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Abstract

Graph Neural Networks (GNNs) [1] are a class of deep learning methods intended

to analyze graph data. GNNs include two different phases: the Aggregation phase,

in which each node gathers information about its neighbors, and the Combination

phase, which usually acts as a Neural Network on the output of the first phase. While

the Combination possesses many of the same characteristics as other kinds of NNs

with regard to the dataflow and can be optimized accordingly, the Aggregation phase

presents some distinctive properties that prevent efficient mapping on traditional

NN processors, and requires novel dedicated hardware and software schemes. In this

work, an Aggregation Engine is designed based on a 2-D square mesh Network-on-

Chip of SIMD cores. In order to have fast execution and efficient resource utilization,

it is necessary to partition the input graph optimally among the different PEs at

compile time. Such partitioning has been tested with different objectives, and the

results have been compared for five distinct input graphs with different mesh sizes

and other design parameters combinations. The best-suited partitioning objective

proved to be weighted min-cut, and the most appropriate mesh size a 6-by-6 mesh.

The experiments also highlighted the network congestion as the main factor limiting

the scalability of the design, and degrading performance for high feature sizes. The

6-by-6 mesh has finally been implemented on an FPGA platform in order to report

logic utilization and critical path. The resulting design achieves an average speedup

of 74.38% over a sequential execution.
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Chapter 1

Introduction

1.1 What are Graph Neural Networks

While most Neural Networks are optimized to work on euclidean data, Graph Neural

Networks (GNNs) are a class of deep learning methods specialized in processing

data that is organized in a graph fashion. They are extensively used in various and

diverse applications, such as accelerating drug discovery, predicting properties of

molecules, forecasting traffic speed and targeted advertisement in e-commerce.

A general GNN layer is composed of two very different phases, as shown in algorithm

1 and illustrated in figure 1.1. The first is the aggregation phase, in which each

node gathers information about its neighbors usually via a simple arithmetic

operation. The second one is the combination phase, in which some more complex

function (usually another kind of Neural Network) is applied to the aggregated

node, producing the input to the next layer.
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Introduction

(a) Aggregation phase

(b) Combination phase

Figure 1.1: The two phases of a generic GNN algorithm. During the aggregation
phase (a) the feature vector of each node is accumulated with those of its neighbours.
During the combination phase (b) each aggregated node is taken as the input for a
complex function, producing the output nodes of the layer. These operations are
represented sequentially for simplicity, but intra-phase and inter-phase paralleliza-
tion are possible.

1.2 Challenges of the GNN dataflow

Aggregation phase The aggregation phase presents a lot of challenges that are

specific to GNNs, and sets them apart from the other kinds of NNs in regards to

the dataflow. This phase can be modeled as a multiplication between the adjacency

matrix of the underlying graph and the matrix of input features.

The matrix of input features is simply the matrix having the feature vector of the

i-th node in the graph as its i-th row. The adjacency matrix is a square matrix

used to represent the graph; if element (i, j) of the adjacency matrix is non-zero,

then there’s an edge going from node i to node j.

This adjacency matrix presents two distinctive properties [2]:

2



Introduction

• it is extremely sparse, with over 99.9% of all entries being zeros for most

graphs;

• the node degree usually follows a power law distribution;

both properties lead to execution problems in this phase. The high sparsity

translates to highly irregular memory accesses, while the power-law degree distri-

bution means that the workloads required to aggregate different nodes are very

different.

Combination phase The combination phase follows a more traditional NN

dataflow, as it can be modeled as a Generic Matrix Multiplication (GeMM) between

the aggregated matrix and the weight matrix. The memory accesses are more

regular and the dataflow can be optimized following traditional NN optimization

techniques.

Algorithm 1 Generic GNN algorithm.
1: procedure GNN
2: ▷ h(l)

v is the feature vector of node v at layer l
3: ▷ N(v) is the set of neighbors of node v
4: ▷ a(l)

v is the aggregated feature vector of node v at layer l
5: ▷ σ(h(l)

v , h(l)
n ) is the aggregation function between node v and node n

6: ▷ ϕ(a(l)
v ) is the combination function

7:
8: L← number of layers
9: V ← set of nodes in the graph

10: for l = 1 to L do
11: for v ∈ V do
12: for n ∈ N(v) do
13: a(l)

v = σ(h(l−1)
v , h(l−1)

n )
14: end for
15: h(l)

v = ϕ(a(l)
v )

16: end for
17: end for
18: end procedure

3



Introduction

1.3 State of the art

This section presents an overview of some of the current state-of-the-art GNN

accelerators. Each of these deals with the problems brought forth by this particular

dataflow in very different ways.

1.3.1 AWB-GCN

The first of these accelerators is Autotuning-Workload-Balancing GCN [2] (AWB-

GCN). As the name suggests, this architecture focuses on adapting the workload

at runtime, to redistribute it among a large number of PEs on the basis of the

particular input graph it is working on without any preprocessing. In this way it

aims at being efficient on a wide range of graphs with different applications and

characteristics. In order to achieve this, three hardware techniques are implemented:

dynamic distribution smoothing, remote switching and row remapping.

Dynamic distribution smoothing The architecture keeps track of the utiliza-

tion of each PE by monitoring the number of pending task in their queues. During

each round of computations, some of the tasks of the busier PEs are offloaded to

their less busy neighbours, which then send back the results to the original PE.

The result of this process is, indeed, a smoothing of the utilization profile, which

mitigates uneven workloads between neighbor but doesn’t solve the problem of

local clustering, which is addressed by the remote switching technique.

Remote switching During each round of computation an autotuner keeps track

of the most over-utilized and under-utilized PEs, and at the end of each round it

swaps a fraction of their workloads. This fraction is different for each stage and

computed at runtime. The switched PEs and the respective switch fraction are

taken into consideration by the autotuner during the successive rounds in order to

4
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eventually converge to an optimally balanced execution among all of the PEs.

Row remapping Due to the power-law degree distribution in most graphs, a

small number of rows in the adjacency matrix will be very densely populated,

giving rise to a huge spike in the utilization of the PE they are mapped to which

cannot be adequately resolved by the switching hardware. To solve this problem

these “evil rows” [2] are identified by the autotuner after a computation round

and temporarily switched to a “Super-PE”, which partitions the worst rows to a

series of regular PEs that are managed by the Super-PE and are subject to both

distribution smoothing and remote switching, since they could easily become the

new peaks of the utilization profile otherwise.

Comparison with this thesis Overall, these schemes are definitely very effective

in reducing workload imbalance, but the needed hardware is very complex as the

architecture requires constant monitoring of the activity profile and even a controller

to converge to a reasonable switching fraction. Since the graph structure is known

a priori, adopting a run-time solution might not be the optimal choice: a good

preprocessing of the input graph at compile time in order to try and load it onto the

architecture in an optimal manner can prove equally effective, while avoiding the

need for overly complex logic and thus reducing the area and energy consumption

of the chip.

1.3.2 HyGCN

The HyGCN [3] (Hybrid GCN) architecture (shown in fig. 1.2) addresses the

different demands of the accumulation and aggregation phases by having two

separate engines coordinated by a communication interface, or Coordinator, which

allows for them to work in parallel on the same layer.

5
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Figure 1.2: Block diagram of the HyGCN architecture, with details on the
Combination Engine omitted.

Aggregation engine The aggregation engine presents a certain number of

SIMD cores and a scheduler which dynamically assigns the workload to each core.

Assigning all of the accumulations of a single node to each core would cause high

latency and some heavy workload imbalance between the PEs, since the ones with

less neighbours would need to wait for the more connected ones. To solve these

problems and allow for intra-vertex parallelism (i.e. the accumulation of each

feature in the feature vector can be done in parallel), HyGCN implement what the

authors call “vertex-disperse processing” [3], which consists in assigning different

parts of the feature vector to different cores. If the features of a given node cannot

occupy all of the PEs, the free ones are assigned the features of a different node.

Another big advantage of this loading scheme is that it allows for the accumulated

node to be sent to the combination engine as soon as its accumulation is finished

without waiting for the other nodes, thus enabling inter-phase parallelism.

Static graph partitioning In order to fit the input graph on the hardware, it

is divided in subgraphs of equal sizes which are then processed one by one, where

6
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the neighbours of each node are also accessed by traversing these subgraphs one at

a time.

This has two benefits. In the first place, nodes in the same subgraph share a good

number of neighbors, allowing for reuse of their feature vector without reloading it

from the DRAM. Secondly, the partial accumulations for a given node are stored

in the output buffer and will be reused until the execution moves to a different

subgraph.

Sparsity elimination In order to reduce sparsity, a dynamic windowing approach

is implemented on the adjacency matrix, with the aim of excluding the highest

number of zero entries.

Combination engine The combination engine has multiple systolic arrays.

These arrays are organized in groups, called systolic modules. These modules can

either work independently (each module on a small group of nodes) or cooperatively

(on a larger set of nodes, i.e. in burst mode). In independent working mode the

each module operates on a small group of nodes. The benefit of using this mode

is latency, since the modules need to wait for the aggregation of less nodes before

starting the computation, and it works particularly well with the vertex-disperse

processing.

In cooperative working mode many modules act as a single systolic array working

on a larger group of nodes, meaning that the nodes are processed in burst mode,

rather than in a vertex-by-vertex manner as in the previous mode. Though latency

is lower, this greatly reduces energy consumption since the weights need to be

fetched from the weight buffer only once and are then streamed to every node

loaded to the array, thus enabling greater data reuse than the independent mode.

7
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Comparison with this thesis The heterogeneous structure of the HyGCN

processor is an example of the kind of system that the aggregation engine developed

in this thesis could be a part of. Such a system opens up many possibilities for

inter-phase optimization, and HyGCN takes full advantage of this by appropriately

orchestrating the dataflow between its two engines.

Both HyGCN and the architecture proposed in this thesis make use of graph

partitioning, but for two different reasons: while the partitioning implemented by

HyGCN allows for the loading of a big graph on a hardware with limited memory,

the one implemented in this thesis aims at reducing the amount of communication

between parallel PEs.

While HyGCN needs to implement its windowing approach in order to deal with

the matrix sparsity, the proposed architecture avoids this problem altogether by

implementing a distributed memory instead of a centralized one. More details on

the memory hierarchy are reported in chapter 2. HyGCN deals with the sparsity

of the adjacency matrix through a windowing approach aiming at excluding the

highest number of zero entries.

The architecture proposed in this thesis also utilizes graph partitioning, but for

a different reason. While the partitioning implemented by HyGCN allows for the

loading of a big graph on a hardware with limited memory, the one implemented

in this thesis aims at reducing the amount of communication between parallel PEs.

1.3.3 Graphcore IPU

Graphcore introduced a new processing paradigm aimed specifically at Machine

Learning workloads, the Intelligence Processing Unit (IPU) (shown in fig. 1.3).

IPU architecture The IPU processor is a MIMD (Multiple-Instruction-Multiple-

Data) processor capable of working on a huge number of parallel and independent

8
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threads with great granularity. It presents 1216 Processing Elements, called tiles,

each of which contains a computing unit and a 256 KiB SRAM scratchpad [4].

Each tile can execute up to 6 threads at the same time through a technique similar

to the Simultaneous MultiThreading (SMT) [5] found on CPUs, which helps in

hiding instruction latencies. The PEs are interconnected by the IPU exchange.

The tiles can reach “an impressive arithmetic throughput, up to 31.1 TFlops/s in

single precision and 124.5 TFlops/s in mixed precision per chip”[4]. This is thanks

to the Accumulating Matrix Product units (AMP), highly specialized and pipelined

units capable of computing 64 mixed-precision or 16 single-precision FLOP/cycle,

present in every tile.

Memory architecture The only memory available to the IPU aside from the

register files is the distributed memory formed by the tiles’ scratchpads, which

adds up to 304 MiB in total. Having a distributed memory means that the threads

running in each tile can access the necessary data efficiently even when the access

patterns are irregular, and it allows for the processor to reach a very high nominal

maximum bandwidth. The Graphcore Poplar [6] language and compiler takes care

of scheduling the data transfers between the different tiles, sparing the programmer

from having to do it explicitly.

Comparison with this thesis The architecture of the accelerator developed

in this thesis is primarily inspired by the IPU processor, as both are a mesh

NoC of SIMD cores working with a distributed memory architecture. The main

differences are that the IPU cores support multi-threaded execution and the task of

partitioning the graph among the cores is left to the software designer, while in the

proposed aggregation engine every core runs a single thread, and graph partitioning

is performed by the compiler in order to load the graph on the PE mesh optimally.

9
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Figure 1.3: Block diagram of the IPU architecture.

1.4 Goal of this Thesis

As already stated, the combination phase can be optimized using traditional

NN hardware and software techniques. Thus, the aim of this thesis will be to

develop an hardware accelerator specific to the aggregation phase, and benchmark

its performance on graphs with different characteristics. This accelerator could

eventually either be improved to support the combination phase, or integrated

10
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with a separate engine for the latter execution stage. This design has then been

implemented targeting the “Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit”

[7] in order to evaluate hardware metrics such as the critical path and the amount

of logic utilised.

The architecture proposed in this thesis is a mesh Network-on-Chip (NoC), with

each node of the mesh being a small SIMD core with a specialized instruction

set. Figure 1.4 highlights the importance of using a good partitioning criterion

to map the nodes onto each of the PEs, as the number of nodes that cross two

different partitions is directly correlated to the amount of inter-PE communication

that the network will have to sustain in order to complete the layer execution.

More packets on the network at any given time mean a higher network congestion,

which will inevitably degrade performance as the average transmission time of the

packets increases. The main idea behind this design is to tackle this bottleneck

by means of some preprocessing on the software side. Since the structure of the

input graph is known at compile time, it can be optimally partitioned and each of

the obtained subgraphs can then be loaded on a different core, reducing inter-core

communication to a minimum. As discussed in section 4.1.2, a good partitioning

criterion can also prove useful in balancing the workload between the different

cores.

Benchmarking The architecture is fully parametrized. It is possible to change

the data width of a single feature, the length of the feature vector, the number

of PEs in the mesh and many other dimensions. This allows to perform some

exploration of the solution space in order to highlight the advantages and drawbacks

of different combination of parameters.

11
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Figure 1.4: Distribution of the edges of graph cit-HepPh [8], with naive and
min-cut partitioning.

Workflow The workflow to evaluate the performance on a given dataset is

displayed in figure 3.1. First, the input graph is partitioned through the METIS

partitioning tool using NetworkX-METIS [9]. Both the original and partitioned

graph are processed via a Python script to generate the contents of the data and

instruction memories of the PEs for each mesh size, as well as the reference values

to check for the correctness of the simulation results. These contents are loaded

onto the mesh during each RTL simulation, at the end of which the performance

reports are generated.

12
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Figure 1.5: Workflow to generate the performance reports.
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Chapter 2

Design of the architecture

The architecture consists of parallel processing elements (PEs) connected with

each other through a 2D mesh network-on-chip (NoC). The PEs are responsible

for the computation and the routers in the mesh NoC dictate the flow of the

communication requests and responses between the different PEs. The architecture

is designed as a parameterized template with design-time configurable mesh size

and other PE and router parameters.

2.1 PE

The Processing Element is a core with two distinct data memories, an instruction

memory and a array of Accumulation Units (ACC). The PE is made programmable

with a custom instruction set as shown in table 2.1. Finite state machine (FSM)

based control units are used to route the memory load requests to appropriate

destinations (local SRAM or remote PE) and handle the data responses. The size

of the feature vector is a design parameter, and the number of ACC units and

scratchpads width are parameterized accordingly.

14
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Figure 2.1: Example of a 3-by-3 mesh NoC

Figure 2.2: Block diagram of the access scheme to the ACC array.

15



Design of the architecture

Instruction set and decoder The custom instruction set is shown in table

2.1. An appropriate instruction decoder is used, which is a purely combinational

unit with the job of interpreting the current instruction and generating the right

control signals.

opcode operand description
000 X NOP
001 [X][X][address] store the ACC array output locally
010 [Xcoord][Ycoord][address] load node to the ACC array
100 X accumulate with 0
110 X accumulate internal
111 X stop current layer execution

Table 2.1: Instruction set. “X” can be any value.

Scratchpads The PE contains two dual-port SRAM scratchpads of parameterized

height and width, which constitute a ping-pong memory buffer. One holds the

input feature vectors of the current layer, and the other stores the outputs of the

aggregation; every time a new layer begins, the role of the two memories is then

swapped.

Data format In the PE’s scratchpad, each feature vector is stored in a single

memory location. During accumulation, each feature is sent to a different ACC

unit and accumulated.

address contents
0x0000 F 0

0 F 0
1 F 0

2 F 0
3 ... F 0

N

0x0001 F 1
0 F 1

1 F 1
2 F 1

3 ... F 1
N

0x0002 F 2
0 F 2

1 F 2
2 F 2

3 ... F 2
N

... ...

Table 2.2: Data structure in the scratchpad, where F i
n is the n-th feature of the

i-th node.

16



Design of the architecture

Load unit When the instruction decoder receives a load instruction, the load

unit decides whether in order to load the requested vector it needs to access the

local scratchpad or forward the request to the fetch request unit.

Fetch request unit The fetch unit extracts the Xcoord and Ycoord from the load

memory address and forms the fetch request packet according to the format in

figure 2.9, and sends it to the local router. When a fetch request is sent, the PE

is stalled until the request is satisfied, that is to say until all of the features of

the requested feature vector reach the PE. This is necessary in order to correctly

accumulate all of the neighbors to the base node, since if the PE were kept running

it could store the partial results and load the next base node before accumulating

the nodes that are not stored in its local scratchpad and didn’t reach the PE in

time after their fetch requests.

Fetch response unit The fetch response unit accepts the fetch request from the

local router, accesses the right feature vector through the dedicated port of the

SRAM, and sends it back with one packet per feature. The formation of the packets

is shown in figure 2.4: when a valid request is detected by this unit, the coordinates

of the PE that issued the request are stored in two registers; the requested vector is

then stored in a parallel-in-serial-out (PISO) buffer, This buffer outputs one feature

per clock cycle, which is concatenated with the stored coordinates and the ’0’ bit

(indicating that the packet is part of a fetch response), and sent to the router.

Vectorization unit Once the packet containing a feature reaches the requesting

PE, it is read by the vectorization unit, which holds a serial-in-parallel-out (SIPO)

buffer. Once the buffer is full (i.e. all of the features of the requested feature vector

17



Design of the architecture

Figure 2.3: Schematic of the units responsible of the fetch requests, fetch responses
and loading of the nodes to the ACC array.

Figure 2.4: Diagram of the packets formation inside the fetch response unit.

have reached the PE), its contents are loaded to the ACC array and ready for

accumulation.

18
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2.2 Router

The routers have five ports, one for each neighboring routers and one for communi-

cation with the associated PE. In order to prevent deadlocks [10] and avoid needing

some kind of deadlock detection scheme, X-Y (or dimension-ordered) routing is

implemented, with a store-and-forward switching technique. The RTL description

for the router can be found in appendix A.

Figure 2.5: Router’s internal structure and interface.

19



Design of the architecture

Figure 2.6: Channel switch internal structure. It multiplexes the output packet
and the status and control signals from the input ports to a given output port,
based on the grant for that port.

2.2.1 Input ports

Each router presents five input ports modules. Each input port implements the

receiver and transmitter protocols with an output port, with which they are

connected by a channel switch depending on the grant given by an arbiter. Each

input has a FIFO buffer of parameterized depth, whose contents are routed to the

next router or to the local PE when the respective port is free.

Each input port has the following interface:

• upstream: output to send the packets;

• reading: asserted when the port is reading data;

• valid_out: asserted when data is ready to be sent to the next destination;

• downstream: input to receive the packets;

20
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• is_read: asserted by a neighboring router when it is reading data from this

port;

Transmission protocol Whenever its FIFO buffer is not empty, the port asserts

the packet_valid output. The is_read input of the port corresponds to the

read_en signal of the FIFO, thus after one clock cycle from the assertion of this

signal by the receiver, a packet is sent.

Figure 2.7: Timing diagram of the transmission protocol

Reception protocol When the packet_valid input is high, and the FIFO is

not full, the reading output and the write_en signal of the FIFO are asserted.

Figure 2.8: Timing diagram of the receiver protocol

Packet format When a PE issues a request for the fetch of a remote feature

vector, this is fed to the respective router according to the data structure in figure

2.9: Xdest and Ydest are the coordinates in the mesh of the PE that is the target of
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the fetch request, Xsrc and Ysrc are the coordinates the PE issuing the request, and

ADDR is the address of the feature vector in the memory of the destination PE.

1 Xdest Ydest Xsrc Ysrc ADDRESS

Figure 2.9: Data structure of a fetch request.

Once the destination PE receives a fetch request, it sends the requested feature

vector to the requesting PE as a sequence of packets, each containing one feature,

in the format shown in fig. 2.10. Note that Xdest and Ydest in these packets are the

coordinates of the requesting PE.

0 Xdest Ydest FEATURE

Figure 2.10: Data structure of a fetch response.

2.2.2 Output arbitration

Each port has a respective arbiter. The arbiter implements a Round-Robin arbi-

tration scheme, which has been chosen for its simplicity and for a fair bandwidth

allocation across the channels. The RTL description for the arbiter can be found

in appendix A.

Round-robin arbiter The round-robin arbitration is a good scheme in those

cases when there isn’t any requester that should have a higher priority over the

others, and it makes sure that the access to the resources is unbiased and starvation

free.

As shown in figure 2.11, it works in a similar way as fixed-priority arbitration, but

every time an access is granted the priority of each requester shifts in a circular

manner, so that the requester that comes immediately after the one that just got

access to the resource becomes the one with the higher priority.
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(a) (b)

(c)

Figure 2.11: Round-Robin arbitration: each requester is given a priority (a). The
highest priority request is granted (b) (the active requests are in blue). After each
grant, the priorities are rotated (c). The priority pointer indicates the requester
with highest priority.

In summary, the accelerator consists of a mesh of cores, the scratchpads are the

only form of memory available to the engine and constitute a distributed memory

architecture. Each PE holds a subset of nodes of the input graph in its local

memory. When a node needs to be loaded to the ACC array for accumulation,

the load unit detects whether or not it is stored in the local memory. If it is, the

node is loaded, otherwise a fetch request is issued by the fetch request unit. The

fetch request is transmitted by the routers to the destination PE. This PE then

sends back the requested node, one feature at a time, through the fetch response

unit. Each incoming feature is stored in the vectorization unit of the requesting
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PE, until the last one arrives and the whole feature vector is finally loaded to the

ACC array. Most of the dimensions in the architecture are parameterized in order

to be able to experiment with different combinations and observe in which cases

the performance increases and degrades.
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Testing

3.1 Memory contents

Before proceeding with the testing of the architecture, the data and instruction

memories of the different cores need to be populated with the right input nodes

and instructions respectively.

3.1.1 Graph preprocessing

All of the graph preprocessing is done in Python. This includes the partitioning of

the graph through the NetworkX-METIS [9] partitioning tool and the generation

of the text files containing the memory contents and the correct values of the graph

nodes after one aggregation layer.

The scripts used for this can be found in appendix C. The input graph is stored in

a text file containing every couple of nodes connected by an edge; every graph is

processed as undirected. After specifying the parameters for the current test (i.e.

data width, feature size and number of cores), the graph is partitioned following

the chosen partitioning criterion, while each node’s ID is used as an address in the
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Figure 3.1: Workflow to generate the performance reports.

distributed memory for the naive partitioning. The script subsequently generates

the data memory contents for the two cases based on the results of the partitioning

and the node IDs. The instruction memory contents are generated by traversing

the graph and adding an aggregation instruction for each neighbour of every node.

At the same time, the reference values are generated by aggregating neighbouring

nodes in the script itself; since the nodes are stored in a different order in the

partitioned and naive approach, two different reference values files are also needed,

otherwise in at least one of the two cases there wouldn’t be any correspondence

between the address of an input node and the one of the corresponding output.
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3.2 Testbench

The goal of the testbench is not only to verify the correctness of the layer outputs,

but also to generate the files reporting some interesting metrics:

• the number of clock cycles needed to finish the layer;

• for each core, the amount of cycles in which it is stalled (i.e. waiting for a

fetch request to be answered);

• for each router, the amount of cycles in which there is a conflict at at least

one of its output ports;

The testbench can be found in appendix B. It takes the memory content

files generated during the graph preprocessing and uses them to populate the

instruction and data memories of each PE. The architecture is then simulated until

the testbench detects that the aggregation layer is finished through the apposite

done signal coming from the cores. During simulation, it evaluates and updates

the value of the aforementioned metrics. Once the simulation ends, it inspects the

memory contents of the core and checks them against the reference values stored

in the corresponding file to make sure that the results are correct.

The simulations for the partitioned and "unpartitioned" cases for each graph were

then run in batch via a .tcl script.
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Results

4.1 Performance

The performance of this architecture has been tested via behavioural simulation on

five distinct input graphs and different feature sizes, with the goal of exposing the

bottlenecks and identifying the most efficient mesh size in terms of latency, and

finding out whether the optimal size is the same for all graphs or if it depends on

its characteristics.

4.1.1 Choice of graphs

The input graphs chosen for the performance evaluation are listed in table 4.1 and

come from different applications.

In order to be as exhaustive as possible in simulating the various execution

scenarios of the engine, they all present a different number of nodes and edges.

The number of edges is a particularly important figure, since it determines the

number of cycles needed to accumulate the average node but also the amount of

inter-PE communication necessary to process the graph and the effectiveness of the
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Dataset Node no. Edge no. Feature length Type
email-Eu-core [11] 1 005 16 705 5 Email network

cit-HepPh [8] 34 546 421 578 20 Citation network
soc-Slashdot0922 [12] 82 168 948 464 10 Social network
soc-sign-epinions [13] 131 828 711 783 1 Review site
web-NotreDame [14] 325 729 1 117 563 5 Web pages

Table 4.1: Graphs used for the performance evaluation

pre-partitioning, which might not prove too useful for densely connected graphs.

For the purposes of benchmarking, the feature vectors are randomly generated and

graph edges are always treated as undirected (although the architecture can also

support directed edges).

4.1.2 Partitioning criterion

Pre-partitioning the input graph can have two main goals: (1) minimizing the

inter-subgraph communication volume in order to reduce network congestion, and

(2) balancing the workload among the PEs. These objectives are not necessarily

compatible, since the partitioning with the minimum number of edge-cuts (i.e.

edges going from one subgraph to another) isn’t necessarily well-balanced in terms

of workload, while one with a very evenly balanced workload among every core

might cause some of the subgraphs to be very connected with the others. For these

reasons, two different partitioning objectives have been tested:

• min-cut: partitioning with the sole the goal of minimizing the edge-cut

number;

• weighted min-cut: each node is assigned a weight equal to the amount of

accumulation operations required for its aggregation, which is same as the

number of edges connected to it. The partitioner tries to minimize the edge-cut

number while keeping a similar sum of the node weights for every subgraph.
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The different graphs have been partitioned with both methods, and a “naive

partitioning” (i.e. assigning nodes to the PEs in order of node ID) has been used

as a baseline. Figure 4.-1 shows the ratio of the number of edges crossing two

different partitions to the total number of edges for the different graphs: the lower

this number, the less communication there is between the PEs, meaning that

the accelerator should perform better. For most of the tested cases, both proved

equally useful in reducing the communication volume, with the “min-cut only”

objective generally being only slightly more effective. One exception is the case

of “email-Eu-core” 4.1a, where the weighted partitioning actually converged to a

better result.

Since the degree of a node represents the workload required to fully accumulate it,

the weighted min-cut partitioning is optimizing for both network traffic minimization

and workload re-balancing. Taking this and fig. 4.-1 into account, this partitioning

should prove more efficient than min-cut alone. This claim is supported by the

benchmarking of the architecture discussed in the next section.
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(a) email-Eu-core

(b) cit-HepPh
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(c) soc-Slashdot0902

(d) soc-sign-epinions
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(e) web-NotreDame

Figure 4.-1: Ratio of edge-cuts to total edges, with the three different partitioning
schemes.

4.1.3 Performance evaluation

The aggregation of each graph has been run sequentially (i.e. entirely on a single

PE) as a baseline, and on a square mesh of increasing size, up to 100 PEs. On

every mesh size, the latency has been evaluated for all of the three partitioning

schemes.

The results presented in figure 4.-2 demonstrate how prepartitioning the graph

with the weighted min-cut method consistently brings a considerable latency

decrease in the layer processing, in some cases reaching even over a 90% improvement

with respect to the naive partitioning. Other than that, there are two interesting
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trends in the results of these experiments.

• First, having more PEs in parallel doesn’t guarantee a lower latency that the

sequential execution, as graph partitioning proves to be essential in order to

utilize this architecture effectively.

• Secondly, the performance improvement for the weighted min-cut slows down

as mesh size increases, while the other two partitioning methods can even

become less efficient in some cases.

The reason behind both of these tendencies lies in the volume of network traffic. The

inefficiency of naive partitioning highlights the fact that inter-PE communication

poses a big latency overhead, and thus represents a crucial bottleneck for the

performance of the accelerator. The non-monotonous results for naive and min-cut

partitioning, on the other hand, display the weakness of the mesh network topology:

as the mesh size increases, the PEs will have to exchange packets with nodes in

the mesh that are further and further away. Every router the packet has to cross

in order to reach the destination PE stores it inside one of its FIFO buffers until

every other packet that reached it sooner is granted access to the respective output

port; this adds a significant delay to the transmission time. For weighted min-cut

partitioning the latency consistently decreases for bigger mesh sizes because this

effect is somewhat compensated by the workload re-balancing, but it is still visible

as the performance gain in using bigger and bigger meshes reaches a plateau.

Overall, these trade-offs between parallelization and network congestion result in

the most appropriate size being a 6-by-6 mesh with weighted min-cut partitioning,

since the latency decrease between testing the same graph on a 6-by-6 and a

10-by-10 mesh ranged from 2.6% to 18.6%, which hardly justifies the 278% increase

in logic usage. This configuration presents an average performance improvement of

74.38% over the sequential execution.
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(a) email-Eu-core

(b) cit-HepPh
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(c) soc-Slashdot0902

(d) soc-sign-epinions
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(e) web-NotreDame

Figure 4.-2: Latency for a single layer, normalized with respect to the sequential
processing of the layer (i.e. a single PE)

Impact of the feature size The experiments in figure 4.-2 have highlighted

how excessively increasing the mesh size will lead to network congestion, leading

to little to no benefit with respect to a smaller network. For this same reason,

another factor with a big impact on latency is the graph’s feature size. Ideally

the feature size shouldn’t impact latency at all, since the number of ACC units

in the PEs matched the feature length for every experiment, but due to the fact

that the feature vectors are sent over the network after being serialized, having a

higher feature size means that more packets will be sent for each fetch response,

which contribute in overcrowding the router’s FIFO buffers. Figure 4.-1 shows the

normalized execution time of a layer of the “cit-HepPh” dataset on a 6-by-6 mesh

with different feature lengths: the latency increases almost linearly with the feature
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size, demonstrating the bottleneck due to packet serialization in the network.

Figure 4.-1: Execution time for cit-HepPh on a 6x6 mesh with different feature
sizes, normalized.

Utilization As already stated, partitioning the input graph with weighted min-

cut has the added benefit of balancing the workload among the different PEs. Figure

4.0 shows the utilization profile of a 10-by-10 mesh with different input graphs,

with the three partitioning schemes. While it is still low because of the packets

transmission overhead, the utilization profile for weighted min-cut partitioning

is higher on average and more uniform than min-cut alone, as the workload re-

balancing implemented by this partitioning criterion leaves less PEs underutilized.

As a result, even though in most cases the communication volume for the two

methods is comparable (see fig. 4.-1), weighted min-cut partitioning consistently

38



Results

achieves better results (fig. 4.-2). It is important to note that this effect only

addresses the workload imbalance between the clusters of nodes loaded onto the

PEs, and not the very connected nodes which require a much higher number of

accumulations than average, since every node is fully accumulated on a single PE.

(a) email-Eu-core

(b) cit-HepPh

(c) soc-sign-epinions

Figure 4.0: Heat maps showing the utilization profile for a 10-by-10 mesh.

In summary, performing these experiments pointed out the various trade-offs

the architecture is subject to and the parameter combination best suited for it (i.e.
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6-by-6 mesh), while also highlighting some limitations:

• optimally partitioning the graph is crucial to obtain a good efficiency, as

having too much inter-PE communication and workload imbalance have a

serious impact on latency;

• there is a trade-off between the number of PEs working in parallel and the

transmission time of the packets, which causes the latency decrease with

respect to mesh size to reach a good compromise between latency and logic

utilization at 36 parallel PEs (6-by-6 mesh).

• graphs with a high feature length inherently incur in higher latencies due to

packet serialization in the NoC routers. This can be possibly alleviated with

wider connections between routers at the expense of higher physical area for

routing.

4.2 Synthesis

In order to obtain a metric of the critical path and area occupied by the architecture,

the design has been synthesized through Xilinx Vivado ML Editions™v2021.2 [15],

targeting the FPGA “Xilinx Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit”

[7].

Resource utilization The architecture has been synthesized with the parameters

in table 4.2. There are 1.34 MiB of memory for each PE, adding up to 48.2 MiB of

total on-chip memory. The resource utilization for the target platform is reported

in figures 4.1 and 4.2. The distinction between memory LUTs and logic LUTs in

figure 4.2 stems from the fact that only around 44% of the total LUTs on the target

platform are able to be utilized as memory.
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Parameter Value
Data width 8
Feature size 40

Data memory cells 16384
Instruction memory cells 32768

Mesh size 6 × 6

Table 4.2: Synthesis parameters.

Figure 4.1: Utilization percentage of LUTs and registers for the 6-by-6 mesh.

Critical path The post-synthesis critical path for the architecture is 4.579 ns,

resulting in the layer latencies for the simulated graphs with optimal partitioning

indicated in table 4.3
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Figure 4.2: Percentage of LUTs used for memory and logic for the 6-by-6 mesh.

Graph Latency
email-Eu-core 54 µs

cit-HepPh 636 µs
soc-Slashdot0902 1.6 ms
soc-sign-epinions 2 ms
web-NotreDame 533 µs

Table 4.3: Minimum layer latencies for different input graphs.
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Conclusions

The goal of the thesis was to develop an aggregation engine for GNN algorithms

that would address the peculiarities of this dataflow. Though irregular memory

accesses are still present, they have been reduced by optimally partitioning the

input graph at compile time, which has been made possible in an straight-forward

way by approaching the aggregation phase as an operation on a graph structure

instead of a sparse-dense matrix multiplication. The problem of workload imbalance

between cores has also been solved by partitioning the graph with weighted min-cut

as objective, but imbalances due to individual highly connected nodes has not been

addressed, since the aggregation of each node takes place entirely on a single PE.

Advantages and drawbacks Preprocessing the graph to optimally partition it

among the PEs has proven to be not only very efficient but decisive in obtaining

low latencies, both because it keeps the network activity to a minimum and it

rebalances the workload among the mesh.

The main hindrance to the latency of the architecture has proven to be the high

transmission time of the packets, due to the way the network gets easily congested,

especially for high feature sizes. Additionally, this problem gets worse with bigger
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mesh sizes.

Possible future development The current state of the accelerator opens up the

possibility for different future developments. On a system level, it could either be

integrated with a combination engine or expanded in order to support combination

itself. Due to the fact that the architecture has been tailored around the peculiarities

of the aggregation phase, using a different engine for the aggregation would probably

prove to be the most reasonable choice, similarly to what has been implemented

by HyGCN [3].

The most pressing bottleneck of the architecture that needs to be addressed is the

network congestion, which limits scalability and degrades performance for high

feature sizes. In the future, the optimal bandwidth for the NoC mesh depending on

the feature size could be studied. Alternatively, changing the NoC topology from

a square mesh to one where the communication between far away routers is less

penalized (such as a binary tree) would be effective in reducing the communication

latency, allowing for larger efficient networks which would reduce execution time

with a higher level of parallelization.

Ultimately, there is the opportunity for further workload balancing. One possible

way to achieve this would be to identify the most connected nodes and divide

their workload between different PEs at compile time, obtaining a result similar

to the “evil-row remapping” seen in AWB-GCN [2] but without the need of a

real-time monitor of each PE’s activity. This would of course require some sort of

synchronization scheme between the PEs that share the same nodes.

In conclusion, this thesis takes a step forward in understanding the GNN

bottlenecks and implements promising solutions to address them.
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RTL

content/Code/RTL/NoC.sv
1 import my_pkg ::*;

2

3 module NoC

4 (

5 input logic arst_n , clk,

6 input logic dummy_sel , // synth only

7 input logic [ VECTOR_LENGTH -1:0] dummy_in , // for synth . purp.

8 output [ PACKET_LENGTH -1 : 0] dummy_out , // for synthesis purposes

9 output [ PACKET_LENGTH -1:0] dummy_mem_out ,

10 output logic done_out

11 );

12

13 logic signed [ PACKET_LENGTH -1:0] router_in [1 : MESH_SIZE ][1 : MESH_SIZE ];

14 logic signed [ PACKET_LENGTH -1:0] router_out [1 : MESH_SIZE ][1 : MESH_SIZE ];

15 // logic [ OPCODE_LENGTH + ADDR_LENGTH - 1 :0] instruction [1 : MESH_SIZE ][1 :

MESH_SIZE ];

16 logic router_valid [1 : MESH_SIZE ][1 : MESH_SIZE ];

17 logic reading [1 : MESH_SIZE ][1 : MESH_SIZE ];

18 logic read [0 : ( MESH_SIZE + 1)][0 : ( MESH_SIZE + 1)][0:4];

19 logic signed [ PACKET_LENGTH -1:0] mac_in [1 : MESH_SIZE ][1 : MESH_SIZE ];

20 logic signed [ PACKET_LENGTH -1:0] downstream [0 : ( MESH_SIZE + 1)][0 : (

MESH_SIZE + 1)][0:4];

21 logic local_reading [1 : MESH_SIZE ][1 : MESH_SIZE ];
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22

23 logic packet_valid [0 : ( MESH_SIZE + 1)][0 : ( MESH_SIZE + 1)][0:4];

24 logic valid_out [1 : MESH_SIZE ][1 : MESH_SIZE ][0:4];

25 logic [1 : MESH_SIZE ][1 : MESH_SIZE ] done ;

26 logic layer_finished ;

27

28 assign layer_finished = & done ; // if all the done signals are asserted

29 assign done_out = layer_finished ;

30

31 assign dummy_out = router_in [1][1];

32

33 genvar x,y;

34 generate

35 for(y=1; y <= MESH_SIZE ; y++) begin

36 for(x=1; x <= MESH_SIZE ; x++) begin

37

38 localparam bit [4:0] ACTIVE_PORTS = get_active_ports (y-1, x-1);

39

40 router #(

41 . X_COORD (x-1),

42 . Y_COORD (y-1)

43 )

44 router (

45 .clk(clk),

46 . arst_n ( arst_n ),

47 . packet_valid ( packet_valid [x][y]), // input

48 . n_reading ( read [x][y+1][ SOUTH ]),

49 . e_reading ( read [x+1][y][ WEST ]),

50 . w_reading ( read [x-1][y][ EAST ]),

51 . s_reading ( read [x][y-1][ NORTH ]),

52 . local_reading ( reading [x][y]),

53 . is_read ( read [x][y]), // input

54 . n_valid_out ( packet_valid [x][y+1][ SOUTH ]),

55 . e_valid_out ( packet_valid [x+1][y][ WEST ]),

56 . s_valid_out ( packet_valid [x][y-1][ NORTH ]),

57 . w_valid_out ( packet_valid [x-1][y][ EAST ]),

58 . local_valid_out ( router_valid [x][y]),

59 . downstream ( downstream [x][y]), // input

60

61 . n_up ( downstream [x][y+1][ SOUTH ]),

62 . e_up ( downstream [x+1][y][ WEST ]),
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63 . s_up ( downstream [x][y-1][ NORTH ]),

64 . w_up ( downstream [x-1][y][ EAST ]),

65 . local_up ( router_out [x][y])

66 );

67

68 assign downstream [x][y][ LOCAL ] = router_in [x][y];

69

70 if (! ACTIVE_PORTS [ EAST ]) begin

71 dummy_node

72 dummy (

73 . w_up ( downstream [x][y][ EAST ]),

74 . w_valid_out ( packet_valid [x][y][ EAST ]),

75 . is_reading_w ( read [x][y][ EAST ])

76 );

77 end

78

79 if (! ACTIVE_PORTS [ NORTH ]) begin

80 dummy_node

81 dummy (

82 . s_up ( downstream [x][y][ NORTH ]),

83 . s_valid_out ( packet_valid [x][y][ NORTH ]),

84 . is_reading_s ( read [x][y][ NORTH ])

85 );

86 end

87

88 if (! ACTIVE_PORTS [ WEST ]) begin

89 dummy_node

90 dummy (

91 . e_up ( downstream [x][y][ WEST ]),

92 . e_valid_out ( packet_valid [x][y][ WEST ]),

93 . is_reading_e ( read [x][y][ WEST ])

94 );

95 end

96

97 if (! ACTIVE_PORTS [ SOUTH ]) begin

98 dummy_node

99 dummy (

100 . n_up ( downstream [x][y][ SOUTH ]),

101 . n_valid_out ( packet_valid [x][y][ SOUTH ]),

102 . is_reading_n ( read [x][y][ SOUTH ])

103 );
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104 end

105

106

107

108 PE #( . X_COORD (x-1),

109 . Y_COORD (y-1)

110 )

111 PE(

112 .clk(clk),

113 . arst_n ( arst_n ),

114 . read ( reading [x][y]),

115 . dummy_sel ( dummy_sel ),

116 . dummy_in ( dummy_in ),

117 . dummy_out ( dummy_mem_out ),

118 . reading ( read [x][y][ LOCAL ]),

119 . vld_in ( router_valid [x][y]),

120 . vld_out ( packet_valid [x][y][ LOCAL ]),

121 .din( router_out [x][y]),

122 . dout ( router_in [x][y]),

123 . done ( done [x][y])

124 );

125 end

126 end

127

128 endgenerate

129

130 function bit [4:0] get_active_ports (int y, int x);

131 bit [4:0] active_ports ;

132 active_ports [ LOCAL ] = 1;

133 active_ports [ EAST ] = (x < MESH_SIZE -1) ? 1 : 0;

134 active_ports [ NORTH ] = (y < MESH_SIZE -1) ? 1 : 0;

135 active_ports [ WEST ] = (x > 0 ) ? 1 : 0;

136 active_ports [ SOUTH ] = (y > 0 ) ? 1 : 0;

137 return active_ports ;

138 endfunction

139

140 endmodule

content/Code/RTL/RR_arbiter.sv
1 import my_pkg ::*;
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2

3 module RR_arbiter

4 (

5 input logic clk, arst_n ,

6 // input update_priority ,

7 input logic [4:0] requests ,

8 input logic req_satisfied ,

9 output logic [4:0] grant ,

10 output logic conflict // only to gather metrics via TB

11 );

12

13 logic [2:0] pointer_next = 0;

14 logic [4:0] req_shifted ;

15 logic [4:0] grant_shifted ;

16 logic [9:0] req_shifted_double , gr_shifted_double ;

17 logic conflict_q ;

18 assign conflict = conflict_q ;

19

20 always_comb begin

21 case ( requests )

22 5'b00000 : conflict_q = 1'b0 ;

23 5'b00001 : conflict_q = 1'b0 ;

24 5'b00010 : conflict_q = 1'b0 ;

25 5'b00100 : conflict_q = 1'b0 ;

26 5'b01000 : conflict_q = 1'b0 ;

27 5'b10000 : conflict_q = 1'b0 ;

28 default : conflict_q = 1'b1 ;

29 endcase

30 end

31

32 always @( posedge clk or negedge arst_n ) begin

33 if( arst_n == 0 || pointer_next >= 5)

34 pointer_next = 0;

35 else if( grant != {1'b0 , 1'b0 , 1'b0 , 1'b0 , 1'b0} /* && req_satisfied == 1*/)

begin

36 if( grant == 5'b00001 ) pointer_next = 3'b001 ;

37 if( grant == 5'b00010 ) pointer_next = 3'b010 ;

38 if( grant == 5'b00100 ) pointer_next = 3'b011 ;

39 if( grant == 5'b01000 ) pointer_next = 3'b100 ;

40 if( grant == 5'b10000 ) pointer_next = 3'b000 ;

41 end
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42

43 end

44

45 // rotating the requesters :

46 assign req_shifted_double = { requests , requests } >> pointer_next ;

47 assign req_shifted = req_shifted_double [4:0];

48

49 // assigning the grant :

50 assign grant_shifted [0] = req_shifted [0];

51 assign grant_shifted [1] = ∼req_shifted [0] & req_shifted [1];

52 assign grant_shifted [2] = ∼req_shifted [0] & ∼req_shifted [1] & req_shifted [2];

53 assign grant_shifted [3] = ∼req_shifted [0] & ∼req_shifted [1] & ∼req_shifted [2]

& req_shifted [3];

54 assign grant_shifted [4] = ∼req_shifted [0] & ∼req_shifted [1] & ∼req_shifted [2]

& ∼req_shifted [3] & req_shifted [4];

55

56 assign gr_shifted_double = { grant_shifted , grant_shifted } << pointer_next ;

57 assign grant = gr_shifted_double [9:5];

58

59 endmodule

content/Code/RTL/router.sv
1 import my_pkg ::*;

2

3 module router #(

4 parameter int X_COORD = 0,

5 parameter int Y_COORD = 0

6 )

7 (

8 input logic clk, arst_n ,

9 input logic is_read [0:4],

10 input logic packet_valid [0:4],

11

12 output signed [ PACKET_LENGTH - 1:0] n_up ,

13 output signed [ PACKET_LENGTH - 1:0] s_up ,

14 output signed [ PACKET_LENGTH - 1:0] w_up ,

15 output signed [ PACKET_LENGTH - 1:0] e_up ,

16 output signed [ PACKET_LENGTH - 1:0] local_up ,

17

18 input signed [ PACKET_LENGTH - 1:0] downstream [0:4],
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19

20 output logic n_valid_out , w_valid_out , s_valid_out , e_valid_out ,

local_valid_out ,

21 output logic n_reading , w_reading , s_reading , e_reading , local_reading

22 );

23

24 logic is_reading [0:4];

25 assign local_reading = is_reading [ LOCAL ];

26 assign e_reading = is_reading [ EAST ];

27 assign n_reading = is_reading [ NORTH ];

28 assign w_reading = is_reading [ WEST ];

29 assign s_reading = is_reading [ SOUTH ];

30

31 logic signed [ PACKET_LENGTH - 1:0] n_out ;

32 logic signed [ PACKET_LENGTH - 1:0] s_out ;

33 logic signed [ PACKET_LENGTH - 1:0] w_out ;

34 logic signed [ PACKET_LENGTH - 1:0] e_out ;

35 logic signed [ PACKET_LENGTH - 1:0] local_out ;

36

37 logic valid_out [0:4];

38 logic valid_input_block [0:4];

39 logic is_read_reg [0:4];

40 logic is_read_input_block [0:4];

41

42 logic [4:0] req_source [0:4]; // requests of each input port

43 logic [4:0] req_dest [0:4]; // requests to the arbiter of each output port

44 logic [4:0] grant [0:4];

45 logic arb_conflict [0:4];

46 logic router_conflict ;

47 logic signed [ PACKET_LENGTH - 1 : 0] to_switch [0:4];

48

49 assign router_conflict = arb_conflict [0] || arb_conflict [1] || arb_conflict [2]

|| arb_conflict [3] || arb_conflict [4];

50

51 router_input #(. X_COORD ( X_COORD ), . Y_COORD ( Y_COORD ))

52 local_input (

53 .clk(clk),

54 . arst_n ( arst_n ),

55 . to_switch ( to_switch [ LOCAL ]),

56 . packet_valid ( packet_valid [ LOCAL ]),

57 . is_reading ( is_reading [ LOCAL ]),
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58 . is_read ( is_read_input_block [ LOCAL ]),

59 . valid_out ( valid_input_block [ LOCAL ]),

60 . down ( downstream [ LOCAL ]),

61 . port_request ( req_source [ LOCAL ])

62 );

63

64 router_input #(. X_COORD ( X_COORD ), . Y_COORD ( Y_COORD ))

65 north_input (

66 .clk(clk),

67 . arst_n ( arst_n ),

68 . packet_valid ( packet_valid [ NORTH ]),

69 . is_reading ( is_reading [ NORTH ]),

70 . is_read ( is_read_input_block [ NORTH ]),

71 . to_switch ( to_switch [ NORTH ]),

72 . valid_out ( valid_input_block [ NORTH ]),

73 . down ( downstream [ NORTH ]),

74 . port_request ( req_source [ NORTH ])

75 );

76

77 router_input #(. X_COORD ( X_COORD ), . Y_COORD ( Y_COORD ))

78 west_input (

79 .clk(clk),

80 . arst_n ( arst_n ),

81 . to_switch ( to_switch [ WEST ]),

82 . packet_valid ( packet_valid [ WEST ]),

83 . is_reading ( is_reading [ WEST ]),

84 . is_read ( is_read_input_block [ WEST ]),

85 . valid_out ( valid_input_block [ WEST ]),

86 . down ( downstream [ WEST ]),

87 . port_request ( req_source [ WEST ])

88 );

89

90 router_input #(. X_COORD ( X_COORD ), . Y_COORD ( Y_COORD ))

91 south_input (

92 .clk(clk),

93 . arst_n ( arst_n ),

94 . to_switch ( to_switch [ SOUTH ]),

95 . packet_valid ( packet_valid [ SOUTH ]),

96 . is_reading ( is_reading [ SOUTH ]),

97 . is_read ( is_read_input_block [ SOUTH ]),

98 . valid_out ( valid_input_block [ SOUTH ]),
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99 . down ( downstream [ SOUTH ]),

100 . port_request ( req_source [ SOUTH ])

101 );

102

103 router_input #( . X_COORD ( X_COORD ), . Y_COORD ( Y_COORD ))

104 east_input (

105 .clk(clk),

106 . arst_n ( arst_n ),

107 . to_switch ( to_switch [ EAST ]),

108 . packet_valid ( packet_valid [ EAST ]),

109 . is_reading ( is_reading [ EAST ]),

110 . is_read ( is_read_input_block [ EAST ]),

111 . valid_out ( valid_input_block [ EAST ]),

112 . down ( downstream [ EAST ]),

113 . port_request ( req_source [ EAST ])

114 );

115

116 always_comb begin

117 for ( integer i = 0; i < 5; i++) begin

118 req_dest [i] = { req_source [ SOUTH ][i], req_source [ WEST ][i], req_source [

NORTH ][i], req_source [ EAST ][i], req_source [ LOCAL ][i]};

119 end

120 end

121

122 RR_arbiter local_arb (

123 .clk(clk),

124 . arst_n ( arst_n ),

125 . requests ( req_dest [ LOCAL ]),

126 . req_satisfied ( is_read [ LOCAL ]),

127 . conflict ( arb_conflict [ LOCAL ]),

128 . grant ( grant [ LOCAL ]));

129

130 RR_arbiter east_arb (

131 .clk(clk),

132 . arst_n ( arst_n ),

133 . requests ( req_dest [ EAST ]),

134 . req_satisfied ( is_read [ EAST ]),

135 . conflict ( arb_conflict [ EAST ]),

136 . grant ( grant [ EAST ]));

137

138 RR_arbiter north_arb (
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139 .clk(clk),

140 . arst_n ( arst_n ),

141 . requests ( req_dest [ NORTH ]),

142 . req_satisfied ( is_read [ NORTH ]),

143 . conflict ( arb_conflict [ NORTH ]),

144 . grant ( grant [ NORTH ]));

145

146 RR_arbiter south_arb (

147 .clk(clk),

148 . arst_n ( arst_n ),

149 . requests ( req_dest [ SOUTH ]),

150 . req_satisfied ( is_read [ SOUTH ]),

151 . conflict ( arb_conflict [ SOUTH ]),

152 . grant ( grant [ SOUTH ]));

153

154 RR_arbiter west_arb (

155 .clk(clk),

156 . arst_n ( arst_n ),

157 . requests ( req_dest [ WEST ]),

158 . req_satisfied ( is_read [ WEST ]),

159 . conflict ( arb_conflict [ WEST ]),

160 . grant ( grant [ WEST ]));

161

162 assign n_valid_out = valid_out [ NORTH ];

163 assign s_valid_out = valid_out [ SOUTH ];

164 assign w_valid_out = valid_out [ WEST ];

165 assign e_valid_out = valid_out [ EAST ];

166 assign local_valid_out = valid_out [ LOCAL ];

167

168

169

170 always_comb begin

171 is_read_input_block = {1'b0 , 1'b0 , 1'b0 , 1'b0 , 1'b0};

172 local_out = 0;

173 n_out = 0;

174 e_out = 0;

175 w_out = 0;

176 s_out = 0;

177 valid_out = {1'b0 , 1'b0 , 1'b0 , 1'b0 , 1'b0};

178

179 // local output :
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180 case ( grant [ LOCAL ])

181 NORTH_REQ : begin

182 local_out = to_switch [ NORTH ];

183 valid_out [ LOCAL ] = valid_input_block [ NORTH ];

184 is_read_input_block [ NORTH ] = is_read [ LOCAL ];

185 end

186 EAST_REQ : begin

187 local_out = to_switch [ EAST ];

188 valid_out [ LOCAL ] = valid_input_block [ EAST ];

189 is_read_input_block [ EAST ] = is_read [ LOCAL ];

190 end

191 SOUTH_REQ : begin

192 local_out = to_switch [ SOUTH ];

193 valid_out [ LOCAL ] = valid_input_block [ SOUTH ];

194 is_read_input_block [ SOUTH ] = is_read [ LOCAL ];

195 end

196 WEST_REQ : begin

197 local_out = to_switch [ WEST ];

198 valid_out [ LOCAL ] = valid_input_block [ WEST ];

199 is_read_input_block [ WEST ] = is_read [ LOCAL ];

200 end

201 NO_REQ : begin

202 valid_out [ LOCAL ] = 0;

203 end

204 endcase

205

206 // north :

207 case ( grant [ NORTH ])

208 LOCAL_REQ : begin

209 n_out = to_switch [ LOCAL ];

210 valid_out [ NORTH ] = valid_input_block [ LOCAL ];

211 is_read_input_block [ LOCAL ] = is_read [ NORTH ];

212 end

213 EAST_REQ : begin

214 n_out = to_switch [ EAST ];

215 valid_out [ NORTH ] = valid_input_block [ EAST ];

216 is_read_input_block [ EAST ] = is_read [ NORTH ];

217 end

218 SOUTH_REQ : begin

219 n_out = to_switch [ SOUTH ];

220 valid_out [ NORTH ] = valid_input_block [ SOUTH ];
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221 is_read_input_block [ SOUTH ] = is_read [ NORTH ];

222 end

223 WEST_REQ : begin

224 n_out = to_switch [ WEST ];

225 valid_out [ NORTH ] = valid_input_block [ WEST ];

226 is_read_input_block [ WEST ] = is_read [ NORTH ];

227 end

228 NO_REQ : begin

229 valid_out [ NORTH ] = 0;

230 end

231 endcase

232

233 // east

234 case ( grant [ EAST ])

235 LOCAL_REQ : begin

236 e_out = to_switch [ LOCAL ];

237 valid_out [ EAST ] = valid_input_block [ LOCAL ];

238 is_read_input_block [ LOCAL ] = is_read [ EAST ];

239 end

240 NORTH_REQ : begin

241 e_out = to_switch [ NORTH ];

242 valid_out [ EAST ] = valid_input_block [ NORTH ];

243 is_read_input_block [ NORTH ] = is_read [ EAST ];

244 end

245 SOUTH_REQ : begin

246 e_out = to_switch [ SOUTH ];

247 valid_out [ EAST ] = valid_input_block [ SOUTH ];

248 is_read_input_block [ SOUTH ] = is_read [ EAST ];

249 end

250 WEST_REQ : begin

251 e_out = to_switch [ WEST ];

252 valid_out [ EAST ] = valid_input_block [ WEST ];

253 is_read_input_block [ WEST ] = is_read [ EAST ];

254 end

255 NO_REQ : begin

256 valid_out [ EAST ] = 0;

257 end

258 endcase

259

260 // south

261 case ( grant [ SOUTH ])
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262 LOCAL_REQ : begin

263 s_out = to_switch [ LOCAL ];

264 valid_out [ SOUTH ] = valid_input_block [ LOCAL ];

265 is_read_input_block [ LOCAL ] = is_read [ SOUTH ];

266 end

267 NORTH_REQ : begin

268 s_out = to_switch [ NORTH ];

269 valid_out [ SOUTH ] = valid_input_block [ NORTH ];

270 is_read_input_block [ NORTH ] = is_read [ SOUTH ];

271 end

272 EAST_REQ : begin

273 s_out = to_switch [ EAST ];

274 valid_out [ SOUTH ] = valid_input_block [ EAST ];

275 is_read_input_block [ EAST ] = is_read [ SOUTH ];

276 end

277 WEST_REQ : begin

278 s_out = to_switch [ WEST ];

279 valid_out [ SOUTH ] = valid_input_block [ WEST ];

280 is_read_input_block [ WEST ] = is_read [ SOUTH ];

281 end

282 NO_REQ : begin

283 valid_out [ SOUTH ] = 0;

284 end

285 endcase

286

287 // west

288 case ( grant [ WEST ])

289 LOCAL_REQ : begin

290 w_out = to_switch [ LOCAL ];

291 valid_out [ WEST ] = valid_input_block [ LOCAL ];

292 is_read_input_block [ LOCAL ] = is_read [ WEST ];

293 end

294 NORTH_REQ : begin

295 w_out = to_switch [ NORTH ];

296 valid_out [ WEST ] = valid_input_block [ NORTH ];

297 is_read_input_block [ NORTH ] = is_read [ WEST ];

298 end

299 SOUTH_REQ : begin

300 w_out = to_switch [ SOUTH ];

301 valid_out [ WEST ] = valid_input_block [ SOUTH ];

302 is_read_input_block [ SOUTH ] = is_read [ WEST ];
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303 end

304 EAST_REQ : begin

305 w_out = to_switch [ EAST ];

306 valid_out [ WEST ] = valid_input_block [ EAST ];

307 is_read_input_block [ EAST ] = is_read [ WEST ];

308 end

309 NO_REQ : begin

310 valid_out [ WEST ] = 0;

311 end

312 endcase

313 end

314

315 assign local_up = local_out ;

316 assign n_up = n_out ;

317 assign e_up = e_out ;

318 assign w_up = w_out ;

319 assign s_up = s_out ;

320 // assign is_read_reg = is_read ;

321

322 endmodule
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Simulation

content/Code/SIM/NoC_tb.sv
1 import my_pkg ::*;

2

3 module NoC_tb #(

4 parameter string INS_PATH = "/ users / students / r0875167 / Dataset /soc - Slashdot /

10_10 / imem_content /",

5 parameter string DATA_PATH = "/ users / students / r0875167 / Dataset /soc - Slashdot /

10_10 / dmem_content /",

6 parameter string REF_FILE = "/ users / students / r0875167 / Dataset /soc - Slashdot /

10_10 / reference_values .txt",

7 parameter string REPORT_FILE = "/ users / students / r0875167 /GNN -on - server /GNN -

accelerator / generated_reports /SIM/wslashdot -w/ 10_10_unpart .txt"

8 )

9 ();

10

11 logic arst_n , clk;

12

13 NoC

14 DUT(

15 . arst_n ( arst_n ),

16 .clk(clk)

17 );

18

19 // logic [ VECTOR_LENGTH -1:0] reference [0 : NODE_NO -1];
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20 // logic [ VECTOR_LENGTH -1:0] mem_content [0 : PE_NUMBER * MEM_HEIGHT -1];

21 // logic [ VECTOR_LENGTH -1:0] results [0 : NODE_NO -1];

22 logic [0: PE_NUMBER -1] pe_stall ;

23 logic [0: PE_NUMBER -1] conflicts ;

24 logic done_signal [1: MESH_SIZE ][1: MESH_SIZE ];

25

26 int index ;

27 // initial $readmemb (REF_FILE , reference );

28

29 // assign results vector :

30 genvar x,y,i;

31 /*

32 generate

33 for(y=1; y <= MESH_SIZE ; y++) begin

34 for(x=1; x <= MESH_SIZE ; x++) begin

35 for(i=0; i< MEM_HEIGHT ; i++) begin

36 localparam index = i + MEM_HEIGHT *(x-1) + MESH_SIZE * MEM_HEIGHT

*(y-1);

37 assign mem_content [ index ] = DUT. genblk1 [y]. genblk1 [x]. PE.

memory_2 .data[i];

38 // initial $display (" index =%d, x=%d, y=%d", index , x, y);

39 end

40 end

41 end

42 endgenerate

43 */

44

45 generate

46 for(y=1; y<= MESH_SIZE ; y++) begin

47 for(x=1; x<= MESH_SIZE ; x++) begin

48 assign done_signal [x][y] = DUT. done [x][y];

49 localparam index = x-1 + MESH_SIZE *(y-1);

50 assign pe_stall [ index ] = DUT. genblk1 [y]. genblk1 [x].PE. pc_stall ;

51 assign conflicts [ index ] = DUT. genblk1 [y]. genblk1 [x]. router .

router_conflict ;

52 end

53 end

54 endgenerate

55

56 // populate data memories :

57 generate
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58 for(y=1; y<= MESH_SIZE ; y++) begin

59 for(x=1; x<= MESH_SIZE ; x++) begin

60 string DATA_FILE , INS_FILE ;

61

62 initial begin

63 automatic string x_str = "";

64 automatic string y_str = "";

65 x_str . itoa (x-1);

66 y_str . itoa (y-1);

67 DATA_FILE = { DATA_PATH , "PE_", x_str , "_", y_str , ".txt"};

68 INS_FILE = { INS_PATH , "PE_", x_str , "_", y_str , ".txt"};

69 end

70

71 initial begin

72 $readmemb ( DATA_FILE , DUT. genblk1 [y]. genblk1 [x].PE. memory_1 .

data);

73 $readmemb ( INS_FILE , DUT. genblk1 [y]. genblk1 [x].PE.

instruction_mem . data);

74 end

75 end

76 end

77 endgenerate

78

79 int cycles_no = 0;

80 real stall_perc [0: PE_NUMBER -1] = '{ PE_NUMBER {0}};

81 int stall_cc [0: PE_NUMBER -1] = '{ PE_NUMBER {0}};

82 int conflicts_cc [0: PE_NUMBER -1] = '{ PE_NUMBER {0}};

83 int errors = 0;

84

85 initial begin

86 clk = 1;

87 wait_and_check ();

88 generate_reports ();

89 $finish ;

90 end

91

92 initial begin

93 arst_n = 0;

94 #3

95 arst_n = 1;

96 end
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97

98

99 int exec_finished [1: MESH_SIZE ][1: MESH_SIZE ];

100 always begin

101 #5

102 clk = !clk;

103 cycles_no ++;

104 foreach ( pe_stall [i]) begin

105 if( pe_stall [i]) begin

106 stall_cc [i] = stall_cc [i] + 1;

107 end

108 end

109 foreach ( conflicts [i]) begin

110 if( conflicts [i]) begin

111 conflicts_cc [i] = conflicts_cc [i] + 1;

112 end

113 end

114 for(int y=1; y<= MESH_SIZE ; y++) begin

115 for(int x=1; x<= MESH_SIZE ; x++) begin

116 if( done_signal [x][y]== 1'b1 && exec_finished [x][y]==0) begin

117 exec_finished [x][y] = cycles_no ;

118 end

119 end

120 end

121 end

122

123

124

125 task wait_and_check ();

126 automatic int index = 0;

127 automatic int j = 0;

128 begin

129 wait (DUT. layer_finished );

130

131 for(int y=1; y<= MESH_SIZE ; y++) begin

132 for(int x=1; x<= MESH_SIZE ; x++) begin

133 if( exec_finished [x][y]==0) begin

134 exec_finished [x][y] = cycles_no ;

135 end

136 end

137 end
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138

139 foreach ( stall_perc [i]) begin

140 stall_perc [i] = real' ( stall_cc [i])/ real' ( cycles_no );

141 end

142 /*

143 foreach ( mem_content [ index ]) begin

144 if( mem_content [ index ] !== 'x) begin

145 results [j] = mem_content [ index ];

146 j++;

147 // $display (" index %d", index );

148 // $display ("j %d", j);

149 end

150 end

151

152

153 for(int i=0; i< NODE_NO ; i++) begin

154 if( reference [i] !== results [i] || results [i] === 'x) begin

155 // $display (" Error at PE [%d][%d], address %d", x, y, i);

156 errors = errors + 1;

157 end

158 end

159 */

160 $display (" Layer finished in %d cycles ", cycles_no );

161 $display ("%d errors found ", errors );

162 end

163 endtask

164

165 task generate_reports ();

166 int fd;

167 begin

168 fd = $fopen ( REPORT_FILE , "w");

169 $fdisplay (fd, " PARAMETERS :\ nNODE_NO = %6d\ nFEATURE_SIZE = %3d\ nMESH =

%3d X%3d\nNOT PARTITIONED ", NODE_NO , FEATURES , MESH_SIZE , MESH_SIZE );

170 $fdisplay (fd, " Error #: %d", errors );

171 $fdisplay (fd, " Execution CC #: %d", cycles_no );

172 $fdisplay (fd, " Stall perc. for each PE:");

173 for(int y = 0; y < MESH_SIZE ; y++) begin

174 for(int x = 0; x < MESH_SIZE ; x++) begin

175 $fdisplay (fd, "[% 2d ][% 2d ]: %. 3f", x, y, stall_perc [x+ MESH_SIZE

*y]);

176 end
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177 end

178 $fdisplay (fd, "\ nConflicts for each router :");

179 for(int y = 0; y < MESH_SIZE ; y++) begin

180 for(int x = 0; x < MESH_SIZE ; x++) begin

181 $fdisplay (fd, "[% 2d ][% 2d ]: %d", x, y, conflicts_cc [x+ MESH_SIZE

*y]);

182 end

183 end

184 $fdisplay (fd, "\ nExecution cycles :");

185 for(int y = 1; y <= MESH_SIZE ; y++) begin

186 for(int x = 1; x <= MESH_SIZE ; x++) begin

187 $fdisplay (fd, "[% 2d ][% 2d ]: %d", x, y, exec_finished [x][y]);

188 end

189 end

190 $fclose (fd);

191 end

192 endtask

193

194 endmodule
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Scripts

content/Code/SCRIPT/partition_graph.py
1 impor t networkx as nx
2 impor t s y s
3 impor t nxmet i s as mts
4

5 d e f p a r t i t i o n ( edge_f , p a r t i t i o n _ n o ) :
6 #graph c r e a t i o n
7 G = nx . r e a d _ e d g e l i s t ( edge_f )
8 opt = mts . Met i sOpt ions ( c o n t i g =0, c c o r d e r =1, compress =1)
9 ( edge_cuts , subgraphs ) = mts . p a r t i t i o n (G, p a r t i t i o n _ n o , o p t i o n s=opt )

10 r e t u r n ( edge_cuts , subgraphs )
11

12 d e f f ind_2d ( t a r g e t , l s t _ 2 d ) :
13 pos = 0
14 f o r i , l s t i n enumerate ( l s t _ 2 d ) :
15 f o r j , e l ement i n enumerate ( l s t ) :
16 i f i n t ( e l ement ) == i n t ( t a r g e t ) :
17 r e t u r n ( i , j , pos )
18 pos = pos+1
19 r e t u r n ( None , None , None )
20

21 d e f c r e a t e _ d i c t ( l s t ) :
22 pos = 0
23 r e t _ d i c = {}
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24 f o r i , subg i n enumerate ( l s t ) :
25 f o r j , e l ement i n enumerate ( subg ) :
26 r e t _ d i c [ e l ement ] = ( i , j , pos )
27 pos = pos+1
28 r e t u r n r e t _ d i c

content/Code/SCRIPT/generate_mem_content.py
1 impor t s y s
2 impor t snap
3 impor t random
4 impor t math
5 impor t os
6 impor t t ime
7 impor t p a r t i t i o n _ g r a p h as p a r t
8

9 i f ( l e n ( s y s . a rgv ) < 5) :
10 p r i n t ( " Need arguments : f i l e name , data width , f e a t u r e s i z e , PE number " )
11 e x i t ( )
12

13 f i l e n a m e = s y s . a rgv [ 1 ]
14 data_width = i n t ( s y s . a rgv [ 2 ] )
15 f e a t _ s i z e = i n t ( s y s . a rgv [ 3 ] )
16 mesh_s ize = math . s q r t ( i n t ( s y s . a rgv [ 4 ] ) )
17 pe_no = i n t ( s y s . a rgv [ 4 ] )
18 run_name = s t r ( i n t ( mesh_s ize ) ) + "_" + s t r ( i n t ( mesh_s ize ) )
19

20 i f ( pe_no == 1) :
21 c o o r d _ b i t s = 1
22 e l s e :
23 c o o r d _ b i t s = math . c e i l ( math . l o g ( mesh_size , 2 ) )
24

25 i f ( l e n ( s y s . a rgv ) > 5 and s y s . a rgv [ 5 ] == "−v " ) :
26 v e r b o s e = 1
27 e l s e :
28 v e r b o s e = 0
29

30 i f ( v e r b o s e ) :
31 p r i n t ( s t r ( mem_size ) + " −> memory s i z e \n" )
32 p r i n t ( s t r ( mesh_s ize ) + " −> mesh s i z e \n" )
33 p r i n t ( s t r ( c o o r d _ b i t s ) + " −> coord b i t s \n" )
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34

35

36

37 p r i n t ( " A c q u i r i n g graph . . . " )
38 graph = snap . LoadEdgeL i s t ( snap . TUNGraph , f i l e n a m e , 0 , 1)
39 p r i n t ( " Graph a c q u i r e d . " )
40 p r i n t ( " P a r t i t i o n i n g graph . . . " )
41 ( cut_no , subgraphs ) = p a r t . p a r t i t i o n ( f i l e n a m e , pe_no )
42 p r i n t ( " Graph p a r t i t i o n i n g done " )
43

44 mem_size = math . c e i l ( graph . GetNodes ( ) /pe_no )
45

46 max_size = 0
47 f o r i i n range ( l e n ( subgraphs ) ) :
48 i f ( max_size < l e n ( subgraphs [ i ] ) ) :
49 max_size = l e n ( subgraphs [ i ] )
50

51 p r i n t ( "Max subgraph s i z e i s " + s t r ( max_size ) )
52 a d d r _ b i t s = math . c e i l ( math . l o g ( max_size , 2 ) )
53

54 g raph_d i c t = p a r t . c r e a t e _ d i c t ( subgraphs )
55 #p r i n t ( g raph_d i c t )
56

57 g l o b a l _ n e i g h = [ ]
58 node_Ids = [ ]
59

60 f e a t _ f i l e = open ( " f e a t u r e s . t x t " , "w" )
61 a d d r _ f i l e = open ( " a d d r e s s e s . t x t " , "w" )
62

63 i n d e x = 0
64 x_coord = 0
65 y_coord = 0
66

67 #os . system (" rm . / dmem_content /∗ . t x t " )
68 #f i l e = open ( " . / dmem_content/PE [ 0 ] [ 0 ] . t x t " )
69

70

71 i d _ l i s t = [ ]
72 a d d r _ l i s t = [ ]
73 f e a t u r e _ l i s t = [ ]
74
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75 f e a t _ f i l e . w r i t e ( " ∗0 ,0\ n" )
76 f o r NI i n graph . Nodes ( ) :
77 #g e n e r a t e random f e a t u r e v e c t o r :
78 f e a t u r e _ v e c t o r = " " ;
79 f o r i i n range ( f e a t _ s i z e ∗ data_width ) :
80 temp = s t r ( random . r a n d i n t ( 0 , 1 ) )
81 f e a t u r e _ v e c t o r += temp
82 f e a t _ f i l e . w r i t e ( s t r ( hex ( i n t ( f e a t u r e _ v e c t o r , 2 ) ) ) [ 2 : ] + "\n" )
83 f e a t u r e _ l i s t . append ( f e a t u r e _ v e c t o r )
84

85 #g e n e r a t e a d d r e s s f o r the f r a t u r e v e c t o r :
86 i f ( i n d e x == mem_size ) :
87 #p r i n t (" x = " + s t r ( x_coord ) )
88 #p r i n t (" y = " + s t r ( y_coord ) )
89 i n d e x = 0
90 i f ( x_coord < mesh_size −1) :
91 x_coord = x_coord + 1
92 f e a t _ f i l e . w r i t e ( "∗" + s t r ( x_coord ) + " , " + s t r ( y_coord ) + "\n" )
93 e l i f ( y_coord < mesh_size −1) :
94 x_coord = 0
95 y_coord = y_coord + 1
96 f e a t _ f i l e . w r i t e ( "∗" + s t r ( x_coord ) + " , " + s t r ( y_coord ) + "\n" )
97 e l s e :
98 p r i n t ( " Not enough memory" )
99 a d d r _ f i l e . c l o s e ( )

100 f e a t _ f i l e . c l o s e ( )
101 e x i t ( )
102

103 x _ s t r i n g = s t r ( fo rmat ( x_coord , "b" ) . z f i l l ( c o o r d _ b i t s ) )
104 y _ s t r i n g = s t r ( fo rmat ( y_coord , "b" ) . z f i l l ( c o o r d _ b i t s ) )
105 a d d r e s s = x _ s t r i n g + y _ s t r i n g + s t r ( fo rmat ( index , "b" ) . z f i l l ( a d d r _ b i t s ) )
106 a d d r _ f i l e . w r i t e ( a d d r e s s + "\n" )
107

108 i d _ l i s t . append ( NI . Get Id ( ) )
109 a d d r _ l i s t . append ( a d d r e s s )
110

111 i n d e x = i n d e x + 1
112

113

114

115 os . system ( "rm " + run_name + "/ imem_content /∗ . t x t " )
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116 os . system ( "rm " + run_name + "/dmem_content /∗ . t x t " )
117 os . system ( "rm " + run_name + "/ imem_par t i t i oned /∗ . t x t " )
118 os . system ( "rm " + run_name + "/ dmem_part i t ioned /∗ . t x t " )
119 os . system ( "rm " + run_name + "/ r e f e r e n c e _ p a r t i t i o n e d . t x t " )
120 os . system ( "rm " + run_name + "/ r e f e r e n c e _ v a l u e s . t x t " )
121 i n s t _ f i l e = open ( run_name + "/ imem_content /PE_0_0 . t x t " , "w" )
122 f _ f i l e = open ( run_name + "/dmem_content/PE_0_0 . t x t " , "w" )
123 r e f _ f i l e = open ( run_name + "/ r e f e r e n c e _ v a l u e s . t x t " , "w" )
124 p a r t _ f i l e = open ( run_name + "/ dmem_part i t ioned /PE_0_0 . t x t " , "w" )
125 i n s _ p a r t _ f i l e = open ( run_name + "/ imem_par t i t i oned /PE_0_0 . t x t " , "w" )
126 r e f _ p a r t _ f i l e = open ( run_name + "/ r e f e r e n c e _ p a r t i t i o n e d . t x t " , "w" )
127 x_coord = 0
128 y_coord = 0
129 i n d e x = 0
130 aggr_ idx = 0
131 sub_order = [ ]
132 r e f e r e n c e _ l i s t = [ ]
133 node_counter = 0
134 s t a r t _ t i m e = t ime . t ime ( )
135 unpart_edge_cut = 0
136

137 f o r NI i n graph . Nodes ( ) :
138 #f o r NI i n nodes :
139 #g e n e r a t e a d d r e s s f o r the f e a t u r e v e c t o r and open r i g h t i n s t r u c t i o n f i l e :
140 i f ( i n d e x == mem_size ) :
141 i n d e x = 0
142 i f ( x_coord < mesh_size −1) :
143 x_coord = x_coord + 1
144 #p r i n t (" x = " + s t r ( x_coord ) )
145

146 i n s t _ f i l e . c l o s e ( )
147 f _ f i l e . c l o s e ( )
148 i n s t _ f i l e = open ( run_name + "/ imem_content /PE_" + s t r ( x_coord ) + "_"↘

+ s t r ( y_coord ) + " . t x t " , "w" )
149 f _ f i l e = open ( run_name + "/dmem_content/PE_" + s t r ( x_coord ) + "_" + ↘

s t r ( y_coord ) + " . t x t " , "w" )
150 e l i f ( y_coord < mesh_size −1) :
151 x_coord = 0
152 y_coord = y_coord + 1
153 #p r i n t (" y = " + s t r ( y_coord ) )
154 #stop i n s t r u c t i o n
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155 i n s t _ f i l e . w r i t e ( " 111 " )
156 f o r l i n range ( a d d r _ b i t s + 2∗ c o o r d _ b i t s ) :
157 i n s t _ f i l e . w r i t e ( "0" )
158 i n s t _ f i l e . w r i t e ( " //STOP\n" )
159 i n s t _ f i l e . c l o s e ( )
160 f _ f i l e . c l o s e ( )
161 i n s t _ f i l e = open ( run_name + "/ imem_content /PE_" + s t r ( x_coord ) + "_"↘

+ s t r ( y_coord ) + " . t x t " , "w" )
162 f _ f i l e = open ( run_name + "/dmem_content/PE_" + s t r ( x_coord ) + "_" + ↘

s t r ( y_coord ) + " . t x t " , "w" )
163

164

165 x _ s t r i n g = s t r ( fo rmat ( x_coord , "b" ) . z f i l l ( c o o r d _ b i t s ) )
166 y _ s t r i n g = s t r ( fo rmat ( y_coord , "b" ) . z f i l l ( c o o r d _ b i t s ) )
167 a d d r e s s = x _ s t r i n g + y _ s t r i n g + s t r ( fo rmat ( index , "b" ) . z f i l l ( a d d r _ b i t s ) )
168

169 #output the f e a t u r e s to the f i l e
170 f e a t _ i n d e x = i n t ( i n d e x + mem_size∗ x_coord + mesh_s ize ∗mem_size∗ y_coord )
171 f _ f i l e . w r i t e ( s t r ( f e a t u r e _ l i s t [ f e a t _ i n d e x ] ) + "\n" )
172

173 #l o a d node to PE
174 i n s t _ f i l e . w r i t e ( " 010 " + a d d r e s s + " // l o a d node \n" )
175

176 #w r i t e node i n t o c o r r e c t p a r t i t i o n e d f i l e s :
177 p a r t _ f i l e . c l o s e ( )
178 i n s _ p a r t _ f i l e . c l o s e ( )
179 ( sub_no , el_no , p o s i t i o n ) = graph_d i c t [ s t r ( NI . Get Id ( ) ) ]
180 part_x = i n t ( sub_no % mesh_s ize )
181 part_y = math . f l o o r ( sub_no/ mesh_s ize )
182

183 sub_order . append ( p o s i t i o n ) #o r d e r the nodes a r e l oaded to the PEs ( needed to↘

g e n e r a t e r e f e r e n c e v a l u e s )
184

185 #DEBUG
186 #p r i n t ( s t r ( NI . Get Id ( ) ) + " −> pos : " + s t r ( p o s i t i o n ) )
187 #p r i n t (" pos = " + s t r ( p o s i t i o n ) )
188 #p r i n t ( sub_order )
189 #p r i n t (" sub : " + s t r ( sub_no ) + "\ tn : " + s t r ( e l_no ) )
190 #p r i n t (" x : " + s t r ( part_x ) + "\ ty : " + s t r ( part_y ) )
191

70



Scripts

192 p a r t _ f i l e = open ( run_name + "/ dmem_part i t ioned /PE_" + s t r ( part_x ) + "_" + ↘

s t r ( part_y ) + " . t x t " , " a " )
193 i n s _ p a r t _ f i l e = open ( run_name + "/ imem_par t i t i oned /PE_" + s t r ( part_x ) + "_" ↘

+ s t r ( part_y ) + " . t x t " , " a " )
194 p a r t _ f i l e . w r i t e ( s t r ( f e a t u r e _ l i s t [ f e a t _ i n d e x ] + "\n" ) )
195 x _ s t r i n g = s t r ( fo rmat ( part_x , "b" ) . z f i l l ( c o o r d _ b i t s ) )
196 y _ s t r i n g = s t r ( fo rmat ( part_y , "b" ) . z f i l l ( c o o r d _ b i t s ) )
197 addr_part_base = x _ s t r i n g + y _ s t r i n g + s t r ( fo rmat ( el_no , "b" ) . z f i l l ( a d d r _ b i t s ↘

) )
198 i n s _ p a r t _ f i l e . w r i t e ( " 010 " + addr_part_base + " // l o a d node \n" )
199

200 i n d e x = i n d e x + 1
201

202 #c r e a t e a l i s t w i th each f e a t u r e as e l ement s
203 base_node = [ ]
204 f o r i i n range (0 , f e a t _ s i z e ∗ data_width , data_width ) :
205 base_node . append ( i n t ( f e a t u r e _ l i s t [ f e a t _ i n d e x ] [ i : i+data_width ] , 2 ) )
206

207 #g e n e r a t e r e f e r e n c e v a l u e s
208 i f ( v e r b o s e ) :
209 p r i n t ( "Now a g g r e g a t i n g : " )
210 p r i n t ( s t r ( f e a t u r e _ l i s t [ aggr_ idx ] ) + " " )
211 p r i n t ( s t r ( base_node ) + "\n" )
212

213 #accumulate w i th 0
214 i n s t _ f i l e . w r i t e ( " 100 " )
215 f o r l i n range ( a d d r _ b i t s + 2∗ c o o r d _ b i t s ) :
216 i n s t _ f i l e . w r i t e ( "0" )
217 i n s t _ f i l e . w r i t e ( " // accumulate 0\n" )
218

219 i n s _ p a r t _ f i l e . w r i t e ( " 100 " )
220 f o r l i n range ( a d d r _ b i t s + 2∗ c o o r d _ b i t s ) :
221 i n s _ p a r t _ f i l e . w r i t e ( "0" )
222 i n s _ p a r t _ f i l e . w r i t e ( " // accumulate 0\n" )
223

224

225 agg r ega t ed = base_node
226 f o r I d i n NI . GetOutEdges ( ) :
227 i d _ i n d e x = i d _ l i s t . i n d e x ( I d ) #f o r u n p a r t i t i o n e d
228

229 ( sub_no , el_no , ne igh_pos ) = graph_d i c t [ s t r ( I d ) ]
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230 part_x = i n t ( sub_no % mesh_s ize )
231 part_y = math . f l o o r ( sub_no/ mesh_s ize )
232 x _ s t r i n g _ p a r t = s t r ( fo rmat ( part_x , "b" ) . z f i l l ( c o o r d _ b i t s ) )
233 y _ s t r i n g _ p a r t = s t r ( fo rmat ( part_y , "b" ) . z f i l l ( c o o r d _ b i t s ) )
234 addr_par t = x _ s t r i n g _ p a r t + y _ s t r i n g _ p a r t + s t r ( fo rmat ( el_no , "b" ) . z f i l l (↘

a d d r _ b i t s ) )
235

236 i n s _ p a r t _ f i l e . w r i t e ( " 010 " + addr_par t + " // l o a d node ( ne i ghbou r ) \n" )
237

238 n e i gh _a dd r e s s = a d d r _ l i s t [ i d _ i n d e x ]
239 i n s t _ f i l e . w r i t e ( " 010 " + ne i g h_ a dd r e s s + " // l o a d node ( ne i ghbou r ) \n" ) #↘

l o a d ne i ghbou r to PE
240

241 #c r e a t e the ne i ghbou r l i s t w i th each f e a t u r e as e l ement s
242 neigh_node = [ ]
243 f o r i i n range (0 , f e a t _ s i z e ∗ data_width , data_width ) :
244 neigh_node . append ( i n t ( f e a t u r e _ l i s t [ i d _ i n d e x ] [ i : i+data_width ] , 2 ) )
245

246 i f ( v e r b o s e ) :
247 p r i n t ( s t r ( f e a t u r e _ l i s t [ i d _ i n d e x ] ) + " " )
248 p r i n t ( s t r ( ne igh_node ) + "\n" )
249

250 #accumulate i n t e r n a l
251 i n s t _ f i l e . w r i t e ( " 110 " )
252 f o r l i n range ( a d d r _ b i t s + 2∗ c o o r d _ b i t s ) :
253 i n s t _ f i l e . w r i t e ( "0" )
254 i n s t _ f i l e . w r i t e ( " // accumulate i n t e r n a l \n" )
255

256 i n s _ p a r t _ f i l e . w r i t e ( " 110 " )
257 f o r l i n range ( a d d r _ b i t s + 2∗ c o o r d _ b i t s ) :
258 i n s _ p a r t _ f i l e . w r i t e ( "0" )
259 i n s _ p a r t _ f i l e . w r i t e ( " // accumulate i n t e r n a l \n" )
260

261 #update r e f e r e n c e v a l u e s
262 #p r i n t (" a g g r e g a t i n g f . v . : " + s t r ( agg r ega t ed ) + " + " + s t r ( i n t (↘

f e a t u r e _ l i s t [ i d _ i n d e x ] , 2 ) ) + " = ")
263 f o r i i n range ( f e a t _ s i z e ) :
264 agg r ega t ed [ i ] = agg rega t ed [ i ] + neigh_node [ i ]
265

266 #DEBUG
267 #i f ( NI . Get Id ( ) == 0) :
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268 # s t = ""
269 # p r i n t ( I d )
270 # p r i n t ( ne igh_node )
271 # f o r i i n range ( f e a t _ s i z e ) :
272 # s t = s t r ( b i n ( agg r ega t ed [ i ] ) ) [ 2 : ]
273 # p r i n t ( hex ( agg r ega t ed [ i ] ) )
274 # i f l e n ( s t ) < data_width :
275 # s t = s t + s t . z f i l l ( data_width )
276 # e l s e :
277 # s t = s t + s t [− data_width : ]
278 #p r i n t ( I d )
279 #p r i n t ( hex ( i n t ( s t , 2 ) ) )
280

281 #p r i n t ( s t r ( f e a t u r e _ l i s t [ i d _ i n d e x ] ) + "\n ")
282

283 #p r i n t a g g r e g a t i o n r e s u l t s to r e f e r e n c e f i l e
284 node_counter = node_counter + 1
285 i f ( node_counter%500 == 0) :
286 end_time = t ime . t ime ( )
287 e l a p s e d = end_time−s t a r t _ t i m e
288 s t a r t _ t i m e = t ime . t ime ( )
289 p r i n t ( " [ " + s t r ( i n t ( mesh_s ize ) ) + " x " + s t r ( i n t ( mesh_s ize ) ) + " ] : " + ↘

s t r ( node_counter ) + " nodes p r o c e s s e d . . . ( l a s t 500 nodes i n " + s t r ( i n t (↘

e l a p s e d ) ) + " s ) " )
290

291 r e f _ s t r i n g = " "
292 r e s u l t _ s t r i n g = " "
293 f o r i i n range ( f e a t _ s i z e ) :
294 r e s u l t _ s t r i n g = s t r ( b i n ( agg r ega t ed [ i ] ) ) [ 2 : ]
295 i f l e n ( r e s u l t _ s t r i n g ) < data_width :
296 r e f _ s t r i n g = r e f _ s t r i n g + r e s u l t _ s t r i n g . z f i l l ( data_width )
297 e l s e :
298 r e f _ s t r i n g = r e f _ s t r i n g + r e s u l t _ s t r i n g [− data_width : ]
299

300 r e f _ f i l e . w r i t e ( r e f _ s t r i n g + "\n" )
301 r e f e r e n c e _ l i s t . append ( r e f _ s t r i n g )
302

303 i f ( v e r b o s e ) :
304 p r i n t ( " R e s u l t : " + r e f _ s t r i n g + " " )
305

306 i n s t _ f i l e . w r i t e ( " 001 " + a d d r e s s + " // s t o r e r e s u l t \n" ) #s t o r e

73



Scripts

307 i n s _ p a r t _ f i l e . w r i t e ( " 001 " + addr_part_base + " // s t o r e r e s u l t \n" ) #s t o r e
308

309

310 aggr_ idx = aggr_ idx + 1
311

312 #f o r i i n sub_order :
313 # r e f _ p a r t _ f i l e . w r i t e ( r e f e r e n c e _ l i s t [ i ] + "\n ")
314

315

316 s o r t e d _ z i p p e d = s o r t e d ( z i p ( sub_order , r e f e r e n c e _ l i s t ) ) #r e o r d e r r e f . v a l u e s
317 f o r tup i n s o r t e d _ z i p p e d :
318 r e f _ p a r t _ f i l e . w r i t e ( tup [ 1 ] + "\n" ) #w r i t e to r e f _ p a r t f i l e o n l y the r e f . ↘

v a l u e
319

320

321 i n s t _ f i l e . c l o s e ( )
322 f o r x i n range ( i n t ( mesh_s ize ) ) :
323 f o r y i n range ( i n t ( mesh_s ize ) ) :
324 i n s t _ f i l e = open ( run_name + "/ imem_content /PE_" + s t r ( x ) + "_" + s t r ( y ) ↘

+ " . t x t " , " a " )
325 i n s _ p a r t _ f i l e = open ( run_name + "/ imem_par t i t i oned /PE_" + s t r ( x ) + "_" +↘

s t r ( y ) + " . t x t " , " a " )
326 #stop i n s t r u c t i o n
327 i n s t _ f i l e . w r i t e ( " 111 " )
328 i n s _ p a r t _ f i l e . w r i t e ( " 111 " )
329 f o r l i n range ( a d d r _ b i t s + 2∗ c o o r d _ b i t s ) :
330 i n s t _ f i l e . w r i t e ( "0" )
331 i n s _ p a r t _ f i l e . w r i t e ( "0" )
332 i n s t _ f i l e . w r i t e ( " //STOP\n" )
333 i n s _ p a r t _ f i l e . w r i t e ( " //STOP\n" )
334

335 max_l ines = 0
336 f o r x i n range ( i n t ( mesh_s ize ) ) :
337 f o r y i n range ( i n t ( mesh_s ize ) ) :
338 i n s t _ f i l e . c l o s e ( )
339 i n s _ p a r t _ f i l e . c l o s e ( )
340 num_lines_normal = sum(1 f o r l i n e i n open ( run_name + "/ imem_content /PE_"↘

+ s t r ( x ) + "_" + s t r ( y ) + " . t x t " ) )
341 num_l ines_part = sum(1 f o r l i n e i n open ( run_name + "/ imem_par t i t i oned /↘

PE_" + s t r ( x ) + "_" + s t r ( y ) + " . t x t " ) )
342 i f ( num_l ines_normal > max_l ines ) :
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343 max_l ines = num_lines_normal
344 i f ( num_l ines_part > max_l ines ) :
345 max_l ines = num_l ines_part
346

347 edges = 0
348 unpart_edge_cut = 0
349 f o r EI i n graph . Edges ( ) :
350 N1 = EI . GetSrcNId ( )
351 N2 = EI . GetDstNId ( )
352 edges = edges+1
353 i f ( math . f l o o r (N1/mem_size ) != math . f l o o r (N2/mem_size ) ) :
354 unpart_edge_cut = unpart_edge_cut + 1
355

356 p r i n t ( "DONE: " + s t r ( l e n ( i d _ l i s t ) ) + " nodes " )
357 d i m _ f i l e=open ( run_name + "/ d i m e n s i o n s . t x t " , "w" )
358 d i m _ f i l e . w r i t e ( " Tota l edge−cut f o r the UNPARTITIONED graph i s \ t " + s t r (↘

unpart_edge_cut ) + "\n" )
359 d i m _ f i l e . w r i t e ( " Tota l edge−cut f o r the PARTITIONED graph i s \ t " + s t r ( cut_no ) + "↘

\n" )
360 d i m _ f i l e . w r i t e ( s t r ( l e n ( i d _ l i s t ) ) + " nodes \n" )
361 d i m _ f i l e . w r i t e ( s t r ( edges ) + " edges \n" )
362 d i m _ f i l e . w r i t e ( " I n s t r u c t i o n memory h e i g h t must be at l e a s t " + s t r ( max_l ines ) + ↘

"\n" )
363 d i m _ f i l e . w r i t e ( "DMEM must be " + s t r ( max_size ) + "\n" )
364 f o r i i n range ( l e n ( subgraphs ) ) :
365 d i m _ f i l e . w r i t e ( " Subgraph " + s t r ( i ) + " has s i z e " + s t r ( l e n ( subgraphs [ i ] ) ) ↘

+ "\n" )
366 p r i n t ( " I n s t r u c t i o n memory h e i g h t must be at l e a s t " + s t r ( max_l ines ) )
367

368 #DEBUG
369 #p r i n t ( subg raphs )
370 #p r i n t ( sub_order )
371 #p r i n t ( s o r t e d ( z i p ( sub_order , l i s t ( range (17) ) ) ) )
372 #p r i n t ( s o r t e d ( z i p ( sub_order , r e f e r e n c e _ l i s t ) ) )
373 #( n , e lno , t e s t_pos ) = p a r t . f ind_2d (944 , subgraphs )
374 #p r i n t (" n = " + s t r ( n ) + " e l# = " + s t r ( e l n o ) )
375

376

377 d i m _ f i l e . c l o s e ( )
378 i n s _ p a r t _ f i l e . c l o s e ( )
379 r e f _ p a r t _ f i l e . c l o s e ( )
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380 p a r t _ f i l e . c l o s e ( )
381 r e f _ f i l e . c l o s e ( )
382 i n s t _ f i l e . c l o s e ( )
383 a d d r _ f i l e . c l o s e ( )
384 f e a t _ f i l e . c l o s e ( )
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