
POLITECNICO DI TORINO

Master’s degree in Data Science and Engineering

Master’s Degree Thesis

Text Generation through a GPT-based
GAN model

Academic Supervisors

Prof. Luca CAGLIERO

Prof. Moreno LA QUATRA

Company Supervisor

Ing. Fabio RAIMONDI

Candidate

Gianluca LA MALFA

April 2023

Abstract
Lack of data represents one of the main problems in the Machine Learning field.
The greater part of the algorithms, used for different scopes and goals, needs a huge
quantity of data to be trained on. This problem becomes even bigger in the Deep
Learning field, because usually, neural networks require more data than classical
machine learning algorithms. The latter will reach earlier a point in which new
data does not improve the learning capabilities of the model.
Strictly connected to this, there is also the problem of class imbalance that can
arise for different kinds of situations, above all in classification tasks. With class
imbalance, machine learning models will typically over-predict the most frequent
class label due to their increased prior probability. As a result, the instances
belonging to the smaller class are typically misclassified more often than those
belonging to the larger class. Even if there are already different approaches to solve
the problem when working on tabular data, it is still difficult to solve the issue when
working with natural language. Being able to generate completely new sentences,
and more specifically to re-balance the distribution of data based on the minority
class represents an important challenge to face. Generative models are one way
of performing text generation. In particular with the introduction of Generative
Adversarial Networks (GAN) a new way of approaching the generation problem is
born. While in the computer vision field, GANs are already obtaining sensational
results, the same does not apply for natural language processing. Although there
are different models that are reaching significant results, there is still room for
improvements for GANs to be competitive even in this field.
The goal of this thesis work is to try to understand if the GAN architecture can reach
comparable performances to GPT,which represents the state of the art,in the text
generation field. To do this the financial domain will be object of study, words that
in natural language can assume one meaning can be completely different in finance.
The goal is to show the robustness and versatility of the proposed models. The
presented work is divided into several phases: a first phase of finding and creation
of the datasets to work on, a second phase consisting of the implementation of a
traditional GAN and comparison with the state of the art approach by analyzing a
classification task built on top of the dataset re-balanced through text generation,
a third and final phase of building a modified conditional GAN model by exploring
the power of GPT as generator and comparison with the state of the art approach
in the same settings.
All the results are presented at the end of this work, showing the most important
difference in terms of performance, robustness and completeness.

ii

Acknowledgements

Ringrazio i miei genitori, da sempre sono stati la mia guida, il mio faro.Gran parte
di questo traguardo lo devo soprattutto a loro.Non smetterò mai di essere loro
grato per quanto hanno fatto per me.

iii

Table of Contents

Abstract . ii

List of Tables ix

List of Figures xii

1 Introduction 2
1.1 Document outline . 3

2 Machine Learning and Deep Learning background 4
2.1 Artificial intelligence . 4
2.2 Types of Machine Learning . 4

2.2.1 Reinforcement Learning . 5
2.3 Datasets . 6
2.4 Natural Language Processing . 7

2.4.1 Main definitions . 7
2.4.2 Text Generation . 8
2.4.3 Text Classification . 8

2.5 Discriminative vs Generative Models 8
2.6 Main Architectures . 9

2.6.1 Recurrent Neural Networks 9
2.6.2 Convolutional Neural Networks 10
2.6.3 GAN . 11

2.7 Transformers . 13
2.7.1 Attention . 13
2.7.2 BERT . 14
2.7.3 RoBERTa . 15
2.7.4 GPT-3 . 15

3 Material and methods 17
3.1 Pipeline Overview . 17
3.2 Datasets . 18

v

3.2.1 Exploratory Data Analysis 18
3.2.2 Preprocessing . 20
3.2.3 Keyword extraction . 20

3.3 Text Generation Architectures . 22
3.3.1 SEQ-GAN . 22

3.3.1.1 Monte Carlo Search 23
3.3.1.2 Architecture . 23

3.3.2 GPT-3 . 24
3.3.3 GPT-2 . 25

3.3.3.1 Architecture . 25
3.3.3.2 How GPT-2 works 26
3.3.3.3 Masked Self-Attention 27
3.3.3.4 Fully connected Neural Network 28
3.3.3.5 Fine Tuning . 29
3.3.3.6 Conditional generation on tags 29
3.3.3.7 Unconditional generation 29

3.3.4 GPT-GAN . 30
3.3.4.1 Architecture . 30
3.3.4.2 Contrastive Discriminator 31
3.3.4.3 Proximally Optimized Generator 32
3.3.4.4 Training Strategy 33

3.4 Classification Architectures . 34
3.4.1 Gated Recurrent Unit . 34

3.4.1.1 Update Gate . 34
3.4.1.2 Reset Gate . 34

3.4.2 FinBERT . 36
3.5 Deployment . 36

3.5.1 Application functionalities 38

4 Results 39
4.1 Experimental settings . 39
4.2 Evaluation Metrics . 40

4.2.1 Text Generation metrics . 40
4.2.2 Classification metrics . 42

4.3 Text Generation Results . 43
4.3.1 Hyperparameters tuning . 43
4.3.2 Unconditional Generation 44

4.3.2.1 Seq-GAN . 44
4.3.2.2 GPT-2 Unconditional Generation 46

4.3.3 Conditional Generation . 48
4.3.3.1 GPT-2 Conditional Generation 48

vi

4.3.3.2 GPT-GAN . 51
4.3.3.3 GPT-GAN vs GPT-2 55

4.4 Text Classification Results . 56
4.4.1 Hyperparameters tuning . 56
4.4.2 Original dataset . 56

4.4.2.1 GRU . 57
4.4.2.2 FinBERT . 58

4.4.3 Seq-GAN . 60
4.4.3.1 GRU . 60
4.4.3.2 FinBERT . 61

4.4.4 GPT-2 Unconditional Generation 63
4.4.4.1 GRU . 63
4.4.4.2 FinBERT . 64

4.4.5 GPT-2 Conditional Generation 66
4.4.5.1 GRU . 66
4.4.5.2 FinBERT . 67

4.4.6 GPT-GAN . 69
4.4.6.1 GRU . 69
4.4.6.2 FinBERT . 70

4.5 Parameter Analysis . 72
4.5.1 Number of keywords . 72

5 Conclusions and future works 74

Bibliography 77

vii

List of Tables

3.1 Dataset’s snippet . 18
3.2 Snippet of the modified dataset containing keywords 21
3.3 Snippet of domain adaptation dataset 33

4.1 Generator and Discriminator shared parameters 44
4.2 Discriminator parameters . 45
4.3 Generated sentences . 45
4.4 GPT-2 best hyperparameters . 46
4.5 GPT-2 Unconditional generated sentences 47
4.6 GPT-2 best hyperparameters . 48
4.7 GPT-2 Training parameters . 48
4.8 GPT-2 Conditional generated sentences 49
4.9 GPT-2 Generator Training parameters 51
4.10 Training parameters . 52
4.11 GPT-GAN Conditional generated sentences 54
4.12 GRU training parameters . 57
4.13 GRU Base Dataset Classification Report 58
4.14 FinBERT main parameters . 59
4.15 FinBERT Base Dataset Classification Report 59
4.16 GRU training parameters . 60
4.17 GRU SeqGAN Dataset Classification Report 61
4.18 FinBERT main parameters . 61
4.19 FinBERT SeqGAN Dataset Classification Report 62
4.20 GRU training parameters . 63
4.21 GRU GPT-2 Unconditional Dataset Classification Report 64
4.22 FinBERT main parameters . 65
4.23 FinBERT GPT-2 Unconditional Dataset Classification Report . . . 65
4.24 GRU training parameters . 66
4.25 GRU GPT-2 Conditional Dataset Classification Report 67
4.26 FinBERT main parameters . 68
4.27 FinBERT GPT-2 Conditional Dataset Classification Report 68

ix

4.28 GRU training parameters . 69
4.29 GRU GPT-GAN Conditional Dataset Classification Report 70
4.30 FinBERT main parameters . 70
4.31 FinBERT GPT-GAN Dataset Classification Report 71

x

List of Figures

2.1 Reinforcement Learning overview [1] 6
2.2 Simple RNN Architecture [2] . 9
2.3 CNN in NLP enviroment [3] . 10
2.4 Example of activation function, ReLU [4] 11
2.5 GAN Architecture [5] . 12
2.6 Transformers architecture [6] . 13
2.7 BERT architecture [7] . 15
2.8 Number of parameters of the most used models [8] 16

3.1 Procedure pipeline . 17
3.2 Target distribution . 19
3.3 Sentences’ statistics . 19
3.4 Word clouds . 20
3.5 SEQ-GAN Architecture [9] . 23
3.6 Performances comparison for zero-shot,one-shot and few-shot learn-

ing [10] . 24
3.7 Transformer-Decoder Architecture [11] 26
3.8 Starting sequence generation’s overview [11] 27
3.9 GPT-2 computations to get first output [11] 27
3.10 Score computation overview [11] . 28
3.11 Complete GPT-2 blocks overview [11] 28
3.12 Model’s architecture [12] . 30
3.13 Contrastive Discriminator [12] . 32
3.14 PPO overview [13] . 32
3.15 GRU overview [14] . 35
3.16 FinBERT pre-training and fine-tuning [15] 36
3.17 Application preview . 37

4.1 BERT score procedure overview [16] 41
4.2 Confusion matrix [17] . 43
4.3 ReLU vs GeLU activation functions [18] 47

xii

4.4 Perplexity trend for positive and negative models 49
4.5 Rouge-1 and Rouge-L of positive and negative models 50
4.6 BLEU and BERT score of positive and negative models 50
4.7 Perpelxity of positive and negative models 53
4.8 Loss trends of positive and negative models 53
4.9 Rouge-1 and Rouge-L of positive and negative models 54
4.10 BLEU and Bert score of positive and negative models 55
4.11 GPT-GAN vs GPT-2 quality measures 56
4.12 Loss and Accuracy trend of GRU on the original dataset 57
4.13 GRU Base Dataset Confusion Matrix 58
4.14 FinBERT Base Dataset Confusion Matrix 59
4.15 Loss and Accuracy trend of GRU on the SeqGAN dataset 60
4.16 GRU SeqGAN Dataset Confusion Matrix 61
4.17 FinBERT SeqGAN Dataset Confusion Matrix 62
4.18 Loss and Accuracy trend of GRU on the GPT-2 Unconditional dataset 63
4.19 GRU GPT-2 Unconditional Dataset Confusion Matrix 64
4.20 FinBERT GPT-2 Unconditional Dataset Confusion Matrix 65
4.21 Loss and Accuracy trend of GRU on the GPT-2 Conditional dataset 66
4.22 GRU GPT-2 Conditional Dataset Confusion Matrix 67
4.23 FinBERT GPT-2 Conditional Dataset Confusion Matrix 68
4.24 Loss and Accuracy trend of GRU on the GPT-GAN dataset 69
4.25 GRU GPT-GAN Unconditional Dataset Confusion Matrix 70
4.26 FinBERT GPT-GAN Dataset Confusion Matrix 71

xiii

Chapter 1

Introduction

One of the main problems arised in Machine Learning is the lack of data. Modern
algortihms require a huge quantity of data to be trained on, they learn directly from
the data and if there is more data there is a higher chance for a machine learning
algorithm to understand it and give accurate predictions to the unseen data. The
situation becomes even worse when dealing with Deep Learning algorithms. If
we can train Support Vector Machines with some thousands of samples and still
obtaining great results, there are neural network architectures that need a quantity
of data in the order of hundred thousands. Strictly related to this, there is also the
problem of dataset imbalance. Imbalanced data refers to those types of datasets
where the target class has an uneven distribution of observations, one class label
has a very high number of observations and the other has a very low number
of observations. This will cause some problems in classification tasks because
the instances belonging to the smaller class are typically misclassified more often
than those belonging to the larger class. When dealing with continuous data,
there is the possibility of applying traditional re-sampling techniques, but when
working on discrete data the same approach can not be applied. In particular,
in the natural language processing field, one of the branches that are constantly
gaining attention is Text Generation. Thanks to Text Generation we can create
completely new sentences, that satisfy certain constraints, in order to try to solve
both aforementioned problems. The idea is to generate synthetic examples to solve
both problems of lack and re-balance of data. In the family of generative models,
GANs have received a lot of appreciation, above all for the incredible performances
reached in the computer vision field. They are not receiving the same praise in
natural language processing because of the different problems this approach suffers
from when dealing with this type of data. The idea is to try to understand if the
GAN approach can be beneficial also in NLP, and to understand if the performance
reached are comparable to the ones obtained by GPT-3, which represents the state
of the art in the Text Generation field. The goal of our thesis work is to first find

2

Introduction

the weak points of the traditional GAN model for text generation and then to
study the architecture in order to explore a GPT-GAN using GPT-3 as generator.

1.1 Document outline
1. Chapter 1: Introduction: the goal of this chapter is to briefly introduce the

scopes and the objectives of the thesis.

2. Chapter 2: Machine Learning and Deep Learning background: this chapter
aims to remark some machine learning and deep learning concepts, which are
fundamental to follow the reasoning of the proposed work

3. Chapter 3: Materials and Methods: all the external materials and model that
are used are provided and deeply analyzed.

4. Chapter 4: Results: exhaustive presentation of all the results obtained, with
explanation and comments by the author

5. Chapter 5: Conclusions: Final remarks, take-aways and possible future
improvements, are reported in this section

3

Chapter 2

Machine Learning and Deep
Learning background

This chapter introduces you to some of the most important and fundamental
concepts of Machine Learning and more specifically Deep Learning. The goal is to
have all the basic knowledge necessary to follow the path. Starting from the role of
artificial intelligence, until more specific architectures which have a key role in the
proposed models.

2.1 Artificial intelligence
Artificial intelligence refers to the theory and development of computer systems
which aim to perform tasks that usually require human intelligence and cognitive
skills [19]. Machine Learning is an application of Artificial Intelligence which goal is
to create procedures able to to learn and improve from experience without explicit
programming.Models explore the power of data and use it for the learning phase. [20].
Deep Learning is a division of Machine Learning that tries to replicate the way in
which humans acquire knowledge. Differently from conventional algorithms, deep
learning models are based on a hierarchical organization and work on input data by
performing non-linear transformations. The key point of deep learning approaches
is the unsupervised learning, which is fundamental to obtain precise and fast to
build models. [21]

2.2 Types of Machine Learning
Machine Learning Algorithms can be classified according to different features, but
one of the most critical one, is how and what type of data the algorithms manages

4

Machine Learning and Deep Learning background

to learn [22]:

• Supervised Learning: The algorithm is trained using input data that has been
labeled for a specific output. The model keeps training until it can identify
the patterns and connections between the input points and the target output.

• Unsupervised Learning: When provided with unlabeled data, the algorithm
does not have access to any target attribute, and it has to discover similarities
and possibly patterns within the data points.

• Reinforcement Learning: In this type of learning, the training phase is based
on the determination of the best action by maximizing a defined reward.This
approach is iterative, braking away from the previously mentioned ones.

The last type of machine learning approach is a hybrid solution which aims to
explore the benefits of both supervised and unsupervised techniques

• Semi-supervised Learning: The idea is to use a limited set of labeled data
augmented by a huge amount of unlabeled data. The model can learn and
generate predictions for new examples

2.2.1 Reinforcement Learning
Reinforcement Learning [23] has a key role in the development of the proposed and
analyzed models. It is an approach to machine learning that is about maximizing
a reward through different actions. It is up to the reinforcement learning agent to
decide the actions to be performed to complete the proposed task. It is a form
of learning through trials and experience. From a mathematical point of view,
the Reinforcement Learning problem can be formulated through Markov Decision
Process Model:

max E{
TØ

t=0
R(st, xπ(st))|s0}

To pursue this goal we can have two approaches called policies [24]:

• Policy iteration: fix a strategy, which is to be followed by the agent to maximize
the reward

• Value iteration: maximize the value functions and update the policy rewards.

When we want to evaluate an agent , we generally refer to evaluate how well
the agent is performing, following the given policy.

5

Machine Learning and Deep Learning background

• Reinforce: it is variant of policy gradients based on Monte Carlo. The agent
collects a trajectory τ using its current policy, and uses it to update τ . Given
that a complete trajectory must be executed to create a sample space, updates
are calculated by performing actions (that could be of different kinds) using
an off-policy approach.

• PPO: it is a policy gradient method. The Actor-Critic Model FIG.2.1 is
the most adopted implementation. It is based on the use of two different
neural networks, for the actor(actions) and the critic(rewards). PPO follows a
similar procedure to the other policy gradient methods, it compute the output
probabilities in the forward pass and the gradients to manage the decisions.

Figure 2.1: Reinforcement Learning overview [1]

In Natural Language Processing, the use of Reinforcement Learning can be
crucial, because its application can be exploited for a lot of different aspects. For
example, it is possible to use GANs, which are not designed for NLP task, through
reinforcement learning. By fixing some elements, as we will see later in detail, there
is the possibility of finding a workaround for the discrete and non-differentiable
distribution of data used.

2.3 Datasets
As Daniel Keys Moran once said, "You can have data without information but you
cannot have information without data". This simple but effective quote summarizes
how important is to have data in Artificial Intelligence. Datasets are a collection
of record that share a common attribute. Usually datasets are composed by more
than one attribute, we refer to the this number as the dimensionality. We can
have different datasets based on different domains. In machine learning, datasets
are usually divided into three splits, which have a key role in the entire learning
phase [25].

• Training: it represents the sample of data used to fit the model which observes
and learns from this data.

6

Machine Learning and Deep Learning background

• Validation: it provides an unbiased evaluation of a model fit on the training
data while tuning the model hyperparameters.

• Test: it represents the portion of data used to have an unbiased evaluation of
the final model. It is used only when the model is complete.

Once the key concepts of Machine Learning are clear, it is possible to introduce
more complex notions of deep learning.
Deep Learning architectures can be employed in a lot of different scenarios.Their
power is so famous that a lot of different specialized branches of learning are born,
such as Computer Vision or Audio processing. In this work, the focus is on Natural
Language and more specifically in Deep Natural Language Processing.

2.4 Natural Language Processing
With Natural Language Processing we refer to the branch of Deep Learning which
aims to analyze and study natural language. There can be different application,
such as sentiment analysis, machine translations, text summarization and more [26].
In this work we will first explore the Text Generation task and lately also Text
Classification to deeply evaluate the effectiveness of the model in a built-on top
task.

2.4.1 Main definitions
In this section we will provide some of the key definitions that will be found across
the entire work.

• Language model: it is at the core of many NLP tasks and it is simply a
probability distribution over a sequence of words

• Corpus: it is the core element of the analysis in a NLP task. It represents the
input consisting of large and structured text.

• Paragraph: portion of text composed of different sentences

• Section: portion of text consisting of consecutive paragraphs

• Token: it is the entity composed by a sequence of characters used as input
for the majority of the NLP models. A token can be a word, a symbol or a
number.

• N-gram: An n-gram is a contiguous sequence of n words.

• Lemma: it represents the base form of a word or in general of a token.

7

Machine Learning and Deep Learning background

• Stem: base form of a word to which can be added affixes or suffixes to generate
different forms.

2.4.2 Text Generation
Text generation [27] explores artificial intelligence to automatically generate texts
(sentences or even entire paragraphs), depending on the context. Since the goal of
text generations is to create new sentence, sometimes there is the risk of obtaining
out of context phrases. For this reasons it is also plausible to have a sort of guidance
in the generation phase, thanks to it is possible to have more accurate results, in
this case we talk about conditional text generation
Text generation can be performed by different models, such as:

• RNNs

• Transformers

• GANs

2.4.3 Text Classification
Text classification [28] is a machine learning task which goal is to correctly assign a
group of labels to the analyzed text. In our thesis work we will perform sentiment
analysis which is a task that aims to classify if the given data is positive, negative
or neutral. It has proven to have crucial importance, above all in the financial field
to control the trend of a specified market.

2.5 Discriminative vs Generative Models
In this section we will explain the main differences between Discriminative and
Generative models:

• Discriminative models: Given a set of features X and a target variable Y,
the goal is to find the conditional probability P(Y|X). The estimation of the
parameters of P(Y|X) can be done by exploring the training data. The aim of
discriminative models is to separate classes.

• Generative models: In this case, to find the probability, it is crucial the
estimation the prior probability P(Y) and likelihood probability P(X|Y) with
the help of the training data and by using the Bayes Theorem, it is possible
to calculate the posterior probability P(Y |X). The main idea of generative
models is to explore the likelihood function and the probability estimation to

8

Machine Learning and Deep Learning background

model data points in order to correctly distinguish different labels in a given
dataset. The key difference with discriminative models lies in the possibility
of generating new data points.

To summarize, a generative model is about understanding how data is generated
while the discriminative counterpart is focused on the prediction of the correct
category.

2.6 Main Architectures
In this section we will briefly introduce some of the architectures used during our
thesis work.

2.6.1 Recurrent Neural Networks
Recurrent Neural Networks (RNN) are among the most used neural networks in
the deep learning field.They are suitable to process time-series data or generally
sequential data. Its principal attribute is that the previous step’s outputs are used
as inputs for the current step. The key point of the RNN is the hidden state, which
is fundamental to recall all the information about a sequence. They have a sort of
memory to remember all information about previous computations.

Figure 2.2: Simple RNN Architecture [2]

We can distinguish different types of RNNs:

• One to one: there is a single pair of nodes

• One to many: a single input can produce multiple outputs

• Many to one: many inputs produce a single output

9

Machine Learning and Deep Learning background

• Many to many: there can be different possibilities, in general many inputs
produce many outputs.

RNNs offer numerous benefits, first of all it is possible to handle sequential data of
different length, or to recollect historical information as well.The weak points are
related to the slow computation phase when dealing with huge amounts of data
and above all to the problem of vanishing gradient.

With vanishing and exploding gradient we refer to one of the most common
problem of deep learning applications. The gradients used to compute weights may
get very close to zero or to infinity, this prevents the network from learning new
weights. The deeper the network is the more probable it is for this problem to
appear.

2.6.2 Convolutional Neural Networks
Convolutional Neural Networks (CNN) are really famous for their applications in
the Computer vision field, but they showed to be really competitive in NLP as
well.
A CNN is composed by convolutional layers and downsampling layers.

• The goal of the convolutional layers is to use their neurons to scan the provided
input for patterns

• Downsampling layers, also known as pooling layers are used to reduce the
feature map dimensionality in order to improve computational efficiency.

Typically the two aforementioned layers occur in alternated order.

Figure 2.3: CNN in NLP enviroment [3]

The processing phase of a CNN is as follows: the feature matrix is used as
input, it can be from images or in our study case sentences, make it pass through

10

Machine Learning and Deep Learning background

convolutional layers, activation layers (ReLU) and pooling layers and finally reach
a Fully Connected layer before applying an activation function, for example the
softmax on the logits to obtain output values between 0 and 1.
An activation function [4] is a particular function that is usually integrated in
a neural network, which operates on the output of a neuron. It determines the
outcome based on the input and it permits to add non-linearity as well.

Figure 2.4: Example of activation function, ReLU [4]

Some Pooling layers are used to reduce the dimension of the feature map, by
summarizing all the feature in a particular region. There are different kind of
pooling operations:

• Max pooling: the maximum element from the region is selected, the output
will be a feature map containing the most important features of the previous
map

• Average pooling: the average of the elements of the region is returned, the
output will be a feature map containing the average of the features.

A Fully Connected Layer (FC) is typically the last layer in a CNN,it is obtained
by a combination of affine and non-linear functions. As the name suggests, the
main idea is to connect every neuron from the previous layer to the ones in the
following. This is useful to perform complex and non-linear transformations.

2.6.3 GAN
Before the introduction of GANs in 2014 with the paper "Generative Adversarial
Nets" [29], generative models were not as used as their discriminative counterpart,
because of various difficulties of approximation in the computation of the joint
probabilities. In Generative Adversarial Networks the generative model is joined by
an adversary, a discriminative model which aims to determine if an example belongs

11

Machine Learning and Deep Learning background

to the real distribution of data or to the "fake" one. The goal of the Generator
is to create a fake sample which is as realistic as possible while the aim of the
Discriminator is to distinguish the generated samples from the real ones.

Figure 2.5: GAN Architecture [5]

The objective function of the two agents is opposite, when one wins the other one
loses. The feedback shared between the two is fundamental, because on the base of
the answers given by the discriminator, the generator improves his production of
fake samples. At some point, the discriminator, that at each iteration will improve
his capabilities of detection, will not be able to distinguish real samples from fake
ones, ending the training.
To learn the distribution of the generator pg , an input noise pz(z) and a mapping
function on the data space G(z; θg) , in which G is a differentiable function guided
by parameter θg , are defined. The discriminator model D(z; θg) outputs a scalar,
which represents the probability that the sample x comes from the real distribution
of data rather than from the distribution of generated data pg. D is trained to
maximize the probability of assigning the correct label to the input sample, while
G to minimize log(1 − D(G(z)). The competition between the two networks can
be expressed as:

minGmaxDV (D, G) = Ex pdata(x)[logD(x)] + Ez pz(z)[log(1 − D(G(z)))]

Over the years the application of GANs has reached incredible results, above all
in Computer Vision. The same does not apply in Natural Language processing,
because of some problems related to the discrete nature of the data used. Because
of this it is not possible to use the classical GAN architecture, there must be applied
some modifications in the learning phase.

12

Machine Learning and Deep Learning background

2.7 Transformers
Recurrent Neural networks have achieved very good results but as already antici-
pated, they suffer from performance degradation when dealing with long sequences
and huge amount of data. Transformers [6] aim to establish the dependence be-
tween inputs and outputs by replacing "recurrence" with "self-attention". The latter
makes it able to compute the target word as a combination of vectors, on the
contrary the former relies just on the decoder’s hidden state. Self-attention creates
a connection between the hidden states of each encoder and decoder. As remarked,
the architecture is a typical encoder-decoder:

• Encoder: composed by a stack of six identical layers, each layer has two layers:
the first is the multi-head self attention while the second is a positional fully
connected feed-forward network. Residual connections are employed for each
of the two sub-layers with a layer normalization.

• Decoder: The decoder has the same structure, except the addition of a third
sub-layer to perform multi-head attention over the output of the encoder stack.

Figure 2.6: Transformers architecture [6]

2.7.1 Attention
The revolution in the transformer architecture is the attention mechanism [6], which
is defined as a mapping from a query and a collection of key-value pairs to an
output. The output is computed as a weighted sum of the values, in which the
weights are modelled by a function of the query and its corresponding key. What it

13

Machine Learning and Deep Learning background

is done is simply computing dot products, but by adding the key,value and query
parameters we also have the possibility of training to improve these weights. Given
Q,K,V we have:

Attention(Q, K, V) = softmax(QKT

√
dk

)V

Instead of performing a single attention function it is possible to parallelize the
process with h-heads, so we have the multi-head attention. Multi-head attentions is
used to allow the model to manage information from different feature spaces. On
the contrary, the single-head mechanism does not allow this.

MultiHead(Q, K, V) = Concat(head1, ..., heandh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i)

2.7.2 BERT

Traditional language models operate unidirectionally, this can be problematic
when dealing with tasks that require context from both directions. Bidirectional
Encoder Representation from Transformers (BERT) [7] tries to get solved the
unidirectionality constraint by introducing a Masked Language Model pre-training
objective. This approach randomly masks some of the tokens in the document, the
goal is to predict the missing tokens. There are two fundamental steps:

• Pre-training: the model is trained on unlabeled data from a downstream
task. The pre-training phase is done by performing two unsupervised tasks:

– Masked Language Model (MLM) : The only way to perform a bidirectional
training is to mask a fixed percentage of the tokens

– Next Sentence Prediction (NSP): Understanding the relationship between
two sentences is fundamental. More specifically, given two sentences A
and B, we aim to understand if B is actually following A

• Fine-tuning: each downstream task has separate fine-tuned models. The
intuition is that final layers learn features which are strictly related to the
context of use. While the initial layers are frozen, these ones are trained to
adapt to the specific task.

14

Machine Learning and Deep Learning background

Figure 2.7: BERT architecture [7]

2.7.3 RoBERTa
RoBERTa represents an important study on the design of the famous BERT
architecture, with the aim of understanding which concepts contribute the most to
the power of the model and what decisions could be made for further improvements.
In the original BERT implementation, the masking operation was done once,
resulting in a static mask. This strategy was compared to a dynamic masking where
the masking pattern is generated every time a sequence is fed to the algorithm. [30]
Moreover, a study regarding the importance and influence of the NSP task has
been carried forward, and surprisingly it was demonstated that removing the NSP
loss leads to a slight improvement of the performances. This optimizations showed
to outperform the traditional BERT architecture, bringing a lot of advantages both
in terms of resources and results.

2.7.4 GPT-3
So far, we have learned that a model can adapt to a specific task by applying
fine-tuning. This seem to be quite far from how the human brain acquires the
ability of completing new tasks. Tipically humans do not require large amount
of examples to start becoming proficient in different tasks. Moreover, humans
are usually multi-tasking, they do not have to specialize on only one, they are
capable of doing multiple activities, especially language related ones. GPT-3 is an
autoregressive language model trained on 175 billion parameters as it is possible
to see in FIG 2.8. It has shown impressive results on different tasks, and above
all on few shot learning. The number of examples needed for the specialization
on the task is very limited. In terms of its architecture, this model keeps the
same structure as its predecessor GPT-2, which includes the modified initialization,
pre-normalization, and reversible tokenization. However, there is a small difference
in the transformer layers, dense and locally banded sparse attention patterns are
alternated.

15

Machine Learning and Deep Learning background

Figure 2.8: Number of parameters of the most used models [8]

16

Chapter 3

Material and methods

In this section we will report all the materials and methods applied through our
entire thesis work.

3.1 Pipeline Overview

Figure 3.1: Procedure pipeline

As it is possible to see in FIG.3.1, starting from the raw text of the object of
study dataset 3.2, after some preprocessing steps, the goal is to prepare the input
for the Conditional Generation, or eventually use it as it is for the Unconditional
generation.Three architectures will be presented SeqGan 3.3.1, GPT-2 3.3.3 and
GPT based GAN 3.3.4. After the generation of their respective sentences, these last
will be used to create some rebalanced dataset that will be used for the training

17

Material and methods

of the two proposed classifiers GRU 3.4.1 and FinBERT 3.4.2. In addiction, as
it can be noticed from the bottom of FIG.3.1 there is also the deployment phase
3.5, which aims to obtain an application to easily visualize the functioning of the
proposed model in different scenarios.

3.2 Datasets
One of the key points of our thesis work was to create and process a dataset. In this
case, we decided to work on the financial domain, considering its possible future
applications and its complexity. In fact, dealing with words related to finance is
slightly different from dealing with words of every other context. Terms that in our
everyday language have a particular meaning could have a completely different one
in financial settings. We decided to work on this field, being aware of its pitfalls but
conscious of the possibility of adapting the pipeline to different context by simply
apply some modifications in the preprocessing phase. Throughout our entire work
we used data coming from various sources for different scopes and goals. For the
sake of simplicity we will report as principal dataset the one on which we performed
the task of text generation and classification, we will cite all the other sources used
in the respective section in which they are used.

3.2.1 Exploratory Data Analysis
The dataset FinancialPhraseBank [31] contains the sentiments for financial news
headlines from the perspective of a retail investor. As it is possible to see in Table
3.1, it contains two columns:

• Sentiment: it indicates the feeling that the news headline expresses

• News Headline: it contains the corpus of the entire news headline

News Headline Sentiment
Technopolis plans to develop in stages an area of no less... Neutral
The international electronic industry company Elcoteq has laid off... Negative
With the new production plant the company would increase... Positive

Table 3.1: Dataset’s snippet

The dataset has been chosen because it fits perfectly our intentions of performing
both text generation and text classification tasks. As it is possible to notice in
FIG.3.2 the distribution of the target value "Sentiment" is strongly imbalanced

18

Material and methods

towards the neutral class. Our aim is to perform the text generation task to
re-balance the dataset and the text classification one to assess the performances.

Figure 3.2: Target distribution

To understand the composition of the dataset we decided to deeply analyze it
and plot some statistics.

(a) Number of words in a sentence (b) Average word length in each sentence

Figure 3.3: Sentences’ statistics

Positive sentences tend to contain more words than negative ones, while as
concerns the average word length there are no noticeable differences as it can be
seen in FIG.3.3a and FIG.3.3b. Another factor we decided to investigate was the
presence of repeated words, and in general which were the most commons.

As it is notable, we have a lot of common language words, known as stopwords,
but considering the nature of the task we will perform we are not authorized to
remove them. FIG.3.4a and FIG.3.4b show how there is no huge difference in the
most used words in both negative and positive cases.

19

Material and methods

(a) Most common words in Positive sentences (b) Most common words in Negative sentences

Figure 3.4: Word clouds

3.2.2 Preprocessing
Data is coming from financial reports, so it is necessary to clean the sentences to
make them closer to natural language. Considering that our aim is to perform
a text generation task, it is important to apply only the necessary preprocessing
techniques. For example, we will not apply any stemming or stopwords removal
because it will prevent our model to generate substantial tokens fundamental for
the composition of the final sentence. Proceeding by order, we first checked the
language of all the sentence contained in the dataset. We will work only with
English sentences, but it is plausible to make some modifications to work also
with other languages. After language selection, our objective was to clean all the
sentences from non-alphanumerical and external resources such as links or tags.
By doing this we had to deal with simple and clean financial reports. Finally, we
tried to simplify the financial context by converting the most known symbols and
abbreviations into natural language (€ in Euro). After sentence cleaning we had to
deal with the categorical values. A categorical variable is one that has two or more
categories. [32].
Machine learning models can only work with numerical values, so it was necessary
to encode the sentiment attribute. Considering that it can assume only three
values, we decided to perform a simple mapping.

3.2.3 Keyword extraction
As we will see more precisely in the following sections, our main goal is to perform
a conditional generation task through a GPT based GAN model. Conditional
generation showed to have better performance compared to the unconditional
counterpart. There are different ways to condition the generation, but for this
particular case we decided to use keywords. By definition, a keyword is a word
of great importance in a sentence. In our case we decided to extract the top 3
keywords in each sentence to create the training set which will guide our model
during learning phase. To extrapolate the keywords we used KeyBERT.

20

Material and methods

KeyBERT [33] is among the most famous and easy-to-use algorithms to extrapolate
keywords or keyphrases that are most similar to a document. As it can be imagined,
it explores the BERT embeddings and operates as:

1. Extraction of document embeddings

2. Extraction of word embeddings for n-grams, words or phrases

3. Computation of the cosine similarity to find n-grams that are most similar to
the document, they are the most representative words of the entire document.

News Headline Keywords Sentiment
Technopolis plans to develop... [’technopolis’, ’telecommunication’, ’develop’] Neutral
The international electronic industry... [’international ’, ’industry’, ’employees’] Negative
With the new production plant the company... [’production’, ’increase’, ’capacity’] Positive

Table 3.2: Snippet of the modified dataset containing keywords

21

Material and methods

3.3 Text Generation Architectures
In this section we will show which architectures have been used during the thesis
work. Even if the proposed and central model is the GPT based GAN, we decided
to first present the base models on which the latter is based on. For this reasons,
we will first present SEQ-GAN, which is the first model of this type applied on a
NLP setting, then GPT-2 and finally the GPT based GAN model. Even if Large
Language Models have already gained incredible reputation, they suffer from the
exposure bias [34] in the inference stage: the difference between training and test
performances is due to the fact that the the distribution of data of the former can
be really far from the one of the latter. In the text generation task this can be a
huge problem because the model will have to work with tokens that have not been
seen during the learning phase.

3.3.1 SEQ-GAN
Sequential-GAN was born in a historical moment in which GAN based approaches
applied in the NLP field were gaining more and more criticism. This is due to the
fact that GANs were achieving incredible results in Computer Vision while they
were still not applicable in NLP task due to the discrete nature of data treated. In
fact, traditional GANs could be used only on continuous and differentiable data.
The small changes made during every iteration on images were not possible on text
corpus because there was no corresponding token to them.
With the work presented by Lantao Yu et Al. [9] there is a complete change. By
exploring the power of Reinforcement Learning, it is now possible to use GANs on
textual data. With RL we are able to bypass the generator differentiation problem
by directly performing the gradient policy update.
The Reward comes from the GAN discriminator (complete sequence) and is passed
back to the intermediate state-action steps using Monte Carlo search. The state is
the generated tokens until that moment and the action is represented by the next
token to be generated.

To address the problem of the back-propagation of the gradient when,like in our
study case, the output is discrete, the generative model is considered a stochastic
policy.Specifically,Monte Carlo (MC) search is used to estimate the state-action
value. We train the policy directly using the policy gradient method [35], which
is useful to overcome the differentiation constraint for discrete data encountered in
traditonal GANs.

22

Material and methods

Figure 3.5: SEQ-GAN Architecture [9]

Given a dataset of real-world sequences:

• Train a θ parameterized generative model Gθ to produce a sequence y ∈ Y
where Y is the vocabulary

• In timestep r the state s is the current produced tokens and the action a is
the next token to select.

• We also train a ϕ parameterized discriminative model Dϕ to provide a guidance
for improving generator (discriminator) Gθ.Dϕ indicates the probability of
how likely a sequence is from real sequence data or not.

3.3.1.1 Monte Carlo Search

Monte Carlo Search [36] is an heuristic based approach which explores the power
of reinforcement learning.

The main idea is to generate random samples from the current position and use
them to evaluate different moves. The core process is represented by the simulation,
starting from the current state it is possible to complete the path and register the
eventual success of failure. The goal is to predict the probability of an event or the
value of a function by using a simple distribution of random generated samples. As
already anticipated, this approach is very powerful to solve very complex problems.

3.3.1.2 Architecture

• Generator: RNN, the softmax function is used to map the hidden states into
the final token distribution. Moreover the LSTM cells are forced to implement
the update function g in order to address the vanishing gradient issue.

23

Material and methods

• Discriminator: CNN, because it has shown to be fast and accurate even on
text classification tasks.It is also considered the case in which the discriminator
predicts the probability that a finished sequence is real.

3.3.2 GPT-3
GPT-3 [10], is a neural network trained using an immense quantity of data to be
able to handle and understand almost any type of input text. Created by OpenAI,
it only requires a small amount of input text to produce large and well written,
both from the syntactical and semantic point of view, text. The key idea is that
larger models are better at managing contextual information, which is critical for
the positive outcome of the learning process. Even if fine-tuning could improve the
already impressive performances of the standard model, the core idea is to provide
one model for different use cases trying to stem one of the main problems of its
predecessor GPT-2, the difficulties of working on niche domains. When GPT-3
was initially introduced, it went through different tests, performed for various task
under several domains.They can all be summarized under three categories:

• Few-shot : the model predicts the answer given only a natural description of
the task and some examples.

• One-shot : the model predicts the answer given only a natural description of
the task and a single example.

• Zero-shot : the model predicts the answer given only a natural description of
the task.

Figure 3.6: Performances comparison for zero-shot,one-shot and few-shot learning
[10]

24

Material and methods

As it can be seen from FIG.3.6 as the number of parameters increases the
capability of few-shot learning rises as well.This demonstrates that larger models
are more proficient at in-context learning. Even if GPT-3 has shown incredible
results, its computational heaviness makes it impossible to work without adequate
infrastructures. Also considering that the source code of the model can not be
accessed and only an API provided by OpenAI is available, we decided to not
go further in this direction and to only concentrate on its predecessor GPT-2
which almost shares the same architecture but with a significant inferior number of
parameters. All the results that we will be obtained should be improved using the
largest version GPT-3.

3.3.3 GPT-2
GPT-2 [37] is a large language model with 1.5 billion parameters, trained on
a dataset composed by more than eight million web pages. It’s architecture is
transformer based. There is also the possibility to access to smaller models with a
significant minor quantity of training parameters.In our case, we used GPT2-small
composed by 117M parameters. Following a traditional path, NLP tasks are faced
through supervised learning, using a huge quantity of data. As it can be imagined,
trying to adapt the model to multi-task learning can become even more difficult
and computationally heavier, with the need of a greater quantity of training data.
This is the cause of the necessity of finding alternative models to perform multitask
learning. As language naturally follows a sequential order, it is conventional to
split joint probabilities of symbols into the product of conditional probabilities. To
complete a single task, it is suitable to use a probabilistic framework based on the
estimation of the conditional distribution.

p(output|input)

Considering that we have to perform many tasks, even for the same input, it should
be conditioned not only on the input but also on the task to be performed

p(output|input, task)

3.3.3.1 Architecture

As already showed in 2.7 the initial transformer paper [6] introduced two blocks:

• Encoder: It is composed by two layers which are the Feed Forward Neural
Network and the Self-Attention blocks. It can take inputs up to 512 tokens.

• Decoder: It presents a small variation from the encoder block with the
introduction of the Masked Self Attention

25

Material and methods

Later, with the paper "Generating Wikipedia by Summarizing Long Sequences"
[38] there was the introduction of a modified transformer architecture in which the
Encoder was completely removed. This new architecture is called Transformer
Decoder and it’s reported in FIG.3.7. As it is possible to see, it maintains a
structure which is similar to its predecessor, but removes the self-attention block.
As suggested, GPT-2 is implemented by a stack of decoder blocks, on the contrary,
BERT is composed by encoders only.

Figure 3.7: Transformer-Decoder Architecture [11]

3.3.3.2 How GPT-2 works

Given an input token, it is processed through all layers, a vector is produced and
it is scored with respect to the vocabulary, which for this particular model has
maximum size set to 50.000 words. After the scoring function, the selection of
the most important token is done following different rules, normally the one with
highest probability is chosen but different criteria can be applied. Once the first
iteration is completed, the output is simply added to the input for the next iteration
and the entire process is repeated.

More specifically, the model retrieves the embedding of the preceding token
from the embedding matrix. Before sending it to the initial block, a positional
embedding is attached to underline the word order in the sequence.
After the top block of the model generates its output vector (which is the result
of the neural network processing plus the self-attention),the model multiplies
this generated vector with the embedding matrix. Each row in the embedding
matrix represents the embedding of a word in the model’s vocabulary, thus as
a consequence, this multiplication is considered as a score for every word in the
model’s vocabulary. For the token selection, it is also possible to consider multiple
words, this choice could lead to even more precise results. In fact, it is suggested
to randomly picking a word from the list, with the score indicating the likelihood

26

Material and methods

(a) Start of Transformer decoder generation (b) First iteration of transformer decoded gener-
ation

Figure 3.8: Starting sequence generation’s overview [11]

of the word being chosen. [11]
All the steps are summarized in FIG.3.9

Figure 3.9: GPT-2 computations to get first output [11]

3.3.3.3 Masked Self-Attention

Masked Self-Attention is a variation of the traditional Self-Attention concept.
Originally, the Self-Attention block was articulated on three main action:

• Creation of Query, Key, and Value vectors

• Scoring for each input token

• Sum of the value vectors obtained from the product of their corresponding
scores.

27

Material and methods

In Masked Self-Attention we follow the same path except for the second
step. A fixed percentage of the tokens is masked. The masking is implemented
as a matrix called attention-mask. The scores are calculated by multiplying the
queries matrix by the keys matrix. After this multiplication, as it can be noticed
from FIG.3.10 the cells we want to mask are set to -inf. Finally the final results
are projected by using a softmax activation function. The entire process is shown
in FIG.3.10a and FIG.3.10b

(a) Attention mask application (b) Softmax to obtain actual scores

Figure 3.10: Score computation overview [11]

3.3.3.4 Fully connected Neural Network

After the self-attention step, the input token is processed by a fully-connected
neural network that consists of two sub-layers [11]:

1. Initial layer: It is of the size of the model multiplied four times(for example
for GPT2-Small 768 ∗ 4 = 3072). This gives transformers enough capacity to
handle the majority of the tasks

2. Projection layer: the outputs of the initial layer is projected back into original
model’s dimension.

FIG. 3.11 reports the detailed structure of the entire GPT-2 model block.

Figure 3.11: Complete GPT-2 blocks overview [11]

28

Material and methods

3.3.3.5 Fine Tuning

The original GPT-2 model was trained on 40 gigabytes of text ranging across many
subjects. Considering this, its performances are very good for text generation but
it is possible to have a further improvement by applying fine-tuning. With the
term Fine-tuning we refer to the operation of unfreezing certain layers (usually
top layers) of a pre-trained model to perform feature extraction and consequently
training the model with the added unfrozen top layers. Fine-tuning is based on the
idea of making small changes to a pre-exisiting model to better focus on a assigned
specific task. If the new task is affine to the original one, by utilizing pre-trained
networks, it is possible to explore the feature extraction of the top layers without
the need of building it from scratch. [39] With fine-tuning we aim to solve one of
the main pitfalls of the GPT-2 model which is the poor performances obtained on
specific domains far from common language.

3.3.3.6 Conditional generation on tags

Conditional text generation is a fundamental task in natural language generation.
The goal is to generate text given some pre-conditioning with the scope of guiding
to a more precise and semantic aware text generation. The original GPT-2 model
generates sentences by completing given input sentences. In our case we slightly
modified the training phase in order to generate text from an input consisting of
up to three keywords:

< BOS > + < KEY WORDS > + < EOS >

By combining fine-tuning and conditional generation we think we are able to
generate semantic appropriate sentences without so strict input conditions.

3.3.3.7 Unconditional generation

GPT-2 also gives the possibility of generating unconditional text by providing
only the start of string token < |endoftext| > as input. As a result the generated
sentences will contain the semantic information learned through the fine-tuning
phase, but they will be more inaccurate because of the absence of a strong guiding
input signal.

29

Material and methods

3.3.4 GPT-GAN
Inspired by the work of Qingyang Wu TextGAIL [12], a gpt-based gan model is
presented.It aims to incorporate a so important large language model such as
GPT-2 with the benefits of the GAN architecture. The objective is to improve the
performance obtained in inference phase by classical language models trying to
overcome the exposure bias problem.
The most used approaches for text generation are based on the maximization
of the probability of the target text sequence (Maximum Likelihood Estimation
MLE), but as already stated, it suffers from exposure bias which will cause a huge
downgrade of the performances at inference stage. Solving this problem could
be crucial for a further improvement of the already good performance that large
language models already have.
One of the possible path to follow to solve this issue is by using GANs. The idea is
to have a conditional GAN which can explore the power of large language models
as generator and discriminator as well. With conditional generation, we aim to use
the guidelines provided by the input keywords to have a stronger and more robust
generation which could suit the context for which the model has been trained for.

Figure 3.12: Model’s architecture [12]

3.3.4.1 Architecture

The model is an extension of "Generative Adversarial Imitation Learning"(GAIL)
[40]. The GAN model consists of a generator Gθ and a discriminator Dϕ. As it
happens in the traditional GAN, the aim of the generator is to output sequences
as similar as possible to human generated ones, while the goal of the discriminator

30

Material and methods

is to be able to discern fake sequences from real ones, providing a reward for each
generated sequence. With respect to classical GAIL the state s is substituted
by the text generation prompt x while the corresponding action a by the target
sequence y.
Generator and discriminator should satisfy the optimization problem:

minGθ
maxDϕ

Epreal[Dϕ(x, y)] + EGθ[1 − Dϕ(x, Gθ(x))]

To stabilize the training an imitation replay is introduced (Paine et Al. 2019).
The replay buffer is used to store past information regarding the interaction between
an agent and the environment. Generally the data stored on it is used to update
the policy during the training phase. In this specific implementation, the main
idea is to fill the replay buffer by using ground truth sequences during the training
of the generator model. The reward for this sequences, which will be treated as a
set of normally generated sentences, is fixed to be constant.
To summarize, the main models employed for this architecture are:

• Generator : GPT-2 small (117M parameters) [3.3.3]

• Discriminator : RoBERTa base (125M parameters) [2.7.3]

3.3.4.2 Contrastive Discriminator

As already stated, the goal of the discriminator is to distinguish real sequences from
fake generated ones. In the classical architecture, the discriminator uses the logistic
loss (sigmoid), but it suffers from early saturation. To overcome this problem, the
idea is to slightly modify the discriminator capacity of finding fake samples by
estimating the relative realness of the sequences. There is no more a simple output,
but a value to indicate how much a real sequence is more realistic than a generated
one.
Softmax cross-entropy loss is used to perform the prediction. Now the dis-
criminator analyzes the pair of sentence composed by the real sequence and its
generated counterpart and returns a result value indicating the relative goodness
of the generated with respect to the real sentence.

Dϕ(< x, yr >, < x, yg >)

The model can be trained with cross entropy loss to maximize the probability for
the real sequence pr while the probability of the generated series pg is used as
reward to guide the training of the generator.

31

Material and methods

Figure 3.13: Contrastive Discriminator [12]

3.3.4.3 Proximally Optimized Generator

The probability of a text sequence can be expressed as the joint probability of all
its words:

Gθ(y1:T |x =
TÙ

t=0
Gθ(yt|y<t, x)

y1:T is the text sequence, T is the sequence length and yt is the word at the time t.
The reward is maximized with policy gradient:

Ey∼Gθ
[∇θlogGθ(x)R̂y]

The straightforward optimization of this objective function causes high variance for
the gradient, so PPO policy is used to reduce the effect of it. The likelihood ratio
between the old and current policy for y ∼ Gθold(·|x) is used by PPO to perform
importance sampling:

r(θ) = Gθ(y1:T |x)
Gθold(y1:T |x)

Figure 3.14: PPO overview [13]

32

Material and methods

3.3.4.4 Training Strategy

Considering the specificity of the domain, we decided to perform Domain Adaptation
on the Generator Architecture. This is due to the fact that, even if the generator is
robust itself, it needs a huge quantity of data to deeply learn the specific financial
vocabulary.
For this reasons we built a dataset composed by 500.000 records, containing financial
reports from the most important companies around the world, from 2017 to 2021
as it can be seen in Table 3.3

Sentence Tags
Carrying value as of the balance sheet date of... [’liabilities’, ’invoices’, ’balance’]
Amount for accounts payable to related parties.. [’liabilities’, ’accounts’, ’portion’]
According the finnish russian chamber commerce... [’finland’, ’finnish’, ’russian’]

Table 3.3: Snippet of domain adaptation dataset

Once again we used KeyBERT [33] to extract the main keywords from each
report. As we did for the main dataset, we selected the top-3 most influential
keywords.

As concerns the tokenization phase, as we already said, we have to deal with two
different architectures, GPT-2 as the Generator and RoBERTa as the discriminator.
Both of the two share a tokenizer which has the same structure, but with some
substantial differences. In fact, the RoBERTa tokenzer is derived from the GPT-2
one, resulting in a Byte-level Byte-Pair-Encoding.
Byte-Pair Encoding (BPE) was introduced in Neural Machine Translation of Rare
Words with Sub-word Units [41].
The functioning of BPE can be summarized in the following steps:

• Split of the training data into tokens through a pre-tokenizer

• Creation of a list of unique words and their corresponding frequency

• Vocabulary generation through merging rules. Merging rules represent some
techniques used to add new terms to the vocabulary until a predefined stopping
condition is reached.

The objective of Byte-Level Byte-Pair-Encoding is to create a robust initial
vocabulary. Even if the two tokenizers share the same approach they have different
tagging tokens, which makes it impossible to make the exact matching.
To overcome this problem, we decided to make a mapping of the two vocabularies
during the data loading phase, the idea is to use the RoBERTa tokenizer but we
force it to map the GPT-2 stranger tokens into its vocabulary. As a result there
will no longer be unknown tokens, making the learning phase smooth.

33

Material and methods

3.4 Classification Architectures
To have a deeper evaluation of the proposed methods for text generation we decided
to build a task of text classification on top of it. By doing this we will be able
to understand if the synthetic generated data effectively bring in some benefits to
the entire process. In this section we will present two different architectures, a
modified recurrent neural network GRU and FinBERT: the former represents a
basic approach to the text classification problem while the latter a more specialized
one for the financial domain we decided to focus on.

3.4.1 Gated Recurrent Unit
RNN is one of the most used deep learning approach for sentiment analysis. Due
to its small training time and easy coding, this method serves as a baseline for the
evaluation. It is based on sequential data to generate results based on previous
computations. [42]. In our case we used a Gated Recurrent Unit (GRU) which
represents an improved version of standard recurrent neural networks. To solve
the vanishing and exploding gradient problem, it introduces update and reset gate.
This two vectors decide what should be passed to the output. They can be trained
to keep information for a long time. [43]

3.4.1.1 Update Gate

The update gate has the fundamental role of deciding the portion of past information
to be stored. From a mathematical perspective it computes the update gate zt for
time step t:

zt = σ(W (z)x, +U (z)h(t−1))

As it can be noticed from FIG.3.15 when the input signal xt starts its processing
it is first multiplied by its corresponding weight W (z) and then summed with the
hidden state h(t−1). h(t−1) follows the same preparation as xt. The final result is
obtained by applying a sigmoid function. [43]

3.4.1.2 Reset Gate

The object of this gate is to determine the quantity of information to be forgotten
[43].The same procedure saw in 3.4.1.1 is followed, except for the different activation
function.
From a mathematical perspective we have:

rt = σ(W (r)xt + U (r)ht−1)

34

Material and methods

GRU’s complete architecture is reported in FIG.3.15

Figure 3.15: GRU overview [14]

35

Material and methods

3.4.2 FinBERT
FinBERT [15] is an NLP model that has been pre-trained to capture the sentiment
of documents belonging especially to the financial domain. The model is based on
the BERT language model and simply re-trains it with a large financial corpus,
which specializes it for the purpose of financial sentiment classification. The model
has been developed to assess the problems related to the extreme specificity of the
financial language.
To perform sentiment classification, a dense layer is appended to the final hidden
state of the [CLS] token. This approach is considered the best for exploring BERT
in any classification task. As a result, the classifier network is trained on the dataset
that has been previously labeled following the supervised approach.
FIG.3.16 reports a schema to summarize the main learning steps used to train the
model.

Figure 3.16: FinBERT pre-training and fine-tuning [15]

3.5 Deployment

After working with our algorithm, we decided to actually deploy it. It is a good
way to visually see what the proposed model is capable of. For this study case we
decided to include only the conditional generation pipeline because of the possibility
of the user to interact by inserting guiding keywords. It could be modified to use
also the other unconditioned architecture, but we thought it was not as useful as
its conditioned counterpart. Going into details, we had to deal with:

• Server: it is a responsive process. It makes computation after a request from
a client, it is always running.

36

Material and methods

• App: it is typically dedicated to user interaction. It makes request to the
server and its responsible of all the service and activities.

Figure 3.17: Application preview

To implement the server we used FastAPI [44], which is currently gaining so
much reputation. FastAPI is a collection of tools and more precisely a Python
framework that allows developers to employ a REST (Representational State
Transfer) interface to execute known functions in order to create applications. In
particular, we trained the two conditional model GPT-2 alone and GPT-GAN and
we stored their best checkpoints.After that we modified the generation script to
be able to handle real time inference by receiving up to three keywords as input.
The server receives a json file through a GET request and returns the generated
sentence by simply invoking the generation function.
It must be noted that the model initialization is done once the server is started, so
there is no delay in the generation function.

As concerns the client we decided to use one of the most recent library, which
is Streamlit [45]. The objective of this open-source Python library, is to simplify
the creation of the front-end by exploring the power of python-friendly scripts to
create various and interactive web applications.

37

Material and methods

3.5.1 Application functionalities
With the aim of fully cover all the aspects related to text generation and class
imbalance problem, we decided to implement the following functionalities as services:

• Text Generation: as previously introduced, we decided to focus only on the
conditional models, due to the key role of the user which has the possibility to
guide the sentence creation phase. It is possible to insert up to three different
keywords to obtain a financial sentence with the further possibility of choosing
between the gpt-2 architecture and the gpt-gan one. To make the application
as spendable as possible, we also joined our algorithm with some pre-trained
machine translation models provided by HuggingFace [46]. The goal is to make
the user able to generate and insert terms coming from different languages.
The principal model works only with the English vocabulary, but the machine
translation pipeline allows us to translate the keywords and the final sentence,
after and before the the generation phase.
As shown in the preview FIG.3.17, it is possible to choose between English,
Italian, Spanish and French.

• Dataset Re-balancing: one of the key part of our entire thesis work is
to generate synthetic sentences to solve the so famous problem of missing
and imbalanced data. We decided to provide a service which gives the
possibility of simply uploading a .csv file that will be elaborated by the
server to provide a final dataset-rebalanced.csv containing all the required
additional sentences for each class. At the moment this functionality is working
only for sentiment analysis applied on financial data, but we will reserve to
implement further additions to make it more generic.

• Custom fine-tuning: as previously mentioned, even if our models have been
tested on the financial domain, considering the great power of GPT-2, it is
possible to apply the fine-tuning phase to data coming from different domain.
With this functionality we aim to give to the user the possibility of working
with both of the implemented models without dealing with the difficulties of
setting-up the training phase. In fact, by simply using a GUI, it is possible
to create a new model, select the desired working dataset and wait for the
training to be completed to have the optimized checkpoints.

38

Chapter 4

Results

In this section we will report all the results obtained for both text generation and
text classification task. First we will go through text generation to understand
how the different models generate the text that will be used to obtain a balanced
dataset for the second task of text classification. The main experiments that have
been performed are:

• Text Generation

– Unconditional Generation: SeqGAN vs GPT-2 (4.3.2)
– Conditional Generation: GPT-GAN vs GPT-2 (4.3.3)

• Text Classification

– Base dataset classification (4.4.2)
– SeqGAN re-balanced dataset classification (4.4.3)
– GPT-2 Unconditioned re-balanced dataset classification (4.4.4)
– GPT-2 Conditioned re-balanced dataset classification (4.4.5)
– GPT-GAN re-balanced dataset classification (4.4.6)

4.1 Experimental settings
All the experiments have been performed using Google Colab, which is a service
provided by Google that gives the possibility of training even large and deep neural
networks by offering GPUs. In this case all the tests were performed using the
Nvidia P-100. The use of this graphics permitted us to run some of the lighter
algorithm in less than a hour, as it happened for the training of the SeqGAN and
the GPT-2 Unconditional models. As concerns the conditional pipeline, the run of

39

Results

the GPT-GAN took up to 20 hours, considering the fine-tuning on the modified
datasets, while for the Conditional GPT-2 up to 12 hours. As regards the execution
times of the classification task, all the experiments performed with GRU were
completed in less than a hour while up to 4 hours were needed to evaluate the
results of FinBERT.

4.2 Evaluation Metrics
During our thesis work we will perform and test both text generation and text
classification task, so it is important to define the metrics on which we will deduct
the performance of the proposed algorithms.

4.2.1 Text Generation metrics
Evaluating a text generation task can be crucial and difficult at the same time.
Considering the nature of task, it is impossible to use classical metrics in the
unconditional scenario. In fact the generated sentences are completely produced
from scratch by the model, so it is not suitable trusting on syntactic aware indices,
because there will not be any reference to compare with. In this case we will use
human evaluation. In the conditional generation, as it happens in GPT-2 and
GPT-GAN, we do not only have the input tokens that will guide the conditional
generation, but we will also have the human generated sentence to use as ground
truth to make comparison with the generated ones. Saying this it is possible to use
classical NLP metrics for guidance, such as ROUGE and BLEU score, but we also
have the possibility of using semantic aware metrics such as the BERT score.

• Bilingual Evaluation Understudy (BLEU) score [47]: the rationale
behind BLEU is that the closer a generated text is to its human reference,
the better it is. This score is computed by finding the number of identical
n-grams in the candidate text and in the reference one. There is the possibility
to refer to single token (1-gram) or pair of tokens (bi-gram). The word order
does not influence the final computed score. Modified n-gram precision is used
to prevent candidate sentences from receiving high score for huge amount of
overlapped words. [47].
Theoretically it is possible to achieve a perfect score, but it is unrealistic
because the generated sentence would have to completely match the reference
one.

• Recall-Oriented Understudy for Gisting Evaluation (ROUGE) score:
the main idea of this scoring function is to automatically compare a machine-
generated sentence to a human generated reference text. The recall tries

40

Results

to understand how much the proposed sentence captures the content of the
reference.It can be computed as:

number of overlapping : words

total words in reference sentence

Even if this two metrics seem really powerful, they suffer from the inability of
understanding semantics. This means that if even long sentences have a lot of
token overlapping they could have a completely different meaning. To solve this
problem we can use BERT score, which uses the transformer structure to capture
the semantic meaning of sentences.

• BERT score [16]:it calculates a similarity score for every token in the candi-
date sentence in comparison to each token in the reference sentence. However,
it does not rely on exact matches but explores contextual embeddings to
evaluate the similarity between tokens. BERT score has a higher correlation
with human judgments leading to a better model selection compared to tradi-
tional metrics. Moreover it addresses two prevalent issues in n-gram based
scoring functions. First, they are not able to recognize paraphrases and then
they fail to capture distant dependencies causing an underestimation of the
performances.

Figure 4.1: BERT score procedure overview [16]

The fundamental steps are:

– Token representation: the input tokens are represented exploring the
contextual embedding technique. This leads to a generation of different
representation of even the same word, depending on the captured context.

– Similarity measure: this approach explores a more flexible similarity
measure. To do so vector representation is used. In fact, cosine similar-
ity joined by contextual embedding, make the extraction of contextual
information easier from not only the analyzed pair of tokens but from the
entire sentence as well.

41

Results

– Scoring: The complete score is obtained by matching each token in the
reference sentence to a token in the generated one to compute recall while
it does the opposite to compute the precision.

RBERT = 1
|x|

Ø
xi∈x

maxx̂j∈x̂xT
i x̂j PBERT = 1

|x̂|
Ø
x̂i∈x̂

maxxi∈xxT
i x̂j

FBERT = 2 PBERT RBERT

PBERT + RBERT

– Importance weighting: Recent studies have shown that rare words
incorporate more meaning than common ones. With inverse document
frequency (idf) it is possible to give rare words more importance.

4.2.2 Classification metrics

An evaluation metric quantifies the performance of a predictive model. In general,
the process starts with the training of a model on a particular dataset, then generate
the predictions on a separate holdout dataset (test set), not used during training,
and finally compare the obtained results with the ground truth. The most used
metrics to evaluate a classification model are:

• Accuracy = T P +T N
T P +T N+F P +F N

• Precision = T P
T P +F P

• Recall = T P
T P +F N

• F1 = 2×P recision×Recall
P recision+Recall

= 2×T P
2×T P +F P +F N

The challenge of correctly evaluating a model becomes even harder when dealing
with an imbalanced dataset like in our case. The reason for this is that many of
the standard metrics become unreliable or even misleading. What we are trying to
achieve with the F1-score metric is to find an equal balance between precision
and recall, which is extremely useful in most scenarios when we are working with
imbalanced datasets. The range of F1 is in [0, 1], where 1 is perfect classification
and 0 is total failure.

42

Results

Figure 4.2: Confusion matrix [17]

FIG.4.2 reports an example of confusion matrix. It represents an important
tool to first understand how the most used classification metrics are computed but
it is also a fundamental way to visualize how the analyzed model is approaching
to the classification problem on the desired dataset. As it is possible to notice a
simple task with two possible outcomes is presented but the same reasoning applies
for multi-class problems. On the main diagonal are reported the True Positive
and True Negative results. This two scores must be maximized to obtain a good
classification. While on the secondary diagonal are reported the False Positive and
False Negative.
With the use of the confusion matrix we are able to visually understand where our
algorithm is lacking on and obtain a general idea of the classification performances.

4.3 Text Generation Results
The goal of theses experiments is to generate synthetic text which is as close as
possible to the financial domain used for this study case. In this section we will
show how the different architectures have behaved. We will present first the base
models which will perform unconditional generation, then we will go through the
comparison between the two conditional approaches GPT-GAN and GPT-2 by
itself.

4.3.1 Hyperparameters tuning
For the following experiments we will report the best combination of hyperparam-
eters found for each model test. Considering the heaviness of each training, we
performed a random search. The concept is about encircle a search space as a
limited number of hyperparameters and randomly selecting point in that range.

43

Results

The choice is due to the fact that some of the presented models took a really long
time to complete the training, and trying to test all the possible combinations of
parameters was not suitable.

4.3.2 Unconditional Generation
With Unconditional generation we aim to generate sentences without any guideline,
just by fine-tuning the model on the studied dataset. For this reason, it is quite
difficult to have a complete and deep evaluation of the results. It is not possible
to use any n-gram based evaluation metric, due to the absence of a ground truth
reference, the same applies for BERT score. For this reason, we will provide a
human evaluation trying to underline different aspects, such as the variety of the
words used, the repetition of the sentence and generally the meaning provided by
the entire sentence.

4.3.2.1 Seq-GAN

Considering that our aim is to use text generation to re-balance the dataset, as
it can be seen in 3.2.1, it is strongly imbalanced towards the neutral class, while
there is still a good number of positive sentences, the negative ones are in minority.
In this case we will focus only on the generation of positive and negative phrases
to make the dataset balanced. To do this, we need to train two different models:

• The Positive Seq-GAN: it is trained only on the positive sentence of the
previously mentioned dataset (3.2). The goal is to learn how to generate
positive phrases.

• The Negative Seq-GAN: it is trained only on the negative examples.

Our aim is to generate the number of samples needed to reach the perfect balance
between the three aforementioned classes.
In Table 4.1 and Table 4.2 are provided all the hyperparameters used and tested
to reach the best results for both generator and discriminator.

SHARED HYPERPARAMETERS VALUE
EMB_DIM 32

HIDDEN_DIM 32
SEQ_LENGTH 20

MIN_SEQ_LENGTH 10
BATCH_SIZE 64

Table 4.1: Generator and Discriminator shared parameters

44

Results

• Emb_dim: it indicates the dimension of the embedding

• Hiddem_dim: hidden state dimension of the LSTM cell

• Seq_length: number of words in the generated sequence

• Batch_size: number of samples processed before the model is updated

DISCRIMINATOR VALUE
EMB_DIM 64

FILTER_SIZES [1,2,3,4,5,6,7,8,9,10,15,20]
NUM_FILTERS [100, 200,200,200,200,100,100,100,100,100,160,160]

DROPOUT_KEEP_PROB 0.75
L2_REG_LAMBDA 0.2

Table 4.2: Discriminator parameters

Example Sentence Sentiment
If you need malware removal tool type the URL of your vendor of choice directly into the browser
bar and use link on their website wrote Trend Micro Rik Ferguson on Monday Neutral

Previously Grimaldi held a pct stake in the Finnish company following the takeover bid launched
in November Neutral

Barclays sell benchmark index unit to Bloomberg Positive
To our member and partner the use of IT will mostly be apparent in the increased efficiency of the
result service observes Perttu Puro from Tradeka Positive

The result solution group finland excluding for into may million to margin excluding million the
first watch Negative

Finnish electronics contract manufacturer Scanfil report net sale of EUR mn in the second
quarter of down from EUR mn a year earlier Negative

Table 4.3: Generated sentences

As it is possible to see in Table 4.3 the overall quality of the sentence is mediocre.
We reported some of the most meaningful phrases, but there is an alternation of
proper written sentences and bad written ones.
From a sentence length point of view, we can see that there is a satisfactory number
of words. Even variety seems to be fully accomplished, as we can see there are no
repetition. As concerns the meaning expressed by each sentence, even if some of
the phrases are good overall, there a some which are completely out of context.
As expected, the model seems to be very sensitive and unstable, this results in a
good number of sentences which are not acceptable for the task. Another problem
which appeared during the inference phase, is that the negative generated sentences
tend to be more confused and less adaptive to the domain. This could be certainly

45

Results

caused by the significant inferior number of examples on which the model has been
fine-tuned on, so it may be necessary to use more data to better accomplish the
task. The overall results are not satisfactory, the niche domain of application seems
to be too difficult to be understood by the model to generate proper sentences.

4.3.2.2 GPT-2 Unconditional Generation

As mentioned in 3.3.3.7, even if the original model performs the text generation
task by completing an input sentence, there is also the possibility of performing
unconditional generation by giving only the start of string token < |endoftext| >
as input. Table 4.4 summarizes all the best hyperparameters found. Also for this
model we decided to train two different models for both positive and negative
sentence generation, following the same procedure of 4.3.2.1.

Parameter Value
vocab_size 50257
n_positions 1024
n_embd 768
n_layer 12
n_head 12
activation_function GeLu
scale_attn_weights True

Parameter Value
resid_pdrop 0.1
embd_prop 0.1
atti_pdrop 0.1
layer_norm_epsilon 1e-5
initializer_range 0.02
bos_token_id 50256
eos_token_id 50256

Table 4.4: GPT-2 best hyperparameters

• vocab_size: Vocabulary size of the model

• n_positions: Maximum sequence length that can be used

• n_embd: Dimension of the embedding and the hidden states

• n_layer : Number of hidden layers in the encoder

• n_head: Number of attention heads for each attention layer in the encoder

• resid_pdrop: Dropout probability for all fully connected layers

• embd_pdrop: Dropout ratio

• att_pdrop: Dropout ratio for the attention

• layer_norm_epsilon: The epsilon to be used in the normalization layers

46

Results

• initializer_range: Standard deviation used for initializing all weight matrices

• activation_function: Activation function to be used. In this case we used
the Gaussian Error Linear Unit (GeLU) [48], which brings some advantages
with respect to its predecessor ReLU. In fact it combines the functionalities of
Dropout Regularization and ReLU, leading to better results across different
tasks.

Figure 4.3: ReLU vs GeLU activation functions [18]

As we can see from Table 4.5 the overall quality of the sentences is good, the
phrases seems to have a good variety of words, they look well formulated and
semantically rich of meaning. Here GPT-2 fine-tuned shows its strong and weak
points at the same time. In fact, even if the generated sentences are good, they
don’t seem to follow the context. As already introduced before, this model finds
some important difficulties in specializing in niche domains. As predicted, the
negative model suffers from this problem even more, because of the minor quantity
of data used for training. Considering this, even if the sentences are well formulated,
they can not be considered acceptable.

Example Sentence Sentiment
The man accused of killing four people in a Swedish ski resort was the biggest
perpetrator of political murder in Sweden in years, an investigation has revealed. Negative

I hope you found this an informative read. I hope you’ve found it enlightening to you.
Why are you so obsessed with casting? Negative

I just returned from Moscow, so was not sure if I’d be able to go in the evening and get it.
My husband arrived to see. Positive

Right now, my operating system is not available on the newly launched platform.
I am using a patching tool that will improve the performance and stability. Positive

Table 4.5: GPT-2 Unconditional generated sentences

47

Results

4.3.3 Conditional Generation
With conditional generation we aim to use some guiding input signal, in this case,
some keywords to generate specialized sentences. Considering the nature of the
task, as opposite to Unconditional generation, we are able to evaluate the generated
phrases having some human generated ones. It is possible to use both syntactic and
semantic metrics, as well as human evaluation to deeply understand the correctness
of the output sentences.

4.3.3.1 GPT-2 Conditional Generation

As already presented, this model is able to generate sentences by completing input
tokens. In our case, we aim to slightly modify the training procedure in order to
generate phrases by adding up to three keywords as input signal.
To do this we applied a fine-tuning phase by modifying the data loading stage. In
fact, after extrapolating keyword following 3.2.3, we changed the tokenizer to work
with keywords. As a result, after completing the fine-tuning, it is possible to use
the model to make inference based on input words. The best model parameters
used are summarized in Table 4.6

Parameter Value
vocab_size 50257
n_positions 1024
n_embd 768
n_layer 12
n_head 12
activation_function GeLu
scale_attn_weights True

Parameter Value
resid_pdrop 0.1
embd_prop 0.1
atti_pdrop 0.1
layer_norm_epsilon 1e-5
initializer_range 0.02
bos_token_id 50256
eos_token_id 50256

Table 4.6: GPT-2 best hyperparameters

As concerns the training parameters, they are reported in Table 4.7

Parameter Value
Epochs 10

Learning rate 5e-4
Epsilon 1e-8

Warmup steps 1e2

Table 4.7: GPT-2 Training parameters

48

Results

For conditional models we decided to report the trend of the perplexity as the
epochs increase. This can be considered an important factor because it will lead us
to the choice of the best model.A lower perplexity will result in higher quality of
the generated sentences. As it can be noticed from FIG.4.4a and FIG.4.4b, the
validation perplexity starts from a high value, then it linearly decrease until it
reaches a minimum point. After the minimum peak there is a phase of increase, this
is due to the fact that the model is overfitting, the specialization on the training
set has gone too far and the capacity of generalization starts to get lost. In both
model, the perplexity reaches really high values at the end of the training. As
concerns the best results, while the positive model achieves a perplexity of 40, the
negative one is about 80. So there will be some differences in the quality due to
this factor.

(a) Perplexity trend for positive model (b) Perplexity trend for negative model

Figure 4.4: Perplexity trend for positive and negative models

Table 4.8 reports some example of generated sentences. In this case, the human
generated reference are drawn as well. The first two examples are from positive
generation while the last two from the negative one

Generated Reference
"Both sales and net sales of the group grew by 3m and 4m respectively in 2006" "The ai million is to increase sales by at least one fifth in 2006"
"Operating profit increased by eur 200m compared to a loss of 0 for the
corresponding period in 2005"

"Operating profit increased to eur 140 mn fro million eur 49 mn in the corresponding
period in 2005"

"The patent on the Flsmidth is not in the Danish company" "Danish company Flsmidth has acknowledged that it has violated a patent
held by finnish Metso"

"The ban on the sale of the Mario WVX stock and the sale of the WVX stock
to the company in the country have been temporarily
halted and the company will resume trading in the country"

"At the moment Valio is not worried but if the ban continues for long
it may become quite a problem"

Table 4.8: GPT-2 Conditional generated sentences

As it can be seen from Table 4.8 the overall quality of the generated sentences is
good, they seem to be close to the human generated ones. The length and variety
is satisfying and the context is respected too. From a mathematical point of view,

49

Results

we decided to plot some statistics with the aim of understanding and underlining
the small details that can not be seen through simple human analysis. We will plot
both positive and negative models, trying to extrapolate the differences.

(a) Rouge-1 (b) Rouge-L

Figure 4.5: Rouge-1 and Rouge-L of positive and negative models

In FIG.4.5a and FIG.4.5b we plotted both Rouge-1 and Rouge-L scores as the
temperature value increases. Temperature is a parameter used in natural language
processing models to increase or decrease the “confidence” a model has in its most
likely response. In our setting, it is extremely indicative, and the study of its
variation is crucial to understand which model will perform the best. As expected,
the rouge score in both its computations, starts to decrease as the temperature
increases, but while in the negative model it reaches its highest peak in 0.7, in the
positive model the degrowth is linear.

(a) BLEU (b) BERT score

Figure 4.6: BLEU and BERT score of positive and negative models

50

Results

The same trend can be observed in FIG.4.6a for the BLEU score. Its behavior
is similar to Rouge-L. Also in this case the negative model reaches slightly worse
results. As already anticipated, the significant minor quantity of negative data
available has a key role.
From the semantic point of view, the results are impressive. As reported in FIG.4.6b,
the BERT score computed between the human reference sentence and the gpt-2
generated one is quite high, reaching a peak of 0.84 for positive phrases and and
0.80 for negative ones. This suggests us, that with the conditional generation
the context is more easily integrated into sentences leading to a more accurate
generation.

4.3.3.2 GPT-GAN

As already mentioned in 3.3.4 we tried to explore the power of a large language model
as GPT-2 in a GAN environment against a powerful adversary as RoBERTa. Even
in this case the generation is conditioned by the input keywords, we believe that
their help could be even more influential. As concerns the training procedure, we
first did a warm-up training to obtain the weights of an already specialized generator.
We used the same model presented in 4.3.3.1 while the training parameters are
reported in Table 4.9

Parameter Value
Epochs 30

Learning rate 2e-5
Optimizer name: AdamW

Weight decay 0.01

Table 4.9: GPT-2 Generator Training parameters

As concerns the discriminator, we pre-loaded the Roberta-base model.

51

Results

In particular all the detailed parameters of the learning phase are reported in
Table 4.10

Parameter Value
PPO buffer size 128
PPO espilon: 0.2

Sample batch size 32
Discriminator pretrain steps 200

Recompute log probs True

Table 4.10: Training parameters

• PPO buffer size: This refers to the amount of experiences required to be
collected before updating the policy model.

• PPO epsilon: This refers to the acceptable level of difference between the
previous and new policies during gradient descent updating. If this value is
small,more consistent updates will be made, but it will also cause the training
process to be slower.

• Recompute log probs: It may be tuned to to address precision issues in
autoregressive generation.

As we did in 4.3.3.1 we reported the perplexity trend to try to understand better
the behavior of the model during the training phase. In this case we reported only
the validation perplexity in FIG 4.7a and FIG.4.7b. Considering that the generator
is initialized with the weights of the GPT-2 model, this analysis will focus only on
the behavior of the model during steps, as there are no fixed epochs. As we can
see there is a initilization phase in which the perplexity tends to be stable, only
the loss is optimized, but as it happened for the MLE model, at around step 300
the model starts overfitting reaching very high peaks.

As it can be seen in FIG.4.8a and FIG.4.8b for both positive and negative
models, the generator and discriminator losses cross in a point and then they
will diverge. This is because, as already mentioned, even if both generator and
discriminator have the goal of optimization of their loss function they are at the
same time adversary. This means that when one starts to prevail the other will
fail, it is not possible for the two to "win" at the same time

52

Results

(a) Perplexity trend for positive model (b) Perplexity trend for negative model

Figure 4.7: Perpelxity of positive and negative models

(a) Generator and discriminator loss trend
for positive model

(b) Generator and discriminator loss trend
for negative model

Figure 4.8: Loss trends of positive and negative models

Table 4.11 reports some of the generated sentences. The first two are from the
positive model while the last two from the negative one. As it can be noticed
both length and variety are really good. The context seems to be focused and
the generated sentence are really close to the human reference. As we did for
GPT-2 alone, we reported some statistics to deeply understand how the generation
behaved. The collected metrics will be very useful also for the comparison phase.
In fact, thanks to these we will be able to determine which models fits the task
better leading to more complete synthetic data. Once again we plotted both
syntactical and semantic metrics as the temperature values increase, following the
same procedure of 4.3.3.1

53

Results

Generated Reference

"In finland the average sales were eur 9 million up
from eur 48 million in 2006"

"However sales volumes in the food industry are
expected to remain at relatively good levels in
finland and in scandinavia atria said"

"Nordea estimates its long term growth outlook for baltic
and american to be positive and that it expects its long term
growth to be medium term"

"Nordea sees a return to positive growth for the
baltic countries in 2011"

"The company said that fewer people had been hired in
the previous two years than in the previous year" "As a result some 20 persons will no longer be needed"

"The company condition is that the corporator in the country
will reduce the profit of its office in the coming year"

"Finnish technology company Raute corporation
Omx Helsinki Rutav issued on tuesday 23 September
a profit warning for the financial year 2008"

Table 4.11: GPT-GAN Conditional generated sentences

(a) Rouge-1 (b) Rouge-L

Figure 4.9: Rouge-1 and Rouge-L of positive and negative models

As it can be noticed from FIG.4.9a and FIG.4.9b, in this case both positive and
negative models follow a linear decrease of the Rouge-1 and Rouge-L values. This
is completely understandable as the possibility of the model of varying increases as
well. Less and less words are overlapping leading to a drastic decrease of about 0.1.
The drop is even harder for the negative model.

54

Results

(a) BLEU (b) BERT score

Figure 4.10: BLEU and Bert score of positive and negative models

As regards the BLEU score in FIG.4.10a, for the positive model the peak is
reached for the initial temperature value of 0.1 but acceptable results are obtained
until 0.7. The same does not apply for the negative model, dealing with a significant
minor score in the range 0.10 - 0.12.
As concerns the semantic, the BERT score in FIG.4.10b shows incredible perfor-
mances, keeping a 0.81 score for positive sentences while a slightly less value of
0.79 for negative ones. The particular fact is that while the negative phrases reach
the highest peak for a temperature value of 0.8, for the same point the positive
reach the minimum. Once again the conditional generation has showed to obtain
really good results.

4.3.3.3 GPT-GAN vs GPT-2

In this section we will compare the two main conditional approaches, trying to
underline objective factor such as variety and repetition.

As we can see we reported some statistics of the three approaches, we also
considered the human reference as guiding benchmark. For both GPT-2 and GPT
based GAN we reported the results obtained by the positive model. As it is
noticeable from FIG.4.11a the number of distinct 2-grams is very high for both the
two approaches. They seem to use a huge variety of the words in the vocabulary
trying to avoid redundancy. As concerns the number of sentence repetition in
FIG.4.11b, GPT-GAN shows better performance, more and more different phrases
are generated and as expected, as the temperature value increase, the number of
repetition linearly decreases, becoming really close to the human benchmark.

55

Results

(a) Number of distinct 2-grams (b) Number of sentence repetition

Figure 4.11: GPT-GAN vs GPT-2 quality measures

4.4 Text Classification Results
The goal of the following experiments is to evaluate how much the sentences
generated in 4.3 can influence the performances of the sentiment analysis. We will
first present the task performed on the base dataset "FinancialPhraseBank" 3.2.1
and then we will compare the results obtained using balanced data coming from
the different text generation models we presented in the previous section.

4.4.1 Hyperparameters tuning
For the following experiments we will report the best combination of hyperaparam-
eters found for each model test. As concerns the GRU architecture, considering the
restricted depth of the model, we performed a Grid Search that refers to a process
that performs the testing of a set of manually defined hyperparameters for the
desired algorithm.All the possible combinations of parameters will be evaluated.On
the contrary, due to its architecture, FinBERT showed to take a really long time to
complete its training phase, this forced us to perform Random Search. The main
difference is that this approach only selects and tests a random combination of
hyperparameters. In our case the heaviness of the training played a key role in the
choice of the two different approaches.

4.4.2 Original dataset
As already mentioned, the base dataset is strongly imbalanced towards the "neutral"
class. This will for sure influence the outcome of the classification task.

56

Results

4.4.2.1 GRU

We first performed model training using a simple but effective GRU. It is known for
reaching good performances, but also for being general purpose, performing well
on different contexts. The most important parameters are drawn in Table 4.12:

Parameter Value
Epochs 10

Input dimension 7277
Output dimension 128

Optimizer Adam
Loss Sparse Categorical Cross Entropy

Table 4.12: GRU training parameters

In FIG.4.12a and FIG.4.12b we can see the behavior of the model during training
phase.

(a) Loss’ trend (b) Accuracy’s trend

Figure 4.12: Loss and Accuracy trend of GRU on the original dataset

Table 4.13 presents the classification report, underlying F1-score,Accuracy,
Precision and Recall. Even if we presented the full report we will trust the F1-score,
trying to find a good balance between precision and recall. As already mentioned
in 4.4.2, F1-score is the best choice in an imbalanced environment.

57

Results

Precision Recall F1-score
0 (Negative) 0.49 0.61 0.55
1 (Positive) 0.71 0.71 0.66
2 (Neutral) 0.67 0.63 0.65

Table 4.13: GRU Base Dataset Classification Report

The first thing that stands out is that the F1-score for the negative class is
significantly less than the positive and neutral class. It is clear that the model finds
some difficulties in analysing the examples from the minority class. As concerns the
positive label, even if its examples are less than the neutral ones, the classification
seems to be already good.

Figure 4.13: GRU Base Dataset Confusion Matrix

The classification is clearer in FIG.4.13. The number of negative examples
classified correctly is strictly less than the other two classes, consequently there
is a great part of misclassified examples belonging to the positive and above all
negative class. The average F1-score is 0.64.

4.4.2.2 FinBERT

Considering the niche domain of application, we decided to try a specialized
classification model with the aim of improving the performances of the general
RNN. The main parameters tuned are in Table 4.14.

58

Results

Parameter Value
Epochs 5

Optimizer Adam
Learning rate 1e-5

Maximum sequence length 74

Table 4.14: FinBERT main parameters

The classification report is presented in Table 4.15.

Precision Recall F1-score
0 (Negative) 0.47 0.39 0.43
1 (Positive) 0.83 0.87 0.85
2 (Neutral) 0.83 0.85 0.84

Table 4.15: FinBERT Base Dataset Classification Report

As it can be noticed, even if the classifier performs better than its counterpart,
the negative class suffers even more due to the minor quantity of data available.
The F1-score for the positive and neutral class increased by 0.20 while for the
negative label there is a decrease of 0.10. The average F1-score is 0.70 which shows
a increase of performance with respect to the GRU classifier.

Figure 4.14: FinBERT Base Dataset Confusion Matrix

The confusion matrix in FIG.4.14 shows this effect even more, it is clear that
not even the best classifier possible can achieve acceptable results, there is the need
of introducing synthetic data to fully explore the potential of the model.

59

Results

4.4.3 Seq-GAN
The dataset has been perfectly re-balanced by using the SeqGAN. In this section
we will analyze how the presented models handle synthetic data.

4.4.3.1 GRU

The training parameters are reported in Table 4.16. The same configuration from
4.4.2.1 is maintained except for the input dimension which was changed to 8524
due to the larger vocabulary.

Parameter Value
Epochs 10

Input dimension 8524
Output dimension 128

Optimizer Adam
Loss Sparse Categorical Cross Entropy

Table 4.16: GRU training parameters

The training behavior is reported in FIG.4.15a and FIG.4.15b. The trends
showed are similar to the one already presented for the base dataset, there are no
significant differences

(a) Loss’ trend (b) Accuracy’s trend

Figure 4.15: Loss and Accuracy trend of GRU on the SeqGAN dataset

The classification report is shown in Table 4.17. As it is noticeable, the generation
and re-balancing through GAN has brought some benefits, but as suspected the
generation is not sufficient. In fact, even if a raise of the F1-score of the negative
class is observed, the positive one has decreased. This could be explained by the

60

Results

fact that positive generated sentence are really far from the context resulting in a
performance degradation.

Precision Recall F1-score
0 (Negative) 0.61 0.70 0.65
1 (Positive) 0.65 0.47 0.55
2 (Neutral) 0.67 0.75 0.71

Table 4.17: GRU SeqGAN Dataset Classification Report

Our suspects are confirmed by the confusion matrix in FIG. 4.16. It is clearly
showed that the model has difficulties in classifying positive examples, they are
mainly misclassified with neutral ones. The consequences of what we found in
4.3.2.1 are confirmed, the poor context included in the generated phrases led to
the same performances obtained on the base dataset, the average F1-score is 0.64.

Figure 4.16: GRU SeqGAN Dataset Confusion Matrix

4.4.3.2 FinBERT

The main parameters studied for training are reported in Table 4.18. We kept the
same parameters studied for the base dataset considering that in both cases the
longest sequence was 74.

Parameter Value
Epochs 5

Optimizer Adam
Learning rate 1e-5

Maximum sequence length 74

Table 4.18: FinBERT main parameters

61

Results

As the classification report in Table 4.19 shows, with this powerful and specialized
classifier, the negative class suffers less for the worse quality of synthetic data
introduced, and even more surprisingly it is that it performs better than the
positive one. It could be due to the fact that this type model is better in finding
patterns for more radical sentences.

Precision Recall F1-score
0 (Negative) 0.65 0.87 0.75
1 (Positive) 0.81 0.64 0.71
2 (Neutral) 0.85 0.76 0.80

Table 4.19: FinBERT SeqGAN Dataset Classification Report

What we anticipated is better shown in the confusion matrix in FIG. 4.17. The
classification of the correct negative classes is the best performing, but it should
be also considered that the misclassified items are in substantial number. On the
other hand, the positive points are well classified and the number of false positive
and negative is minimal. As it is possible to notice, the presented results are a lot
better than the base counterpart, achieving an average F1-score of 0.75, which
brings a lot of benefits into the task.

Figure 4.17: FinBERT SeqGAN Dataset Confusion Matrix

62

Results

4.4.4 GPT-2 Unconditional Generation
Thanks to text generation through GPT-2 fine-tuned for unconditional generation,
the dataset has reached a perfect balance among its classes. In the following
sections we will analyze the behavior of the model when dealing with this new
dataset.

4.4.4.1 GRU

The training parameters are reported in Table 4.20. As usual we used the same
parameters selected for the base tests and we simply modified the input dimension
due to the different vocabulary length.

Parameter Value
Epochs 10

Input dimension 8524
Output dimension 128

Optimizer Adam
Loss Sparse Categorical Cross Entropy

Table 4.20: GRU training parameters

As it is possible to see in FIG.4.18a and FIG.4.18b the trend followed by the
loss and the accuracy is similar to the base model, there are no major differences.
The validation loss tends to be stable at 0.6, while as concerns the accuracy, after
reaching a peak on the first epoch, a slight decrease can be observed.

(a) Loss’ trend (b) Accuracy’s trend

Figure 4.18: Loss and Accuracy trend of GRU on the GPT-2 Unconditional
dataset

63

Results

As the classification report in Table 4.21 underlines, there are no significant
differences with the results obtained with the base dataset. There is an increase of
performances for the negative label at the cost of a decrease of the positive one.
The neutral class seems to be classified in more or less the same manner.

Precision Recall F1-score
0 (Negative) 0.63 0.72 0.68
1 (Positive) 0.67 0.50 0.57
2 (Neutral) 0.66 0.74 0.70

Table 4.21: GRU GPT-2 Unconditional Dataset Classification Report

As reported in the confusion matrix, we can see that the precision of the positive
class is quite good but the recall is not sufficient at all. The F1-score is fully
influenced by this, resulting in an average score of 0.64. There is an imperceptible
improvement compared to the base and seqgan datasets, but the introduction of
this kind of synthetic data does not seem to bring any advantage.

Figure 4.19: GRU GPT-2 Unconditional Dataset Confusion Matrix

4.4.4.2 FinBERT

The main parameters studied for training are presented in Table 4.22. Even in this
case we kept the same parameters studied for the base dataset considering that in
both cases the longest sequence was 74.

64

Results

Parameter Value
Epochs 5

Optimizer Adam
Learning rate 1e-5

Maximum sequence length 74

Table 4.22: FinBERT main parameters

As the classification report in Table 4.23 shows, even if there is an improvement,
the average F1-score is 0.74 compared to the baseline 0.70, the result of the
classification task does not seem to be sufficient. Moreover, it can be observed an
inverse trend with respect to the GRU classifier, the performance obtained on the
GPT-2 Unconditional generated dataset are lower than the SeqGAN counterpart.

Precision Recall F1-score
0 (Negative) 0.65 0.79 0.71
1 (Positive) 0.77 0.67 0.72
2 (Neutral) 0.82 0.76 0.79

Table 4.23: FinBERT GPT-2 Unconditional Dataset Classification Report

As shown in the confusion matrix in FIG. 4.20. the negative class suffers from
lower precision resulting in many false positives and negatives.The opposite happens
for the positive label. As reported for the SeqGAN, the introduction of sythetic
data did not bring any improvements to the task

Figure 4.20: FinBERT GPT-2 Unconditional Dataset Confusion Matrix

65

Results

4.4.5 GPT-2 Conditional Generation
The dataset used for the test has been balanced completely by using GPT-2
fine-tuned to perform conditional generation. Considering the nature of the text
generation evaluation, we expect to increase and improve the baseline provided
by the base dataset with both models. In this section we will see how the two
architectures behave and we will quantify the benefits if any.

4.4.5.1 GRU

The training parameters are reported in Table 4.24. Once again, the only parameters
we changed compared to the previous test is the input dimension to 7324. No other
changes are registered.

Parameter Value
Epochs 10

Input dimension 7324
Output dimension 128

Optimizer Adam
Loss Sparse Categorical Cross Entropy

Table 4.24: GRU training parameters

As it is possible to see from FIG. 4.21b, the accuracy of the model is really good,
reaching a peak of 0.7. Also the loss in FIG. 4.21a follows a regular path, once
the model starts overfitting, the validation loss increases, starting to assume large
values.

(a) Loss’ trend (b) Accuracy’s trend

Figure 4.21: Loss and Accuracy trend of GRU on the GPT-2 Conditional dataset

66

Results

As reported by the classification report in Table.4.25, the introduction of more
accurate synthetic data brings more equity among the different classes. They seem
to be treated in a very similar way by the model. The average F1-score is 0.70,
there is an improvement of 0.06 compared to the baseline.

Precision Recall F1-score
0 (Negative) 0.72 0.68 0.70
1 (Positive) 0.78 0.63 0.70
2 (Neutral) 0.61 0.76 0.68

Table 4.25: GRU GPT-2 Conditional Dataset Classification Report

Our hypothesis are strengthen by the confusion matrix in 4.22. As it is possible
to notice, all the classes behave in a similar manner. There is still a small gap
between neutral and the other two mixes classes, but it seems to be reduced. The
results are better, and the introduction of synthetic examples resulted in a increase
of performance.

Figure 4.22: GRU GPT-2 Conditional Dataset Confusion Matrix

4.4.5.2 FinBERT

All the parameters tuned during training phase are reported in Table 4.26. In
this case we had to deal with overall longer sequences, this made us change the
Maximum sequence length to 164, which is the highest value registered

67

Results

Parameter Value
Epochs 5

Optimizer Adam
Learning rate 1e-5

Maximum sequence length 164

Table 4.26: FinBERT main parameters

As can be seen from the classification report in Table 4.27 the model shows
incredible performances reaching an average F1-score of 0.84. The interesting thing
to notice is that it seems to be the neutral class to have a lot of misclassifications,
even if the precision is good there is a relatively low recall. The negative and
positive classes, on the other hand, reaches the same results. This means that the
quality and the context incorporated in the generated sentence is really good.

Precision Recall F1-score
0 (Negative) 0.84 0.91 0.87
1 (Positive) 0.84 0.89 0.87
2 (Neutral) 0.88 0.75 0.81

Table 4.27: FinBERT GPT-2 Conditional Dataset Classification Report

The confirmation is showed in the confusion matrix in FIG. 4.23. A significant
but not excessive number of examples from the neutral class are classified as
positive or negative. This slightly influence the outcome of the model, but it must
be underlined that the performances reached are impressive.

Figure 4.23: FinBERT GPT-2 Conditional Dataset Confusion Matrix

68

Results

4.4.6 GPT-GAN
In this section we will analyze the classification results obtained on the GPT-
GAN balanced dataset.As already seen, the peculiarity of the model is the jointly
collaboration between two large language models in GAN environment. The goal is
to try to understand if this approach can bring some more advantages with respect
to GPT-2 alone.

4.4.6.1 GRU

The training parameters are reported in Table 4.28. In this case the vocabulary
length was extended to 11360 leading to a change in the input dimension.

Parameter Value
Epochs 10

Input dimension 11360
Output dimension 128

Optimizer Adam
Loss Sparse Categorical Cross Entropy

Table 4.28: GRU training parameters

As it is possible to see in FIG. 4.24a and FIG.4.24b both accuracy and loss
reach the best results we have seen so far. In particular the validation accuracy
peaks at 0.76 while the validation loss minimum is registered at 0.6.

(a) Loss’ trend (b) Accuracy’s trend

Figure 4.24: Loss and Accuracy trend of GRU on the GPT-GAN dataset

The average F1-score is 0.76 which is by far the highest and better result
achieved by GRU classifier in this application domain. Previously the best result

69

Results

was reached by the GPT-2 Conditional model with a score of 0.70. An interesting
increase of 0.06 can be noticed

Precision Recall F1-score
0 (Negative) 0.79 0.75 0.77
1 (Positive) 0.82 0.78 0.80
2 (Neutral) 0.70 0.76 0.73

Table 4.29: GRU GPT-GAN Conditional Dataset Classification Report

In this case the positive label is the one which is classified better, but even the
negative one seems to be well threatened. Generally speaking a balance among the
classes can be observed from FIG. 4.25. This is exactly what we wanted to achieve
and what we expected from the text generation results.

Figure 4.25: GRU GPT-GAN Unconditional Dataset Confusion Matrix

4.4.6.2 FinBERT

The main parameters are reported in Table 4.30. As it happened in 4.4.5.2 even in
this case we are dealing to the longest sequences so far.

Parameter Value
Epochs 5

Optimizer Adam
Learning rate 1e-5

Maximum sequence length 220

Table 4.30: FinBERT main parameters

Table 4.31 show the classification report and surprisingly we have a different

70

Results

scenario from the one observed with GRU. In fact, the average F1-score is 0.80
which is inferior to 0.84 obtained on the GPT-2 conditioned dataset. While the
positive and negative labels seem to be well classified, in this case the neutral class
suffers from low recall. It is likely that the model is not able to find patterns to
completely distinguish this sentiment from the others, resulting in a performance
degradation.

Precision Recall F1-score
0 (Negative) 0.73 0.86 0.79
1 (Positive) 0.87 0.85 0.86
2 (Neutral) 0.81 0.68 0.74

Table 4.31: FinBERT GPT-GAN Dataset Classification Report

What already anticipated can be seen in FIG. 4.26, a lot of negative example
have been classified as neutral ones, so it is probable that the patterns found in
classification are very similar resulting in misclassification mistakes.

Figure 4.26: FinBERT GPT-GAN Dataset Confusion Matrix

71

Results

4.5 Parameter Analysis

4.5.1 Number of keywords
One of the key aspect of conditional text generation is to give a strong guiding
signal that can keep the model on the path without risking of going out of context.
The number of keywords plays a huge role in this phase. It is important to find a
great balance between performances and resource needed. More keywords will lead
to more specific generated sentence but at the same time to a longer training time.
In this parameter analysis we decided to limit the generation to three keywords
maximum and to plot the text generation statistics we already saw in 4.3.3.3. We
will analyze BLEU and ROUGE scores to understand the syntactic correspondence
while the BERT score for the semantics.

(a) Rouge1 score (b) RougeL score

As we can see from FIG.4.27a and FIG.4.27b the ROUGE-1 score reaches its
highest points with K=3 keywords while a different trend can be seen for the
ROUGE-L which shows its best behaviour for K=2 keywords. ROUGE-L its based
on the longest common subsequence, even if there is a smaller number of input
words it seems that the K=2 performs better in this aspect.

(a) BLEU score (b) BERT score

72

Results

As concerns BLEU and BERT score, the results are reported in FIG.4.27a and
FIG.4.27b. The charts cleary shows how a stronger input signal can give better
results. It must be noted that from a semantic point of view the performances are
very close, for a value of temperature of 0.8, which can be considered plausible for
the final text generation, K=2 and K=3 achieve the same results.

73

Chapter 5

Conclusions and future
works

Generative Adversarial Networks gained a lot of success lately. They showed
incredible performance in different tasks and domains, becoming one of the best
way of generating synthetic data when real data is missing. In fact, thanks to this
approach, it is possible to correct various underperforming models which suffer
from the lack of data. During our thesis work we also explored the potentiality
of this functionality by trying to solve a sub-problem of the lack of data related
to class imbalance. By training different models on different data, we were able
to generate a completely balanced working dataset to fully appreciate the skills of
general and specific classifiers for sentiment analysis.

Even if GANs have demonstrated great performances in different tasks and
domains, the problems and difficulties related to Natural Language Processing
and above all the discrete nature of data treated, are still evident. To analyze
the goodness of this approach we decided to perform different tasks by using
different architectures. By comparing all of the experiments made we were able
to understand if the GAN approach can represent a valid alternative to classical
language model.

We started from the basic GAN approach to text data, by developing the Seq-
GAN [9]. Even if this approach represent a huge milestone, it is the first GAN based
model working with textual data, its performances are quite delusional. Above
all in such a niche field as it is the Financial one, the lack of some guiding sig-
nals results in a very generic generation which is quite far from the real distribution.

74

Conclusions and future works

By simply comparing this approach to its language model counterpart GPT-2
small [37], it is possible to notice some differences and advantages in favour of the
latter.
Once understood that simple architectures can not be as competitive as large
language models, we decided to explore the power of these last and try to create a
GAN based model. Thanks to the work of Professor Qingyang Wu [12] we were able
to develop a big pipeline which can use both GPT-2 small [37] and RoBERTa [30]
as Generator and Discriminator.

Our idea is now to understand if the GAN approach can bring some more
creativity and specificity at the same time. To even enforce the generation, we
decided to give as input some guiding signals. In fact, by using KeyBERT [33] we
were able to extrapolate the most salient keywords for each training sentence. To
create the parallelism, we slightly modified the GPT-2 fine-tuning.

Once the two different generations are complete, the results produced are very
interesting. The GPT-GAN approach showed to be stronger in the majority of the
cases, providing more diversity and better quality. It must be noted that GPT-2
by itself reached performances which are very close, becoming a great rival using
less training resources.

After the text generation, a further comparison have been implemented by
exploring the classification task. Two models have been used:

• GRU [42]: very simple and lightweight. Its complete training could be done
in some minutes.

• FinBERT [15]: very financial dependent and specialized model, high number
of parameters used for training resulting in very long running time, even days
for very large datasets.

The results of this phase were really surprising. GPT-GAN showed once again
to be the best model for GRU classification task. But surprisingly GPT-2 alone per-
formed better with FinBERT. This could be due to the fact that GPT-2 generated
sentence were more conventional and in general belonging to a more traditional
schema more familiar with the human reference distribution of data, while the
GPT-GAN ones were composed by a greater variety of tokens bringing more cre-
ativity but at the same time breaking away from the standard schema.

At the end the two models showed equal performances, with GPT-GAN slightly
prevailing in most of the tasks. Only the financial domain has been fully analyzed,
but it could be interesting to understand if the GAN approach could unlock more

75

Conclusions and future works

performances with more generic domains. It is important to understand that due
to resource limitation, we were not able to use GPT-3 as our initial intention was.
GPT-3 showed to be very effective also in niche domains, solving some problems of
its predecessor GPT-2. We firmly believe that by switching to the newest GPT
model, we will be able to reach even greater performances.

As concerns the model deployment, very different functionalities have been
provided to the user to fully explore the potentiality of our work. From text
generation with different languages, to real time dataset re-balancing and custom
fine-tuning, we believe that all the key steps of our entire thesis work have been
analyzed. In the future it could be interesting to try to develop a complete platform
in which different users can work together and share their discoveries.

76

Bibliography

[1] “Actor-critic model.” [Online]. Available: https://www.kdnuggets.com/2018/
03/5-things-reinforcement-learning.html

[2] Y. Tang, “Three Types of Recurrent Neural Networks - To-
wards AI,” 2 2022. [Online]. Available: https://pub.towardsai.net/
three-types-of-recurrent-neural-networks-567b4e9c4261?gi=ba5d6013a7a7

[3] A. Severyn and A. Moschitti, “Unitn: Training deep convolutional neural
network for twitter sentiment classification,” in International Workshop on
Semantic Evaluation, 2015.

[4] V. Jain, “Everything you need to know about “Ac-
tivation Functions” in Deep learning models,” 12
2021. [Online]. Available: https://towardsdatascience.com/
everything-you-need-to-know-about-activation-functions-in-deep-learning-models

[5] “Overview of GAN Structure.” [Online]. Available: https://developers.google.
com/machine-learning/gan/gan_structure

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017. [Online].
Available: https://arxiv.org/abs/1706.03762

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” 2018. [Online].
Available: https://arxiv.org/abs/1810.04805

[8] M. Saifee, “GPT-3: The New Mighty Language Model from OpenAI - Towards
Data Science,” 2 2022. [Online]. Available: https://towardsdatascience.com/
gpt-3-the-new-mighty-language-model-from-openai-a74ff35346fc

[9] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence
generative adversarial nets with policy gradient,” 2016. [Online]. Available:
https://arxiv.org/abs/1609.05473

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and

77

https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
https://pub.towardsai.net/three-types-of-recurrent-neural-networks-567b4e9c4261?gi=ba5d6013a7a7
https://pub.towardsai.net/three-types-of-recurrent-neural-networks-567b4e9c4261?gi=ba5d6013a7a7
https://towardsdatascience.com/everything-you-need-to-know-about-activation-functions-in-deep-learning-models
https://towardsdatascience.com/everything-you-need-to-know-about-activation-functions-in-deep-learning-models
https://developers.google.com/machine-learning/gan/gan_structure
https://developers.google.com/machine-learning/gan/gan_structure
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://towardsdatascience.com/gpt-3-the-new-mighty-language-model-from-openai-a74ff35346fc
https://towardsdatascience.com/gpt-3-the-new-mighty-language-model-from-openai-a74ff35346fc
https://arxiv.org/abs/1609.05473

Bibliography

D. Amodei, “Language models are few-shot learners,” 2020. [Online]. Available:
https://arxiv.org/abs/2005.14165

[11] J. Alammar, “The Illustrated GPT-2 (Visualizing Transformer Language
Models).” [Online]. Available: https://jalammar.github.io/illustrated-gpt2/

[12] Q. Wu, L. Li, and Z. Yu, “Textgail: Generative adversarial imitation learning
for text generation,” 2020. [Online]. Available: https://arxiv.org/abs/2004.
13796

[13] O. Community, “Reinforcement Learning with PPO,” 9 2021. [Online].
Available: https://opendatascience.com/reinforcement-learning-with-ppo/

[14] G. Loye, “Gated Recurrent Unit (GRU) With PyTorch,” 1 2023. [Online].
Available: https://blog.floydhub.com/gru-with-pytorch/

[15] D. Araci, “Finbert: Financial sentiment analysis with pre-trained language
models,” 2019. [Online]. Available: https://arxiv.org/abs/1908.10063

[16] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi,
“Bertscore: Evaluating text generation with bert,” 2019. [Online]. Available:
https://arxiv.org/abs/1904.09675

[17] J. Mohajon, “Confusion Matrix for Your Multi-Class Machine Learning
Model,” 12 2021. [Online]. Available: https://towardsdatascience.com/
confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826

[18] “File:ReLU and GELU.svg - Wikimedia Commons,” 11 2020. [Online].
Available: https://commons.wikimedia.org/wiki/File:ReLU_and_GELU.svg

[19] Z. Saleh, “Artificial intelligence definition, ethics and standards,” 04 2019.
[20] B. Mahesh, “Machine learning algorithms -a review,” 01 2019.
[21] W. Zhang, G. Yang, Y. Lin, C. Ji, and M. Gupta, “On definition of deep

learning,” 06 2018, pp. 1–5.
[22] S. Sah, “Machine learning: A review of learning types,” 07 2020.
[23] A. Hammoudeh, “A concise introduction to reinforcement learning,” 02 2018.
[24] W. van Heeswijk, PhD, “The Four Policy Classes

of Reinforcement Learning - Towards Data Science,”
12 2022. [Online]. Available: https://towardsdatascience.com/
the-four-policy-classes-of-reinforcement-learning-38185daa6c8a

[25] C. Cappi, C. Chapdelaine, L. Gardes, E. Jenn, B. Lefèvre, S. Picard,
and T. Soumarmon, “Dataset definition standard (DDS),” CoRR, vol.
abs/2101.03020, 2021. [Online]. Available: https://arxiv.org/abs/2101.03020

[26] S. Joseph, K. Sedimo, F. Kaniwa, H. Hlomani, and K. Letsholo, “Natural
language processing: A review,” Natural Language Processing: A Review,
vol. 6, pp. 207–210, 03 2016.

[27] M. Karakaya, “Fundamentals of Text Generation,” 12
2022. [Online]. Available: https://www.muratkarakaya.net/2022/11/
fundamentals-of-text-generation.html

78

https://arxiv.org/abs/2005.14165
https://jalammar.github.io/illustrated-gpt2/
https://arxiv.org/abs/2004.13796
https://arxiv.org/abs/2004.13796
https://opendatascience.com/reinforcement-learning-with-ppo/
https://blog.floydhub.com/gru-with-pytorch/
https://arxiv.org/abs/1908.10063
https://arxiv.org/abs/1904.09675
https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826
https://towardsdatascience.com/confusion-matrix-for-your-multi-class-machine-learning-model-ff9aa3bf7826
https://commons.wikimedia.org/wiki/File:ReLU_and_GELU.svg
https://towardsdatascience.com/the-four-policy-classes-of-reinforcement-learning-38185daa6c8a
https://towardsdatascience.com/the-four-policy-classes-of-reinforcement-learning-38185daa6c8a
https://arxiv.org/abs/2101.03020
https://www.muratkarakaya.net/2022/11/fundamentals-of-text-generation.html
https://www.muratkarakaya.net/2022/11/fundamentals-of-text-generation.html

Bibliography

[28] “Text Classification: What it is And Why it Matters.” [Online]. Available:
https://monkeylearn.com/text-classification/

[29] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014. [Online]. Available: https://arxiv.org/abs/1406.2661

[30] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy,
M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly
optimized bert pretraining approach,” 2019. [Online]. Available: https:
//arxiv.org/abs/1907.11692

[31] Malo et Al., “Financialphrasebank,” 2014.
[32] “What is the difference between categorical, ordinal and interval variables?”

[Online]. Available: https://stats.oarc.ucla.edu/other/mult-pkg/whatstat/
what-is-the-difference-between-categorical-ordinal-and-interval-variables/

[33] M. Grootendorst, “Keybert: Minimal keyword extraction with bert.” 2020.
[Online]. Available: https://doi.org/10.5281/zenodo.4461265

[34] Anonymous (Under review), “Quantifying exposure bias for neural language
generation,” 2022. [Online]. Available: https://openreview.net/forum?id=
rJg2fTNtwr

[35] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient
methods for reinforcement learning with function approximation,” in Advances
in Neural Information Processing Systems, S. Solla, T. Leen, and K. Müller,
Eds., vol. 12. MIT Press, 1999. [Online]. Available: https://proceedings.
neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

[36] GeeksforGeeks, “ML Monte Carlo Tree Search MCTS,” 7 2022. [Online].
Available: https://www.geeksforgeeks.org/ml-monte-carlo-tree-search-mcts/

[37] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, “Language models are unsupervised multitask learners,”
2018. [Online]. Available: https://life-extension.github.io/2020/05/27/
GPTæŁĂæœŕåĹİæŐć/language-models.pdf

[38] P. J. Liu, M. Saleh, E. Pot, B. Goodrich, R. Sepassi, L. Kaiser, and
N. Shazeer, “Generating wikipedia by summarizing long sequences,” 2018.
[Online]. Available: https://arxiv.org/abs/1801.10198

[39] Z. Elhamraoui, “Fine-tuning in Deep Learning - Artificial Intelligence in
Plain English,” 12 2021. [Online]. Available: https://ai.plainenglish.io/
fine-tuning-in-deep-learning-909666d4c151

[40] J. Ho and S. Ermon, “Generative adversarial imitation learning,” 2016.
[Online]. Available: https://arxiv.org/abs/1606.03476

[41] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” 2015. [Online]. Available: https:
//arxiv.org/abs/1508.07909

[42] L. Kurniasari and A. Setyanto, “Sentiment analysis using recurrent neural

79

https://monkeylearn.com/text-classification/
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://stats.oarc.ucla.edu/other/mult-pkg/whatstat/what-is-the-difference-between-categorical-ordinal-and-interval-variables/
https://stats.oarc.ucla.edu/other/mult-pkg/whatstat/what-is-the-difference-between-categorical-ordinal-and-interval-variables/
https://doi.org/10.5281/zenodo.4461265
https://openreview.net/forum?id=rJg2fTNtwr
https://openreview.net/forum?id=rJg2fTNtwr
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://www.geeksforgeeks.org/ml-monte-carlo-tree-search-mcts/
https://arxiv.org/abs/1801.10198
https://ai.plainenglish.io/fine-tuning-in-deep-learning-909666d4c151
https://ai.plainenglish.io/fine-tuning-in-deep-learning-909666d4c151
https://arxiv.org/abs/1606.03476
https://arxiv.org/abs/1508.07909
https://arxiv.org/abs/1508.07909

Bibliography

network,” Journal of Physics: Conference Series, vol. 1471, no. 1, p. 012018,
feb 2020. [Online]. Available: https://dx.doi.org/10.1088/1742-6596/1471/1/
012018

[43] S. Kostadinov, “Understanding GRU Networks - Towards Data Sci-
ence,” 11 2019. [Online]. Available: https://towardsdatascience.com/
understanding-gru-networks-2ef37df6c9be

[44] FastAPI. [Online]. Available: https://fastapi.tiangolo.com
[45] Streamlit. [Online]. Available: https://streamlit.io
[46] Huggingface, “https://huggingface.com.”
[47] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu, “Bleu: a

method for automatic evaluation of machine translation,” 2002. [Online].
Available: https://aclanthology.org/P02-1040.pdf

[48] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” 2016.
[Online]. Available: https://arxiv.org/abs/1606.08415

80

https://dx.doi.org/10.1088/1742-6596/1471/1/012018
https://dx.doi.org/10.1088/1742-6596/1471/1/012018
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be
https://fastapi.tiangolo.com
https://streamlit.io
https://aclanthology.org/P02-1040.pdf
https://arxiv.org/abs/1606.08415

	Abstract
	List of Tables
	List of Figures
	Introduction
	Document outline

	Machine Learning and Deep Learning background
	Artificial intelligence
	Types of Machine Learning
	Reinforcement Learning

	Datasets
	Natural Language Processing
	Main definitions
	Text Generation
	Text Classification

	Discriminative vs Generative Models
	Main Architectures
	Recurrent Neural Networks
	Convolutional Neural Networks
	GAN

	Transformers
	Attention
	BERT
	RoBERTa
	GPT-3

	Material and methods
	Pipeline Overview
	Datasets
	Exploratory Data Analysis
	Preprocessing
	Keyword extraction

	Text Generation Architectures
	SEQ-GAN
	Monte Carlo Search
	Architecture

	GPT-3
	GPT-2
	Architecture
	How GPT-2 works
	Masked Self-Attention
	Fully connected Neural Network
	Fine Tuning
	Conditional generation on tags
	Unconditional generation

	GPT-GAN
	Architecture
	Contrastive Discriminator
	Proximally Optimized Generator
	Training Strategy

	Classification Architectures
	Gated Recurrent Unit
	Update Gate
	Reset Gate

	FinBERT

	Deployment
	Application functionalities

	Results
	Experimental settings
	Evaluation Metrics
	Text Generation metrics
	Classification metrics

	Text Generation Results
	Hyperparameters tuning
	Unconditional Generation
	Seq-GAN
	GPT-2 Unconditional Generation

	Conditional Generation
	GPT-2 Conditional Generation
	GPT-GAN
	GPT-GAN vs GPT-2

	Text Classification Results
	Hyperparameters tuning
	Original dataset
	GRU
	FinBERT

	Seq-GAN
	GRU
	FinBERT

	GPT-2 Unconditional Generation
	GRU
	FinBERT

	GPT-2 Conditional Generation
	GRU
	FinBERT

	GPT-GAN
	GRU
	FinBERT

	Parameter Analysis
	Number of keywords

	Conclusions and future works
	Bibliography

