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Summary

A patent is a kind of intellectual property that grants its owner the authority to
exclude others to make, sell, or use an invention for a fixed amount of time in
exchange for sufficient disclosure of the invention.

Each patent is made of five main parts: abstract, background, summary, descrip-
tion and claims. If the patent is accurately written, only the claims formulation
task is up to the Intellectual Property (IP) attorney.
The most important claim is the first one: it is composed of a single sentence, has
to set out the distinctive features of the invention and underline the differences
from the inventions already present in the same or similar field.

Since the patent filing rate is constantly increasing it is necessary to find ways
to fasten the analyses of patents in order to keep up with the innovations.

In this thesis, the goal is to generate the first claim of a patent document using
abstractive summarization techniques that can understand the context and meaning
of the input text, and generate fluent and coherent first claims: this is done because
the IP attorney task can be thought of as a summarization task.

The study focuses on two main research questions: which patent sections are
the most effective for generating the first claim, and how does the length of the
input text impact the performance of the summarization models.

This research could have significant implications for the legal and innovation
communities by improving the accuracy and efficiency of automated patent claim
generation.

Seven different input texts are analyzed, including single sections as well as
combinations of two sections. The boundaries of each section are highlighted using
special tokens to help the models recognize the semantic content.
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To investigate the impact of context width, two models are compared: PEGA-
SUS and BigBird-PEGASUS, both based on the transformer architecture but with
different attention mechanisms that lead to the ability to process documents of
different lengths.

The results are evaluated through two metrics: ROUGE, a metric that favours
the syntactic similarities by the generated text and the one taken as ground truth,
and BERTScore, which privileges the semantic similarities.

Although the ROUGE metric generally leads to higher results for texts generated
with extractive summarization techniques, the obtained results are significantly
high for an abstractive summarization task. In particular, they are higher than the
results obtained in previous works.

The results show that the input section deeply affects the first claim generation
performance. The best input text turns out to be the combination of summary
and abstract, whereas the least informative section is the description.
In all the cases BigBird-PEGASUS, the model that processes longer documents,
leads to higher performances, at the expense of the training time that is almost
three times that of PEGASUS.
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Chapter 1

Introduction

The Latin word patere, which means "to be open" (i.e., to allow public inspection),
is where the word patent originated. It is a shortened version of letters patent,
which is a type of legal document published by a president, monarch, or other head
of state in written form. It was typically used to bestow an office, right, monopoly,
or title on an individual or organization.
A patent is a kind of intellectual property that grants its owner the authority
to exclude others to make, sell, or use an invention for a fixed amount of time
in exchange for sufficient disclosure of the invention. With these premises, it
can be understood how the patent system has developed intending to foster in-
novation and economic development. Indeed, by granting exclusive rights for a
limited period, an inventor can recoup R&D expenses and investments. Addition-
ally, the system makes knowledge and information available to the general public [1].

Each patent is made of five main parts [2]:

• Abstract: the abstract aims to allow the public and the USPTO to quickly
determine the technical disclosure of the invention. It also underlines what is
new in the art field to which the invention belongs.

• Background: a description of the area of endeavour to which the invention
relates should be included in this section. A paraphrase of the relevant U.S.
patent classification definitions or the topic of the claimed invention may also
be included in this part;

• Summary: This section should give a concise summary of the claimed
invention’s main points or concepts. The advantages of the invention and how
it resolves problems that already existed can be included in the summary;

• Description: in this section, the invention must be fully stated, along with
how to make and use the invention, in full, clear, concise, and exact words.
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This section should distinguish the new invention from other and old inventions,
and should also describe the method, the machine, the manufacturing, the
composition of matter, or the improvement that has been created;

• Claims: they must specifically identify and assert the elements that the
inventor or inventors believe to be the innovation. Each of them is composed of
a single sentence. The claims specify the boundaries of the patent’s protection.
The extent of the claims determines, in large part, whether a patent will be
granted or not.

If the patent is accurately written, the first four aforementioned parts are under
the responsibility of the inventors, whereas the claims formulation task is up to the
Intellectual Property (IP) attorney.
The task the IP attorney has to perform is to deeply understand the patent, locate
the most important information and identify the boundaries of the patent’s protec-
tion. This task in legal terms is called claim construction [3].

The most important claim is the first one. It is composed of a single sentence,
has to set out the distinctive features of the invention and underline the differences
from the inventions already present in the same or similar field. It also should only
include the essential features of the invention and define the level of restriction
desired [4].

The claims are frequently phrased in legal jargon, which makes it challenging
for non-experts to comprehend them. Also, the rate of patent applications is rising
rapidly today. The USPTO received more than 665,000 patent applications in
fiscal year 2019, nearly twice as many as it did in fiscal year 2002. Even with
such a significant increase, the USPTO continued to adapt and recently met the
FY2018–2022 Agency Priority goal of a first-time pendency of under 15 months
and a total pendency of under 24 months [5].

This explosion of submissions, and the complexity of the analysis task, led to
the main problem of finding ways to fasten the analyses of patents in order to keep
up with the innovations. A possible way to process all this data is to exploit the
Natural Language Processing (NLP).

Computer science’s NLP discipline focuses on how computers and human lan-
guages interact. NLP is used to create tools and algorithms that let computers
decipher, interpret, and produce human language. In recent years, as the volume
of unstructured text data has exponentially increased, its significance has grown
[6]. Analyzing this unstructure data can be time-consuming and challenging, as it
requires a deep understanding of language and context. NLP techniques can help

2



Introduction

address these challenges by enabling computers to extract meaning and insights
from unstructured text data. For example, NLP can be used to generate summaries
and abstracts of large volumes of text, making it easier for humans to quickly
understand the most important information contained in the documents.

The IP attorney duty can be thought of as a summarization task. Indeed, the
task requires one to first comprehend and interpret the input document. After that,
the attorney has to give higher priority to the most informative parts compared to
the context information, and then, paraphrase the important content into a fluent
and coherent re-elaborated version.
More specifically, human summarizers have four main characteristics:

1. they are able to comprehend and interpret the input document;

2. they give a higher priority to the most informative parts compared to the
context information;

3. they paraphrase the important content into a fluent and coherent re-elaborated
version;

4. they are able to generate multiple summaries given the same input document.

The NLP scope provides several techniques to summarize input texts. The NLP
summarization scope can be divided into two big families of models: extractive
summarization models and abstractive summarization ones. Extractive summa-
rization techniques extract and concatenate the most informative sentences into a
single summary, these techniques are well suited to discovering the most important
information, but they generate summaries that may be weak in terms of coherency
and fluency. Abstractive summarization instead shows the ability to re-elaborate
the input text into a shortened version, containing the most important information,
keeping the keywords, but without coping fragments from the input document.
Therefore, they are more suited to address the fluency and coherency problem, in
addition to the ability of generating multiple summaries starting from the same
input text. When the summarization task is taken to its extreme, as shortening
the input text into a single-sentence summary, it is possible to talk of extreme
summarization.

Patents, as compared to other types of texts, for instance in the news domain,
have a richer discourse structure, are full of legal terms, and the informative content
tends to be more evenly distributed, whereas, in a typical news article, the first
part is the most informative one [7]. This different structure has set new challenges
concerning the summarization task. Patent summarization works aim to obtain
NLP models that are capable to generate patent sections, using the correct technical
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terms, identifying the distributed important content and generating fluent new
text. The underlying idea is to speed up the inventors writing or the IP attorney
analysis.
Most previous patent summarization works are focused on using the claims sec-
tion or the description as a source of information to generate a patent section
such as the abstract or the summary. More in detail, the BIGPATENT dataset
(Section 3.2.1), one of the most well-established patent datasets, allows only to
use of the patent description as a source of information, trying to generate the
summary section. A brand new dataset, the Harvard USPTO Dataset (HUPD)
(Section 3.2.3), presented in 2022, contains 34 fields for each patent, allowing
deeper and wider patent analyses. The HUPD authors, for what concerns the
summarization task, focused on two experiments. One uses the description section
as input, and the other the claims. In both cases, the aim was to generate the
abstract section. A third important work, related to the patent summarization
scope, is presented by the authors of the CMUmine dataset (Section 3.2.2). This
dataset contains all five aforementioned sections, and the authors performed the
summarization task using the summary section as a source of information, trying to
generate the first claim. This is the only work that speeds up the IP attorney’s work.

In this thesis, the goal is to generate the first claim of a patent document using
abstractive summarization techniques that can understand the context and meaning
of the input text, and generate fluent and coherent first claims.
The study focuses on two main research questions:

• which patent sections are the most effective for generating the first claim;

• how does the length of the input text impact the performance of the summa-
rization models.

This research could have significant implications for the legal and innovation com-
munities by improving the accuracy and efficiency of automated patent claim
generation.
Seven different input texts are analyzed, including single sections like abstract,
background, description, and summary, as well as combinations of two sections.
The boundaries of each section are highlighted using special tokens to help the
models recognize the semantic content. To investigate the impact of context width,
two models are compared: PEGASUS and BigBird-PEGASUS, both based on the
transformer architecture but with different attention mechanisms. The experiments
are performed on the CMUmine dataset, which contains around 300,000 patents.
See Section 5 for more details.

The results are evaluated through two metrics, ROUGE, a metric that favours
the syntactic similarities by the generated text and the one taken as ground truth,
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and BERTScore, which privileges the semantic similarities (Section 6.1). Although
the ROUGE metric generally leads to higher results for texts generated with extrac-
tive summarization techniques, the obtained results (Section 6.3) are significantly
high for an abstractive summarization task. In particular, they are higher than
the results obtained in previous works. The results show that the input section
deeply affects the first claim generation performance. In particular, the best input
text turns out to be the combination of summary and abstract, whereas the best
single-section tested is the summary, which leads to performance slightly lower
than those obtained using the aforementioned text combination. The analysis led
to discover that the least informative section is the description one, followed by
the background. A possible explanation could be that the description section is
significantly longer and using any of the two tested models the text is truncated.
In all the cases, that is with each input text analyzed, BigBird-PEGASUS, the
model that processes longer documents, leads to higher performances, unfortunately
at the expense of the training time that is almost three times that of PEGASUS.
In particular, while PEGASUS needs an average of 20 hours to be trained, BigBird-
PEGASUS reaches three days of training. Due to the time limits imposed by the
computational resources longer experiments have not been done.

This thesis presents the bases for several further analyses. The code presented is
modular and allows for the testing of further input texts and section combinations.
It is also easily adaptable to different datasets and models. A point of sure interest
is to understand whether the generation of claims other than the first one, or the
generation of more than one claim at a time, could be tasks that can be addressed
with the method presented in this thesis, or the generation of a longer text needs
a different strategy. Another future plan is to test other models that allow to
process of even longer input text. Indeed, models with wider context could be
able to process the entire description section or the combinations of more than
two sections. It is also interesting to understand if longer training could lead to
significantly higher performances. A further analysis that can be performed with
different computational resources is to apply the presented approach to the HUPD
dataset, understanding if a dataset with a cumbersome amount of data as HUPD,
with about 4.5 million patents, could lead to effective performance improvement
compared to a smaller one, as CMUmine.

Outline of the thesis

In Section 2 a detailed overview of the embeddings is reported, starting with
the definition of embedding and ending with the differences between static and
contextualized embeddings. This section also contains a detailed description of the
two summarization models used for this thesis.
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Section 3 describes the general characteristics of some common datasets for text
summarization, then focuses on the datasets specific to the patent domain.

In section 4 the most famous abstractive summarization models are analyzed
and divided into general-purpose and task-specific ones. Then, the analysis is
focused on the already applied approaches for patent summarization.

Section 5 deeply describes all the steps performed in this thesis, from the prepa-
ration of the datasets to the input creation with the new special tokens, ending
with training and test parameters.

Section 6, the Results section,vextensively analyzes the obtained results, making
deep comparisons between the obtained performances.

The last part, Section 7, reports the conclusions of this thesis and some future
perspectives.
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Chapter 2

Background

This section is dedicated to explaining the previous knowledge necessary to under-
stand this thesis work. In particular, after an overview on the embeddings, the first
part is dedicated to the language modelling problem making a distinction between
context-independent and contextualized embeddings. Then, in Section 2.2 the used
models, PEGASUS and BigBird, are described in detail.

Embeddings are a type of latent representation, which refers to a lower-dimensional
representation of a high-dimensional data space that captures meaningful informa-
tion about the data. Embeddings are used extensively in machine learning and
artificial intelligence, particularly in computer vision, audio, and natural language
processing.

In computer vision, embeddings are often used to represent images. Instead of
using the raw pixel values of an image, an embedding model is trained to map the
image to a lower-dimensional vector space that captures meaningful information
about the image, such as its content, color, texture, and shape. These embeddings
can then be used for various tasks, such as image classification, object detection,
and image retrieval.

In audio processing, embeddings are used to represent audio signals, such as
speech or music. Similar to computer vision, an embedding model is trained to
map the audio signal to a lower-dimensional vector space that captures meaningful
information about the audio, such as its pitch, tone, and timbre. These embed-
dings can then be used for various tasks, such as speech recognition, music genre
classification, and speaker identification.

In natural language processing, embeddings are used to represent words or
phrases. Instead of using the raw text of a document, an embedding model is
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trained to map each word or phrase to a lower-dimensional vector space that
captures its semantic and syntactic properties. Typically, similar words in meaning
are expected to be closer in the vector spece [8].

Overall, embeddings have proven to be a powerful technique for representing
complex data in a lower-dimensional space that captures meaningful information.
They have enabled breakthroughs in computer vision, audio processing, and natural
language processing, and are a critical component of many state-of-the-art machine
learning models.

This thesis, working on texts, is focused only on the word embeddings.
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2.1 – Word embeddings

2.1 Word embeddings
Word embeddings are numerical representations of words that capture their se-
mantic and syntactic information. There are two main types of word embeddings:
static and contextualized.

Static word embeddings, also known as pre-trained word embeddings, are learned
from a large corpus of text and are fixed in their representation of each word. These
embeddings are trained using unsupervised methods and can be used across different
tasks. Examples of popular static word embeddings include Word2vec, fastText,
and GloVe.

Contextualized word embeddings, on the other hand, take into account the
context in which a word appears and produce a different representation for each
instance of a word. These embeddings are trained using supervised methods, often
on large language models, and can capture more complex relationships between
words in a sentence. Examples of popular contextualized word embeddings include
ELMo, BERT, and GPT.

The key difference between static and contextualized word embeddings is that
static embeddings are trained on a fixed representation of a word and are the same
for every context, while contextualized embeddings are able to capture the meaning
of a word in the context of the sentence or document in which it appears.

In practice, which type of word embedding to use depends on the specific
task and the amount of data available. For tasks that require a high degree of
understanding of the context, such as sentiment analysis or text summarization,
contextualized embeddings are typically more effective. For tasks where the focus
is on word-level relationships and analogies, such as word similarity or analogy
completion, static embeddings may be sufficient.

2.1.1 Static word embeddings
Word2vec

Word2vec was introduced in 2013 by Tomas Mikolov and his colleagues at Google
[9]. The algorithm was designed to address the limitations of traditional NLP
techniques, for instance, one-hot encoding, which relied on hand-crafted features
and statistical models. Word2vec is a neural network-based algorithm that uses a
simple yet powerful architecture to learn word embedding.
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There are two main architectures for implementing Word2vec: the Continuous
Bag-of-Words (CBOW) architecture and the Skip-Gram architecture. In the CBOW
architecture, the model predicts a target word based on its context, which is a set
of surrounding words. In contrast, the Skip-Gram architecture predicts the context
words given a target word. Both architectures use a simple neural network with
one hidden projection layer to learn word embeddings.

The basic idea behind Word2vec is to train a neural network to predict the
probability of a word given its context, or vice versa. The Skip-Gram network
takes in a one-hot encoded vector representation of the input word and maps it
to a lower-dimensional embedding vector through the hidden layer. The hidden
vector is then passed through an output layer to generate a probability distribution
over the vocabulary. This process is repeated for each word in the training corpus.
In the CBOW network instead, the one-hot representations of the context words
passed to the projection layer shared for all words, are mapped into a hidden vector.
The obtained vector is forwarded to the output layer. This last layer returns the
probability distribution over the vocabulary. The two presented architectures are
depicted in Figure 2.1

Figure 2.1: The Continuous Bag-of-Words (CBOW) architecture and the Skip-
Gram architecture presented in [9].

The objective of the Word2vec algorithm is to maximize the likelihood of the
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training data given the model parameters. This is achieved by minimizing the
negative log-likelihood of the training data, which is equivalent to maximizing the
average log probability of the context words given the target word or vice versa:

1
T

TØ
t=1

Ø
−c≤j≤c,j /=0

log p(wt+j|wt) (2.1)

In Equation (2.1) w1, w2, ..., wT is a sequence of words of cardinality T , c is the
number of words to consider that are placed before and after the target word.

The word embeddings generated by the Word2vec algorithm are analyzed by
the authors to understand the semantic and syntactic relationships between words.
The analysis showed that words with similar meanings are clustered together in
the vector space, while words with opposite meanings are separated. The word
embeddings also capture the syntactic relationships between words, such as verb
tense and noun-verb relationships.

One of the main advantages of Word2vec is its ability to capture the semantic
and syntactic relationships between words. However, the algorithm also has some
limitations, such as the inability to handle out-of-vocabulary words, which can be
handled using FastText, the ignoring of global word co-occurrence, a problem that
can be solved using Glove and the inability to encode contextual representations,
which can be encoded using contextualized embeddings.

FastText

FastText is a simple and efficient neural network-based model for language modelling,
developed by Facebook AI Research in 2016 [10]. The FastText model is based on
the word embedding technique that represents each word in a continuous vector
space. In addition to word embeddings, FastText also uses character n-grams to
capture subword information. The model takes as input a sequence of words, and
for each word, it computes a vector representation by summing the embeddings of
the individual word and character n-grams. The final word vector representation is
associated with a score. Suppose to have a dictionary of n-grams of size G. Given
a word w, denote as Gw ⊂ 1, ...G the set of n-grams contained in w. Associate to
each n-gram g its vector representation zg. The used scoring function is:

s(w, c) =
Ø

g∈Gw

zT
g vc (2.2)

FastText can capture subword information using character n-grams, which makes it
robust to misspellings and out-of-vocabulary words. It is also capable of handling
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multilingual data, making it a useful tool for cross-lingual applications. However,
the model has limitations in handling long-term dependencies, and it may not
perform well on tasks that require modelling the context over a long sequence of
words.

GloVe

GloVe, Global Vectors for Word Representation, is an unsupervised learning algo-
rithm that was introduced in 2014 by Pennington et al [11]. The key idea behind
GloVe is to leverage the co-occurrence statistics of words in a corpus to learn a
low-dimensional vector representation for each word. Unlike other neural language
models, which use a sliding window approach to capture local context, GloVe is
designed to model global context by taking into account the entire corpus. Formally,
given a corpus of size V , the co-occurrence count between two words i and j is
defined as Xij, which is the number of times i and j co-occur in a context window.
The GloVe algorithm aims to learn a low-dimensional vector representation wi for
each word i in the corpus, such that the dot product of the vectors for two words i
and j is proportional to the log of their co-occurrence probability:

wi · wj ∝ log(Xij) (2.3)

To achieve this, GloVe introduces a weighting function f(Xij) that captures the
relative importance of the co-occurrence count Xij. The weighting function has to
respect three properties:

• f(0) = 0;

• f(x) is non decreasing;

• f(x) is relatively small for large values of x.

A common function is:

f(Xij) =

1

Xij

xmax

2α
if Xij ≤ xmax

1 otherwise
(2.4)

where xmax is a threshold that caps the maximum co-occurrence count, and α is a
hyperparameter that controls the strength of the weighting function. The use of a
weighting function helps to mitigate the effect of noise in the co-occurrence counts.
Once the weighting function is defined, the optimization objective of GloVe is to
minimize the following cost function:

J =
VØ

i=1

VØ
j=1

f(Xij)(wi · wj + bi + bj − log(Xij))2 (2.5)
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where bi and bj are bias terms for words i and j, respectively.
One of the advantages of GloVe is its computational efficiency. Because it uses global
context to learn word embeddings, it is able to leverage large corpora without
the need for computationally expensive neural language models. Additionally,
the GloVe algorithm is relatively simple to implement, making it accessible to
researchers and practitioners who may not have extensive experience with deep
learning. Another advantage of GloVe is its interpretability. Because the vectors
learned by the algorithm are based on co-occurrence statistics, they have a clear
semantic interpretation. Additionally, GloVe embeddings have been shown to
outperform other state-of-the-art methods, such as Word2vec, on many NLP tasks
such as word analogy, word similarity, and named entity recognition.

2.1.2 Contextualized word embeddings
Traditional word embeddings, such as word2vec or GloVe, do not consider the
context of a word, and hence, they cannot capture the multiple meanings of a
word in different contexts. In recent years, several pre-trained models have been
developed that generate contextualized word embeddings, such as ELMO, BERT,
and GPT.

ELMO

ELMO, which stands for Embeddings from Language Models, is a state-of-the-art
deep learning model for generating contextualized word embeddings. It was de-
veloped by researchers at the Allen Institute for Artificial Intelligence in 2018 [12]
and has become increasingly popular in the Natural Language Processing (NLP)
community in recent years.

ELMO generates contextualized word embeddings by training on a large corpus
of text. It is based on a multi-layer bi-directional language model, which means
that it processes the input text both forwards and backwards, allowing it to capture
the contextual meaning of words. ELMO consists of three main components: a
character-level convolutional neural network, a bi-directional LSTM, and a task-
specific feedforward neural network. Bi-directional LSTMs have the sense of both
the next and the previous words. They are made of two language models: a forward
language model and a backward one. A forward language model computes the
probability of the sequence a sequence of tokens by modelling the previous ones:

p(t1, t2, ..., tn) =
NÙ

k=1
p(tk|t1, t2, ..., tk−1)

A backward language model instead predicts the sequence probability given the

13



Background

future context:

p(t1, t2, ..., tn) =
NÙ

k=1
p(tk|tk+1, tk+2, ..., tN)

Each word embedding is built following three steps: first, concatenate the hidden
representations obtained by the forward and the backward language models, then
multiply each obtained vector by a task-dependant weight, and finally sum the
weighted vectors.

One of the benefits of pre-trained models like ELMO is that they can be used
for transfer learning. This means that the model can be fine-tuned on a specific
natural language processing task with a relatively small amount of task-specific
data. This allows researchers and practitioners to leverage the knowledge and
expertise that has been built into the pre-trained model and apply it to their own
specific tasks. ELMO has been shown to perform well on various natural language
processing tasks. It has been shown to outperform traditional word embeddings on
many tasks and to be competitive with other state-of-the-art models like BERT
and GPT.

While ELMO has many benefits, it also has some limitations. For example,
it requires a large amount of training data, which can be a challenge for some
applications. Additionally, it can be computationally expensive to train and use,
which can be a limitation for some applications that require real-time processing.

Transformers

Transformers are a class of deep learning models that have revolutionized the
field of NLP in recent years. They were first introduced in 2017 in a paper titled
"Attention Is All You Need" by Vaswani et al. [13], and have since become the
state-of-the-art models for many NLP tasks, such as machine translation, text
classification, and text generation. Traditional neural network models for NLP,
such as recurrent neural networks (RNNs) and convolutional neural networks
(CNNs), have limitations in their ability to model long-range dependencies in text.
Transformers, on the other hand, are able to model long-range dependencies more
effectively through the use of attention mechanisms.
The core idea of a transformer model is to use self-attention mechanisms to compute
a weighted sum of all the words in the input text, allowing the model to attend to
different parts of the input text when making predictions. This makes the model
more effective at capturing the relationships between words and the contextual
meaning of the text. The attention mechanism starts from three vectors, Key,
Value and Query, and outputs the weighted sum of the Values, where the weights
are computed according to a compatibility function that measures the compatibility
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of the Query with the corresponding Key. One of the most widespread attention
operations is given by

Attention(Q, K, V ) = softmax

A
QKT

√
dk

B
V (2.6)

Transformers have also brought about significant improvements in the efficiency of
training and inference for NLP models. This is achieved through the use of parallel
computation and the ability to process batches of input text simultaneously. This
parallel computation requires the introduction of positional embeddings without
which the information about the relative and absolute positions of words would be
lost. The used positional embeddings involve sine and cosine functions at different
frequencies:

PEpos,2i = sin
3

pos

100002i/dmodel

4
PEpos,2i+1 = cos

3
pos

100002i/dmodel

4 (2.7)

where dmodel is the embedding dimension.
The Transformers [13] architecture is composed of an encoder-decoder structure
which makes use of the attention mechanism. The encoder is made of N identical
layers, each one divided into two sublayers:

1. Multi-head self-attention: multi-head attention allows the model to jointly
attend to information from different representation subspaces at different
positions;

MultiHead(Q, K, V ) = concat(head1, head2, ..., headN)W O

headi = Attention(QW Q
i , KWi

K , V W V
i )

where the Attention is given by Equation 2.6;

2. Position-wise feed-forward neural network: this layer consists of two linear
layers with a ReLU activation in between.

FFN(x) = max(0, xW1 + b1)W2 + b2

Residual connections followed by a normalization layer are added around each
sublayer.

For what concerns the decoder stack, has N identical layers, each composed of
three sublayers:

1. Masked multi-head self-attention: a mask ensures that the predictions for
position i can depend only on the known outputs at positions less than i;
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2. Multi-head encoder-decoder attention: performs attention on the output of
the encoder stack;

3. Position-wise feed-forward neural network.

Also in the decoder stack, there are residual connections followed by a normalization
layer around each sublayer. The transformer’s architecture is represented in Figure
2.2

Figure 2.2: The encoder-decoder Transformer’s architecture explained in [13].

BERT

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-
based neural network model that was introduced by Google researchers in 2018 [14].
BERT is a powerful tool for natural language processing that has gained popularity
due to its ability to generate contextualized word embeddings.
BERT is a multi-layer bidirectional transformer encoder. The bidirectional aspect
of BERT means that the model can process the input text in both directions, which
allows it to capture the contextual meaning of words in the text.
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BERT has two pre-training phases. In the first phase, called the masked language
model (MLM), the model is trained to predict a randomly masked word in the
input text. More specifically, this model uniformly selects 15% of the input tokens
for possible replacement. Of the selected tokens, 80% of them are replaced with
the [MASK] token, 10% are left unchanged and 10% are replaced by a randomly
selected token in the vocabulary.
In the second phase, called the next sentence prediction (NSP), the model is
trained to predict whether two sentences in the input text are consecutive or not.
This pre-training phase allows the model to learn semantic dependences among
sentences.
After pre-training, BERT can be fine-tuned on specific natural language processing
tasks with relatively small amounts of task-specific data.
To use BERT, we first tokenize the input text into a sequence of word pieces. These
word pieces are then converted into numerical representations using an embedding
layer. The resulting numerical representations are fed into the BERT model, which
generates a sequence of contextualized word embeddings.
One of the limitations of BERT is its computational requirements. BERT is a large
model that requires significant computational resources to train and use effectively.
This can be a challenge for smaller organizations or individuals who do not have
access to large-scale computing resources.

GPT

Generative Pre-trained Transformer (GPT) is a transformer-based deep learning
model for generating contextualized word embeddings. It was introduced by OpenAI
in 2018 [15] and has become a popular tool for natural language processing tasks.
GPT is a multi-layer transformer decoder that is pre-trained on a large corpus of
text using a language modelling objective. Unlike BERT, which is a bidirectional
model, GPT is a left-to-right model that generates text one word at a time.
The pre-training objective for GPT is to predict the next word in a sequence of
text.
To use GPT, first, tokenize the input text into a sequence of word pieces. These
word pieces are then converted into numerical representations using an embedding
layer. The resulting numerical representations are fed into the GPT model, which
generates a sequence of contextualized word embeddings.
One of the strengths of GPT is its ability to generate high-quality text that is both
grammatically correct and semantically meaningful. This makes it a powerful tool
for tasks such as text generation and language translation.
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2.2 Summarization models used
PEGASUS and BigBird-PEGASUS are both transformer-based models that have
been developed by Google for natural language processing tasks. PEGASUS is
primarily designed for text summarization, where it excels in generating accurate
and readable summaries of text. BigBird is a sparse attention mechanism designed
to handle long sequences of text more efficiently, making it well-suited for a wide
range of NLP tasks.

2.2.1 PEGASUS
PEGASUS is a state-of-the-art pre-training-based text-to-text neural network ar-
chitecture that has achieved impressive results in a variety of NLP tasks. It was
introduced in a research paper by researchers at Google in 2019 [16] and has since
become one of the most popular NLP models for natural language generation,
summarization, and other related tasks.
At its core, PEGASUS is a variant of the Transformer architecture, which is a
type of neural network architecture that uses attention mechanisms to model
the relationships between input and output sequences. However, unlike other
Transformer-based models that are trained to predict the next word in a sequence,
PEGASUS is trained using a pre-training-based approach that involves generating
a summary of a document called Gap Sentence Generation.
One of the key advantages of PEGASUS is its ability to generate summaries that
are not only accurate but also fluent and readable.

There are two versions of PEGASUS available: PEGASUSBASE and PEGASUSLARGE.
The larger model has more attention heads, from 12 in its base form to 16, more
layers in each encoder and decoder, from 12 to 16, and a bigger hidden size. This
thesis makes use of the PEGASUSLARGE model. PEGASUS can handle sequences
of up to 1,024 tokens.

GSG With PEGASUS [16] a new self-supervised objective is introduced: the Gap
Sentence Generation. The idea is that putatively important sentences are masked in
the original text and reconstructed in output by the model, using only the remaining
sentences. This objective is particularly appropriate for abstractive summarization
as it closely resembles the downstream task. The sentences considered important
are chosen on the basis of their ROUGE1-F1 score, computed against the remaining
text. This selection technique leads to significantly higher performances with
respect to lead or random sentence selection. The PEGASUS base model uses
also the MLM objective, thus it also masks a random set of tokens. However, this
technique is shown to lead to no improvements, therefore in the PEGASUS large
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model, only the GSG objective is preserved.

Figure 2.3: PEGASUS training objective explained in [16]. Both GSG and MLM
are shown, although only the first one is used by the model exploited in this thesis.

2.2.2 BigBird
The full attention mechanism typical of transformers leads to their main limitation:
the quadratic dependency, mainly in terms of memory, with the input length. The
self-attention, indeed, is a double-edged sword, it allows us to overcome the RNN
restrictions allowing all the input tokens to attend to all the other tokens in the
sequence, but this innovation leads to heavy memory problems.

BigBird is a sparse attention which extends Transformer based models extending
their ability to efficiently process long sequences of text. Introduced by Google
researchers in 2020 [17], BigBird is designed to handle long-range dependencies in
text data. Indeed, BigBird uses a novel sparse attention mechanism that allows it
to process long sequences of text in a more efficient way, reducing the dependency
from quadratic to linear.

BigBird main contributions to the attention mechanism are three:

1. a set of g global tokens that attend on all the parts of the sequence;

2. all tokens attend to a set of w local neighbouring tokens;
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3. all the tokens attend to a set of r random tokens.

Given an input sequence X = (x1, x2, ..., xn) ∈ Rn×d the sparse attention mechanism
can be described by a directed graph D with a set of nodes [n] = {1, ..., n} and a
set of edges that represent the inner products that the attention will consider.
The new attention mechanism can be defined as:

AttentionD(X)i = xi +
HØ

h=1
σ
1
Qh(xi) · Kh(XN(i))T

2
· Vh(XN(i)) (2.8)

where N(i) is the set of out-neighbours of node i, H is the number of attention
heads, σ is the softmax scoring function and XN(i) is the matrix obtained stacking
{xj : j ∈ N(i)} and not the entire input.
In the case in which the graph D is a complete graph, the full quadratic attention
mechanism is recovered.

The arcs considered to obtain the sparse attention mechanism are now explained
by means of the adjacency matrix A for ease of comprehension.
The three aforementioned viewpoints are examined:

• Random tokens: each query attends over r random keys. In that way A(i, ·) = 1
for each key chosen in a random fashion (Figure 2.4a);

• Sliding window: in the majority of contexts in NLP a great deal of information
can be derived by the neighbouring tokens. To handle this information
the Watts and Strogatz model [18] is used: each node is connected with w
neighbours, w/2 on each side. Consequently the adjacency matrix will be:
A(i, i − w/2 : i + w/2) = 1 (Figure 2.4b). Thus, the self-attention of width w
at location i attends keys from i − w/2 to i + w/2;

• Global tokens: a set of existing tokens G are made general, they attend to
every token in the sequence and to whom each token attends. To achieve this
idea the adjacency matrix will be built as A(i, :) = 1 and A(:, i) = 1 ∀i ∈ G
(Figure 2.4c).

BigBird merges all these viewpoints obtaining the attention shown in Figure 2.4d.
This approach allows BigBird to handle sequences of up to 4,092 tokens, which is
much longer than what most other models can handle.

The authors have made available two models, one that leverages RoBERTa [19],
BigBird-RoBERTa, the smaller one, and the other that leverages PEGASUS [16],
BigBird-PEGASUS, the bigger one. To be consistent with the experiments, in this
thesis the focus is set on the second bigger model, BigBird-PEGASUS.
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(a) Random tokens (b) Sliding window

(c) Global tokens (d) BigBird sparse attention.

Figure 2.4: Building blocks of sparse attention mechanism presented in [17].
Figure (a) shows a random selection of keys with r = 2. Figure (b) represents the
sliding window with w = 3. Figure (c) depicts the selected g = 2 global tokens.
Figure (d) reports the final BigBird sparse attention mechanism.
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Chapter 3

Datasets

General text summarization datasets and patent summarization datasets differ in
terms of their domain and cont.

Domain: General text summarization datasets are sourced from a wide range of
domains, such as news articles, scientific papers, and social media posts. These
datasets aim to provide a broad view of the summarization task, which is applicable
to a wide range of domains. Patent summarization datasets, on the other hand,
are sourced specifically from patents. They focus on summarizing the content of
patent documents, which can be highly technical and specialized.

Content: General text summarization datasets contain text that is typically
written in a more natural language style and the vocabulary is often more familiar
to the average reader. Patent summarization datasets, on the other hand, contain
highly technical language. The text often includes specialized terminology, legal
terms, acronyms, and abbreviations that may not be familiar to the average reader.
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3.1 Benchmark datasets for text summarization
There are several benchmark datasets available for text summarization that are
widely used for evaluating the performance of automatic summarization models.

CNN/Daily Mail The CNN/Daily Mail dataset is a widely used benchmark
dataset for text summarization, specifically for evaluating abstractive summarization
models. The dataset consists of news articles from CNN and Daily Mail paired with
bullet-point summaries and is designed to test the ability of models to generate
human-like summaries that capture the most important information in the text.
Bullet-point summaries are treated as multi-sentence summaries, where each bullet
is considered a sentence. One of the challenges of the CNN/Daily Mail dataset
is that it contains long and complex articles, which can be difficult to summarize
accurately [20].

Gigaword The Gigaword dataset is a large-scale text corpus that is widely used
in natural language processing research, particularly for text summarization. The
dataset contains news articles from the New York Times and Associated Press, as
well as their corresponding one-sentence article summaries. One of the advantages
of the Gigaword dataset is that it provides a large and diverse set of documents,
which allows researchers to test the robustness and generalization capabilities
of their models. The articles in this dataset are similar in length to those in
the CNN/Daily Mail dataset, but the summaries are shorter and more focused.
The dataset is often used to evaluate extractive summarization models, and more
recently, abstractive summarization models [21].

PubMed The PubMed dataset is a widely used corpus in natural language
processing research, particularly in the biomedical domain. The dataset consists
of scientific articles from the PubMed Central database, which is a repository
of biomedical research articles maintained by the National Institutes of Health
(NIH) in the United States. The PubMed dataset is often used to evaluate text
summarization models in the biomedical domain, including both extractive and
abstractive summarization models. The summaries are typically written by the
authors of the articles and provide a brief overview of the study’s purpose, methods,
results, and conclusions. One of the challenges of the PubMed dataset is that
the articles can be highly technical and complex, with specialized terminology
and domain-specific jargon. This makes it difficult to develop summarization
models that can accurately capture the most important information in the articles.
Additionally, the reference abstracts can be highly abstractive, which can make it
difficult to evaluate the performance of extractive summarization models that aim
to extract important sentences from the article [22].
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Newsroom The Newsroom dataset consists of news articles from a wide range
of sources, including The New York Times, The Washington Post, and Reuters,
and their corresponding human-written summaries. It news articles and their
summaries, covering a wide range of topics including politics, business, sports, and
entertainment. Unlike other text summarization datasets, such as the Gigaword
dataset, which includes mostly extractive summaries, the Newsroom dataset pro-
vides more abstractive summaries, making it a suitable dataset for evaluating the
performance of abstractive summarization models. The summaries in the dataset
are generated by human editors and provide a high-level overview of the article’s
main points, rather than simply extracting key sentences from the article [23].

XSum This dataset contains news articles from the BBC, along with their
corresponding summaries. The dataset is notable for its short summaries, which
typically consist of only one or two sentences, and is often used to evaluate
abstractive summarization models. The XSum dataset is a challenging benchmark
for abstractive summarization models, as the short summaries require models to
generate a highly condensed and informative summary that captures the most
important information in the article [24].

Overall, the main differences between these datasets are the length and style
of the articles, the abstractive nature of the summaries, and the domain in which
the dataset is focused. The CNN/Daily Mail, Gigaword, Newsroom and XSum
datasets are focused on news articles. The PubMed dataset is focused on biomedical
research articles, with author-generated summaries. The Newsroom dataset features
a variety of news articles with more abstractive summaries, while the XSum dataset
is focused on short news articles with highly abstractive summaries. Researchers
should choose a dataset based on the research question and task at hand.
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3.2 Patent summarization datasets
Patent summarization is an important task in natural language processing and
information retrieval, as patents are a valuable source of technical knowledge and
intellectual property. Patent documents can be extremely long and complex, of-
ten consisting of highly technical language, making it difficult for humans to sift
through the information and identify key points. This is where patent summariza-
tion datasets come in, providing a collection of patent documents along with their
corresponding summaries to aid in the development and evaluation of automatic
summarization models. Indeed, most existing datasets come from the news domain,
where the most informative parts are located at the beginning of the text, and
where the summarization task leads to copying a lot of extractive fragments.

In this section 3 datasets are presented: BigPatent, CMUmine and HUPD.
BigPatent contains only two fields for each patent, however, this dataset is the
one used to pre-train the used summarization models. CMUmine is the dataset
on which all the tests presented in Section 5 are performed. The HUPD dataset
instead, is a cumbersome dataset. Due to its huge size, it could not have been used
for computations, but it is of high interest for future works. In light of this, the
dataset is prepared to be easily fed to the presented code.

3.2.1 BigPatent
The BigPatent dataset [7] has 1.3 million U.S. patent documents, collected from the
Google Patents Public Dataset through BigQuery, which spans a variety of technical
domains. More specifically, this dataset contains patents filed after 1971 across nine
technological areas, including human necessities, mechanical engineering, chemistry,
and more. In order to obtain consistent writing and formatting style, the authors
considered only the patents from the USPTO filed in the English language.

With respect to many other summarization datasets, for instance, in the news
domain, BigPatent has 3 distinctive characteristics:

• It has summaries with a richer discourse structure;

• The salient content is evenly distributed across all the input text;

• Lesser and shorter extractive fragments appear in summaries.

The abstract of the patent is considered the gold-standard summary of the patent,
whereas the detailed description is considered the input for the summarization task.
So, this dataset contains only two fields for each patent.
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The BigPatent dataset is distributed as a Hugginface Dataset at the following link:
https://huggingface.co/datasets/big_patent (last accessed: February 2023).

3.2.2 CMUmine
The CMUmine patent dataset [3] contains about 300k patent documents. This
dataset was created by crawling the US Patent and Trademark Office’s (USPTO)
bulk data files, retrieving applications filed between the years 2005 and 2006.

Each patent contains the following information:

• Patent number: the unique identifier associated with each patent;

• Abstract: this section aims to allow the reader to quickly determine what is
new in the domain to which the proposed invention pertains;

• Background: it contains a brief description of the area to which the invention
is related. It ought to also contain a paraphrase of the relevant patent
classification definition and the main topic of the claimed invention;

• Summary: this section contains a brief summary of the invention’s main points,
it also contains the advantages of the invention and how it addresses already
existing problems.;

• Detailed description: this is the longest section, where the invention is fully
explained, along with how it can be made by people sufficiently skilled in the
art, and also how it can be used. The terms used are precise, clear and concise.
This section also explains the novelty of the invention concerning the already
existing inventions;

• Claims: this section contains all the claims of the patent, the claims that
define the elements the inventor believes to the real innovation, they define
the boundary of the protection granted to the patent. In large part, whether
a patent will be granted or not depends on the claims;

• First claim: this section contains only the first claim, which is a particular
claim that states the distinctive features of the invention, underlining the main
differences with the existing art, and defining the restriction level desired.

The authors’ aim was to generate the first claim, addressing the problem as
an abstractive summarization task, taking as input the summary section. With
this perspective, they cleaned the dataset by preserving only the patents with a
summary length between [150, 500] and the first claim length between [35, 300].
The dataset can be downloaded at the following link: https://drive.google.
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com/drive/u/0/folders/1J4sAcM_21G39VuZT1jv6RqLTEM_UngWS (last accessed:
January 2023).
It is already divided into training, validation and test split with 253,976, 31,736
and 31,696 documents respectively.

Unfortunately not all the patents own a detailed description section, about 1/3
of documents in each split lack the description. More specifically, in the training
set 168,456 out of 253,976 documents have the description, in the validation set
20,979 out of 31,736, whereas in the test set 20,960 out of 31,696.
Figure 3.1 shows the situation.

Figure 3.1: Percentage of CMUmine documents without the description field. For
each split 2/3 of the documents possess a detailed description.

The dataset is studied in terms of the average number of tokens of each section
and the maximum length reached by 99% of the sections. This is done to better
understand the problem, and to match the models’ constraints about the maximum
input lengths.
To count the tokens the text has been split on spaces, dashes and underscores. The
obtained results are shown in Table 3.1. Notice that the description results are
obtained by excluding the documents that do not own one.

3.2.3 HUPD
The HUPD (Harvard USPTO Patent Dataset) is a dataset of patent documents
that are used for research on various natural language processing tasks, such as
document summarization, but also text classification, and entity recognition. In-
deed, in addition to the patent documents themselves, the HUPD dataset also
includes a variety of other useful information. This includes information about the
inventors and assignees associated with each patent, as well as information about
the USPTO examiners who reviewed each patent application. All the metadata
contained are particularly useful for researchers working on patent analysis and
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CMUmine Train Validation Test
Section Avg. 99th Avg. 99th Avg. 99th

Abstract 113.37 238.0 113.23 238.0 113.01 237.0
Background 648.39 2664.25 646.39 2616.3 644.15 2617.45
Description 3102.10 19026.90 3103.12 18967.66 3103.30 19066.94
First claim 112.28 274.0 112.49 274.65 112.33 275.0
Summary 562.87 1440.0 564.17 1446.0 559.23 1440.0

Table 3.1: CMUmine dataset statistics: average number of tokens and 99th

percentile of number of tokes for each section. The training set is composed of
253,976 documents, the validation set of 31,736 documents, and the test set of
31,696 documents. Notice that the description results are computed considering
only the patents that own a description.

understanding. For instance, the USPTO assigns each patent document a series
of classification codes based on the technology areas it pertains to. These codes
are based on the International Patent Classification (IPC) system and provide a
standardized way to categorize patents according to their technical domain.

The HUPD dataset [25] retrieves patent applications filed to the USPTO between
2004 and 2018, and contains more than 4.5 million patents.
This dataset stands out due to four main reasons:

• It is focused on patent applications, not only accepted ones but also those
rejected, allowing a completely new task: the binary classification of patent
decisions. In other words, it will enable to predict the acceptance likelihood
of a patent;

• It has rich textual and structural information present in patents, more specifi-
cally, each patent owns 34 fields;

• It has tripled the size of one of the most famous patent datasets: BigPatent
[7];

• Despite its sheer size, being retrieved from USPTO applications, this dataset
is still clean, comprehensive and well-structured.

The HUPD dataset is distributed as an Huggingface Dataset at the following link:
https://huggingface.co/datasets/HUPD/hupd (last accessed: January 2023).
The dataset is originally divided into train and test, the test has been created by
the dataset’s authors considering the patents filed in 2017 and 2018. The validation
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set, instead, has been created by randomly sampling from the training set the same
number of patents of the test set.
After an extensive dataset study, one has noticed that 8.72% of patents, which
means 393,844 out of 4,518,040, lack the first claim. Given that this thesis aims to
generate precisely the first claim, these faulty patents are removed, also considering
that the amount of patents preserved is remarkable.
The remaining patents are analyzed to better understand their structure in terms of
average tokens per section and 99th percentile of the number of tokens per section.
The obtained values are reported in Table 3.2.

HUPD Train Validation Test
Section Avg. 99th Avg. 99th Avg. 99th

Abstract 108.85 226.0 108.71 226.0 109.76 219.0
Background 485.58 2488.0 485.58 2483.0 329.93 2100.0
Description 8135.92 41339.0 8127.36 41131.11 10149.60 49083.08
First claim 134.32 550.0 134.79 559.0 149.87 587.0
Summary 694.49 4578.0 694.70 4550.0 860.52 6184.01

Table 3.2: HUPD dataset statistics: average number of tokens and 99th percentile
of number of tokes for each section. The training set is composed of 3,544,996
documents, and the validation and test sets have 289,600 documents each.

Overall, both BigPatent and HUPD are distributed as Hugginface Datasets, there-
fore they are easily downloadable in a standard format with a single line of code.
CMUmine instead is published as a set of zip files loaded on Google Drive, this
means that more passes are needed to obtain a dataset that can be easily passed
to a summarization model. In addition, BigPatent and CMUmine are specifically
devoted to the summarization task, instead, HUPD allows to perform a great
variety of tasks. Finally, for what concerns the dimensions, HUPD is absolutely the
bigger one. It is followed by BigPatent, which contains about 1/4 of the patents
of HUPD. The smallest one is the CMUmine dataset. However, despite its small
dimensions, the obtained results are fully satisfying.
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Related works

Text summarization is a natural language processing task that involves automat-
ically generating a concise and informative summary of a longer text document.
The goal of text summarization is to distil the most important information and
main ideas from a large body of text while minimizing redundancy and maintaining
the coherence and overall meaning of the original document [26].

The objectives of text summarization can vary depending on the specific ap-
plication or domain. For example, in news summarization, the goal may be to
provide a brief and informative overview of a breaking news story, while in academic
summarization, the goal may be to provide a concise summary of a research paper
or technical document for a non-expert audience. In legal or patent summarization,
the goal may be to extract key points or legal rulings from a lengthy document for
use in a legal or business context.

In recent years, text summarization has been revolutionized by the use of deep
learning models, such as neural networks, which have shown impressive results on
a range of summarization tasks. These models are typically trained on large-scale
datasets of text documents and associated summaries and can learn to capture the
most important features and patterns of the text.

There are several typologies of text summarization, based on the techniques and
methods used to generate the summary:

1. Extractive summarization: This approach involves selecting the most impor-
tant sentences or phrases from the original text and assembling them into
a summary. Extractive summarization methods typically use statistical or
machine learning techniques to identify the most important sentences, such
as those that contain high-frequency keywords or appear at the beginning or
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end of the document. The advantage of extractive summarization is that it
preserves the original wording of the document, which can be useful for legal
or technical documents;

2. Abstractive summarization: This approach involves generating a summary that
may not be a direct extract from the original text. Abstractive summarization
methods typically use natural language generation techniques, such as neural
networks, to generate summaries that capture the main ideas and concepts
of the original text. Abstractive summarization is more challenging than
extractive summarization because it requires understanding the meaning and
context of the text, and generating natural-sounding language;

3. Hybrid summarization: This approach combines elements of extractive and
abstractive summarization to generate a summary that is both informative
and coherent. For example, an extractive summarization algorithm may be
used to select the most important sentences from the original document, and
an abstractive summarization algorithm may be used to rephrase or generate
new sentences to improve the coherence and readability of the summary;

4. Query-based summarization: This approach involves generating a summary
that is tailored to a specific user query or information need. Query-based sum-
marization algorithms can use techniques such as keyword extraction, entity
recognition, and semantic analysis to identify the most relevant information
from the original document and present it in a summary form that is tailored
to the user’s query.

Overall, text summarization is an important and challenging problem in natural
language processing, with many practical applications and research directions. The
choice of summarization technique and approach depends on the specific application
and the trade-offs between informativeness, coherence, and computational efficiency.
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4.1 General-purpose summarization models

BART

T5

BigBird

LED

PEGASUS

PRIMERA

General-purpose pre-trained models Task-specific pre-trained models

Single-document summarization

Multi-document summarization

Figure 4.1: This figure is inpired to [27]. It shows the models mostly used in the
abstractive summarization field nowadays.

In addition to the already presented abstractive summarization models, PE-
GASUS [16] (Section 2.2.1) and BigBird [17] (Section 2.2.2), the abstractive
summarization field is currently dominated by the models cited in Figure 4.1. A
total of six models are described in this work, four out of six are general-purpose
pre-trained models, of which Bigbird is part. The two remaining presented models
are task-specific pre-trained models, more specifically they are focused on the
summarization task. PEGASUS processes single documents, whereas PRIMERA
[27] is designed to work with multiple documents at the same time.
In this section BART [28], T5 [29], LED [30] and PRIMERA [27] will be explained.
Successively, a particular focus is put on the patent’s summarization field. The
models and the datasets used will be reported, along with the state-of-the-art
results.

4.1.1 BART
BART [28] is a denoising autoencoder implemented employing a bidirectional
encoder and a left-to-right autoregressive decoder. BART generalizes BERT [14]
for the encoder part, and GPT [15] for the decoder one. Both the modules rely on
the transformers’ architecture, explained in Section 2.2.1.
BART is built as a sequence-to-sequence model that applies to many end tasks,
including abstractive summarization. The model architecture is reported in Figure
4.2
The model makes use of a novel noising function used to corrupt the input. The

authors tested several noising functions, but the one that the authors found to be
the best is made of two parts:

• a random shuffle of the sentence order;
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Figure 4.2: BART architecture as explained in [28]. It comprises a bidirectional
encoder that takes in input the corrupted text, which is then elaborated by the
autoregressive decoder trying to reconstruct the original document.

• a new function that substitutes arbitrary length pieces of text, including length
zero, with a single mask token.

This approach generalizes the masking function usually used in BERT, forcing the
model to consider long-range transformations of the input and to reason more on
the entire sentence length.
The corrupted text is given to the bidirectional encoder, and then, the text repre-
sentation is passed to the decoder, which learns to correctly reconstruct the original
text. More specifically, BART aims to optimize the reconstruction loss, that is the
cross-entropy loss, between the decoder’s output and the original document.

4.1.2 T-5
Transfer learning is a machine learning method that takes a pre-trained model
on data-rich tasks and uses it as a starting point for fine-tuning the model on a
downstream task. In that fashion, although the available data for the downstream
task is few, it is still possible to reach satisfying performances. The main idea
behind the [29] work is to treat each text processing problem as a text-to-text
one, therefore, the model always takes an input text and generates a text. This
approach allows huge flexibility, going from question answering, to abstractive
summarization, or sentiment classification. This approach also allows us to fix the
used model, a Transformer, and vary the pre-training objectives or the data sets.
Due to these characteristics the model is called Text-to-Text Transfer Transformer
(T5).
The strategy that allows training a single model on different tasks provides for
transforming each problem into a text-to-text one. That is, the model is always
fed with a text input, which is then processed. Finally, the model always generates
a piece of text. Even with a regression task, the model outputs a text. More
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specifically, if the result is a floating-point number, the model’s output will be a
string containing the computed value.
To tell the model which task is required to perform, some text special tokens are
used. For example, for text translation from English to German the model input
is: "translate English to German: That is good", the output text will be "Das ist
gut". For the summarization task, instead, the text that is desired to summarize is
preceded by the "summarize:" token.

Figure 4.3: A diagram of the text-to-text framework presented in [29]. Each
text-processing task is treated as a text-to-text problem. This approach allows
using of the same model across different downstream tasks. The model is told to
perform a particular downstream task using some special tokens. For this thesis,
particular attention should be put on the summarization task, where the input
model is preceded by the string "summarize:".

The authors have done the pre-training step on the Transformer model by using
a denoising objective function and then fine-tuning the model separately on each
downstream task. The used model is such that both the encoder and the decoder
are similar in terms of configuration and size to a BERTBASE stack [14]. The
encoders’ attention is usually a full self-attention, the decoders instead use a causal
self-attention, that prevents the model from attending to subsequent tokens.
The C4 dataset, an unlabeled dataset presented along with T5, is used for pre-
training. With this dataset, the model has to be pre-trained through an objective
function that does not require labels. For that reason, the author used a simple
denoising objective. More specifically, the function samples and then drops a fixed
percentage of tokens in the input sequence. Moreover, consecutive spans of masked
tokens are replaced with a single sentinel token.
After extensive analyses, the authors found that, during fine-tuning, updating all
the model’s parameters leads to higher performances. Therefore, when fine-tuning
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the model on each downstream task, all the model’s parameters will be updated.
This works presents different model sizes, such as the small one, used, for instance,
in the HUPD presentation [25] to perform the summarization task (Section 3.2.3).
This version has an embedding dimensionality of 512, a feed-forward output
dimensionality of 2,048, 8 heads of attention, and 6 layers on each encoder and
decoder stack.

4.1.3 LED
Models based on Transformers [13] have difficulties in processing long-length inputs
due to their full self-attention mechanism that scales quadratically with the input
length in terms of memory and time complexity. More specifically, its complexity
is O(n2), where n is the input length.
Longformers [30] are helpful in this field due to their particular attention mechanism
that scales linearly with input length, making them well-suited to process long
documents. This mechanism provides for a combination of local and global attention.
Both attentions are necessary, the local one permits to build of local representations,
whereas the global one builds length-long sequence representations.
The Longformer Encoder-Decoder (LED) is a variant of the Longformer architecture
that is made of both an encoder and a decoder, rather than by only an encoder.
This variant is introduced to be used for seq2seq learning, as the summarization
task.
More specifically, the attention used in the encoder is made of two parts:

• a sliding window attention, where the window size is increased in the higher
layers. In that way, with a smaller window size for the lower layers, the model
can capture local information. At the same time, with bigger window sizes for
the higher layers, LED can learn the representation of the entire sequence. The
authors also introduced an increasing dilated attention, a windowed attention
with several gaps to increase the receptive field, but only in the higher layers
of two heads;

• global attention, that is applied to some pre-selected tokens. The important
part is that the attention operation has to be symmetric; the pre-selected
tokens attend to all the tokens in the input sequence, and, at the same time,
all the tokens attend to it.

The attention mechanism is depicted in Figure 4.4. The decoder, instead, uses the
standard full self-attention mechanism.
The attention function is the one presented in [13] and reported in Equation 2.6.
The LED architecture and its initialization are the same as BART [28] (Section
4.1.1). The only difference is that the local + global attention mechanism allows
increasing the input length to about 16k tokens, against the about 1K of BART.
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(a) Local + global attention. (b) Dilated window attention.

Figure 4.4: Attention mechanism presented in LED [30]. Figure (a) depicts the
combination of a local sliding window with the global attention of some pre-selected
tokens. Figure (b) represents the dilated window attention used in the higher layers
of two attention heads.
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4.2 Task-specific summarization models
Task-specific summarization models are models that are designed and trained for
a specific application. The task-specific summarization models presented in this
thesis are two: PEGASUS (Section 2.2.1) for single document summarization,
and PRIMERA for generating multi-document summaries by processing multiple
documents simultaneously.

4.2.1 PRIMERA
PRIMERA is a multi-document summarization model presented by [27]. This
model uses a newly introduced pre-training objective designed to allow the model
to discover how to link and combine data from several documents within a cluster
of related texts.

The new strategy relies on the GSG function, firstly introduced in [16], and
is called Entity Pyramid. This objective function masks the salient sentences
in the whole cluster. The model is led to learn to generate them, discover the
most important information across the entire cluster and join them into a single
summary. As in GSG, the function selects m informative sentences and substitutes
them with masking tokens. The difference lies in the fact that the GSG objective
considers a single document, whereas PRIMERA aims to select sentences from
several documents to include information coming from different texts of the cluster
in the generated summary. The selected sentences contain high-frequency entities.
More formally the steps to perform the sentence selection are the following:

1. Perform named entity extraction;

2. Estimate the importance of each entity, the higher the number of the document
in which the entity appears, the higher the importance;

3. Remove all the entities that appear in a single document;

4. Select the entities from the top of the pyramid reported in FIGURE 4.5 to
the bottom. The entities in the higher level of the pyramid have a higher
importance, whereas those in the lower part appear less frequently in the
documents;

5. Select the most informative sentences based on their content overlap. More
formally, the content overlap is measured utilizing ROUGE [31]. Each sentence
score is computed against all the documents except the one to which the
considered sentence belongs. That is:

Score(si) =
Ø

docj∈C,si /∈docj

ROUGE(si, docj) (4.1)
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where C is the cluster of related documents.

Figure 4.5: Senence extraction steps presente in [27]. (1) Named-entity extraction,
(2) Importance estimation of each entity, with subsequent pyramid construction,
(3) Remove all the entities that appear in a single document, (4) Find the sentences
that contain the informative entities, (5) Select the sentences with a higher sum of
ROUGE scores against all the documents to which the sentence does not belong to
(Refer to Equation (4.1)).

This strategy encourages the selection of sentences that are informative for many
documents in the cluster, rather than favour the exact match with a few documents.

To process multiple documents at the same time the authors simply concatenated
the related texts into a single long sequence. Since the input sequence has a notable
number of tokens, it is processed with LED (Section 4.1.3) presented in [30],
which has a linear complexity in terms of time and memory with the input length.
When the text is concatenated, special tokens are added to separate the different
documents and to allow the model to consider the document boundaries. These new
special tokens are assigned global attention. In such a way they could encapsulate
and share information across documents. To better understand the usage of local
and global attention in PRIMERA refer to Figure 4.6.
This model can be used also to perform single-document summarization when the
input document contains several sections. The maximum length of the input text
that the model can handle is 4,096 tokens.
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Figure 4.6: Local and golbal attention used is PRIMERA [27].
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4.3 Approaches for patent’s summarization
Most of the existing datasets for summarization and pre-trained models are related
to the news domain, which has different characteristics from the patents one. In
particular, patents have a richer discourse structure in their summaries, informa-
tive content more evenly distributed in the input text and more abstract summaries.

There are two main approaches used in natural language processing (NLP) for
patent summarization: abstractive and hybrid. Abstractive summarization involves
generating a summary from scratch by understanding the meaning and context of
the input document. This approach is more challenging and requires more advanced
NLP techniques such as deep learning and natural language generation. Hybrid
approaches instead combine extractive and abstractive techniques to generate a
summary that captures both the main ideas and key details of the patent document.
In the context of patent summarization, both hybrid and abstractive techniques
have been explored, with recent works focusing more on abstractive approaches.

4.3.1 SentRewriting
In June 2019, the authors of the well-known patent dataset, BIGPATENT, observed
that existing abstractive summarization models produced lower ROUGE scores
on patents compared to those obtained in the news domain. This was due to
the models excessively repeating irrelevant discourse elements in the generated
summaries.

BIGPATENT contains only two fields: the detailed patent description as input,
and the golden summary section as the target output. Therefore, the only summa-
rization task that could be performed is to elaborate the description to obtain a
text that resembles the summary.

In 2018 the authors of SentRewriting [32] is a research paper that explores a novel
approach to abstractive text summarization using a combination of reinforcement
learning and sentence rewriting. The proposed method focuses on improving
the efficiency and effectiveness of abstractive summarization by selecting and
rewriting the most informative sentences in the source document. This is achieved
through a process of reinforcement learning, where a model is trained to select
and rewrite sentences that maximize a summary quality score. In particular, they
trained a Pointer Network to extract sentences recurrently. For what concers
the reinforcement learning model, at each step t the model is rewarded with the
ROUGE-LF1 score between the generated sentence and the ground truth sentence.
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More formally, given g the abstractor function and djt the extracted sentence by
the Pointer Network at step t, g(djt) is the generated sentence at the considered
step. Given also st the ground truth sentence at step t, the reward at each step
can be computed as:

r(t + 1) = ROUGE-LF1(g(djt), st) (4.2)
A sketch of the main steps performed is reported in Figure 4.7.

Figure 4.7: SentRewriting approach presented in [32].

The results of the study show that this approach outperforms existing methods.
The obtained ROUGE scores are reported in Table 4.1.

Model ROUGE-1 ROUGE-2 ROUGE-L
SentRewriting 37.12 11.87 32.45

Table 4.1: ROUGE scores obtained using SentRewriting on BigPatent, therefore
using the description as input text and the summary as ground truth.

4.3.2 Hierarchical Seq2Seq Sentence Pointer + Transformer
Language Model

In 2020 Subramanian et al. [33] showed the benefits of mixing an extractive ap-
proach with an abstractive one also in the patent domain. In particular, they used
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a Hierarchical Seq2Seq Sentence Pointer to extract the most informative sentences
and then they performed the abstractive step with the Transformer Language
Model presented in [13], conditioned on the extracted sentences. To perform the
abstractive summarization part the authors used a transformer language model
that is trained from scratch on the appropriately formatted data. The language
model they used is GPT-2 [34].

The authors organized the training data in such a way that the selected sen-
tences were concatenated after the input text and then given to the model. In
such a way they were able to model the joint distribution of the document and
summary during training and then sampled from the conditional distribution of
the summary given document at inference time. The authors’ experiments revealed
that utilizing the ground truth extracted sentences during the training phase,
and the model-extracted sentences during the inference phase resulted in better
performance compared to using only the model-extracted sentences throughout the
summarization process.

They also introduced a special token to identify the start of the summary and
used it at inference time as a signal for the model to start generating the summary.

The results obtained applying the model of BigPatent, therefore taking in input
the description trying to generate the abstract are reported in Table 4.2.

Model ROUGE-1 ROUGE-2 ROUGE-L
TLM 36.41 11.38 30.88
TLM + E 38.65 12.31 34.09

Table 4.2: ROUGE scores obtained by Subramanian et al. [33] on BigPatent [7].
TLM stands for Transformer Language Model to be intended without a previous
extraction step. The TLM + E indicates the extractive step is applied before the
summary generation, which is then used to condition the Transformer Language
Model on relevant information.

4.3.3 PEGASUS
In July 2020 the authors of PEGASUS [16], described in Section 2.2.1, tested their
models on the patent summarization downstream task using BIGPATENT. In
particular, they tested three models: PEGASUSBASE, PEGASUSLARGE pretrained
on C4 [29] that contains web-extracted texts and PEGASUSLARGE pretrained on
Hugenews, a dataset the authors collected containing newslike articles. Since
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the dataset used is BigPatent, the summarization task is performed by using the
description as the source of information, trying to generate the summary section.

The obtained scores are reported in Table 4.3.

Model ROUGE-1 ROUGE-2 ROUGE-L
PEGASUSBASE 43.55 20.43 31.80
PEGASUSLARGE (C4) 53.63 33.16 42.25
PEGASUSLARGE (Hugenews) 53.41 32.89 42.07

Table 4.3: ROUGE scores obtained by [16] on BIGPATENT [7] with patent
descriptions as input and summaries as ground truth. The models tested are
PEGASUSBASE, PEGASUSLARGE pretrained on C4, PEGASUSLARGE pretrained
on Hugenews.

As one can notice from Table 4.3 the best scores are achiecieved by PEGASUSLARGE
pretrained on C4.

Another work that makes use of PEGASUS is the one presented with the CMU-
mine dataset, described in Section 3.2.2.
All the aforementioned works are focused on the generation of a patent section that
has to be created by the inventor, the CMUmine dataset [3] instead focuses on the
generation of the first claim, a task that is up to the IP attorney. Typically, the
attorney has to deeply understand the invention disclosure and then formulate the
claims. BIGPATENT cannot be used to address this problem, since it contains only
the description and the summary sections. CMUmine instead, containing sections
such as background, abstract and claims, in addition to detailed description and
summary, not only allows to address the problem but also to study which section
is the most informative one to generate the first claim. The first claim generation
is addressed as an abstractive summarization problem.
In particular, the authors tested two models: PointGenerator [35] and PEGASUS
[16]. They used the training data set to train the model and the validation set and
to finetune the hyperparameters.

The results using PEGASUS, the summary as the source of information and
the first claim as ground truth are reported in Table 4.4.

44



4.3 – Approaches for patent’s summarization

Model ROUGE-1 ROUGE-2 ROUGE-L
PEGASUS 75.97 64.47 70.54

Table 4.4: ROUGE scores obtained by [3] using PEGASUS on the CMUmine
dataset are presented. The input text is the summary section, and the golden truth
is the first claim.

4.3.4 Point Generator

The authors of CMUmine [3] in addition to PEGASUS also tested Point Generator
[35] on their newly introduced dataset.

The fundamental architecture of the Pointer Generator is a sequence-to-sequence
attention model, commonly known as an encoder-decoder model. Point Generator
network is capable of both generating words from a fixed vocabulary and copying
words by pointing to them. The generation probability pgen is computed at each
time step t using the context vector and decoder states, as illustrated in Figure 4.8.
This probability acts as a soft switch that enables the model to choose between
generating a word from the vocabulary distribution Pvocab or copying a word from
the input sequence by sampling from the attention distribution.

Figure 4.8: Point Generator network presented in [35].
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The summarization task performed is to take the summary as input text and
predict the first claim. The ROUGE scores obtained using Point Generator are
reported in Table 4.5.

Model ROUGE-1 ROUGE-2 ROUGE-L
Point Generator 65.51 52.95 59.95

Table 4.5: ROUGE scores obtained by [3] using Point Generator on the CMUmine
dataset are reported. The input model is the summary section, and the golden
summary is the first claim.

4.3.5 T5 small
In 2022, the HUPD dataset was introduced, which differs from previous patent
datasets by containing all sections of the patents, providing the opportunity to
tackle different summarization tasks. In particular, the authors of the dataset
aimed to generate the abstract section from two distinct sections, namely the
description and the claims. To achieve this, they utilized the T5 model, specifically
the small version discussed in Section 4.1.2. The results of the experiments are
presented in Table 4.6.

Input section ROUGE-1 ROUGE-2 ROUGE-L
Descritpion 62.87 47.20 54.36
Claims 69.00 53.82 59.88

Table 4.6: ROUGE scores obtained by [25] using the small version of T5 on
HUPD. Two different inputs are compared, the description and the claims, whereas
the golden truth is the patent abstract.

The results demonstrate how the input section could affect the text summariza-
tion performance.
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4.4 Comparison of summarization results in patent
domain

This section is devoted to the direct comparison of the aforementioned models used
for patent summarization.
According to Table 4.7 best model to generate the summary starting from the
description, using BigPatent, is PEGASUSLARGE pre-trained on C4. For what
concerns the summarization that aims to reconstruct the abstract, using HUPD,
it is possible to notice that, using T5 small, the most informative input section
is the one that contains the claims. Finally, for the task that takes in input the
summary section, trying to predict the first claim, using CMUmine the best model
is PEGASUS.

Model Input → Output ROUGE-1 ROUGE-2 ROUGE-L
SentRewriting Description → Summary 37.12 11.87 32.45
TML Description → Summary 36.41 11.38 30.88
TML + Extraction Description → Summary 38.65 12.31 34.09
PEGASUSBASE Description → Summary 43.55 20.43 31.80
PEGASUSLARGE (C4) Description → Summary 53.63 33.16 42.25
PEGASUSLARGE (Hugenews) Description → Summary 53.41 32.89 42.07

T5 (small) Description → Abstract 62.87 47.20 54.36
Claims → Abstract 69.00 53.82 59.88

PEGASUSLARGE Summary → First Claim 75.97 64.47 70.54
Point Generator Summary → First Claim 65.51 52.95 59.95

Table 4.7: Comparison of the ROUGE scores obtained by the previous works in
patent summarization. The results are divided on the basis of the ground truth
section.

This thesis is focused on the first claim generation, indeed task claim generation
is a highly important part to keep up with the speed of new patent filing. Moreover,
this work makes use of the PEGASUS model since the results shown in Table 4.7
point out that it achieves very good performances on the considered task. For all
the experiments the CMUmine dataset is used.
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Chapter 5

Methodology

The objective of this thesis is to scrutinize and extend the results obtained by the
CMUmine authors [3] (Section 3.2.2). In particular, the study focuses on two main
research questions:

• which patent sections are the most effective for generating the first claim;

• how does the length of the input text impact the performance of the summa-
rization models.

This research could have significant implications for the legal and innovation com-
munities by improving the accuracy and efficiency of automated patent claim
generation.

Seven different input texts are analyzed, including single sections like abstract,
background, description, and summary, as well as combinations of two sections.
The boundaries of each section are highlighted using special tokens to help the
models recognize the semantic content. More details of the input creation are
reported in Section 5.2.
To investigate the impact of context width, two models are compared: PEGASUS
and BigBird-PEGASUS, both based on the transformer architecture but with
different attention mechanisms, that lead to different maximum input length. More
specifically, PEGASUS’s maximum input length is 1,024, whereas the BigBird-
PEGASUS’s one allows input texts up to 4,096 tokens. More details are reported
in Section 5.3.
The experiments are performed on the CMUmine dataset, which contains around
300,000 patents.
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Figure 5.1: Sketch of the main steps of this thesis.
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5.1 Datasets preparation

5.1.1 CMUmine
The CMUmine dataset’s [3] authors made all the data available at the following
Google Drive link: https://drive.google.com/drive/u/0/folders/1J4sAcM_
21G39VuZT1jv6RqLTEM_UngWS (last accessed: January 2023).
It is divided into two main directories, one containing data related to 2005, and
the other to 2006. Each directory is divided into three subfolders, one containing
the training data, one for the data used for evaluation, and the last one for the
data used to test the model.

This data format is not a common form, therefore, to make this thesis modular,
the data of the two years are firstly concatenated and then transformed into a single
Huggingface DatasetDict1. In such a way, dealing with a common data format,
this thesis can be easily adapted to many other datasets provided by Huggingface,
for instance, the HUPD dataset2 [3], doing only a few modifications. The created
DatasetDict has three splits, one for the training, one for the evaluation and the
other for the test. Each entry has seven fields whose names are: patent_number,
abstract, background, summary, detailed_description, firstclaim and claims. See
Section 3.2.2 for more details.

To apply this work to different patent datasets, one has to do the following
things:

• to identify and isolate the first claim if not already present as a separate field;

• to rename the corresponding section to match the exact names used for the
CMUmine dataset;

• if not already present create three splits to train, validate, and test the model.

After a study of the dataset, it has been found that about 34% of documents in
each of the training, validation and test splits are not provided with the description
section. The situation is reported in Figure 3.1. One has decided to maintain
all the documents for two main reasons: the first one is that removing all these
documents can lead to a performance decrease due to a relevant amount of data
loss. The second one is that among the seven different experiments performed, and

1https://huggingface.co/docs/datasets/package_reference/main_classes (last ac-
cessed: January 2023)

2https://huggingface.co/datasets/HUPD/hupd (last accessed: January 2023)
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explained in the following section, only one uses the description section. Therefore,
the lack of a section affects only one out of the seven results obtained for each
tested model. The issue is addressed by using an empty string as the description
of the documents that are not provided with it.
The prepared version of the CMUmine dataset is available at https://politoit-
my.sharepoint.com/:f:/r/personal/s283832_studenti_polito_it/Documents/
CMUmine_datasetdict_complete?csf=1&web=1&e=aih2Of.

5.1.2 HUPD
A second dataset is prepared: HUPD2. This dataset is provided by the Huggingface
dataset hub. Due to its sheer size, the dataset is only prepared and not used due to
the time limits of the computations imposed by the available resources but needed
to perform even a single epoch of the faster model on the whole dataset.

The HUPD dataset has a total of 34 fields, but this thesis is focused only on a
small amount of them. For this reason, and for limiting memory usage, the dataset
is pruned. In particular, the only preserved fields are patent_number, abstract,
background, summary, description and claims. This dataset contains all the claims
of each patent, but since this work is focused only on the first one, it is necessary
to check whether each patent contains the first claim and then isolate it for future
computations. It is done by splitting the claims section on the ’. 2’ string. The
motivations behind this string are that each claim is composed of a single sentence,
therefore, a full stop succeeded by an empty space signals the end of a claim. The
number ’2’ is motivated by the fact that the focus is posed exactly on claim number
’1’, and not the first claim reported in the claims section.
The retrieved first claim is saved in the firstclaim field of the patent entry.

Moreover, to maintain the same code used to process the CMUmine dataset, all
the field names are modified to match their corresponding names in the CMUmine
dataset. For instance, the description field originally present in HUPD, becomes
the detailed-description field, as in CMUmine. During this operation 8.2% of the
total documents have been removed because the claims section is not provided
with claim number one, which has been cancelled. More specifically, in these cases,
the section starts with a string like: ’1.-5. (Cancelled)’. Although these documents
have been removed, the number of remaining documents was still considerable,
indeed more than 4 million documents are preserved.

The dataset was originally divided into two single splits, training and testing.
The training split contains all the patents filed between January 2004 and December
2016, whereas the test set the document filed between January 2017 and December
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2018. This thesis also needs the validation one. It has been created by doing a
random sample from the training set of the same number of documents contained
in the test set.

5.2 Input text creation
During training time the sections are prepared to be fed to the model. In particular,
an argument passed to the model signals which are the sections of interest that it
has to consider.

This thesis makes use of some new special tokens that are able to identify the
boundaries of each considered section. They also allow the model to recognize the
semantic content of each section. The new tokens added to the tokenizer are eight.
Those that are concatenated at the beginning of the section, start with the letter
B, whereas those used to signal the end of the section, start with the letter E.
More specifically the used new special tokens are:

• [B-ABS] and [E-ABS] used to signal the beginning and the end of the abstract
section;

• [B-SUMM] and [E-SUMM] used to identify the boundaries of the summary;

• [B-BACK] and [E-BACK] employed to recognize the start and the end of the
background section;

• [B-DESC] and [E-DESC] utilized to point out where the description starts
and where it ends.

Before the training operation a torch.Dataset class is created to correcly handle
the dataset.
In this class, the target text is set to have a maximum output dimension of 275
tokens. This is done because the 99th percentile of the first claim length is 275
tokens. Refer to Table 3.1 for more details. In that way, the overwhelming majority
of the first claims are fully contained in the maximum output length that the model
is able to generate in output.
For what concerns the input text, its maximum length depends on the models used.
In this work, it varies from 1,024 tokens when using PEGASUS, to 4,096 when the
adopted model is BigBird-PEGASUS.
During training each input text is created in the __getitem__ function. Therefore,
when a document is retrieved, the corresponding input text is created. Each desired
section is concatenated at the beginning and at the end with special tokens related
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to the considered section. After each section is processed in that fashion, all the
desired sections with the corresponding new special tokens are concatenated.
The class receives in input the tokenizer that already contains the new special
tokens used to signal the boundaries of each section. In such a way during the
encoding phase, the tokenizer is able to recognize and correctly codify them.

The tested inputs are seven, all the single sections plus three combinations of
several sections. For all the section’s average and 99th percentile lengths refer to
Table 3.1.
In particular, the four single-section input texts are:

• Abstract: the 99th percentile of its length lies both in the maximum input
length of PEGASUS (1,024) and BigBird-PEGASUS (4,096);

• Summary: its average length lies abundantly in the maximum input length of
both the models, whereas the 99th percentile, with 1,440 tokens, exceeds the
PEGASUS input limit;

• Background: its situation is similar to the one of the summary section,
therefore, its mean length can be easily processed by both the models, whereas
the 99th percentile of about 2660 tokens signals that only BigBird-PEGASUS
will be able not to lose information from many patents;

• Description: its 99th percentile largely exceeds both the maximum input length
with its about 19k tokens. For what concerns the average length exceeds the
PEGASUS limit, but satisfies the BigBird-PEGASUS one.

The three test input combinations made by two different sections are:

• Summary + Abstract;

• Summary + Background;

• Background + Abstract.

The considered input texts are depicted in Figure 5.2.
This work does consider neither combinations of three sections nor combinations
that include the description section due to the excessive length the input will
reach, leading to a certain input truncation, thus, not providing any performance
improvement.
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Figure 5.2: Graphical representation of the input text creation. Each desired
section is firstly concatenated with the correct input tokens, at the beginning and
at the end of the section. If there are multiple sections desired, the newly obtained
strings are concatenated to obtain the correct input text.
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5.3 Used models
The models used in this thesis are PEGASUS [16] and BigBird-PEGASUS [17],
explained in Section 2.2.1 and Section 2.2.2 respectively.

In order to process documents in the patent domain both the models are taken
from the Huggingface hub already pretrained on BigPatent [7]. More specifically,
the PEGASUS model present at link https://huggingface.co/google/pegasus-
big_patent (last accessed: January 2023) is used, whereas the adopted BigBird-
PEGASUS model can be found at https://huggingface.co/google/bigbird-
pegasus-large-bigpatent (last accessed: January 2023). In such a way, the used
models have already dealt with the patent language, which is quite different from
the conventional English language. It contains much more legal terms, specific
language and terms related to a particular art. In particular, they have already
faced the description language as input, therefore, the models have learned the
information on the general language typical of the patent domain. The training
scheme representation is reported in Figure 5.3.

The maximum input length of PEGASUS is set to its maximum, that is 1,024
tokens. The maximum input length of BigBird, instead, is set to 4,096, which is its
maximum triable input length. This difference in the input lengths allows this work
to inspect whether an increase in context length affects the achieved performances
and in which way.

This thesis extensively uses the Transformers API to download and train the
pretrained models.
In particular, the PreTrainedModel class is used to load the pretrained model con-
figurations downloaded from the Huggigface repository. The PreTrainedTokenizer
class implements the commonly used methods to encode the strings that a model
has to process in model inputs and, in this work, is used to load the pretrained
tokenizers provided by the Huggingface library. The new special tokens are added
through the add_special_tokens method, after that, the token embedding matrix
is updated to be able to deal with the new special tokens. This is achieved by
employing the resize_token_embeddings method.
The compute_metrics function used during training is defined in such a way that
ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-Lsum are computed for each gen-
erated first claim against the golden one.
Both the used models exploit the DataCollatorForSeq2Seq. Data collators are
the objects in charge of creating the batches using a list of the elements present
in the dataset. The training arguments are always defined by means of the
Seq2SeqTrainingArguments class, which allows the model to reach a deep level
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. . .

Abstract

Summary

DescriptionBackground

A hook to[B-SUMM] [sent-mask]… [E-SUMM] [B-ABS] …Coats could[sent-mask] [E-ABS]

PEGASUS / BigBird-PEGASUS

It is used …hang . …This support .Masked sentences

Patent

to

Figure 5.3: The strategy used during training is reported in this figure. The
model is fed with the desired input sections. For instance, the sections of interest
in this example are the summary and the abstract. The sections are concatenated
firstly with the corresponding special tokens and then with one another. Then the
GSG masking function typical of PEGASUS [16] is applied. The adopted model is
then trained to predict the masked sentences.

of customization during training. After the training arguments are defined the
Seq2SeqTrainer class is used to perform the training using PyTorch.
When the model is required to be trained for more epochs, the best model to be
preserved is chosen based on the ROUGE-2 score it achieves on the validation set.
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5.4 Input parameters used for training
To perform the desired computations the user has to define some important param-
eters. In addition to the standard parameters such as the batch size, the learning
rate, and the number of epochs, some parameters allow the user to choose some
important settings. The most important parameters to be set are:

• –MODEL_NAME_OR_PATH: this parameter allows the user to define the
model to use. It can be retrieved locally or from the Huggingface library of
pre-trained models. This thesis uses two variants: google/pegasus-big_patent
if the desired model is PEGASUS pretrained on BigPatent, and google/bigbird-
pegasus-large-bigpatent, if the used model is BigBird-PEGASUS, pretrained
on BigPatent;

• –MAX_INPUT_LENGTH: this value sets the maximum input length that
the model has to process. This parameter is passed to the Dataset class that
creates the input data format. See section 5.2 for more details. It has to be
set to 1,024 if the used model is PEGASUS and to 4,096 if the desired model
is BigBird;

• –DATASET_NAME: the current version of the code allows only two possibil-
ities, CMUmine to use the CMUmine dataset prepared as a DatasetDict, as
explained in Section 5.1.1, and HUPD to exploit the prepared version of the
dataset as described in Section 5.1.2;

• –SECTIONS_OF_INTEREST: this parameter allows the definition of the
sections to be given in input to the model. The possible section names are :
abstract, summary, background, detailed_description. If the combination of
multiple sections is desired, it suffices to separate the desired section names
with a single space. In that way, there are no constraints on the number of
sections to be used, thus, if the user wants to use more than two sections it is
possible.
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5.5 At test time
During the test phase, two metrics are computed: ROUGE (Section 6.1.1) and
BERTscore (Section 6.1.2). The first one is used mainly to compare the obtained
performances with the previous works. Given that it endorses the syntactic
similarity rather than the semantic one, also the BERTScore is computed.
Some parameters are added to allow a great level of customization for the user.
In particular, in addition to the same parameters introduced in Section 5.4, some
parameters are used:

• –SAVE_DICTIONARY: when this parameter is used a .txt file containing a
dictionary with all the predictions with the respective ground truth is saved.
This document allows us to perform the predictions using the GPU a single
time, further metrics can be computed exploiting only the CPU, having a time
reduction;

• –PRINT_SAMPLES: it is used to print the predictions with their ground
truths in the log file along with the computed metrics. The idea is to allow
the user to inspect forthwith the quality of the first claim;

• –EVALUATE_ONLY: when this parameter is used the model retrieves the
predictions previously computed and only computes ROUGE and BERTScore.
This is the setting that allows using only the CPU.
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Chapter 6

Results

This section is dedicated to discussing the results obtained using the proposed
methodology. In particular, in Section 6.2 the experimental configurations that
led to the results presented in the successive section are reported. To reduce the
GPU memory usage the gradient checkpointing technique is applied. The general
rule is that this approach slows down the computations by about 20%. To regain
some computational speed, almost without loss in performance, the mixed precision
approach is preferred to the full precision one.

6.1 Metrics
The generated summaries are evaluated through two well-known summarization
metrics: ROUGE (Section 6.1.1) and BERTScore (Section 6.1.2).

6.1.1 ROUGE
The ROUGE score [31] is presented as a set of measures that permits an automatic
assessment of the quality of a computer-generated summary concerning a set of
ideal reference summaries written by humans. This metric counts the number
of n-grams overlapping between the candidate summary and the reference ones.
ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation.

ROUGE-N ROUGE-N is an n-gram recall between the candidate summaries
and the set of ideal ones generated by humans. More specifically, let RS be the set
of reference summaries. The ROUGE-N score is obtained as follows:

ROUGE-N =
q

S∈RS

q
n-gram∈S countmatch(n-gram)q

S∈RS

q
n-gram∈S count(n-gram) (6.1)

61



Results

where countmatch is the number of co-occurring n-grams in the candidate and
reference summary and n is the length of the n-gram. Since at the denominator
there is the sum of all the n-grams of the reference summaries, it is clear there the
ROUGE score is a recall-oriented measure.

ROUGE-L ROUGE-L considers Longest Common Subsequence. More formally,
given 2 sequences X and Y , the longest common subsequence is the common sub-
sequence with the higher length. The idea is that the longer the longest common
subsequence the more similar the candidate and the ideal summary

The ROUGE score is a popular metric in summarization, indeed, a higher
ROUGE means a bigger overlap of n-grams between reference and candidate
summary.
This metric, unfortunately, has some main drawbacks. First of all, it gives the
same importance to all the n-grams, although some terms should be given a
higher relevance, whereas some terms should have a lower importance. In the
second instance, this score does not evaluate the summaries’ fluency and does not
take into account synonyms. This leads to higher ROUGE scores for extractive
summarization, whereas abstractive summarization, which tends to maintain the
same meaning using different words may lead to lower scores even if a human
judgement considers it a good summary.

6.1.2 BERTScore

BERTScore [36] is a metric that allows the automatic evaluation of generated texts.
It measures the similarity of each token in the candidate text with each token in
the reference one leveraging on pre-trained BERT [14] contextual embeddings and
not on exact matches. More specifically, this score measures the similarity of two
sentences as the sum of the cosine similarity of their token embeddings. Using this
technique, the BERTScore is able to successfully match paraphrases and capture
distant dependencies and word order.
Given a reference sentence and a candidate one, the algorithm computes the BERT
contextual embedding of each token, evaluates the pairwise cosine similarity and
sums the values properly weighted by the idf frequency. More formally, the steps
are the following:

1. Given the reference sentence x = ⟨x1, ...xk⟩ and the candidate one x̂ =
⟨x̂1, ...x̂l⟩ compute each token contextualized embedding by means of BERT;

2. Compute pairwise cosine similarity. The usual equation to compute the cosine
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similarity is
xT

i x̂j

∥xi∥ ∥x̂j∥
(6.2)

where xi is a reference sentenc and x̂j. However, the authors decided to use
pre-normalized vectors in order to simplify computations and reduce the cosine
similarity to a mere inner product xT

i x̂j;

3. The equations used to compute the BERTScore are precision (6.4), recall (6.3)
and F1 (6.5). The final score is given by the F1 measure;

RBERT = 1
|x|

Ø
xi∈x

max
x̂j∈x̂

xT
i x̂j (6.3)

PBERT = 1
|x̂|

Ø
x̂j∈x̂

max
xi∈x

xT
i x̂j (6.4)

FBERT = 2PBERT · RBERT

PBERT + RBERT

(6.5)

4. Each token is associated with its idf given that rarer works can be more
indicative of similarity rather than more common ones. This value is used to
adjust the precision and recall scores;

5. Since the author used pre-normalized vectors the scores lays in the range [-1,1]
as the cosine similarity. For ease of readability, the score is rescaled between 0
and 1.
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6.2 Experimental setup

Both the used models are large models that make heavy usage of the GPU memory,
running the risk to run out of memory while working. Indeed, to compute the
gradients during the backward pass usually, all the activations of the forward pass
are saved to be then used to compute the gradients. This can lead to a memory
overload, still implying a shorter training time. A possible solution is to never
save the forward pass activations but recompute them when needed during the
backward pass. This strategy needs much lesser memory but adds a significant
computation load, slowing down training.
This thesis adopts a compromise approach: gradient checkpointing. This approach
saves some intermediate forward activations. The saved nodes of the computational
graph are called checkpoints and can be manually provided or automatically se-
lected. This technique leads to training time and memory usage that is in between
those needed by the two aforementioned approaches.
To enable gradient checkpointing during training time it is only needed to set to
True the gradient_checkpointing flag and pass it to the TrainingArguments.
In this work, it is only necessary to add the –GRADIENT_CHECKPOINTING
parameter in the training script.

The general rule is that using gradient checkpointing slows down training by
about 20%, therefore, to regain some computational speed an additional approach
is applied: mixed precision training. The idea behind this approach is that not
every variable needs to be stored with the 32-bit floating point precision, also called
full precision. The main advantage comes from using the 16-bit floating point
precision, or half-precision, for all the activations during the forward pass and also
during gradients computations at the backward pass. Although the gradients are
computed in half-precision they are converted to full-precision for the optimization
steps. Since the model uses both half (16-bit) precision and full (32-bit) precision,
this training approach is called mixed precision training. This precision reduction
leads to almost no effects on the model performance. To enable the mixed precision
training with both models it is only necessary to set the fp16 flag to True. To do
that in this thesis is only necessary to add the –FP16 parameter in the training
script. During the training of PEGASUS, in the cases in which it receives as input
the abstract or the description the loss suddenly goes to NaN. This problem is solved
by restoring the full precision in these two cases, with a subsequent reduction of
the batch size.

The used optimizer for both the models is the AdamW, which is the Adam opti-
mizer with the weight decay. Adam, which stays for Adaptive Movement estimation,
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is an algorithm that allows the model to perform big learning steps when the gra-
dients do not change much, whereas, when the gradients vary rapidly the learning
steps are small. In the implementation of Adam the regularization term, that is the
weight decay, is added before the batch gradient computation, thus, the gradients
computed keep also track of the regularization factor and not only of the weights
as it should be. The solution comes with AdamW, in this algorithm the weight
decay is performed only after the gradient of the batches is computed. See [37] for
more details.

For what concerns the batch sizes of the models, the first observation to do is
that the batch size of PEGASUS can be much higher than the maximum allowed
by BigBird-PEGASUS. It is due to the different maximum input lengths of the
two models, 1,024 and 4,096, respectively. Therefore, BigBird-PEGASUS allowing
a wider context requires a lower batch size. In particular, PEGASUS allows a
maximum batch size during training of 32, whereas BigBird-PEGASUS is trained
with a batch size of 12, which are the highest allowed to respect the memory limits.
During the evaluation, the allowed maximum batch size is lower. In particular, a
batch size of 10 is used during the PEGASUS evaluation. BigBird-PEGASUS is
instead evaluated with a batch size of 6. During the test both the models use a
batch size of 6.

During training, PEGASUS has a learning rate of 1e-4, whereas BigBird-
PEGASUS of 1e-5. The learning rate of 1e-4 has been tested on BigBird-PEGASUS,
but it turned out to be too high.

During the evaluation, the ROUGE scores are computed. When the model is
trained for more epochs, the best model is chosen based on the highest achieved
ROUGE-2 score.

For the experiments the computational resources are offered by HPC@POLITO
(http://www.hpc.polito.it). More specifically, the experiments are conducted
on an NVidia Tesla V100 with 32 GB of CUDA memory and 5120 CUDA cores.

The implemented code will be available at the following URL:
https://github.com/MorenoSara/Transformers-based-Abstractive-
Summarization-for-the-Generation-of-Patent-Claims

For what concerns the number of epochs, PEGASUS can be trained for a maxi-
mum of 5 epochs, whereas BigBird reaches a maximum of a single epoch. These
constraints are imposed by the HPC@POLITO’s computation time limits of 5 days.
To perform a fair comparison of the two models they are trained for a single epoch.
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The hyperparameter used is reported in Table 6.1.

Hyperparameters PEGASUS BigBird
Learning rate 1e-4 1e-5
Training batch size 32 12
Evaluation batch size 10 6
#epochs 5 1
Max input length 1,024 4,096
Max output length 275 275

Mixed precision (fp16) yes
(except Abstract and Description) yes

Gradient checkpointing yes yes

Table 6.1: Hyperparameters used to train PEGASUS and BigBird
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6.3 Obtained results
This section reports the results obtained by applying the two models each of seven
different text inputs. To perform a fair comparison both models are trained for a
single epoch.

6.3.1 PEGASUS results
The PEGASUS ROUGE score results are shown in Figrue 6.1, whereas the precise
values are reported in Table 6.2

Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Abstract (no fp16) 62.81 47.25 55.38 58.71
Background 34.17 14.96 26.56 30.56
Description (no fp16) 31.9 14.97 25.26 28.57
Summary 73.84 62.11 68.66 70.86
Summary + Abstract 75.49 64.1 70.44 72.58
Summary + Background 74.11 62.38 68.92 71.13
Background + Abstract 56.57 40.24 49.06 52.53

Table 6.2: ROUGE scores obtained with PEGASUS, trained for a single epoch,
with all the tested inputs. The highest ROUGE-1, ROUGE-2, ROUGE-L and
ROUGE-Lsum scores are achieved by the summary and abstract input combination.

As Figure 6.1 the model that receives in input the combination of summary and
abstract sections reaches the best scores in each ROUGE metric.
In general, the single section that allows one to reach the best scores is the summary,
followed by the abstract.
Instead, for what concerns the input made of two sections, the best scores, as
previously said, are achieved by the summary and abstract combination, followed
by scores slightly lower by the summary and background combination.
As it is possible to notice, every time the summary is contained, both as a single
section and in a combination, the ROUGE scores are higher than those obtained
with the other sections. The only combination that produces a valuable increase in
the performance compared to the one of the only summary section is the combina-
tion that considers also the abstract, the second single section for performance.

It is interesting to highlight that although ROUGE favours the syntactic simi-
larities to the semantic ones, as explained in Section 6.1.1, the achieved ROUGE
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(a) Global view

(b) Detailed view

Figure 6.1: Graphical representation of the ROUGE scores reported in Table
6.2, achieved with PEGASUS. The highest performances for all the metrics are
achieved by the combination of summary and abstract, followed by the combination
of summary and background, followed, in turn, by the summary section and then
by the abstract one. It is possible to notice that the background, the description
and the combination of background and abstract lead to lower scores.

scores are significantly high, especially considering that the task performed is an
abstractive summarization one. Indeed, for instance, the 75.49 ROUGE-1 score
obtained with summary plus abstract is a remarkable value.

For what concerns the BERTScore, the results are shown in Figure 6.2. Since
the range in which the values lie is limited, between about 82% and 93%, the
performance differences are not highly visible in Figure 6.2a. For this reason, Figure
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6.2b reports a detailed view that allows one to inspect the relative position of each
input section. To better interpret the figures the detailed scores are reported in
Table 6.3. The same trend described for the ROUGE scores is valid also for the
BERTScore ones. According to both BERTScore precision, recall and F1, the best
input is the combination of summary and abstract, followed by the combination of
summary and background. They are, in turn, followed by the summary section
and then by the abstract.

Model input BERTScore P BERTScore R BERTScore F1
Abstract (no fp16) 91.34 88.72 89.99
Background 84.58 83.5 83.99
Description (no fp16) 82.92 83.31 83.06
Summary 93.23 91.09 92.13
Summary + Abstract 93.61 91.39 92.47
Summary + Background 93.28 91.14 92.18
Background + Abstract 89.76 87.59 88.63

Table 6.3: BERTScore precision, recall and F1 results obtained using PEGASUS
trained for a single epoch. Here are reported the scores obtained with each input
tested. The best scores are achieved by the summary and abstract combination.

6.3.2 BigBird-PEGASUS results
In this section the results obtained by BigBird after a single training epoch are
reported.

Figure 6.3 depicts the rouge scores reported in Table 6.4. As it is possible to
see, the three inputs that lead to the highest scores are first the combination of
summary and abstract, then, almost with the same score, the summary section and
the combination of summary and background. As for PEGASUS, the highest scores
are achieved every time the summary is given to the model, both as a single section
and in combination with another section. In addition, one can notice that the
abstract and the combination of abstract and background reach almost the same
performance, differently from what happens with PEGASUS. This is probably due
to the low performances obtained by BigBird with the background input, which
therefore contains little important information for the claim generation. In general,
the performances obtained with the description and the background are the lowest.
Another difference with the PEGASUS ROUGE scores is that with BigBird the
performance improvement between the only summary and the combination of
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(a) Global view

(b) Detailed view

Figure 6.2: Graphical representation of the BERTScore scores reported in Table
6.3, achieved with PEGASUS. The performance difference is not highly visible in
Figure (a) due to the limited range in which the scores lie, i.e. between about 82%
and 93%. For this reason, a detailed view that allows one to better inspect the
relative scores of the different inputs is depicted in Figure (b). The best scores are
obtained with the combination of summary and abstract, then with the combination
of summary and background, which is in turn followed by the summary section
and then by the abstract one. Background, description and the combination of
background and abstract lead to lower scores.

summary and background is really small.

Also using BigBird the highest ROUGE scores are remarkable, especially for an
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abstractive summarization task. Indeed, the 76.13 ROUGE-1 score obtained with
summary plus abstract is a high value.

(a) Global view

(b) Detailed view

Figure 6.3: Graphical representation of the ROUGE scores achieved by BigBird
and reported in Table 6.4. The highest performances obtained for all the ROUGE-1,
ROUGE-2 and ROUGE-L scores are reached by the summary and abstract combi-
nation, at the second place there is the combination of summary and background,
followed by the summary section. Then, with lower values, there are the abstract
and the summary that reaches almost the same score. The least informative input
sections are the background and the description.

For what concerns, the BERTScore results achieved using BigBird are shown in
Figure 6.4. Also in this case, the detailed values are presented in Table 6.5. As it is
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Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Abstract 63.23 47.83 55.8 59.13
Background 34.85 15.4 27.04 31.15
Description 33.34 16.48 26.51 29.91
Summary 74.4 62.93 69.24 71.46
Summary + Abstract 76.13 64.95 71.06 73.22
Summary + Background 74.5 62.97 69.26 71.51
Background + Abstract 63.56 48.19 56.15 59.44

Table 6.4: BigBird ROUGE scores obtained after a single training epoch for each
input tested. The best scores are reached by the summary and abstract input
combination.

possible to notice, the same trend identified for the ROUGE score is present also for
the BERTScore values. The best input is the combination of summary and abstract,
followed by a summary and a combination of summary and background, which
have almost the same scores. They are followed in turn by the abstract section
and the background and abstract combination, with almost the same score. The
results highlighy that the least informative sections analyzed are the background
and the description.

Model input BERTScore P BERTScore R BERTScore F1
Abstract 91.43 88.83 90.08
Background 84.92 83.6 84.21
Description 83.06 83.44 83.2
Summary 93.36 91.21 92.26
Summary + Abstract 93.71 91.56 92.6
Summary + Background 93.33 91.25 92.26
Background + Abstract 91.44 88.91 90.14

Table 6.5: BigBird-PEGASUS BERTScore results obtained after one training
epoch for all the input tested. The best input is a combination of summary and
abstract.
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(a) Global view

(b) Detailed view

Figure 6.4: Graphical representation of the BERTScore values achieved by
BigBird and reported in Table 6.5. Figure (a) reports the global situation of the
scores, whereas Figure (b) allows better inspect the relative position of each input
text. The best input is the summary and abstract combination, followed almost
equally by the summary single section input and the combination of summary and
background. They are in turn followed equally by the abstract input and by the
background and abstract combination. The least informative input sections turned
out to be the background and the description.
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6.4 Training times
This section is dedicated to comparing the training times necessary to train PE-
GASUS and BigBird for a single epoch, with BigBird being trained with the
half-precision approach for each input section, while PEGASUS requires full preci-
sion when fed with the abstract or description.

As shown in Table 6.6, the results indicate that PEGASUS requires significantly
less time than BigBird, about one-third of the time.

Additionally, the reported times demonstrate the efficacy of the mixed preci-
sion approach in accelerating the processing time. PEGASUS trained with the
abstract and description sections necessitates the full precision approach. This led
to a significant increase in the training time, exceeding 10 hours, and results in
approximately 30 hours for each epoch, as opposed to the average of 20 hours for
other sections.

Model input PEGASUS BigBird
Abstract 30:04:27 (fp) 67:30:30
Background 21:49:09 70:21:48
Description 32:20:29 (fp) 71:08:44
Summary 18:57:15 68:15:08
Summary + Abstract 18:45:39 77:54:11
Summary + Background 26:16:56 70:28:57
Background + Abstract 19:27:28 67:13:13

Table 6.6: This table reports the training times necessary for training PEGASUS
and BigBird for a single epoch. All the models are trained with the half-precision
approach, except for the abstract and the description when using PEGASUS. These
cases are denoted with (fp), which stands for full precision.
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6.5 Direct comparison of the two models
This section is dedicated to a direct comparison of the two models.
The following figures report only the ROUGE-1 score and the BERTScore-F1 since
the trend that can be identified is the same for all the other metrics.
Figure 6.5 shows the comparison of the ROUGE-1 scores obtained with PEGASUS
(blue) and BigBird (orange).

As it is possible to notice the performance obtained with each input section is
improved when using BigBird. In particular, the highest improvement is achieved
for the combination of the background and abstract sections. This same trend
appears also in the BERTScore-F1 as presented in Figure 6.6.
The motivation could be that the 99th percentile of the number of tokens in the
background section is about 2600 tokens, as reported in Table 3.1. This means
that using PEGASUS, which handles texts of 1,024 tokens at maximum, many
background sections are truncated. Therefore, concatenating the abstract section
to it leads to longer input texts, again truncated. The consequence of it is that
PEGASUS performances of the background and summary combination are somehow
in between the scores obtained with only the background and only the abstract.
BigBird instead, with the capability of handling input text up to 4,096 tokens, can
deal with both the background and the combination of background and abstract.
This fact leads to obtain scores with the background and abstract combination
that are very similar to those obtained with the only abstract in input.

Probably, the summary and background combination is not affected by the same
problem since the summary, which leads to the highest scores, is the first part of
the input section, then followed by the background. Indeed, the performance is
only slightly better than those obtained with the only summary section in the input.

Another important point to highlight is the training time of the two models
since they are really different. Indeed, PEGAUS for a single training epoch with
respective evaluation epoch on the CMUmine dataset (Section 3.2.2) needs about
22 hours. BigBird instead needs much more time. More specifically, for a single
training epoch with a respective evaluation epoch, always with the CMUmine
dataset, it needs about 3 days. Since the time limit offered by the computational
resources is of 5 days BigBird cannot be trained for more than one epoch. Therefore,
to be consistent and do a fair comparison, its results are compared to PRGASUS
trained with a single epoch too.
In light of this, if the amount of data is remarkable and the time factor is an
important key, PEGASUS could be the better option. It leads to performances
only slightly lower than those obtained with BigBird but it implies almost 1/3 of
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the training time.

Figure 6.5: This figure reports the performance improvement obtained using
BigBird as compared to PEGASUS. Using each input text the performance is
always improved, in particular in the case of the combination of background and
summary. Since all ROUGE-1, ROUGE-2 and ROUGE-L show the same trend
only one of them is reported, in this case, ROUGE-1.

Figure 6.6: This figure shows the performance variations of the BERTScore-F1
results using PEGASUS or BigBird. For all the input texts BigBird always improves
the performance. The highest improvement is obtained for the background and
abstract combination. Since both precision, recall and F1 present the same trend,
only the F1 measure is reported.
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6.6 Qualitative analysis with a textual example
This section presents a random, non-cherry-picked textual example to allow a
qualitative evaluation of the model performance. For ease of interpretation, the
differences with the ground truth are highlighted in bold. The results are ordered
starting from the one with the highest score, summary plus abstract, to the one
with the lowest score, description.

6.6.1 PEGASUS
In this section, a first claim generated with PEGASUS is reported. It is presented
for the input texts analysed. At first, the texts are presented, and then some
qualitative analyses are explained.

Ground truth "1. A bicycle wheel driving device comprising: hub axle; hub shell
rotatably arranged around the hub axle, has a hub flange on an outside circumference
thereof, and has a housing space inside; and a motor disposed inside the hub shell
and configured to rotate the hub shell with respect to the hub axle; and roller brake
device at least partially arranged within the hub shell and extending outside of the
hub shell."

Summary + Abstract "1. A bicycle wheel driving device comprising: a hub
axle; a hub shell arranged around the outside of the hub axle, having a hub
flange on an outside circumference thereof, and having a housing space inside; a
motor drive unit housed inside the housing space and configured to rotate the
hub shell with respect to the hub axle; and a roller brake device arranged within
the hub shell to the outside of the housing space."

Summary + Background "1. A bicycle wheel driving device comprising: a
hub axle; a hub shell arranged around the outside of the hub axle, having a hub
flange on an outside circumference thereof, and having a housing space inside; a
motor drive unit housed inside the textbfhousing space and configured to rotate
the hub shell with respect to the hub axle; and a roller brake device arranged
within the hub shell to the outside of the housing space."

Summary "1. A bicycle wheel driving device comprising: a hub axle; a hub shell
arranged around the outside of the hub axle, having a hub flange on an outside
circumference thereof, and having a housing space inside; a motor drive unit
housed inside the textbfhousing space and configured to rotate the hub shell with
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respect to the hub axle; and a roller brake device arranged within the hub shell
to the outside of the housing space."

Abstract "1. A motor-equipped hub comprising: a hub axle; a hub axle; a
hub shell arranged around the outside of the hub axle, the hub shell having a
hub flange on an outside circumference thereof, and having a housing space on
the inside thereof; a motor drive unit housed inside the housing space and
configured to rotate the hub shell with respect to the hub axle; and a roller brake
device arranged within the hub shell to the outside of the housing space."

Background + Abstract "1. A motor-equipped hub comprising: a hub axle;
a hub axle; a hub shell arranged around the outside of the hub axle, the hub
shell having a hub flange on an outside circumference thereof, and having a
housing space on the inside thereof; a motor drive unit housed inside the
housing space and configured to rotate the hub shell with respect to the hub axle;
and a roller brake device arranged within the hub shell to the outside of the
housing space."

Background "1. A wheel driving device configured to drive a wheel of
a bicycle using an electric motor, the wheel driving device comprising: a hub
having a hub axle and a hub shell that covers the hub axle; a stationary
casing fixed to the hub axle; a brake drum fixed to a cylindrical part
formed so as to protrude from a bearing supported portion of the hub
shell; and a plurality of brake shoes provided on the stationary casing."

Description 1. "A method of manufacturing a semiconductor device,
comprising the steps of: (a) providing a semiconductor substrate; (b)
forming a first insulating layer on the semiconductor substrate; (c)
forming a first conductive layer on the first insulating layer; (d) form-
ing a second insulating layer on the first conductive layer; (e) forming
a second conductive layer on the second insulating layer; (f) forming
a third insulating layer on the second conductive layer; (g) forming
a third conductive layer on the third insulating layer; (h) forming a
fourth insulating layer on the third conductive layer; (i) forming a
fourth conductive layer on the fourth insulating layer; (j) forming a
fifth conductive layer on the fourth conductive layer; (k) forming a
fifth conductive layer on the fifth conductive layer; (l) forming a sixth
conductive layer on the fifth conductive layer; (m) forming a sixth
conductive layer on the sixth conductive layer; (n) forming a seventh
conductive layer on the seventh conductive layer; (p) forming a seventh
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conductive layer on the seventh conductive layer; (d) forming a eighth
conductive layer on the eighth conductive layer; (e) forming a ninth
conductive layer on the ninth conductive layer; (f) forming a tenth
conductive layer on the tenth conductive layer; (g) forming a eleventh
conductive layer on the eleventh conductive layer;"

The first claims generated by PEGASUS receiving in input summary, summary
and abstract or summary and background are the same, they show only a few
syntactic differences with the ground truth.

For what concerns the first claims obtained giving to the model the abstract
section or the background and abstract combination are equal to each other but
present a little bit more syntactic differences with the ground, still preserving the
same meaning.

For what concerns the text obtained with the background, it has strong syntactic
differences from the reference text but the text is still pertinent to the patent.

Differently from all the other cases, the description input text leads to repetitive
wording without an exact meaning, stuck in the same cycle of words, almost
reaching the maximum number of output tokens, which is 275.

6.6.2 BigBird
In this section, the same first claim presented in the previous section is analyzed.
The generated claims are ordered based on their respective input text scores. Again,
in the first part, the first claims are reported, and in the second part, a brief
qualitative analysis is reported.

Ground truth "1. A bicycle wheel driving device comprising: hub axle; hub shell
rotatably arranged around the hub axle, has a hub flange on an outside circumference
thereof, and has a housing space inside; and motor disposed inside the hub shell
and configured to rotate the hub shell with respect to the hub axle; and roller brake
device at least partially arranged within the hub shell and extending outside of the
hub shell."

Summary + Abstract "1. A bicycle wheel driving device comprising: a hub
axle; a hub shell arranged around the outside of the hub axle, having a hub
flange on an outside circumference thereof, and having a housing space inside; a
motor drive unit housed inside the housing space and configured to rotate the
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hub shell with respect to the hub axle; and a roller brake device arranged within
the hub shell to the outside of the housing space."

Summary + Background "1. A bicycle wheel driving device comprising: a
hub axle; a hub shell arranged around the outside of the hub axle, having a hub
flange on an outside circumference thereof, and having a housing space inside; a
motor drive unit housed inside the textbfhousing space and configured to rotate
the hub shell with respect to the hub axle; and a roller brake device arranged
within the hub shell to the outside of the housing space."

Summary "1. A bicycle wheel driving device comprising: a hub axle; a hub shell
arranged around the outside of the hub axle, having a hub flange on an outside
circumference thereof, and having a housing space inside; a motor drive unit
housed inside the textbfhousing space and configured to rotate the hub shell with
respect to the hub axle; and a roller brake device arranged within the hub shell
to the outside of the housing space."

Background + Abstract "1. A motor-equipped hub comprising: a hub axle;
a hub axle; a hub shell arranged around the outside of the hub axle, the hub
shell having a hub flange on an outside circumference thereof, and having a
housing space on the inside thereof; a motor drive unit housed inside the
housing space and configured to rotate the hub shell with respect to the hub axle;
and a roller brake device arranged within the hub shell to the outside of the
housing space."

Abstract "1. A motor-equipped hub comprising: a hub axle; a hub axle; a
hub shell arranged around the outside of the hub axle, the hub shell having a
hub flange on an outside circumference thereof, and having a housing space on
the inside thereof; a motor drive unit housed inside the housing space and
configured to rotate the hub shell with respect to the hub axle; and a roller brake
device arranged within the hub shell to the outside of the housing space."

Background "1. A bicycle wheel driving device comprising: a hub having a hub
axle and a hub shell that covers the hub axle; an electric motor mounted on
the hub shell; and an internal expanding drum brake device mounted
on the hub shell, wherein the internal expanding drum brake device
comprises: a brake drum that is fixed to the hub shell; a brake shoe
that is fixed to the brake drum; and a rocking brake shoe that is fixed
to the brake drum, wherein the rocking brake shoe is configured such
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that a portion of the rocking brake shoe contacts the brake drum when
the internal expanding drum brake device is operated"

Description "1. A method of manufacturing a semiconductor device,
comprising the steps of: providing a semiconductor substrate; forming
a first electrode on the semiconductor substrate; forming a second elec-
trode on the first electrode; forming a first insulating film on the second
electrode; forming a second insulating film on the first insulating film;
forming a third insulating film on the second insulating film; forming
a fourth insulating film on the third insulating film; forming a fifth
insulating film on the third insulating film; forming a sixth insulating
film on the fourth insulating film; forming a seventh insulating film
on the fifth insulating film; forming a eighth insulating film on the
seventh insulating film; forming a ninth insulating film on the eighth
insulating film; forming a tenth insulating film on the eighth insulating
film; forming a eleventh insulating film on the ninth insulating film;
forming a twelfth insulating film on the tenth insulating film; forming
a eleventh insulating film on the twelfth insulating film; forming a
twelfth insulating film on the eleventh insulating film; forming a twelfth
insulating film on the twelfth insulating film; forming a thirteenth insu-
lating film on the twelfth insulating film; forming a twelfth insulating
film on the twelfth insulating film; forming a thirteenth insulating film
on the twelfth insulating film; forming a twelfth insulating film on the
twelfth insulating film."

The first claim generated using BigBird and feeding it with the summary, the
combination of summary and abstract or the combination of summary and back-
ground leads to the same output text. Additionally, the generated texts are also
equal to those generated using PEGASUS with the same input texts.

For what concers the texts generated giving to the model the combination of
background and abstract or the only abstract, they are equal to each other. Also
in this case the generated texts are the same generated using PEGASUS with the
same inputs.

The text produced by feeding the model with the background leads to a poor
prediction. The initial part is promising, but the text worsens going on, producing
repetitive content.

The description section leads to the worst text generation. As in PEGASUS, it
got stuck in the same cycle of words, repeating irrelevant and wrong information.
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6.7 PEGASUS 5 epochs

The PEGASUS results presented so far are obtained after a single training epoch.
This is done to be consistent and do a fair comparison between PEGASUS and
BigBird.
Since the computational resources allow one to run jobs for a maximum of 5 days,
this thesis also explores the results obtained training PEGASUS for 5 epochs.

The detailed ROUGE scores are reported in Table 6.7, whereas the BERTScore
values are presented in Table 6.8.

Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Abstract (no fp16) 63.42 47.93 56.01 59.29
Background 38.76 17.08 29.5 34.43
Description (no fp16) 31.95 15.3 25.36 28.59
Summary 71.81 60.27 66.5 68.64
Summary + Abstract 76.7 65.64 71.73 73.82
Summary + Background 75.22 63.8 70.04 72.24
Background + Abstract 57.62 40.74 49.69 53.34

Table 6.7: PEGASUS ROUGE scores obtained after 5 training epochs. Also
in this case the input text leading to the best-generated text is made by the
combination of summary and abstract.

Model input BERTScore P BERTScore R BERTScore F1
Abstract (no fp16) 91.47 88.86 90.12
Background 86.42 83.89 85.11
Description (no fp16) 82.72 83.19 82.9
Summary 93.42 90.52 91.93
Summary + Abstract 93.81 91.67 92.71
Summary + Background 93.47 91.4 92.4
Background + Abstract 90.46 87.61 88.99

Table 6.8: PEGASUS BERTScore results achieved after training the model for 5
epochs. Again, the best input text is the combination of summary and abstract.
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6.7.1 PEGASUS 1 epoch vs 5 epochs

Figure 6.7 shows the performances of PEGASUS after 1 and 5 training epochs.
Generally, the model trained for 5 epochs slightly improves the performances ob-
tained after a single training epoch. This is true except for the case in which the
input text is the summary. In this case, indeed, a single training epoch leads to
better results. Moreover, the highest performance increment depicted is obtained
for the background and the lowest for the description.

Figure 6.8 depicts the performance variations obtained with the two different
numbers of training epochs. Generally, the 5 training epochs are beneficial and
the performance increment is of about a bit more of a point for each input text.
There is a higher improvement for the background input text. The only upstream
input section is the description, for this input text a single training epoch leads to
slightly better results.

In general, training the PEGASUS model for 5 epochs leads to some improve-
ment, especially for the semantic similarities with the ground truth. It is also right
and proper to highlight the fact that raising the number of training epochs does
not lead to certain improvements.

Figure 6.7: This plot depicts the ROUGE-1 performance variations due to the
rise of the number of training epochs from 1 to 5 using PEGASUS. The highest
improvement is obtained with the background, the lowest with the description, and
a worsening with the summary.
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Figure 6.8: This plot shows the BERTScore F1 variation obtained training
PEGASUS for 5 epochs against a single epoch. The highest improvement is obtained
with the background. Instead, the performance worsens with the description input
text.

6.7.2 PEGASUS 5 epochs vs BigBird 1 epoch
This section compares also the performances obtained after 5 training epochs with
PEGASUS and one epoch with BigBird. This is done because they are the maxi-
mum number of epochs for which each model can be trained, according to the time
limitations, and they require training times that are roughly similar. Therefore, it
is appropriate to highlight that it is not a fair comparison.

Figure 6.9 displays the ROUGE-1 performances of the two models. One can
notice that there is not an evident trend. More specifically, for what concerns the
background section, summary section and background combined with the abstract,
BigBird brings higher performances. On the opposite, the remaining four input
sections achieve a higher ROUGE-1 with PEGASUS after 5 training epochs.

Figure 6.10 shows the BERTScore improvements obtained using PEGASUS
after 5 training epochs against BigBird after one training epoch. The general trend
is that PEGASUS improves the performances using all input texts, except for what
concerns the description, with which BigBird performs better.

As a general consideration, one can notice that the more PEGASUS is trained,
the more it privileges the semantic similarities. For this reason, considering that
the claim generation task can be seen as an abstractive summarization task and
considering that the time needed is the same used for training BigBird for a single
epoch, using PEGASUS trained for 5 epochs could be the best option.

84



6.7 – PEGASUS 5 epochs

Figure 6.9: This plot depicts the ROUGE-1 performance variations obtained
using PEGASUS trained for 5 epochs and those obtained with BigBird trained for
a single epoch. In three out of seven cases, that are background, summary and
background combined with abstract, BigBird perform better. In the remaining
four cases the best model is PEGASUS.

Figure 6.10: This figure displays the BERTScore-F1 improvements obtained after
training PEGASUS for 5 epochs against BigBird trained for a single epoch. With
all the input texts PEGASUS reaches higher scores, the only section that does not
align with this trend is the description.
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6.8 PRIMERA results
A last series of experiments had been carried out to determine whether performance
discrepancies may be caused by a model that deals with lengthy documents but
has a different architecture from PEGASUS and quantify those variations.
One has chosen to employ PRIMERA for two primary reasons: it can handle
lengthy documents with up to 4,096 tokens and it uses global attention on the new
special tokens. Indeed, PRIMERA is a task-specific pre-trained model, thought
of as a multi-document summarization model that uses special tokens to separate
the different documents. In this thesis, this model is extended and used for the
summarization of single texts with several sections..
Unfortunately, there is no PRIMERA model that has been pre-trained on the
patent domain. Due to this, two versions are evaluated and compared.

The first one, allenai/PRIMERA, is the version of PRIMERA with the only
pre-training; it lacks fine-tuning. The URL for this model is https://huggingface.
co/allenai/PRIMERA (last accessed: March 2023).

The second model used has been fine-tuned on the Multi-LexSum dataset, it
is the allenai/primera-multi_lexsum-source-long model and is available at
https://huggingface.co/allenai/primera-multi_lexsum-source-long (last
accessed: March 2023).
Multi-LexSum is a multi-document summarizing dataset comprising summaries at
three different granularities: long, short and tiny summaries. It contains documents
about civil rights litigation cases [38].
As this dataset contains many legal terminologies, one picked the PRIMERA
version that had been fine-tuned on it because of its resemblance to the patent
domain. Nonetheless, it is right and proper to point out that the performances
can be significantly impacted by the choice of fine-tuning domain. However, it
is the domain with the closest fine-tuning domain among those provided by the
HuggingFace hub.
Additionally, the PRIMERA version selected has been optimized for summarizing
the whole source documents and producing long summaries [39].
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6.8.1 Experimental setup
Unfortunately, a trained PRIMERA version is not available in the patent domain.
This resulted in a remarkable decline in performance, as can be seen from Table
6.10 and Table 6.11. This demonstrates the genuine value of the pre-training stage.
The reported results were obtained using mixed precision, a maximum input length
of 4,096, a batch size of 16, and a learning rate of 1e-4.

Two additional experiments have been conducted to rule out the possibility
that the performance decline is related to the learning rate setting or the mixed
precision. First, all settings are fixed, with the exception of the learning rate, which
is 1e-5. This is done in order to determine whether the 1e-4 learning rate is too
high for RPIMERA. It turned out that reducing the learning rate resulted in even
more performance decline.
The full precision has then been tested while maintaining the same hyperparameters,
including a learning rate of 1e-4. This setting significantly increased the training
time but still led to a meaningless performance increase.
The mixed precision and learning rate of 1e-4 have been used for all subsequent
experiments.
The complete set of results obtained on the validation set during the hyperparame-
ters analysis is shown in Table 6.9.

Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Summary + Abstract (1e-4) 22.84 18.05 21.88 22.48
Summary + Abstract (no fp16) 22.89 18.14 21.94 22.53
Summary + Abstract (1e-5) 19.78 15.49 19.04 19.48

Table 6.9: Comparison of PRIMERA performance based on several hyperparame-
ters. The results are computed using the combination of the summary and abstract
as input text on the validation set. The 1e-4 and 1e-5 learning rates are compared.
It is clear to see that 1e-4 produced the best outcomes. Also, the full precision
has been examined. Despite the impressive rise in training time, the performance
improvement may be regarded as negligible.
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6.8.2 PRIMERA ROUGE and BERTScore results
This section reports the ROUGE and BERTScore values obtained on the test set,
after a single training epoch.
As it is possible to see from Table 6.10, the best ROUGE results are achieved
using as input text the combination of summary and abstract. Followed by the
combination of summary and background and then by the summary section. Every
time the summary is included in the input text, the results are the highest, this
highlights the high informativeness of the summary section.
Table 6.11 shows the BERScore results. Also for these values, the same trend can
be identified.

Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Abstract 58.75 39.93 49.94 56.0
Background 22.54 3.69 17.89 21.21
Description 22.74 3.44 18.27 20.88
Summary 65.08 49.24 58.43 62.83
Summary + Abstract 69.7 53.8 63.12 67.54
Summary + Background 68.36 52.1 61.59 66.16
Background + Abstract 57.55 38.7 48.59 54.76

Table 6.10: PRIMERA ROUGE results achieved after training the model for 1
epoch. The best input text is the combination of summary and abstract.

Model input BERTScore P BERTScore R BERTScore F1
Abstract 90.89 89.93 90.38
Background 84.23 81.87 83.02
Description 84.19 81.59 82.86
Summary 91.75 91.16 91.43
Summary + Abstract 92.87 92.4 92.62
Summary + Background 92.59 92.12 92.33
Background + Abstract 90.15 89.54 89.81

Table 6.11: PRIMERA BERTScore results achieved after training the model for
1 epoch. The best input text is the combination of summary and abstract.
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(a) Global view

(b) Detailed view

Figure 6.11: Graphical representation of the ROUGE scores achieved by
PRIMERA and reported in Table 6.10. The highest performances obtained for all
the ROUGE-1, ROUGE-2 and ROUGE-L scores are reached by the summary and
abstract combination, at the second place there is the combination of summary
and background, followed by the summary section. The least informative input
sections are the background and the description.
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(a) Global view

(b) Detailed view

Figure 6.12: Graphical representation of the BERTScore values achieved by
PRIMERA and reported in Table 6.11. Figure (a) reports the global situation of
the scores, whereas Figure (b) allows us to better inspect the relative position of
each input text. The best input is the summary and abstract combination, followed
by a combination of summary and background and then by the summary single
section input. The least informative input sections turned out to be the background
and the description.
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6.8.3 PRIMERA-multi-lexsum ROUGE and BERTScore
results

This section presents ROUGE and BERTScore results obtained using PRIMERA
pre-trained on Multi-LexSum after a single training epoch on CMUmine.
Also using this model the best results are achieved by giving in input to the model
the summary and abstract combination, as it is reported in Table 6.12 and 6.13.
This input text is followed, in terms of performance, almost equally, by the summary
plus abstract and only summary inputs. Again, each time that the summary is
present in the input the performances are the highest achieved.
Using this model, differently from all the other models, the least informative section
is the combination of background and abstract.
During the training, it turned out that the loss obtained with the background input
text with the learning of 1e-4 explodes to NaN. For this reason, the learning rate
had been decreased to 1e-5.

Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Abstract 53.44 34.64 43.21 50.66
Background (1e-5) 38.06 14.79 26.07 34.88
Description 36.76 14.79 25.89 33.84
Summary 63.51 46.77 54.9 61.16
Summary + Abstract 64.87 48.62 56.6 62.59
Summary + Background 63.8 47.1 55.29 61.47
Background + Abstract 25.79 3.84 17.74 23.73

Table 6.12: PRIMERA-multi-lexsum ROUGE results achieved after training
the model for 1 epoch. The best input text is the combination of summary and
abstract.
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(a) Global view

(b) Detailed view

Figure 6.13: Graphical representation of the ROUGE scores achieved by
PRIMERA-multi-lexsum and reported in Table 6.12. The highest performances
are reached by the summary and abstract combination, followed almost equally
by the combination of summary and background and the summary section. The
least informative input section turned out to be the combination of background
and abstract.
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Model input BERTScore P BERTScore R BERTScore F1
Abstract 86.14 89.67 87.77
Background (1e-5) 84.76 85.75 85.23
Description 84.26 85.25 84.73
Summary 89.94 92.07 90.96
Summary + Abstract 90.17 92.4 91.24
Summary + Background 90.09 92.09 91.05
Background + Abstract 81.79 82.07 81.92

Table 6.13: PRIMERA-multi-lexsum BERTScore results achieved after training
the model for 1 epoch.
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(a) Global view

(b) Detailed view

Figure 6.14: Graphical representation of the BERTScore values achieved by
PRIMERA-multi-lexsum and reported in Table 6.13. Figure (a) reports the
global situation of the scores, whereas Figure (b) allows us to better inspect the
relative position of each input text. The best input is the summary and abstract
combination, followed equally by the combination of summary and background and
by the summary single section input. The least informative input section turned
out to be the background and abstract combination.
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6.8.4 PRIMERA vs PRIMERA Multi-LexSum
As it is possible to notice from Figure 6.15 there is not a clear trend between the
performances of the two models. The biggest performance improvement can be
identified when using the background combined with the abstract as input text
and PRIMERA without finetuning. Indeed, PRIMERA-multi-lexsum achieves
remarkably low scores when dealing with background plus abstract. In general,
PRIMERA exceeds the scores of PRIMERA-multi-lexsum with many input texts,
the only exceptions are the background and the description. For these two input
texts, the performance is significantly improved by the finetuning operation.

Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Multi-LexSum PRIMERA Multi-LexSum PRIMERA Multi-LexSum PRIMERA Multi-LexSum PRIMERA

Abstract 53.44 58.75 34.64 39.93 43.21 49.94 50.66 56.0
Background 38.06 22.54 14.79 3.69 26.07 17.89 34.88 21.21
Description 36.76 22.74 14.79 3.44 25.89 18.27 33.84 20.88
Summary 63.51 65.08 46.77 49.24 54.9 58.43 61.16 62.83
Summary + Abstract 64.87 69.7 48.62 53.8 56.6 63.12 62.59 67.54
Summary + Background 63.8 68.36 47.1 52.1 55.29 61.59 61.47 66.16
Background + Abstract 25.79 57.55 3.84 38.7 17.74 48.59 23.73 54.76

Table 6.14: ROUGE-1 score comparison between PRIMERA and PRIMERA
finetune on Multi-LexSum.

Figure 6.15: ROUGE-1 performance comparison between PRIMERA and
PRIMERA-multi-lexsum.

In general, given that the finetuning domain is not a patent domain, but a legal
one, it does not lead to remarkable performance improvements. On the contrary,
in many cases it leads to a performance decrease, highlighting the importance of
the finetuning operation on a proper domain.
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6.8.5 Training times
The training times required by PRIMERA and PRIMERA-multi-lexsum to complete
a single epoch with various input texts are listed in Table 6.15. PRIMERA completes
a training epoch in slightly more than half the time needed by BigBird. It has the
same maximum input length but allows a slightly higher batch size. In contrast to
PEGASUS, it requires additional 20 hours on average.
In addition, as it is possible to notice, the fine-tuned model is a bit slower and
takes about three hours more compared to PRIMERA with only pre-training.

Model input PRIMERA PRIMERA-lexsum
Abstract 38:08:35 41:23:05
Background 38:02:45 43:47:06
Description 38:12:22 41:19:56
Summary 37:58:13 44:00:52
Summary + Abstract 38:34:40 40:57:48
Summary + Background 38:50:27 40:56:10
Background + Abstract 38:27:00 40:16:21

Table 6.15: This table reports the training times necessary for training PRIMERA
and PRIMERA-multi-lexsum for a single epoch. Both the models use a batch size
of 16, a learning rate of 1e-4, mixed precision and a maximum input length of
4,096.
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6.8.6 Performance difference between test and validation
set

During the analysis of the results, it has been clear that the performance difference
between the validation and test set obtained using PRIMERA is remarkable. This
performance gap is not as evident for PRIMERA-multi-lexsum, PEGASUS and
BigBird.
As it is possible to notice from the data reported in Table 6.16, for each input
text the performance obtained on the validation set is remarkably lower. It is also
evident from Figure 6.16 there is a smaller performance gap for the background
and description input section, whereas it is almost the same for all the other input
texts.
For completeness and a better understanding of the performance difference be-
tween the validation and test set for the four used models, all the ROUGE scores
are reported. Table 6.18 shows the performance difference between the valida-
tion and test set for PEGASUS. Table 6.19 reports the same data regarding BigBird.

Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Validation Test Validation Test Validation Test Validation Test

Abstract 21.14 58.75 14.9 39.93 19.77 49.94 20.65 56.0
Background 13.39 22.54 3.1 3.69 11.32 17.89 12.99 21.21
Description 13.48 22.74 3.09 3.44 11.43 18.27 13.09 20.88
Summary 19.82 65.08 14.94 49.24 18.78 58.43 19.4 62.83
Summary + Abstract 22.84 69.7 18.05 53.8 21.88 63.12 22.48 67.54
Summary + Background 22.59 68.36 17.63 52.1 21.58 61.59 22.21 66.16
Background + Abstract 20.4 57.55 14.02 38.7 18.91 48.59 19.87 54.76

Table 6.16: PRIMERA ROUGE score gap between the values obtained on the
validation and the test set. The smaller gaps can be identified for background and
description.

Figure 6.16, 6.17, 6.18, 6.19 all depict the ROUGE-1 performance gap between
validation and test set with the four used models.
As it is possible to notice from Figure 6.16 the ROUGE-1 differences obtained
using PRIMERA are evident, differently from the results depicted in Figure 6.17
for PRIMERA-multi-lexsum, 6.18 for PEGASUS and 6.19 for BigBird.
Additionally, the two sections for which the score difference is less evident using
PRIMERA are the background and the description. These two sections, according
to both PRIMERA, PEGASUS and BigBird, are also the two least informative
ones, characterized by the lowest results.
On the contrary, the only model that signals the combination of background and
abstract as the least informative input text is PRIMERA-multi-lexsum.
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Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Validation Test Validation Test Validation Test Validation Test

Abstract 53.34 53.44 34.44 34.64 43.03 43.21 50.58 50.66
Background 37.97 38.06 14.67 14.79 25.97 26.07 34.83 34.88
Description 36.84 36.76 1.48 14.79 25.94 25.89 33.92 33.84
Summary 63.79 63.51 46.92 46.77 55.11 54.9 61.4 61.16
Summary + Abstract 65.04 64.87 48.66 48.62 56.69 56.6 62.77 62.59
Summary + Background 63.98 63.8 47.14 47.1 55.4 55.29 61.61 61.47
Background + Abstract 25.86 25.79 3.87 3.84 17.77 17.74 23.83 23.73

Table 6.17: PRIMERA-lexsum ROUGE score gap between the values obtained
on the validation and the test set. Almost no performance differences.

Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Validation Test Validation Test Validation Test Validation Test

Abstract 62.57 62.81 46.91 47.25 55.15 55.38 55.18 58.71
Background 34.43 34.17 14.96 14.96 26.7 26.56 26.73 30.56
Description 32.34 31.9 15.11 14.97 25.58 25.26 25.6 28.57
Summary 73.85 73.84 62.01 62.11 68.6 68.66 68.63 70.86
Summary + Abstract 75.43 75.49 63.87 64.1 63.87 70.44 70.33 72.58
Summary + Background 74.08 74.11 62.23 62.38 68.81 68.92 68.83 71.13
Background + Abstract 56.5 56.57 40.02 40.24 48.94 49.06 48.98 52.53

Table 6.18: Comparison of the PEGASUS ROUGE scores obtained on the
validation and test set. No evident gap is present.

Model input ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum
Validation Test Validation Test Validation Test Validation Test

Abstract 63.0 63.23 47.5 47.83 55.56 55.8 55.61 59.13
Background 35.1 34.85 15.42 15.4 27.19 27.04 27.21 31.15
Description 33.63 33.34 16.64 16.48 26.74 26.51 26.77 29.91
Summary 74.46 74.4 62.89 62.93 69.23 69.24 69.25 71.46
Summary + Abstract 76.1 76.13 64.84 64.95 71.0 71.06 71.02 73.22
Summary + Background 74.58 74.5 62.94 62.97 69.31 69.26 69.31 71.51
Background + Abstract 63.29 63.56 47.82 48.19 55.85 56.15 55.89 59.44

Table 6.19: BigBird ROUGE scores obtained on the validation and the test set
are compared. No evident gap is present.
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Figure 6.16: PRIMERA ROUGE-1 gap between validation and test set. The two
sections that are characterized by the lower performance difference are background
and description.

Figure 6.17: PRIMERA-multi-lexsum ROUGE-1 gap between validation and test
set. There is almost no difference in performance, independently from the input
text.
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Figure 6.18: PEGASUS ROUGE-1 scores differences between validation and test
set. Almost no difference for all input texts.

Figure 6.19: BigBird differences of ROUGE-1 scores obtains on the validation
and test set. Also in this case there is almost no difference between the scores of
any input section.
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6.8.7 PRIMERA qualitative analysis with a textual exam-
ple

In this section and in the following one, the same first claim analyzed in Section 6.6
is reported. As already stated, it is a non-cherry-picked patent. The differences that
the predictions show compared to the ground truth are highlighted in bold. The
results are ordered starting from the one with the highest scores, the combination
of summary and abstract, to the one with the lowest scores, the description.

Ground truth "1. A bicycle wheel driving device comprising: hub axle; hub shell
rotatably arranged around the hub axle, has a hub flange on an outside circumference
thereof, and has a housing space inside; and a motor disposed inside the hub shell
and configured to rotate the hub shell with respect to the hub axle; and roller brake
device at least partially arranged within the hub shell and extending outside of the
hub shell."

Summary + Abstract "1. A bicycle wheel driving device comprising: a hub
axle; a hub shell arranged around the outside of the hub axle, having a hub
flange on an outside circumference thereof, and having a housing space inside; a
motor drive unit housed inside the housing space and configured to rotate the
hub shell with respect to the hub; and a roller brake device arranged within the
hub to the outside."

Summary + Background "1. A bicycle wheel driving device comprising: a
hub axle; a hub shell arranged around the outside of the hub axle, having a hub
flange on an outside circumference thereof, and having a housing space inside; a
motor drive unit housed inside the housing space and configured to rotate the
hub shell with respect to the hub; and a roller brake device arranged within the
hub space to the outside the housing."

Summary ".. A bicycle wheel driving device comprising:a hub axle; a hub shell
arranged around the outside of the hub axle, having a hub flange on an outside
circumference thereof, and having a housing space inside; a motor drive unit
housed inside the housing space and configured to rotate the hub shell with
respect to the axis; and a roller brake device arranged within the hub flanges to
the outside circumference of the housing flange."

Abstract "1. A motor-equipped hubcomprising: a hub axle; an outer shell
arranged around the outside of the hub axle, having a hub flange on an outside
circumference thereof, and having a housing space on the inside thereof; a motor
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drive unit housed inside the housing space and configured to rotate the outer
shell with respect to the hub axis; and at least one roller brake device arranged
within the outer sleeve of the outer casing to the outside thereof."

Background + Abstract ". A wheel driving device comprising: a hub axle;
an annular hub shell arranged around the outside of the hub axle, having a
hub flange on an outside circumference thereof, and having a housing space on
the inside thereof; a motor drive unit housed inside the housing space and
configured to rotate the hub shell with respect to the hub axis; and a roller brake
device arranged within the annular housing shell to the outside thereof."

Background "1. A method for providing a user interface for a com-
puter application, the method comprising: receiving a user input;
determining a user profile based on the user input and the user profile;
dividing the user interface into a plurality of sections; displaying the
sections; and providing a user-selectable option for each section."

Dscription "1. A method for providing a user interface for a user, the
method comprising: receiving a user request for a service; determining
whether the user request is associated with a service provider; if the
user requests are associated, providing the user interface to the user;
and if it is determined that the user is not associated with the service
provider, providing a service to the service user."
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6.8.8 PRIMERA Multi-LexSum qualitative analysis
Summary + Abstract "1. A bicycle wheel driving device comprising: a hub
axle; a hub shell arranged around the outside of the hub axle, having a hub
flange on an outside circumference thereof, and having a housing space inside;
a motor drive unit housed inside the housing space and configured to rotate
the hub shell with respect to the hub axles; and a roller brake device arranged
within the hub shaft to the outside thereof. wherein the roller brake is
configured to apply braking action against the hub drum. whereby the
brake shoes are pressed by the rollers in such a fashion that the entire
contact surface of each brake shoe contacts the brake drum when the
brake device is operated."

Summary + Background "1. A bicycle wheel driving device comprising: a
hub axle; an hub shell arranged around the outside of the hub axle, having a hub
flange on an outside circumference thereof, and having a housing space inside; a
motor drive unit housed inside the housing space and configured to rotate the
hub shell with respect to the hub axle; and roller brake device arranged within
the hub flanges to the outside thereof. wherein the roller brake device
comprises: a stationary bracket configured such that it can be fastened
to the bicycle; a cylindrical brake drum arranged such that the brake
drum can rotate integrally with the hub shaft and having an internal
circumferential surface; a plurality of brake shoes that are arranged
to be non-rotatable with respect the stationary bracket, each have a
contact surface that can contact the braking surface, and serve to apply
braking action against the brake flanges; a force applying member
configured and arranged to apply forces against the brakes shoes in
radially inward directions; and, brake operating unit having a plurality
of rollers arranged with spaces there-between in a circumferentially
oriented direction and a cam mechanism configured to press the rollers
in a radially outward direction when turned, the braking operating unit
being"

Summary "1. A bicycle wheel driving device comprising: a hub axle; an hub
shell arranged around the outside of the hub axle, having a hub flange on an
outside circumference thereof, and having a housing space inside; a motor drive
unit housed inside the housing space and configured to rotate the hub shell with
respect to the hub axis; and a roller brake device arranged within the hub shaft to
the outside the housing. wherein the hub wheel driving unit is driven
by the motor drive and the bicycle is enabled to move using electric
power. whereby the bicycle wheel is driven using the wheel driving
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apparatus."

Abstract ".. A motor-equipped hub comprising: a hub axle; an annular
hub shell arranged around the outside of the hub axle, having a hub flange
on an outside circumference thereof, and having a housing space on the inside
thereof; a motor drive unit housed inside the housing space and configured
to rotate the annular annular shell with respect to the hub axis; and a roller
brake device arranged within the annal annular shaft shell to the outside
thereof. wherein the annula annular housing space is configured to
accommodate a roller brake. where R1 and R2 are each independently
a hydrogen atom, a straight chain or branched alkyl group, a branching
or branching alkylene group, an alkoxy group, or an alkoxyl group,
and R3 and R4 are each individually a straight-chain or brankled
alkylamino group, where R5 is a straight line or brannled alkenyl group
or a straight straight-line or branled alicyclic group, R6 is a hydrogen
atoms, a linear or brackenyl group which is a linear, branchen or cyclic
group or an alicylic group which has a straight,"

Background "1. A wheel driving device comprising: a hub shell having a
hub axle; an electric motor disposed in the hub shell; a brake drum for
driving a wheel of a bicycle; and brake shoes for driving the wheel of
the bicycle, wherein the brake shoes are provided on the hub axle and
the brake drum is fixed to the hub. the brake shoes include a first brake
shoe and a second brake shoe, where R1 and R2 are independently a
first and a third brake shoe; R3 and R4 are independently an elastic
member; and the first brake shoes and the second brake shoes have a
first contact portion and a first non-contact portion, R5 and R6 are
independently the same, and the first contact portions are connected
to the first brake and the third brake shoes,"

Description "1. A method for providing a user interface for a computer
system, comprising: receiving a request for a user-defined function
from a user; determining whether the user-specified function is avail-
able for execution by the computer system; if the user is available,
providing the user interface to the user; and if it is determined that
the user does not have the user defined function, provides a user input
to the computer, wherein the user input is selected from the group
consisting of a plurality of user-specific functions, and if the plurality
of the user specific functions are available, the user can select a user
specific function from the plurality, wherein if the user selects a user
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selectable function, the computer provides the user with the user select
interface to perform the user selected function."

Background + Abstract " .. A method of forming a semiconductor
device, comprising: forming a first insulating film on a semiconducting
substrate; patterning the first insulator film to form a first opening;
forming an insulating layer on the semiconductating substrate; and
performing a second insulating process to form an opening in the
insulating insulating material. wherein the first opening is formed
in a region of the semiconductor substrate that is not covered by the
insulator layer. where R1 is a hydrogen atom or a substituent, R2 is a
substitutent, and R3 is a group that is capable of reacting with a group
in the semicconducting substrate."
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6.8.9 Conclusions about PRIMERA
In conclusion, it turned out that the pre-training phase is a crucial step in order
to have promising results. However, it is also possible to notice that, even with
a maximum input length equal to the one of BigBird, the maximum batch size
supported by the computation resources is 16, against 12 of BigBird. The PRIMERA
training time is significantly lower than that of BigBird.
A possible solution to deeply analyze the pre-training importance is to train from
scratch PRIMERA on the patent domain. This approach requires enormous time
and resources and due to the available computational resources, this analysis could
not have been performed.
Another possible approach is to evaluate different fine-tuned PRIMERA versions
in order to find if there is an available model fine-tuned on a domain that is close
enough to the patent domain to produce some performance improvements.
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Chapter 7

Conclusions and Future
works

This thesis addresses the task of automating the generation of patent claims to
keep up with the filing rate of patents at patent offices, such as the USPTO. The
task is addressed as an abstractive summarization task, and the study focuses
on identifying the most informative patent sections for claim generation and how
the input length affects model performance evaluated by means of ROUGE and
BERTScore.

Two transformer-based abstractive summarization models, PEGASUS and Big-
Bird, with different attention mechanisms for analyzing different input lengths,
were tested on seven input texts, including four single sections (abstract, summary,
background, and description) and three combinations of two sections (summary
and abstract, summary and background, and background and abstract).

In order to allow the models to be aware of the semantic content of the sections,
their boundaries are highlighted by means of several special tokens, that are con-
catenated at the beginning and the end of each section.

The results suggest that the combination of the summary and abstract is the
most informative input text, while the description is the least informative section.
The best performances are achieved using BigBird, which is designed to handle
longer input texts, although it requires a longer training time. The evaluation
metrics used are ROUGE, which assesses syntactic similarities, and BERTScore,
which prioritizes semantic similarities. Notably, the study found that the gen-
erated summaries achieved impressive ROUGE scores, despite the fact that the
task involved generating new text, and ROUGE is typically used for extractive
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summarization tasks. This is a significant result that highlights the effectiveness of
the summarization techniques used in this thesis.

The last part of the study involves the analysis of a model that allows using
global attention on the special tokens used to define the section boundaries but that
is not pre-trained on the patent domain. The model in question is PRIMERA. The
analysis highlights the significance of the pre-training phase for the aim of this thesis.
Indeed, despite the global attention on the special tokens, the performances achieved
are lower than those obtained with the other two tested models. Additionally, it
has been tested a PRIMERA model fine-tuned on Multi-LexSum, a summarization
dataset containing civil rights litigation cases. It is the PRIMERA fine-tuning
domain that is most similar to the patent domain available on the HuggingFace hub.

Future work could involve deleting documents without descriptions, extending
the work to deal with claims other than the first one, checking if changing the
section order affects performance, performing hyperparameter tuning, and training
the model on HUPD.
However, the most interesting perspective is to train PRIMERA from scratch on the
patent domain, and then analyze if the global attention on special tokens, together
with the pre-training, could allow it to surpass the ROUGE and BERTScore
obtained so far. This approach requires significant time and resources, and could
not have been done with the available HPC resources. In absence of the required
resources, another possible solution is to try several fine-tuned models, analysing
if there is a fine-tuning domain closer enough to the patent domain to allow a
performance improvement.
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