
Politecnico di Torino

Master’s Degree in Mechatronic Engineering
Control Technologies for Industry 4.0

A.Y. 2022/2023
Degree Session April 2023

Self-Driving Cars: Nonlinear MPC for Steering,
Throttle and Brake Control

Perpendicular Parking Manoeuvres

Supervisor

Prof. Stefano Alberto MALAN

Candidate

Gianmarco PICARIELLO

Summary

Vehicles, since their invention, have undergone countless changes, ranging from
advancements in aerodynamics, construction and internal components, and more
recently in their degree of autonomy, even if the development of the first Automated
Driving System (ADS) can be traced back to the 1920s. However, it is crucial to
differentiate between automated and fully automated vehicles, with the former being
designed to operate autonomously for a specific time period, while still requiring
driver intervention, and the latter being designed to operate without any driver
supervision. The Society of Automotive Engineers (SAE) in their “6 Levels of
Automation” offers a comprehensive overview and classification of autonomous
vehicles, ranging from level 0, no driving automation, to level 5, fully driving
automation, which achievement is made possible by also a correct use and fusion of
data of the on-board sensors. The successful implementation of Advanced Driver
Assistance System (ADAS), thus of the autonomous driving in general terms, will
not only offer benefits in terms of road safety and time-saving, but also improvement
of infrastructures.

With the always more and more increasing demand for secure and efficient mo-
bility, many organizations and scholars are dedicated to advancing the technology
of autonomous driving. A notable competition in this field is the Bosch Future
Mobility Challenge (BFMC), held by the Bosch Engineering Centre Cluj, that aims
at fostering creativity and innovation, besides raising awareness on the potential
of these emerging technologies. The BFMC invites student teams from across the
world to develop autonomous driving algorithms for a 1:10 scale vehicle provided by
the organizers. Among the algorithms required to be developed, the autonomous
parking algorithm serves as the main motivation behind this thesis work, which
delves into exploring and improving the knowledge and awareness of autonomous
driving and parking. The topic of autonomous parking can be categorized into
semi-autonomous and fully autonomous parking, with the former referring to auto-
mated vehicles, where the driver can stop the manoeuvre and regain control of the
vehicle. In contrast, with fully autonomous Parking Assist (PA), the driver choice
is limited to whether they prefer to assist the manoeuvre inside or outside the car.

ii

Several control strategies are available in the literature for developing an au-
tonomous parking algorithm, one of which involves the Model Predictive Con-
trol (MPC), along with its variants that are well-suited for nonlinear systems,
namely the Nonlinear Model Predictive Control (NMPC) and its derivative, the
Multistage NMPC (msNMPC). The vehicle model derivation forms the backbone
of these algorithms and the vehicle kinematic single-track model is particularly
suited for this task due to low speeds at which the manoeuvre is performed.

Therefore, this Master’s Thesis examines the design and simulation of three
control strategies for autonomous parking manoeuvres in perpendicular parking
scenarios, using the Nonlinear Model Predictive Control algorithm. Inspired by
the examples provided by The MathWorks, Inc. for parallel parking applications,
the strategies are:

• Perpendicular Parking using Nonlinear Model Predictive Control.

• Perpendicular Parking using Multistage Nonlinear Model Predictive Control.

• Perpendicular Parking using RRT* Planner and NMPC Tracking Controller.

These manoeuvres address a likely real-case scenario: the backward motion, as
illustrated by the blue line in Figure 1.

Figure 1: Perpendicular Parking Environment in MATLAB®.

Each case study is comprehensively covered from the MATLAB® functions
used, to the simulation results. The first case study uses a Nonlinear Model Pre-
dictive Control to optimize the vehicle trajectory based on a predictive model of
its dynamics. The second case study uses the extension of NMPC, the Multistage
NMPC, which allows for the use of more accurate nonlinear models for prediction
over longer horizons. The third case study combines optimized Rapidly-exploring

iii

Random Tree (RRT*) path planning combined with NMPC tracking controller,
using a probabilistic algorithm to generate a feasible trajectory of the vehicle. A
comparison between the different approaches and their evaluation against a real-life
scenario is also carried out.

The results showed that all the three approaches could achieve successful per-
pendicular parking manoeuvres, with some differences in terms of execution time
and computational complexity. The msNMPC approach showed the best overall
performance, with the shortest execution time and the most stable control output,
besides of being more close to the reality. However, the choice of the best method
will depend on the specific requirements and constraints of the application since
each approach has its advantages and limitations like in the first and third case-
study where the steering angle δ saturates at ±45 deg which is relatively large and
unsuitable for most normal driving situations, but this is necessary to achieve a
sharp turn to navigate the 90-degree curve (Fig. 1) and reach the parking spot.

iv

Acknowledgements

“If you do not believe in yourself,
no one will do it for you.”

Kobe Bryant

v

Table of Contents

List of Tables x

List of Figures xi

Acronyms xiv

1 Introduction 1
1.1 The 6 Levels of Vehicle Autonomy 3
1.2 Required Sensors in Autonomous Vehicles 5
1.3 Benefits of Autonomous Vehicles . 7
1.4 Thesis Outline . 10

2 The Bosch Future Mobility Challenge 2022 12
2.1 The Competition . 12
2.2 The Car-Kit . 16
2.3 The Project . 18

2.3.1 Competition Documentation and First Steps 18
2.3.2 The Brain Project . 19
2.3.3 The Embedded Project . 19
2.3.4 The GitHub Repository . 19

2.4 The Structure behind the Algorithms 20

3 Autonomous Parking 22
3.1 State of the Art . 23
3.2 Autonomous Parking @ BFMC22 25

3.2.1 The TF-Luna LiDAR Sensor 28
3.2.2 The HC-SR04 Ultrasonic Sensor Module 29

4 Vehicle Model Derivation 32
4.1 Vehicle Longitudinal Model . 32

4.1.1 Longitudinal Vehicle Dynamics 33

vii

4.1.2 Driveline Dynamics . 37
4.2 Vehicle Lateral Model . 42

4.2.1 Kinematic Model of Vehicle Lateral Motion 42
4.2.2 Single-Track Model of Lateral Vehicle Dynamics 46

4.3 Ego Vehicle Model for NMPC . 50

5 Model Predictive Control 52
5.1 Introduction . 52

5.1.1 MPC Pipeline . 54
5.1.2 Design Parameters . 54

5.2 Applications in the Autonomous Driving 57
5.3 Types of MPC . 59

5.3.1 Linear MPC . 59
5.3.2 Nonlinear MPC . 62
5.3.3 Multistage Nonlinear MPC 66

6 Perpendicular Parking: Software Implementation 69
6.1 Perpendicular Parking using Nonlinear MPC 69

6.1.1 Parking Environment . 70
6.1.2 Ego Vehicle Definition . 72
6.1.3 Design the Nonlinear Model Predictive Controller 74
6.1.4 Controller Simulation in MATLAB® 78

6.2 Perpendicular Parking using Multistage Nonlinear MPC 83
6.2.1 Vehicle Path Planner System Block Configuration 84
6.2.2 Controller Simulation in MATLAB® and Simulink® . . . 86

6.3 Perpendicular Parking using RRT* Planner and NMPC Tracking
Controller . 91
6.3.1 Trajectory Planning and the RRT, RRT* Algorithms 91
6.3.2 Path Planning from RRT* in MATLAB® 93
6.3.3 Design of the NMPC Tracking Controller 94
6.3.4 Controller Simulation in MATLAB® 95

7 Conclusion 99

A Autonomous Parking Algorithm @ BFMC22 101

B helperSLVisualizeParking.m 103

C parkingVehicleStateFcn.m 106

D parkingCostFcn.m 107

viii

E parkingIneqConFcn.m 108

F Nonlinear Model Predictive Controller 110

G analyseParkingResults.m 112

H runParkingAndPlot.m 113

I plotAndAnimateParking.m 114

J Perpendicular Parking with Multistage NMPC 116

K Perpendicular Parking using RRT* and NMPC 119

L parkingStateValidator.m 121

Bibliography 124

ix

List of Tables

3.1 Parameters Specification of the TF-Luna LiDAR Sensor. 29
3.2 Parameters Specification of the HC-SR04 Ultrasonic Sensor Module. 31

6.1 Relevant Dimensions of the Parking Scenario. 71
6.2 Default Dimensions of the Ego Vehicle. 74
6.3 CS 1: NMPC Design Parameters Values. 76
6.4 CS 1 (Trials 1 to 4): Values for the Weight Matrices Rp, Qt and Rt. 78
6.5 CS 1 (Trials 1 to 4): Tuning of the Process Weight Matrices. 78
6.6 CS 1 (Trials 1 to 4): Comparison of Parking Results Analysis. . . . 79
6.7 CS 1 (Trials 5 to 9): Tuning of the Terminal Weight Matrices. . . . 80
6.8 CS 1 (Trials 10 to 13): Tuning of the Terminal Weight Matrices. . . 81
6.9 CS 1 (Trial 12): Parking Results Analysis. 81
6.10 CS 2 (Trials 1 to 4): Loosening of the Speed Bounds. 87
6.11 CS 2 (Trials 1 to 4): Comparison of Parking Results Analysis. . . . 88
6.12 CS 2 (Trial 5): Parking Results Analysis. 88
6.13 CS 2 (Trial 6): Parking Results Analysis. 89
6.14 CS 3: NMPC Tracking Controller Design Parameters Values. 94
6.15 CS 3: Parking Results Analysis. 95

x

List of Figures

1 Perpendicular Parking Environment in MATLAB®. iii

1.1 SAE J3016 Levels of Driving Automation. 4
1.2 Graphical Representation of the Six Levels of Driving Automation. 5
1.3 ADAS General Block Diagram. 5
1.4 ADAS and Related Sensors. 7
1.5 Benefits of Self-Driving in the EU. 10

2.1 Test Track. 14
2.2 Timeline. 15
2.3 Best New Participating Team Award. 16
2.4 The Car-Kit. 17
2.5 Website Layout of the Shared Documentation. 18
2.6 Team PoliTron’s Complete Project Architecture. 21

3.1 Audi Parking System Plus. 23
3.2 PA General Block Diagram. 24
3.3 Parallel Parking Scenario @ BFMC22. 26
3.4 BFMC22 Competition Track with Nodes. 27
3.5 Schematics of the ToF Principle. 28
3.6 Pin-out of the HC-SR04 Ultrasonic Sensor Module. 30

4.1 Longitudinal Forces acting on a Vehicle driving on an Inclined Road. 33
4.2 Calculation of the Normal Tyre Loads. 36
4.3 Transmission System Layout for the 3 Different Types of Drive. . . 37
4.4 Power Flow and Loads in the Driveline. 38
4.5 I/O Schematic of a Torque Converter Model. 39
4.6 I/O Schematic of a Transmission Model. 39
4.7 I/O Schematic of an Engine Inertia Model. 41
4.8 I/O Schematic of a Wheel Inertia Dynamics Model. 41
4.9 Kinematics of Lateral Vehicle Motion. 42
4.10 Ackermann Turning Geometry. 45

xi

4.11 Differential Steer from a Trapezoidal Tie-Rod Arrangement. 46
4.12 Lateral Vehicle Dynamics. 47
4.13 Tyre Slip Angle. 48
4.14 Sign Convention for the Banking Angle ϕ. 50

5.1 Concepts and Parameters constituting the MPC Problem. 56

6.1 Perpendicular Parking Environment in MATLAB®. 70
6.2 Parking Environment Dimensions. 72
6.3 Vehicle Dimensions stored in the vehicleDimensions Object. . . . 73
6.4 CS 1: Ego Vehicle Behaviour at the End of Trial 4. 79
6.5 CS 1: Ego Vehicle Behaviour at the End of Trial 9. 80
6.6 CS 1: Valid Result at Trial 12. 81
6.7 CS 1: Behaviour of the Ego Vehicle States at Trial 12. 82
6.8 CS 1: Behaviour of the Ego Vehicle Control Inputs at Trial 12. . . . 83
6.9 VPP System Block as per The MathWorks, Inc. Documentation. . . 83
6.10 VPP Simulink® Model. 84
6.11 VPP System Block Parameters. 85
6.12 msNMPC Controller Model. 85
6.13 CS 2: Ego Vehicle Behaviour at the End of Trial 3. 88
6.14 CS 2: Valid Result at Trial 6. 89
6.15 CS 2: Behaviour of the Ego Vehicle States at Trial 6. 90
6.16 CS 2: Behaviour of the Ego Vehicle Control Inputs at Trial 6. . . . 90
6.17 CS 3: Tree Expansion and Trajectory Generation in the Parking

Environment. 94
6.18 CS 3: Ego Vehicle Behaviour at the End of the Simulation. 96
6.19 CS 3: Goodness of the NMPC Tracking Controller. 96
6.20 CS 3: Behaviour of the Ego Vehicle States. 97
6.21 CS 3: Behaviour of the Ego Vehicle Control Inputs. 97

xii

Acronyms

ABS
Anti-Lock Brake System

ACC
Adaptive Cruise Control

AD
Autonomous Driving

ADAS
Advanced Driver Assistance System

ADS
Automated Driving System

AI
Artificial Intelligence

ALV
Autonomous Land Vehicle

API
Application Programming Interface

AR
Augmented Reality

AWD
All-Wheel Drive

BFMC
Bosch Future Mobility Challenge

xiv

CAS
Collision Avoidance System

CC
Cruise Control

CCW
counterclockwise

CoG
Center of Gravity

CPU
Central Processing Unit

CS
Case-Study

CSI
Camera Serial Interface

CTE
Cross-Tracking Error

CV
Control Variable

CW
clockwise

DARPA
Defense Advanced Research Projects Agency

DDT
Dynamic Driving Task

DOF
Degree of Freedom

EBS
Emergency Braking System

xv

ECU
Electronic Control Unit

ERSO
European Road Safety Observatory

EU
European Union

EV
Electric Vehicle

FoV
Field of View

FWD
Front-Wheel Drive

GPIO
General Purpose Input/Output

GPS
Global Positioning System

HEV
Hybrid Electric Vehicle

ICE
Internal Combustion Engine

ICR
Instantaneous Center of Rotation

IMU
Inertial Measurement Unit

I/O
Input-Output

xvi

ISO
International Organization for Standardization

LED
Light-Emitting Diode

LFC
Lane-Following Control

LiDAR
Light imaging, Detection, and Ranging

LiPo
Lithium-ion polymer

LKA
Lane-Keeping Assist

LTI
Linear Time Invariant

MIMO
Multiple-Input Multiple-Output

MPC
Model Predictive Control

msNMPC
Multistage NMPC

MV
Manipulated Variable

NIR
Near-Infrared

NMPC
Nonlinear Model Predictive Control

xvii

OA
Obstacle Avoidance

PA
Parking Assist

PID
Proportional-Integral-Derivative

RADAR
Radio Detection and Ranging

ROS
Robot Operating System

RPi
Raspberry Pi

RRT
Rapidly-exploring Random Tree

RRT*

optimized Rapidly-exploring Random Tree

RWD
Rear-Wheel Drive

SAE
Society of Automotive Engineers

SiP
System in Package

SISO
Single-Input Single-Output

SoC
System on Chip

xviii

TCS
Traction Control System

TF
Transfer Function

ToF
Time of Flight

TTL
Transistor-Transistor Logic

V2X
Vehicle-to-Everything

VPP
Vehicle Path Planner

WHO
World Health Organization

xix

Chapter 1

Introduction

Vehicles are the most important mean of transportation for people and/or
cargoes. Land vehicles are classified by what is used to apply steering and drive
force against ground: wheeled, tracked, railed or skied. ISO 3833-1977 is the in-
ternational standard used in legislation, for road vehicle types, terms and definitions.

Since their invention back in 1886 thanks to Karl Benz who patented the three-
wheeled motor car (Motorwagen) – even if Nicolas-Joseph Cugnot is often credited
as the father of the first self-propelled mechanical vehicle or automobile (1769) –
automobiles (and all their components) have withstood daily improvements bring-
ing to what we see today.

Experiments on Automated Driving System (ADS) have been conducted since
at least the 1920s, with the first trials in 1950s. The first semi-automated car was
developed in 1977, by Japan’s Tsukuba Mechanical Engineering Laboratory, which
required specially marked streets that were interpreted by two cameras on the
vehicle and an analogue computer.

A landmark autonomous car appeared in the 1980s with Carnegie Mellon Univer-
sity’s Navlab and ALV (Autonomous Land Vehicle) projects funded by the United
States’ DARPA (Defense Advanced Research Projects Agency) starting in 1984
and Mercedes-Benz and Bundeswehr University Munich’s EUREKA Prometheus
Project in 1987 [1].

In these last years the concept of autonomous vehicles has become more and
more predominant in our lives, especially in discussions in both the academic and
industrial environments. This is because the development and mass production of
self-driving cars has the potential to revolutionize the transportation mobility and
safety. Currently, motor vehicle operating laws, impaired driving laws, insurance

1

Introduction

laws and most other laws addressing the operation of vehicles in every country
are based on a significant assumption: the human driver is behind the wheel and
operates the vehicle. However, lawmakers around the world are considering the
development and a future diffusion of driverless cars, including how existing laws
and systems may need to be modified to facilitate the implementation of this new
technology since autonomous vehicles will transform the way we live, work and play
creating safer and more efficient roads. Yet, public opinion could see the results
and problems about this technology and seems to be divided by this upcoming
revolution in the mobility field.

Basically, an autonomous car is a vehicle able of sensing its environment and
operating without human intervention. A human passenger is not required to take
control of the vehicle at any time. He/She is neither required to be present in the
vehicle at all. Indeed, a self-driving car can go anywhere a traditional car goes and
do everything an experienced driver does.

The SAE (Society of Automotive Engineers) International currently defines 6
levels of driving automation spanning from Level 0 (fully manual) to Level 5 (fully
autonomous). The SAE uses the term automated instead of autonomous and one
reason is because the word autonomy has implications beyond the electromechanical.
A fully autonomous car would be self-aware and capable of making its own choices,
in fact the word autonomous means self-governing, while a fully automated car
would follow orders and then drive itself. Many historical projects related to vehicle
automation have been automated (i.e., made automatic) subject to a heavy reliance
on artificial aids in their environment, such as magnetic strips. Autonomous control
requires satisfactory performance under significant uncertainties in the environment
and the ability to compensate for system failures without external intervention [2].

In Europe, the words autonomous and automated might be used together:
Regulation (EU) 2019/2144 of the European Parliament and of the Council of
27 November 2019 [3] on type-approval requirements for motor vehicles defines
automated vehicle and fully automated vehicle based on their autonomous capacity:

• Automated vehicle: motor vehicle designed and constructed to move au-
tonomously for certain periods of time without continuous driver supervision
but in respect of which driver intervention is still expected or required.

• Fully automated vehicle: motor vehicle designed and constructed to move
autonomously without driver supervision.

However, the term self-driving is often used interchangeably with autonomous
even if they are slightly different because a self-driving car can drive itself in some

2

Introduction

or even all situations, but it requires the presence of a human passenger who
is ready to take control. For this reason, as it will be shown later, self-driving
cars fall under Level 3 (conditional driving automation) or Level 4 (high driving
automation). They are subject to geofencing, unlike a fully autonomous Level 5
car that could go anywhere.

Self-driving cars are ushering in a new era on the roads. For automated driving
to become reality, three key requirements must be met: The car must capture all
its surroundings (“sense”), process this information and plan a driving strategy
(“think”) and then implement it reliably and safely (“act”).

1.1 The 6 Levels of Vehicle Autonomy
The SAE International standard is the SAE J3016TM Recommended Practice:

Taxonomy and Definitions for Terms Related to Driving Autonomous Systems
for On-Road Motor Vehicle, commonly known as the SAE Levels of Driving
AutomationTM (Figure 1.1 [4]). In the context of motor vehicles and their opera-
tion on roadways, it defines the SAE Levels from Level 0 (No Driving Automation)
to Level 5 (Full Driving Automation), thus making it the industry’s most-cited
source for driving automation.

• Level 0 – No Driving Automation
Most today’s road vehicles belong to this level, i.e. manually controlled. The
driver provides the Dynamic Driving Task (DDT) although there may be
systems in place to help the driver like the EBS (Emergency Braking System),
since it technically does not drive the vehicle, it does not qualify as automation.

• Level 1 – Driver Assistance
Lowest level of automation – the vehicle features a single automated system
for driver assistance, such as steering or accelerating (Cruise Control, CC).
The Adaptive Cruise Control (ACC), where the vehicle can be kept at a safe
distance from the ahead car, qualifies as Level 1 because the driver monitors
other aspects of driving like steering and braking.

• Level 2 – Partial Driving Automation
ADAS – the vehicle can control both steering and accelerating/decelerating.
However, the driver can still take control of the car at any time. Tesla Autopilot
and Cadillac Super Cruise systems both qualify as Level 2.

• Level 3 – Conditional Driving Automation
The gap with the previous is substantial from a technological perspective
but negligible from a human perspective because what is added are just the

3

Introduction

Figure 1.1: SAE J3016 Levels of Driving Automation.

environmental detection capabilities allowing the vehicle to make informed
decisions for itself, such as accelerating past a slow-moving car. The driver
must yet remain alert and ready to take control if the system is unable to
execute the task.

• Level 4 – High Driving Automation
Vehicles belonging to this class can intervene if things go wrong or in case of
system malfunction. Thus, in most circumstances, these cars do not require
human interaction. However, the driver still can manually override. Level
4 vehicles can operate in self-driving mode only within limited areas (e.g.:
urban areas where top speeds reach an average of 50 km/h). This is known as
geofencing: most Level 4 vehicles in existence are geared toward ride-sharing.

• Level 5 – Full Driving Automation
Vehicles belonging to this class do not require human interaction, this implies
that the DDT is eliminated. These cars will not even have steering wheels and
pedals (throttle/braking) and are free from geofencing: they can go anywhere
and perform as experienced driver does. Fully autonomous cars are undergoing
testing in several locations of the world, but none is yet available to the market.

4

Introduction

Figure 1.2 [5] provides a graphical representation of the six levels of driving
automation where it is possible to see what exactly the driver can do at each level.

Figure 1.2: Graphical Representation of the Six Levels of Driving Automation.

1.2 Required Sensors in Autonomous Vehicles
Autonomous cars rely on sensors, actuators, machine learning algorithms and

much more. As mentioned previously, the three primary functions on which an
autonomous system is based are:

• Perception: sense the surrounding environment and define its representation.

• Decision: decide actions according to the analysis of the environment.

• Actuation: compute the action(s).

From these, the general block diagram of an ADAS (Figure 1.3) is derived:

Figure 1.3: ADAS General Block Diagram.

and where:

• Environment: it considers either the outer or the inner environment of the
vehicle since you cannot perceive the complete environment.

5

Introduction

• Sensor(s): the environment is perceived by sensors like LiDAR, RADAR,
camera.

• Perception: it performs the information extraction from data, a sensor data
fusion procedure is employed - take the data from multiple sensors and fuse
them together.

• Processing and Decision-making: it represents the brain of the ADAS
function, it takes as input the information coming from the perception block.

• Actuation: compute the action(s) like LED blinking, audio tones, braking,
accelerating.

All the sensors with which a vehicle is equipped, are helpful in accomplishing
the first task, i.e. perception. Indeed, an autonomous car creates and maintain
a map of the environment based on the sensors mounted in different parts of its
body. Sensors are mainly categorised in:

• Proprioceptive: sensors measuring the state of the car itself (Inertial Measure-
ment Unit (IMU); wheel encoders; etc.).

• Exteroceptive: sensors measuring the state of the environment (LiDARs;
RADARs; cameras; ultrasonic; etc.).

As the reader can imagine, the last category is the most important in Au-
tonomous Driving (AD) because these sensors provide a detailed description of the
surrounding environment. LiDARs bounce pulses of light off the car surroundings
to measure distances, detect road edges and identify lane markings. RADARs
monitor the position of nearby vehicles. Cameras detect traffic lights, read road
signs, track other vehicles and look for pedestrians. Ultrasonic sensors detect curbs
and others vehicle while parking.

Sophisticated software then processes all the sensor inputs, plots a path and
sends instructions to the actuators which control acceleration, braking and steering.
Hard-coded rules, obstacle avoidance algorithms, predictive modelling and object
recognition help the software follow traffic rules and navigate obstacles. Figure 1.41

gives a graphical overview on how the different sensors in a vehicle are used for the
different types of Advanced Driver Assistance System.

1Figure credits: https://www.insightsonindia.com/2016/11/30/insights-issues-autonomous-
vehicle-technology/.

6

https://www.insightsonindia.com/2016/11/30/insights-issues-autonomous-vehicle-technology/
https://www.insightsonindia.com/2016/11/30/insights-issues-autonomous-vehicle-technology/

Introduction

Figure 1.4: ADAS and Related Sensors.

1.3 Benefits of Autonomous Vehicles
All over the world, there are many people who spend a great amount of their

time driving and despite they want to do so quick and safe, in most countries the
one of the highest cause of death is due to car accidents. According to the WHO
(World Health Organization) [6], every year the lives of approximately 1.3 million
people are cut short as a result of a road traffic crash (in EU, in 2017 alone, 25300
people died on the Union’s road [7]) and between 20 and 50 million more people
suffer non-fatal injuries, with many incurring a disability.

Road traffic injuries cause considerable economic losses to individuals, their
families and to nations as a whole. Road traffic crashes cost most countries 3% of
their gross domestic product. Plus, in recent years it came out the environmental
problem. For this reason, scenarios for convenience and quality-of-life improvements
are limitless e.g.: elderly and physically disabled would have independence and
that is why in last years a lot of car companies around the world put (almost) all
their efforts in developing the ADAS and self-driving vehicles.

However, the real promise of autonomous cars is the potential for dramatically

7

Introduction

lowering CO2 emissions. Three trends that, if adopted concurrently, would unleash
the full potential of autonomous cars: vehicle automation, vehicle electrification
and ride-sharing. By 2050, these three could:

• Reduce traffic congestion (30% fewer vehicles on the road).

• Cut transportation costs by 40% (in terms of vehicles, fuel and infrastructure).

• Improve walkability and liveability.

• Free up parking lots for other uses (schools, parks, community centres).

• Reduce urban CO2 emissions by 80% worldwide [2].

Instead, the role of ADAS is to minimize and even cancel human errors (involved
in about 95% of all road traffic accidents in EU [8]) during driving which are the
main cause of vehicle accidents. Essential safety critical ADAS applications include:

• Pedestrian detection/avoidance.

• Lane departure warning/correction.

• Traffic sign recognition.

• Automatic emergency braking.

• Blind spot detection.

These lifesaving systems are key to the success of ADAS applications. They in-
corporate the latest interface standards and run multiple vision-based algorithms to
support real-time multimedia, vision co-processing and sensor fusion subsystems [9].

The modernization of ADAS applications is the first step toward realizing au-
tonomous vehicles. According to the ERSO (European Road Safety Observatory)
[10], ADAS can be defined as: “vehicle-based intelligent safety systems which could
improve road safety in terms of crash avoidance, crash severity mitigation and
protection and post-crash phases. ADAS can, indeed, be defined as integrated
in-vehicle or infrastructure based on systems which contribute to more than one of
these crash-phases”.

Automobiles are the foundation of the next generation of mobile-connected
devices, with rapid advances being made in autonomous vehicles. Autonomous
application solutions are partitioned into various chips: SoCs (System on Chips),
which connect sensors to actuators through interfaces and high-performance ECUs
(Electronic Control Units). Self-driving cars use a variety of these applications

8

Introduction

and technologies to gain 360-degree vision meaning that hardware designs are
using more advanced process nodes to meet ever-higher performance targets while
simultaneously reducing demands on power and footprint.

ADAS systems actively improve safety with the help of embedded vision by
reducing the occurrence of accidents and injury to occupants. The implementation
of cameras in the vehicle involves a new AI function that uses sensor fusion to
identify and process objects.

However, vehicle control is one of the most critical parts of the autonomous
driving vehicle architecture since it is responsible for both safety and comfort of
the vehicle.

The challenges of AD in the EU concern the followings [7] (Figure 1.5):

• Road Safety: self-driving vehicles will share the road with pedestrians,
bicycles and non-automated vehicles, thus adequate safety requirements and
traffic rules are essential.

• Liability Issues: EU liability laws need to evolve and clarify who is responsible
(i.e., the driver or the car company) in case of road traffic accidents since the
driving task is shifted from humans to AI.

• Data Processing: cybersecurity must be guaranteed and cyberattacks must
be prevented.

• Ethical Question: human dignity and freedom of choice must be respected
by self-driving vehicles. Thus, specific standards for AI are necessary (yet in
drafting).

• Infrastructure: investments in research and innovation are of vital impor-
tance to develop technologies and deploy necessary infrastructure.

9

Introduction

Figure 1.5: Benefits of Self-Driving in the EU.

1.4 Thesis Outline
As expounded previously, the autonomous car has three primary functions to

achieve. The perception and planning functions will be analysed in this final project
work. In particular, the lane detection and the RRT* algorithm for trajectory
computation will be considered. To this purpose, the object of this work is to
design a model predictive controller for autonomous driving vehicles in the scenario
of a parking manoeuvre.

What will be found later is hereby briefly reported:

• Chapter 2: the BOSCH Future Mobility Challenge is presented starting from

10

Introduction

the team selection process to the technical part in which algorithms will be
considered.

• Chapter 3: the autonomous parking case study is presented, explaining the
functions necessary to manage it.

• Chapter 4: the vehicle model is provided with its mathematical derivation.

• Chapter 5: the model predictive control method is introduced in its general
terms explaining its working principle with a brief review of its application in
the automotive industry followed by a focus on the computational problem of
the Model Predictive Control (MPC) and of the variants it has.

• Chapter 6: the software and hardware implementation are discussed with a
brief presentation of the engine used to realize the scenario.

• Chapter 7: the results and conclusions are given, retracting the aforementioned
steps of the implementation.

11

Chapter 2

The Bosch Future Mobility
Challenge 2022

This work has been realized based on the effort and the assignments performed
during the participation to the Bosch Future Mobility Challenge (BFMC), an
international autonomous driving and connectivity competition for Bachelor and
Master students [11] organized by the Bosch Engineering Centre Cluj since 2017.
Students team from all over the world are invited every year to develop autonomous
driving and connectivity algorithms on 1 : 10 scaled vehicles, provided by the
company, to navigate in a designated environment simulating a miniature smart
city. The students work on their projects in collaboration with Bosch experts and
academic professors for several months to develop the best-performing algorithms.

The author of this work has joined the challenge under the team PoliTron
composed by 4 other colleagues from the master’s degree program in Mechatronic
Engineering of the Polytechnic of Turin, with the guidance of the supervisor himself,
Professor Stefano Malan.

The job to carry out during the challenge, which lasts from November to May,
consists in developing the algorithms involved in the realization of the autonomous
car guide and implementing them into the received car, therefore it commits
both the software and the hardware parts. All in all, it is a real and complete
accomplishment of self-driving car.

2.1 The Competition
The competition requires that, in addition to the activities carried out by the

teams to achieve the final objective, participating teams send a monthly periodic

12

The Bosch Future Mobility Challenge 2022

status via the competition website containing the followings to show their progress
to the Bosch representatives:

• A technical report describing the development in the last sprint.

• A project plan alongside with the project architecture.

• A video file emphasizing with visual aid the contributions from the past
month activity (already present in the report and project plan).

During the competition, specifically in the middle of March, there is a preliminary
elimination round, the Mid-Season Quality Gate. Each participating team is
required to submit a video lasting no longer than 3 minutes in which the vehicle
completes the following series of tasks in a single autonomous run:

1. Lane keeping.

2. Intersection crossing.

3. Complete manoeuvre after the following signs:

3.1. Stop sign – the car must stop for at least 3 s.

3.2. Crosswalk sign - the car must visibly reduce the speed and if a pedestrian
is crossing, the car must stop.

3.3. Priority Road sign - act normal, you are on a priority road and any vehicle
coming from a non-priority road should stop.

3.4. Parking sign - it is found before and after a parking lot and, if empty, can
be used to perform the parking manoeuvre.

These tasks can be demonstrated by means of one of three possible alternatives:

• A video of the car performing the actions on a real-life like map.

• A video of the car in front of a Desktop, taking a video as a simulated input
and acting accordingly.

• A video of the car in front of a Desktop where the simulator is running, taking
as visual input the one from the camera inside the simulator.

The author’s team has chosen the first option, realizing physically the track
shown in Figure 2.1.

13

The Bosch Future Mobility Challenge 2022

Figure 2.1: Test Track.

Based on the videos, the jury will decide which teams possess the right skills
to continue the competition and to go to the Bosch Engineering Centre site in
Cluj-Napoca (Romania) for the final round: qualifications, semifinals and finals.

During the race period in Romania, the teams will have to face two challenges:
the technical and the speed one. The former requests that the car can correctly
respect most of the road signs, such as traffic signs, traffic lights, lanes, intersections,
ramps and roundabouts. Moreover, it must detect pedestrians and overtake other
cars present in the same lane. The latter asks the car to complete a determined

14

The Bosch Future Mobility Challenge 2022

path in the shortest time possible, this time respecting only the lanes and the road
markings. In addition to this, the teams will make a presentation in front of the jury.

Only a maximum of 8 teams will be selected to participate to the final race, in
which the first 3 qualified teams will win both a money prize and the car kit and
another team, not included in the top 3, will be rewarded as the “best newcomer”,
meaning a team which did not take part to the competition in the previous year.
All the phases of the challenge are reported in Figure 2.2.

Figure 2.2: Timeline.

The author’s team managed to reach the finals and competed with other 7
talented teams from Greece, Romania, Portugal and Italy and won the Best new
participating team award (Figure 2.3).

15

The Bosch Future Mobility Challenge 2022

Figure 2.3: Best New Participating Team Award.

2.2 The Car-Kit
Going into the details of the car kit provided by Bosch, the following components

are found and highlighted in Figure 2.4 :

• Nucleo F401RE.

• Raspberry Pi 4 Model b.

• VNH5012 H-bridge Motor Driver.

• ATM103 Encoder.

• DC/DC converters.

• Servomotor.

• LiPo Battery.

16

The Bosch Future Mobility Challenge 2022

• Chassis.

• Camera.

• IMU Sensor.

Figure 2.4: The Car-Kit.

In addition to these basic elements, the team decided to furnish the car with a
LiDAR sensor and an ultrasonic sensor, placed respectively in the front and the
right-hand side of the car.

17

The Bosch Future Mobility Challenge 2022

2.3 The Project
To start working on the project, the teams are provided with a complete

documentation necessary to better understand the project structure, especially the
hardware side and the Python/C++ codes for the correct communication of all
the car components. The documentation is subdivided as in Figure 2.5 and a brief
explanation of the content of each section is provided in the following subsections.

Figure 2.5: Website Layout of the Shared Documentation.

2.3.1 Competition Documentation and First Steps
It includes:

• Connection diagram and description with links to the car components.

• Racetrack: the description of the provided racetrack and its elements, the
given components and the diagrams, as well as a starting point and directions
of the knowledge required.

• V2X (Vehicle-to-Everything): it includes localization, semaphore, environmen-
tal server and vehicle-to-vehicle communication.

• Printed components and circuit boards.

• Hardware improvements: it includes settings for the hardware components.

• Useful links for Raspberry Pi, ROS and Python.

• Periodic status: project plan and architecture, reports and media.

18

The Bosch Future Mobility Challenge 2022

2.3.2 The Brain Project
The Brain Project describes the given code for the RPi platform. It includes

the start-up code and the documentation for the provided API (Application Pro-
gramming Interface), which will help the V2X communication. The project uses
concepts of multi-processing and distributed system and it implements a basic
flexible structure, which can be extended with new features. This folder contains:

• Introduction: concept and architectures, in particular remote car control and
camera streaming, installation and configuration, IMU displayer.

• Utils layer: camera streamer, remote control.

• Hardware layer: camera, serial handler process and camera spoofer process.

• Data acquisition layer: traffic lights, localization system, environmental server.

The computer project is already implemented on the provided RPi, while the
embedded project is already implemented on the Nucleo board. Together, they
give a good starting point for the project, providing a remote keyboard control,
remote camera stream, constant speed control of the given kit and others.

2.3.3 The Embedded Project
This documentation outlines the low-level application that operates on the

Nucleo-F401RE microcontroller. Its purpose is to manage the car movement and
act as a link between the higher-level controllers and lower-level actuators and
sensors. This section is divided into four distinct parts:

• Tools for development containing the instructions to upload the codes related
to the correct functioning of the Nucleo.

• Brain layer contains the state machine of the Nucleo (speed and steering).

• Hardware package includes the drivers for actuator and sensors.

• Signal, utils and periodics namespace: ‘signal’ includes libraries for processing
signals, ‘utils’ package incorporates some util functionalities and ‘periodics’
layer includes some periodic tasks.

2.3.4 The GitHub Repository
Bosch provided their own link of GitHub in which all the Python/C++ codes

related to the topics described above are held. Specifically:

19

The Bosch Future Mobility Challenge 2022

• Brain and Brain_ROS: the project includes the software already present on
the development board (Raspberry Pi) for controlling the car remotely, use
the API and test the simulated servers, respectively for Raspbian and ROS.

• Startup_C: the project includes some of the scripts transcribed in C++
language from the startup project.

• Embedded_Platform: the project includes the software already present on the
Embedded platform (Nucleo board). It describes all the low-level software for
controlling the speed and steering of the car.

• Simulator: the project includes the software for the Gazebo simulator, which
is the official on-line environment of the competition.

• Documentation: the project includes all the general documentation of the
competition environment, guides, diagrams, car components, etc.

2.4 The Structure behind the Algorithms
The tasks to perform by the end of the competition are the following:

• Lane Keeping and Following.

• Intersection Detection and crossing.

• Correct maneuvers under the detection of the following traffic signs: stop,
priority, crosswalk, parking, roundabout, highway entrance and highway exit,
one-way, no entry.

• Parallel and perpendicular parking.

• Object Detection: pedestrian and overtake over a static and/or moving vehicle.

• Navigation by means of nodes and localization system (GPS).

The brain of the car must be inserted in the Raspberry Pi which, basing on the
tasks to perform, sends the commands to the Nucleo which, in turn, acts on the
motor and on the servo motor to regulate both the speed and steer. More in details,
in order to process the image, the Raspberry takes as input the camera frame and
the IMU data for the position of the vehicle, runs the specific control algorithms
and sends the corresponding output commands to the Nucleo; for example, an
increased speed in presence of a ramp which signs the entrance to the highway, a
decreased speed and a specific steer when traveling along a tight curve and a zero

20

The Bosch Future Mobility Challenge 2022

speed when the traffic light turns red.

The correlation between all project components, sensors, algorithms and vehicle
actuation is represented in the project architecture (Figure 2.6).

Sensing
and input

Perception and
scene
understanding

Behaviour and
motion plan

Vehicle
control

Acutation

Figure 2.6: Team PoliTron’s Complete Project Architecture.

The project presented in this chapter sinks the roots for the work developed
by three members of team PoliTron: specifically, Cristina Chicca deals with the
image processing part, Gianmarco Picariello’s work consists in the development
of an MPC controller for the autonomous parking and Claudia Viglietti’s thesis
concerns optimization algorithms for path planning.

21

Chapter 3

Autonomous Parking

The history of autonomous parking can be traced back to the early 2000s,
when the first prototypes and concepts were developed. However, it was not
until the 2010s that autonomous parking technology became more advanced and
started to be integrated into commercial vehicles. Companies such as Tesla and
BMW were among the first to offer semi-autonomous parking features, such as
automated parallel and perpendicular parking, in their vehicles. In recent years,
fully autonomous parking systems have become increasingly common in luxury
(like Audi, Figure 3.11) and high-end vehicles and the technology continues to
improve and evolve.

1Parking system plus informs the driver, visually and audibly, about obstacles in
front of and behind the vehicle (https://www.audi-mediacenter.com/en/photos/detail/
parking-system-plus-42333).

22

https://www.audi-mediacenter.com/en/photos/detail/parking-system-plus-42333
https://www.audi-mediacenter.com/en/photos/detail/parking-system-plus-42333

Autonomous Parking

Figure 3.1: Audi Parking System Plus.

3.1 State of the Art
The PA (Parking Assist) is an ADAS that helps the driver parking his/her

own car with great precision using guidance systems technology, thus reducing the
stress associated with complex parking manoeuvres and minimizing the chance
of potential scratches and/or dings that could happen while manually steering in
tight spaces. Mostly ultrasonic sensors are used for this system, but nowadays
many companies are equipping vehicles with cameras as well that mostly help
in the searching of an adequate parking spot. However, it is common that the
aforementioned are accompanied by a combination of the following sensors:

• LiDAR (Light imaging, Detection, and Ranging) sensors.

• RADAR (Radio Detection and Ranging) sensors.

• GPS (Global Positioning System) sensors.

• IMU (Inertial Measurement Unit) sensors.

23

Autonomous Parking

When the PA system is active, it informs the driver as soon as a suitable parking
space is found and then, it calculates the best way of approaching the gap, included
the number of steering manoeuvres.

By recalling the general block diagram for ADAS (Fig. 1.3), it is possible to
derive the block diagram for Parking Assist (Figure 3.2):

Figure 3.2: PA General Block Diagram.

Two types of autonomous parking system are available:

• Semi-autonomous PA: the driver controls the parking process by carefully
accelerating and braking. The system performs all the necessary steering
actions with the help of the power steering. The driver can stop the manoeuvre
at any time.

• Fully autonomous PA: besides the steering action, now the system takes over
also the speed control, i.e. acceleration and braking, driving the vehicle in
and out of the chosen spot. Particularly advanced systems (SAE Level 5, p.
4) let the driver deciding whether he/she wishes to remain in the car whilst
parking or get out beforehand.

This thesis work, keeping faith to the aim of the Bosch Future Mobility Challenge,
will treat the second type of autonomous parking that will consider the perpendicular
parking case and it will be developed in MATLAB®/Simulink® using a NMPC
(Nonlinear Model Predictive Control) controller in three different scenarios:

1. Perpendicular Parking using Nonlinear Model Predictive Control (Sec. 6.1).

2. Perpendicular Parking using Multistage NMPC (Sec. 6.2).

3. Perpendicular Parking using RRT* Planner and NMPC Tracking Controller
(Sec. 6.3).

The choice of the perpendicular parking scenario is dictated by two factors:

• For the BFMC a basic autonomous parallel parking system has been developed.

• In The MathWorks, Inc. documentation those three cases have been already
developed for the parallel case:

24

Autonomous Parking

◦ Parallel Parking using Nonlinear Model Predictive Control [12].
◦ Plan Parallel Parking Path using Multistage NMPC [13].
◦ Parallel Parking using RRT Planner and MPC Tracking Controller [14].

3.2 Autonomous Parking @ BFMC22
In the Challenge context, the PA system algorithm is written using the Python

programming language and developed using state machines.

Since the car, after team’s modifications, is mounting a LiDAR sensor on the
front (TF-Luna, Subsection 3.2.1), an ultrasonic sensor (HC-SR04, Subsection
3.2.2) on the right-hand side, a camera (RPi Camera V22) and a IMU sensor (Smart
IMU Sensor - BNO0553), the primordial idea was to take advantage of those sensors
to develop the algorithm so that the car could have detected the parking symbols
with the camera, trigger the ultrasonic sensor to detect an empty spot and use
the IMU to handle the care during the manoeuvre. The LiDAR is used to help in
parking the car in case of front obstacles.

With reference to the code provided in Appendix A, the autonomous parking
algorithm is realized making use of the process SignDetectionProcess, part of
MovCarProcess, which exploits the camera to detect the parking sign and conse-
quently it sets the flag value to 1, flag = 1. Thus, at this time the ultrasonic
sensor is triggered and starts searching for an empty spot. If this is found, the
parking manoeuvre is initiated.

Counters are used to time the different phases of the manoeuvre and taking as
example the case of a parallel parking with the first slot empty (Figure 3.3), the

2The Raspberry Pi Camera V2 is a high quality 8 megapixel Sony IMX219 image sensor
custom designed add-on board for the RPi, featuring a fixed focus lens. It is capable of 1080p
video and still images. It is ideal for various projects like home security systems, wildlife cameras,
time-lapse photography, etc. It includes automatic control of image quality and level of detail,
automatic white balance, automatic gain control and back-light compensation. The camera is
compatible with all RPi models that have the 40-pin GPIO header and it connects to the RPi via
a ribbon cable and can be controlled using the Raspberry Pi’s CSI (Camera Serial Interface) bus.

3The smart sensor BNO055 is a SiP (System in Package) solution that integrates a tri-axial
14-bit accelerometer, an accurate closed-loop tri-axial 16-bit gyroscope, a tri-axial geomagnetic
sensor and a 32-bit micro-controller running the BSX3.0 FusionLib software. This smart sensor is
significantly smaller than comparable solutions. By integrating sensors and sensor fusion in a
single device, the BNO055 makes integration easy, avoids complex multi-vendor solutions and
thus simplifies innovations [15].

25

Autonomous Parking

stages are the following:

1. The ego vehicle places its middle lateral axis perpendicular to the last line
delimiting the parking lot.

2. The ego vehicle steers the wheels and initiates the backward motion.

3. The ego vehicle steers again the wheels to have them straight and terminate
the manoeuvre.

4. If the ego vehicle is not close to a front car, it proceeds straight till reaching the
parking spot center. If/When it is too close, the LiDAR detects the obstacle
and it immediately stops the ego vehicle motion.

then, the car has to exit from the parking spot and thus reverse the steps from 3
back to 1.

Figure 3.3: Parallel Parking Scenario @ BFMC22.

When the parking spot is occupied, the car proceeds its straight motion until
the ultrasonic detects an empty space. However, the reader has to bear in mind
that the algorithm is not for general use because manoeuvres are defined for the
parking lot of the Competition Track (Figure 3.44) and only the autonomous
parallel parking manoeuvre has been developed because according to competition’s
rules, the drive path (yellow path in Fig. 3.4) could have been arbitrarily chosen
and thus, following the planned trajectory, the parallel parking was the best fit.

4Nodes are used alongside the GPS system provided by the Bosch infrastructure and are given
in a .graphml file format where each node has 3 parameters: ID, an x- and a y-coordinate.

26

Autonomous Parking

Figure 3.4: BFMC22 Competition Track with Nodes.

27

Autonomous Parking

3.2.1 The TF-Luna LiDAR Sensor
The TF-Luna LiDAR sensor uses the ToF (Time of Flight) principle5 to measure

the distance by periodic emission of NIR (Near-Infrared) modulated waves. The
relative distance D is given by the time obtained from measuring the phase difference
∆φ between original and reflected wave (Equation 3.1, Figure 3.56).

D = c

2 · 1
2πf · ∆φ (3.1)

where c is the speed of light (c ≈ 3×108 m/s) and f represents the waves frequency.

Figure 3.5: Schematics of the ToF Principle.

5The ToF principle is used to determine the distance to an object by measuring the time it
takes for a light signal or pulse to travel from a device to an object and back. It is based on
the speed of light, which is constant and the time it takes for a light signal to travel a certain
distance can be calculated using simple math. This information can then be used to compute the
distance to an object, allowing for precise depth mapping, 3D imaging and other applications in
fields such as robotics, manufacturing and entertainment.

6Figure credits: https://www.terabee.com/time-of-flight-principle/.

28

https://www.terabee.com/time-of-flight-principle/

Autonomous Parking

Parameters specifications of the LiDAR sensor are tabulated in Table 3.1.

Description Parameter Value
Operating Range 0.2 ÷ 0.8 m
Accuracy ±6 cm @ 0.2 ÷ 3 m

±2% @ (3 ÷ 8) m
Measurement Unit cm (default)
Range Resolution 1 cm
FoV 2◦

Frame Rate 1 ÷ 250 Hz (adjustable)

Table 3.1: Parameters Specification of the TF-Luna LiDAR Sensor.

3.2.2 The HC-SR04 Ultrasonic Sensor Module
The HC-SR04 is an ultrasonic sensor module able to measure the distance

between the module and other objects in proximity using ultrasound waves and
with high accuracy. For this reason, it is employed in obstacle avoidance devices;
distance measuring devices; automation projects; vehicles parking systems; etc.

The module is made by an ultrasonic transmitter, an ultrasonic receiver, on-
board electronics like operational amplifiers and passive components like capacitors
and resistors.

Its operating principles is the following: ultrasound waves are transmitted by
the transmitter (signal is coming through the TRIG pin, Figure 3.6) and when an
object is in front of the sensor, the waves get reflected by the object itself back to
the HC-SR04. Thus, these reflected waves are received by the receiver and then
output on the ECHO pin as a digital signal with frequency directly proportional to
the time required by an ultrasound wave to travel from the sensor to the obstacle
and back to the module.

The emitted waves are on a frequency higher that the human hearing range
(femit > 20 kHz) and the sound wave speed, for a wave traveling through air at
room temperature (Troom = 20 ◦C), is csound ≈ 343 m/s. Thus, the distance, D
between the module and obstacle is evaluated as the product between the sound
wave speed and the sound wave travel time, ttravel, from the module to the obstacle
and back (Equation 3.2):

D = csound · ttravel (3.2)

29

Autonomous Parking

Figure 3.6: Pin-out of the HC-SR04 Ultrasonic Sensor Module.

Moreover, the reader has to bear in mind that since a sound wave travels 343
meters per second, to measure distances from 20 mm (minimum distance for valid
measurements) to 4000 mm (sensor range), the time is measured in microseconds
[µs] and consequently, the sound speed should be converted from m/s to cm/µs
(Equation 3.3):

343m/s = 0.0343 cm/µs (3.3)

Then, to get the actual distance, Dactual, between the module and the obstacle,
the distance computed in Eqn. (3.2) should be halved because the ultrasound wave
travels from the module to the obstacle and back (Equation 3.4):

Dactual [cm] = csound [cm/µs] · ttravel [µs]
2 (3.4)

Parameters specifications of the ultrasonic sensor are reported in Table 3.2.

30

Autonomous Parking

Description Parameter Value
Power Supply Voltage up to 5 V
Operating Voltage 3 ÷ 5 V
Output Voltage 5 V
Current Consumption 15 mA
Quiescent Current < 2 mA
Ultrasonic Frequency 40 kHz
Trigger Input Signal 10 µs TTL pulse
Measuring Angle 30 ◦

Effectual Angle < 15 ◦

Operating Distance Range 20 ÷ 4000 mm
Claimed Precision 3 mm
Dimensions 45 × 20 × 15 mm

Table 3.2: Parameters Specification of the HC-SR04 Ultrasonic Sensor Module.

31

Chapter 4

Vehicle Model Derivation

The topics discussed in this chapter are referred to Chapter 2, Lateral Vehicle
Dynamics and Chapter 4, Longitudinal Vehicle Dynamics, from the book Vehicle
Dynamics and Control [16].

4.1 Vehicle Longitudinal Model
The control of longitudinal vehicle motion has been pursued at many different

levels by researchers and automotive manufacturers. Today’s available systems
that involve longitudinal vehicle control are: ABS (Anti-Lock Brake System), CC
(Cruise Control), TCS (Traction Control System), etc.

In this section the dynamic models for the vehicle longitudinal motion will be
presented and the two major elements of the longitudinal vehicle model are: vehicle
dynamics (Subsection 4.1.1) and powertrain1 dynamics (Subsection 4.1.2), where
the former is influenced by the following forces:

• Longitudinal tyre forces at the front and rear tyres, Fxf and Fxr.

1The difference between driveline, powertrain and drivetrain is as follows:
• Driveline transmits power from the engine to the wheels: drive shaft, differential, axles

and half-shafts.
• Powertrain generates power and transmits it to the wheels: engine, transmission, driveline

and any other components that delivers power to the wheels.
• Drivetrain often used interchangeably with powertrain. Drivetrain transfers power from

the engine to the wheels: engine, transmission, driveline, axles and any other components
that transfers of power.

32

Vehicle Model Derivation

• Equivalent longitudinal aerodynamic drag force, Faero.

• Forces due to rolling resistance at the front and rear tyres, Rxf and Rxr.

• Gravitational force due to road inclination, mg · sin θ (m, vehicle mass; g,
gravity acceleration; θ road inclination2).

while the vehicle longitudinal powertrain system is made up by:

• ICE (Internal Combustion Engine).

• Torque Converter.

• Transmission.

• Wheels.

4.1.1 Longitudinal Vehicle Dynamics
The longitudinal vehicle dynamic model is simply based on the dynamics of the

vehicle that generates forward motion. By considering a classical case of a vehicle
longitudinal motion (i.e., along the x axis) on an inclined road (Figure 4.13) and

Figure 4.1: Longitudinal Forces acting on a Vehicle driving on an Inclined Road.

based on Newton’s Second Law of Motion4: the longitudinal tyre forces Fxf and

2When the longitudinal driving direction x is leftward, θ is positive clockwise. When the
longitudinal driving direction x is rightward, θ is positive counterclockwise.

3Car image credits: ID 217689120 © Andrey Vyrypaev | https://thumbs.dreamstime.
com/z/outline-drawing-super-car-view-three-sides-217689120.jpg.

4The change of motion of an object is proportional to the force impressed and is made in the
direction of the straight line in which the force is impressed: F = m · a.

33

https://thumbs.dreamstime.com/z/outline-drawing-super-car-view-three-sides-217689120.jpg
https://thumbs.dreamstime.com/z/outline-drawing-super-car-view-three-sides-217689120.jpg

Vehicle Model Derivation

Fxr, which come from the vehicle powertrain, must overcome the resistance forces,
i.e. Faero, mg · sinα, Rxf and Rxr. The imbalance among these forces defines the
acceleration of the vehicle in the longitudinal direction denoted by ẍ. Therefore,
by performing a force balance along the vehicle longitudinal axis, it is possible to
obtain the Full Longitudinal Dynamics equation (Equation 4.1).

mẍ = Fxf + Fxr − Faero −Rxf −Rxr −mg · sin θ (4.1)

Eqn. (4.1) can be further simplified by grouping the front and rear tyre forces
as Fx (Fx = Fxf + Fxr) and the front and rear rolling resistance forces as Rx

(Rx = Rxf + Rxr). Moreover, we can assume moderate road inclinations, which
means that the small angle approximation can be applied. So, sin θ ≈ θ. Thus, the
Simplified Longitudinal Dynamics (Equation 4.2) is:

mẍ = Fx − Faero −Rx −mg · θ (4.2)

where:

• mẍ represents the inertial term defining the vehicle longitudinal acceleration.

• Fx represents the traction force generated by the powertrain.

• Faero, Rx and mg · θ make up the total resistance forces acting on the vehicle,
Fload.

However, the models for each of the forces in Eqn. (4.2) have still to be developed
together with the definition of how they will connect to the throttle and break
inputs that the autonomous system will apply. Through the rest of this section,
these model will be developed.

The longitudinal tyre forces Fxf and Fxr instead, are friction forces acting on
the tyres from the ground and the longitudinal tyre force generated by each tyre
depends on:

• Slip ratio, σx.

• Normal load on the tyre, N .

• Friction coefficient at the tyre-road interface, Cσf
and Cσr .

Then, it is possible to consider that a vehicle longitudinal motion is resisted by
aerodynamic drag, rolling resistance and the force due to gravity. Thus, the Total
Resistance Load, Fload on the vehicle (Equation 4.3) is:

Fload = Faero +Rx +mg · θ (4.3)

34

Vehicle Model Derivation

The equivalent aerodynamic drag force acting on a vehicle (Equation 4.4) can
typically be modeled as dependent on air-mass density ρ, vehicle frontal area AF
(projected vehicle area in the driving direction), the aerodynamic drag coefficient
(Cd) and the squared sum of the longitudinal vehicle velocity Vx = ẋ plus the wind
velocity Vwind (positive for headwind, negative for tailwind).

Faero = 1
2 · ρ · Cd · AF · (Vx + Vwind)2 (4.4)

As tyres rotate, both tyres and road are subjected to deformation at the contact
patch. Due to the normal load N , the tyre material is deflected vertically as it goes
through the contact patch and it springs back to its original shape as soon as it
leaves the contact area. However, due to the internal damping of the tyre material,
the energy spent in deforming the tyre is not completely recovered once the tyre
recovers its original shape and this loss of energy is represented by the rolling
resistance force that opposes the vehicle motion. Rolling resistance is commonly
modeled as being roughly proportional to N on each tyre-set (Equation 4.5):

Rxf +Rxr = f(Nf +Nr) (4.5)

where:

• f , rolling resistance coefficient.

• Nf and Nr, normal forces at the front and rear tyres.

In addition to the total weight of the vehicle, the computation of the normal forces
acting on the tyres (Figure 4.25) involves:

• Fore-aft location of the CoG.

• Longitudinal acceleration of the vehicle, ẍ.

• Equivalent longitudinal aerodynamic drag force, Faero.

• Road inclination, θ.

5Car image credits: ID 217689120 © Andrey Vyrypaev | https://thumbs.dreamstime.
com/z/outline-drawing-super-car-view-three-sides-217689120.jpg.

35

https://thumbs.dreamstime.com/z/outline-drawing-super-car-view-three-sides-217689120.jpg
https://thumbs.dreamstime.com/z/outline-drawing-super-car-view-three-sides-217689120.jpg

Vehicle Model Derivation

Figure 4.2: Calculation of the Normal Tyre Loads.

The normal load distribution on the tyres can be computed assuming null net
pitch torque on the vehicle (i.e., the vehicle pitch angle is assumed to have reached
the steady-state value). From Fig. 4.2 the following variables are defined:

• h, height of the vehicle CoG.

• haero, height at which Faero acts.

• lf , longitudinal distance of the front axle from the vehicle CoG.

• lr, longitudinal distance of the rear axle from the vehicle CoG.

• reff , effective tyre radius.

Now, considering the moments at the contact point of the front and rear tyre in
Fig. 4.2, one has (Equations 4.6a and 4.6b):

Nr · (lf + lr) − Faero · haero −mẍ · h−mgh · sin θ −mglf · cos θ = 0 (4.6a)
Nf · (lf + lr) + Faero · haero +mẍ · h+mgh · sin θ −mglr · cos θ = 0 (4.6b)

and solving equations 4.6a, 4.6b for Nr, Nf , one obtains (Equations 4.7a and 4.7b):

Nr = Faero · haero +mẍ · h+mgh · sin θ +mglf · cos θ
lf + lr

(4.7a)

Nf = −Faero · haero −mẍ · h−mgh · sin θ +mglr · cos θ
lf + lr

(4.7b)

from which it is clear that as the vehicle accelerates, the normal load on front tyres
(Nf) decreases while the normal load on rear tyres (Nr) increases. The opposite
occurs while braking thus helping in distributing the braking forces and maintain
stability and traction while braking.

36

Vehicle Model Derivation

4.1.2 Driveline Dynamics
In Subsec. 4.1.1, Eqn. (4.1) the vehicle longitudinal motion has been derived

and where the longitudinal forces on the driving wheels (Fxf , Fxr) are the primary
forces helping the vehicle to move forward and they depend on the difference
between vehicle longitudinal velocity, ẋ, and rotational wheel velocity, reff · ωw,
with ωw highly influenced by the driveline dynamics. Figure 4.36 shows the major
driveline components for the three different types of drive: FWD, RWD, AWD.

Figure 4.3: Transmission System Layout for the 3 Different Types of Drive.

6Figure credits: https://www.scienceabc.com/innovation/what-is-a-four-wheel-drive-system-
and-how-does-it-work.html.

37

https://www.scienceabc.com/innovation/what-is-a-four-wheel-drive-system-and-how-does-it-work.html
https://www.scienceabc.com/innovation/what-is-a-four-wheel-drive-system-and-how-does-it-work.html

Vehicle Model Derivation

Figure 4.4 displays the power-flow and the loads-direction on the components.

Figure 4.4: Power Flow and Loads in the Driveline.

Torque Converter

The torque converter, which major components are:

• Pump, which fins are attached to the flywheel of the engine, thus the pump
turns at the same speed as the engine.

• Turbine, linked to the transmission causes the transmission to spin at the
same speed as the turbine allowing then the car to move.

• Transmission Fluid, this makes the coupling between pump and turbine.

is a fluid coupling linking engine and transmission. If the engine is turning slowly,
like when the car is idling at a stoplight, the torque amount passed through the
converter is very small, so only a small pressure on the brake pedal is required to
keep the car still. Besides allowing the car to completely stop without stalling the
engine, it gives also the car more torque in case of accelerations out of a stop.

To model now the torque converter, the Kotwicki’s Static Model(1982) can be
used since this is desirable for control due to its simplicity. This model is a quadratic
regression fit of the data from a simple experiment which involves measurements of
only the input and output speed and torques of the torque converter.

By assuming Tp, Tt to be respectively the pump and turbine torques and ωp, ωt
the pump and turbine speeds, the pump and turbine torques, for converter mode
(i.e., ωt/ωp < 0.9) are (Equations 4.8a and 4.8b):

Tp = 3.4325 × 10−3ω2
p + 2.2210 × 10−3ωpωt − 4.6041 × 10−3ω2

t (4.8a)
Tt = 5.7656 × 10−3ω2

p + 0.3107 × 10−3ωpωt − 5.4323 × 10−3ω2
t (4.8b)

38

Vehicle Model Derivation

instead for fluid coupling mode (i.e., ωt/ωp ≥ 0.9), pump and turbine torques are
(Equation 4.9):

Tp = Tt

= −6.7644 × 10−3ω2
p + 32.0024 × 10−3ωpωt − 25.2441 × 10−3ω2

t

(4.9)

The I/O schematic of the torque converter model is displayed in Figure 4.5.

Figure 4.5: I/O Schematic of a Torque Converter Model.

Transmission Dynamics

The transmission steady-state gear ratio (R) value depends on: operating gear
and final gear reduction in the differential. The operating gear is determined by
a gear shift schedule that depends on both transmission shaft speed and throttle
valve opening. In general, R < 1 and increases as the gear shifts upwards.

From the I/O schematic of the transmission model (Figure 4.6), Tt is the turbine
torque and input to the transmission block, instead Twheel is the torque transmitted
to the wheels (thus, output from the transmission block).

Figure 4.6: I/O Schematic of a Transmission Model.

39

Vehicle Model Derivation

At steady-state operation under the first, second or higher gears of the trans-
mission, Twheel is obtained as in Equation 4.10:

Twheel = 1
R

· Tt (4.10)

and the relationship between transmission and wheels speeds is (Equation 4.11):

ωt = 1
R

· ωw (4.11)

Equations describing the dynamics during a gear change are obtained by replacing
Eqns. (4.10) and (4.11) with first order equations (Equations 4.12a and 4.12b):

τ Ṫwheel + Twheel = 1
R

· Tt (4.12a)

τ ω̇t + ωt = 1
R

· ωw (4.12b)

Eqn. (4.12a) is initialized with Twheel = 0 at the instant in which the gear shift is
started, R is the gear ratio at the new gear in which the transmission shifts. Eqn.
(4.12b) is initialized with ωt = (1/Rold) · ωw, where Rold is the old gear ratio. The
gear change is assumed to be complete when Twheel and ωt converge to (1/R) · Tt
and (1/R) · ωw.

Engine Dynamics

The engine rotational speed dynamics is described by Equation (4.13):

Ieω̇e = Ti − Tf − Ta − Tp (4.13)

where:
• Ti, ICE torque.

• Tf , torque due to frictional losses.

• Ta, accessory torque.

• Tp, pump torque representing the engine load from the torque converter.
By using the notation (Equation 4.14):

Te = Ti − Tf − Ta (4.14)

representing the net engine torque after losses, which depends on: dynamics in the
intake (Ti) and exhaust manifold (Tf) of the engine and on driver accelerator input
(Ta), Eqn. (4.13) can be rewritten as (Equation 4.15):

Ieω̇e = Te − Tp (4.15)

The engine I/O schematic is displayed in Figure 4.7.

40

Vehicle Model Derivation

Figure 4.7: I/O Schematic of an Engine Inertia Model.

Wheel Dynamics

For a FWD car, the wheel rotational dynamics equations for the driving and
non-driven wheels are (Equations 4.16a and 4.16b):

Iwω̇wf = Twheel − reff · Fxf (4.16a)
Iwω̇wr = −reff · Fxr (4.16b)

The total longitudinal tyre force is given by the sum of the longitudinal tyre
forces at the front and rear tyres (Equation 4.17):

Fx = Fxf + Fxr (4.17)

The I/O schematic for the wheel dynamics is provided in Figure 4.8.

Figure 4.8: I/O Schematic of a Wheel Inertia Dynamics Model.

41

Vehicle Model Derivation

4.2 Vehicle Lateral Model
4.2.1 Kinematic Model of Vehicle Lateral Motion

To build a kinematic model for the vehicle lateral motion, some assumptions
must be made based on the Kinematics of Lateral Vehicle Motion (Figure 4.9) and
by considering the following aspects:

• Planar vehicle motion.

• Three coordinates describe the vehicle motion: x, y are the inertial coordinates
of the location of the vehicle CoG; ψ is the vehicle yaw/heading angle, it
describes the vehicle orientation.

• Vehicle velocity at the CoG is represented by v and makes an angle β (vehicle
slip angle) with the vehicle longitudinal axis.

Figure 4.9: Kinematics of Lateral Vehicle Motion.

One of the primary assumptions made during the creation of the kinematic
model is that the velocity vectors at points A and B are aligned with the front

42

Vehicle Model Derivation

and rear wheel orientations, respectively. Thus, at the front, the velocity vector
makes an angle δf with the longitudinal axis of the vehicle and similarly at the
rear with an angle δr with the longitudinal axis of the vehicle. This leads to the
assumption that the slip angles at both wheels are zero, which is reasonable for
low-speed motions (i.e., speeds smaller than 5 m/s, such as the one considered for
the parking case). Therefore, since the total lateral force from both tyres to drive
on any circular road of radius R varies quadratically with the speed (Equation
4.18), at low speeds, this force is small, thus leading to the assumption that the
velocity vector at each wheel is in the direction of the wheel.

Ftot,lat = m · v2

R
(4.18)

With reference to Fig. 4.9:

• O, vehicle ICR (Instantaneous Center of Rotation) defined by the intersection
of lines AO, BO drawn perpendicular to the orientation of the two wheels.

• R, radius of the vehicle trajectory defined by the length of the line CO
connecting the vehicle CoG, C, with the ICR, O.

By applying the sine rule7 to triangles OCA and OCB, one obtains (Equations
4.19a and 4.19b):

sin (δf − β)
lf

=
sin (π2 − δf)

R
(4.19a)

sin (β − δr)
lr

=
sin (π2 + δr)

R
(4.19b)

and by applying trigonometric identities, like the Angle Sum and Difference and
the Reflection/Shift to the left- and right-hand side of Eqns. (4.19a) and (4.19b),
respectively, one obtains (Equations 4.20a and 4.20b):

sin δf · cos β − sin β · cos δf
lf

= cos δf
R

(4.20a)

cos δr · sin β − cos β · sin δr
lr

= cos δr
R

(4.20b)

7The sine rule relates the length of the sides of a triangle to the sine of its angles and states
that the ratio of the length of a side of a triangle to the sine of the angle opposite that side is the
same for all three sides of the triangle. Thus, given a triangle OCA with sides o, c, a and angles
O, C, A opposite to the sides o, c, a respectively, then:

o

sinO = c

sinC = a

sinA

43

Vehicle Model Derivation

Then, by multiply both sides of Eqn. (4.20a) by lf/ cos δf and both sides of
Eqn. (4.20b) by lr/ cos δr, Equations 4.21a and 4.21b are obtained:

tan δf · cos β − sin β = lf
R

(4.21a)

sin β − tan δr · cos β = lr
R

(4.21b)

and by adding Eqns. (4.21a) and (4.21b), Equation 4.22 is obtained:

(tan δf − tan δr) · cos β = lf + lr
R

(4.22)

Assuming now that the radius of the vehicle trajectory changes slowly (low
speed assumption), the vehicle orientation rate of change, ψ̇ (yaw rate) must be
equal to the vehicle angular velocity (ω = v/R). It follows (Equation 4.23):

ψ̇ = v

R
(4.23)

Thus, by merging Eqn. (4.23) into Eqn. (4.22), Equation 4.24 is obtained:

ψ̇ = v · cos β
lf + lr

· (tan δf − tan δr) (4.24)

Finally, the Overall Equations of Motion are given by (Equation 4.25):
ẋ = v · cos (ψ + β)
ẏ = v · sin (ψ + β)
ψ̇ = v·cosβ

lf +lr · (tan δf − tan δr)
(4.25)

In this model, three inputs are present: δf , δr and v. The latter is an external
variable and can considered to be a time-varying function or it can be obtained
from the vehicle longitudinal model.

The slip angle β can be obtained by subtracting from the product between Eqn.
(4.21b) and lf the product between Eqn. (4.21a) and lr (Equation 4.26):

β = arctan
A
lf · tan δr + lr · tan δf

lf + lr

B
(4.26)

An important remark on the assumption of single-track model is that both left
and right front wheels were collapsed into a single front wheel therefore leading
the conclusion that the left and right steering angles are equal. This can be true
in a first approximation but in reality, these steering angles are slightly different
because the trajectory and thus the radius these wheels cover while turning is
different. To have a clear view of this, consider the Ackerman Turning Geometry
of Figure 4.10 in which a front wheels steered vehicle is considered and where:

44

Vehicle Model Derivation

• lw, vehicle track width.

• δo and δi, outer and inner steering angles, respectively.

• L, vehicle wheelbase given by L = lf + lr.

• R, turning radius which is bigger than L.

Figure 4.10: Ackermann Turning Geometry.

Then, if the slip angle β is small, the equation for the yaw rate, ψ̇ in Eqn. (4.25)
can be rewritten as (Equation 4.27):

ψ̇

V
≈ 1
R

= δ

L
=⇒ δ = L

R
(4.27)

Being the radius at the inner and outer wheels different, one has (Equations
4.28a and 4.28b):

δo = L

R + lw
2

(4.28a)

δi = L

R − lw
2

(4.28b)

45

Vehicle Model Derivation

and the difference between Eqns. (4.28a), (4.28b) is (Equation 4.29):

δi − δo = L

R2 · lw = δ2 · lw
L

(4.29)

It follows that the difference in the steering angles at the front wheels is proportional
to the square of the average steering angle. Such a differential steer can be obtained
from a trapezoidal tie rod arrangement (Figure 4.11) where the inner wheel always
turns a larger steering angle.

(a) Trapezoidal Geometry. (b) Left Turn. (c) Right Turn.

Figure 4.11: Differential Steer from a Trapezoidal Tie-Rod Arrangement.

4.2.2 Single-Track Model of Lateral Vehicle Dynamics

For the sake of completeness, the case of higher speed will be briefly discussed.
In this scenario, the assumption that the velocity at each wheel is in the direction
of the wheel no longer holds. Therefore, a dynamic model for lateral vehicle motion
must be employed.

For this reason, start considering a double track model of the vehicle (Figure
4.12) where 2 DOFs are considered and which are:

• y, vehicle lateral position measured along the vehicle lateral axis to the point
O, vehicle center of rotation.

• ψ, vehicle yaw angle measured with respect to the global X axis (Vx, longitu-
dinal velocity at the vehicle CoG).

46

Vehicle Model Derivation

Figure 4.12: Lateral Vehicle Dynamics.

Ignoring for the moment the road banking and by applying Newton’s Second
Law of Motion along the y axis (Guldner, et. al., 1996 - Equation 4.30):

m · ay = Fyf + Fyr (4.30)

where:

• ay = (d2y/dt2)inertial, vehicle inertial acceleration at the CoG in the y-axis
direction to which the followings contribute (Equation 4.31):

ay = ÿ + Vx · ψ̇ (4.31)

◦ ÿ, acceleration due to the motion along the y axis.
◦ Vx · ψ̇, centripetal acceleration

• Fyf and Fyr, lateral tyre forces at the front and rear tyres, respectively.

By substituting Eqn. (4.31) into Eqn. (4.30), the Equation for the Vehicle
Lateral Translational Motion is (Equation 4.32):

m · (ÿ + Vx · ψ̇) = Fyf + Fyr (4.32)

47

Vehicle Model Derivation

By performing a moment balance at the z axis, the Yaw Dynamics Equation
(Equation 4.33) is obtained:

Iz · ψ̈ = lf · Fyf − lr · Fyr (4.33)

The modeling of lateral tyre forces comes from experimental results showing
that a tyre lateral tyre force is proportional to the slip angle α for small angles.
The definition of slip angles is: the slip angle is the angle between the orientation of
the tyre and the orientation of the velocity vector of the wheel (Figure 4.13). Thus,

Figure 4.13: Tyre Slip Angle.

the slip angle at the front and rear wheel is (Equation 4.34a and 4.34b):

αf = δ − θVf
(4.34a)

αr = −θVr (4.34b)

48

Vehicle Model Derivation

where:

• δ, front wheel steering angle.

• θVf
and θVr , front and rear tyre velocity angle, angle that the velocity vector

makes with the vehicle longitudinal axis which can be calculated according to
Equations 4.35a and 4.35b.

tan
1
θVf

2
= Vy + lf · ψ̇

Vx
(4.35a)

tan (θVr) = Vy − lr · ψ̇
Vx

(4.35b)

that can be rewritten as in Equations 4.36a and 4.36b by using Vy = ẏ and the
small-angle approximation:

θVf
= ẏ + lf · ψ̇

Vx
(4.36a)

θVr = ẏ − lr · ψ̇
Vx

(4.36b)

The lateral tyre forces at the front and rear tyres are (Equation 4.37a and 4.37b):

Fyf = 2 · Cαf
·
1
δ − θVf

2
(4.37a)

Fyr = −2 · Cαr · θVr (4.37b)

with:

• “2”, wheels number (i.e., two wheels) at the front and at the rear.

• Cαf
and Cαr , cornering stiffness of each front and rear tyre, respectively.

Consequently, by merging Eqns. (4.34a), (4.34b), (4.36a) and (4.36b) into Eqns.
(4.32) and (4.33), the State Space Model (Equation 4.38) can be written as:

d

dt

y
ẏ
ψ

ψ̇

 =

0 1 0 0
0 −2·Cαf

+2·Cαr

m·Vx
0 −Vx − 2·Cαf

·lf −2·Cαr ·lr
m·Vx

0 0 0 1
0 −2·Cαf

·lf −2·Cαr ·lr
Iz ·Vx

0 −2·Cαf
·l2f +2·Cαr ·l2r
Iz ·Vx

+

0

2·Cαf

m

0
2·Cαf

·lf
Iz

 · δ (4.38)

Finally, if the road banking is included, Eqn. (4.32) becomes (Equation 4.39):

m · (ÿ + Vx · ψ̇) = Fyf + Fyr + Fbank (4.39)

49

Vehicle Model Derivation

where Fbank = m · g · sinϕ and ϕ is the banking angle which sign convention is the
following (Figure 4.148):

• Positive clockwise if the inclination increases leftward from the road center
(Figure 4.14a).

• Positive counterclockwise if the inclination increases rightward from the
road center (Figure 4.14b).

(a) Banking Angle ϕ positive CW. (b) Banking Angle ϕ positive CCW.

Figure 4.14: Sign Convention for the Banking Angle ϕ.

4.3 Ego Vehicle Model for NMPC
Since in this thesis work the vehicle steering, driving and braking have to be

controlled, the vehicle dynamics (Section 4.2) is considered for modelling the vehicle
for the simulation purposes. Then, by considering that in parking problems the
vehicle travels at low speeds, the kinematic single-track model of the vehicle with
front steering wheel is taken into account.

Therefore, the longitudinal, lateral and yaw motion of the vehicle, Eqn. (4.25),
are taken into account. Then, under the assumption of single-track model with
front steering wheel, the steering angle at the rear wheel, δr, is zero and thus, for
simplicity assume δf = δ. It follows that Eqn. (4.26) simplifies into Equation 4.40:

β = arctan
A
lr · tan δ
wb

B
(4.40)

where wb = lf + lr is the vehicle wheelbase that is equal to 2.8 m (default value

8Car image credits to: ID 217689120 © Andrey Vyrypaev | https://thumbs.dreamstime.
com/z/outline-drawing-super-car-view-three-sides-217689120.jpg.

50

https://thumbs.dreamstime.com/z/outline-drawing-super-car-view-three-sides-217689120.jpg
https://thumbs.dreamstime.com/z/outline-drawing-super-car-view-three-sides-217689120.jpg

Vehicle Model Derivation

of the vehicleDimensions9 object in the MATLAB® environment). However,
the slip angles at both wheels are null (β = 0) for the parking problem due to low
speeds (smaller than 5 m/s, Section 4.2).

Simplifying the Overall Equations of Motion, Eqn. (4.25), Equation 4.41 is
obtained:

ẋ = v · cos (ψ)
ẏ = v · sin (ψ)
ψ̇ = v

wb
· (tan δ)

(4.41)

where:

• (x, y), vehicle position.

• ψ, vehicle yaw angle.

• (x, y, ψ), state variables for the vehicle state functions.

• Speed v and steering angle δ, control variables for the vehicle state functions.

and the Jacobian matrix of the system of state equations is (Equation 4.42):

J =

∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂ψ

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂ψ

∂ψ̇
∂x

∂ψ̇
∂y

∂ψ̇
∂ψ

 =

0 0 −v · sin (ψ)
0 0 v · cos (ψ)
0 0 0

 (4.42)

9For more information, please refer to the documentation provided by The MathWorks, Inc.
at https://it.mathworks.com/help/driving/ref/vehicledimensions.html

51

https://it.mathworks.com/help/driving/ref/vehicledimensions.html

Chapter 5

Model Predictive Control

This chapter delves into the fundamental concepts of MPC (Model Predictive
Control) and NMPC (Nonlinear Model Predictive Control), including their theo-
retical basis, algorithms and applications. It examines the principles, constraints
and limitations of these control strategies and suggests methods to tackle some of
these obstacles. The chapter objective is moreover to showcase the usefulness of
NMPC in autonomous driving applications and provide ideas for further research
in this domain.

5.1 Introduction
A controller, in general, is an algorithm that converts an error signal into an

actuation signal to achieve a desired set-point for a given process [17]. Key terms
are:

• Control Variable (CV), variable being regulated.

• Set-point, CV desired value.

• Error, difference between the CV current state and the set-point.

• Actuation, signal sent to the process to influence the error reduction.

• Process, system being controlled. Sometimes referred to as plant or transfer
function.

The Model Predictive Control (MPC) is a model-based control strategy that
has evolved significantly since its inception in the late seventies. Nowadays, it is
widely employed in several industries including automotive, aerospace and robotics.
However, it is worth considering that the term MPC, when speaking in general

52

Model Predictive Control

terms, refers to a broad range of control methods which basic working principle
involves [18]:

• Explicit use of a model to predict future system behaviour (horizon).

• Calculation of a control sequence by minimizing an objective function.

• Receding strategy where the horizon is displaced towards the future at each
step, with the first control signal of the sequence applied.

This results in linear controllers with similar structures and adequate DOFs, making
it particularly useful for complex systems with constraints and nonlinear dynamics.
However, the high computational requirements of MPC make it less feasible for
real-time systems.

Nonlinear Model Predictive Control (NMPC) is an extension of MPC that can
effectively control nonlinear systems by using a nonlinear dynamic model to predict
future system behaviour and determine optimal control inputs, making it an effec-
tive tool for controlling nonlinear systems with constraints. Despite its potential to
solve complex control problems, NMPC presents challenges, including increased
computational complexity and the requirement for accurate system models. These
challenges are due to the need to solve an optimization problem at each sampling
time and the non-convexity of the cost function and constraints.

Notwithstanding these obstacles, NMPC has become increasingly popular due
to its ability in handling nonlinear dynamics and constraints more accurately and
efficiently. Although it is challenging to implement NMPC in real-time systems,
especially for complex systems, researchers have proposed several approaches to
overcome computational complexity, such as using reduced-order models or parallel
computing techniques. Additionally, researchers are exploring new optimization
methods and algorithms that can improve the efficiency of NMPC while maintaining
its accuracy.

In summary, MPC and NMPC are effective control strategies for complex
systems with nonlinear dynamics and constraints, making them well-suited for
autonomous driving applications. However, the high computational requirements of
these algorithms remain a challenge and further research is needed to improve their
efficiency and scalability. Nevertheless, with recent advancements in computing
power and algorithms, these techniques have become increasingly popular in various
fields, including automotive, aerospace and chemical engineering. NMPC has
been successfully applied in various fields, including process control, robotics and
autonomous systems.

53

Model Predictive Control

5.1.1 MPC Pipeline
According to [17], Model Predictive Controllers take a similar approach to

dynamic driving tasks as humans do. Thus, an MPC pipeline can be defined as
follows:

1. Establish constraints such as the vehicle dynamic model for estimating its
state in the next time step: maximum steering angle, maximum throttle (or
brake), etc.

2. Establish a cost function that includes the cost of not being at the desired
state, the cost of using actuators and the cost of collisions.

3. Simulate possible trajectories and the associated control inputs that obey the
mathematical cost and constraints for the next N time steps.

4. Use optimization algorithms to select the simulated trajectory with the lowest
cost.

5. Execute the control input for one time step.

6. Measure the system state at the new time step.

7. Repeat steps from 3 to 6.

5.1.2 Design Parameters
The design parameters that are essential to the design process of various types

of predictive controllers, including MPC and NMPC, include:

• Sample Time, Ts.

• Prediction Horizon hp.

• Control Horizon hc.

These parameters have a significant impact on both control performance and
the computational burden of the algorithm. The optimal values of these parame-
ters depend on the process characteristics, the actuation system and the control
objectives. Therefore, selecting appropriate values for these parameters is crucial
to ensure optimal controller performance.

54

Model Predictive Control

Sample Time, Ts

The sample time Ts is the time between consecutive control calculations in the
MPC algorithm. It determines how frequently the controller updates the control
signal applied to the process.

This parameter represents the time interval between successive measurements of
the process output and application of the control signal. It determines the rate at
which the control algorithm is executed and, therefore, how quickly it can respond
to changes in the process. A shorter sample time can lead to better control per-
formance, but it can also increase the computational burden of the control algorithm.

In general, it is a given parameter and cannot be chosen. If there is the chance
to choose it, the followings have to be considered [19]:

• It should be sufficiently small to deal with the plant dynamics.

• It should be not too small to avoid numerical problems and slow computations.

Prediction Horizon, hp

The prediction horizon hp is a crucial design parameter in MPC that determines
the length of time for which the controller predicts the future behaviour of the
process. It plays a crucial role in striking a balance between the accuracy of predic-
tions and the computational burden of the algorithm. Specifically, hp determines
the number of future time steps for which the controller will optimize the control
signal, making it an essential factor in deciding the overall control performance.

The choice of hp is critical since it has both advantages and disadvantages
and usually depends on the process characteristics, the actuation system and
the control objectives. A trial and error procedure can be adopted to select the
optimal value of hp, keeping in mind that a long prediction horizon can improve
the control performance allowing the controller to anticipate future changes in the
process, thereby increasing closed-loop stability and robustness. However, it can
also increase the computational burden of the algorithm and reduce the short-term
tracking accuracy (performance degradation) [19].

Control Horizon, hc

The control horizon hc is the length of time over which the controller will apply
the first part of the control sequence computed for the entire prediction horizon. It

55

Model Predictive Control

determines how many control actions the MPC controller will take before recom-
puting the control sequence.

This parameter represents the length of time over which the control signal is
applied to the process. The control horizon is typically shorter than the prediction
horizon and is chosen to balance the control performance with the limitations of
the actuation system. In general, a short control horizon reduces the computational
time without affecting performance [19], while a longer control horizon can lead to
more aggressive control actions but can also result in instability if the process is
highly nonlinear or subject to significant disturbances.

Moving on to the overall concepts and parameters of the MPC problem, these
are depicted in Figure 5.11.

Figure 5.1: Concepts and Parameters constituting the MPC Problem.

The description of each parameter shown in Fig. 5.1 is:

1Figure credits: Wikipedia, Model predictive control, subchapter Theory behind
MPC : https://en.wikipedia.org/wiki/Model_predictive_control#/media/File:
MPC_scheme_basic.svg

56

https://en.wikipedia.org/wiki/Model_predictive_control#/media/File:MPC_scheme_basic.svg
https://en.wikipedia.org/wiki/Model_predictive_control#/media/File:MPC_scheme_basic.svg

Model Predictive Control

• Reference Trajectory, desired trajectory of the controlled variable (e.g.:
vehicle lateral position in the lane).

• Measured Output, measured past state of the controlled variable.

• Predicted Output, prediction of the controlled variable state after the
predicted control input has been applied. It is informed by the dynamic model
of the system, the constraints and the previously measured output.

• Predicted Control Input, system prediction of the control actuations that
must be performed to achieve the predicted output.

• Past Control Input, actual control actuations performed in the past, leading
up to the current state.

5.2 Applications in the Autonomous Driving
Self-driving cars require a controller to replace the human driver and control

the steering, throttle and brake actuators to move the vehicle from its initial to
target pose. Two common controllers used in self-driving cars are the PID and
MPC, with the latter being the best option for mimicking human driving. MPCs
are used in MIMO systems like a vehicle, for which the inputs are the throttle,
brake and steering and the outputs can be the car lateral position relative to the
lane center and car speed.

During human driving, the driver selects the destination, plans the route (way-
points) and executes it while continuously assessing the state of other cars, traffic
signs, speed, throttle, brake and more. The driver also constantly simulates var-
ious manoeuvres based on the current state of traffic, weighing the cost of each
manoeuvre before executing it. Ultimately, the driver chooses the manoeuvre with
the lowest cost based on the cost attributed to each consideration.

Recent advances in computing speed have made the Model Predictive Control a
popular and powerful tool for safe and efficient autonomous driving tasks. It has
the potential to revolutionize the future of autonomous vehicles by improving their
safety, efficiency and comfort [20]. By using an internal model to predict the future
behaviour of the vehicle at each control interval, the MPC allows the controller
to compute optimal control actions in real-time decisions, such as changing road
conditions or unpredictable traffic patterns.

Common applications of MPC in autonomous driving include the development
of the following ADAS:

57

Model Predictive Control

• Adaptive Cruise Control (ACC) for maintaining a safe distance from the
vehicle ahead.

• Collision Avoidance System (CAS) for predicting the behaviour of other
vehicles on the road and helping an autonomous vehicle avoid collisions in
real-time.

• Lane-Keeping Assist (LKA) and Lane-Following Control (LFC) for
maintaining and following the vehicle trajectory within a lane and/or following
a curved path.

• Path Planning Algorithms and Trajectory Optimization for optimizing
an autonomous vehicle trajectory and speed based on a predictive model of
the environment, enabling safer and more efficient decision-making.

• Parking Assist (PA) for helping the vehicle park itself in a safe and efficient
manner.

• Obstacle Avoidance (OA) for detecting and avoiding obstacles on the road
and predicting the behaviour of pedestrians and other obstacles to help an
autonomous vehicle avoid collisions in real-time.

Among the MPC features, those valuable in automated driving are:

• Handling of I/O constraints: I/O constraints on the system are accounted for
while computing optimal control moves.

• Ego vehicle behaviour prediction across receding horizon: the vehicle dynamics
internal model is used by the MPC controller to predict how the vehicle will
behave to a given control action across a prediction horizon.

• Reference trajectory and disturbances prediction across prediction horizon: by
predicting reference trajectories or disturbances across the prediction horizon,
the MPC controller can incorporate these information when computing optimal
control actions.

• Internal vehicle model update at run time: adaptive MPCs are used to update
the controller internal model if the dynamics of the ego vehicle vary over time,
such as for velocity-dependent steering dynamics.

• Automatic code generation for deployment of model predictive controllers.

When discussing the applications of MPC in autonomous driving, it is important
to provide examples of how MPC has been used in real-world applications and to
discuss the benefits and limitations of the technology. Taking the lane keeping of a

58

Model Predictive Control

self-driving car as an example, the set-point is defined by the lane center, which is
where the driver wants to keep your car. However, to begin this process, it is first
needed to calculate the error, which is the difference between the current position
and the lane center, also known as the Cross-Tracking Error (CTE). Next, it is
necessary to determine the appropriate actuator(s) to involve for bringing the car
back to the lane center and minimize the CTE. In addition, the controller has to
be thought as a function that continually attempts to reduce the car error relative
to the set-point of that variable, given a CV.

5.3 Types of MPC
In this section the different types of Model Predictive Control used in the

development of the autonomous parking algorithms, that will be presented in
Chapter 6, are presented starting with the presentation of the classical MPC which
constitutes the baseline for all MPCs.

5.3.1 Linear MPC
The classical MPC refers to a class of control problems involving Linear Time

Invariant (LTI) systems whose dynamics are described by a discrete time model
that is not subject to any uncertainty [21].

System Dynamics

In a first assumption, the system dynamics can be described by the LTI state-
space model (Equation 5.1):

xk+1 = A · xk +B · uk (5.1a)
yk = C · xk (5.1b)

Here, xk ∈ Rnx , uk ∈ Rnu and yk ∈ Rny denote the system state, control input and
system output at time step k = 0, 1, . . . (discrete time index), respectively. The
dimensions of xk, uk and yk are:

• nx, number of state equations: three in the autonomous parking case, Eqn.
(4.41).

• nu, number of inputs: two in the autonomous parking case, i.e. vehicle speed
v and steering angle δ.

• ny, number of outputs: three in the autonomous parking case, i.e. x, y
positions and the yaw angle ψ

59

Model Predictive Control

The state vector represents the current state of the system at a given time. It
contains all the relevant physical variables that describe the state of the system.
In the MPC problem, the state vector is typically used to represent the current
values of the system internal variables, such as its temperature, pressure, or position.

The output vector, on the other hand, represents the measurable outputs of
the system. These are typically the variables that are of interest to the controller
and can be directly measured or inferred from sensors. For example, in a chemical
reactor, the output vector might include the concentration of a certain chemical in
the reactor, the temperature of the reactor or the flow rate of a certain gas.

The state vector and output vector are related through the system dynamics,
which describe how the state of the system changes over time as a result of its
inputs and internal dynamics. By using system dynamics models to describe the
behaviour of the system, we can use MPC to optimize the system inputs over a
future time horizon to achieve a desired set of outputs.

Linear Constraints

Additionally, the controlled system is assumed to be subject to linear constraints,
which generally involve both states and inputs and are expressed as a set of linear
inequalities (Equation 5.2):

F · x+G · u ≤ 1 (5.2)

Here, F ∈ RnC×nx and G ∈ RnC×nu are matrices that define the constraints on the
system state and control input, respectively. nC denotes the number of constraints
and 1 is a vector with elements equal to unit and which dimension is given by:
1 = [1 · · · 1]T ∈ RnC . By setting either F or G to zero, constraints only on inputs
or states will result.

Control Objective

The goal of the controller is to find the sequence of control inputs that minimizes
the cost function, while satisfying the system dynamics and constraints. This is
typically achieved by solving an optimization problem over a finite horizon, which
involves minimizing the cost function subject to the dynamics and constraints of
the system. The resulting optimal control inputs are then applied to the system
over the finite horizon and the process is repeated at the next time step. This is
the basic idea behind Model Predictive Control.

One common approach to solve the classical MPC problem is to solve a finite
horizon optimal control problem at each time step k. Specifically, the goal is to find

60

Model Predictive Control

the optimal control input sequence u⋆k, u⋆k+1,· · · , u⋆k+N−1 that minimizes the cost
function (Equation 5.3) subject to the state dynamics and the input constraints
over a finite time horizon of N steps:

JN(xk, uk, . . . , uk+N−1) =
k+N−1Ø
i=k

1
∥xi∥2

Q + ∥ui∥2
R

2
+ ∥xk+N∥2

QF
(5.3)

Here, JN(xk, uk, . . . , uk+N−1) is the cost function that the controller aims to
minimize, starting from the initial state xk and the sequence of control inputs
uk, . . . , uk+N−1. The cost function is defined as the sum of the quadratic forms2 of
the state and input vectors, respectively weighted by the matrices Q and R which
determine the relative importance of the state variables and control inputs in the
cost function, plus a final weight matrix QF which specifies the emphasis on the
final state.

• Q ∈ Rnx×nx , symmetric and positive semidefinite: all eigenvalues of Q are real
and non-negative, Q ⪰ 0.

• R ∈ Rnu×nu , symmetric and positive definite: the eigenvalues of R are real
and strictly positive, R ≻ 0.

• QF , symmetric and positive semidefinite.

The matrix Q penalizes deviations of the state variables from their desired
values. Its diagonal elements represent the relative importance of the corresponding
state variables in the cost function, while the off-diagonal elements represent the
correlations between different state variables. For example, if the position of the
vehicle is more important than its orientation, then the diagonal elements of Q
corresponding to the position have to be larger than the diagonal element corre-
sponding to the orientation.

The matrix R balances the trade-off between control effort and tracking perfor-
mance. Its diagonal elements represent the relative importance of the corresponding
control inputs in the cost function. If the control inputs are constrained, then R
can be used to penalize violations of these constraints.

By adjusting the values of Q and R, the controller can be tuned to achieve
different performance objectives. For example, increasing the weight on certain
state variables in Q can improve the tracking performance of these variables at the
cost of increased control effort. Similarly, increasing the weight on certain control

2General quadratic form: ∥w∥2
A = wTAw, ∀w ∈ Rnw ∧ A = AT ∈ Rnw×nw .

61

Model Predictive Control

inputs in R can reduce the magnitude of these inputs at the cost of poorer tracking
performance.

The optimal control problem can be solved using numerical optimization tech-
niques, such as quadratic programming or nonlinear programming. Once the
optimal control input sequence is obtained, the first control input u⋆k is applied to
the system and the process is repeated at the next time step k + 1. This procedure
is known as receding horizon control or model predictive control because the control
sequence is recomputed at each time step based on the current state and future
predictions. However, solving the optimization problem in real-time can be compu-
tationally demanding, especially for systems with high-dimensional state and input
spaces or for problems with tight constraints. Additionally, accurate modeling of
the system dynamics and constraints can be challenging and modeling errors can
lead to suboptimal or even unstable control behaviour. Thus, a trade-off must be
made between the complexity of the optimization problem and the accuracy of the
model.

In summary, the classical MPC is a control approach for Linear Time Invariant
systems with linear constraints. The goal is to find the optimal control input
sequence over a finite time horizon that minimizes a quadratic cost function subject
to state dynamics and input constraints. The control sequence is recomputed at
each time step based on the current state and future predictions. The weighting
matrices Q and R play a crucial role in determining the behaviour of the MPC
controller. By adjusting these matrices, the controller can be tuned to achieve
different trade-offs between tracking performance and control effort.

5.3.2 Nonlinear MPC
Nonlinear systems are systems where the relationship between the input and

output is nonlinear, which means that the system behaviour is highly nonlinear
and can be difficult to predict. In contrast, linear systems have a linear relationship
between the input and output, which makes them easier to model and control.
However, many real-world systems are nonlinear and it can be challenging to find
a suitable control strategy that can handle their complex behaviour.

This is where Nonlinear Model Predictive Control comes in. One of its benefits
is that it allows dealing with constraints on the system state(s), input(s) and
output(s) and to manage the trade-off between performance and command effort.
In addition, the input variable(s) are always constrained because typically, it is not
possible to provide large inputs, for example, due to actuators limitations.

62

Model Predictive Control

The command input is chosen as the one yielding the best prediction (the closest
one to the desired behaviour) by online optimization algorithms. This process
repeats at each time step, allowing the controller to adapt to changes in the system
behaviour and achieve the desired performance.

By considering the MIMO nonlinear system in Equation 5.4:

ẋ = f(x, u) (5.4a)
y = h(x, u) (5.4b)

where:

• x ∈ Rnx , state.

• u ∈ Rnu , command input.

• y ∈ Rny , output.

The state x is measured in real-time, with a sampling time Ts and the measurements
are (Equation 5.5):

x(tk), tk = Ts · k with k = 0,1, . . . (5.5)

where tk is a time multiple of Ts and at each time tk the system state and output
are predicted over the time interval [t, t + hp]3. The prediction is obtained by
integration of the MIMO system of Eqn. (5.4).

At any time τ ∈ [t, t+ hp], the predicted output ŷ(τ) is a function of the initial
state x(t) and the input signal (Equation 5.6):

ŷ(τ) ≡ ŷ(τ, x(t), û(t : τ)) (5.6)

where the initial condition x(t) is fixed (state measured at a given time) and the
future behaviour in this time interval depends on the input, which variation induces
a change of the behaviour. û(t : τ) denotes a generic input signal in the interval
[t, τ] that has to be changed to obtain an optimal, desired behaviour of the system.
Moreover, in the interval [t, t+ hp], û(τ) is an open-loop that does not depend on
x(τ). With reference to Fig. 5.1, the region of interest is the one spanning from k
over the prediction horizon hp. In this region, a variation of û brings a change of x̂,
the predicted state and consequently of ŷ = h(x̂, û).

3The prediction horizon hp is such that hp ≥ Ts.

63

Model Predictive Control

At each time interval tk, look for an input signal û(t : τ) = u⋆(t : τ) such that
the predicted output (Equation 5.7):

ŷ(τ, x(t), u⋆(t : τ)) ≡ ŷ(u⋆(t : τ)) (5.7)

has the desired behaviour for τ ∈ [t, t+ hp].

The concept of desired behaviour is formalized in the definition of the objective
function (Equation 5.8):

J (û (t : t+ hp)) .=
Ú t+hp

t

1
∥ỹp(τ)∥2

Q + ∥û(τ)∥2
R

2
dτ + ∥ỹp(t+ hp)∥2

P (5.8)

where:

• ỹp(τ) .= r(τ) − ŷ(τ), predicted tracking error: difference between the reference
and the predicted output.

• r(τ) ∈ Rny , reference to track.

• û(τ), input given to the model.

• P , weight for the final tracking error.

and the signal is taken in the whole interval and it is integrated, the term outside
the integral represents the final time instant and it penalizes the deviation of the
predicted output at the end of the time horizon from the desired output.

Generally, the values of Q, R and P are changed according to a trial and error
procedure by keeping in mind that:

• Increasing Q and P leads to decrease the energy of x and y thus reducing
oscillations and convergence time.

• Increasing R leads to decrease the energy of u thus reducing command effort
and energy consumption.

The input signal u⋆(t : t+hp) is chosen as one minimizing the objective function
J(û(t : t + hp)) and the goal is to minimize, at each time tk, the tracking error
square norm ∥ỹp(τ)∥2

Q over a finite time interval.

The minimization of the cost function J is subject to constraints (Equation 5.9):

˙̂x(τ) = f(x̂(τ), û(τ)), x̂(t) = x(t), τ ∈ [t, t+ hp] (5.9a)
ŷ(τ) = h(x̂(τ), û(τ) (5.9b)

Other constraints that can be present are:

64

Model Predictive Control

• Constraints on the predicted state/output: x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, τ ∈ [t, t+hp].

• Constraints on the input: û ∈ Uc, τ ∈ [t, t+ hp].

Optimization Problem

At each time tk, for τ ∈ [t, t + hp], the optimization problem to be solved is
reported in Algorithm 1 where the last line in the optimization algorithm is a
further constraint employed to simplify calculations, reduce the computational
complexity of the optimization problem. Instead, for the first two constraints, the
variables have to be consistent with the state equations.

Algorithm 1 NMPC Optimization Problem
u⋆(t : t+ hp) = arg minû(·) J(û(t : t+ hp))
subject to:

˙̂x(τ) = f(x̂(τ), û(τ)), x̂(t) = x(t)
ŷ(τ) = h(x̂(τ), û(τ))
x̂(τ) ∈ Xc, ŷ(τ) ∈ Yc, û(τ) ∈ Uc
û(τ) = û(t+ hc), τ ∈ [t+ hc, : t+ hp]

Here, the following holds: 0 < Ts < hc < hp. This optimization problem is in
general non-convex4 and must be solved online at each time tk.

Moreover, the input signal û(t : t+ hp) can be seen as a vector with an infinite
number of elements. Hence, the optimization involves an infinite number of decision
variables. To overcome this problem, the signal can be parameterized. Typical
parameterizations are:

• Piece-wise Constant Input (Equation 5.10) for which the command input
is assumed to be constant on each sub-interval and minimization is easier
because it occurs on the sub-intervals and not on the whole interval.

û(τ) = up(τ) = ci for

τ ∈ [t+ (i− 1)Ts, t+ iTs]
i = 1, . . . , m .= hc

Ts

(5.10)

• Polynomial (Equation 5.11) for which the input is expressed in polynomial
form: û is a polynomial in the time, the independent variable; ci are the

4For non-convex functions it is possible to find only local minima, while it is hard to find
global minima. Instead for a convex function, every local minimum is a global minimum.

65

Model Predictive Control

coefficients.

û(τ) = up(τ) =
mØ
i=1

ci · (τ − t)i−1 (5.11)

In this way, the optimization is performed with respect to the finite dimension
matrix c = [c1, . . . , cm] ∈ Rnu×m. m represents the number of parameters and in
general, a small value of m and thus of number of parameters, is enough to obtain
a satisfactory control performance. Usually, m = 1 is fine in many situations and
for which the command input is constant for the whole prediction interval. In fact,
with m = 1 it is like having a constant input and a reduced computational effort.
Instead, with values equal to 3, 4 strange behaviours start already to appear [19].

5.3.3 Multistage Nonlinear MPC

Multistage NMPC (msNMPC) is a type of control strategy used to optimize
the control of systems with nonlinear dynamics over a finite prediction horizon. In
Nonlinear Model Predictive Control, the optimization of a control sequence that
minimizes a cost function subject to constraints on the system state and input
is done. However, in a Multistage NMPC (msNMPC), this idea is extended by
considering the system behaviour over a horizon of multiple stages. The basic
idea behind NMPC is to solve an optimization problem at each sampling time
to determine the optimal control actions to be applied to the system over the
prediction horizon, subject to system constraints such as state and control input
bounds. In the case of msNMPC, the optimization problem is solved iteratively,
with the solution of the previous iteration used as the initial guess for the next
iteration. This approach allows for the use of more accurate nonlinear models for
prediction over longer time horizons.

More in depth, the working principle of the iterative optimization algorithm is
hereafter described. At each time step, an optimization problem is solved to obtain
a sequence of control actions that minimizes the cost function over the horizon
of multiple stages. Then the first control action from the sequence is applied to
the system and the process is repeated at the next time step using the updated
system state as the initial condition for the next optimization problem. Multistage
NMPC is particularly useful for systems with nonlinear dynamics, but it can also be
computationally expensive due to the repeated solution of the optimization problem
at each sampling time. Therefore, careful consideration of numerical stability and
convergence of the iterative optimization solver is required. Various techniques
have been developed to address these challenges, including the use of warm-start

66

Model Predictive Control

techniques5, continuation methods and regularization strategies.

The general steps involved in implementing a Multistage NMPC include:

• Definition of the system dynamics: the mathematical model describing the
system behaviour has to be defined. The model is expressed in terms of state
variables and inputs.

• Definition of the cost function: a cost function quantifying the performance
of the system under consideration has to be defined. This cost function is
expressed in terms of state variables and inputs.

• Definition of the constraints: the constraints imposed by system physical
limitations on the state variables and inputs have to be defined.

• Choice of a solver: a suitable optimization solver has to be chosen to solve
the optimization problem arising in the msNMPC.

• Implementation of the iterative optimization algorithm: the iterative opti-
mization algorithm that repeatedly solves the optimization problem over the
horizon of multiple stages has to be implemented.

In conclusion, some real-case scenarios in which a Multistage NMPC could be
beneficial are found in the following sectors:

• Chemical processes: optimize the control of processes that have often complex,
nonlinear dynamics and are subject to physical constraints such as temperature,
pressure and concentration.

• Robotics: optimize the control of robotic systems that often have nonlinear
dynamics and are subject to constraints such as joint limits, collision avoidance
and task objectives.

• Automotive systems: optimize the control of automotive systems such as
engines, transmissions and chassis systems that have nonlinear dynamics and
are subject to constraints such as fuel economy, emissions and safety.

5Warm-start techniques are optimization methods using a previous solution as an initial guess
for the next optimization problem. This can significantly reduce the computation time and
increase the numerical stability of the solver. In the context of msNMPC, warm-start techniques
are used to improve the convergence of the iterative solver, by using the solution of the previous
iteration as the initial guess for the next iteration.

67

Model Predictive Control

• Power systems: optimize the control of power systems such as wind turbines,
solar panels and energy storage systems that have nonlinear dynamics and
are subject to constraints such as power output, energy storage capacity and
grid stability.

68

Chapter 6

Perpendicular Parking:
Software Implementation

In this final chapter, the implementation of the autonomous parking algorithm for
the three different scenarios earlier introduced and reported here for completeness:

• Perpendicular Parking using Nonlinear Model Predictive Control (Sec. 6.1).

• Perpendicular Parking using Multistage NMPC (Sec. 6.2).

• Perpendicular Parking using RRT* Trajectory Planner and NMPC Tracking
Controller (Sec. 6.3).

will be discussed alongside the presentation of the MATLAB® packages employed.
Additionally, the notation Case-Study (CS) 1, 2 or 3 will be respectively used to
distinguish the figures and tables of the three different cases mentioned above.

For all the case studies presented hereafter, it is assumed that the perpendicular
parking manoeuvre being considered involves the vehicle moving backward, which
occurs after the on-board sensors have detected an empty parking spot, causing
the vehicle to come to a halt and initiating the parking manoeuvre.

6.1 Perpendicular Parking using Nonlinear MPC
The first implementation that is going to be discussed regards the design of a

perpendicular parking controller using a simple NMPC.

69

Perpendicular Parking: Software Implementation

6.1.1 Parking Environment
To design a NMPC for parking manoeuvres, the first step is to define the parking

environment, which will be then in common among the three case studies. This
environment comprises the ego vehicle, three parking slots (one of which is empty),
and eight static obstacles:

• Two perpendicularly parked vehicles.

• Six road curbsides delimiting the parking lot and the road borders, one of
which is referred to as upperRoadLine in the algorithm of Appendix B and it
represents the upper road line (the one having its middle axis in y = 6) in the
parking environment of Figure 6.1.

As one can imagine, the goal of the ego vehicle is to complete a perpendicular
parking manoeuvre without colliding with any of the obstacles.

Figure 6.1: Perpendicular Parking Environment in MATLAB®.

The parking environment of Fig. 6.1, that is thus mainly constituted by the obsta-
cles, is designed in MATLAB® function script called helperSLVisualizeParking
that indeed creates and initializes a visualizer parking simulation. The visualizer
shows the parking lot and vehicles, including the ego vehicle and obstacles. It takes
the third pose entry of the ego vehicle, i.e. the yaw angle ψ and the steering angle
as input arguments (App. B, lines 5 − 6).

Then, it initializes and sets the properties of the figure handle and axes (App.
B, lines 12 − 25). The visualizer has a 2D representation of the parking lot, in-
cluding the occupied parking lots and the target parking lot. It also shows the
obstacles, including parked cars, road curbside and road line (App. B, lines 27−50).

The inner function createObstacles creates collision boxes to represent the
obstacles and transforms them to their respective positions. The obstacles are

70

Perpendicular Parking: Software Implementation

returned as a cell array (App. B, lines 70 − 110 and 40 − 43). The function then
creates a plot of the ego vehicle and sets its properties. The plot of the vehicle is
then updated based on the input arguments (App. B, lines 53 − 68).

The obstacles inside the parking environment were implemented using collision
boxes created with the help of the MATLAB® function collisionBox (Robotics
System Toolbox1). This function enables the creation of box collision geometries
centred at the origin. A box primitive is defined by its three side lengths and is
aligned with its own body-fixed frame, which has its origin at the center of the box2.

To ensure the correct functioning of the algorithm, it is important to discuss
the dimensions of the parking environment. Specifically, the design of the road
curbsides and lane width is detailed in lines 84 to 106 of the algorithm provided in
Appendix B. On the other hand, the dimensions of the parking spots and parked
cars are designed in lines 30 to 36 and 76 to 82, respectively. To provide clarity,
the dimensions are summarized in Table 6.1 and also displayed in Figure 6.2.

Description Dimension [m]
Road Length 47.5
Lane Width 4.15
Road Curbside Width 0.5
Parking Slot Length 6.7
Parking Slot Width 3.1

Table 6.1: Relevant Dimensions of the Parking Scenario.

1For more information, please refer to the documentation provided by The MathWorks, Inc.
at https://it.mathworks.com/help/robotics/index.html?s_tid=CRUX_lftnav.

2Syntax: BOX = collisionBox(X, Y, Z). For more information, please refer to the documen-
tation provided by The MathWorks, Inc. at https://it.mathworks.com/help/robotics/ref/
collisionbox.html?searchHighlight=collisionBox&s_tid=srchtitle_collisionBox_1.

71

https://it.mathworks.com/help/robotics/index.html?s_tid=CRUX_lftnav
https://it.mathworks.com/help/robotics/ref/collisionbox.html?searchHighlight=collisionBox&s_tid=srchtitle_collisionBox_1
https://it.mathworks.com/help/robotics/ref/collisionbox.html?searchHighlight=collisionBox&s_tid=srchtitle_collisionBox_1

Perpendicular Parking: Software Implementation

Figure 6.2: Parking Environment Dimensions.

The green asterisk plotted at line 38 of App. B represents the center of the
empty parking spot relative to which the ego vehicle will park.

6.1.2 Ego Vehicle Definition

In Section 4.3 it was stated that for parking problems the vehicle is driving at
low speeds (∼ 5 m/s) and for this, a kinematic single-track model of the vehicle
with front steering angle is employed. The Simplified Overall Equations of Motion
that describe the motion of the ego vehicle are presented in Equation (6.1), which
is a restatement of Eqn. (4.41) for clarity.

ẋ = v · cos (ψ)
ẏ = v · sin (ψ)
ψ̇ = v

wb
· (tan δ)

(6.1)

These state functions are implemented in a MATLAB® function script called
parkingVehicleStateFcn (Appendix C) where the variables are defined and where
the state functions are labelled as: ẋ1, ẋ2 and ẋ3.

As regards the vehicle dimensions, this together with its initial (egoInitialPose)
and target pose (egoTargetPose) are defined at the beginning of the main.m file
(Algorithm 2).

72

Perpendicular Parking: Software Implementation

Algorithm 2 Ego Vehicle Definition
vdims = vehicleDimensions;
egoWheelbase = vdims.Wheelbase;
distToCenter = 0.5 ∗ egoWheelbase;
egoInitialPose = [1, 3, 0];
egoTargetPose = [−3.1, −1.75 − distToCenter, π/2];

Here, the vehicleDimensions (Automated Driving Toolbox3) object is used to
define the vehicle dimensions. The syntax vdims = vehicleDimensions is chosen
among the provided ones because this creates a vehicle with default dimensions.
Figure 6.34 provides a graphical representation of the dimensions stored by the
function while Table 6.2 summarizes their default values.

Figure 6.3: Vehicle Dimensions stored in the vehicleDimensions Object.

Notably, the vehicle position is defined as a single point on the ground at the centre
of the rear axle, which corresponds to the vehicle natural centre of rotation [22].
This point serves as the reference point for the ego vehicle pose.

3For more information, please refer to the documentation provided by The MathWorks, Inc.
at https://it.mathworks.com/help/driving/index.html?s_tid=CRUX_lftnav.

4Figure Credits: Image adapted from The MathWorks, Inc. https://it.mathworks.com/
help/driving/ref/vehicledimensions.png.

73

https://it.mathworks.com/help/driving/index.html?s_tid=CRUX_lftnav
https://it.mathworks.com/help/driving/ref/vehicledimensions.png
https://it.mathworks.com/help/driving/ref/vehicledimensions.png

Perpendicular Parking: Software Implementation

Description Dimension [m]
Length 4.7
Width 1.8
Height 1.4
Wheelbase 2.8
Rear Overhang 1.0
Front Overhang 0.9

Table 6.2: Default Dimensions of the Ego Vehicle.

In terms of the initial and final poses, both are with respect to the position
of the ego vehicle highlighted in Fig. 6.3. The initial pose is arbitrarily selected,
while the target one is chosen by considering the location of the centre of the
target parking spot, (−3.1, −1.75). Since a transverse parking manoeuvre is being
executed, the vehicles yaw angle must also be taken into account, as the vehicle
undergoes a 90-degree turn to reach the final pose. Furthermore, being the vehicle
position at the centre of the rear axle (Fig. 6.3), the "offset" with the vehicle centre
(distToCenter) needs to be accounted for and results in being equivalent to half
of the wheelbase, 1.4 m. As a result, the actual y-coordinate of the ego vehicle
target pose must be less than −1.75 m, which is equivalent to −3.15 m.

6.1.3 Design the Nonlinear Model Predictive Controller
To design a Nonlinear Model Predictive Control5 for parking purposes, the

following assumptions have to be made [12]:

• The output of the vehicle state function is the same as the vehicle state, i.e.
(x, y, ψ), implying the NMPC object to be created with (App. F, lines
16 − 20):

◦ nx = 3 states.
◦ ny = 3 outputs.
◦ nu = 2 manipulated variables (MV).

• The ego vehicle speed v is bounded between [−2, 2] m/s (App. F, lines
37 − 38).

5For more information on how to implement a NMPC in MATLAB®, please refer to the
documentation provided by The MathWorks, Inc. at https://it.mathworks.com/help/mpc/
ug/nonlinear-mpc.html.

74

https://it.mathworks.com/help/mpc/ug/nonlinear-mpc.html
https://it.mathworks.com/help/mpc/ug/nonlinear-mpc.html

Perpendicular Parking: Software Implementation

• The ego vehicle steering angle δ is bounded between [−45, 45] deg (App. F,
lines 39 − 40).

• The NMPC controller uses a custom cost (Equation 6.2) similar to that
presented in Eqn. (5.8) and defined in a MATLAB® function script called
parkingCostFcn (Appendix D).

J =
Ú d

0
(s(t) − sref)TQp(s(t) − sref) + u(t)TRpu(t)dt +

+ (s(d) − sref)TQt(s(d) − sref) + u(d)TRtu(d)
(6.2)

Here:

◦ d is the simulation duration.
◦ s(t) is the states of the ego vehicle at time t.
◦ sref is the target pose of the ego vehicle.
◦ Qp, Rp are the state and input process weight matrices, respectively.
◦ Qt, Rt are the state and input terminal weight matrices, respectively.

• To avoid collisions with obstacles, the NMPC must satisfy the inequality
constraint of Equation 6.3 where the minimum distance to all obstacles,
distmin, must be greater than the safety distance distsafety (chosen to be
0.10 m).

distmin ≥ distsafety (6.3)
Here, since the ego vehicle obstacles are modeled as collisionBox objects,
the distance from the ego vehicle to the obstacles is computed in the MAT-
LAB® function script called parkingIneqConFcn (Appendix E) using the
checkCollision6 (Robotics System Toolbox) function.

The Nonlinear Model Predictive Control is thus designed and reported com-
pletely, with the final values for each variable, in Appendix F. Moreover, the
Jacobians of the state function (App. F line 43), cost function (App. F line 47)
and inequality constraints (App. F line 50) are provided to the NMPC controller
to improve the simulation efficiency.

The design starts with the specification of the sample time Ts, the prediction
horizon hp and the control horizon hc by following the guidelines presented in
Subsection 5.1.2 and resulting in (Table 6.3).

6For more information, please refer to the documentation provided by The MathWorks, Inc.
at https://it.mathworks.com/help/robotics/ref/rigidbodytree.checkcollision.html?
searchHighlight=checkCollision&s_tid=srchtitle_checkCollision_1.

75

https://it.mathworks.com/help/robotics/ref/rigidbodytree.checkcollision.html?searchHighlight=checkCollision&s_tid=srchtitle_checkCollision_1
https://it.mathworks.com/help/robotics/ref/rigidbodytree.checkcollision.html?searchHighlight=checkCollision&s_tid=srchtitle_checkCollision_1

Perpendicular Parking: Software Implementation

Parameter Value [s]
Sample Time Ts 0.25
Prediction Horizon hp 35
Control Horizon hc 35

Table 6.3: CS 1: NMPC Design Parameters Values.

These design parameters are defined in App. F, lines 1 − 3 and are specified for
the controller at lines 22 − 24.

The process and terminal weight matrices (Qp, Rp and Qt, Rt) are tuned
through a trial and error procedure, which is discussed in detail in Subsection 6.1.4.
This procedure takes into account the behavior of the ego vehicle„ i.e. how it drives
to reach the target pose, as well as the results obtained from the MATLAB®
analyseParkingResults function script (Appendix G), which has the following
template:

1. Valid/Invalid result, it is based on the occurrence of a collision and analyses
the data coming from the parkingIneqConFcn.m function. If no collisions are
present, then the result is valid (App. G, lines 5 − 10).

2. Minimum distance to obstacles, it is valid when greater than distsafety
(App. G, lines 12 − 13).

3. Optimization exit flag, it extracts the solution details from the variable
ExitFlag7 of the MATLAB® object nlmpcmove8 (Model Predictive Control
Toolbox). It is successful when positive (App. G, lines 12 and 14).

4. Elapsed time [s] for nlmpcmove9 (App. G, line 15).

7Optimization exit code, returned as one of the following:
• Positive integer: optimal solution found.
• 0: feasible suboptimal solution found after the maximum number of iterations.
• Negative integer: no feasible solution found.

8nlmpcmove computes the optimal control action for NMPC controller. For more
information, please refer to the documentation provided by The MathWorks, Inc. at
https://it.mathworks.com/help/mpc/ref/nlmpc.nlmpcmove.html?searchHighlight=
nlmpcmove&s_tid=srchtitle_nlmpcmove_1.

9Actually this value is influenced by many factors e.g.: number of pages or applications opened
on the laptop, CPU and so on.

76

https://it.mathworks.com/help/mpc/ref/nlmpc.nlmpcmove.html?searchHighlight=nlmpcmove&s_tid=srchtitle_nlmpcmove_1
https://it.mathworks.com/help/mpc/ref/nlmpc.nlmpcmove.html?searchHighlight=nlmpcmove&s_tid=srchtitle_nlmpcmove_1

Perpendicular Parking: Software Implementation

5. Final states error in x [m], y [m] and ψ [deg]. It computes the error
for the state variables (App. G, lines 17 − 19), not in absolute terms, by
taking the final values from the optimal prediction model state sequence Xopt
(Equation 6.4).

ϵ = optimal − reference (6.4)

6. Final control inputs speed [m/s] and steering angle [deg]. It takes the
final values of from the optimal manipulated variable sequences, MVopt, for the
two manipulated variables (App. G, lines 21−22). These values correspond to
the last control inputs provided to the actuator before the car has eventually
brought to a halt.

The final values for the weight matrices are reported in App. F, lines 4 − 8.

The next step is the definition of the safety distance, set at 0.1 m (App. F line
10), used by the controller when defining its constraints. After this, the nlmpc10

(Model Predictive Control Toolbox) object is created alongiside with the definition
of the constraints for the MV, as discussed earlier.

Then, from line 42 to line 50 of App. F, the followings are specified:

• Controller state function and Jacobian of the state function.

• Controller cost function and Jacobian of the cost function.

• Controller inequality constraints and Jacobian of the inequality constraints.
The constraints compute the distance from the ego vehicle to all the obstacles
in the environment and compare the distances with distsafety.

Those specifications are followed by the configuration of the optimization solver
(App. F, lines 52 − 56) and the definition of the optimal state solution (App. F,
lines 58 − 60).

The last part of the NMPC controller design is related to the passing of the
parameters to the function (App. F, lines 62 − 64).

10For more information, please refer to the documentation provided by The MathWorks,
Inc. at https://it.mathworks.com/help/mpc/ref/nlmpc.html?searchHighlight=nlmpc&s_
tid=srchtitle_nlmpc_1.

77

https://it.mathworks.com/help/mpc/ref/nlmpc.html?searchHighlight=nlmpc&s_tid=srchtitle_nlmpc_1
https://it.mathworks.com/help/mpc/ref/nlmpc.html?searchHighlight=nlmpc&s_tid=srchtitle_nlmpc_1

Perpendicular Parking: Software Implementation

6.1.4 Controller Simulation in MATLAB®
To simulate the NMPC controller in MATLAB®, the nlmpcmove function is

used inside the MATLAB® runParkingAndPlot function script (Appendix H).
In this function script also the buildMEX11 (Model Predictive Control Toolbox)
function is used to improve the simulation efficiency. However, as can be seen from
Algorithm 3, for this simulation a MEX file is not built (useMEX set to 0) because,
as it will be shown later on in this section, the simulation duration is already small.

Algorithm 3 Controller Simulation in MATLAB®
useMEX = 0;
runParkingAndPlot

In App. H also the use of another MATLAB® function script is reported, i.e.
plotAndAnimateParking, that animates and plots the results for the parking ma-
noeuvre (Appendix I).

As stated in Subsec. 6.1.3, multiple simulations were conducted to determine
the optimal set of weight matrices. The results of the first four simulations are
presented in Table 6.5 which presents the various values for the Qp weight matrix
and brief comments on the outcomes. As concerns the other three weight matrices,
namely Rp, Qt and Rt, these are kept constant throughout those simulations with
values reported in Table 6.4.

Rp Qt Rt

0.01 ∗ eye(2) diag([1 5 100]) 0.1 ∗ eye(2)

Table 6.4: CS 1 (Trials 1 to 4): Values for the Weight Matrices Rp, Qt and Rt.

Trial Qp Comment
1 diag([0.1 0.1 0]) Invalid: collisions distmin = 0.0072 ExitFlag = −2
2 diag([1 1 0]) Invalid: collisions distmin = 0.0491 ExitFlag = −2
3 diag([10 10 1]) Invalid: collisions distmin = −10.0 ExitFlag = −2
4 diag([50 50 1]) Invalid: collisions distmin = −10.0 ExitFlag = −2

Table 6.5: CS 1 (Trials 1 to 4): Tuning of the Process Weight Matrices.

11For more information, please refer to the documentation provided by The MathWorks, Inc.
at https://it.mathworks.com/help/mpc/ref/nlmpc.buildmex.html.

78

https://it.mathworks.com/help/mpc/ref/nlmpc.buildmex.html

Perpendicular Parking: Software Implementation

Upon examining the ego vehicle behaviour in simulations (Figure 6.4), it became
evident that the fourth trial performed the poorest, leading to abrupt steering
of the ego vehicle, which resulted in collisions with the obstacles present in the
scenario. This is highlighted by the path, represented as red dots, in Fig. 6.4.

Figure 6.4: CS 1: Ego Vehicle Behaviour at the End of Trial 4.

Moreover, by looking at the results listed in Table 6.5, one can be influenced by
the value of the distmin and think that the trial and error procedure should continue
with the value of Qp either from simulation 1 or from simulation 2. However, to
determine the best choice, it is necessary to look at the complete Parking Results
Analysis. For this reason, the weight matrix Qp from trial 3 is chosen to continue
with further simulations because this shows the best values in terms of final states
error and final control inputs, besides a good simulation time (Table 6.6).

Trial Description and Value
Elapsed time for nlmpcmove Final states error Final control inputs

Trial 1 15.8576 s x = 0.0339 m v = −1.0560 m/s
y = 0.2855 m δ = 43.7442 deg
ψ = −6.3237 deg

Trial 2 7.0864 s x = −0.0514 m v = −0.6897 m/s
y = −0.1805 m δ = −45.0000 deg
ψ = 2.2082 deg

Trial 3 9.5116 s x = −0.0117 m v = 0.0113 m/s
y = 0.0366 m δ = −0.1706 deg
ψ = 6.7945 deg

Trial 4 7.7007 s x = 1.5329 m v = 0.5470 m/s
y = −0.5847 m δ = 6.9881 deg
ψ = 182.4180 deg

Table 6.6: CS 1 (Trials 1 to 4): Comparison of Parking Results Analysis.

79

Perpendicular Parking: Software Implementation

Hence, by keeping Qp constant as per trial 3 and Rp, Rt as in Table 6.4, the
next cluster of trials (reported in Table 6.7) aims at increasing the penalization on
the yaw rate, i.e. the third diagonal value of Qt is sequentially reduced.

Trial Qt Comment
5 diag([1 5 70]) Invalid: collisions ψ = −1.4056 deg δ = −19.0421 deg
6 diag([1 5 50]) Invalid: collisions ψ = −11.4703 deg δ = 27.0794 deg
7 diag([1 5 25]) Invalid: collisions ψ = −1.3970 deg δ = 8.2680 deg
8 diag([1 5 15]) Invalid: collisions ψ = 6.0145 deg δ = −15.5749 deg
9 diag([1 5 5]) Invalid: collisions ψ = 4.9160 deg δ = −10.2849 deg

Table 6.7: CS 1 (Trials 5 to 9): Tuning of the Terminal Weight Matrices.

With this set of trials it was possible to prove that even though the simulation
seems to be quite good (Figure 6.5), while turning the car collides with the
obstacles. Therefore, by following a similar reasoning as done for the set 1 − 4
and by considering that the goal of the last cluster was to obtain a good result by
penalizing ψ̇, the new objective is to increase the penalization on the steering angle
δ to have a smoother steering during the parking manoeuvre thus tuning the Rt

weight matrix by keeping Qp, Rp and Qt as in trial 9.

Figure 6.5: CS 1: Ego Vehicle Behaviour at the End of Trial 9.

The weight matrices values for the upcoming simulations are tabulated in Table
6.8, from where it will be clear that with trial 12 satisfactory results are reached
(Figure 6.6). The complete Parking Results Analysis is reported in Table 6.9.

80

Perpendicular Parking: Software Implementation

Trial Rt Comment
10 0.08 ∗ eye(2) Valid: no collisions distmin = 0.1091 ExitFlag = −2
11 0.06 ∗ eye(2) Invalid: collisions
12 0.04 ∗ eye(2) Valid: no collisions distmin = 0.1000 ExitFlag = 0
13 0.02 ∗ eye(2) Invalid: collisions

Table 6.8: CS 1 (Trials 10 to 13): Tuning of the Terminal Weight Matrices.

Description Value
Result Valid, no collisions.
Minimum distance to obstacles distmin = 0.10 m
Optimization ExitFlag 0
Elapsed time for nlmpcmove 14.9004 s
Final states error x = 0.0021 m (highlighted in Fig. 6.6)

y = 0.0170 m (highlighted in Fig. 6.6)
ψ = 0.9533 deg

Final control inputs v = 0.1045 m/s
δ = −23.3758 deg

Table 6.9: CS 1 (Trial 12): Parking Results Analysis.

It is worth remarking that the speed in the final control inputs is not the speed
at the end of the simulation, rather it is the last speed value that is reached by the
vehicle before halting at the end of the simulation.

Figure 6.6: CS 1: Valid Result at Trial 12.

A comprehensive representation of the time evolution of the ego vehicle states
and control inputs, spanning from 1 s to 36 s, with hp = 35 s, can be obtained
by examining Figures 6.7 and 6.8. Fig. 6.7 shows the time evolution of the ego
vehicle states from the initial to the target pose along with the previously discussed

81

Perpendicular Parking: Software Implementation

errors, while Fig. 6.8 illustrates the satisfaction of constraints by both the speed v
and the steering angle δ. During the initial non-turning phase, the speed remains
constant (negative for backward motion), and minor adjustments are made to the
steering wheel. However, when turning commences and then the ego vehicle aligns
itself within the parking spot, both the speed and steering angle exhibit pulsating
behaviour. The last plot shows also that the vehicle achieves a steering angle of
δ = ±45 deg during the manoeuvre. Although this angle may be relatively large
and unsuitable for most normal driving situations, it is necessary to achieve a sharp
turn to navigate the 90-degree curve and reach the parking spot. Additionally, the
minor speed fluctuations after the 25th second correspond to the final adjustments
made by the vehicle to achieve the optimal parking position.

Figure 6.7: CS 1: Behaviour of the Ego Vehicle States at Trial 12.

82

Perpendicular Parking: Software Implementation

Figure 6.8: CS 1: Behaviour of the Ego Vehicle Control Inputs at Trial 12.

6.2 Perpendicular Parking using Multistage Non-
linear MPC

The second case study aims to perform a perpendicular parking manoeuvre
utilizing a Multistage NMPC through a MATLAB® script (Appendix J) and
a Simulink® model. The Vehicle Path Planner System block (Figure 6.9)
is used to simulate a VPP system that plans a collision-free trajectory from
egoInitialPose to egoTargetPose using a msNMPC [23].

Figure 6.9: VPP System Block as per The MathWorks, Inc. Documentation.

83

Perpendicular Parking: Software Implementation

Furthermore, it is noteworthy that this case study is much simpler and more
straightforward than the previous case study since the VPP system already contains
a pre-built msNMPC controller that requires only data input from the script.
Therefore, with the parking environment being the same as in Subsec. 6.1.1 and the
ego vehicle consideration in Subsec. 6.1.2, the focus can be directed on configuring
the Vehicle Path Planner System block (Subsection 6.2.1).

6.2.1 Vehicle Path Planner System Block Configuration
Specifically, a modified version (compared to the The MathWorks, Inc. one)

of the Simulink® Vehicle Path Planner System block is employed to realise
the simulation. The inputs are the same: egoInitialPose, egoTargetPose and
enabling signal12; the outputs are displayed in Figure 6.10. The parameters received
by the VPP block are shown in Figure 6.11, which are all obtained from the main.m
MATLAB® script.

Figure 6.10: VPP Simulink® Model.

12For more information, please refer to the documentation provided by The MathWorks, Inc.
at https://it.mathworks.com/help/mpc/ref/vehiclepathplannersystem.html.

84

https://it.mathworks.com/help/mpc/ref/vehiclepathplannersystem.html

Perpendicular Parking: Software Implementation

Figure 6.11: VPP System Block Parameters.

To enable additional outports, the VPP must be navigated until reaching the
Multistage NMPC Controller block (2nd level inside the starting block), as shown
in Figure 6.12.

Figure 6.12: msNMPC Controller Model.

85

Perpendicular Parking: Software Implementation

The msNMPC Controller block simulates a multistage nonlinear model predictive
controller and at each interval, the block computes optimal control moves by solving
a nonlinear programming problem in which different cost functions and constraints
are defined for different predictions stages [24]. To enable additional outports, it is
sufficient to open the block parameters window and tick the needed outputs. Those
enabled for this CS are categorized as follows:

• Required:

◦ Optimal MV Control Action out.mv_opti. If the solver converges to
a local optimum solution, i.e. if out.exitflag > 0, then out.mv_opti
contains the optimal solution.

• Additional:

◦ Objective Function Cost out.cost, enabled via the Optimal Cost param-
eter. The cost quantifies the degree to which the controller has achieved
its objective and this is meaningful only when out.exitflag ≥ 0.

◦ Optimization Status out.exitflag be positive (convergence to optimal
solution), null (no convergence to optimal solution) or negative (solver
failed).

• Optimal Sequences:

◦ Optimal MV Sequence out.mv_seq, the first hp rows contain the computed
optimal MV values from current time k to k + hp − 1, while the first row
contains the current MV values.

◦ Optimal Prediction Model State Sequence out.x_seq, the first row con-
tains the current estimated state values, while the next hp rows contain
the calculated optimal state values from k + 1 to k + hp.

6.2.2 Controller Simulation in MATLAB® and Simulink®
To simulate the controller in both MATLAB® and Simulink® the following

design parameters are needed and chosen as from the The MathWorks, Inc. example:

• Sample Time Ts = 1 s.

• Prediction Horizon hp = 10 s.

Furthermore, as there are no weight matrices to tune in the current CS (as
they are integrated within the msNMPC controller block), and the simulation
outcomes are already collisions-free, the only remaining objective is to obtain an

86

Perpendicular Parking: Software Implementation

optimal solution, achievable by modifying the constraints on the inputs. Loos-
ening these constraints can enhance the feasibility of the solution. Additionally,
due to collision-free outcomes, the Parking Results Analysis described in Sub-
sec. 6.1.3 is shorter since the first two points are not evaluated. Moreover, as
the nlmpcmove is not present in the script anymore, the simulation time is now
computed using the Simulink.SimulationMetadata class13. Specifically, the field
TotalElapsedWallTime14 (of the TimingInfo property) is considered, which is
given by the sum of the following three fields, measured in seconds [s]:

• InitializationElapsedWallTime, time spent before simulation execution.

• ExecutionElapsedWallTime, time spent during simulation execution.

• TerminationElapsedWallTime, time spent after simulation execution.

Concerning the simulations, these have been carried out starting from the bounds
provided by the The MathWorks, Inc. example. Thus, initially the bounds on the
speed have been varied while those on the steering angle have been kept fixed at
±30 deg (Table 6.10).

Trial Speed Range [m/s] Comment
1 [−2.5, 2.5] ExitFlag = −2
2 [−3.0, 3.0] ExitFlag = −2
3 [−3.5, 3.5] ExitFlag = −2
4 [−4.0, 4.0] ExitFlag = −2

Table 6.10: CS 2 (Trials 1 to 4): Loosening of the Speed Bounds.

After this first cluster of simulations, it is possible to state that the trial in
which the car performed the best, i.e. the car travels more in the parking spot
before the simulations ends (Figure 6.13), is in trial 3; while the worst in trial 4.
The Parking Results Analysis are reported in Table 6.11.

13For more information, please refer to the documentation provided by The MathWorks, Inc. at
https://it.mathworks.com/help/simulink/slref/simulink.simulationmetadata-class.
html.

14As for the value of nlmpcmove, also this value is influenced by many factors external to the
mere script/model.

87

https://it.mathworks.com/help/simulink/slref/simulink.simulationmetadata-class.html
https://it.mathworks.com/help/simulink/slref/simulink.simulationmetadata-class.html

Perpendicular Parking: Software Implementation

Trial Description and Value
Elapsed simulation time Final states error

Trial 1 5.6244 s x = 0 m y = 1.8490 m ψ = −14.7675 deg
Trial 2 6.0894 s x = 0 m y = 1.4051 m ψ = −11.3564 deg
Trial 3 5.7216 s x = 0 m y = 0.8835 m ψ = −7.3862 deg
Trial 4 3.8931 s x = 0 m y = 3.8142 m ψ = −56.5411 deg

Table 6.11: CS 2 (Trials 1 to 4): Comparison of Parking Results Analysis.

Figure 6.13: CS 2: Ego Vehicle Behaviour at the End of Trial 3.

It follows that trial 3 should represent a good compromise and so, the speed range
of this simulation is kept to proceed with the relaxation of the steering angle range
because, as also explained for CS 1, a high steering angle is required to turn sharp
angles. For this reason, a simulation is run (trial 5) with a steering angle range
[−π/4, π/4] and the results are collected in Table 6.12.

Description Values
Optimization ExitFlag 2
Optimal MV control action v = 0.5264 m/s

δ = 0.3591 deg
Objective function cost ≈ 29
Elapsed simulation time 7.9835 s
Final states error x = 0 m

y = 0 m
ψ = 0 deg

Final control inputs v = 0 m/s
δ = 0 deg

Table 6.12: CS 2 (Trial 5): Parking Results Analysis.

88

Perpendicular Parking: Software Implementation

However, as discussed in CS 1, a steering angle δ = ±45 deg is relatively large and
unsuitable for many driving situations while a suitable (and more real) range is
30 ÷ 40 deg. Therefore, another simulation is attempted (trial 6) with a steering
angle range [−π/5, π/5] with results collected in Table 6.13.

Description Values
Optimization ExitFlag 1
Optimal MV control action v = 0.7574 m/s

δ = 0.6000 deg
Objective function cost ≈ 32
Elapsed simulation time 4.2473 s
Final states error x = 0 m

y = 0 m
ψ = 0 deg

Final control inputs v = 0 m/s
δ = 0 deg

Table 6.13: CS 2 (Trial 6): Parking Results Analysis.

Hence, by considering all the results (apart from the simulation time), this second
simulation is a bit worse than the previous one. However, an angle of 36 deg is
closer to the reality and so it is chosen as final value for this case study. The vehicle
behaviour is shown in Figure 6.14, while in Figures 6.15 and 6.16 it is possible to
see the time evolution of the states and of the control inputs, respectively.

Figure 6.14: CS 2: Valid Result at Trial 6.

89

Perpendicular Parking: Software Implementation

Figure 6.15: CS 2: Behaviour of the Ego Vehicle States at Trial 6.

Figure 6.16: CS 2: Behaviour of the Ego Vehicle Control Inputs at Trial 6.

Based on the plots, it is evident that the ego vehicle to navigate into the parking
spot performs a wider curve: it slightly accelerates (positive velocity in the speed
plot of Fig. 6.16) thus to increase both its x and y positions. The x coordinate

90

Perpendicular Parking: Software Implementation

increases more prominently as shown by the hump at the beginning of the first plot
in Fig. 6.15, then it starts the reverse motion to drive into the parking spot. As
it is clear from the plot, the vehicle does not execute any additional positioning
manoeuvres to align itself at the center of the parking space, unlike in the CS
1. Furthermore, the simulation results demonstrate that the overall process is
both faster and more precise than in the simple NMPC scenario. This approach
is also more straightforward as only a few parameters need to be defined in the
MATLAB® script, and there is no need to generate many function scripts as
everything is handled within the msNMPC block. It is also good to point out
that with this approach it is possible to obtain an ExitFlag = 1 (positive integer:
optimal solution found), that was not possible to obtain in CS 1.

6.3 Perpendicular Parking using RRT* Planner
and NMPC Tracking Controller

The aim of this last case study is to realize a perpendicular parking manoeuvre
by path-generation with the RRT* planner algorithm and trajectory-tracking with
the NMPC controller. Also for this case, the parking environment is the same as
in the previous two case studies as well as the ego vehicle poses and dimensions.

This section starts with a brief overview on the trajectory planning and the
RRT, RRT* algorithms and then it proceeds with the implementation of the RRT*

planner and the NMPC tracking controller in the MATLAB® environment.

The complete script is reported in Appendix K.

6.3.1 Trajectory Planning and the RRT, RRT* Algorithms

The goal of trajectory planning is to generate the reference inputs to the motion
control system which ensures that the robot executes the planned trajectory. The
user specifies a number of parameters to describe the desired trajectory. Planning
consists of generating a time sequence of the values attained by an interpolating
function of the desired trajectory [25].

Many motion planning algorithms exist in literature but these have to be differ-
entiated according to the assumption of whether the workspace under examination
is empty or obstacles are present. In this latter case, it is necessary to plan motions
allowing the robot to accomplish its task without colliding with with the obstacles.

91

Perpendicular Parking: Software Implementation

This is the case of an autonomous vehicle15 that has to perform a parking manoeu-
vre without colliding with road-users or cars or other obstacles.

The RRT algorithm is a probabilistic algorithm that can help accomplish the
task of autonomous parking without collision. It relies on randomized sampling of
the configuration space and memorizes the samples that do not cause a collision be-
tween the robot and the obstacles. This algorithm is an example of a single-query16

probabilistic planner that incrementally expands the tree, T , using randomized
procedures.

The algorithm first generates a random configuration, qrand, according to a
uniform probability distribution. When a configuration qnear in T , close to qrand
is found, a new candidate configuration, qnew, is generated at a distance δ from
qnear on the segment joining qnear to qrand. A collision check is then run to verify
that both qnew and the segment belong to Cfree. If they do, T is expanded by
incorporating qnew and the segment.

The RRT is designed for efficiently searching non-convex high-dimensional
spaces and it is incrementally constructed to reduce the expected distance of a
randomly-chosen point to the tree. These properties make such algorithm particu-
larly well-suited for path planning problems involving obstacles and nonholonomic
constraints. It can be regarded as a tool for generating open-loop trajectories for
nonlinear systems with state constraints [26].

The RRT*, on the other hand, is nothing but an extension of the RRT that
addresses some limitations of the original algorithm, like the non-convergence to an
optimal value. Instead, RRT* is asymptotically optimal, meaning that it guarantees
that the solution found approaches the optimal solution as the number of iterations
goes to infinity.

In summary, RRT is a simple and efficient algorithm for addressing feasible-path-
finding problem in high-dimensional configuration spaces, while RRT* is just an
extension of RRT that is asymptotically optimal and finds higher quality solutions.

15Considered as a wheeled robot and which kinematic constraints arising from the pure rolling
of the wheels are referred to as nonholonomic constraints.

16Single-query probabilistic methods aim at solving particular cases of motion planning problems
and they explore only a subset of the free configuration space, Cfree relevant for solving the
problem.

92

Perpendicular Parking: Software Implementation

6.3.2 Path Planning from RRT* in MATLAB®
To generate a suitable algorithm that involves both the trajectory planning

and the tracking controller, the first thing to develop concerns the path planning
algorithm. Therefore, the state space model for the planner is configured (App. K,
lines 11 − 15) by considering the ego vehicle states, Eq. (6.1). Here, the bounds
for the ego vehicle states have to be carefully chosen so to drive the generated tree
inside the available parking spot.

The state space model is built via the state space for Reeds-Shepp vehicles17,
stateSpaceReeds-Shepp18 (Navigation Toolbox, Motion Planning), which stores
parameters and states in the Reeds-Shepp state space constituted by state vectors of
the kind: [x y θ], with x and y Cartesian coordinates, and θ orientation angle. Here,
a MinTurningRadius19 of 2.3 m is chosen since the vehicle is supposed to turn a very
sharp curve with the smallest possible amount of interventions at the steering wheel.

Once the state space model is defined, the planner requires a customized state
validator (Appendix L) to enable the collision checking between ego vehicle and
obstacles. Here, after the configuration of the custom state validator for RRT*
(made by The MathWorks, Inc.), the parking environment obstacles are generated
in a way similar to how they were generated in the helperSLVisualizerParking
function (App. B) for the previous two case studies.

Next, the configuration of the path planner is done via the plannerRRTStar20

object (Navigation Toolbox, Motion Planning) that creates an asymptotically-
optimal RRT planner, the RRT* (App. K, lines 17 − 20). Then, by using the
configured path planner, it is possible to plan the path from egoInitialPose to
egoTargetPose (App. K, lines 22 − 23).

Finally, from line 25 to line 31 of App. K the tree expansion (yellow line in

17Reeds-Shepp vehicles are wheeled vehicles with a steering mechanism designed to minimize
the turning radius and maximize the vehicle manoeuvrability. These vehicles are often used in
applications where precise manoeuvring is required, such as autonomous vehicles.

18For more information, please refer to the documentation provided by The Math-
Works, Inc. at https://it.mathworks.com/help/nav/ref/statespacereedsshepp.html?
searchHighlight=stateSpaceReedsShepp&s_tid=srchtitle_stateSpaceReedsShepp_1.

19Minimum turning radius, in meters, the vehicle can cover with a maximum steer in a single
direction.

20For more information, please refer to the documentation provided by The
MathWorks, Inc. at https://it.mathworks.com/help/nav/ref/plannerrrtstar.html?
searchHighlight=plannerRRTStar&s_tid=srchtitle_plannerRRTStar_1.

93

https://it.mathworks.com/help/nav/ref/statespacereedsshepp.html?searchHighlight=stateSpaceReedsShepp&s_tid=srchtitle_stateSpaceReedsShepp_1
https://it.mathworks.com/help/nav/ref/statespacereedsshepp.html?searchHighlight=stateSpaceReedsShepp&s_tid=srchtitle_stateSpaceReedsShepp_1
https://it.mathworks.com/help/nav/ref/plannerrrtstar.html?searchHighlight=plannerRRTStar&s_tid=srchtitle_plannerRRTStar_1
https://it.mathworks.com/help/nav/ref/plannerrrtstar.html?searchHighlight=plannerRRTStar&s_tid=srchtitle_plannerRRTStar_1

Perpendicular Parking: Software Implementation

Figure 6.17) in the parking environment and trajectory generated (blue line in
Figure 6.17) are plotted in the environment.

Figure 6.17: CS 3: Tree Expansion and Trajectory Generation in the Parking
Environment.

6.3.3 Design of the NMPC Tracking Controller

The NMPC tracking controller design is done similarly to how it has been
discussed in Subsec. 6.1.3. The design parameters this time are (Table 6.14):

Parameter Value [s]
Sample Time Ts 0.1
Prediction Horizon hp 10
Control Horizon hc 10

Table 6.14: CS 3: NMPC Tracking Controller Design Parameters Values.

Instead the constraints on the control inputs are the same as in CS 1, i.e. v ∈
[−2, 2] m/s and δ ∈ [−π/4, π/4] rad.

On the other hand, a substantial difference with CS 1 lies in how the weight
matrices are handled. In the former example, a custom cost function was used,
this time instead a standard cost function is employed and thus, there is no more
distinction between process and terminal weight matrices for the output and ma-
nipulated variables, but just between output and manipulated variables weight
matrices (App. K, lines 46 − 47), with respect to which the tuning is carried on.

94

Perpendicular Parking: Software Implementation

6.3.4 Controller Simulation in MATLAB®

To simulate the controller in MATLAB®, the first thing to do is to specify the
initial values for both the ego vehicle state and the control inputs and then, build
a MEX function for simulating the controller and speed up the simulation (App. K,
lines 56 − 58) since it can take quite a long time.

Then, some variables are initialized before the simulation, like the history of
the plant states and control inputs, besides of setting the duration of the parking
manoeuvre and the computation of number of steps (App. K, lines 60 − 62).

Finally, the controller is run in closed-loop and the simulation results are plotted
(App. K, lines 63 − 73):

• Figure 6.18 shows the accomplishment of the manoeuvre by the ego vehicle.

• Figure 6.19 shows the goodness of the tracking controller, i.e. its ability to
track the desired trajectory.

• Figure 6.20 shows the behaviour of the ego vehicle states versus the time steps.

• Figure 6.21 shows the behaviour of the control inputs versus the time steps.

The Parking Results Analysis for this third case study is collected in Table 6.15.

Description Values
Optimization ExitFlag 2
Tracking error in infinity norm ∥x∥∞ = 0.2007 m

∥y∥∞ = 0.0790 m
∥ψ∥∞ = 7.3293 deg

Final states error x = −0.0341 m
y = 0 m
ψ = 0.0179 deg

Final control inputs v = 0 m/s
δ = 0 deg

Table 6.15: CS 3: Parking Results Analysis.

95

Perpendicular Parking: Software Implementation

Figure 6.18: CS 3: Ego Vehicle Behaviour at the End of the Simulation.

Figure 6.19: CS 3: Goodness of the NMPC Tracking Controller.

96

Perpendicular Parking: Software Implementation

Figure 6.20: CS 3: Behaviour of the Ego Vehicle States.

Figure 6.21: CS 3: Behaviour of the Ego Vehicle Control Inputs.

From these last two plots it is possible to say that after the 100th time step, the

97

Perpendicular Parking: Software Implementation

parking manoeuvre is practically terminated and what follows are just small cor-
rections in the longitudinal orientation of the vehicle. After these adjustments, the
ego vehicle comes to a halt in the correct position as also demonstrated by Fig. 6.18.

In conclusion, the results proved that all three approaches could achieve successful
manoeuvres, with some differences in terms of execution time and computational
complexity. In particular, the second control strategy (Section 6.2) showed the best
overall performance, with the shortest execution time and the most stable control
output, besides of being more close to the reality: the steering angle value is in the
range 30 ÷ 40 deg.

98

Chapter 7

Conclusion

Autonomous driving technology has surfaced as a viable option to tackle the
obstacles of urban transportation in the past few years. Due to the growing need
for secure and productive mobility, various organizations and scholars are striving
to advance autonomous driving technology. A significant contest in this area is the
Bosch Future Mobility Challenge, conducted by the Bosch Engineering Centre Cluj,
that seeks to promote inventiveness and originality and create awareness regarding
the potential of these emerging technologies.

The goal of this Master’s Thesis project is to aid in the progress of autonomous
driving technology by concentrating on a crucial element - autonomous parking,
with specific emphasis on perpendicular parking. While this manoeuvre may ap-
pear effortless for human drivers, it can pose a difficult challenge for self-driving
vehicles. This is because it requires accurate perception, planning, and control
to manoeuvre the vehicle into a tight parking spot without colliding with other
vehicles or obstacles.

To tackle this challenge, The MathWorks, Inc. has already developed a solution
for parallel parking. To expand upon this, three separate case studies were con-
ducted to explore various methods to accomplish successful perpendicular parking
for autonomous vehicles. The first case study used a Nonlinear Model Predic-
tive Control, which is a type of control algorithm that can optimize the vehicle
trajectory based on a predictive model of its dynamics. The second case study
used a Multistage NMPC, which is an extension of Nonlinear Model Predictive
Control that allows for the use of more accurate nonlinear models for prediction
over longer horizons. The third case study used an optimized Rapidly-exploring
Random Tree path planning combined with Nonlinear Model Predictive Control
tracking controller, which is an approach that uses a probabilistic algorithm to
generate a feasible trajectory for the vehicle.

99

Conclusion

The results showed that all three approaches could achieve successful perpendic-
ular parking manoeuvres, with some differences in terms of the execution time and
computational complexity. In particular, the msNMPC approach showed the best
overall performance, with the shortest execution time and the most stable control
output, besides of being more close to the reality. However, each approach has its
advantages and limitations, and the choice of the best method will depend on the
specific requirements and constraints of the application.

Overall, this research contributes to the growing body of knowledge on au-
tonomous driving technology by demonstrating the feasibility of using advanced
control and planning techniques to solve the problem of perpendicular parking.
The hope is that such work can inspire and serve as a valuable resource for re-
searchers and engineers working in this field, providing insights into the design,
implementation and evaluation of autonomous driving systems.

100

Appendix A

Autonomous Parking
Algorithm @ BFMC22

1 # PARKING MANOEUVRE
2 e l i f PARKING_MANOEUVRE:
3 cnt = cnt + 1
4 i f cnt == 1 :
5 pr in t (" Parking manoeuvre i n i t i a t e d . . . ")
6 s e l f . Car_detected = 2
7 actual_yaw = s e l f .Yaw
8 i f cnt <= 10 :
9 # Drive forward without s t e e r i n g −−> s t r a i g h t .

10 value = s e l f . _s t ra i ght_cor r e c t i on (actual_yaw)
11 e l i f 17 < cnt < 27 :
12 # The f i r s t s l o t i s empty , the ego v e h i c l e i s in correspondence
13 # of the second s lop , thus i t comes to a ha l t .
14 value = 999
15 e l i f 27 <= cnt < 60 : # decreased by 10
16 # Steer the wheels and dr ive backward .
17 value = 1000
18 e l i f 60 <= cnt < 93 : # decreased by 20
19 # Steer the wheels on the other s i d e and dr ive backward .
20 value = 1001
21 e l i f 93 <= cnt < 130 and not SECOND_PARKING:
22 # I f the re i s an o b s t a c l e in f ront , and the ego v e h i c l e i s c l o s e
23 # to th i s , the LiDAR senso r w i l l brake the car .
24 i f s e l f . Lidar == 99 :
25 value = 999
26 e l s e :
27 # Otherwise , d r i v e forward , without s t e e r i n g , to reach the
28 # parking spot ’ s c en t e r .

101

Autonomous Parking Algorithm @ BFMC22

29 value = s e l f . _s t ra i ght_cor r e c t i on (actual_yaw)
30 e l i f 93 <= cnt < 130 and SECOND_PARKING:
31 # I f the f i r s t s l o t i s occupied , d r i v e forward .
32 i f cnt < 100 :
33 value = s e l f . _s t ra i ght_cor r e c t i on (actual_yaw)
34 e l s e :
35 value = 999
36 e l i f 130 <= cnt < 155 :
37 # S t a n d s t i l l in the parking spot .
38 value = 999
39 e l i f 155 <= cnt < 170 :
40 # Move back to the road .
41 value = 1000
42 e l i f 170 <= cnt < 180 :
43 # Steer to the l e f t and dr ive forward .
44 value = 2001
45 e l i f cnt >= 180 :
46 # End o f the parking manoeuvre .
47 cnt = 0
48 PARKING_MANOEUVRE = False
49 NORMAL = True
50 DISABLE_LIDAR = True
51 pr in t (" Parking manoeuvre completed ! ")
52 e l s e :
53 pass

102

Appendix B

helperSLVisualizeParking.m

1 f unc t i on he lpe rSLVisua l i z ePark ing (pose , s t e e r)
2

3 p e r s i s t e n t vehicleBodyHandle axesHandle vehic leDims
4

5 pose (3) = rad2deg (pose (3)) ;
6 s t e e r = rad2deg (s t e e r) ;
7

8 i f isempty (vehic leDims)
9 vehic leDims = veh ic l eDimens ions ;

10 end
11

12 i f isempty (axesHandle) | | ~ i s v a l i d (axesHandle)
13 fh1 = f i g u r e (’ V i s i b l e ’ , ’ o f f ’) ;
14 fh1 .Name = ’ Automated Perpend icu lar Parking ’ ;
15 fh1 . NumberTitle = ’ o f f ’ ;
16 fh1 . WindowState = ’ Maximized ’ ;
17 axesHandle = axes (fh1) ;
18 l egend o f f , ax i s equal , g r i d on
19 t i t l e (axesHandle , ’ \ bf Perpend icu lar Parking us ing Nonl inear MPC’

, ’ FontSize ’ , 20 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
20 x l a b e l (’ x ax i s ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
21 y l a b e l (’ y ax i s ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
22 hold (axesHandle , ’ on ’)
23

24 axesHandle . XLim = [−25 2 5] ;
25 axesHandle . YLim = [−7 7] ;
26

27 width = 3 . 1 ;
28 l ength = 6 . 2 ;
29

30 r e c t a n g l e (’ Po s i t i on ’ , [−10.85 −5.1 width l ength +0.5] , . . . ,

103

helperSLVisualizeParking.m

31 ’ EdgeColor ’ , ’ r ’)
32 r e c t a n g l e (’ Po s i t i on ’ , [−7.75 −5.1 width l ength +0.5] , . . . ,
33 ’ EdgeColor ’ , ’ r ’)
34

35 r e c t a n g l e (’ Po s i t i on ’ , [−4.65 −5.1 width l ength +0.5] , ,
36 ’ EdgeColor ’ , ’ g ’ , ’ LineWidth ’ , 2)
37

38 p lo t (−3.1 , −1.75 , ’ ∗ ’ , ’ c o l o r ’ , ’ g ’)
39

40 o b s t a c l e s = c r ea t eObs ta c l e s () ;
41 f o r c t = 1 : numel (o b s t a c l e s)
42 show (o b s t a c l e s { ct })
43 end
44

45 ax = gca (fh1) ;
46 upperRoadLine = ax . Chi ldren (1) ;
47 upperRoadLine . L ineSty l e = ’ none ’ ;
48 curbs ide = ax . Chi ldren (2) ;
49 curbs ide . L ineSty l e = ’ none ’ ;
50 end
51

52

53 i f isempty (vehicleBodyHandle) | | any (~ i s v a l i d (vehicleBodyHandle))
54 vehicleBodyHandle = he lp e rP l o tVeh i c l e (pose , vehic leDims , . . . ,
55 s t e e r , ’ Parent ’ , axesHandle) ;
56 e l s e
57 veh i c l eShapes = he lperVeh ic l ePo lyshape (pose , vehicleDims , s t e e r) ;
58 f o r n = 1 : numel (vehicleBodyHandle)
59 vehicleBodyHandle (n) . Shape = veh i c l eShapes (n) ;
60 end
61 end
62

63 p lo t (axesHandle , pose (1) , pose (2) , ’ . ’ , ’ Color ’ , ’ r ’)
64

65 fh1 . V i s i b l e = ’ on ’ ;
66 drawnow(’ l i m i t r a t e ’) ;
67

68 end
69

70 f unc t i on o b s t a c l e s = c r ea t eObs ta c l e s ()
71

72 obsLength = 6 . 2 ;
73 egoLength = 4 . 7 ;
74 egoWidth = 1 . 8 ;
75

76 obs1 = c o l l i s i o n B o x (egoWidth , egoLength , 0) ;
77 T1 = trvec2t fo rm ([−9 .3 , −1.75 , 0]) ;
78 obs1 . Pose = T1 ;
79

104

helperSLVisualizeParking.m

80 obs2 = c o l l i s i o n B o x (egoWidth , egoLength , 0) ;
81 T2 = trvec2t fo rm ([−6 .2 , −1.75 , 0]) ;
82 obs2 . Pose = T2 ;
83

84 obs3 = c o l l i s i o n B o x (4∗ obsLength , 0 . 5 , 0) ;
85 T3 = trvec2t fo rm ([1 1 . 3 5 , 1 . 35 , 0]) ;
86 obs3 . Pose = T3 ;
87

88 obs4 = c o l l i s i o n B o x (0 . 5 , obsLength+1, 0) ;
89 T4 = trvec2t fo rm ([−1 .3 , −2, 0]) ;
90 obs4 . Pose = T4 ;
91

92 obs5 = c o l l i s i o n B o x (1 0 . 3 , 0 . 5 , 0) ;
93 T5 = trvec2t fo rm ([−6 .2 , −5.35 , 0]) ;
94 obs5 . Pose = T5 ;
95

96 obs6 = c o l l i s i o n B o x (0 . 5 , obsLength+1, 0) ;
97 T6 = trvec2t fo rm ([−11 .1 , −2, 0]) ;
98 obs6 . Pose = T6 ;
99

100 obs7 = c o l l i s i o n B o x (2∗ obsLength , 0 . 5 , 0) ;
101 T7 = trvec2t fo rm ([−17.55 , 1 . 35 , 0]) ;
102 obs7 . Pose = T7 ;
103

104 obs8 = c o l l i s i o n B o x (4 7 . 5 , 0 . 5 , 0) ;
105 T8 = trvec2t fo rm ([0 , 6 , 0]) ;
106 obs8 . Pose = T8 ;
107

108 o b s t a c l e s = {obs1 , obs2 , obs3 , obs4 , obs5 , obs6 , obs7 , obs8 } ;
109

110 end

105

Appendix C

parkingVehicleStateFcn.m

1 f unc t i on xdot = park ingVehic l eStateFcn (x , u , r e f , Qp, Rp, Qt , Rt ,
distToCenter , s a f e tyD i s t anc e)

2

3 wb = 2 . 8 ;
4

5 p s i = x (3) ;
6 v = u (1) ;
7 de l t a = u (2) ;
8

9 xdot = ze ro s (3 , 1) ;
10 xdot (1) = v ∗ cos (p s i) ;
11 xdot (2) = v ∗ s i n (p s i) ;
12 xdot (3) = v / wb ∗ tan (de l t a) ;

106

Appendix D

parkingCostFcn.m

1 f unc t i on co s t = parkingCostFcn (X, U, e , data , r e f , Qp, Rp, Qt , Rt ,
distToCenter , s a f e tyD i s t anc e)

2

3 hp = data . Pred i c t ionHor i zon ;
4

5 co s t = 0 ;
6 f o r idx = 1 : hp
7 runningCost = (X(idx +1 , :) − r e f) ∗ Qp ∗ (X(idx +1 , :) − r e f) ’ + U(idx

, :) ∗ Rp ∗ U(idx , :) ’ ;
8 co s t = cos t + runningCost ;
9 end

10

11 termina l_cost = (X(hp+1 , :) − r e f) ∗ Qt ∗ (X(hp +1 , :) − r e f) ’ + U(hp , :)
∗ Rt ∗ U(hp , :) ’ ;

12

13 co s t = cos t + termina l_cost ;
14

15 end

107

Appendix E

parkingIneqConFcn.m

1 f unc t i on c ineq = parkingIneqConFcn (X, U, e , data , r e f , Qp, Rp, Qt , Rt
, distToCenter , s a f e tyD i s t anc e)

2

3 p e r s i s t e n t o b s t a c l e s ego
4

5 i f isempty (o b s t a c l e s)
6

7 vdims = veh ic l eDimens ions ;
8 egoLength = vdims . Length ;
9 egoWidth = vdims . Width ;

10 ego = c o l l i s i o n B o x (egoLength , egoWidth , 0) ;
11

12 obsLength = 6 . 2 ;
13

14 obs1 = c o l l i s i o n B o x (egoWidth , egoLength , 0) ;
15 T1 = trvec2t fo rm ([−9 .3 , −1.75 , 0]) ;
16 obs1 . Pose = T1 ;
17

18 obs2 = c o l l i s i o n B o x (egoWidth , egoLength , 0) ;
19 T2 = trvec2t fo rm ([−6 .2 , −1.75 , 0]) ;
20 obs2 . Pose = T2 ;
21

22 obs3 = c o l l i s i o n B o x (4∗ obsLength , 0 . 5 , 0) ;
23 T3 = trvec2t fo rm ([1 1 . 3 5 , 1 . 35 , 0]) ;
24 obs3 . Pose = T3 ;
25

26 obs4 = c o l l i s i o n B o x (0 . 5 , obsLength+1, 0) ;
27 T4 = trvec2t fo rm ([−1 .3 , −2, 0]) ;
28 obs4 . Pose = T4 ;
29

30 obs5 = c o l l i s i o n B o x (1 0 . 3 , 0 . 5 , 0) ;

108

parkingIneqConFcn.m

31 T5 = trvec2t fo rm ([−6 .2 , −5.35 , 0]) ;
32 obs5 . Pose = T5 ;
33

34 obs6 = c o l l i s i o n B o x (0 . 5 , obsLength+1, 0) ;
35 T6 = trvec2t fo rm ([−11 .1 , −2, 0]) ;
36 obs6 . Pose = T6 ;
37

38 obs7 = c o l l i s i o n B o x (2∗ obsLength , 0 . 5 , 0) ;
39 T7 = trvec2t fo rm ([−17.55 , 1 . 35 , 0]) ;
40 obs7 . Pose = T7 ;
41

42 obs8 = c o l l i s i o n B o x (4 7 . 5 , 0 . 5 , 0) ;
43 T8 = trvec2t fo rm ([0 , 6 , 0]) ;
44 obs8 . Pose = T8 ;
45

46 o b s t a c l e s = {obs1 , obs2 , obs3 , obs4 , obs5 , obs6 , obs7 , obs8 } ;
47

48 end
49

50 hp = data . Pred i c t ionHor i zon ;
51 numObstacles = numel (o b s t a c l e s) ;
52 a l l D i s t a n c e s = ze ro s (hp∗numObstacles , 1) ;
53

54 f o r i = 1 : hp
55

56 x = X(i , 1) + distToCenter ∗ cos (X(i , 3)) ;
57 y = X(i , 2) + distToCenter ∗ s i n (X(i , 3)) ;
58 T = trvec2t form ([x , y , 0]) ;
59 H = axang2tform ([0 0 1 X(i , 3)]) ;
60 ego . Pose = T∗H;
61

62 d i s t a n c e s = ze ro s (numObstacles , 1) ;
63 f o r c t = 1 : numObstacles
64 [~ , d i s t , ~] = c h e c k C o l l i s i o n (ego , o b s t a c l e s { ct }) ;
65 d i s t a n c e s (ct) = max(d i s t , −10) ;
66 a l l D i s t a n c e s ((1+(i −1)∗numObstacles) : numObstacles∗ i , 1) =

d i s t a n c e s ;
67 end
68 end
69

70 c ineq = −a l l D i s t a n c e s + sa f e tyD i s t anc e ;
71

72 end

109

Appendix F

Nonlinear Model Predictive
Controller

1 Ts = 0 . 2 5 ;
2 hp = 35 ;
3 hc = 35 ;
4

5 Qp = diag ([1 0 10 1]) ;
6 Rp = 0.01 ∗ eye (2) ;
7 Qt = diag ([1 5 5]) ;
8 Rt = 0.04 ∗ eye (2) ;
9

10 s a f e tyD i s t anc e = 0 . 1 ;
11

12 maxIter = 40 ;
13

14 mpcverbosity (’ o f f ’) ;
15

16 nx = 3 ;
17 ny = 3 ;
18 nu = 2 ;
19

20 n lob j = nlmpc (nx , ny , nu) ;
21

22 n lob j . Ts = Ts ;
23 n lob j . Pred ic t ionHor i zon = hp ;
24 n lob j . ControlHorizon = hc ;
25

26 n lob j . S ta t e s (1) . Units = "m" ;
27 n lob j . S ta t e s (2) . Units = "m" ;
28 n lob j . S ta t e s (3) . Units = " rad " ;

110

Nonlinear Model Predictive Controller

29

30 n lob j . OutputVariables (1) . Units = "m" ;
31 n lob j . OutputVariables (2) . Units = "m" ;
32 n lob j . OutputVariables (3) . Units = " rad " ;
33

34 n lob j . ManipulatedVariables (1) . Units = "m/ s " ;
35 n lob j . ManipulatedVariables (2) . Units = " rad " ;
36

37 n lob j .MV(1) . Min = −2;
38 n lob j .MV(1) .Max = 2 ;
39 n lob j .MV(2) . Min = −pi /4 ;
40 n lob j .MV(2) .Max = pi /4 ;
41

42 n lob j . Model . StateFcn = " park ingVehic l eStateFcn " ;
43 n lob j . Jacobian . StateFcn = " park ingVehic l eStateJacob ianFcn " ;
44

45 n lob j . Optimizat ion . CustomCostFcn = " parkingCostFcn " ;
46 n lob j . Optimizat ion . ReplaceStandardCost = true ;
47 n lob j . Jacobian . CustomCostFcn = " parkingCostJacobian " ;
48

49 n lob j . Optimizat ion . CustomIneqConFcn = " parkingIneqConFcn " ;
50 n lob j . Jacobian . CustomIneqConFcn = " parkingIneqConFcnJacobian " ;
51

52 n lob j . Optimizat ion . So lverOpt ions . Funct ionTolerance = 0 . 0 1 ;
53 n lob j . Optimizat ion . So lverOpt ions . StepTolerance = 0 . 0 1 ;
54 n lob j . Optimizat ion . So lverOpt ions . Constra intTolerance = 0 . 0 1 ;
55 n lob j . Optimizat ion . So lverOpt ions . Opt imal i tyTolerance = 0 . 0 1 ;
56 n lob j . Optimizat ion . So lverOpt ions . MaxIter = maxIter ;
57

58 opt = nlmpcmoveopt ;
59 opt . X0 = [] ;
60 opt .MV0 = ze ro s (hp , nu) ;
61

62 paras = { egoTargetPose , Qp, Rp, Qt , Rt , distToCenter , s a f e tyD i s t anc e
} ’ ;

63 n lob j . Model . NumberOfParameters = numel (paras) ;
64 opt . Parameters = paras ;

111

Appendix G

analyseParkingResults.m

1 f unc t i on ana lysePark ingResu l t s (n lobj , in fo , r e f , Qp, Rp, Qt , Rt , . . .
2 distToCenter , sa f e tyDi s tance , timeVal)
3

4 data . Pred ic t ionHor i zon = n lob j . Pred i c t ionHor i zon ;
5 c ineq = parkingIneqConFcn (i n f o . Xopt , i n f o . MVopt , [] , data , r e f , Qp,

Rp, Qt , Rt , distToCenter , s a f e tyD i s t anc e) ;
6 i f a l l (c ineq <= 0)
7 f p r i n t f (’ Val id r e s u l t s . No c o l l i s i o n s . \ n ’)
8 e l s e
9 f p r i n t f (’ I n v a l i d r e s u l t s . C o l l i s i o n s . \ n ’)

10 end
11

12 minObsDist = min(− c ineq + sa f e tyD i s t anc e) ; f l a g = i n f o . ExitFlag ;
13 f p r i n t f (’Minimum d i s t anc e to o b s t a c l e s = %.4 f (Val id > d i s t_sa f e ty) \n

’ , minObsDist) ;
14 f p r i n t f (’ Optimizat ion e x i t f l a g = %d (S u c c e s s f u l when > 0) \n ’ , f l a g) ;
15 f p r i n t f (’ Elapsed time f o r nlmpcmove = %.4 f \n ’ , timeVal) ;
16

17 e1 = i n f o . Xopt (end , 1) − r e f (1) ; e2 = i n f o . Xopt (end , 2) − r e f (2) ;
18 e3 = rad2deg (i n f o . Xopt (end , 3) − r e f (3)) ;
19 f p r i n t f (’ F ina l s t a t e s e r r o r in x , y , and p s i : %2.4 f , %2.4 f , %2.4 f \n ’ ,

e1 , e2 , e3) ;
20

21 vFinal = i n f o . MVopt(end , 1) ; d e l t a F i n a l = rad2deg (i n f o . MVopt(end , 2)) ;
22 f p r i n t f (’ F ina l c o n t r o l inputs v and de l t a : %2.4 f %2.4 f \n ’ , vFinal ,

d e l t a F i n a l) ;
23

24 end

112

Appendix H

runParkingAndPlot.m

1 x0 = e g o I n i t i a l P o s e ’ ;
2 u0 = [0 ; 0] ;
3

4 i f useMex
5 [coredata , on l inedata] = getCodeGenerationData (nlobj , x0 , u0 , paras) ;
6 mexfcn = buildMEX(nlobj , ’ parkingMex ’ , coredata , on l inedata) ;
7 end
8

9 i f useMex
10 t i c ;
11 [mv, on l inedata , i n f o] = mexfcn (x0 , u0 , on l inedata) ;
12 timeVal = toc ;
13 e l s e
14 t i c ;
15 [mv, n lopt ions , i n f o] = nlmpcmove (nlobj , x0 , u0 , [] , [] , opt) ;
16 timeVal = toc ;
17 end
18

19 plotAndAnimateParking (i n f o . Xopt , i n f o . MVopt) ;
20

21 ana lyzePark ingResu l t s (n lobj , in fo , egoTargetPose ,Qp,Rp, Qt , Rt ,
distToCenter , sa f e tyDi s tance , timeVal) ;

113

Appendix I

plotAndAnimateParking.m

1 f unc t i on plotAndAnimateParking (xHistory , uHistory)
2

3 xLength = s i z e (xHistory , 1) ;
4 uLength = s i z e (uHistory , 1) ;
5 i f xLength ~= uLength
6 xHistory = xHistory ’ ;
7 uHistory = uHistory ’ ;
8 end
9

10 timeLength = s i z e (xHistory , 1) ;
11 f o r c t = 1 : timeLength
12 he lpe rSLVisua l i z ePark ing (xHistory (ct , :) , uHistory (ct , 2)) ;
13 pause (0 . 0 5) ;
14 end
15

16 f i g u r e ()
17 subplot (311) , p l o t (xHistory (: , 1) , ’ l i n ew id th ’ , 1 . 5) , g r i d on
18 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
19 y l a b e l (’ x p o s i t i o n [m] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
20 subplot (312) , p l o t (xHistory (: , 2) , ’ l i n ew id th ’ , 1 . 5) , g r i d on
21 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
22 y l a b e l (’ y p o s i t i o n [m] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
23 subplot (313) , p l o t (rad2deg (xHistory (: , 3)) , ’ l i n ew id th ’ , 1 . 5) , g r i d

on
24 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
25 y l a b e l (’Yaw angle , $\ ps i $ [deg] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’

l a t e x ’)
26 s g t i t l e (’ \ bf Behaviour o f the Ego Veh ic l e S ta t e s ’ , ’ FontSize ’ , 20 , ’

I n t e r p r e t e r ’ , ’ l a t e x ’)
27

28 f i g u r e ()

114

plotAndAnimateParking.m

29 subplot (211) , s t a i r s (uHistory (: , 1) , ’ l i n ew id th ’ , 1 . 5) , g r i d on
30 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
31 y l a b e l (’ Speed , v [m/ s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
32 subplot (212) , s t a i r s (rad2deg (uHistory (: , 2)) , ’ l i n ew id th ’ , 1 . 5) , g r i d

on
33 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
34 y l a b e l (’ S t e e r i ng Angle , $\ de l t a$ [deg] ’ , ’ FontSize ’ , 15 , ’

I n t e r p r e t e r ’ , ’ l a t e x ’)
35 s g t i t l e (’ \ bf Behaviour o f the Ego Veh ic l e Control Inputs ’ , ’ FontSize ’

, 20 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)

115

Appendix J

Perpendicular Parking with
Multistage NMPC

1 vdims = veh ic l eDimens ions ;
2 egoLength = vdims . Length ;
3 egoWidth = vdims . Width ;
4 egoWheelbase = vdims . Wheelbase ;
5

6 obsLength = 6 . 2 ;
7 distToCenter = 0 .5∗ egoWheelbase ;
8

9 e g o I n i t i a l P o s e = [1 , 3 , 0] ;
10 egoTargetPose = [−3.1 , −3.15 , p i / 2] ;
11

12 he lpe rSLVisua l i z ePark ing (e g o I n i t i a l P o s e , 0) ;
13

14 numObs = 8 ;
15

16 % obsMat (a , b) = [x−pos , y−pos , heading angle , length , width]
17 obsMat = [−9.3 , −1.75 , 0 , egoLength , egoWidth ; . . .
18 −obsLength , −1.75 , 0 , egoLength , egoWidth ; . . .
19 11 .35 , 1 . 35 , 0 , 4 ∗ obsLength , 0 . 5 ; . . .
20 −1.3 , −2 , 0 , 0 . 5 , 1 + obsLength ; . . .
21 −obsLength , −5.35 , 0 , 10 .3 , 0 . 5 ; . . .
22 −11.1 , −2 , 0 , 0 . 5 , 1 + obsLength ; . . .
23 −17.55 , 1 . 35 , 0 , 2 ∗ obsLength , 0 . 5 ; . . .
24 0 , 6 , 0 , 47 .5 , 0 . 5] ;
25

26 Ts = 1 ;
27 hp = 10 ;
28

116

Perpendicular Parking with Multistage NMPC

29 v_range = [−3.5 , 3 . 5] ;
30 steer_range = [− pi /5 , p i / 5] ;
31

32 s a f e tyD i s t anc e = 0 . 1 ;
33

34 Tsim = 1/hp ;
35

36 open_system (" VehiclePathPlannerSystem . s l x ")
37 out = sim (" VehiclePathPlannerSystem . s l x ") ;
38

39 out_x_seq = out . x_seq ;
40 out_ExitFlag = out . e x i t f l a g ;
41 out_mv_seq = out . mv_seq ;
42 out_mv_opti = out . mv_opti ;
43 out_cost = out . co s t ;
44

45 timeLength = s i z e (out_x_seq , 1) ;
46 f o r c t = 1 : timeLength
47 he lpe rSLVisua l i z ePark ing (out_x_seq (ct , :) , 0) ;
48 pause (0 . 1) ;
49 end
50

51 f i g u r e ()
52 subplot (311) , p l o t (out_x_seq (: , 1) , ’ l i n ew id th ’ , 1 . 5) , g r i d on
53 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
54 y l a b e l (’ x p o s i t i o n [m] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
55 subplot (312) , p l o t (out_x_seq (: , 2) , ’ l i n ew id th ’ , 1 . 5) , g r i d on
56 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
57 y l a b e l (’ y p o s i t i o n [m] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
58 subplot (313) , p l o t (rad2deg (out_x_seq (: , 3)) , ’ l i n ew id th ’ , 1 . 5)
59 g r id on
60 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
61 y l a b e l (’Yaw angle , $\ ps i $ [deg] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’

l a t e x ’)
62 s g t i t l e (’ \ bf Behaviour o f the Ego Veh ic l e S ta t e s ’ , ’ FontSize ’ , 20 , ’

I n t e r p r e t e r ’ , ’ l a t e x ’)
63

64 f i g u r e ()
65 subplot (211) , s t a i r s (out_mv_seq (: , 1) , ’ l i n ew id th ’ , 1 . 5) , g r i d on
66 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
67 y l a b e l (’ Speed , v [m/ s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
68 subplot (212) , s t a i r s (rad2deg (out_mv_seq (: , 2)) , ’ l i n ew id th ’ , 1 . 5)
69 g r id on
70 x l a b e l (’Time , t [s] ’ , ’ FontSize ’ , 15 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
71 y l a b e l (’ S t e e r i ng Angle , $\ de l t a$ [deg] ’ , ’ FontSize ’ , 15 , ’

I n t e r p r e t e r ’ , ’ l a t e x ’)
72 s g t i t l e (’ \ bf Behaviour o f the Ego Veh ic l e Control Inputs ’ , ’ FontSize ’

, 20 , ’ I n t e r p r e t e r ’ , ’ l a t e x ’)
73

117

Perpendicular Parking with Multistage NMPC

74 f p r i n t f (’ 1) Optimizat ion e x i t f l a g = %d (S u c c e s s f u l when p o s i t i v e) \n ’
, out_ExitFlag)

75 i f out_ExitFlag > 0
76 f p r i n t f (’ 1 . 1) Optimal s o l u t i o n f o r speed [m/ s] and s t e e r i n g ang le

[deg] : %2.4 f %2.4 f \n ’ , out_mv_opti (1) , out_mv_opti (2) ’)
77 end
78 f p r i n t f (’ 2) Optimal Cost = %i \n ’ , out_cost)
79 f p r i n t f (’ 3) Elapsed Simulat ion Time = %.4 f \n ’ , out . SimulationMetadata

. TimingInfo . TotalElapsedWallTime)
80

81 e1 = out_x_seq (end , 1) − egoTargetPose (1) ;
82 e2 = out_x_seq (end , 2) − egoTargetPose (2) ;
83 e3 = rad2deg (out_x_seq (end , 3) − egoTargetPose (3)) ;
84 f p r i n t f (’ 4) F ina l s t a t e s e r r o r in x [m] , y [m] , and p s i [deg] : %2.4 f ,

%2.4 f , %2.4 f \n ’ , e1 , e2 , e3)
85

86 vFinal = out_mv_seq (end , 1) ;
87 d e l t a F i n a l = rad2deg (out_mv_seq (end , 2)) ;
88 f p r i n t f (’ 5) F ina l c o n t r o l inputs speed [m/ s] and s t e e r i n g ang le [deg

] : %2.4 f %2.4 f \n ’ , vFinal , d e l t a F i n a l)

118

Appendix K

Perpendicular Parking using
RRT* and NMPC

1 vdims = veh ic l eDimens ions ;
2 egoLength = vdims . Length ; egoWidth = vdims . Width ;
3 egoWheelbase = vdims . Wheelbase ; distToCenter = 0 .5∗ egoWheelbase ;
4

5 obsLength = 6 . 2 ;
6

7 e g o I n i t i a l P o s e = [1 , 3 , 0] ; egoTargetPose = [−3.1 , −3.15 , p i / 2] ;
8

9 Tv = 0 . 1 ; he lpe rSLVisua l i z ePark ing (e g o I n i t i a l P o s e , 0) ; pause (1)
10

11 xlim = [−5 5] ; yl im = [−6 6] ; yawlim = [− pi p i] ;
12 bounds = [xlim ; ylim ; yawlim] ;
13 s tateSpace = stateSpaceReedsShepp (bounds) ;
14 s tateSpace . MinTurningRadius = 2 . 3 ;
15 s t a t e V a l i d a t o r = park ingSta teVa l ida to r (s ta teSpace) ;
16

17 planner = plannerRRTStar (stateSpace , s t a t e V a l i d a t o r) ;
18 planner . MaxConnectionDistance = 4 ;
19 planner . ContinueAfterGoalReached = true ;
20 planner . MaxIterat ions = 2e3 ;
21

22 rng (9 , ’ t w i s t e r ’)
23 [pathObj , s o l n I n f o] = plan (planner , e g o I n i t i a l P o s e , egoTargetPose) ;
24

25 f = f i n d o b j (’Name ’ , ’ Automated Perpend icu lar Parking ’) ;
26 ax = gca (f) ;
27 hold (ax , ’ on ’) ;
28 p lo t (ax , s o l n I n f o . TreeData (: , 1) , s o l n I n f o . TreeData (: , 2) , ’ y.− ’)

119

Perpendicular Parking using RRT* and NMPC

29 p = 100 ; pathObj . i n t e r p o l a t e (p+1) ; xRef = pathObj . S ta t e s ;
30

31 p lo t (ax , xRef (: , 1) , xRef (: , 2) , ’b− ’ , ’ LineWidth ’ , 2) , pause (5)
32

33 mpcverbosity (’ o f f ’) ;
34

35 nx = 3 ; ny = 3 ; nu = 2 ;
36 nlobjTrack ing = nlmpc (nx , ny , nu) ;
37

38 Ts = 0 . 1 ; hp = 10 ; hc = hp ;
39 nlobjTrack ing . Ts = Ts ;
40 nlobjTrack ing . Pred i c t ionHor i zon = hp ;
41 nlobjTrack ing . ControlHorizon = hc ;
42

43 nlobjTrack ing .MV(1) . Min = −2; n lobjTrack ing .MV(1) .Max = 2 ;
44 nlobjTrack ing .MV(2) . Min = −pi /4 ; n lob jTrack ing .MV(2) .Max = pi /4 ;
45

46 nlobjTrack ing . Weights . OutputVariables = [3 3 3] ;
47 nlobjTrack ing . Weights . ManipulatedVariablesRate = [0 . 1 0 . 0 0 5] ;
48

49 nlobjTrack ing . Model . StateFcn = " parkingVehicleStateFcnRRT " ;
50 nlobjTrack ing . Jacobian . StateFcn = " parkingVehicleStateJacFcnRRT " ;
51

52 nlobjTrack ing . Optimizat ion . CustomEqConFcn = " parkingTerminalConFcn " ;
53

54 va l ida teFcns (nlobjTracking , randn (3 , 1) , randn (2 , 1)) ;
55

56 x = e g o I n i t i a l P o s e ’ ; u = ze ro s (2 , 1) ;
57 [coredata , on l inedata] = getCodeGenerationData (nlobjTracking , x , u) ;
58 mexfcn = buildMEX(nlobjTracking , ’ parkingRRTMex ’ , coredata , on l inedata) ;
59

60 xTrackHistory = x ; uTrackHistory = u ; mv = u ;
61 Duration = 14 ; Tsteps = Duration /Ts ;
62 Xref = [xRef (2 : p+1 , :) ; repmat (xRef (end , :) , Tsteps−p , 1)] ;
63 f o r c t = 1 : Tsteps
64 xk = x ;
65 on l inedata . r e f = Xref (c t : min (ct+hp−1, Tsteps) , :) ;
66 [mv, on l inedata , i n f o] = mexfcn (xk ,mv, on l inedata) ;
67 ODEFUN = @(t , xk) parkingVehicleStateFcnRRT (xk ,mv) ;
68 [TOUT,YOUT] = ode45 (ODEFUN, [0 Ts] , xk) ;
69 x = YOUT(end , :) ’ ;
70 xTrackHistory = [xTrackHistory x] ;
71 uTrackHistory = [uTrackHistory mv] ;
72 end
73 plotAndAnimateParkingRRT (p , xRef , xTrackHistory , uTrackHistory)

120

Appendix L

parkingStateValidator.m

1 c l a s s d e f park ingSta teVa l ida to r < nav . S ta t eVa l ida to r
2

3 p r o p e r t i e s
4 Obstac l e s
5 EgoCar
6 Val idat ionDi s tance
7 end
8

9 methods
10 f unc t i on obj = park ingSta teVa l ida to r (s s)
11 obj@nav . S ta t eVa l ida to r (s s) ;
12 obj . Obstac l e s = c r ea t eObs ta c l e s () ;
13 obj . EgoCar = c o l l i s i o n B o x (4 . 7 , 1 . 8 , 0) ;
14 obj . Va l idat i onDi s tance = 0 . 1 ;
15 end
16

17 f unc t i on i s V a l i d = i s S t a t e V a l i d (obj , s t a t e)
18 i s V a l i d = true (s i z e (s ta te , 1) , 1) ;
19 f o r k = 1 : s i z e (s ta te , 1)
20 r e lPose = [1 . 4 , 0 , 0] ;
21 s t = r o b o t i c s . core . i n t e r n a l . SEHelpers .

accumulatePoseSE2 (s t a t e (k , :) , r e lPose) ;
22 pos = [s t (1) , s t (2) , 0] ;
23 quat = eul2quat ([s t (3) , 0 , 0]) ;
24 f o r i = 1 : l ength (obj . Obstac l e s)
25 [~ , d i s t] = . . .
26 r o b o t i c s . core . i n t e r n a l . i n t e r s e c t (obj . Obstac l e s { i

} . GeometryInternal , . . .
27 obj . Obstac l e s { i } . Pos i t ion , . . .
28 obj . Obstac l e s { i } . Quaternion , . . .
29 obj . EgoCar . GeometryInternal , . . .

121

parkingStateValidator.m

30 pos , quat , 1) ;
31 i f d i s t <= 0.15
32 i s V a l i d (k) = f a l s e ;
33 re turn ;
34 end
35 end
36 end
37 end
38

39 f unc t i on [i sVa l id , l a s t V a l i d] = isMot ionVal id (obj , s tate1 ,
s t a t e 2)

40 i f ~obj . i s S t a t e V a l i d (s t a t e 1)
41 i s V a l i d = f a l s e ;
42 l a s t V a l i d = nan (1 , obj . StateSpace . NumStateVariables) ;
43 re turn
44 end
45 d i s t = obj . StateSpace . d i s t ance (s tate1 , s t a t e 2) ;
46 i n t e r v a l = obj . Va l idat i onDi s tance / d i s t ;
47 i n t e r p S t a t e s = obj . StateSpace . i n t e r p o l a t e (s tate1 , s tate2 ,

[0 : i n t e r v a l : 1 1]) ;
48 i n t e rpVa l id = obj . i s S t a t e V a l i d (i n t e r p S t a t e s) ;
49 i f narg in == 1
50 i f any (~ in t e rpVa l id)
51 i s V a l i d = f a l s e ;
52 e l s e
53 i s V a l i d = true ;
54 end
55 e l s e
56 f i r s t I n v a l i d I d x = f i n d (~ inte rpVal id , 1) ;
57 i f isempty (f i r s t I n v a l i d I d x)
58 i s V a l i d = true ;
59 l a s t V a l i d = s t a t e2 ;
60 e l s e
61 i s V a l i d = f a l s e ;
62 l a s t V a l i d = i n t e r p S t a t e s (f i r s t I n v a l i d I d x −1, :) ;
63 end
64 end
65 end
66 f unc t i on copyObj = copy (obj)
67

68 end
69 end
70 end
71

72 f unc t i on o b s t a c l e s = c r ea t eObs ta c l e s ()
73

74 obsLength = 6 . 2 ; egoLength = 4 . 7 ; egoWidth = 1 . 8 ;
75

76 obs1 = c o l l i s i o n B o x (egoWidth , egoLength , 0) ;

122

parkingStateValidator.m

77 T1 = trvec2t fo rm ([−9 .3 , −1.75 , 0]) ;
78 obs1 . Pose = T1 ;
79

80 obs2 = c o l l i s i o n B o x (egoWidth , egoLength , 0) ;
81 T2 = trvec2t fo rm ([−6 .2 , −1.75 , 0]) ;
82 obs2 . Pose = T2 ;
83

84 obs3 = c o l l i s i o n B o x (4∗ obsLength , 0 . 5 , 0) ;
85 T3 = trvec2t fo rm ([1 1 . 3 5 , 1 . 35 , 0]) ;
86 obs3 . Pose = T3 ;
87

88 obs4 = c o l l i s i o n B o x (0 . 5 , obsLength+1, 0) ;
89 T4 = trvec2t fo rm ([−1 .3 , −2, 0]) ;
90 obs4 . Pose = T4 ;
91

92 obs5 = c o l l i s i o n B o x (1 0 . 3 , 0 . 5 , 0) ;
93 T5 = trvec2t fo rm ([−6 .2 , −5.35 , 0]) ;
94 obs5 . Pose = T5 ;
95

96 obs6 = c o l l i s i o n B o x (0 . 5 , obsLength+1, 0) ;
97 T6 = trvec2t fo rm ([−11 .1 , −2, 0]) ;
98 obs6 . Pose = T6 ;
99

100 obs7 = c o l l i s i o n B o x (2∗ obsLength , 0 . 5 , 0) ;
101 T7 = trvec2t fo rm ([−17.55 , 1 . 35 , 0]) ;
102 obs7 . Pose = T7 ;
103

104 obs8 = c o l l i s i o n B o x (4 7 . 5 , 0 . 5 , 0) ;
105 T8 = trvec2t fo rm ([0 , 6 , 0]) ;
106 obs8 . Pose = T8 ;
107

108 o b s t a c l e s = {obs1 , obs2 , obs3 , obs4 , obs5 , obs6 , obs7 , obs8 } ;
109

110 end

123

Bibliography

[1] Wikipedia. Self-driving car. url: https://en.wikipedia.org/wiki/Self-
driving_car (cit. on p. 1).

[2] Synopsys. What is an Autonomous Car? url: https://www.synopsys.com/
automotive/what-is-autonomous-car.html (cit. on pp. 2, 8).

[3] European Parliament and Council of the European Union. «Regulation (EU)
2019/2144 of the European Parliament and of the Council». In: Official
Journal of the European Union (Dec. 2019). url: https://eur-lex.europa.
eu/eli/reg/2019/2144/oj (cit. on p. 2).

[4] Barbara Wendling (SAE J3016 Standard Committee chairperson). Amending
the automated-driving ‘Constitution’. url: https://www.sae.org/news/
2021/06/sae-revises-levels-of-driving-automation (cit. on p. 3).

[5] Rambus Press. SAE levels of automation in cars simply explained (+Image).
url: https://www.rambus.com/blogs/driving- automation- levels/
(cit. on p. 5).

[6] World Healt Organization. Road traffic injuries. url: https://www.who.
int/news-room/fact-sheets/detail/road-traffic-injuries (cit. on
p. 7).

[7] European Parliament. Self-driving cars in the EU: from science fiction to
reality. url: https://www.europarl.europa.eu/news/en/headlines/
economy / 20190110STO23102 / self - driving - cars - in - the - eu - from -
science-fiction-to-reality (cit. on pp. 7, 9).

[8] European Commission. Saving Lives: Boosting Car Safety in the EU. url:
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
52016DC0787&from=EN (cit. on p. 8).

[9] Synopsys. What is ADAS? url: https://www.synopsys.com/automotive/
what-is-adas.html (cit. on p. 8).

124

https://en.wikipedia.org/wiki/Self-driving_car
https://en.wikipedia.org/wiki/Self-driving_car
https://www.synopsys.com/automotive/what-is-autonomous-car.html
https://www.synopsys.com/automotive/what-is-autonomous-car.html
https://eur-lex.europa.eu/eli/reg/2019/2144/oj
https://eur-lex.europa.eu/eli/reg/2019/2144/oj
https://www.sae.org/news/2021/06/sae-revises-levels-of-driving-automation
https://www.sae.org/news/2021/06/sae-revises-levels-of-driving-automation
https://www.rambus.com/blogs/driving-automation-levels/
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.europarl.europa.eu/news/en/headlines/economy/20190110STO23102/self-driving-cars-in-the-eu-from-science-fiction-to-reality
https://www.europarl.europa.eu/news/en/headlines/economy/20190110STO23102/self-driving-cars-in-the-eu-from-science-fiction-to-reality
https://www.europarl.europa.eu/news/en/headlines/economy/20190110STO23102/self-driving-cars-in-the-eu-from-science-fiction-to-reality
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52016DC0787&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52016DC0787&from=EN
https://www.synopsys.com/automotive/what-is-adas.html
https://www.synopsys.com/automotive/what-is-adas.html

BIBLIOGRAPHY

[10] European Commission. Advanced Driver Assistance Systems. url: https://
road-safety.transport.ec.europa.eu/document/download/93f6a003-
83dc-4e66-ae14-852d93236e57_en?filename=ersosynthesis2018-adas.
pdf (cit. on p. 8).

[11] Bosch Engineering Center Cluj. Bosch Future Mobility Challenge. url: https:
//boschfuturemobility.com/ (cit. on p. 12).

[12] The MathWorks, Inc. «Parallel Parking Using Nonlinear Model Predictive
Control». In: MathWorks Documentation (2023). url: https://it.math
works.com/help/mpc/ug/parallel-parking-using-nonlinear-model-
predictive-control.html (cit. on pp. 25, 74).

[13] The MathWorks, Inc. «Plan Parallel Parking Path Using Multistage Nonlinear
Model Predictive Control». In: MathWorks Documentation (2023). url: h
ttps://it.mathworks.com/help/mpc/ug/plan-parallel-parking-path-
using-multistage-nonlinear-model-predictive-control.html (cit. on
p. 25).

[14] The MathWorks, Inc. «Parallel Parking Using RRT Planner and MPC Track-
ing Controller». In: MathWorks Documentation (2023). url: https://it.
mathworks.com/help/mpc/ug/parallel-parking-using-rrt-planner-
and-mpc-tracking-controller.html (cit. on p. 25).

[15] Bosch Sensortec. Smart sensor: BNO055. url: https://www.bosch-sensor
tec.com/products/smart-sensors/bno055/ (cit. on p. 25).

[16] Rajesh Rajamani. Vehicle Dynamics and Control. Ed. by Frederick F. Ling.
Mechanical Engineering Series. United States of America: Springer, 2006,
pp. 15, 20–33, 95–120 (cit. on p. 32).

[17] Luca Venturi and Krishtof Korda. Hands-On Vision and Behavior for Self-
Driving Cars. Ed. by Kunal Chaudhari. Birmingham, United Kingdom: Packt
Publishing Ltd., 2020, pp. 283, 290–291 (cit. on pp. 52, 54).

[18] Eduardo F. Camacho and Carlos Bordons. Model Predictive Control. Ed. by
Michael J. Grimble and Michael A. Johnson. Advanced Textbooks in Control
and Signal Processing. London, United Kingdom: Springer-Verlag, 1999, p. 1
(cit. on p. 53).

[19] Carlo Novara. Nonlinear Model Predictive Control. Slides from the Nonlinear
Control and Aerospace Applications course. Politecnico di Torino. 2022 (cit.
on pp. 55, 56, 66).

[20] The MathWorks, Inc. «Automated Driving Using Model Predictive Control».
In: MathWorks Documentation (2021). url: https://it.mathworks.com/
help/mpc/ug/automated-driving-using-model-predictive-control.
html (cit. on p. 57).

125

https://road-safety.transport.ec.europa.eu/document/download/93f6a003-83dc-4e66-ae14-852d93236e57_en?filename=ersosynthesis2018-adas.pdf
https://road-safety.transport.ec.europa.eu/document/download/93f6a003-83dc-4e66-ae14-852d93236e57_en?filename=ersosynthesis2018-adas.pdf
https://road-safety.transport.ec.europa.eu/document/download/93f6a003-83dc-4e66-ae14-852d93236e57_en?filename=ersosynthesis2018-adas.pdf
https://road-safety.transport.ec.europa.eu/document/download/93f6a003-83dc-4e66-ae14-852d93236e57_en?filename=ersosynthesis2018-adas.pdf
https://boschfuturemobility.com/
https://boschfuturemobility.com/
https://it.mathworks.com/help/mpc/ug/parallel-parking-using-nonlinear-model-predictive-control.html
https://it.mathworks.com/help/mpc/ug/parallel-parking-using-nonlinear-model-predictive-control.html
https://it.mathworks.com/help/mpc/ug/parallel-parking-using-nonlinear-model-predictive-control.html
https://it.mathworks.com/help/mpc/ug/plan-parallel-parking-path-using-multistage-nonlinear-model-predictive-control.html
https://it.mathworks.com/help/mpc/ug/plan-parallel-parking-path-using-multistage-nonlinear-model-predictive-control.html
https://it.mathworks.com/help/mpc/ug/plan-parallel-parking-path-using-multistage-nonlinear-model-predictive-control.html
https://it.mathworks.com/help/mpc/ug/parallel-parking-using-rrt-planner-and-mpc-tracking-controller.html
https://it.mathworks.com/help/mpc/ug/parallel-parking-using-rrt-planner-and-mpc-tracking-controller.html
https://it.mathworks.com/help/mpc/ug/parallel-parking-using-rrt-planner-and-mpc-tracking-controller.html
https://www.bosch-sensortec.com/products/smart-sensors/bno055/
https://www.bosch-sensortec.com/products/smart-sensors/bno055/
https://it.mathworks.com/help/mpc/ug/automated-driving-using-model-predictive-control.html
https://it.mathworks.com/help/mpc/ug/automated-driving-using-model-predictive-control.html
https://it.mathworks.com/help/mpc/ug/automated-driving-using-model-predictive-control.html

BIBLIOGRAPHY

[21] Basil Kouvaritakis and Mark Cannon. Model Predictive Control: Classical,
Robust and Stochastic. Ed. by Michael J. Grimble and Michael A. Johnson.
Advanced Textbooks in Control and Signal Processing. Switzerland: Springer
International Publishing AG Switzerland, 2016, p. 13 (cit. on p. 59).

[22] The MathWorks, Inc. «Vehicle Dimensions». In: MathWorks Documentation
(2023). url: https://it.mathworks.com/help/driving/ref/vehicledim
ensions.html?searchHighlight=vehicleDimensions&s_tid=srchtitle_
vehicleDimensions_1 (cit. on p. 73).

[23] The MathWorks, Inc. «Vehicle Path Planner System». In: MathWorks Doc-
umentation (2023). url: https://it.mathworks.com/help/mpc/ref/
vehiclepathplannersystem.html (cit. on p. 83).

[24] The MathWorks, Inc. «Multistage Nonlinear MPC Controller». In: MathWorks
Documentation (2023). url: https://it.mathworks.com/help/mpc/ref/
multistagenonlinearmpccontroller.html (cit. on p. 86).

[25] B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo. Robotics: Modelling, Plan-
ning and Control. Ed. by Michael J. Grimble and Michael A. Johnson. Ad-
vanced Textbooks in Control and Signal Processing. London, United Kingdom:
Springer-Verlag London Limited, 2010, pp. 161, 469, 523, 543 (cit. on p. 91).

[26] Steve LaValle. «About RRTs». In: The RRT Page (2023). url: http://
lavalle.pl/rrt/about.html (cit. on p. 92).

126

https://it.mathworks.com/help/driving/ref/vehicledimensions.html?searchHighlight=vehicleDimensions&s_tid=srchtitle_vehicleDimensions_1
https://it.mathworks.com/help/driving/ref/vehicledimensions.html?searchHighlight=vehicleDimensions&s_tid=srchtitle_vehicleDimensions_1
https://it.mathworks.com/help/driving/ref/vehicledimensions.html?searchHighlight=vehicleDimensions&s_tid=srchtitle_vehicleDimensions_1
https://it.mathworks.com/help/mpc/ref/vehiclepathplannersystem.html
https://it.mathworks.com/help/mpc/ref/vehiclepathplannersystem.html
https://it.mathworks.com/help/mpc/ref/multistagenonlinearmpccontroller.html
https://it.mathworks.com/help/mpc/ref/multistagenonlinearmpccontroller.html
http://lavalle.pl/rrt/about.html
http://lavalle.pl/rrt/about.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	The 6 Levels of Vehicle Autonomy
	Required Sensors in Autonomous Vehicles
	Benefits of Autonomous Vehicles
	Thesis Outline

	The Bosch Future Mobility Challenge 2022
	The Competition
	The Car-Kit
	The Project
	Competition Documentation and First Steps
	The Brain Project
	The Embedded Project
	The GitHub Repository

	The Structure behind the Algorithms

	Autonomous Parking
	State of the Art
	Autonomous Parking @ BFMC22
	The TF-Luna LiDAR Sensor
	The HC-SR04 Ultrasonic Sensor Module

	Vehicle Model Derivation
	Vehicle Longitudinal Model
	Longitudinal Vehicle Dynamics
	Driveline Dynamics

	Vehicle Lateral Model
	Kinematic Model of Vehicle Lateral Motion
	Single-Track Model of Lateral Vehicle Dynamics

	Ego Vehicle Model for NMPC

	Model Predictive Control
	Introduction
	MPC Pipeline
	Design Parameters

	Applications in the Autonomous Driving
	Types of MPC
	Linear MPC
	Nonlinear MPC
	Multistage Nonlinear MPC

	Perpendicular Parking: Software Implementation
	Perpendicular Parking using Nonlinear MPC
	Parking Environment
	Ego Vehicle Definition
	Design the Nonlinear Model Predictive Controller
	Controller Simulation in MATLAB®

	Perpendicular Parking using Multistage Nonlinear MPC
	Vehicle Path Planner System Block Configuration
	Controller Simulation in MATLAB® and Simulink®

	Perpendicular Parking using RRT* Planner and NMPC Tracking Controller
	Trajectory Planning and the RRT, RRT* Algorithms
	Path Planning from RRT* in MATLAB®
	Design of the NMPC Tracking Controller
	Controller Simulation in MATLAB®

	Conclusion
	Autonomous Parking Algorithm @ BFMC22
	helperSLVisualizeParking.m
	parkingVehicleStateFcn.m
	parkingCostFcn.m
	parkingIneqConFcn.m
	Nonlinear Model Predictive Controller
	analyseParkingResults.m
	runParkingAndPlot.m
	plotAndAnimateParking.m
	Perpendicular Parking with Multistage NMPC
	Perpendicular Parking using RRT* and NMPC
	parkingStateValidator.m
	Bibliography

