file;

• a .csv file with the values of the active pins.

Moreover, if all the above files are already available in the project path, e.g.
because of a prior design, the designer may decide to restore the content of the
simulation dashboard.

It is important to point out that the simulation dashboard does not create the
nano-instructions .csv files. As a matter of fact, when created, it must already
know all nano-instructions of all LiM arrays. As a consequence, these files are
generated by a separate GUI component of the algorithm description module.

An example of DExIMA CAD simulation dashboard is reported in Figure 5.7.

Control Pattern BL WL EN ADDR

1
2
3
4
5

Add step Remove step Save Restore

DExIMA CAD simulation dashboard

Init

Acc1

Acc2

Acc3

Acc4

SINGLE:80

SINGLE:80

SINGLE:80

SINGLE:80

SINGLE:80

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

Figure 5.7: Representation of the simulation dashboard in DExIMA CAD.

5.3.4 Source code generation
The generation of the synthesizable HDL source code of the complete LiM system
is a hierarchical process which involves several modules in DExIMA CAD.

For each array type in the uppermost architectural level, the top-level analyzer
must generate:

90

5.3 – Top-level analyzer

• the source code of its LiM cells and IRL blocks;

• the source code of the array itself, where its LiM cells and IRL blocks are
properly allocated and interconnected;

• the source code of its associated algorithm ROM;

• the source code of its associated memory interface, i.e. its internal control.

An instance of class ArrayManager, allocated during the build phase of the
top-level analyzer, handles the first two items of the above list by means of its
generateVHDL() method. As for the remainder of the above items, the third is man-
aged by a class ControlGenerator instance and its generateMicroROM() method,
while the fourth is demanded to slightly modified versions of existing DExIMA CAD
modules, namely class MemoryInterfaceGenerator and class nCUGenerator.

The source code generation process is completed by the creation of a HDL file
for the uppermost architectural level itself. This task is rather easy to carry out,
as an instance of class GraphToHDL may be used to convert the DExIMA graph
representation of the top-level in a corresponding HDL description, allocating all
LiM arrays and library components and creating their mutual connections.

5.3.5 Configuration of the UVM testbench
In Section 5.2, it has been mentioned that DExIMA CAD must be able to adapt its
UVM testbench to the actual needs of the complete LiM system under test. The
current implementation of the Universal Verification Methodology (UVM) offers a
large variety of tools to manage multiple configurations of the same testbench, e.g.
resources and configurations databases. However, it has been decided to deliber-
ately avoid the use of such tools, as different simulation approaches may be explored
in future developments of DExIMA CAD. For this reason, the revisited version of
DExIMA CAD employs a macro-based approach to support the simulation-time
configuration of the UVM testbench, the structure of which is reported in Fig-
ure 5.8.

The structure of a DExIMA-controlled testbench contains all the typical ele-
ments of a UVM testbench. An interface acts as a communication link between the
UVM components and the actual hardware, i.e. the complete LiM system. A set
of transactions is generated and transferred by the sequencer to the driver, which
effectively drives the interface and, in turn, the Device Under Test (DUT). Several
containers, including an agent, an environment and a test, are deployed to provide
a proper hierarchical separation between all components.

In the present version of DExIMA CAD, the testbench consists of the following
files:

• Driver.sv;

91

5 – System-level exploration in DExIMA CAD

Test

Environment
Agent

Sequencer DriverSequence
Guided

Sequence
Random

Sequence
Algorithm

Interface

Figure 5.8: Structure of the DExIMA-controlled UVM testbench. All the elements
in light blue are configured by DExIMA CAD and thus depend on the actual design.

• Interface.sv;

• Packet.sv;

• Sequences.sv;

• Testbench.sv.

All the above files invoke specific macros, which are generated by the top-level
analyzer and defined in a separate file called Definitions.sv. Regardless of the
design, DExIMA CAD does not directly modify the content of the above testbench
files, which are thus static entities in DExIMA CAD, but rather changes the macro
definition in Definitions.sv. This approach provides a simple, yet effective, test-
bench configuration mechanism.

In the following paragraphs, the meaningful pieces of information related to these
configuration macro will be presented.

Interface The source code of the testbench-to-hardware interface is reported in
the following.

interface InterfaceTop (input logic CLK, input logic RST);

/*
Declaration of the active pins, i.e.
non-floating input pins in the top-level.

*/
`DExIMA_ACTIVE_PINS

92

5.3 – Top-level analyzer

endinterface : InterfaceTop

The interface only contains the `DExIMA_ACTIVE_PINS, which is used to specify
the active pins involved in the simulation.

Packet The source code of class Packet, i.e. a UVM sequence item, is reported
in the following.

class Packet extends uvm_sequence_item;

/*
Declaration of the active pins, i.e.
non-floating input pins in the top-level.

*/
`DExIMA_ACTIVE_PINS

/*
Factory registration

*/
`uvm_object_utils_begin(Packet)
`uvm_component_utils_end

/*
Initialization function

*/
function void initialize();

`DExIMA_PACKET_INITIALIZATION
endfunction : initialize

endclass : Packet

Each packet must integrate the `DExIMA_ACTIVE_PINS macro to specify its con-
tent. Moreover, this class is endowed with the function void initialize() method,
which is used to zero-out its content: the body of this method is actually defined by
the `DExIMA_PACKET_INITIALIZATION, as the initialization procedure must be aware
of the active pins in the complete LiM system.

Driver The following listing reports the task run_phase() of the driver, i.e. an
instance of class Driver.

task run_phase(uvm_phase phase);
Packet pkt;

93

5 – System-level exploration in DExIMA CAD

/*
Zero-out all non-floating signals
in the interface

*/
`DExIMA_DRIVER_RUN_PHASE_BEGIN

/*
Wait for the reset to stabilize

*/
@ (posedge vif_top.RST);
@ (posedge vif_top.RST);

forever begin
/*

Get the next item from the sequencer
*/

seq_item_port.get_next_item(pkt);

@ (posedge vif_top.CLK);

/*
Packet-to-Interface transfer

*/
`DExIMA_DRIVER_RUN_PHASE_MAIN

/*
Signal the sequencer that the
item has been processed

*/
seq_item_port.item_done();

end
endtask : run_phase

The `DExIMA_DRIVER_RUN_PHASE_BEGIN macro is invoked at the very beginning
of the run phase to initialize the testbench-to-hardware interface, zeroing-out all
enable-type and wordline-type signals, in order to prevent any spurious operation
in any LiM array. The `DExIMA_DRIVER_RUN_PHASE_BEGIN macro is then used to
transfer the content of each new packet to the interface. Evidently, both operations
must be aware of the active pins in the complete LiM system.

Sequences Three different sequences are used to apply the required stimuli to
the LiM system under test:

• an instance of class SequenceInitializationRandom serves the purposes of

94

5.3 – Top-level analyzer

randomly initializing the content of all LiM arrays;

• an instance of class SequenceInitializationGuided manages the guided ini-
tialization of specific LiM arrays;

• an instance of class SequenceAlgorithm supports the execution of the algo-
rithm, as specified by the designer in the simulation dashboard.

All the above sequences must be aware of the LiM arrays in the design and of
the active pins, thus three different macros are generated by the top-level analyzer:

• `DExIMA_RANDOM_INITIALIZATION;

• `DExIMA_RANDOM_GUIDED;

• `DExIMA_ALGORITHM_SEQUENCE.

The task body() of class SequenceInitializationRandom is reported in the fol-
lowing.

task body();
int i;
Packet pkt;

// Send a first 0-initialized packet to disable all arrays
pkt = Packet::type_id::create("Packet");
pkt.initialize();
start_item(pkt);
finish_item(pkt);

// Random initialization for all arrays
`DExIMA_RANDOM_INITIALIZATION

// Send a last 0-initialized packet to disable all arrays
pkt = Packet::type_id::create("Packet");
pkt.initialize();
start_item(pkt);
finish_item(pkt);

endtask : body

With the `DExIMA_RANDOM_INITIALIZATION macro, for each array type, the top-
level analyzer generates as many packets as the number of rows in the memory
array, which only differ by the wordline signal, as it is sequentially increased to
activate the whole array; each packet asserts the enable-type signal and contains a
randomized bitline value.

95

5 – System-level exploration in DExIMA CAD

The task body() of class SequenceInitializationGuided is reported in the fol-
lowing.

task body();
int fd;
string line;
int addr, val;
Packet pkt;

// Send a first 0-initialized packet to disable all arrays
pkt = Packet::type_id::create("Packet");
pkt.initialize();
start_item(pkt);
finish_item(pkt);

`DExIMA_GUIDED_INITIALIZATION

// Send a last 0-initialized packet to disable all arrays
pkt = Packet::type_id::create("Packet");
pkt.initialize();
start_item(pkt);
finish_item(pkt);

endtask : body

With the `DExIMA_GUIDED_INITIALIZATION macro, for each LiM array requiring a
specific initialization, the top-level analyzer generates as many packets as the num-
ber of lines in its corresponding initialization file; each packet asserts the associated
enable-type signal and forces the required values on the associated bitline-type and
wordline-type signals.

The task body() of class SequenceAlgorithm is reported in the following.

task body();
Packet pkt;
int i;

/*
Write address 1 to the instruction queue

*/
pkt = Packet::type_id::create("Packet");
pkt.initialize();
pkt.queueIN = 1;
pkt.queueWen = 1;
start_item(pkt);
finish_item(pkt);

96

5.3 – Top-level analyzer

/*
Activate the LiM array for 4 clock cycles
to load address 1 to the uPC

*/
for (i = 0; i < 4; i++) begin

pkt = Packet::type_id::create("Packet");
pkt.initialize();
pkt.LiMActivate = 1;
start_item(pkt);
finish_item(pkt);

end

`DExIMA_ALGORITHM_SEQUENCE

/*
Deactivate the LiM array

*/
pkt = Packet::type_id::create("Packet");
pkt.initialize();
start_item(pkt);
finish_item(pkt);

endtask : body

An initial transaction writes the address of the first instruction to the instruc-
tions queue of all LiM arrays in the design. Then, irrespective of the algorithm to
be simulated, the LiMActivate signal is asserted for four consecutive clock cycles,
so to allow the previously written address to exit the instructions queue and reach
the program counter. Finally, with `DExIMA_ALGORITHM_SEQUENCE macro, the top-
level analyzer generates as many packets as the number of actual algorithm steps,
asserting the LiMActivate signal and thus enabling any LiM computation; each
packet contains an indication of the active pins, should they be controlled during
the LiM processing.

Testbench The last DExIMA-controlled UVM element is the testbench itself,
i.e. module Testbench.

The testbench instantiates the general simulation signals, namely the asyn-
chronous reset and the clock, the testbench-to-hardware interface and the complete
LiM system, which is actually declared and connected to its interface by means of
the `DExIMA_TOP_ARCHITECTURE_INSTANCE macro.

Furthermore, as the clock period may be changed by the designer, the be-
haviour of the aforementioned general simulation signals is actually controlled by
the `DExIMA_CLOCK_RESET_TASKS macro, which adapts the body of the following
tasks:

97

5 – System-level exploration in DExIMA CAD

• task generateClock();

• task generateReset().

5.3.6 Generation of the DExIMA Backend description
To support an estimation of the main figures of merit of the complete LiM sys-
tem, the top-level analyzer must generate a DExIMA Backend .dex file, which
contains a description of its structure and of the mutual connections between all
building blocks and components. In fact, at the very end of the design flow, the
generateDescriptionDExIMA() method of the top-level analyzer may be invoked to
trigger the .dex file generation process.

Section 5.2 introduced a specific scope-related limitation of DExIMA Backend
in supporting the description of such structures as that of Figure 5.3, which re-
sults in the impossibility of describing a connection involving a LiM array and a
library component in the map section of the global DExIMA Backend .dex file. A
workaround is provided by the following procedure.

• With its build() method, the top-level analyzer is able to identify all memory
clusters in the uppermost architectural level. Evidently, the top-level analyzer
is also aware of all top-level components which do not belong to any memory
cluster: in this context, these components will be referred to as ”out-of-memory
components“.

• The top-level analyzer prepares a set of .dex files, which will collectively rep-
resent the thorough description of the complete LiM system: besides a .dex
file for each LiM array type, a further file, namely nma.dex, is prepared.

• The elements belonging to a memory cluster are passed to the corresponding
instance of class ArrayManager, so that they can be properly declared and
mapped by its generateDExIMA() method.

• All out-of-memory components are declared and connected in nma.dex by the
top-level analyzer, without a direct intervention of any other DExIMA CAD
module.

The above steps are summarized in Figure 5.9.
This solution is perfectly feasible, as the output DExIMA Backend description is

expected to mimic the actual structure of the complete LiM system, but it deliber-
ately violates the scope of all .dex sections and sub-sections. The main shortcoming
of such violation is the introduction of a circular dependency between the top-level
analyzer and an instance of class ArrayManager, as the latter requires the former to
generate the .dex file of a LiM array. Future expansions of DExIMA Backend may

98

5.3 – Top-level analyzer

Top-level DExIMA graph

LiM
array

Reg

*
Reg

Reg

Memory cluster

Out-of-memory components

Array
manager

Array
.dex
file

nma.dex

Top-level analyzer

Figure 5.9: Representation of the .dex file generation process, as implemented
by the top-level analyzer. All memory clusters are handled by specific instances
of class ArrayManager, while out-of-memory components are directly managed by
the top-level analyzer.

remove the limitations presented in Section 5.2, leading to a more straightforward
and linear .dex generation process.

Some components belonging to a memory cluster have a special meaning in
the context of DExIMA CAD. In the present version of DExIMA CAD, these
components are:

• wordline multiplexers;

• memory rows multiplexers.

An instance of class ArrayManager, when its method generateDExIMA() is called,
must be able to recognize these components and handle them in a specific manner.

99

5 – System-level exploration in DExIMA CAD

Wordline multiplexer The array manager must ensure a proper connection
between a wordline multiplexer and its associated LiM array. More specifically,
the i-th bit of the multiplexer output signal must be connected to the EN pin of
all memory cells belonging to row i. To fulfill this task, the map section in .dex
file of the LiM array must contain a mapping procedure, as shown in the following
example, which applies to a 32-row, 8-column memory array.

for i in range(0,1,31) {
for j in range(0,1,7) {

WLMux.O[$i] -> Memory($i,$j).EN
}

}

It is important to stress that the syntax in the previous example would not be
accepted by the DExIMA Backend parser, as it only allows line-based statement:
the indentation has been manually added for representation purposes only.

Memory rows multiplexer The array manager must ensure a proper connec-
tion between a memory rows multiplexer and its associated LiM array. More specif-
ically, all memory cells must be collected by the packed input, as shown by the
following examples, which applies to a 128-row, 32-column memory array.

for i in range(0,1,127) {
for j in range(0,1,31) {

Memory($i,$j).RD ->
MRMux.packed[$(32 * $i + 32 - 1 - $j)$]

}
}

Moreover, the memory rows multiplexer may be connected back to the memory
array, if required. In the present version of DExIMA CAD, this kind of connection is
supported by the horizontal bus, it involves the multiplexed output of the memory
rows multiplexer and the dummy component HandlerHBUS.

for j in range(0,1,31) {
MRMux.multiplexed[$j] -> HandlerHBUS.HandlerIN[$j]

}

100

Part III

Implementations in
DExIMA CAD

101

Chapter 6

Case studies implementation
in DExIMA CAD

The purpose of Chapter 6 is to provide an initial proof of the effectiveness of
the new DExIMA CAD structural description capabilities, which are proved by
the DExIMA CAD implementation of some LiM arrays, which will be hereinafter
referred to as ”case studies“.

Section 6.1 deals with the DExIMA CAD implementation of the two LiM arrays
presented in [11]. These case studies serve the purpose of showing how additional
array interconnections, as defined in Subsection 3.1.3, may ease the description of
a LiM array.

In Section 6.2, a LiM array for a Finite Impulse Response (FIR) digital filter
algorithm is implemented, which is expected to highlight the effectiveness of hori-
zontal and vertical array interconnections.

For the LiM ones counter and the LiM FIR arrays, the use of the new algorithm
description facilities, as presented in Chapter 4, will be described.

6.1 LiM XNOR and LiM ones counter arrays
In Chapter 3, and more specifically in Subsection 3.1.3, it has been mentioned
that the DExIMA CAD additional interconnections, namely the horizontal and the
vertical busses, have been inspired by the two LiM arrays presented in [11]. The
primary purpose of Section 6.1 is to show the implementation of such architectures
in the revisited DExIMA CAD.

6.1.1 LiM XNOR array
The structure of the LiM XNOR array is extremely straightforward: each memory
cell integrates a XNOR gate, which is fed by the cell itself and by a weight dispatch

103

6 – Case studies implementation in DExIMA CAD

mechanism. In the DExIMA CAD implementation of this array, the weight dispatch
mechanism is easily integrated by means of a horizontal bus, as shown in Figure 6.1.

Mem Mem Mem Mem

Mem Mem Mem Mem

Mem Mem Mem Mem

HBUS[0] HBUS[1] HBUS[2] HBUS[3]BL[0] BL[1] BL[2] BL[3]

Figure 6.1: Horizontal bus in the LiM XNOR array [11]: the bits from the horizontal
bus are used to dispatch the weights word, i.e. the convolution kernel, to the
memory array which stores the input feature map.

In Subsection 3.1.3 it has been mentioned that the description of such structure
as that of Figure 6.1 was indeed possible in the past version of DExIMA CAD.
Nevertheless, because of the lack of such mechanism as the horizontal bus, the
description would have needed a separate LiM cell for each column in the array,
causing the design process to be more cumbersome. Moreover, in the past version of
DExIMA CAD, the template LiM control signals would have been used to provide
the weights to the LiM cells.

In the revisited DExIMA CAD, the description of the complete LiM XNOR
array is made possible by a single type of LiM cell, which integrates a XNOR gate

104

6.1 – LiM XNOR and LiM ones counter arrays

and a horizontal bus interconnection, as shown in Figure 6.2. It is immediate to
notice that replicating the LiM cell of Figure 6.2 for a certain amount of columns
and rows yields precisely the overall structure presented in Figure 6.1.

BL

BL

CLK

CLK

RST

RST

WL

WL

OC

OC

LiM0

LiM0

CK EN RN WR

RD

Memory_9

IN0

IN1

O

XNOR2_10

HBUS_int

HBUS_int

Figure 6.2: DExIMA CAD implementation of the LiM XNOR cells. The HBUS_int
pin is the input pin of the horizontal bus interconnection.

From both Figure 6.1 and Figure 6.2, it is immediate to notice that no LiM
control signal is actually required by the array. As a consequence, its simulation in
DExIMA CAD is extremely straightforward. The following set of nano-instructions
may be defined.

• NOP: Do not perform any operation.

• LOAD: Prepare a write operation to a selected memory row.

The random initialization sequence presented in Chapter 5 takes care of loading
a set of random values in the LiM array. The algorithm sequence may simply
consist of NOP nano-instructions with a NONE activation pattern.

6.1.2 LiM ones counter array
The structural description of the LiM ones counter array is attainable by the com-
bined use of horizontal interconnections and of a vertical bus, as shown in Figure 6.3.

It is important to point out that the past version of DExIMA CAD would not
have allowed the implementation of such structure as that of Figure 6.3, because

105

6 – Case studies implementation in DExIMA CAD

Mem Mem Mem Mem

Mem Mem Mem Mem

Mem Mem Mem Mem

FA FA FA FA

FA FA FA FA

FA FA FA FA

BL[0] BL[1] BL[2] BL[3]

VBUS[0]

VBUS[1]

VBUS[2]

Figure 6.3: Vertical bus in the LiM ones counter array [11]: the bits from the
vertical bus are used to feed the arithmetic counters, the structure of which is
made possible by horizontal LSB-to-LSB interconnections.

horizontal array interconnections were not supported. In the revisited DExIMA
CAD, the LiM ones counter array requires two different types of LiM cells:

• the first type of LiM cell, cell_lim_0, is allocated on the LSB column, it uses
the vertical bus to initialize the carry propagation, which is continued by a
horizontal LSB-to-MSB interconnection;

• the second type of LiM cell, cell_lim_j, is allocated on every other column,
it does no longer require an explicit connection from the vertical bus and it
continues to carry propagation up to the MSB.

The DExIMA CAD implementation of the above LiM cells is presented in Fig-
ure 6.4.

106

6.1 – LiM XNOR and LiM ones counter arrays

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

OC

OC

IN0

IN1

S

O

MUX21_11

CK EN RN WR

RD

Memory_12

A B

S

CO

HA_13

VBUS_int

VBUS_int

FROM_RIGHT

FROM_RIGHT

TO_LEFT

TO_LEFT

(a) LSB cell.

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

OC

OC

IN0

IN1

S

O

MUX21_11

CK EN RN WR

RD

Memory_12

A B

S

CO

HA_13

VBUS_int

VBUS_int

FROM_RIGHT

FROM_RIGHT

TO_LEFT

TO_LEFT

(b) All other cells.

Figure 6.4: DExIMA CAD implementation of the LiM ones counter cells. The
left-hand side reports the structure of cell_lim_0, with the required connection
to the vertical bus. The right-hand side shows the structure of cell_lim_j, which
integrates the horizontal interconnection pins TO_LEFT and FROM_RIGHT.

The uppermost architectural level only contains the LiM ones counter array, its
internal control (i.e. its memory interface and its algorithm ROM) and its external
control (i.e. its wordline multiplexer). Since the vertical bus is a non-floating input
pin, it is recognized by the top-level analyzer as an active pin, and it can thus be
controlled by the simulation dashboard.

Nano-instructions From both Figure 6.3 and Figure 6.4, it is straightforward
to notice that a single LiM control signal is required to define the behaviour of the
cell multiplexer. The following set of nano-instructions may thus be defined.

• NOP: Do not perform any operation.

• LOAD: Enable a write operation to a selected memory row.

• ACC: Select the output of the half-adder as the write input of a memory cell.

107

6 – Case studies implementation in DExIMA CAD

Simulation dashboard Prior to the actual algorithm, to make sure that the
counting procedure is properly executed, all memory rows must be initialized to
zero. This task can be fulfilled by extending a LOAD scalar control to the whole
LiM array, by means of a ALL activation pattern, and by enforcing the value 0 on
the bitline.

Each algorithm step consists of a ACC scalar control with an associated ALL
activation pattern. To simplify the functional verification phase, the VBUS sends a
set of ones either to the even-indexed rows or to the odd-indexed rows. Assuming
an 8-row LiM array, this can be easily done by continuously switching between
values 0x55 (85 in decimal notation) and 0xAA (170 in decimal notation).

All the above considerations may be used in the DExIMA CAD simulation dash-
board, as shown in Figure 6.5.

Control Pattern BL WL EN VBUS

1

2

3

4

5

DExIMA CAD simulation dashboard

LOAD

ACC

ACC

ACC

ACC

ALL

ALL

ALL

ALL

ALL

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

85

170

85

170

Figure 6.5: Representation of the DExIMA CAD simulation dashboard for the LiM
ones counter array.

6.2 Logic-in-Memory implementation of a Finite
Impulse Response digital filter

Section 6.1 has already shown how horizontal interconnections are able to expand
the structural description capabilities. Before considering more complex LiM archi-
tectures, a preliminary study is carried out, aimed at developing a LiM implemen-
tation of a Finite Impulse Response (FIR) digital filter. The target architecture of
such study is expected to be a rather application-specific solution which can imple-
ment the required algorithm following the paradigm of Logic-in-Memory computing
and, more specifically, the design philosophy presented in [9] and [16], which can
be summed up as follows:

• bit-wise logic operations and simple arithmetic operations, including additions

108

6.2 – Logic-in-Memory implementation of a Finite Impulse Response digital filter

and subtractions, are directly integrated in the LiM cells;

• complex arithmetic operations, e.g. multiplications, are demanded to IRL
blocks.

Given the above constraints and the actual operations involved in the FIR filter,
it is expected that the output architecture will require some degree of data move-
ment at array level, which is necessary to achieve the required functionality. In
other words, the revisited DExIMA CAD should be able to tackle the description
of the designed LiM array.

6.2.1 Derivation of the LiM architecture
A Finite Impulse Response digital filter of order N provides the hardware imple-
mentation of Equation 6.1.

y[n] = b0 · x[n] + b1 · x[n− 1] + ... + bN · x[n−N] =
N∑︂

k=0
bk · x[n− k] (6.1)

In Equation 6.1, x[n] and y[n] are the input and output samples, respectively, and
bk are the filter coefficients. Hereinafter, the set of past samples x[n−1], ..., x[n−N]
will be referred to as the ”state buffer“ of the filter.

To highlight the operators required by a hardware implementation, Equation 6.1
can be used to derive the Data Flow Graph of the algorithm, an example of which
is reported in Figure 6.6.

* * * * * *

+ + + + +

z−1 z−1 z−1 z−1 z−1

b0 b1 b2 b3 b4 b5

x[n]

y[n]

Figure 6.6: Example of Data Flow Graph for a Finite Impulse Response filter of
order N = 5.

An accurate analysis of Equation 6.1 shows that:

109

6 – Case studies implementation in DExIMA CAD

• N storage operators are needed to store N past samples of the input signal;

• (N + 1) multiplication operations are required to compute the (N + 1) partial
products bk · x[n− k];

• N addition operators are required to accumulate all partial products to pro-
duce the final value of the output sample.

Evidently, the memory rows of the LiM array can act as the storage operators,
provided that the array consists of at least (N + 1) rows, to store both the current
sample and past values of the input signal.

As regards the multiplications, each row in the memory array has an associated
IRL block which contains a multiplier and an output buffer to store the partial
product. Moreover, a input buffer will be used to store the values of the coefficients
bk, leading to the structure of Figure 6.7.

Output buffer

* Coefficient buffer

IRL0[i]

OC[i]

Figure 6.7: LiM FIR architecture: structure of the Intra-Row Logic (IRL) blocks.
OC[i] is a placeholder for the input pin of a Prev-1-OC-to-IRL vertical intercon-
nection.

To implement the additions, all memory rows but the first one integrate an
arithmetic circuit, namely a Full-Adder (FA), which can lead to a in-row Ripple-
Carry Adder (RCA) architecture.

The first row of the memory array consists of the slightly modified cells depicted
in Figure 6.8, integrating an interconnection from the very next IRL block, which
is required to bring the partial product b0 · x[n] to the memory cells.

110

6.2 – Logic-in-Memory implementation of a Finite Impulse Response digital filter

Mem

0

1

OC[i][j]

BL[j]

IRL0[i][j]

S0[i]

Figure 6.8: LiM FIR architecture: structure of modified memory cells. IRL0[i][j]
is a placeholder for the input pin of a Next-1-IRL0-to-Row vertical interconnection.

The remaining rows of the memory array consist of the arithmetic cells depicted
in Figure 6.9, which, in addition to the interconnection element of Figure 6.8,
integrate:

• an interconnection from the very previous memory row, to enable the accu-
mulation of the partial products bk · x[n− k];

• an interconnection from the very previous IRL block, to manage the update
of the state buffer;

• an interconnection from the very previous column, to propagate the carry
signal, as required by a RCA architecture.

6.2.2 Algorithm description in DExIMA CAD
LiM array behaviour The algorithm which will be supported by the designed
architecture consists of two consecutive phases, namely:

1. the start-up phase, which is required to load all filter coefficients bk and to
zero-out the state buffer;

2. the kernel phase, which elaborates each input sample x[n] to produce the
output sample y[n].

In the start-up phase, the filter coefficients bk are initially stored in the memory
rows. Then, the coefficients are moved to the input buffers in the IRL blocks in
a fully-parallel manner. Lastly, the filter state buffer is initialized in parallel, by
loading the value 0 on the bitline and by enabling all the rows in the memory.

In the kernel phase, each input sample x[n] is initially loaded in the first memory
row. Then, a parallel multiplication computes all required partial products bk ·

111

6 – Case studies implementation in DExIMA CAD

Mem

00

01

10

11

FA FROM_RIGHTTO_LEFT

OC[i-1][j]

BL[j]

IRL0[i][j]

IRL0[i-1][j]

[S1[i],S0[i]]

Figure 6.9: LiM FIR architecture: structure of the arithmetic mem-
ory cells. Several interconnection placeholders are found: IRL0[i][j] in-
dicates Next-1-IRL0-to-Row vertical interconnection, IRL0[i-1][j] repre-
sents Prev-1-IRL0-to-Row vertical interconnection, OC[i-1][j] indicates a
Prev-1-OC-to-Row vertical interconnection, while FROM_RIGHT and TO_LEFT are
associated to a LSB-to-MSB horizontal interconnection.

x[n−k] and stores them in the output buffers. Because the accumulation may only
involve the actual memory rows, as the structure of the arithmetic cells clearly
suggests, all partial products must be transferred from the output buffers to the
memory rows; nevertheless, to prevent losing the state buffer, the content of the
memory rows is temporarily moved to the output buffers, effectively resulting in an
exchange operation which can take place in the same computational cycle. When
the data movement is complete, partial products may be accumulated. Lastly,
to update the state buffer, each memory row but the first one is loaded with the
content of the previous output buffer, effectively completing the shift operation.

Nano-instructions To implement the behaviour detailed by the above consid-
erations, the following set of nano-instructions may be defined.

• NOP: Do not perform any operation.

• LOAD: Prepare a write operation to a selected memory row.

• SHH: Enable the coefficient buffers.

• MULT: Multiply memory row and coefficient buffer, save result to output buffer.

112

6.2 – Logic-in-Memory implementation of a Finite Impulse Response digital filter

• ROT: Exchange the content of the memory row and and its associated output
buffer.

• SUM: Sum two adjacent memory rows, save result to the larger-index memory
row.

• SHV: Shift the content of an output buffer to the very next memory row.

Simulation dashboard The simulation of the LiM FIR may be thoroughly sim-
plified by taking into account the way the DExIMA CAD UVM testbench works.
After the random initialization sequence, each memory row contains a random
value, which can be used both as a filter coefficient and as an element in the state
buffer, provided that a SHH nano-instruction is issued with a ALL activation pat-
tern. All partial products are computed by means of a MULT nano-instruction,
extended to the whole LiM array by means of a ALL activation pattern; a subse-
quent ROT nano-instruction, with an associated ALL activation pattern, moves all
partial products to the memory rows. The accumulation procedure is carried out
by a SUM nano-instruction with an associated INCR:1:15 activation pattern. Lastly,
the state buffer is upated by means of a SHV nano-instruction.

All the above considerations may be used in the DExIMA CAD simulation dash-
board, as shown in Figure 6.10.

Control Pattern BL WL EN

1

2

3

4

5

DExIMA CAD simulation dashboard

SHH

MULT

ROT

SUM

SHV

ALL

ALL

ALL

INCR:1:15

ALL

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure 6.10: Representation of the DExIMA CAD simulation dashboard for the
LiM FIR array.

113

114

Chapter 7

Hybrid-SIMD in DExIMA
CAD

The purpose of Chapter 7 is to describe the DExIMA CAD implementation of the
Hybrid-SIMD memory array presented in [16], with the primary concern of proving
the effectiveness of the new structural description capabilities of DExIMA CAD.

Section 7.1 reports a general overview of the Hybrid-SIMD architecture, while
Section 7.2 deals with some simplifications and assumptions which ease the DEx-
IMA CAD implementation. Details on the structural description of the archi-
tecture, as carried out in DExIMA CAD, as discussed in Section 7.3, while Sec-
tion 7.4 presents how the algorithm description facilities are employed to describe
the simulation-time behaviour of the LiM array.

7.1 Overview of the Hybrid-SIMD architecture
The Hybrid-SIMD architecture [16] is a versatile general-purpose Logic-in-Memory
(LiM) solution, which has been devised with the primary purpose of reducing the
performance and energy communication overhead in a traditional von Neumann
system. It is meant to be embedded in a processor-memory environment, so to act
as an accelerator for specific algorithms.

The core of the complete LiM system is a memory array, referred to as the ”SIMD
array“, which is partitioned in two main sections, the standard and the smart sec-
tions, which may communicate with each other via the cache and the routing layers,
as depicted in Figure 7.1. In the standard section, standard-type memory cells are
allocated to create a ”traditional“ storage facility; in the smart section, standard
memory rows are interleaved with smart rows, which are the computational and
processing elements of the architecture. Figure 7.2 reports the interleaved pattern
which characterises the smart section of the array and the structure of a smart row,
which consists of:

115

7 – Hybrid-SIMD in DExIMA CAD

• an arithmetic memory row;

• a set of row interfaces;

• a I/O buffer.

To provide the required functionalities, the above elements are tightly linked
with one another, implying that each smart row must integrate a well-structured
local interconnection pattern.

In the smart section, an important data movement mechanism is deployed to
enable the communication between different smart rows. In fact, being encompassed
by two standard rows, each smart row has an up-row and a down-row, and the
down-row of a smart row is the up-row of the following smart row. In this way,
data can be passed on from a smart row to the next one.

SIMD array

Smart
section

Standard
section

MUX layerCache layer

Figure 7.1: Top-level view of the structure of the memory array in the Hybrid-
SIMD architecture. The SIMD array is partitioned in two sections, the standard
and the smart sections.

Arithmetic memory rows are made of properly interconnected Hybrid-SIMD
arithmetic/logic cells, whose structure is reported in Figure 7.3, which, besides a
storage element (Mem), integrate the following components:

• a three-way multiplexer, driving the write input of the memory component;

116

7.1 – Overview of the Hybrid-SIMD architecture

Arithmetic memory row

Row
Interface 1

Row
Interface 2

I/O buffer

Standard Row

Standard Row

Smart Row

Smart Row

Figure 7.2: Hierarchical structure of the memory array in the Hybrid-SIMD archi-
tecture. In the smart section, standard memory rows are interleaved with smart
rows, consisting of an arithmetic memory row, a set of row interfaces and a I/O
buffer: in this example, two row interfaces are allocated.

• a configurable logic element, namely a Full-Adder (FA), enabling the in-row
execution of simple arithmetic operations, e.g. addition and subtraction, and
bit-wise logic operations;

• two XOR gates, driving the inputs of the FA and expanding the set of support
bit-wise logic operations;

• a two-way and a four-way multiplexer, driving the operands used by the arith-
metic/logic element.

In a smart row, row interfaces may be used for more complex tasks, e.g. multi-
plication, absolute value, shift and so forth, while a set of I/O buffers is allocated
for temporary data storage: output buffers are typically used to save the result
of a computation, deriving either from an arithmetic memory row or from a row
interface, while input buffers can retain data to be used at a later stage of an
algorithm.

It is important to stress that, in order to boost the modularity and the reconfig-
urability of the architecture, row interfaces have a predefined I/O interface, which

117

7 – Hybrid-SIMD in DExIMA CAD

Mem

BA

FA CinCout

A* B*

Invert_BInvert_A

Up-Row/
Down-Row

Sum

memOUT

BLIOBuf Ext

Figure 7.3: Structure of a Hybrid-SIMD arithmetic/logic cell.

is required to fetch the input operands, thus they should differ only by the hardware
operator they host. An example of such I/O interface is presented in Figure 7.4.

7.2 Simplifications and assumptions
Given the details presented in Section 7.1, it is noteworthy to stress that the Hybrid-
SIMD architecture represents a rather important case study, as, from the point of
view of DExIMA CAD, it is quite a complex system. As a consequence, implement-
ing this memory array in DExIMA CAD is expected to show not only the current
capabilities of the tool itself, which have been boosted by the expansions presented
in Chapter 3 and Chapter 4, but also some of its present limitations. As a matter of
fact, attaining a complete description and simulation of the Hybrid-SIMD memory
array completely within DExIMA CAD should prove the new improvements in the

118

7.2 – Simplifications and assumptions

*

IOBuf

IOBuf

memOUT

OutRI

Ext

Ext

Up-Row
Down-Row

Figure 7.4: Example of a multiplier row interface in the Hybrid-SIMD architecture.

tool.
The structural description of the SIMD array in DExIMA CAD would not be

possible without the intra-array interconnections feature presented in Chapter 3.
Firstly, the lack of horizontal interconnections would prevent any connection be-
tween adjacent Hybrid-SIMD cells, making it impossible to integrate simple arith-
metic operations, e.g. addition and subtraction, in the arithmetic memory rows.
Secondly, vertical interconnections provide a communication link between the smart
rows and their adjacent up-rows and down-rows, creating the data movement pat-
terns required by the architecture. Lastly, the horizontal bus additional inter-
connection provides the designer with a rather simplified (and simplistic) way to
emulate the ”Ext“ bus.

The Hybrid-SIMD architecture presents lots of operating modes, which derive
from the large amount of input operands-operations-output operands combinations,
thus the prior algorithm description facilities would have made the definition of
the run-time behaviour of the array excruciatingly burdensome. In fact, as already
mentioned in Section 4.2, the possibility of declaring simpler nano-instructions, only
partially describing the behaviour of an active array element, and later combining
them in the algorithm context simplifies this simulation-related task by a great
amount, improving the designer experience and reducing the design time. In truth,
the combination of simple nano-instructions, as described in Section 4.2, has been
inspired by how nano-instructions are defined in [16].

Despite the improvements brought forth by array interconnections and by the al-
gorithm description module, in the present state of DExIMA CAD some limitations

119

7 – Hybrid-SIMD in DExIMA CAD

are found, which prevent a thorough description of the complete LiM system. As
a consequence, to be able to develop the architecture completely within DExIMA
CAD, some simplifications, which will be discussed in the following, are required.

A first limitation derives from the current scope of DExIMA CAD, which pri-
marily covers the structure of the LiM array and its interaction with the micro-
programmed control unit, thus making it impossible to introduce, in a rather
straightforward and user-friendly manner, more complex elements in the complete
LiM architecture: for instance, the present state of DExIMA CAD does not allow
to introduce the cache and the routing layers presented in Figure 7.1. Thus, to
carry out the structural description completely within DExIMA CAD, the afore-
mentioned layers must be temporarily removed. To preserve the functionality of
the LiM array, any routing and data dispatch mechanism is moved from a dedicated
sub-system, i.e. the routing layer, external to the actual memory array, to within
the array itself. This assumption leads to the following considerations:

• the Hybrid-SIMD cells, core of the arithmetic memory rows, as additional
routing components are required to multiplex the data signals deriving from
their related up-rows and down-rows;

• in the smart section, the standard-type memory cells should be slightly mod-
ified to account for the required routing operations.

Despite these slight differences, in this DExIMA CAD case study, the structure
of all memory cells is expected to be rather close to the original implementation
presented in [16].

Furthermore, as the cache layer partially compensates the complexity of the
routing mechanisms, its removal may lead to a quite severe performance degrada-
tion. Nevertheless, such shortcoming is acceptable by all means, as the aim of this
case study is not to developed an optimised architecture, but rather to show the
new capabilities of DExIMA CAD: with further developments and expansions, the
required performance may be easily recovered.

It is of utmost importance to stress that the above simplifications do not alter the
functionality of the LiM array whatsoever and do not introduce any side effect which
could be detrimental to the modularity and the reconfigurability of the architecture.
Indeed, all required data movement patterns are quite well-handled by the DExIMA
CAD description, while the functionality of the Hybrid-SIMD array is preserved
and can be boosted at will by properly deploying row interfaces in the smart row
structure of Figure 7.2. As a consequence, the behaviour of the LiM array may
be effectively simulated by only instantiating a multiplier row interface, as the
one presented in Figure 7.4, with the purpose of simulating the execution of the
Matrix-Vector Multiplication (MVM) algorithm, precisely as described in [16].

120

7.3 – Architectural description in DExIMA CAD

7.3 Architectural description in DExIMA CAD

7.3.1 Structure of the LiM cells
The details regarding the structure of the Hybrid-SIMD architecture, presented in
Section 7.1, suggest the need of at least two types of memory cells, one for the
arithmetic/logic cells and one for the standard-type memory cells. Nevertheless,
because of the simplifications introduced in Section 7.2, a further cell type is re-
quired to counterbalance the removal of the routing layer. To sum up, the following
types of memory cells are needed:

• cell_std, a standard-type memory cell, deployed in the standard section of
the SIMD array;

• cell_lim, an arithmetic/logic memory cell, the basic building block of an
arithmetic memory row;

• cell_semistd, a semi-standard-type memory cell, used in the smart section
of the SIMD array to implement the communication link between a smart row
and its related up-row.

In the standard section of the SIMD array, the memory rows may be implemented
by means of the standard-type memory cells presented in Figure 7.5, which only
include a storage element (Mem).

MemBL[j]

OC[i][j]

Figure 7.5: Structure of the standard-type memory cells in the DExIMA CAD
description of the Hybrid-SIMD memory array.

In the smart section of the SIMD array, the up-rows and the down-rows may
be implemented by means of the semi-standard-type memory cells depicted in Fig-
ure 7.6, which include a storage element (Mem), a three-way multiplexer, used to
drive the write input of the memory component and the following array intercon-
nections:

• a vertical interconnection, with parameters Source = Row, SourcePin = OC,
Direction = Previous and Displacement = 1, to fetch the output of the
previous arithmetic memory row;

121

7 – Hybrid-SIMD in DExIMA CAD

• a vertical interconnection, with parameters Source = IRL, SourcePin = IRL1,
Direction = Previous and Displacement = 1, to fetch the content of the
output buffer of the previous smart row.

MemOC[i-1][j]

IRL1[i-1][j] OC[i][j]

BL[j]

S13[i] S12[i]

Figure 7.6: Structure of the semi-standard-type memory cells in the DExIMA CAD
description of the Hybrid-SIMD memory array.

The arithmetic memory rows, as seen for instance in Figure 7.2, may be im-
plemented by means of the arithmetic/logic memory cells reported in Figure 7.7,
which, with respect to the scheme presented in Figure 7.3, include the following
additional components:

• a two-way multiplexer, controlled by the LiM template signal S3, which feeds
the second operand multiplexer with the content of either the up-row or the
down-row;

• a two-way multiplexer, controlled by the LiM template signal S7, setting the
cell either for an arithmetic or for a bit-wise logic operation.

Besides the above elements, the cells integrate the following array interconnec-
tions:

• a vertical interconnection, with parameters Source = Row, SourcePin = OC,
Direction = Previous and Displacement = 1, to fetch the output of the
up-row;

• a vertical interconnection, with parameters Source = Row, SourcePin = OC,
Direction = Next and Displacement = 1, to fetch the output of the down-
row;

• a vertical interconnection, with parameters Source = IRL, SourcePin = IRL0,
Direction = Next and Displacement = 1, to fetch the content of the I/O
buffers;

122

7.3 – Architectural description in DExIMA CAD

• a horizontal interconnection, of type LSB-to-MSB, to propagate the carry sig-
nal and thus create an in-row Ripple-Carry Adder (RCA), enabling arithmetic
operations;

• a horizontal bus additional interconnection, emulating the ”Ext“ bus, as seen
for instance in Figure 7.3.

Mem

BA [S2[i],S1[i]]S0[i]

FA

[S9[i],S8[i]]

TO_LEFT[j]
FROM_RIGHT[j]

S6[i]

S7[i]

A* B*

S11[i]S10[i]

OC[i-1][j]

OC[i+1][j]

S3[i]

Sum

LiM0[i][j]

BL[j]IRL0[i][j] HBUS[j]

S4[i]

S5[i]

Figure 7.7: Structure of the arithmetic/logic memory cells in the DExIMA CAD
description of Hybrid-SIMD memory array.

7.3.2 Structure of the IRL blocks
To complete the structure of a smart row, it is necessary to allocate, somewhere in
the design, a multiplier row interface and some I/O buffers. In the current state of

123

7 – Hybrid-SIMD in DExIMA CAD

DExIMA CAD, such components may be easily embedded in a IRL block, which
will be associated to an arithmetic memory row in the complete architecture of
the LiM array. This DExIMA CAD implementation only requires one type of IRL
block, which will be referred to as irl_block and whose structure is reported in
Figure 7.8. Besides the elements of the multiplier row interface, as presented in
Figure 7.4, and two registers, acting as input and output buffers, this type of IRL
block includes the following array interconnections:

• a vertical interconnection, with parameters Source = Row, SourcePin = OC,
Direction = Previous and Displacement = 2, to fetch the output of the
up-row;

• a vertical interconnection, with parameters Source = Row, SourcePin = OC,
Direction = Next and Displacement = 1, to fetch the output of the down-
row;

• a horizontal bus additional interconnection, emulating the ”Ext“ bus.

7.3.3 Structure and geometry of the LiM array
Once the structure of all required LiM cells and IRL blocks is determined, the
number of control signals and outputs they required is known, thus a DExIMA
CAD memory template can be selected, leading to the design choices reported in
Table 7.1.

Template item Value
LiM control signals 14
IRL control signals 8
LiM outputs 1
IRL outputs 2

Table 7.1: Template selection for the DExIMA CAD implementation of the Hybrid-
SIMD architecture.

Having fixed the LiM array template, the DExIMA CAD schematic editor may
be employed to implement all required LiM cells and IRL blocks: the results of the
structural description process are reported in Appendix A.

The actual geometry of the LiM array may be inferred from the algorithm to
be implemented by the architecture. As the primary concern of this DExIMA
CAD implementation is to show the capabilities of the tool, to avoid unnecessary
complexities in the design verification phase, it has been decided to consider a 4-
row, 4-column matrix A and, consequently, 4-row vectors b and x, which are related
to one another as shown in Equation 7.1.

124

7.3 – Architectural description in DExIMA CAD

*

OC[i-1]

OC[i+1]

LiM0[i]

IRL0[i]

LiM0[i]
IRL0[i]

HBUS

OBuf

IBuf

EN

EN

IRL0[i]

IRL1[i]

SI0[i]

[SI2[i],SI1[i]]

SI3[i]

SI4[i]

SI5[i]

SI7[i]

SI6[i]

Figure 7.8: Structure of the Intra-Row Logic (IRL) blocks in the DExIMA CAD
description of the Hybrid-SIMD memory array. The same colours of Figure 7.2 are
used to highlight the row interface, the I/O buffers and the routing element.

⎡⎢⎢⎢⎣
b0
b1
b2
b3

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
x0
x1
x2
x3

⎤⎥⎥⎥⎦ (7.1)

Given the algorithm mapping details presented in [16] and given the structure
of Equation 7.1, in order to enable a fully-parallel computation of all partial prod-
ucts, a total of sixteen multiplier row interfaces must be allocated in the smart
section of the SIMD array, which must thus consist of sixteen smart rows and, con-
sequently, sixteen standard rows. Hence, both the smart and the standard sections
are composed of thirty-two memory rows each.

In the smart section, to mimic the interleaved pattern depicted in Figure 7.2,
cells of type cell_lim are allocated in the odd-indexed memory rows, while cells
of type cell_semistd are allocated in the even-indexed memory rows, with one

125

7 – Hybrid-SIMD in DExIMA CAD

exception only: the first row (index 0) may employ cells of type cell_std, as there
is no actual need to integrate further routing mechanisms. On the other hand, the
standard section only contains cells of type cell_std.

The smart row structure is completed by allocating IRL blocks of type irl_block
in the odd-indexed slots, thus pairing them with their related arithmetic memory
rows.

The above considerations eventually lead to the scheme of Figure 7.9, which
reports the structure of the Hybrid-SIMD memory array, as described in DExIMA
CAD, for the first eight memory rows, i.e. for the first four smart rows in the smart
section.

7.4 Algorithm description in DExIMA CAD
When the structure of the complete memory array is defined, the new functionalities
of the algorithm description module, as presented in Chapter 4, may be employed
to specify its simulation-time behaviour. As the Hybrid-SIMD architecture is con-
ceived to be a general-purpose co-processor, this DExIMA CAD implementation is
expected to support a set of general-purpose nano-instructions, which will then be
combined to produce the required Matrix-Vector Multiplication (MVM) algorithm.

Nano-instructions Because of its complexity, the behaviour of a Hybrid-SIMD
array is described by combinations of simpler nano-instructions, which control spe-
cific sections of each LiM cells and IRL blocks.

The following set of nano-instructions may be applied to any kind of memory
row in the Hybrid-SIMD array.

• NOP: Do not perform any operation.

• LOAD: Prepare a write operation to a selected memory row.

To deal with the up-row/down-row routing mechanism, the behaviour of the
semi-standard type memory cells depicted in Figure 7.6 is defined by means of the
following set of nano-instructions.

• UDRow_BL: Select the bitline as the write input of an enabled down-row.

• UDRow_Smart: Select the smart row as the write input of an enabled down-row.

• UDRow_OBuf: Select the output buffer as the write input of an enabled down-
row.

As for the arithmetic/logic Hybrid-SIMD cells of Figure 7.7, the following nano-
instructions are introduced to control the input multiplexers, feeding the write input
of the storage element, and the output multiplexer, driving the template output
signal LiM0.

126

7.4 – Algorithm description in DExIMA CAD

Hybrid-SIMD array LiM cells
pattern

IRL blocks
pattern

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Arithmetic Row 0

Arithmetic Row 1

Arithmetic Row 2

Arithmetic Row 3

R.I & Routing & I/O Buffer

R.I & Routing & I/O Buffer

R.I & Routing & I/O Buffer

R.I & Routing & I/O Buffer

Up-Row 0

Up-Row 1

Up-Row 2

Up-Row 3

Down-Row 0

Down-Row 1

Down-Row 2

cell_std

cell_lim

cell_lim

cell_lim

cell_lim

cell_semistd

cell_semistd

cell_semistd

NO-Logic

NO-Logic

NO-Logic

NO-Logic

irl_block

irl_block

irl_block

irl_block

Figure 7.9: DExIMA CAD description of the complete Hybrid-SIMD memory array.
The leftmost part of the picture reports the intended structure of the Hybrid-SIMD
array, with same colours of Figure 7.2 to highlight the different elements in a smart
row, i.e. arithmetic memory rows, row interfaces (R. I), routing elements and I/O
buffers. The rightmost part of the picture depicts the LiM cells and IRL blocks
patterns, as used in DExIMA CAD. For representation purposes, only the first
eight memory rows are shown.

• Input_BL: Select the bitline as the write input of an arithmetic memory row.

• Input_IOBuf: Select the I/O buffer as the write input of an arithmetic memory
row.

• Input_Ext: Select the Ext line as the write input of an arithmetic memory
row.

• Output_OC: Select the memory cell as the LiM0 output of an arithmetic memory

127

7 – Hybrid-SIMD in DExIMA CAD

row.

• Output_S: Select the sum signal as the LiM0 output of an arithmetic memory
row.

• Output_C: Select the carry signal as the LiM0 output of an arithmetic memory
row.

Besides the I/O sections, the following set of nano-instructions controls the input
operands of the arithmetic rows and of the IRL blocks.

• OPR_A_memOUT, OPR_A_IRL_memOUT: Select the output of an arithmetic memory
row as the first operand.

• OPR_A_IOBuf, OPR_A_IRL_IOBuf: Select the I/O buffer as the first operand.

• OPR_B_memOUT, OPR_B_IRL_memOUT: Select the output of an arithmetic memory
row as the second operand.

• OPR_B_IOBuf, OPR_B_IRL_IOBuf: Select the I/O buffer as the second operand.

• OPR_B_Ext, OPR_B_IRL_Ext: Select the Ext line as the second operand.

• OPR_B_URow, OPR_B_IRL_URow: Select the up-row as the second operand.

• OPR_B_DRow, OPR_B_IRL_DRow: Select the down-row as the second operand.

The I/O buffers in the IRL blocks may be controlled by the following set of
nano-instructions.

• IOBuf_IBuf: Select the input buffer.

• IOBuf_OBuf: Select the output buffer.

• Enable_IBuf: Enable a write operation to the input buffer.

• Enable_OBuf: Enable a write operation to the output buffer.

• Mux_ArithRow: Select the output of the four-way multiplexer as the write
input of the I/O buffers.

• Mux_Operator: Select the output of the multiplier as the write input of the
I/O buffers.

With all above nano-instructions, the simulation-time behaviour of the Hybrid-
SIMD array may be easily controlled in any algorithm step.

128

7.4 – Algorithm description in DExIMA CAD

Simulation dashboard The implementation of the MVM algorithm in a Hybrid-
SIMD system is made possible by the following steps.

Prior to the beginning of the algorithm, the smart section of the SIMD array
must be initialized, thus matrix elements aij are stored in the arithmetic memory
rows, while vector components xi are stored in the up-rows, ensuring a proper data
replication so to parallelize the computation of partial products. In quantitative
terms, as a row-major order scheme is employed for matrix A, its elements will be
stored in the memory rows with indexes 1, 3, 5, ..., 31, i.e. in the arithmetic memory
rows; as for the vector x:

• the first component x0 is stored in the memory rows with indexes 0, 8, 16 and
24;

• the second component x1 is stored in the memory rows with indexes 2, 10, 18
and 26;

• the third component x2 is stored in the memory rows with indexes 4, 12, 20
and 28;

• the fourth component x3 is stored in the memory rows with indexes 6, 14, 22
and 30.

The actual processing, which may start when the smart section has been prop-
erly initialized, consists of a sequence of steps which are easily modelled with the
facilities presented in Section 4.2. In the following, the required steps are presented,
alongside with the scalar control and the activation pattern.

• Elements xi are copied from the up-rows to the input buffers.

– Scalar control
Enable_IBuf
Mux_ArithRow
OPR_B_IRL_URow

– Activation pattern
ODD:0:31

• Partial products are computed and stored in the output buffers.

– Scalar control
Enable_OBuf
Mux_Operator
OPR_A_IRL_memOUT
OUTPUT_OC
OPR_B_IRL_IOBuf
IOBuf_IBuf

129

7 – Hybrid-SIMD in DExIMA CAD

– Activation pattern
ODD:0:31

• Partial products are copied from the output buffers to the arithmetic rows.

– Scalar control
LOAD
INPUT_IOBuf
IOBuf_OBuf

– Activation pattern
ODD:0:31

• Partial products are copied from the output buffers to the down-rows.

– Scalar control
LOAD
UDRow_Smart

– Activation pattern
EVEN:2:31

• Partial products are accumulated along the memory array.

– Arithmetic rows and up-rows are summed, the result is stored in the out-
put buffers.

∗ Scalar control
Enable_OBuf
Mux_ArithRow
OPR_B_IRL_memOUT
OPR_A_memOUT
OPR_B_URow
OUTPUT_S
SUM

∗ Activation pattern
First sum CUSTOM:3:11:19:27
Second sum CUSTOM:5:13:21:29
Third sum CUSTOM:7:15:23:31

– The content of the output buffers is transferred to the down-rows.
∗ Scalar control

LOAD
UDRow_OBuf

130

7.4 – Algorithm description in DExIMA CAD

∗ Activation pattern
First sum CUSTOM:4:12:20:28
Second sum CUSTOM:6:14:22:30
Third sum CUSTOM:8:16:24:32

131

132

Chapter 8

SHA-1 in DExIMA CAD

The purpose of this chapter is to describe the DExIMA CAD implementation of
a LiM architecture which supports the execution of the SHA-1 algorithm. The
primary concern of this description is to prove that DExIMA CAD may be used
to effectively support the design flow of a ex novo LiM system, thanks to its new
architectural exploration capabilities and to its simulation and estimation facilities.

Section 8.1 presents the main details of the SHA-1 algorithm, which are ef-
fectively used in Section 8.2 to support the architectural derivation process. All
design choices are then transferred to the DExIMA CAD implementation, which is
described in Section 8.3.

8.1 Description of the SHA-1 algorithm
The SHA-1 algorithm [6] operates on a 512-bit input message to produce a 160-bit
hash value. The elaboration progressively updates five 32-bit words H0, H1, H2,
H3 and H4, which will then form the message digest, i.e. the output hash value,
according to Equation 8.1.

Message digest = [H0, H1, H2, H3, H4] (8.1)

Prior to the elaboration phase, the 512-bit input block is initially organised as
a set of sixteen 32-bit words W [i], i = 0, 1, ..., 15. Furthermore, the 32-bit mes-
sage digest components H0, H1, H2, H3 and H4 are initialised as indicated in the
following:

• H0 ← 0x67452301;

• H1 ← 0xEFCDAB89;

• H2 ← 0x98BADCFE;

133

8 – SHA-1 in DExIMA CAD

• H3 ← 0x10325476;

• H4 ← 0xC3D2E1F0.

The computational section of the algorithm consists of the sequence of operations
presented in Algorithm 1, which will be detailed in the following.

Algorithm 1 Pseudo-code of the SHA-1 algorithm.
1: i← 16
2: while i < 80 do
3: W [i] = rotateLeft(W [i− 3]⊕W [i− 8]⊕W [i− 14]⊕W [i− 16], 1)
4: i← i + 1
5: end while
6:
7: A = H0, B = H1, C = H2, D = H3, E = H4
8:
9: i← 0

10: while i < 80 do
11: TEMP← rotateLeft(A, 5) + roundFunction(B, C, D, i) + E + K(i) + W [i]
12: E← D
13: D← C
14: C← rotateLeft(B, 30)
15: B← A
16: A← TEMP
17: i← i + 1
18: end while
19:
20: H0 ← H0 + A, H1 ← H1 + B, H2 ← H2 + C, H3 ← H3 + D, H4 ← H4 + E

Initially, the algorithm generates an additional set of 64 32-bit words W [i], i =
16, 17, ..., 79, which are derived from the input message by means of simple bit-
wise XOR and circular left shift operations (lines 1 to 5 in Algorithm 1). As a
consequence, the subsequent elaboration phases will operate on a set of 80 32-bit
words W [i], i = 0, 1, ..., 79.

When the 80-element array is successfully initialised, the current content of the
32-bit words H0, H1, H2, H3 and H4 is transferred to the temporary buffers A, B,
C, D and E (line 7 in Algorithm 1). At this point, the content of the temporary
buffers is progressively updated for a total of 80 computational rounds (lines 10
to 18 in Algorithm 1). Eventually, the temporary buffers are used to update the
message digest (line 20 in Algorithm 1).

During the main 80 computational rounds, a temporary buffer TEMP is used to
accumulate several input quantities. Besides the currently processed 32-bit word

134

8.2 – Derivation of the LiM architecture

W [i], the contributions to this accumulation derive from a round-dependent con-
stant K(i) and from the temporary buffers A, B, C, D and E. More specifically,
E is accumulated as is, A undergoes a prior 5-position circular left shift, while B,
C and D are applied a round-dependent function roundFunction(B, C, D, i). The
round-dependent quantities are detailed in Table 8.1.

Round K(i) roundFunction(B, C, D, i)

0 ≤ i ≤ 19 0x5A827999 (B · C)⊕ (B̄ ·D)
20 ≤ i ≤ 39 0x6ED9EBA1 B⊕ C⊕D
40 ≤ i ≤ 59 0x8F1BBCDC (B · C)⊕ (B ·D)⊕ (C ·D)
60 ≤ i ≤ 79 0xCA62C1D6 B⊕ C⊕D

Table 8.1: Round-dependent quantities in the SHA-1 algorithm.

8.2 Derivation of the LiM architecture
The details of the SHA-1 algorithm, thoroughly presented in Section 8.1, may be
used to support the derivation of a LiM architecture that strives to reduce as much
as possible the execution time by allocating a proper number of hardware resources.

Given the overall structure of Algorithm 1, the to-be-designed LiM array should
consist of 32-bit columns and at least 80 rows, one for each 32-bit word W [i], i =
0, 1, ..., 79. As the first sixteen words are not actually modified during the execution
of algorithm, it is expected that the first sixteen rows in the LiM array are standard
memory rows, i.e. with storage capabilities only. On the other hand, the remaining
sixty-four rows are supposed to be endowed with computational capabilities, as line
3 in Algorithm 1 clearly shows.

Five modified memory rows must be dedicated to the message digest compo-
nents H0, H1, H2, H3 and H4. To support the accumulation operation (line 20 in
Algorithm 1), the memory cells in these rows are expected to integrate some pro-
cessing capabilities. For these rows, the IRL blocks allocate a register to store the
corresponding temporary buffer (A for H0, B for H1, C for H2, D for H3 and E for
H4).

Lastly, four standard memory rows are required by the LiM array to store the
found round constants K0−19, K20−39, K40−59 and K60−79. The resulting number
of rows would be 89, which is not a power-of-2 quantity, hence the LiM array is
extended to 128 rows. The geometry of the LiM array is thus 128 rows by 32
columns, leading to an array size of 512 bytes. The resulting structure and its
memory map is summarised in Figure 8.1.

For each of the 64 words W [i], i = 16, 17, ..., 79, the corresponding memory
cells allocate three XOR gates and four vertical interconnections to combine the

135

8 – SHA-1 in DExIMA CAD

W [0] to W [15]

W [16] to W [79]

H0 / A

H1 / B

H2 / C

H3 / D

H4 / E
K0−19

K20−39

K40−59

K60−79

Standard
memory

rows

0

15
16

79
80
81
82
83
84
85
86
87
88
89

127

Figure 8.1: LiM SHA-1 architecture: structure of the LiM array.

quantities W [i−3], W [i−8], W [i−14] and W [i−16]. The result of this combination
is transferred to the associated IRL block, which computes the circular left shift
and feed its output back to its above memory row. For rows 16 to 79, the structure
of the LiM cells and of the IRL blocks is reported in Figure 8.2 and in Figure 8.3,
respectively.

136

8.2 – Derivation of the LiM architecture

Mem
0

1

BL[j]IRL0[i][j] S0[i]

OC[i-3][j]

OC[i-8][j]

OC[i-14][j]

OC[i-16][j]

OC[i][j]

LiM0[i][j]

Figure 8.2: LiM SHA-1 architecture: LiM cells for rows 16 to 79.

CircularLeftShift
@ nshift = 1

LiM0[i][31:0]

IRL0[i][31:0]

Figure 8.3: LiM SHA-1 architecture: IRL blocks for rows 16 to 79.

The content of the temporary buffers A, B, C, D and E is made available to the
LiM array by means of the IRL0 template output. It follows that, to update the
message digest components (line 20 in Algorithm 1), their corresponding memory
cells must integrate:

• a Full-Adder (FA) and a LSB-toMSB horizontal interconnection, creating an
in-row adder;

• a vertical interconnection to fetch the related temporary buffer.

137

8 – SHA-1 in DExIMA CAD

The resulting structure of this cells is reported in Figure 8.4.

Mem
0

1

FA

BL[j] S0[i]

IRL0[i][j]

Figure 8.4: LiM SHA-1 architecture: LiM cells for rows 80 to 84.

Lines 12 to 15 in Algorithm 1 create a data movement pattern which shifts
the content of the B, C, D and E temporary buffers. In DExIMA CAD, this
pattern is readily implemented by allocating a proper vertical interconnection in
the associated IRL blocks. The content of temporary buffer B is routed to a circular
left shift component, whose output is then forwarded to temporary buffer C by
means of the IRL1 template output and a vertical interconnection. The resulting
structure of these IRL blocks is reported in Figure 8.5.

Figure 8.6 reports the structure of IRL block which implements lines 11 and 16
in Algorithm 1. An accumulation unit, i.e. an adder and a register, is deployed
to progressively update the content of the TEMP buffer. Given the data layout
enforced by the LiM array structure presented in Figure 8.1, this IRL block must
be fed by the following set of vertical interconnections:

• OC[85], OC[86], OC[87] and OC[88] are the input interconnection pins of
Row-to-IRL interconnections, fetching the round constants K0−19, K20−39,
K40−59 and K60−79, respectively;

• IRL0[81], IRL0[82], IRL0[83] and IRL0[84] are the input interconnection
pins of IRL-to-IRL interconnections, retrieving the content of temporary buffers
B, C, D and E, respectively.

In each computational round i, the required round constant is initially loaded in
the TEMP buffer. Then, the 32-bit word W [i] is routed to the accumulation unit
by means of an Out-Of-Memory component, namely a memory rows multiplexer,

138

8.2 – Derivation of the LiM architecture

RegB RegC RegD
RegE

0 1

EN

OC[i]

IRL0[i-1]

SI0[i]

SI1[i]

IRL0[i]

0 1

EN

OC[i]

IRL1[i-1]

SI0[i]

SI1[i]

IRL0[i]

0 1

EN

OC[i]

IRL0[i-1]

SI0[i]

SI1[i]

IRL0[i]

ROTL30

IRL1[i]

Figure 8.5: LiM SHA-1 architecture: IRL blocks for rows 81 to 84.

whose output is paired to the horizontal bus according to the scheme depicted in
Figure 8.7. In the subsequent computational steps, the TEMP buffer is updated
by accumulating properly transformed versions of the temporary buffers A, B, C,
D and E:

• E is summed as is;

• B, C and D are first combined in the round function unit, which consists of
the three blocks SHA1_f1, SHA1_f2 and SHA1_f3;

• A undergoes a prior 30-position left shift, which is represented by the ROTL5
block in Figure 8.6.

The three blocks SHA1_f1, SHA1_f2 and SHA1_f3 implement Equation 8.2, Equa-
tion 8.3 and Equation 8.4.

F = (B · C)⊕ (B̄ ·D) (8.2)

F = B⊕ C⊕D (8.3)

F = (B · C)⊕ (B ·D)⊕ (C ·D) (8.4)
When the accumulation is over, the content of the TEMP buffer is eventually

transferred to temporary buffer A, completing computational round i.

139

8 – SHA-1 in DExIMA CAD

+/-

0

1

Reg

TEMP

0

1

RegA

ROTL5

OC[80]

SI0

IRL0

HBUS
IRL0[84]

SHA1
f1

SHA1
f2

SHA1
f3

[SI3,SI2]

IRL0[81]

IRL0[82]

IRL0[83]

SI7
SI8

[SI5,SI4] SI6
SI1

[85][86][87][88]OC

Figure 8.6: LiM SHA-1 architecture: IRL block for row 80.

8.3 Architectural description in DExIMA CAD
All considerations presented in Section 8.2 fix the structure of all elements of the
LiM array and their interconnections. The description capabilities of DExIMA
CAD can be effectively used to implement the required LiM cells and IRL blocks
and, in turn, the structure of the complete LiM array. The results of the structural
description process are presented in Appendix B.

Uppermost architectural level Before any other task can be carried out within
DExIMA CAD, a definition of the uppermost architectural level must be provided.
In this implementation, only one LiM array is required to implement the algorithm:
to support this unique array instance, the allocation of a single micro-programmed

140

8.3 – Architectural description in DExIMA CAD

MEM

HBUS

LiM array ADDR

Figure 8.7: LiM SHA-1 architecture: use of an Out-Of-Memory memory rows
multiplexer to route W [i] to the accumulation unit.

control unit and a single micro-ROM may suffice. Furthermore, a wordline mul-
tiplexer must be allocated to manage the internal control provided by the micro-
programmed control unit and the external control provided by the UVM testbench.
Moreover, a memory rows multiplexer must be instantiated in the uppermost level,
so that the required 32-bit word W [i] can be fetched in computational round i and
dispatched to the accumulation unit. Ultimately, the uppermost architectural level
is reported in Figure 8.8.

Nano-instructions When the structure of the uppermost architectural level is
defined, the nano-instructions required by the only LiM array type may be provided.

The following set of nano-instructions may successfully describe the behaviour
of all LiM cells in the design, regardless of their actual type.

• NOP: Deactivate the LiM array.

• STORE: Prepare a write operation in the selected memory row.

• InputMem_BL: Select the bitline as the write input of a selected memory row.

• InputMem_Other: Select the output of the very next IRL block as the write
input of a selected memory row.

Most of the processing in this DExIMA CAD implementation takes place in
the A, B, C, D and E buffers, which are allocated in IRL blocks 80, 81, 82, 83
and 84, respectively. To control this section of the LiM array, the following set of
nano-instructions is defined.

• Buffers_Enable: Write to the selected temporary buffer.

• Buffers_InputTransfer: Select the message digest component as the write
input of the selected temporary buffer.

141

8 – SHA-1 in DExIMA CAD

BL

S0
S1
SI0
SI1
SI2
SI3
SI4
SI5
SI6
SI7
SI8

WL

MEM

WL
S0
S1

SI0
SI1
SI2
SI3
SI4
SI5
SI6
SI7
SI8

queueIN

queueWen

LiMActivate

uROM_Address

uIreg

0

1

ENWL

ROM

BL

HBUS

packed

multiplexed
addr

ADDR

LiM
array

Memory
interface

MemoryRowsMux

Figure 8.8: LiM SHA-1 architecture: uppermost architectural level. Although not
explicitly indicated, the LiM array and the memory interface are driven by the
same clock and reset signals.

• Block_00: Select the round constant and the round function for computational
rounds 0 ≤ i ≤ 19.

• Block_01: Select the round constant and the round function for computational
rounds 20 ≤ i ≤ 39.

• Block_10: Select the round constant and the round function for computational
rounds 40 ≤ i ≤ 59.

• Block_11: Select the round constant and the round function for computational
rounds 60 ≤ i ≤ 79.

• TEMP_EN: Write to the TEMP buffer.

• TEMP_LOAD: Select the round constant as the write input of the TEMP buffer.

• TEMP_ACC: Select the output of the accumulation adder as the write input of
the TEMP buffer.

142

8.3 – Architectural description in DExIMA CAD

• OPR1: Accumulate W [i].

• OPR2: Accumulate E.

• OPR3: Accumulate roundFunction(B, C, D, i).

• OPR4: Accumulate rotateLeft(A, 5).

It should be noted that, in the above list, the first two nano-instructions refer
to all the previously mentioned IRL blocks, while all others are specific to the IRL
block for buffer A, in which the TEMP buffer is progressively updated.

Simulation dashboard The presented set of nano-instructions is sufficient to
completely specify the behaviour of the LiM array in any computational cycle. The
simulation dashboard may be thus used to indicate, for each algorithm step, both
the internal control and the values of the active pins, which are BL, EN, WL and
ADDR. In the following, unless not otherwise specified, all active pins are kept to
their default value (i.e. 0).

Lines 1 to 5 in Algorithm 1 correspond to the following set of algorithm steps
in the simulation dashboard.

STORE+InputMem_Other,RANGE:16:18
STORE+InputMem_Other,RANGE:19:21
STORE+InputMem_Other,RANGE:22:24
STORE+InputMem_Other,RANGE:25:27
STORE+InputMem_Other,RANGE:28:30
STORE+InputMem_Other,RANGE:31:33
STORE+InputMem_Other,RANGE:34:36
STORE+InputMem_Other,RANGE:37:39
STORE+InputMem_Other,RANGE:40:42
STORE+InputMem_Other,RANGE:43:45
STORE+InputMem_Other,RANGE:46:48
STORE+InputMem_Other,RANGE:49:51
STORE+InputMem_Other,RANGE:52:54
STORE+InputMem_Other,RANGE:55:57
STORE+InputMem_Other,RANGE:58:60
STORE+InputMem_Other,RANGE:61:63
STORE+InputMem_Other,RANGE:64:66
STORE+InputMem_Other,RANGE:67:69
STORE+InputMem_Other,RANGE:70:72
STORE+InputMem_Other,RANGE:73:75
STORE+InputMem_Other,RANGE:76:78
STORE+InputMem_Other,SINGLE:79

Line 7 in Algorithm 1 corresponds to the following algorithm step.

143

8 – SHA-1 in DExIMA CAD

Buffers_Enable+Buffers_InputTransfer,RANGE:80:84

Because of its naturally sequential nature, the TEMP accumulation operation
(line 11 in Algorithm 1) is actually implemented by the a set of algorithm steps. For
the first twenty computational round (i.e. 0 ≤ i ≤ 19), the following description is
found in the simulation dashboard.

Block_00+TEMP_EN+TEMP_LOAD,SINGLE:80
TEMP_EN+TEMP_ACC+OPR1,SINGLE:80
TEMP_EN+TEMP_ACC+OPR2,SINGLE:80
Block_00+TEMP_EN+TEMP_ACC+OPR3,SINGLE:80
TEMP_EN+TEMP_ACC+OPR4,SINGLE:80
Buffers_Enable+Buffers_InputUpdate,RANGE:80:84

Evidently, the Block_00 nano-instruction must be changed depending on the
20-round computational block, i.e. Block_01 for 20 ≤ i ≤ 39, Block_10 for
40 ≤ i ≤ 59 and Block_11 for 60 ≤ i ≤ 79. Moreover, it is important to
point out that in the algorithm step which accumulates the 32-bit word W [i],
i.e. TEMP_EN+TEMP_ACC+OPR1,SINGLE:80, a proper value of the active ADDR must
be set, so that the memory rows multiplexer may be properly driven to fetch the
desired memory row.

Lastly, the update of all message digest components, i.e. line 20 in Algorithm 1,
may be implemented by means of the following algorithm step.

STORE+InputMem_Other,RANGE:80:84

144

Chapter 9

AES-128 in DExIMA CAD

This chapter describes the DExIMA CAD implementation of a Logic-in-Memory
(LiM) architecture supporting the execution of the Advanced Encryption Standard
(AES) algorithm, with the primary concern of showing the new architectural ex-
ploration capabilities of DExIMA CAD.

Section 9.1 presents the main motivations behind the choice of such algorithm,
the details of which are thoroughly discussed in Section 9.2. The Algorithm-to-
Architecture mapping phase is reported in Section 9.3, while Section 9.4 deals with
the architectural description process in DExIMA CAD.

9.1 Introduction and motivations
The Advanced Encryption Standard (AES) algorithm [4] is a widely encryption
algorithm. While its details are thoroughly presented in Section 9.3, it is impor-
tant to point out that, besides a cipher, a full AES encryption requires a set of
keys, customarily referred to as ”round keys“, which are derived from an input
key by means of the AES key schedule algorithm. As a consequence, a hardware
implementation of the AES encryption requires to manage two algorithms at once,
namely the cipher and the key schedule.

From the point of view of an in-memory implementation, the AES algorithm is
expected to be rather promising, as both the cipher and the key schedule algorithms
consist of simple operations, which can be efficiently carried out with basic logic
gates, look-up tables and proper interconnection patterns. As a matter of fact,
some examples of in-memory AES implementations can be found in the scientific
literature: for instance, in [7] the authors presented a modified memory architecture
which supports the execution of the AES cipher.

As regards the parallelisation possibilities, it should be stressed that the AES
cipher algorithm is particularly devoid of any data dependency, implying that all
its steps may be executed in parallel, provided that the required hardware resources

145

9 – AES-128 in DExIMA CAD

are allocated, leading to a potential speedup in the execution time. On the other
hand, the AES key schedule shows some data dependencies, which partially reduce
the benefits of parallelisation and unfolding: this is not regarded as a limitation, but
rather as a further proof of the flexibility of DExIMA CAD, as it goes to show that
a tool specifically conceived with the purpose of parallelising in-memory solutions
can implement serial algorithms as well.

The ultimate target of this DExIMA CAD implementation is a LiM architecture
supporting a parallel in-memory execution of the AES encryption, derived from the
details presented in [4], with some assumptions driving the design flow:

1. the Algorithm-to-Architecture mapping phase is expected to produce an ASIC-
like structure, meaning that no prior general-purpose LiM system is modified
to support the execution of the required algorithm;

2. the memory array should be as compact as possible, hence a limited memory
usage should be enforced in the derivation of its structure.

Several reasons lie behind the above assumptions. Firstly, the ASIC approach
should better highlight how DExIMA CAD may be used to describe an ex novo
LiM architecture. Secondly, limiting memory usage prevents a full expansion of
the input key in favour of a on-the-fly computation of the required round key, and
is thus foreseen to limit the complexity of the interconnection patterns within the
LiM array.

It would be beneficial for the purposes of this work to address several solutions
for the implementation of the AES algorithm, so to prove the new architectural
exploration capabilities of DExIMA CAD.

Given the above premises, the actual performances of the to-be-designed LiM
system are not crucial: several optimisations, e.g. pipelining et cetera, may be
applied at a later stage, but the current goal is to show the structural description
capabilities of the tool.

9.2 Description of the AES-128 algorithm

9.2.1 Introduction, notation and encryption algorithm
The Advanced Encryption Standard (AES) algorithm ciphers a fixed-size input
text to produce an encrypted fixed-size output text, which are usually referred to
as ”plaintext“ and ”ciphertext“, respectively. The plaintext is a 16-byte sequence
b0, b1, ..., b15 which represents the initialisation values of a 4-row, 4-column byte
matrix, that is customarily referred to as ”state“ and may be also seen as a 4-
element array of 4-byte columns Al, with l = 0, 1, 2, 3, as presented in Figure 9.1.

146

9.2 – Description of the AES-128 algorithm

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

State S
S = [aij] = [A0 A1 A2 A3]

A0 A1 A2 A3

Figure 9.1: Representation of the plaintext and the state in the Advanced Encryp-
tion Standard (AES) algorithm.

The encryption process, which applies several operations to progressively trans-
form the state, is accomplished by means of an input key, whose length is deter-
mined by the actual variant of the algorithm, i.e. AES-128, AES-192 and AES-256.
Besides a variable key length, these variants differ by the number of computational
rounds required by the cipher to complete. Before presenting the actual features of
the AES variants, some preliminary definitions are required.

Let Nb be the block size, i.e. the length of the plaintext, expressed in number of
32-bit words, Nk be the size of the key, expressed in number of 32-bit words, and
Nr be the number of rounds required by the cipher. The values of these parameters
are summarised in Table 9.1.

Algorithm Key length Nk Block size Nb Number of rounds Nr

AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

Table 9.1: Parameters of the Advanced Encryption Standard (AES) variants.

For the purposes of showing the capabilities of DExIMA CAD, the AES-128 vari-
ant has been selected, implying that the input key is a 16-byte sequence k0, k1, ..., k15
which can be conceived as:

• a 4-row, 4-column byte matrix of elements kij;

• a 4-element array of 4-byte columns Kl, with l = 0, 1, 2, 3.

To complete the encryption process, the cipher requires a total of Nr 16-byte

147

9 – AES-128 in DExIMA CAD

round keys, one for each of the Nr computational rounds, which are inferred from
the initial key by means of a specific algorithm. Let

K = [kij] = [K0 K1 K2 K3]
be the initial 16-byte key, r be the computational round and

K(r) =
[︂
k

(r)
ij

]︂
=

[︂
K

(r)
0 K

(r)
1 K

(r)
2 K

(r)
3

]︂
be the 16-byte round key in round r: the representation of these quantities is

presented in Figure 9.2.

k00 k01 k02 k03

k10 k11 k12 k13

k20 k21 k22 k23

k30 k31 k32 k33

Input key K

k
(r)
00 k

(r)
01 k

(r)
02 k

(r)
03

k
(r)
10 k

(r)
11 k

(r)
12 k

(r)
13

k
(r)
20 k

(r)
21 k

(r)
22 k

(r)
23

k
(r)
30 k

(r)
31 k

(r)
32 k

(r)
33

Round key K(r)

K0 K1 K2 K3 K
(r)
0 K

(r)
1 K

(r)
2 K

(r)
3

Figure 9.2: Representation of the input key and of the round keys in the Advanced
Encryption Standard (AES) algorithm, AES-128 variant.

The AES key schedule algorithm produces Nb ·(Nr +1) 32-bit words W (i), which
will be used to build each round key K(r). In the AES-128 variant, the 44 32-bit
words W (i) can be related to each round key by means of Algorithm 2.

The pseudo-code of the cipher, which effectively encrypts the plaintext to pro-
duce the ciphertext, is presented in Algorithm 3.

In the AddRoundKey step, a byte-wise combination of the state aij and of the
round key k

(r)
ij is obtained by means of logical XOR operation, as reported in

Equation 9.1.

aij ← aij ⊕ k
(r)
ij (9.1)

In the SubBytes step, each state byte aij is applied a non-linear transformation
which is referred to as ”substitution box“, as presented in Equation 9.2.

aij ← SBox(aij) (9.2)
In the ShiftRows step, which is depicted in Figure 9.3, a row-dependent byte-wise

circular left shift is applied to all rows in the state, as presented in Figure 9.3.

148

9.2 – Description of the AES-128 algorithm

Algorithm 2 AES-128: using the results of the key schedule algorithm to construct
the round keys.

1: i← 0
2: while i < 44 do
3: r ← i/4
4: if i mod 4 = 0 then
5: K

(r)
0 ← W (i)

6: else if i mod 4 = 1 then
7: K

(r)
1 ← W (i)

8: else if i mod 4 = 2 then
9: K

(r)
2 ← W (i)

10: else if i mod 4 = 3 then
11: K

(r)
3 ← W (i)

12: end if
13: i← i + 1
14: end while

Algorithm 3 AES-128 cipher.
1: function cipher(Plaintext, K)
2: S ← Plaintext
3: KeyExpansion

(︂
K

)︂
4: AddRoundKey

(︂
S, K(0)

)︂
5:
6: r ← 1
7: while r ≤ 9 do
8: SubBytes

(︂
S

)︂
9: ShiftRows

(︂
S

)︂
10: MixColumns

(︂
S

)︂
11: AddRoundKey

(︂
S, K(r)

)︂
12: r ← r + 1
13: end while
14:
15: SubBytes

(︂
S

)︂
16: ShiftRows

(︂
S

)︂
17: AddRoundKey

(︂
S, K(10)

)︂
18:
19: Ciphertext← S
20: end function

149

9 – AES-128 in DExIMA CAD

• the bytes from the first row a0j are not shifted;

• the bytes from the second row a1j undergo a 1-byte circular left shift;

• the bytes from the second row a2j undergo a 2-byte circular left shift;

• the bytes from the second row a3j undergo a 3-byte circular left shift.

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

State before ShiftRows

a00 a01 a02 a03

a11 a12 a13 a10

a22 a23 a20 a21

a33 a30 a31 a32

State after ShiftRows

ShiftRows

Figure 9.3: General representation of the ShiftRows step in the Advanced Encryp-
tion Standard (AES) algorithm.

In the MixColumns step, each column of the state is processed by means of a
transformation which can be expressed in the matrix form of Equation 9.3, consid-
ering that all partial products are derived by means of Galois multiplication and
are properly summed by means of a logical bitwise XOR operation.⎡⎢⎢⎢⎣

a0j

a1j

a2j

a3j

⎤⎥⎥⎥⎦←
⎡⎢⎢⎢⎣
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
a0j

a1j

a2j

a3j

⎤⎥⎥⎥⎦ (9.3)

Given the nature of the operations in Algorithm 3, it is almost straightforward
to notice that there is no data dependency within steps AddRoundKey, SubBytes,
ShiftRows and MixColumns, implying that these operations can carried out in
parallel, i.e. by transforming all state bytes aij at once, if proper resources allocation
choices are made.

9.2.2 Key schedule algorithm
In the AES-128 variant, the key schedule algorithm presented in Algorithm 4 pro-
gressively transforms the input key K to produce the required round keys K(r).

The key schedule requires the 32-bit round constant

Rcon(r) = [rc(r) 0x00 0x00 0x00]

150

9.2 – Description of the AES-128 algorithm

Algorithm 4 Key schedule algorithm in AES-128.
1: function KeyExpansion(K)
2: W (0) ← K0
3: W (1) ← K1
4: W (2) ← K2
5: W (3) ← K3
6:
7: i← 4
8: while i < 44 do
9: TEMP← W (i−1)

10: if i mod 4 = 0 then
11: TEMP← SubWord(RotWord(TEMP)) ⊕ Rcon(i/4)

12: end if
13: W (i) ← W (i−4) ⊕ TEMP
14: i← i + 1
15: end while
16: end function

where the quantity rc(r) is the least-significant byte and is computed according
to the recursive definition of Equation 9.4, which, in the case of AES-128, where
r = 0, 1, ..., 10, leads to the values presented in Table 9.2.

rc(r) =

⎧⎪⎪⎨⎪⎪⎩
0x01, r = 1
2 · rc(r−1), r > 1 and rc(r−1) < 0x80
2 · rc(r−1) ⊕ 0x11B, r > 1 and rc(r−1) ≥ 0x80

(9.4)

r 1 2 3 4 5 6 7 8 9 10
rc(r) 01 02 04 08 10 20 40 80 1B 36

Table 9.2: Values of rc(r) in AES-128.

Besides the round constants Rcon(r), the key schedule algorithm requires two
additional operations, namely RotWord and SubWord, which transform a 4-byte
input column: the former (Equation 9.5) is a byte-wise circular left shift, while the
latter (Equation 9.6) applies the substitution box to each byte.

RotWord ([B0 B1 B2 B3]) = [B1 B2 B3 B0] (9.5)

SubWord ([Bi]) = [SBox(Bi)] (9.6)

151

9 – AES-128 in DExIMA CAD

9.3 Derivation of the LiM architecture
An in-memory implementation of the AES-128 encryption phase requires the si-
multaneous handling of both the cipher and the key schedule procedures. Given
the fact that two different algorithms must be implemented, it seems reasonable to
partition the design in two main sections.

The first section, hereinafter referred to as ”state section“, consists of sixteen
byte-wide rows and is devoted to store the sixteen state bytes aij and to manipu-
late them in the AddRoundKey, SubBytes, ShiftRows and MixColumns steps, as
specified by Algorithm 3.

The second section, hereinafter referred to as ”key section“, consists of sixteen
byte-wide rows and is conceived to compute and store the round constants K(r), by
providing an hardware implementation of Algorithm 4. It is important to point out
that the key section does not compute the least-significant byte rc(r) of the round
constant Rcon(r).

A general representation of the sections is presented in Figure 9.4. In either
section, the processing capabilities evidently derive from the allocation of specific
resources in both the LiM cells and the IRL blocks.

Column A0
(4 bytes)

Column A1
(4 bytes)

Column A2
(4 bytes)

Column A3
(4 bytes)

State section

Column K
(r)
0

(4 bytes)

Column K
(r)
1

(4 bytes)

Column K
(r)
2

(4 bytes)

Column K
(r)
3

(4 bytes)

Key section

0

4

8

12

0

4

8

12

Figure 9.4: LiM AES architecture: general representation of the state and the key
sections. The notation presented in Section 9.2 is used to indicate the content of
the two sections.

Regarding the overall structure of the complete LiM system, the new architec-
tural exploration capabilities of DExIMA CAD allow two different solutions:

• a single LiM array can contain both the state and the key sections;

• two separate LiM arrays may be allocated, one for the state section and one
for the key section.

152

9.3 – Derivation of the LiM architecture

Given the mentioned limitation of the key section, a component must be al-
located, somewhere in the LiM system, to provide the computation of the round
constant. As a matter of fact, two solutions are possible: the required resources
may be created either within or outside the LiM array.

As a consequence, the section partitioning assumption leads to at least four
different architectures which may implement the required algorithm. For the pur-
poses of this study, the considered solutions are summarised in Table 9.3, while
their representation is reported in Figure 9.5.

Identifier Number of LiM arrays Computation of rc(r)

StateRoundKey1 1 In-Memory
StateKey1 1 Out-Of-Memory
State1Key1 2 Out-Of-Memory

Table 9.3: LiM AES architecture: summary of the considered architectural-level
solutions.

StateRoundKey1 StateKey1 State1Key1

rc(r)

rc(r)

rc(r)

State section State section State section

Key section

Key section
Key section

Figure 9.5: LiM AES architecture: representation of the considered architectural-
level solutions.

The actual architectural solution does not influence the overall structure of all
LiM cells and IRL blocks in each section, but slight differences may be found in
the interconnections pattern.

153

9 – AES-128 in DExIMA CAD

In the StateRoundKey1 solution, one LiM array is allocated which contains the
state section, the key section and additional resources for the computation of rc(r):
as it will be described later, such resources consist of a standard memory row and
a LiM memory row. A first set of intra-array interconnections connects the round
constant LiM row to the key section, enabling the implementation of Algorithm 4,
while a second set of intra-array interconnections routes all round key bytes to the
corresponding state bytes.

In the StateKey1 solution, the LiM array contains only the state and the key
sections, while the round constant computation resources are allocated outside the
memory array and their output is fed to the key section by means of the horizontal
bus presented in Chapter 3. Furthermore, one set of intra-array interconnections is
required for the AddRoundKey step, linking each state byte with its corresponding
round key byte.

In the State1Key1 solution, two separate LiM arrays are allocated, one for the
state section and one for the key section, which communicate with each other with
a set of inter-array interconnections. In this solution, the round constant is routed
to the key array via the horizontal bus.

9.3.1 State section
AddRoundKey step To enable the fully-parallel execution of the AddRound-
Key step, each memory cell of the state section should integrate:

• a XOR gate to implement Equation 9.1;

• a proper interconnection to fetch the corresponding round key byte.

As previously mentioned, the actual interconnection type depends on the specific
architectural solution.

SubBytes step According to [4], the SubBytes step would require two separate
operations, namely the computation of a multiplicative inverse and an affine trans-
formation: the latter is linear and may be implemented by a proper signal routing
scheme and few logic gates, but the former requires a more refined algorithm. As a
consequence, to prevent an undesired performance loss, a typical approach in most
hardware implementations [7] is to deploy a 8-bit Look-Up Table (LUT). Hence, a
fully-parallel execution of the SubBytes step may be achieved if each state byte is
associated a IRL block which contains a SBox LUT.

ShiftRows step Since it involves basic byte-wise circular shifts, the ShiftRows
step can be easily integrated in the LiM architecture by means of array inter-
connections. Furthermore, because Algorithm 3 is virtually devoid of any data

154

9.3 – Derivation of the LiM architecture

dependency, this operation can be scheduled in the same computational cycle of
the SubBytes step. More specifically:

1. each state byte is transferred to its associated IRL block for the computation
of SBox transformation;

2. to implement the shifts required by the ShiftRows step, the results of the above
processing are routed in the state section by means of the interconnection
scheme presented in Figure 9.6.

a00
a10
a20
a30
a01
a11
a21
a31
a02
a12
a22
a32
a03
a13
a23
a33

a00
a10
a20
a30
a01
a11
a21
a31
a02
a12
a22
a32
a03
a13
a23
a33

a00
a10
a20
a30
a01
a11
a21
a31
a02
a12
a22
a32
a03
a13
a23
a33

Figure 9.6: LiM AES architecture: implementation of the SubBytes and the
ShiftRows steps. The four different colours group together the bytes belonging
to the same row. For all array interconnections, the source is a IRL block, with
source pin IRL0, while the destination is a memory row.

Taxonomy of state cells Because of the interconnection pattern presented in
Figure 9.6, multiple types of LiM cells must be allocated in the state section, each in-
tegrating different vertical interconnections. The type of state cell may be uniquely
identified by the row index and by the vertical interconnection it implements. In
this context, an ”upward cell“ integrates a vertical interconnection with direction
Next, implementing the upward connections of Figure 9.6. Similarly, a ”downward
cell“ includes a vertical interconnection with direction Previous, implementing the

155

9 – AES-128 in DExIMA CAD

downward connections of Figure 9.6. The types of memory cells in the state section,
and the interconnection they implement, are summarised in Table 9.4.

Upward cells Downward cells
Direction Displacement Type Direction Displacement Type

Row 1 Next 5 R1_U Previous 12 R1_D
Row 2 Next 9 R2_U Previous 8 R2_D
Row 3 Next 13 R3_U Previous 4 R3_D

Table 9.4: LiM AES architecture: types of memory cells in the state section.

Besides the six state cell types of Table 9.4, the state section requires a further
type, cell_R0, for the four state bytes belonging to the first row, which do not
require any shift.

MixColumns step To implement the MixColumns step, each IRL block of the
state section embeds a dedicated component which combines its four inputs IN0_1,
IN1_1, IN2_2 and IN3_3 according to Equation 9.7, where multiplication is indeed
Galois multiplication.

MIXED = IN0_1⊕ IN1_1⊕ 2 · IN2_2⊕ 3 · IN3_3 (9.7)
As all matrix rows in Equation 9.3 are different from one another, to properly

feed all AES_MixColumns blocks, a proper interconnection pattern must be allo-
cated, as presented in Figure 9.7.

Equation 9.7 may be further simplified by exploiting a property of Galois mul-
tiplication, which ultimately leads to Equation 9.8.

MIXED = IN0_1⊕ IN1_1⊕ 2 · IN2_2⊕ (2 · IN3_3⊕ IN3_3) (9.8)
Equation 9.8 clearly shows that, besides four elementary byte-wide XOR gates,

a AES_MixColumns instance must compute two Galois multiplications. This type
of operation may be supported by a look-up table, but a very simple hardware
implementation may be achieved if the actual algorithm is considered. In essence,
Galois multiplication by 2 is a left-shift operation, but the shifted byte must undergo
a XOR operation with constant 0x1B if the MSB of the input quantity is set. In
practice, the structure presented in Figure 9.8 may implement the desired behaviour
with a rather limited set of logic gates.

LiM cells and IRL blocks The overall structure of all cell types in the state sec-
tion is presented in Figure 9.9. Regardless of the type, all cells include a XOR gate
for the in-memory implementation of the AddRoundKey step, a four-way multi-
plexer to help schedule the computational tasks and a set of three interconnections.

156

9.3 – Derivation of the LiM architecture

2 3 1 1

Row 0 in column j (Type 1)
b0j = 2a0j ⊕ 3a1j ⊕ a2j ⊕ a3j

1 2 3 1

Row 1 in column j (Type 2)
b1j = a0j ⊕ 2a1j ⊕ 3a2j ⊕ a3j

1 1 2 3

Row 2 in column j (Type 3)
b2j = a0j ⊕ a1j ⊕ 2a2j ⊕ 3a3j

3 1 1 2

Row 3 in column j (Type 4)
b3j = 3a0j ⊕ a1j ⊕ a2j ⊕ 2a3j

a0j

a1j

a2j

a3j

a0j

a1j

a2j

a3j

a0j

a1j

a2j

a3j

a0j

a1j

a2j

a3j

Figure 9.7: Implementation of the MixColumns step in the LiM architecture for
the Advanced Encryption Standard (AES) algorithm. The source and the destina-
tion of each vertical interconnection are indicated by a dot and by an arrow tip,
respectively. Each number represents the amount by which each source must be
multiplied in the IRL sections.

The structure of all IRL blocks in the state section is reported in Figure 9.10.
Each block includes a look-up table for the SubBytes step and a AES_MixColumns
instance for the MixColumns step.

Assuming that the four-way multiplexer of Figure 9.9 is implemented by means
of three two-way multiplexers, the overall complexity of the section is summarised

157

9 – AES-128 in DExIMA CAD

IN[0]IN[1]IN[2]IN[3]IN[4]IN[5]IN[6]IN[7]

000 111

OUT[1]OUT[3]OUT[4] OUT[2]OUT[5]OUT[6]OUT[7] OUT[0]

Figure 9.8: LiM AES architecture: internal structure of the AES_GalMult2 compo-
nent, which computes the Galois multiplication by 2 of an input byte.

in Table 9.5.

Component type Number of instances
XOR2 16
MUX21 48
AES_LUT_SBox 16
AES_MixColumns 16

Table 9.5: LiM AES architecture: complexity of the state section.

9.3.2 Key section
To derive the structure of the memory cells and of the IRL blocks in the key section
the AES key schedule algorithm (Algorithm 4) and the relation between W (i) and
the columns in K(r) (Algorithm 2) should be combined in a hardware-like pseudo-
code, as the one reported in Algorithm 5.

Lines 9, 10, 11 and 12 in Algorithm 5 are characterised by Read-After-Write
data dependencies, implying that the computation of the new round key K(r) from
the previous round key K(r−1) must be done sequentially, i.e. one column at a time.

158

9.3 – Derivation of the LiM architecture

Mem

00

01

10

11

k
(r)
ij

BL[j]

*

IRL1[i][j]

[S1[i],S0[i]]

OC[i][j]

Figure 9.9: LiM AES architecture: LiM cells in the state section. IRL1[i][j] is the
input pin of a Next-1-IRL1-to-Row interconnection, while * is a placeholder for a
further vertical interconnection pin, which is determined by the pattern presented in
Figure 9.6. Lastly, k

(r)
ij indicates a round key byte connection, which depends on the

actual architectural solution (i.e. StateRoundKey1, StateKey1 and State1Key1).

AES_LUT_SBox

OC[i][7:0]

IRL0[i][7:0]

AES_MixColumns

IRL1[i][7:0]

V0 V1 V2 V3

Figure 9.10: LiM AES architecture: IRL blocks in the state section. V0, V1, V2 and
V3 represent the interconnection input pins of the pattern presented in Figure 9.7.

The second, the third and the fourth columns (i.e. operations in lines 10, 11 and
12) simply require the allocation of a XOR gate and a set of vertical interconnec-
tions, connecting the previous column to the currenty analysed one, e.g. column
0 to column 1, column 1 to column 2 and column 2 to column 3. As a matter of
fact, all rows belonging to these columns are not associated to any IRL block, as
all operations take place in-row.

159

9 – AES-128 in DExIMA CAD

Algorithm 5 Hardware-like description of the AES-128 key schedule algorithm.
1: function KeyExpansion(K)
2: K

(0)
0 ← K0

3: K
(0)
1 ← K1

4: K
(0)
2 ← K2

5: K
(0)
3 ← K3

6:
7: r ← 1
8: while r ≥ 9 do
9: K

(r)
0 ← K

(r−1)
0 ⊕ SubWord

(︂
RotWord

(︂
K(r−1)

3

)︂)︂
⊕ Rcon(r)

10: K
(r)
1 ← K

(r−1)
1 ⊕ K

(r)
0

11: K
(r)
2 ← K

(r−1)
2 ⊕ K

(r)
1

12: K
(r)
3 ← K

(r−1)
3 ⊕ K

(r)
2

13: r ← r + 1
14: end while
15: end function

Besides the above elements, each byte of the first column requires a IRL block
with a AES_LUT_SBox instance for the computation of the SubWord step, while the
RotWord step may be handled with a proper interconnection pattern. Moreover,
for the first byte only, a further XOR operation with rc(r) must be taken.

The above considerations are better visualised in Figure 9.11, which shows all
the interconnections originating from the rows in the key section and the required
IRL blocks, while the structure of the LiM cells in the key section is presented in
Figure 9.12, in Figure 9.13 and in Figure 9.14.

Three different cell types are indeed required to describe the key section, inte-
grating the necessary operators and interconnections:

• cell_KC0R0 for the first byte in column 0 (Figure 9.12);

• cell_KC0R1R2R3 for the remaining bytes in column 0 (Figure 9.13);

• cell_KC1C2C3 for columns 1, 2 and 3 (Figure 9.14).

The overall complexity of the key section is summarised in Table 9.6.

9.3.3 Round constant computation
It has been mentioned that, besides the state and the key sections, some resources
must be allocated to compute the quantity rc(r) according to Equation 9.4. For the
first eight computational round rounds, a bit-wise shift register, properly initialized
to 0x01 before the encryption starts, may successfully provide the values of rc(r).

160

9.3 – Derivation of the LiM architecture

0

1

2

3

4
5
6
7
8
9

10
11
12
13
14
15

IRL(0)

IRL(1)

IRL(2)

IRL(3)

Column K
(r)
0

Column K
(r)
1

Column K
(r)
2

Column K
(r)
3

Row-to-IRL Row-to-Row

Figure 9.11: LiM AES architecture: interconnections pattern in the key section.
The source and the destination of each vertical interconnection are indicated by a
dot and by an arrow tip, respectively. Although not explicitly indicated, each IRL
block feeds its output to its associated memory row.

Component type Number of instances
XOR2 17
MUX21 16
AES_LUT_SBox 4

Table 9.6: LiM AES architecture: complexity of the key section.

In round r = 9, i.e. when the shifted quantity would be larger than 0x80, constant
byte 0x1B should be loaded in the shift register. In the last computational round,
i.e. r = 10, the usual shift-left operation may be applied to produce the last round
constant.

As Figure 9.5 shows, the StateRoundKey1 solution requires an in-memory shift

161

9 – AES-128 in DExIMA CAD

Mem

0

1

S0[i]

rc(r)

IRL0[i][j]

BL[j]

OC[i][j]

Figure 9.12: LiM AES architecture: LiM cells in the key section, column 0, row
0. IRL0[i][j] is the input pin of a Next-1-IRL0-to-Row vertical interconnec-
tion, while rc(r) indicates a connection from the round constant computation re-
sources, which depends on the actual architectural solution (i.e. StateRoundKey1,
StateKey1 and State1Key1).

Mem

0

1

S0[i]

IRL0[i][j]

BL[j]

OC[i][j]

Figure 9.13: LiM AES architecture: LiM cells in the key section, column 0, rows
1, 2 and 3. IRL0[i][j] is the input pin of a Next-1-IRL0-to-Row vertical inter-
connection.

register which, in this DExIMA CAD implementation, may be integrated using
the horizontal interconnections presented in Chapter 3. Nevertheless, it should be
noted that a mechanism must be devised to automatically load the constant value
0x1B in computational round r = 9, as this task is not straightforward to fulfill in

162

9.4 – Architectural description in DExIMA CAD

Mem

0

1

S0[i]

OC[i-4][j]

BL[j]

OC[i][j]

Figure 9.14: LiM AES architecture: LiM cells in the key section, columns 1, 2 and
3. OC[i-4][j] is the input pin of a Prev-4-OC-to-Row vertical interconnection

DExIMA CAD: indeed, no status signal can be fetched from the LiM architecture
by the control unit, which would not know when to force the constant byte 0x1B.
A workaround to this problem is readily found by allocating a flip-flop in close
proximity to the MSB cell, acting as a localized control element. In addition, a
dedicated standard memory row (i.e. with no processing capabilities) is created
to store the constant byte 0x1B. The structure of the in-memory shift register is
presented in Figure 9.15, for which the following considerations hold:

• a LSB-to-MSB horizontal interconnection is used to configure the memory row
as a bit-wise shift register;

• a vertical interconnection is used to fetch the constant 0x1B;

• the flip-flop output is dispatched to all the remaining cells in the row by means
of a MSB-to-LSB horizontal interconnection.

On the other hand, in the StateKey1 and the State1Key1 solutions, the quantity
rc(r) is computed externally to the memory array, thus a bit-wise shift register
may be allocated near the memory array, while the horizontal bus may be used
to dispatch the round constant byte to the key section. The structure of this
component is reported in Figure 9.16.

9.4 Architectural description in DExIMA CAD
All considerations presented in Section 9.3 define the structure of all array elements
and their mutual interconnections. DExIMA CAD can thus be deployed to imple-
ment the structure of all LiM cells and IRL blocks, eventually creating the complete

163

9 – AES-128 in DExIMA CAD

MemMemMemMem

MemMemMemMem

Column
0

Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
7

00000000

00000000

01010101

01010101

1X1X1X1X

1X1X1X1X

BL(0)BL(1)BL(2)BL(3)

BL(4)BL(5)BL(6)BL(7)

S3

FF

S4S4S4S4

S4S4S4S4

Figure 9.15: LiM AES architecture: LiM cells for the computation of the least-
significant byte rc(r) of the round constant Rcon(r), StateRoundKey1 solution. * is
a placeholder for a Fixed-16-OC-to-Row vertical interconnection, which is used to
fetch the constant byte 0x1B.

LiM array. From the structural point of view, all three architectural solutions are
rather similar: for this reason, Appendix C only reports some implementation ex-
amples for the StateRoundKey1 solution.

Array geometries In the StateRoundKey1 solution, the only byte-wide LiM
array is characterized by the following memory map:

• sixteen byte-wide rows for the state section;

• a standard memory row which stores the constant 0x1B;

164

9.4 – Architectural description in DExIMA CAD

FFFFFFFF
DDDD

QQQQ
ENENENEN

0000 1111

0

POUT[0]POUT[1]POUT[2]POUT[3]

PIN[0]PIN[1]PIN[2]PIN[3]

LD
EN

Figure 9.16: LiM AES architecture: structure of the Out-Of-Memory bit-wise shift
register. For representation purposes only, a simplified half-byte version of the
component is shown.

• an in-memory bit-wise shift register;

• sixteen byte-wide rows for the key section.

As the total number of rows is not a power-of-2 quantity, standard memory rows
after the key section extend the LiM array to 64 rows.

In the StateKey1 solution, the only byte-wide LiM array is characterized by the
following memory map:

• sixteen byte-wide rows for the state section;

• sixteen byte-wide rows for the key section.

In the StateKey1 solution, both byte-wide LiM arrays have sixteen memory
rows.

Uppermost architectural level Having determined the structure of the LiM
arrays in all three solutions, a definition of the uppermost architectural level must
be provided.

In the StateRoundKey1 solution, only one LiM is required to implement the
AES-128 algorithm. To support this unique array instance, the allocation of a
single micro-programmed control unit and a single micro-ROM may suffice. A

165

9 – AES-128 in DExIMA CAD

wordline multiplexer must be allocated to manage the internal control provided by
the micro-programmed control unit and the external control provided by the UVM
testbench. Nevertheless, no other Out-Of-Memory component is required in this
architecture. Ultimately, the uppermost architectural level for the StateRoundKey1
solutions is reported in Figure 9.17.

BL

S0
S1
S2
S3
S4

WL

MEM

WL
S0
S1
S2
S3
S4

queueIN

queueWen

LiMActivate

uROM_Address

uIreg

0

1

ENWL

ROM

BL

Figure 9.17: LiM AES architecture: uppermost architectural level for the
StateRoundKey1 solution. Although not explicitly indicated, the LiM array and
the memory interface are driven by the same clock and reset signals.

With respect to the StateRoundKey1 solution, the StateKey1 architecture re-
quires an Out-Of-Memory bit-wise shift register, while only one LiM array is allo-
cated in the uppermost architectural level. The resulting structure is reported in
Figure 9.18.

Nano-instructions Regardless of the architectural solution, the same types of
nano-instructions may be defined to control the state and the key sections.

The following set of nano-instructions may be applied to any memory cell in the
array, regardless of its type.

• NOP: No operation.

• Enable_Row: Prepare a write operation to the selected memory row.

• Input_BL: Select the bitline as the write input of a selected memory row.

All LiM cells belonging to the state section may be controlled by means of the
following set of nano-instructions.

166

9.4 – Architectural description in DExIMA CAD

BL

S0

S1

S2

WL

MEM

WL

S0

S1

S2

queueIN

queueWen

LiMActivate

uROM_Address

uIreg

0

1

ENWL

ROM

BL

HBUS

PIN

POUT

LD

EN

SR_ENSR_LD

Figure 9.18: LiM AES architecture: uppermost architectural level for the
StateKey1 solution. Although not explicitly indicated, the LiM array, the memory
interface and the shift register are driven by the same clock and reset signals.

• State_Input_AddRoundKey: Select the result of the AddRoundKey step as
the write input of a selected memory row.

• State_Input_SubBytesAndShiftRows: Select the result of the SubBytes and
the ShiftRows steps as the write input of a selected memory row.

• State_Input_MixColumns: Select the result of the MixColumns step as the
write input of a selected memory row.

All LiM cells belonging to the key section may be controlled by means of the
following set of nano-instructions.

• Key_Input_Update: Select the updated round key byte value as the write
input of a selected memory row.

The additional nano-instruction RoundConstant_Update is required by archi-
tectural solution StateRoundKey1 to enable the shift operation in the in-memory
shift register, updating the least-significant byte of the round constant.

167

9 – AES-128 in DExIMA CAD

Simulation dashboard The presented set of nano-instructions is sufficient to
completely specify the behaviour of the LiM array in any computational cycle. The
simulation dashboard may be used to indicate, for each algorithm step, the internal
control of the LiM array. In the StateRoundKey1 solution, there is no need to drive
any active pin, as all computations take place within the memory array.

All operations involving the state section are detailed in the following.

• AddRoundKey step

– Scalar control
Enable_Row
State_Input_AddRoundKey

– Activation pattern
RANGE:0:15 in the StateRoundKey1 solution
RANGE:0:15 in the StateKey1 solution
ALL in the State1Key1 solution

• SubBytes and ShiftRows steps

– Scalar control
Enable_Row
State_Input_SubBytesAndShiftRows

– Activation pattern
RANGE:0:15 in the StateRoundKey1 solution
RANGE:0:15 in the StateKey1 solution
ALL in the State1Key1 solution

• MixColumns step

– Scalar control
Enable_Row
State_Input_MixColumns

– Activation pattern
RANGE:0:15 in the StateRoundKey1 solution
RANGE:0:15 in the StateKey1 solution
ALL in the State1Key1 solution

The round key update, i.e. the management of the key section, is detailed in
the following.

• StateRoundKey1 solution

– Scalar control
Enable_Row
Key_Input_Update

168

9.4 – Architectural description in DExIMA CAD

– Activation pattern
RANGE:18:21 for the first column
RANGE:22:25 for the second column
RANGE:26:29 for the third column
RANGE:30:33 for the fourth column

• StateKey1 solution

– Scalar control
Enable_Row
Key_Input_Update

– Activation pattern
RANGE:16:19 for the first column
RANGE:20:23 for the second column
RANGE:24:27 for the third column
RANGE:28:31 for the fourth column

• State1Key1 solution

– Scalar control
Enable_Row
Key_Input_Update

– Activation pattern
RANGE:0:3 for the first column
RANGE:4:7 for the second column
RANGE:8:11 for the third column
RANGE:12:15 for the fourth column

169

170

Chapter 10

Results

The purpose of Chapter 10 is to present a set of results, which are deemed useful
to show the effectiveness of all new DExIMA CAD functionalities.

The new modules presented in Chapter 3, Chapter 4 and Chapter 5 are supposed
to largely increase the structural description and the architectural exploration ca-
pabilities of DExIMA CAD, generating a plug-and-play LiM architecture and its
associated UVM testbench. When the design flow is complete, DExIMA CAD may
generate the source code for the complete LiM system and may configure its UVM
testbench. A commercial HDL simulator, e.g. QuestaSim, may be used to simulate
the design, in a fully-automated way. In fact, the top-level analyzer is also able to
generate a specific QuestaSim simulation script, so to reduce the necessary interac-
tions with the designer. The effectiveness of the new functionalities may be shown
by verifying if the DExIMA CAD design process leads to a functionally-sound ar-
chitecture. This point is addressed in Section 10.1.

A QuestaSim simulation of the synthesized LiM architecture would not be suf-
ficient to prove the new functionalities in DExIMA CAD, as the most crucial com-
ponent in the LiM Development Toolchain is the custom estimator, i.e. DExIMA
Backend. With respect to the past version of DExIMA CAD, the array intercon-
nections module presented in Chapter 3 changes the procedure for generating the
DExIMA Backend input file. It is thus necessary to verify if DExIMA Backend pro-
duces reasonable estimates when analyzing the new .dex description. This point is
addressed in Section 10.2, in which the main figures of merit of a LiM architecture
are estimated with both DExIMA Backend and with a well-established EDA tool,
i.e. Synopsys Design Compiler.

171

10 – Results

10.1 Simulation results
The primary aim of Section 10.1 is to report the results of the complete DExIMA
CAD design flow for the LiM SHA-1 architecture presented in Chapter 8. In addi-
tion, additional remarks related to all other DExIMA CAD implementations will
be presented.

LiM SHA-1 The DExIMA CAD description of the LiM SHA-1 architecture is
synthesized, leading to the generation of the source code and the configuration of the
DExIMA-controlled UVM testbench. The produced description is then simulated
with QuestaSim and, to verify if it is functionally sound, it is important to determine
whether the produced message digest is correct. To fulfill this task, the numerical
example provided in [3] is used as a draft verification reference.

The example provided in [3] presents the values of the five temporary buffers in
all computational steps: their final values are reported in the following.

• Final value of A: 0x42541B35.

• Final value of B: 0x5738D5E1.

• Final value of C: 0x21834873.

• Final value of D: 0x681E6DF6.

• Final value of E: 0xD8FDF6AD.

As the five message digest components are initialized as indicated in Section 8.1,
their expected final values are the following.

• Final value of H0: 0x67452301 + 0x42541B35 = 0xA9993E36.

• Final value of H1: 0xEFCDAB89 + 0x5738D5E1 = 0x4706816A.

• Final value of H2: 0x98BADCFE + 0x21834873 = 0xBA3E2571.

• Final value of H3: 0x10325476 + 0x681E6DF6 = 0x7850C26C.

• Final value of H4: 0xC3D2E1F0 + 0xD8FDF6AD = 0x9CD0D89D.

To prove the correct behaviour of the LiM system, a snapshot from the Ques-
taSim simulation is reported in Figure 10.1. For representation purposes, only the
five memory rows associated to the message digest components are reported: de-
spite this simplification, it is immediate to notice a match between their expected
and simulated message digest components. It is thus possible to conclude that the
DExIMA CAD source code generation procedure is correct and that array inter-
connections are properly handled.

172

10.2 – Numerical results

{Simulation signals}

{LiM system interface}

... ... 00000000

... 00000000000000000000000000000000

0000 0000

00 ..00

{Message digest}

00000000 0000... 67452301 A9993E36

00000000 0000... EFCDAB89 4706816A

00000000 0000... 98BADCFE BA3E2571

00000000 0000... 10325476 7850C26C

00000000 0000... C3D2E1F0 9CD0D89D

0 ns 2000 ns 4000 ns 6000 ns

{Simulation signals}

CLK

RST

{LiM system interface}

BL 00000000

EN

WL ... 00000000000000000000000000000000

queueIN 0000 0000

queueWen

LiMActivate

ADDR 00 ..00

{Message digest}

H0 00000000 0000... 67452301 A9993E36

H1 00000000 0000... EFCDAB89 4706816A

H2 00000000 0000... 98BADCFE BA3E2571

H3 00000000 0000... 10325476 7850C26C

H4 00000000 0000... C3D2E1F0 9CD0D89D

Entity:uvm_pkg Architecture:fast Date: Sat Mar 11 12:04:19 CET 2023 Row: 1 Page: 1

Figure 10.1: LiM SHA-1 architecture: message digest components in the QuestaSim
simulation.

All other DExIMA CAD implementations The functional verification pro-
cedure presented in the previous paragraph has been carried out for all other DEx-
IMA CAD implementations, to verify whether the results produced by the LiM
architecture are correct: in all cases, a positive outcome has been observed.

It is thus possible to conclude that the design flow in DExIMA CAD is able
to produce functionally-sound architectures, which are ready to be simulated and
synthesized with the most common EDA tools, e.g. QuestaSim and Synopsys De-
sign Compiler. A rapid simulation of the produced design is made possible by the
algorithm description facilities and the simulation dashboard, which ease the def-
inition of the simulation-time behaviour of the complete LiM system, and by the
top-level analyzer, which carries out its analysis and synthesis tasks to generate
the design and to configure its UVM testbench. A positive simulation outcome is
an immediate proof that the structural description functionalities are able to han-
dle all different types of array interconnections, implementing the data movement
patterns required by a LiM array.

10.2 Numerical results
The introduction to Chapter 10 has indicated the need to verify if the estimates
produced by DExIMA Backend are reasonable. Before presenting the actual results,
it is important to address a few points.

The underlying component models in DExIMA Backend are currently based on

173

10 – Results

the NanGate 45 nm library. As a consequence, the synthesis process in Synopsys
Design Compiler should refer to this library as well. Since all DExIMA Backend
models discard any cell-level parasitic, a parasitic-free variant of the NanGate 45 nm
is used in the synthesis process. This approach has a major limitation: Synopsys
Design Compiler may not estimate the area occupation of the synthesized netlist.
For this reason, only the static power (Pstat), the dynamic power (Pdyn) and the
critical path (Tcp) will be involved in the comparison.

All the results presented in Section 10.2 refer only to the actual LiM arrays and
not to the complete LiM system. This scope-related choice is motivated by the
fact that most of the new DExIMA CAD capabilities derive from the array inter-
connections module, which only modifies the internal structure of a LiM array and
not that of the complete architecture. Moreover, both Synopsys Design Compiler
and DExIMA Backend will provide worst-case power consumption estimates, which
discard the actual switching activity in the LiM array.

A set of comparisons is presented in tabular form in Table 10.1, Table 10.2,
Table 10.3, Table 10.4, Table 10.5 and Table 10.6. The same numerical data are
also depicted by the radar plots presented in Figure 10.2, Figure 10.3, Figure 10.4,
Figure 10.5, Figure 10.6 and Figure 10.7.

For all presented radar plots, the left-hand side reports the estimates produced by
Synopsys Design Compiler, while the right-hand side reports the results of DExIMA
Backend: in both cases, a triangle is constructed, whose vertexes are the produced
numerical values. The area of each of two the triangles does not have a meaning
per se, but the shape and the area difference is a visual indication of how different
the estimates of DExIMA Backend are from those of Synopsys Design Compiler.

Synopsys Design Compiler DExIMA Backend Variation
Tcp 0.627 ns 0.785 ns +25.17%
Pstat 1.624 mW 3.233 mW +99.11%
Pdyn 1.518 mW 4.271 mW +181.31%

Table 10.1: LiM FIR array: comparison between the main figures of merit produced
by Synopsys Design Compiler and DExIMA Backend.

Synopsys Design Compiler DExIMA Backend Variation
Tcp 0.234 ns 0.212 ns -9.25%
Pstat 71.672 µW 95.434 µW +33.15%
Pdyn 120.938 µW 136.179 µW +12.60%

Table 10.2: LiM ones counter array: comparison between the main figures of merit
produced by Synopsys Design Compiler and DExIMA Backend.

174

10.2 – Numerical results

Synopsys Design Compiler DExIMA Backend Variation
Tcp 2.144 ns 2.769 ns +29.13%
Pstat 7.994 mW 14.481 mW +81.14%
Pdyn 13.533 mW 19.955 mW +47.45%

Table 10.3: Hybrid-SIMD array: comparison between the main figures of merit
produced by Synopsys Design Compiler and DExIMA Backend.

Synopsys Design Compiler DExIMA Backend Variation
Tcp 1.001 ns 0.775 ns -22.56%
Pstat 4.476 mW 5.187 mW +15.89%
Pdyn 8.729 mW 7.713 mW -11.63%

Table 10.4: LiM SHA-1 array: comparison between the main figures of merit pro-
duced by Synopsys Design Compiler and DExIMA Backend.

The obtained numerical results show an acceptable compatibility between the
estimates produced by Synopsys Design Compiler and by DExIMA Backend. The
latter always underestimates or overestimates the target quantities, but in most
cases the variation with respect to Synopsys Design Compiler is acceptable (e.g.
less than fifty percent in absolute value). This consideration is particularly fit to
limited-complexity LiM arrays, e.g. the LiM ones counter array or the LiM SHA-1
array, while more complex structures, e.g. the Hybrid-SIMD array, may cause larger
deviations in the power estimation process. In truth, dynamic power consumption
is almost always largely overestimated: the reason for this behaviour lies in the way
DExIMA Backend computes this quantity and is not related to the new DExIMA
CAD functionalities.

It is important to highlight that the mutual interaction between DExIMA CAD
and DExIMA Backend is quite effective in identifying the critical path in the LiM
array, even after array interconnections are integrated in the DExIMA Backend
description. In fact, among the three target quantities, the critical path Tcp is
consistently well-estimated by DExIMA Backend.

175

10 – Results

Synopsys Design Compiler DExIMA Backend Variation
Tcp 0.372 ns 0.551 ns +48.03%
Pstat 2.389 mW 2.182 mW -8.69%
Pdyn 2.177 mW 4.811 mW +121.03%

Table 10.5: LiM AES-128 array, StateRoundKey1 solution: comparison between
the main figures of merit produced by Synopsys Design Compiler and DExIMA
Backend.

Synopsys Design Compiler DExIMA Backend Variation
Tcp 0.372 ns 0.551 ns +48.03%
Pstat 2.219 mW 1.986 mW -10.49%
Pdyn 1.900 mW 3.974 mW +109.22%

Table 10.6: LiM AES-128 array, StateKey1 solution: comparison between the main
figures of merit produced by Synopsys Design Compiler and DExIMA Backend.

Tcp / ns

Pstat / mW Pdyn / mW

0.627

1.624 1.518

Synopsys Design Compiler

Tcp / ns

Pstat / mW Pdyn / mW

0.785

3.233 4.271

DExIMA Backend

Figure 10.2: Visual representation of the comparison between Synopsys Design
Compiler and DExIMA Backend for the LiM FIR array. Tcp is the critical path,
Pstat is the static power and Pdyn is the dynamic power.

176

10.2 – Numerical results

Tcp / ns

Pstat / mW Pdyn / mW

0.234

71.672 120.938

Synopsys Design Compiler

Tcp / ns

Pstat / mW Pdyn / mW

0.212

95.434 136.179

DExIMA Backend

Figure 10.3: Visual representation of the comparison between Synopsys Design
Compiler and DExIMA Backend for the LiM ones counter array. Tcp is the critical
path, Pstat is the static power and Pdyn is the dynamic power.

Tcp / ns

Pstat / mW Pdyn / mW

2.144

7.994 13.533

Synopsys Design Compiler

Tcp / ns

Pstat / mW Pdyn / mW

2.769

14.481 19.955

DExIMA Backend

Figure 10.4: Visual representation of the comparison between Synopsys Design
Compiler and DExIMA Backend for the Hybrid-SIMD array. Tcp is the critical
path, Pstat is the static power and Pdyn is the dynamic power.

177

10 – Results

Tcp / ns

Pstat / mW Pdyn / mW

1.001

4.476
8.729

Synopsys Design Compiler

Tcp / ns

Pstat / mW Pdyn / mW

0.775

5.187 7.713

DExIMA Backend

Figure 10.5: Visual representation of the comparison between Synopsys Design
Compiler and DExIMA Backend for the SHA-1 array. Tcp is the critical path, Pstat
is the static power and Pdyn is the dynamic power.

Tcp / ns

Pstat / mW Pdyn / mW

0.372

2.389
2.177

Synopsys Design Compiler

Tcp / ns

Pstat / mW Pdyn / mW

0.551

2.182 4.811

DExIMA Backend

Figure 10.6: Visual representation of the comparison between Synopsys Design
Compiler and DExIMA Backend for the LiM AES-128 array, StateRoundKey1 so-
lution. Tcp is the critical path, Pstat is the static power and Pdyn is the dynamic
power.

178

10.2 – Numerical results

Tcp / ns

Pstat / mW Pdyn / mW

0.372

2.219
1.900

Synopsys Design Compiler

Tcp / ns

Pstat / mW Pdyn / mW

0.551

1.986 3.974

DExIMA Backend

Figure 10.7: Visual representation of the comparison between Synopsys Design
Compiler and DExIMA Backend for the LiM AES-128 array, StateKey1 solution.
Tcp is the critical path, Pstat is the static power and Pdyn is the dynamic power.

179

180

Chapter 11

Conclusions and future
developments

The structural description capabilities of DExIMA CAD have been largely enriched
by the introduction of array interconnections. The implementation of arbitrary
data movement patterns is vital to the functionality of a LiM array, and array
interconnections can efficiently answer this specific need, as thoroughly proved by
all proposed implementations.

The revisited DExIMA CAD is endowed with more flexible architectural explo-
ration capabilities. With respect to its past version, it may now be used to explore
a larger variety of architectural solutions, thanks to the possibility of allocating
multiple LiM arrays and other arbitrarily-complex sub-systems. The large vari-
ability of the uppermost architectural level is supported by the top-level analyzer
with its analysis and synthesis tasks, which include, but are not limited to, the
automatic configuration of a UVM testbench and the generation of the HDL code
for the complete system. The top-level simulation dashboard and the new version
of the algorithm description module ease the simulation process and embed it in
the toolchain environment.

All presented LiM structures would have been unattainable by the previous ver-
sion of DExIMA CAD. Their implementation highlights the increased breadth of
the structural description functionalities and the architectural exploration capabil-
ities of DExIMA CAD, which has become more versatile and efficient in supporting
the implementation of different LiM systems and algorithms. For all proposed LiM
structures, the DExIMA CAD estimates are compatible with the figures of merit
produced by Synopsys Design Compiler, further proving the effectiveness of the
tool in handling a variety of LiM structures.

Lots of future developments may further increase the flexibility of DExIMA
CAD. For instance, all introduced modules have been conceived to depend as lit-
tle as possible on the GUI overlay, with the primary concern of fostering future

181

11 – Conclusions and future developments

scripting functionalities, which may automatize specific description tasks or enable
parametric performances analyses. Moreover, DExIMA CAD has been so far using
a one-dimensional memory model, in which the word length is equal to the number
of columns in the array. As a further development, a two-dimensional model may
be introduced, where the word length may be different from the number of array
columns. Such implementation is expected to move from a purely functional to a
more structural memory model, which is better suited to describe more complex
LiM arrays. Should this model be implemented, an additional dimension must be
introduced in the management of array interconnections, and the algorithm de-
scription module should be slightly revisited, in order to guarantee the required
degree of SIMD processing within the LiM array.

With the developments presented in this thesis, the revisited DExIMA CAD is
more versatile in the description of a large variety of LiM structures and in the
implementation of several algorithms. It offers a valid support to the LiM design
flow, helping the exploration of increasingly complex LiM systems.

182

Appendix A

Hybrid-SIMD architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

S5

S5

S6

S6

S7

S7

S8

S8

S9

S9

S10

S10

S11

S11

S12

S12

S13

S13

OC

OC
SHO

SHO

LiM0

LiM0

CK EN RN WR

RD

Memory_19

Figure A.1: Hybrid-SIMD architecture: DExIMA CAD implementation of the stan-
dard memory cells.

183

A – Hybrid-SIMD architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

S5

S5

S6

S6

S7

S7

S8

S8

S9

S9

S10

S10

S11

S11

S12

S12

S13

S13

OC

OC

SHO

SHO

LiM0

LiM0

CK EN RN WR

RD

Memory_19

IN0

IN1

S

O

MUX21_21PREV_1_OC_TO_ROW

PREV_1_OC_TO_ROW

IN0

IN1

S

O

MUX21_24

PREV_1_IRL1_TO_ROW

PREV_1_IRL1_TO_ROW

Figure A.2: Hybrid-SIMD architecture: DExIMA CAD implementation of the semi-
standard memory cells.

184

A – Hybrid-SIMD architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

S5

S5

S6

S6

S7

S7

S8

S8

S9

S9

S10

S10

S11

S11

S12

S12

S13

S13

OC

OC

SHO

SHO

LiM0

LiM0

IN0

IN1

S

O

MUX21_18

IN0

IN1

S

O

MUX21_19

CK EN RN WR

RD

Memory_20

IN0

IN1

O

XOR2_21

IN0

IN1

O

XOR2_22

IN0

IN1

S

O

MUX21_23

IN0

IN1

S

O

MUX21_24

IN0

IN1

S

O

MUX21_25

IN0

IN1

S

O

MUX21_26

IN0

IN1

S

O

MUX21_27 A B

C

S

CO

FA_28

IN0

IN1

S

O

MUX21_29

IN0

IN1

S

O

MUX21_35

IN0

IN1

S

O

MUX21_38

FROM_RIGHT

FROM_RIGHT

TO_LEFT

TO_LEFT

NEXT_1_IRL0_TO_ROW

NEXT_1_IRL0_TO_ROW

HBUS_int

HBUS_int

PREV_1_OC_TO_ROW

PREV_1_OC_TO_ROW

NEXT_1_OC_TO_ROW

NEXT_1_OC_TO_ROW

Figure A.3: Hybrid-SIMD architecture: DExIMA CAD implementation of the
arithmetic/logic LiM cells.

185

A – Hybrid-SIMD architecture

CLK

CLK

BL

BL

SHO

SHO

RST

RST

WL

WL

TOP

TOP

SI0

SI0

SI1

SI1

SI2

SI2

SI3

SI3

SI4

SI4

SI5

SI5

SI6

SI6

SI7

SI7

PREV_1_LIM0_TO_IRL

PREV_1_LIM0_TO_IRL

BTM

BTM

IRL0

IRL0

IRL1

IRL1

IN0

IN1

S

O

Muxnbit_18

IN0

IN1

S

O

Muxnbit_19

IN0

IN1

S

O

Muxnbit_20

IN0

IN1

S

O

Muxnbit_21

IN0

IN1

S

O

Muxnbit_22

A B

O

Multiplier_23

x

CK

EN

R

D

Q

Reg_24

Register

CK

EN

R

D

Q

Reg_25

Register
IN0

IN1

S

O

Muxnbit_26

HBUS_int_IRL

HBUS_int_IRL

PREV_2_OC_TO_IRL

PREV_2_OC_TO_IRL

NEXT_1_OC_TO_IRL

NEXT_1_OC_TO_IRL

IN0

IN1

S

O

Muxnbit_30

Figure A.4: Hybrid-SIMD architecture: DExIMA CAD implementation of the IRL
blocks.

186

Appendix B

LiM SHA-1 architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

OC

OC

SHO

SHO

LiM0

LiM0

CK EN RN WR

RD

Memory_14

Figure B.1: LiM SHA-1 architecture: DExIMA CAD implementation of the LiM
cells for rows 0 to 15.

187

B – LiM SHA-1 architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

OC

OC

SHO

SHO

LiM0

LiM0

CK EN RN WR

RD

Memory_14

IN0

IN1

S

O

MUX21_11

NEXT_1_IRL0_TO_ROW

NEXT_1_IRL0_TO_ROW

IN0

IN1

O

XOR2_13

IN0

IN1

O

XOR2_14

IN0

IN1

O

XOR2_15

PREV_3_OC_TO_ROW

PREV_3_OC_TO_ROW

PREV_8_OC_TO_ROW

PREV_8_OC_TO_ROW

PREV_14_OC_TO_ROW

PREV_14_OC_TO_ROW

PREV_16_OC_TO_ROW

PREV_16_OC_TO_ROW

Figure B.2: LiM SHA-1 architecture: DExIMA CAD implementation of the LiM
cells for rows 16 to 79.

188

B – LiM SHA-1 architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

OC

OC

SHO

SHO

LiM0

LiM0

CK EN RN WR

RD

Memory_14

IN0

IN1

S

O

MUX21_15

A B

C

S

CO

FA_16 FROM_RIGHT

FROM_RIGHT

TO_LEFT

TO_LEFT

NEXT_1_IRL0_TO_ROW

NEXT_1_IRL0_TO_ROW

Figure B.3: LiM SHA-1 architecture: DExIMA CAD implementation of the LiM
cells for rows 80 to 84.

189

B – LiM SHA-1 architecture

CLK

CLK

BL

BL

SHO

SHO

RST

RST

WL

WL

OC

OC

TOP

TOP

SI0

SI0

SI1

SI1

SI2

SI2

SI3

SI3

SI4

SI4

SI5

SI5

SI6

SI6

SI7

SI7

SI8

SI8

LiM0

LiM0

BTM

BTM

IRL0

IRL0

IRL1

IRL1 A

O

CircularLeftShift_17

CircularLeftShift

Figure B.4: LiM SHA-1 architecture: DExIMA CAD implementation of the IRL
blocks for rows 16 to 79.

190

B – LiM SHA-1 architecture

CLK

CLK

BL

BL

SHO

SHO

RST

RST

WL

WL

OC

OC

TOP

TOP

SI0

SI0

SI1

SI1

SI2

SI2

SI3

SI3

SI4

SI4

SI5

SI5

SI6

SI6

SI7

SI7

SI8

SI8

LiM0

LiM0

BTM

BTM

IRL0

IRL0

IRL1

IRL1

IN0

IN1

S

O

Muxnbit_14

CK

EN

R

D

Q

Reg_15

Register

PREV_1_IRL0_TO_IRL

PREV_1_IRL0_TO_IRL

A

O

CircularLeftShift_17

CircularLeftShift

Figure B.5: LiM SHA-1 architecture: DExIMA CAD implementation of the IRL
blocks for row 81.

191

B – LiM SHA-1 architecture

CLK

CLK

BL

BL

SHO

SHO

RST

RST

WL

WL

OC

OC

TOP

TOP

SI0

SI0

SI1

SI1

SI2

SI2

SI3

SI3

SI4

SI4

SI5

SI5

SI6

SI6

SI7

SI7

SI8

SI8

LiM0

LiM0

BTM

BTM

IRL0

IRL0

IRL1

IRL1

IN0

IN1

S

O

Muxnbit_14

CK

EN

R

D

Q

Reg_15

Register

PREV_1_IRL1_TO_IRL

PREV_1_IRL1_TO_IRL

Figure B.6: LiM SHA-1 architecture: DExIMA CAD implementation of the IRL
blocks for row 82.

192

B – LiM SHA-1 architecture

CLK

CLK

BL

BL

SHO

SHO

RST

RST

WL

WL

OC

OC

TOP

TOP

SI0

SI0

SI1

SI1

SI2

SI2

SI3

SI3

SI4

SI4

SI5

SI5

SI6

SI6

SI7

SI7

SI8

SI8

LiM0

LiM0

BTM

BTM

IRL0

IRL0

IRL1

IRL1

IN0

IN1

S

O

Muxnbit_14

CK

EN

R

D

Q

Reg_15

Register

PREV_1_IRL0_TO_IRL

PREV_1_IRL0_TO_IRL

Figure B.7: LiM SHA-1 architecture: DExIMA CAD implementation of the IRL
blocks for rows 83 to 84.

193

194

Appendix C

AES-128 architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

OC

OC

SHO

SHO
IN0

IN1

S

O

MUX21_9

IN0

IN1

S

O

MUX21_10

IN0

IN1

S

O

MUX21_11

CK EN RN WR

RD

Memory_12

IN0

IN1

O

XOR2_13

NEXT_18_OC_TO_ROW

NEXT_18_OC_TO_ROW

NEXT_1_IRL1_TO_ROW

NEXT_1_IRL1_TO_ROW

NEXT_1_IRL0_TO_ROW

NEXT_1_IRL0_TO_ROW

Figure C.1: AES-128 architecture, StateRoundKey1 solution: DExIMA CAD im-
plementation of the LiM cell presented in Figure 9.9, type cell_R0.

195

C – AES-128 architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

OC

OC

SHO

SHO

CK EN RN WR

RD

Memory_11

IN0

IN1

S

O

MUX21_12

IN0

IN1

S

O

MUX21_13

FROM_RIGHT

FROM_RIGHT

TO_LEFT

TO_LEFT

FIXED_16_OC_TO_ROW

FIXED_16_OC_TO_ROW

FROM_LEFT

FROM_LEFT

TO_RIGHT

TO_RIGHT

Figure C.2: AES-128 architecture, StateRoundKey1 solution: DExIMA CAD im-
plementation of the LiM cells presented in Figure 9.15.

196

C – AES-128 architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

OC

OC

SHO

SHO

CK EN RN WR

RD

Memory_9

IN0

IN1

S

O

MUX21_11
IN0

IN1

O

XOR2_12FIXED_17_OC_TO_ROW

FIXED_17_OC_TO_ROW

NEXT_1_IRL0_TO_ROW

NEXT_1_IRL0_TO_ROW

IN0

IN1

O

XOR2_15

Figure C.3: AES-128 architecture, StateRoundKey1 solution: DExIMA CAD im-
plementation of the LiM cell presented in Figure 9.12.

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

OC

OC

SHO

SHO

CK EN RN WR

RD

Memory_9

IN0

IN1

S

O

MUX21_11

NEXT_1_IRL0_TO_ROW

NEXT_1_IRL0_TO_ROW
IN0

IN1

O

XOR2_13

Figure C.4: AES-128 architecture, StateRoundKey1 solution: DExIMA CAD im-
plementation of the LiM cell presented in Figure 9.13.

197

C – AES-128 architecture

BL

BL

CLK

CLK

RST

RST

WL

WL

S0

S0

S1

S1

S2

S2

S3

S3

S4

S4

OC

OC

SHO

SHO

CK EN RN WR

RD

Memory_9

IN0

IN1

S

O

MUX21_11

IN0

IN1

O

XOR2_12

PREV_4_OC_TO_ROW

PREV_4_OC_TO_ROW

Figure C.5: AES-128 architecture, StateRoundKey1 solution: DExIMA CAD im-
plementation of the LiM cell presented in Figure 9.14.

198

Acronyms

AES Advanced Encryption Standard

ASIC Application-Specific Integrated Circuit

BNN Binary Neural Network

CiM Computation-in-Memory

CLiMA Configurable Logic-in-Memory Architecture

CnM Computation-near-Memory

CNN Convolutional Neural Network

CPU Central Processing Unit

CSV Comma-Separated Values

CwM Computation-with-Memory

DFS Depth-First Search

DUT Device Under Test

EDA Electronic Design Automation

FA Full-Adder

FIR Finite Impulse Response

GUI Graphical User Interface

HDL Hardware Description Language

HLS High-Level Synthesis

199

Acronyms

I/O Input/Output

IRL Intra-Row Logic

LHS Left-Hand Side

LiM Logic-in-Memory

LSB Least-Significant Bit

LUT Look-Up Table

MSB Most-Significant Bit

MVM Matrix-Vector Multiplication

RCA Ripple-Carry Adder

RHS Right-Hand Side

ROM Read-Only Memory

SHA Secure Hash Algorithm

SIMD Single-Instruction, Multiple-Data

UVM Universal Verification Methodology

VHDL Very high speed integrated circuits Hardware Description Language

200

Bibliography

[1] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. “CACTI 6.0: A
Tool to Model Large Caches”. (209), [Online]. Available: https://www.hpl.
hp.com/techreports/2009/HPL-2009-85.pdf.

[2] H. S. Stone, “A Logic-in-Memory Computer”, IEEE Transactions on Com-
puters, vol. C-19, no. 1, pp. 73–78, 1970. doi: 10.1109/TC.1970.5008902.

[3] N. I. of Standards and Technology, “Secure Hash Standard”, U.S. Department
of Commerce, Washington, D.C., Tech. Rep., 1993. doi: 10.6028/NIST.FIPS.
180.

[4] N. I. of Standards and Technology, “Advanced Encryption Standard (AES)”,
U.S. Department of Commerce, Washington, D.C., Tech. Rep., 2001. doi:
10.6028/NIST.FIPS.197.

[5] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network Struc-
ture, Dynamics, and Function using NetworkX”, in Proceedings of the 7th
Python in Science Conference, G. Varoquaux, T. Vaught, and J. Millman,
Eds., Pasadena, CA USA, 2008, pp. 11–15.

[6] N. I. of Standards and Technology, “Secure Hash Standard (SHS)”, U.S. De-
partment of Commerce, Washington, D.C., Tech. Rep., 2015. doi: 10.6028/
NIST.FIPS.180-4.

[7] M. Xie, S. Li, A. O. Glova, J. Hu, and Y. Xie, “Securing Emerging Nonvolatile
Main Memory With Fast and Energy-Efficient AES In-Memory Implementa-
tion”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 11, pp. 2443–2455, 2018. doi: 10.1109/TVLSI.2018.2865133.

[8] N. Piano. “DExIMA: A Design Explorer for In-Memory Architectures”. (2019),
[Online]. Available: http://webthesis.biblio.polito.it/id/eprint/
12547.

[9] G. Santoro, G. Turvani, and M. Graziano, “New Logic-In-Memory Paradigms:
An Architectural and Technological Perspective”, Micromachines, vol. 10,
no. 6, 2019, issn: 2072-666X. doi: 10.3390/mi10060368. [Online]. Available:
https://www.mdpi.com/2072-666X/10/6/368.

201

https://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
https://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.6028/NIST.FIPS.180
https://doi.org/10.6028/NIST.FIPS.180
https://doi.org/10.6028/NIST.FIPS.197
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1109/TVLSI.2018.2865133
http://webthesis.biblio.polito.it/id/eprint/12547
http://webthesis.biblio.polito.it/id/eprint/12547
https://doi.org/10.3390/mi10060368
https://www.mdpi.com/2072-666X/10/6/368

BIBLIOGRAPHY

[10] M. Andrighetti, G. Turvani, G. Santoro, et al., “Data Processing and In-
formation Classification—An In-Memory Approach”, Sensors, vol. 20, no. 6,
2020, issn: 1424-8220. doi: 10.3390/s20061681. [Online]. Available: https:
//www.mdpi.com/1424-8220/20/6/1681.

[11] A. Coluccio, M. Vacca, and G. Turvani, “Logic-in-Memory Computation: Is
It Worth It? A Binary Neural Network Case Study”, Journal of Low Power
Electronics and Applications, vol. 10, no. 1, 2020, issn: 2079-9268. doi: 10.
3390/jlpea10010007. [Online]. Available: https://www.mdpi.com/2079-
9268/10/1/7.

[12] J. Lowe-Power, A. M. Ahmad, A. Akram, et al., “The gem5 simulator: Ver-
sion 20.0+”, CoRR, vol. abs/2007.03152, 2020. arXiv: 2007.03152. [Online].
Available: https://arxiv.org/abs/2007.03152.

[13] A. Marchesin. “Octantis - A High-Level Explorer for Logic-in-Memory archi-
tectures”. (2020), [Online]. Available: http://webthesis.biblio.polito.
it/id/eprint/15852.

[14] A. Marchesin, G. Turvani, A. Coluccio, et al., “Octantis: An Exploration Tool
for Beyond von Neumann architectures”, in 2021 16th International Confer-
ence on Design & Technology of Integrated Systems in Nanoscale Era (DTIS),
2021, pp. 1–5. doi: 10.1109/DTIS53253.2021.9505135.

[15] L. Mendola. “DExIMA A synthesis tool and performance estimator for Logic-
in-Memory architectures”. (2021), [Online]. Available: http://webthesis.
biblio.polito.it/id/eprint/17852.

[16] A. Coluccio, U. Casale, A. Guastamacchia, et al., “Hybrid-SIMD: A Modular
and Reconfigurable Approach to Beyond von Neumann Computing”, IEEE
Transactions on Computers, vol. 71, no. 9, pp. 2287–2299, 2022. doi: 10.
1109/TC.2021.3127354.

[17] A. Coluccio, A. Ieva, F. Riente, M. R. Roch, M. Ottavi, and M. Vacca, “RISC-
Vlim, a RISC-V Framework for Logic-in-Memory Architectures”, Electronics,
vol. 11, no. 19, 2022, issn: 2079-9292. doi: 10.3390/electronics11192990.
[Online]. Available: https://www.mdpi.com/2079-9292/11/19/2990.

[18] A. Naclerio. “HLS techniques for high performance parallel codes in Logic-in-
Memory systems.” (2022), [Online]. Available: http://webthesis.biblio.
polito.it/id/eprint/22828.

202

https://doi.org/10.3390/s20061681
https://www.mdpi.com/1424-8220/20/6/1681
https://www.mdpi.com/1424-8220/20/6/1681
https://doi.org/10.3390/jlpea10010007
https://doi.org/10.3390/jlpea10010007
https://www.mdpi.com/2079-9268/10/1/7
https://www.mdpi.com/2079-9268/10/1/7
https://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
http://webthesis.biblio.polito.it/id/eprint/15852
http://webthesis.biblio.polito.it/id/eprint/15852
https://doi.org/10.1109/DTIS53253.2021.9505135
http://webthesis.biblio.polito.it/id/eprint/17852
http://webthesis.biblio.polito.it/id/eprint/17852
https://doi.org/10.1109/TC.2021.3127354
https://doi.org/10.1109/TC.2021.3127354
https://doi.org/10.3390/electronics11192990
https://www.mdpi.com/2079-9292/11/19/2990
http://webthesis.biblio.polito.it/id/eprint/22828
http://webthesis.biblio.polito.it/id/eprint/22828

	I Introduction
	Introduction
	Introduction to LiM processing
	Structure of LiM Development Toolchain
	Introduction to DExIMA CAD
	Aim of the thesis

	II Additional functionalities in DExIMA CAD
	Graph representations in DExIMA CAD
	DExIMA CAD design files
	I/O pins and bit-widths
	Components library
	DExIMA CAD graphs
	Structure of a DExIMA CAD graph
	Graph construction procedure
	Connectivity analysis

	LiM array interconnections in DExIMA CAD
	Taxonomy of LiM array interconnections in DExIMA CAD
	Vertical interconnections
	Horizontal interconnections
	Additional interconnections
	Interconnection input and output pins

	Issues and needs
	Array interconnections module
	Array manager
	Array description parser
	Array content parser
	Array structure analyzer
	Array interconnections analyzer
	Path enumeration in the DExIMA description

	Algorithm description in DExIMA CAD
	Existing algorithm description features
	New algorithm description features
	Algorithm description module
	Support classes
	Control generator

	System-level exploration in DExIMA CAD
	Changes to the uppermost architectural level
	Issues related to the uppermost architectural level
	Top-level analyzer
	Revisited design flow
	Build phase of the top-level analyzer
	Interaction with the simulation dashboard
	Source code generation
	Configuration of the UVM testbench
	Generation of the DExIMA Backend description

	III Implementations in DExIMA CAD
	Case studies implementation in DExIMA CAD
	LiM XNOR and LiM ones counter arrays
	LiM XNOR array
	LiM ones counter array

	Logic-in-Memory implementation of a Finite Impulse Response digital filter
	Derivation of the LiM architecture
	Algorithm description in DExIMA CAD

	Hybrid-SIMD in DExIMA CAD
	Overview of the Hybrid-SIMD architecture
	Simplifications and assumptions
	Architectural description in DExIMA CAD
	Structure of the LiM cells
	Structure of the IRL blocks
	Structure and geometry of the LiM array

	Algorithm description in DExIMA CAD

	SHA-1 in DExIMA CAD
	Description of the SHA-1 algorithm
	Derivation of the LiM architecture
	Architectural description in DExIMA CAD

	AES-128 in DExIMA CAD
	Introduction and motivations
	Description of the AES-128 algorithm
	Introduction, notation and encryption algorithm
	Key schedule algorithm

	Derivation of the LiM architecture
	State section
	Key section
	Round constant computation

	Architectural description in DExIMA CAD

	Results
	Simulation results
	Numerical results

	Conclusions and future developments
	Hybrid-SIMD architecture
	LiM SHA-1 architecture
	AES-128 architecture
	Bibliography

