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Summary

Artificial Intelligence (AI), and especially Machine Learning (ML) and Deep
Learning (DL) have become increasingly important for Internet of Things
(IoT) devices, as they provide the capability to process and analyze vast
amounts of data collected directly from the device itself. With AI, IoT
devices can make real-time decisions, detect patterns and anomalies, and
improve their performance over time. However, the deployment of big Deep
Neural Networks (DNNs) for IoT devices presents several challenges due to
limited computational resources. In particular, IoT nodes are character-
ized by tight power, latency, and memory constraints. Neural Architecture
Search (NAS) has emerged as an effective approach to optimize the process
of searching and selecting DL models. NAS involves using machine learn-
ing to automatically search for the best neural network architecture for a
given task, reducing the need for manual tuning and improving efficiency.
Early NAS techniques were based on Reinforcement Learning or Evolution-
ary Computing and even if effective, they required to train each architecture
explored and thus incurred long training times even with powerful GPUs. To
overcome this issue Differentiable NAS (DNAS) techniques were presented.
In DNAS, the architecture search process is made differentiable, allowing it
to be optimized using gradient-based techniques like backpropagation and
enabling the optimization of the network’s weights jointly with the architec-
ture. DNAS methods are being used to quickly explore different trade-offs
between accuracy and some other metrics such as the number of parameters
or the number of floating point operations in order to optimize DL models
and enable their deployment on resource-constrained devices. As a result,
NAS methods represent a first-class solution to accelerate the development
of AI for IoT devices, enabling them to perform increasingly complex tasks
in many fields such as Computer Vision (CV), Natural Language Processing
(NLP), and Speech Recognition with greater accuracy and speed.

This thesis work focuses on extending the DNAS methods available in the
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PLiNIO library by developing a new algorithm called PITSuperNet. PLiNIO
stands for Plug-and-play Lightweight Neural Inference Optimization and
aims to aggregate in a single user-friendly library multiple Differentiable
NAS methods to allow users to easily compare their effectiveness on their
specific tasks and search spaces. The first and seminal algorithm included
in PLiNIO is PIT (Pruning In Time) a NAS algorithm that tries to reduce
the complexity of a seed model by changing the value of network hyper-
parameters such as the number of output channels, receptive field size, and
dilation of its layers. The search for these hyper-parameters is performed in a
mask-based fashion selectively removing parts of the seed network with fine-
grain. PITSuperNet aims to combine a coarse-grained search performed with
a supernet-based DNAS method inspired by a state-of-the-art method called
DARTS, and the fine-grained search performed by PIT. Even though the
supernet approach was already well-established, in this work it has been im-
plemented from scratch to perfectly fit the PLiNIO’s library and philosophy.
Once the SuperNet method was properly tested on relevant use cases, the
PIT algorithm has been integrated to explore the aforementioned coarse- and
fine-grained search strategy. The combination of the coarse- and fine-grained
search has been tested following two different approaches: the first approach
consists of performing both PIT and SuperNet search at the same time in a
mixed fashion, and the second approach consists of performing several PIT
searches on the architecture found by a SuperNet search thus performing the
fine-grained search after the coarse-grained one (PIT after SuperNet). Two
loss terms are employed in the training phase: the loss of the task and a
regularization loss that represents the size of the model. The strength of
this term can be controlled by the user by means of a regularization strength
constant λ.
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Chapter 1

Introduction

Artificial intelligence (AI) has become one of the most transformative tech-
nologies of our time. It has the potential to revolutionize the way we live
and work, bringing new levels of efficiency and convenience to countless in-
dustries. This technology has the ability to automate tasks, analyze vast
amounts of data, and make predictions based on that data, making it a pow-
erful tool for solving complex problems. From healthcare to finance, retail
to transportation, AI is already starting to change the way things are done,
and many experts believe that its impact will only continue to grow in the
coming years.

One of the most relevant branches of AI is Machine Learning (ML). Ma-
chine learning represents a possible implementation of artificial intelligence
that allows computer systems to learn from data, identify patterns and make
predictions or decisions. It involves algorithms that can iteratively improve
themselves through training with large amounts of data. A Machine Learning
algorithm differs from a traditional one because it does not require explicit
rules to be given by the programmer to distinguish all the cases to make a
prediction.

There are two main paradigms of machine learning: Shallow Learning and
Deep Learning (DL).

Shallow Learning refers to traditional machine learning techniques that
often require manual extraction of useful information from raw data as a
pre-processing step. This process is called Feature Engineering and since it
requires lots of human knowledge and domain expertise to be performed, it
represents a limiting factor for the shallow learning paradigm. Deep Learn-
ing instead, aims to tackle this problem by performing this step in an au-
tomatic way, with no or very little human knowledge, by increasing model
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1 – Introduction

complexity. DL algorithms, while being certainly more demanding in terms
of computation requirements, are enabling incredible results in many fields
such as Computer Vision (CV), Natural Language Processing (NLP), and
Time Series Analysis. Nevertheless, Deep Neural Networks’ complexity can
be enormous and requires adequate computing tools, especially for the train-
ing phase. The training phase of these models has been enabled by tools such
as GPUs that can provide high degrees of parallel computing, dramatically
decreasing the time needed to train a NN compared to the time achieved by
traditional CPUs. However, when it comes to exploiting these Deep Learning
methods on small and constrained devices some challenges arise. Artificial
Intelligence applications are expanding day by day and the Internet of Things
is certainly a tempting field. In fact, having AI on IoT devices could provide
several benefits including, for instance, real-time decision-making, personal-
ized user experience, improved data analysis, and predictive maintenance.

In the IoT field, two main approaches have been explored: cloud comput-
ing and edge computing.

Cloud computing tries to solve the problem of the limited amount of re-
sources available on the IoT nodes by performing all the computation (or
at least the most part) on the cloud, relying on the availability of large
server clusters. This involves the need, for the nodes, of sharing all the data
collected through an internet connection and most of the time, to receive
feedback with the cloud computation results. This approach presents many
drawbacks. The first is connected to the network connectivity which can
have unpredictable latency thus making this method not suitable for real-
time applications. Furthermore when the amount of data to be transmitted
is huge, e.g., for CV applications, bandwidth and energy consumption for
the transmissions are not negligible. Another problem is privacy since cloud
computing requires data to leave the device.

Instead, edge computing tries to perform the required computations (the
inference phase for a DL application) directly on the nodes. Nonetheless,
IoT devices usually present some important limitations in terms of comput-
ing power, available memory, and sustainable energy consumption. For such
small devices, usually equipped with general-purpose MCUs and battery-
powered, system lifetime is crucial and the deployment of standard NN mod-
els as they are i.e., designed to work on powerful GPUs with large memory
footprints and energy-hungry operations, is simply not feasible. To solve this
issue it is possible to create special-purpose chips that are engineered to solve
specific tasks for specific devices but, as easily understandable, this approach
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1 – Introduction

is costly and not scalable. For this reason, a more sustainable approach con-
sists of optimizing the models to be implemented on these devices, in order
to respect the limitations imposed by the existing chips. Edge computing
solves all the negative sides of cloud computing since latency is usually lower
but above all, it is predictable since it does not depend on connectivity, pri-
vacy is improved since data do not have to leave the device, and less energy
is consumed for the transmissions. Of course, this approach requires more
effort in order to adapt the software.

Numerous techniques are available to accomplish the task of reducing the
complexity of NN models. Among others, we can mention precision reduction
techniques such as quantization [1] which consists of passing from floating-
point to fixed-point data representation. Since floating point usually requires
32 bits by switching to an 8-bit data representation it is possible to achieve a
4x memory saving. Moreover, integer arithmetic is usually faster and more ef-
ficient than floating-point arithmetic. It is also worth mentioning cardinality
reduction techniques such as pruning [2] which tries to simplify architectures
by removing redundant parts that do not bring significant improvement to
the model performance.

This thesis work will focus on another incredibly effective tool that en-
ables us to find optimized neural network architectures: Neural Architecture
Search (NAS). The goal of NAS is to automate the process of designing deep
neural networks by evaluating the performance of different candidate archi-
tectures and selecting the one that performs the best. Several recent works
[3], [4], [5], [6] have focused their attention on developing NAS algorithms
that aim to optimize neural network models for specific constraints, such as
computational resources, memory usage, and power consumption, making it
ideal for IoT devices. By using NAS, researchers can develop NN models
that are optimized for the specific requirements of IoT devices and achieve
improved accuracy and efficiency.

This context is precisely where PLiNIO [7] (Plug-and-play Lightweight
Neural Inference Optimization) fits in. PLiNIO (see Section 4.2) is a library
that aims to integrate different NAS algorithms in order to be able to easily
compare their effectiveness and results over some training datasets.

The first and seminal algorithm included in PLiNIO is PIT (Pruning In
Time) [6], a NAS algorithm that tries to reduce the complexity of a seed
model by changing the value of some network hyper-parameters such as the
number of output channels, receptive field size, and dilation of its layers.
PIT algorithm belongs to the DMaskingNAS category, which will be widely
described in Chapter 3. PIT starts from a user-defined network, the so-called
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seed, and explores sub-architectures included within the seed itself. While
being extremely light-weight and able to explore a wide range of alternative
hyper-parameters values it presents the limitation of being confined to the
seed network topology. In fact, PIT is not able to completely switch the
operation performed by a layer such as, for instance, swapping a convolutional
layer with an identity layer. For this reason, PIT is considered a fine-grained
NAS tool.

This work aims at extending the functionalities of the PLiNIO library by
implementing a new NAS tool called PITSuperNet. The main objective of
this tool is to combine a coarse-grained search, performed using another NAS
technique usually referred to as supernet that again will be better described in
Chapter 3, with the fine-grained search performed by PIT. Even though the
supernet approach was already well-established (Section 3.2), in this work it
has been implemented from scratch to perfectly fit the PLiNIO’s library and
philosophy (Section 4.2). After that, the SuperNet tool has been combined
with PIT to create PITSuperNet.

A PITSuperNet module contains some user-defined alternative modules
for that particular layer of the network. The NAS will establish the best
alternative available within the given ones for each involved layer of the
model. By doing so the NAS can work within an extended search space that
is not necessarily limited to the space of the seed models. In this way, the
NAS is able to insert simplified operations in some layers if complexity is not
required but unlike PIT alone, it is also able to increase the complexity (w.r.t.
the seed model) of certain layers when needed. While SuperNet extends the
search space, PIT can still work on the alternative layers proposed in the
PITSuperNet module ensuring a fine-grained search.

This method has been tested on some of the tasks available in the MLPerf
Tiny Benchmark suite [8] using another library that implemented those tests
in the PyTorch framework.

To combine the fine- and coarse-grained search types two approaches have
been tried in this work. The first approach consists of performing both PIT
and SuperNet searches at the same time with the PITSuperNet algorithm.
While this first approach did not provide the hoped results for the reasons de-
scribed in Chapter 5, with the second approach, which consists of performing
a SuperNet search and then performing a PIT search over the SuperNet out-
put model, it was possible to obtain some interesting results able to improve
the ones obtained with a single fine- or coarse-grained type of search.

The rest of this work is organized as follows. Chapter 2 describes the
necessary background on DL, Chapter 3 describes the related NAS works,
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Chapter 4 describes the implementation of PITSuperNet and PLiNIO library
organization, and Chapter 5 reports the results obtained with PITSuperNet
on ICL, KWS, and VWW three of the available benchmarks in the MLPerf
Tiny suite.
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Chapter 2

Background

Machine Learning (ML) and Deep Learning (DL) are related but distinct
branches of artificial intelligence. ML is a general term that encompasses
a range of algorithms and techniques that enable computers to learn from
data and make predictions or decisions. On the other hand, DL is a subfield
of ML that is specifically concerned with building the so-called Deep Neural
Networks (DNNs). These networks are made up of multiple layers of inter-
connected nodes. Each node includes specific parameters which are tuned in
the so-called learning process. In this way, the model is able to directly learn
from data becoming capable to solve tasks of increasing complexity.

Deep learning has been responsible for many breakthroughs in fields such
as computer vision, natural language processing, and speech recognition, and
has enabled systems to perform tasks that were once thought to be beyond
the reach of computers. By leveraging vast amounts of data and powerful
computing resources, DL models can continue to improve and advance the
state of the art in many areas of artificial intelligence.

There are three main approaches used in ML and DL:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

Supervised learning is an approach to machine learning where the algo-
rithms are trained on labeled data, meaning that the desired output is already
known for each input. The goal is to learn a mapping from input to output
so that given new, unseen data, the algorithm can predict the correct out-
put. Supervised learning is often used for classification and regression tasks,
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2 – Background

where the objective is to categorize items into predefined classes or predict a
continuous target value, respectively.

Unsupervised learning is a type of machine learning where the algorithms
are trained on unlabeled data. The aim is to uncover hidden patterns or rela-
tionships in the data, rather than making specific predictions. Unsupervised
learning methods can be used for tasks such as clustering, where the goal is
to group similar data points together, or dimensionality reduction, where the
goal is to represent high-dimensional data in a lower-dimensional space.

Reinforcement learning is an approach to machine learning that involves
training an agent to make a sequence of decisions in an environment by
receiving feedback in the form of rewards or penalties. The agent’s goal is to
maximize its cumulative reward over time. Reinforcement learning has been
applied to a variety of problems, including game playing, robotics, and control
systems. The training process in reinforcement learning is often referred to
as trial-and-error, as the agent learns from its own experiences over time to
make better decisions.

This work will focus on supervised learning methods and classification
tasks. This section presents a brief overview of the main concepts behind
Deep Learning.
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2.1 – Neural Networks

2.1 Neural Networks

2.1.1 Neuron
The basic unit of a Neural Network is called neuron. The artificial neuron,
whose architecture is inspired by biological neurons in the human brain,
performs a weighted sum of the inputs and passes this sum through a non-
linear function called activation function. In mathematical formulation:

y = h(
nØ

i=1
wixi + b) (2.1)

Where wi and b are weights and bias respectively, xi are the inputs, and h()
is the activation function. After a training phase, where weights and biases
are tuned, this basic unit can act as a binary classifier on very simple tasks.

2.1.2 Activation Functions

Figure 2.1. Activation functions.
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2 – Background

The activation function is a fundamental element for the neuron architec-
ture since it defines the range of its output and it introduces a non-linearity
allowing the neural network to model complex relationships between inputs
and outputs. Here the most relevant activation functions are listed:

• Step Function (red curve Figure 2.1 the simplest activation function
is first introduced with the Perceptron [9]:

h(x) =
0, x ≤ 0

1, x > 0
(2.2)

Its outputs are discrete (only 0 or 1) and this fact, together with the
problem of its non-derivability in x=0, strongly limits its usage in mod-
ern networks that use the backpropagation technique (Section 2.3.2).

• Sigmoid Function (blue curve Figure 2.1): it solves the problem of
discrete outputs with a continuous output interval ranging between 0
and 1 and it is fully derivable in its domain:

h(x) = 1
1 + e−x

(2.3)

Although being fully derivable, sigmoid clearly shows a saturating behav-
ior (see Figure 2.1) that can “kill” the gradients. This is the so-called
problem of vanishing gradients in the backpropagation algorithm i.e.,
when the input is too small or too big the output goes to the constant
values 0 or 1, hence saturating and making its gradient vanish. More-
over, sigmoid outputs are not zero-centered and this can create problems
with the weight gradient update. In fact, gradients become all positive
or all negative, forcing the gradient update direction to follow a zig-zag
path whenever the optimal direction is not within the two eligible ones.

• Hyperbolic Tangent Function (tanh) (green curve Figure 2.1): sim-
ilar to the sigmoid function but its outputs are zero-centered (interval
[-1, 1]):

h(x) = tanh(x) = ex − e−x

ex + e−x
(2.4)

It usually converges faster than the sigmoid function but still presents
the problem of vanishing gradients.
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2.1 – Neural Networks

• Rectified Linear Unit (ReLU) (light-blue curve Figure 2.1): the most
used activation function in recent networks together with its variants
(Leaky ReLU and ELU):

h(x) = max(0, x) (2.5)

ReLU is computationally efficient, requiring only a simple threshold op-
eration to compute its output and it can converge much faster than
sigmoid or tanh [11]. It solves the problem of vanishing gradients for
large values of the input but it is not zero-centered, meaning that it can
cause some neurons to always produce the same output, leading to a
phenomenon known as the "dead ReLU" problem. Leaky ReLU solves
this problem by putting a small slope on the negative side of the ReLU
function to avoid zero gradients (Figure 2.2).

Figure 2.2. ReLU vs LeakyReLU [12].

2.1.3 Layers of Neurons
A single neuron is very limited in terms of tasks that can solve, and the main
idea behind the neuron was to connect more of them to mimic the human
brain functions performing inference. A layer of neurons can be composed
by bringing together several neurons in parallel and an entire network can be
created by connecting multiple layers one after the other. This architecture
is known as Multi-Layer Perceptron (MLP) [13].

Each layer of an MLP is composed of different nodes that are single neu-
rons. The first layer of an MLP is called input layer, this layer is fed with
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2 – Background

Figure 2.3. MLP sample architecture [10].

the input data in their original representation, and its outputs are propa-
gated to the following layers. The last layer is known as output layer since
it transforms its inputs into the final desired representation required to solve
the task. Each intermediate layer is called hidden layer and it transforms the
inputs into an intermediate representation that is useful to learn data rela-
tions. This part represents the “deep” part of a neural network and enables
the model to extract useful information from the data without the need for
a manually performed Feature Engineering phase.

The possibility to automatically perform this phase requiring no or very
little human knowledge and domain expertise represents one of the main
innovations of Deep Learning with respect to Shallow Learning. Not only
there is no need to manually extract relevant features from data requiring
great knowledge of the task domain but in this way, the models are free to
detect and learn to identify new patterns that, in some cases, are not even
considered by humans.

In this architecture, each layer is a fully connected one meaning that every
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node in the layer is directly connected with all the nodes of the following layer.
The number of nodes in the input and output layer depends on the data and
the task to be performed, while the dimensions of hidden layers have fewer
constraints and are free to be designed.

2.2 Neural Network’s Layer Types
One of the most relevant Deep Neural Network architectures available today
is Convolutional Neural Network (CNN). CNNs have become the standard
approach for Computer Vision (CV) tasks like image classification and object
detection. AlexNet [14], VGG [15], GoogLeNet [16] and ResNet [17] are
some of the milestone models for the CNN architecture. A CNN consists of
multiple layers including convolutional layers, pooling layers, normalization
layers, and fully connected layers.

Figure 2.4. CNN example [18].

Convolutional Layer
The main layer of a CNN is the convolutional layer. A convolutional layer

operates by "sliding" a small matrix called filter over the input data, such as
an image, and computing dot products between the weights of the filter and
the input at each location. This results in a feature map that represents the
presence of certain features in the input data. Multiple filters can be used in
parallel to extract different features. By using multiple convolutional layers,
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a deep neural network can learn increasingly complex representations of the
input data. The filter, whose size is named kernel, slides over the image with
a step called stride. By using a filter that slides on the whole image, the
weights defining this filter are shared for all the pixels. This characteristic
avoids the use of a different weight for each pixel which would make the task
feasible only for really small images.

Pooling Layer
Pooling layers are used to reduce the spatial dimensions of the feature maps

produced by the convolutional layers. The goal of pooling is to down-sample
the feature maps, which helps to reduce the computational load and prevent
overfitting. There are two commonly used types of pooling: Max Pooling
and Average Pooling.

In Max Pooling, the maximum value of a set of adjacent feature map
values is taken, whereas, in Average Pooling, the average value of a set of
adjacent feature map values is taken. Both types of pooling perform the
down-sampling by dividing the feature map into non-overlapping regions and
computing a summary statistic for each region. Pooling helps to make the
feature maps invariant to small translations and distortions in the input
data, as well as reducing their size and computational complexity, allowing
the CNN to focus on more abstract and important features in the data.

Normalization Layer
Normalization layers are used to improve the stability of training and avoid

overfitting. They usually normalize the output of preceding convolutional
layers, typically by subtracting the mean and dividing by the standard de-
viation. Batch Normalization (BN) [19] is the most widely used type of
normalization in CNNs. It normalizes the activations of neurons within a
mini-batch of data, helping to prevent the internal covariate shift. In math-
ematical formulation:

y(k) = γ(k) x(k) − E[x(k)]ñ
V ar[x(k)] + ϵ

+ β(k) (2.6)

This transformation is applied to each point of each channel k of the input
feature map x. E[x(k)] represents the mean within a batch, V ar[x(k)] is the
variance within a batch, and γ and β are two trainable parameters used to
scale and shift the result. ϵ is just a small number to avoid divisions by zero.
By normalizing the activations, these layers can improve the convergence
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speed of the training process and make the model more robust to parame-
ter changes. Batch Normalization allows using higher learning rates in the
training phase and creates a regularizing effect helping models to better gen-
eralize.

Fully-Connected Layer
Fully connected layers, also known as dense layers, are a type of layer

commonly used in deep neural networks (DNNs). They are called "fully
connected" because each neuron in the layer is connected to every neuron
in the previous layer. In a fully connected layer, the neurons receive input
from all neurons in the previous layer, process this input using an activation
function, and produce an output that is fed as input to the next layer. Fully
connected layers are used to learn complex representations of the input data
in a DNN, and they are typically found at the end of the network, after
a series of convolutional or recurrent layers. The output activations of a
fully-connected layer can be interpreted as a probability distribution over
the possible classes for the input. In many CNN architectures, the final layer
of the network is a fully-connected layer that outputs the class predictions.

2.3 Training a DNN
The objective of a Deep Neural Network (DNN) training phase is to learn the
optimal weights of the network that map inputs to outputs such that the error
between the network’s predictions and the actual target values is minimized.
In the supervised learning approach, the training process involves presenting
the network with a large dataset of input-output pairs, allowing the network
to make predictions, computing the error between its predictions and the
actual targets, and updating its weights based on the error. This process
is repeated multiple times, or over multiple epochs until the error reaches a
satisfactory level, or no further improvement is observed. The end result is
a trained network with weights that can generalize well to new unseen data,
making accurate predictions for the task it was trained on. The training
phase of a Deep Neural Network (DNN) consists of the following steps:

1. Feeding the network with a large amount of labeled training data.

2. Initializing the weights of the network randomly.

3. Feeding the input data through the network and computing the output
(forward pass).
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4. Calculating the error between the network’s output and the actual target
value.

5. Updating the weights of the network to reduce the error, using an opti-
mization algorithm.

6. Repeat steps 3 to 5 for multiple epochs (iterations) until the error reaches
a satisfactory level or no further improvement is observed.

2.3.1 Loss Functions
The error to be minimized during the training phase is represented by the
loss function. The loss function can be seen as the distance between the
input data distribution and the target data distribution. Different types of
loss functions are available for different types of tasks. Here some of the most
commonly used loss functions are reported:

• Cross-entropy Loss: most used loss for classification tasks. It mea-
sures the dissimilarity between the predicted probability distribution and
the true distribution of the target classes:

H(p, q) = −
Ø

x∈X

p(x) log(q(x)) (2.7)

• Mean Squared Error (MSE): most used loss for regression tasks. It
minimizes the squared difference between the predicted value and the
target value:

L(y, ȳ) = 1
N

NØ
i=0

(y − ȳ)2 (2.8)

• Mean Average Error (MAE): also used in regression tasks, it mini-
mizes the absolute difference between the predicted value and the target
value:

L(y, ȳ) = 1
N

NØ
i=0

|y − ȳ| (2.9)

2.3.2 Gradient Descent Learning Method
The most used optimization algorithm in Deep Learning training is called
Stochastic Gradient Descent (SGD). SGD is a special case of the more gen-
eral Gradient-based learning method which is a method used to update the
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weights of the network during the training phase. It involves computing the
gradient of the error (loss function) with respect to the weights and updating
the weights in the direction that minimizes the error. The gradient provides
the direction of the steepest descent in the error space, and the step size
(or learning rate) determines the magnitude of the update. Setting a good
learning rate is crucial. A learning rate that is too low would require a huge
number of epochs to reach a good result while a learning rate that is too high
would make the algorithm diverge. The formula used in gradient descent to
update the network’s parameters is:

θnew = θold − η∇θL(θ) (2.10)

Where θ represents the network’s parameters, η is the learning rate and
∇θL(θ) is the gradient of the loss with respect to θ.

It is called “stochastic” since it differs from the standard batch gradient
descent because instead of calculating the gradients based on the average of
all samples in the training set, SGD uses only one randomly selected sample
from the training set to calculate the gradients at each iteration allowing the
process to be much faster. However, this random selection introduces more
noise in the gradients and makes the optimization more unstable. The loss
decreases on average with more iterations but it can temporarily increase
and decrease with respect to the preceding iteration. This instability is not
entirely a bad thing since it can also help to get out of local minima and reach
faster the global minimum. To mitigate this, SGD typically uses a smaller
learning rate and implements techniques such as learning rate decay and
mini-batch SGD. Some alternative optimizers to the SGD are represented by
Adam [20], RMSProp [21], and Adagrad [22].

To enable the computation of all the gradients in an efficient way the
backpropagation algorithm [23] has been proposed. In this algorithm two
passes over the network are done: the forward pass where the input is fed
into the network’s layers and the loss is evaluated, and the backward pass in
which the network is passed in the opposite direction through a chain-rule
technique allowing to compute the gradients of the loss with respect to the
weights. The chain rule in the backpropagation algorithm is a mathematical
concept that allows the gradient of the loss with respect to the parameters
of a neural network to be efficiently calculated. It is based on the chain rule
of differentiation and exploits the fact that the loss can be expressed as a
composite function of many intermediate computations within the network.
The backpropagation algorithm is what makes it possible to train deep neural
networks effectively and efficiently, as it allows the error gradients to be
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efficiently calculated and the weights updated, even for complex network
architectures with many layers.

2.3.3 Regularization Techniques
Regularization loss is a term used in deep learning to refer to additional terms
added to the original loss function during training. The purpose of these
additional terms is to discourage the model from overfitting the training data
and to improve its generalization to new, unseen data. Overfitting occurs
when a model becomes too complex and starts to memorize the training
data instead of learning its underlying patterns. This results in high training
accuracy, but poor accuracy on test data, as the model has not learned
to generalize well. Regularization helps to mitigate overfitting by adding a
penalty to the loss that discourages the model from having large weights.
There are several types of regularization methods:

• L2 Regularization (also known as Ridge): adds a penalty proportional
to the square of the weights:

L2 = λ||θ||22 = λ
Ø

θ2
i (2.11)

• L1 Regularization (also known as LASSO): adds a penalty propor-
tional to the absolute value of the weights:

L1 = λ||θ||1 = λ
Ø

|θi| (2.12)

• Dropout: randomly drops out neurons during training, effectively mak-
ing the model smaller and more robust to overfitting. It works by ran-
domly dropping out (i.e., setting to zero) a certain percentage of neurons
during training. This forces the network to learn multiple independent
representations of the data, rather than relying too heavily on any sin-
gle neuron. During test time, all neurons are used, but their activations
are scaled by the dropout rate to balance the reduced number of active
neurons during training.

• Regularization loss can also be used to encode a prior in the gradient-
based learning process as seen in the NAS algorithms. (Chapter 3).
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Chapter 3

Related Works

Neural Architecture Search (NAS) is a field of machine learning that focuses
on automating the process of designing deep neural networks. In traditional
deep learning, the architecture of a network, such as the number of layers,
the type of activation functions, and the number of neurons in each layer,
is typically hand-designed by a human expert. However, as the complexity
and diversity of problems and deployment targets in artificial intelligence
continue to increase, hand-designing network architectures can become a
time-consuming and challenging task. This is where NAS comes in: it uses a
combination of machine learning algorithms and search algorithms to auto-
matically discover the best architecture for a given problem. By automating
the process of architecture design, NAS can save time, reduce human error,
and enable the creation of more sophisticated and effective models. NAS
tools can also jointly optimize the model’s accuracy and other metrics like
the size (number of parameters), the number of FLOPs, etc. . This result
in a model that delivers the best performance in terms of accuracy while
respecting some limitations imposed by the designers that can be needed to
deploy this model in edge devices.

3.1 Reinforcement Learning NAS
The first attempts to realize a NAS tool were based on Reinforcement Learn-
ing (RL) [24]. In this approach, one network named controller outputs net-
work architectures. These architectures are trained and evaluated on a val-
idation set. The accuracy reached by this architecture is used as a reward
for the controller NN that will use this signal to update its policy gradient
in order to produce a better architecture over time. The controller is trained
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Figure 3.1. RL-based NAS concept [25].

to make decisions about the architecture of its child NN, such as adding or
removing layers, or for instance for a convolutional layer changing the kernel
size, the number of filters, or the stride. Even though RL-based NAS has
the potential to explore a big number of network architectures it requires a
large amount of computation to train the controller and evaluate the perfor-
mance of different architectures. Moreover, training times are usually very
long (they can require days if not weeks even with powerful GPUs on sim-
ple tasks), as the search process requires the evaluation of many different
architectures. This can make it difficult to perform large-scale searches, es-
pecially when working with limited computational resources. This method
showed the great possibilities offered by the NAS technique but at the same
time highlighted the need for a lighter technique to enable the architectural
search even with fewer computational resources available.

Evolutionary Computing (EC) based NAS represents an improved ap-
proach with respect to RL-based NAS. ENAS [26] tries to avoid training from
scratch each architecture by sharing weights coming from previous searching
phases allowing to shrink the time needed to perform NAS training. Even
if improved, EC-based NAS still requires long training times since it has to
train a big number of different model architectures and thus basically suffers
from the same problem as RL-based NAS.
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3.2 Supernet-based Differentiable NAS

Differentiable Neural Architecture Search (DNAS) is a variant of Neural Ar-
chitecture Search that has been introduced to overcome the problems that
affect Reinforcement Learning NAS. The first method that was proposed with
this DNAS approach was DARTS [27]. In DNAS, the architecture search pro-
cess is made differentiable, allowing it to be optimized using gradient-based
optimization techniques like backpropagation and enabling the optimization
of the network’s weights jointly with the architecture optimization. The ar-
chitecture of the network can be expressed as a continuous and differentiable
function, allowing the optimization algorithm to smoothly and efficiently
make changes to the architecture. The starting architecture is called a su-
pernet since it provides more alternative operations for each layer that will
eventually be shrunk down to the most performing operation available.

Figure 3.2. DARTS search steps [27].

DARTS works by representing the neural network architecture as a di-
rected acyclic graph (DAG), where each node x(i) is a data representation
(feature map) and each edge (i, j) is associated with some operation o(ij)

(e.g. convolution, pooling, etc.) that transforms x(i).
Given a set of possible operations O where each operation o(·) is a function

to be applied to x(i), in order to make the search space continuous, a softmax
with this form is applied over all the candidate operations:
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ō(i,j)(x) =
Ø
o∈O

exp (α(i,j)
o )q

o′∈O exp (α(i,j)
o′ )

o(x) (3.1)

The result ō(i,j) is a mixed operation.
The architecture search is performed by optimizing the connections be-

tween these nodes. During the training process, the parameters of the op-
erations are learned and updated through gradient-based optimization. At
the same time, the connections between the nodes are also treated as vari-
ables and their associated weights αo are optimized using gradient descent.
This allows the architecture to change dynamically and continuously during
training, based on the feedback from the optimization process. The final
architecture is selected by pruning the connections with the lowest weights
discarding the operations that contribute the least to the performance of the
network. The process is repeated until the desired number of connections
is reached. This makes it possible to search for the optimal architecture in
a matter of hours, compared to days or weeks for traditional NAS methods
based on RL. However, DARTS’s main drawback depends on the high mem-
ory consumption that grows linearly with the supernet size and that impedes
the exploration of bigger search spaces. ProxylessNAS [3] is another DNAS
method that tries to overcome this problem by training only a single path
of the graph for each batch of training data, thus limiting memory occupa-
tion but giving up exploring the whole search space. DARTS uses only the
task loss as a target while ProxylessNAS is the first method to employ a
multi-objective loss in order to search for the best trade-off between model
accuracy and some hardware-specific constraints such as latency.

3.3 Masked-based Differentiable NAS
Another promising DNAS method that has been introduced in the last years
is mask-based DNAS or DMaskingNAS. This method uses binary masks,
which are made differentiable and trainable, to explore some network’s archi-
tecture hyperparameters that were not called into question in the preceding
methods such as spatial and channel dimensions. The masks are updated at
each iteration of the gradient-based training algorithm to allow for the discov-
ery of new and improved architectures. This method allows for a fine-grained
search over a seed network performed at the same time as the training of the
network weights, as the DNAS technique suggests, thus making the search
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really lightweight (with no significant overhead with respect to standard net-
work training). This approach solves the scalability issue that affected most
of the previous NAS methods making it possible to apply NAS also on large
models and datasets. This of course comes at the cost of a search space
limited to sub-architectures contained in the single seed architecture. The
two seminal mask-based DNAS works are MorphNet [4] and FBNetV2 [5].

MorphNet work provides a tool to search for neural architectures that can
target some specific constraints in terms of model size or, for instance, the
number of FLOPs per inference to assist the deployment of these models
on resource-limited devices such as IoT edge devices. MorphNet focuses on
the search for the optimal value for output channels of convolutional layers
while network topology, filter dimensions, and other possible design choices
are treated as fixed. The optimization problem assumes the form:

O∗
1:M = arg min

F(O1:M ≤ζ)
min

θ
L(θ) (3.2)

Where θ are the network’s parameters, L is the loss function, O1:M are the
output channels of every layer and F(O1:M ≤ ζ) represents the costraint to
be respected (e.g., number of FLOPs). To solve this optimization problem
MorphNet combines two alternative solutions by means of a 3-step algorithm.
The first is based on a sparsifying regularizer that put a greater cost on
the neurons that contribute more to the F . The choice of the regularizer
depends on the constraint required. This is applied in steps 1 and 2 which
are usually shrinking steps. These two steps usually result in a network that
requires fewer resources but sacrifice performance. The second is based on
a simple width multiplier that can shrink or expand the output channels of
each layer. This is used in step 3 to perform an expansion of the network and
regain performance. This procedure is repeated iteratively and leads to an
overall improved architecture, with respect to the seed one, able to respect
the constraints imposed while not sacrificing performance.

FBNetV2 work proposes an efficient way to use the masking mechanism
for feature map reuse in order to search over spatial and channel dimen-
sions. As depicted in Figure 3.3 instead of summing the output of 3 different
padded convolutions (step B) or using three different padded masks (step
C) that would still make the computational cost grow with the number of
options available, FBNetV2 approximates the different convolutions by us-
ing weight sharing and summing the padded masks before multiplying by
the output (before summing the masks are multiplied by Gumbel-Softmax
weights [28]). In this way, they can provide a constant computational cost
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Figure 3.3. FBNetV2 Channel Search [5].

even with increasingly larger search options.
Another relevant mask-based DNAS method for this thesis work is PIT

(Pruning In Time) [6]. PIT, as MorphNet, starts from a seed network and
tries to reduce model complexity while preserving accuracy by employing
trainable masking parameters to perform structured weight pruning. PIT
tries to reduce the complexity of a seed model by changing the value of
network hyper-parameters such as the number of output channels, receptive
field size, and dilation of its layers. PIT’s main focus and novelty is the op-
timization of Temporal Convolutional Networks (TCNs) that are commonly
used for time-series processing tasks while the rest of the NAS techniques
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focused only on 2D-CNN models. Moreover, while other works optimize the
number of channels PIT is able to extend this optimization also to receptive
field and dilation. To optimize the output channels PIT uses a vector of α
parameters of the same length as the original number of output channels and
applies a Heaviside binarization function to the parameters α returning 0 if
the value is below the threshold and 1 if it is higher. The weights of each
output channel are then multiplied for the masks and if the mask value is
zero the corresponding channel is pruned.

Figure 3.4. PIT Channel Search [6].
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Chapter 4

Hybrid Coarse- and
Fine-Grained DNAS

4.1 Objective
In recent years, the increased availability and impressive performance of AI
applications have risen the interest in the possibility of deploying DNN mod-
els directly at the edge. On the other side, the Internet of Things (IoT)
has revolutionized the way we interact with our surroundings, enabling us to
connect and communicate with an expanding range of devices. The deploy-
ment of AI on such devices can enable performing inference in real-time and
take decisions directly at the edge. However, deploying DNN models on edge
devices introduce several challenges. Some of the major challenges include:

• Limited computing resources: Edge devices have limited processing power,
memory, and storage, which can make it hard for them to run complex
algorithms. This requires developing lightweight algorithms to ensure
they can be executed efficiently on edge devices.

• Power consumption: DNN models deployed on IoT edge devices may
consume a significant amount of power, which can limit the battery life
of the devices. IoT devices are typically battery-powered, and frequent
replacement of them may not be easy (e.g., sensors that are located
in hard or dangerous places to reach such as machinery, bridges, etc.)
as well as representing a significant cost term over time. This requires
special consideration when developing models for these devices.

• Heterogeneous hardware and software: Edge devices can be built using
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different hardware and software architectures, making it difficult to de-
velop applications that can run on all edge devices. This requires the
development of standardized interfaces and protocols to ensure interop-
erability across devices.

• Scalability: The number of edge devices in an IoT deployment can grow
rapidly, making it challenging to manage and scale the infrastructure.

To tackle some of these challenges, as extensively described in Chapter 3,
NAS methods are becoming increasingly popular, making it possible to find
architectures optimized to work on edge devices while respecting the con-
straints imposed by them and without or with reasonable loss of accuracy.
Aside from the Reinforcement Learning-based methods that, as seen in Sec-
tion 3.1, require too many computational resources and very long training
times, the supernet-based and mask-based DNAS methods have yielded the
best results while being much more efficient from the training time perspec-
tive.

The mask-based DNAS methods especially are the ones that were found
to be the lightest and consequently allow more options to be explored in
the search given that they are also scalable to larger networks and datasets.
However, these methods while being able to explore a large number of alter-
natives for sub-architectures contained in the seed network, remain unable
to explore completely different layer operations alternatives. On the other
hand, supernet-based methods allow exploring different network topologies
providing the NAS the ability to choose within some alternative operations
to be performed at each involved layer.

The first goal of this work is to create a method that is able to com-
bine the coarse-grained search performed by supernet-based methods and
the fine-grained one performed by PIT while preserving mask-based meth-
ods’ lightness as much as possible. This is achieved by inserting into the
original model some user-defined supernet modules containing some layer al-
ternative operations, and by applying the PIT algorithm on all the available
layers. By doing this, the search space is still wide and full of possible fine-
grained choices like the precise number of output channels of each NAS-able
layer but at the same time, the NAS is allowed by the supernet implemen-
tation to explore some alternative operations for some of the network layers
that are outside the seed network topology. It is important to underline that
the layers contained in the supernet modules are constantly evaluated during
the training in the optimized form chosen by the PIT algorithm allowing a
complete mixture of the two methods.
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In another approach explored in this thesis, however, PIT-based fine-
grained search is performed later and separately from supernet-based coarse-
grained search. In particular, in this approach, the PIT search is performed
on the model exported by the supernet-only search. A comparison of the two
approaches (the mixed coarse- and fine-grained search and the fine-grained
search performed after the coarse-grained search) is provided in Chapter 5.

4.2 PLiNIO Library
This section describes the characteristics and organization of the PLiNIO
library [7].

PLiNIO stands for Plug-and-play Lightweight Neural Inference
Optimization and aims to aggregate in a single user-friendly library multiple
Differentiable NAS methods in order to allow the users to easily compare
their effectiveness on their models. It is a Python package built on top
of the PyTorch ecosystem and, as highlighted by its name, it targets the
optimization of Neural Network models with an eye on the inference phase
in order to facilitate the deployment of these models on edge devices. It
exploits DNAS algorithms that, as described in Chapter 3, have proven their
lightness and effectiveness in finding optimized architectures to be deployed
on edge devices.

Ease of use has been one of the main concerns during the development of
this tool leading to the creation of a user-friendly library (Plug-and-play).
To optimize the architecture of a model using one of the available DNAS
methods the user has to add only three simple lines of code to the original
training loop (Figure 4.1):

• A line to convert the original model into a NAS-able model. Calling
the desired DNAS method constructor, with the original model as an
argument, is what it takes.

• A regularization term needs to be added to the loss in order to balance
accuracy and the other chosen metric (e.g., model size) and effectively
train the architectural parameters together with the model parameters.
The regularization term is easily retrieved by calling the function
get_regularization_loss() on the NAS model.

• A line to perform the conversion of the final NAS discovered model into
a standard PyTorch model. The function arch_export() called on the
NAS model returns the optimized model into a standard PyTorch model.
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Figure 4.1. Standard training loop vs PLiNIO training loop [7].

Moreover, the library has been organized to ease the integration of new meth-
ods and algorithms.

As depicted in Figure 4.2 the code in the library is organized into two
main directories plinio and unit_test.

The plinio directory contains the main library code while the second con-
tains a set of unit tests. The graph folder contains a set of files that perform
various general operations on the model graph that are useful for all the
NAS methods. Some of these operations will be better described in Section
4.3. The methods folder instead contains all the available DNAS methods in
the library. Currently, these methods are PIT, PITSuperNet, and MixPrec
(under development):

• dnas_base: it contains an abstract class (DNAS) with common code for
the DNAS algorithms. Its constructor takes as input a string describing
the regularizer to be used in the architecture search (‘size’ or ‘macs’ are
currently available), a list of names of layers that should be excluded
from the search, and a list of types to be excluded.
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Figure 4.2. PLiNIO Library code organization.

• mixprec: this part is currently under development and will not be dis-
cussed in this thesis.

• pit: it contains the implementation of the PIT DNAS method [6]. The
PIT class takes a PyTorch model as input and converts all the convo-
lutional and fully-connected layers that can be found into a PITModule
which is an abstract class that provides an interface to all the possi-
ble specific PIT modules. The PITModule class and all its specific in-
heriting classes (PITLinear, PITConv1d, PITConv2d, PITBatchNorm1d,
PITBatchNorm2d) are contained in the nn folder together with
PITFeaturesMasker, PITTimestepMasker, and PITDilationMasker
that are used to train respectively the number of output channels, the
receptive field, and the dilation. The graph file contains all the PIT-
specific functions that operate on the model’s graph. These operations
are mainly related to the model’s conversion.

• pit_supernet: this module has been introduced in this thesis work.
It contains the implementation of the PITSuperNet DNAS method. It
presents a similar structure to the pit folder. The PITSuperNet class
takes as input a PyTorch model with some user-defined
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PITSuperNetModules. This model is converted by applying PIT conver-
sion with some additional steps for the SuperNet part. The nn folder
contains the PITSuperNetModule definition and the definition of the
PITSuperNetCombiner which contains the logic behind the
PITSuperNetModule that acts just like a wrapper. The graph file has
the same function as the PIT one, of course for PITSuperNet.

The unit_test folder is organized as follows:

• The models folder contains some simple test models used within the unit
tests.

• The test_methods folder contains the tests developed for all the DNAS
methods available. Each method has its own folder with some tests
developed to ensure an easier implementation of new features. Some
PITSuperNet tests include the model conversion in import and export
mode, the individuation of the right number of supernet target modules,
and the get_size and get_macs value test.

• The test_utils folder contains some additional tests utils as a file that
tests some operations performed on the graph.

4.3 PITSuperNet
This section will describe the characteristics of the PITSuperNet method
explaining how it works, how it can be used and the challenges encountered
in its implementation.

4.3.1 PITSuperNetModule
The first and most evident element of the PITSuperNet method is the
PITSuperNetModule. The PITSuperNetModule is what defines the so-called
supernet i.e., a neural network that contains an arbitrarily large number of
possible sub-networks or candidate architectures that can be obtained by
applying different combinations of operations or transformations (such as
convolutional layers, pooling, skip connections, etc.) to the supernet’s ar-
chitecture. PITSuperNetModule is the API that PLiNIO exposes to allow
the user to define the different choices to be explored. These PITSuperNet-
Modules can be used as drop-in replacements for some of the seed layers.
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The basic idea is to enlarge the NAS search space by providing some valu-
able alternative options to be explored and the NAS will eventually select
one of these options available replacing the PITSuperNetModule with the
selected option. Inside each PITSuperNetModule, there is an instance of the
PITSuperNetCombiner class that combines all the output of the candidate
modules into a single one (more in Section 4.3.2). In Figure 4.3, a simple
example of the idea of a supernet module is provided. A common pattern

Figure 4.3. PITSuperNetModule.

that was frequently used in the experiments of this work consists of replacing
a convolutional layer of the seed model with a PITSuperNetModule (Figure
4.3). This PITSuperNetModule could be provided with a list of possible
operations such as:

• The original layer’s convolution.

• A convolution with an increased kernel size with respect to the original
one.

• A depthwise-separable convolution.

• An identity operation to enable the NAS to completely skip the layer if
not needed.

In the PITSuperNetModule example reported in Figure 4.4, each alterna-
tive module has been paired with an independent BatchNorm module because
in the tests conducted during the implementation of PITSuperNet, a shared
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Figure 4.4. PITSuperNetModule usage example.

BatchNorm operation for all the alternative modules was found to be less
effective (see Section 5.1.1).

This additional step required to be performed by the user is needed to
ensure the flexibility of the tool making it useful in different kinds of tasks
and applicable to various models. In this way, the user can directly choose the
kind of operations he wants the NAS to consider for any specific layer. In this
preparation phase, it is up to the user to ensure that all the alternative layers
are compatible with their predecessors and successors e.g., an identity layer
cannot be listed in a PITSuperNetModule that is positioned in a place where
was originally intended an operation with the number of output channels
different from the number of input channels. For this reason, all alternative
modules in the supernet should share the same output tensor dimension.

PITSuperNetModule also takes as input two additional parameters
gumbel_softmax and hard_softmax. They are two flags used to determine
which type of softmax function to apply on the architectural weights α. Their
usage will be better described in Section 4.3.3.

46



4.3 – PITSuperNet

4.3.2 Model’s Conversion

The PITSuperNet constructor accepts a PyTorch model with a variable num-
ber of PITSuperNetModules inside and deals with the conversion of the model
into a NAS-able one. This is a crucial step that converts also all the eligible
layers into PIT ones. The PITSuperNet tool can also work just with the
SuperNet part avoiding using the PIT optimization, if this is the case needed
the user can set the autoconvert_layers flag to False while calling the
constructor. In this way, the convert function will not try to transform all
convolutional and fully connected layers into PITModules and the NAS will
just optimize the choice of the more suitable module in the supernet layers.

In the following, the most relevant operations performed inside the convert
function (Figure 4.5) to build a NAS-able model are reported.

The first step is symbolic tracing and the creation of the graph of the model
using the torch.fx tool. Symbolic tracing consists of a “symbolic execution”
of the model code. During this execution, fake input values are fed through
the model and are recorded (traced) in order to build a graph of the model
composed of operations as nodes. An instance of the class torch.fx.Tracer
inspects each module determining whether it is a leaf module or not. If it
is a leaf module a special node is inserted in the model graph otherwise the
tracing continues by entering the forward function of the current module
and recursively inspecting all possible child modules. The tracer class can
be overridden to implement various behaviors of this tracing process.

Some important labeling operations are then performed on the nodes of
the graph in order to enable the correct propagation of the PIT feature masks.

The first operation is the add_node_properties which performs a visit on
the graph and adds to a dictionary contained in each node some properties.
These properties mostly define how the node propagates the features to its
successors i.e., whether it defines a new number of output features different
from what it receives (features defining operation) or simply propagates the
features received (features propagating operation). These properties will
become useful in the next steps.

The second operation is the set_combiner_properties and it is a
PITSuperNet-specific operation that set the node properties of the com-
biners’ nodes. An instance of the PITSuperNetCombiner class is contained
in each PITSuperNetModule and contains the module logic. In fact, the
PITSuperNetModule is just a wrapper for the combiner needed to allow the
fx.Tracer to get inside each alternative module in order to apply PIT con-
version. Using a special implementation of the fx.Tracer called
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Figure 4.5. convert function.

PITSuperNetTracer the PITSuperNetCombiner instead is treated as a leaf
module and remains untouched by the tracing operation and it is able to
provide the needed logic to train a SuperNet module.

The following step of the convert function is to call a PIT-specific function
used to convert all the eligible layers into PITModules. Then another PIT-
specific function is used to fuse together PIT convolution and PIT batch
norm operations coming one after the other.

Then the add_features_calculator operation is called and with an-
other visit on the graph it adds to each node dictionary an object called
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FeatureCalculator in one of its variants depending on the properties that
have been added to the node in the add_node_properties step.

The FeatureCalculator is an abstract class that defines the main inter-
face to be exposed to all of its children that are used to compute the number
of input features for a layer during the NAS optimization phase. This is
needed because during the search phase PIT could mask parts of the previ-
ous layer and since different operations propagate features in different ways
there is a need for different kinds of FeatureCalculators.

The following operation is the associate_input_features that again for
each node sets in the dictionary a field to tell what node within the preceding
ones has set the input features of the current node.

The register_input_features function set for all the PITModules an
input FeatureCalculator taking the FeatureCalculator of the node within
the preceding ones that set the input features.

Lastly, the import_sn_combiners function individuates all the
PITSuperNetCombiners and adds them to a list to be easily accessible in
future operations and the find_other_pit_modules function does the same
for all the PITModules that are outside of a PITSuperNetModule (this is
needed to make sure that they are counted in the get_size or get_macs
operations that are described in Section 4.3.3).

4.3.3 Search Phase
During the search phase, each PITSuperNetCombiner forwards a weighted
sum of the outputs of all the alternative modules. The weights applied to
each input of the weighted sum are the architectural parameters that are all
initialized to a constant value and then updated during each step of the train-
ing loop. The higher the weight of a certain module within the alternative
ones, the higher its contribution to the output of that particular supernet
layer. The output of a PITSuperNet layer ysn has this form:

ysn =
NØ

i=0
θαiyi (4.1)

θαi = softmax(αi) (4.2)

Where yi are the outputs of each candidate module contained in the PIT-
SuperNetModule and θαi are the architectural parameters of that
PITSuperNetModule αi that have been passed through a softmax function.
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Supernet candidate modules could have also been converted to PITModules
and in this case, their output dimensions depend on the masks that are
currently applied to them. However, since all PITSuperNetModule candidates
should share the same output dimension, PIT is forced to choose a shared
mask for the output of all alternative layers. This constraint could indeed
represent a limiting factor for the PITSuperNet method since it can become
harder for PIT to find the perfect fine-grained optimization for a layer having
to share that choice with all the other candidate layers.

In PITSuperNet it is possible to specify the type of softmax function to
be applied to the alpha parameters within two types: standard softmax and
Gumbel softmax [28] [29]. Standard softmax has the form:

softmax(αi) =
exp(αi

τ )q
j exp(αj

τ ) (4.3)

Conversely, Gumbel softmax has the following expression:

GumbelSoftmax(αi) = exp((log(αi) + gi)/τ)qk
j=1 exp((log(αj) + gj)/τ)

(4.4)

Where g are samples drawn from the Gumbel(0,1) distribution and τ is the
temperature value. The temperature value τ is used both in standard softmax
and Gumbel softmax. This value can be used to change the confidence in the
choices made. If the temperature value is below 1 the softmax will output
more confident results i.e., more polarized values, while a higher value (more
than 1) will decrease the confidence of the choices and provide as output less
polarized values.

Optionally when using the Gumbel softmax, it is possible to set the flag
hard_softmax=True. In this case, after the sampling from the distribution,
an argmax is performed rather than a softmax and consequently, a one-hot
vector is obtained as output. Since a discretization would not be differen-
tiable, the backward function is rewritten with a straight-through estimator
(i.e., the backward of the operation in question is rewritten as if it were
the backward of an identity function) to ensure that the operation remains
differentiable.

Gumbel softmax can be applied to face the problem of unpolarized alpha
values that was discovered while testing the PITSuperNet method. The al-
pha values passed through the standard softmax function append to be very
similar to each other causing the supernet choices not to be really polarized
towards a particular candidate module. During the search phase, little dif-
ferences in the alpha values of a supernet module can lead to an output that
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is the result of the contribution of all (or most of) the candidate modules in
equal measure creating a sort of mixture layer that, as soon as the model is
exported (Section 4.3.4), disappears replaced by the module with the slightly
higher alpha value (see Section 5.1.2). This selected module does not well
represent what the NAS has been used to "see" during the search phase
eventually leading to a model that is not well optimized and a consequent
accuracy drop.

To make sure that the NAS searches for the best tradeoff between accuracy
and model size (or number of MACs) a regularization term can be added to
the loss computation into the training loop. The loss takes the form:

L = Ltask + λR (4.5)

Where Ltask is the loss on the task, λ is the regularizer strength and R
is the regularization term. The regularization term is obtained by calling
the function get_regularization_loss. Depending on the regularizer cho-
sen, this function calls the get_size or get_macs function of PITSuper-
Net. This function retrieves the size (or MACs) of all the layers involved
in the NAS optimization both supernet and pit layers. For the pit mod-
ules, the size is computed based on the current mask applied to the module
in the search phase. For the supernet layers, the size (or MACs) is com-
puted again as a weighted sum of the sizes (MACs) of all the candidate
modules in the same way as the forward function computes the output of
the PITSuperNetModule. The current size of a PITModule inside a supernet
layer is computed and passed through the weighted sum as any other module
contained in the PITSuperNetModule.

The parameter λ is used as a multiplying factor to tune the effect of the
regularization term on the loss. Usually between 0 and 1, the higher it is
(closer to 1), the higher the effect of the regularization term on the loss, and
consequently the NAS will output more constrained models in terms of size
or MACs. On the other hand, with a low λ value the regularization term has
less impact on the loss thus allowing the NAS to output bigger models.

Another loss term that can be added to the loss computation is loss icv.
With this term the loss assumes this form:

L = Ltask + λR + λicvRicv (4.6)

Where λicv is again the strength of this regularizer and Ricv is the icv reg-
ularization term. This particular term is used as a regularizer to encourage
the NAS to take more polarized decisions during the search phase by maxi-
mizing the variance between the alpha values. The loss icv term consists of
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the reciprocal of the variance of the architectural parameters values to allow
maximizing the variance while still minimizing the loss:

Ricv =
LØ

i=0

µ
(i)
θα

var
(i)
θα

+ ϵ
(4.7)

Where L is the number of PITSuperNetModules in the model, µ
(i)
θα

the mean
of the architectural parameters of a particular PITSuperNetModule, var

(i)
θα

the
variance of the same parameters and ϵ a small number to avoid divisions by
zero. Loss icv represents an alternative to the Gumbel softmax to tackle the
problem of the alpha values similarity (see Section 5.1.2 for the comparision).

4.3.4 Final Architecture Export
When the search phase is over the architecture discovered must be converted
into a normal PyTorch model. To accomplish this task PLiNIO exposes the
arch_export function. In the arch_export, the convert function, already
described in Section 4.3.2, gets called in export mode. In this mode, the
convert function calls the PIT-specific function to convert all PITModules
into standard modules with the optimized number of channels. In this func-
tion, all PITModules both inside a PITSuperNetModule or in other layers
are replaced with their standard PyTorch operation e.g., PITConv2d gets re-
placed by Conv2d, PITLinear by Linear, etc. All these replacing modules
are built with the optimized number of channels defined by PIT. At this
point, all PITModules inside the model have been replaced while the super-
net layers still contain all their alternatives. Then a PITSuperNet-specific
function gets called to export all the supernet layers. In this step for each
supernet layer, the candidate module that is paired with the highest archi-
tectural parameter α gets chosen and replaces the supernet layer. Since all
the PITModules have already been exported, the chosen module will be also
PIT optimized.

The resulting model containing optimized supernet choices and modules
optimized by PIT is a standard PyTorch model that can be fine-tuned on
the task at hand.

Suppose the user requires to perform only the supernet search and sets
autoconvert_layers=False. In that case, only the second part of the ex-
port will be performed, the one related to the choice of the candidate layer
in each PITSuperNetModule while there will be no PIT optimization and
consequently no need to export PITModules.
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Chapter 5

Results

This chapter presents the results of the experimental validation conducted
on PITSuperNet with the datasets available in the MLPerf Tiny bench-
marks suite. In particular, the tests have been conducted on three of the
four benchmarks available which are Image Classification (ICL), Keyword
Spotting (KWS), and Visual Wake Words (VWW). The fourth benchmark
available in the MLPerf Tiny suite is Anomaly Detection and it has not
been considered in this work since its seed network is a dense autoencoder,
therefore composed of only fully-connected layers on which the application
of SuperNet would not be meaningful.

As said in Section 4.1, the thesis’ objective is combining coarse- and fine-
grained DNAS. To do so, two approaches have been explored: a complete
mixture of the two methods with the new PITSuperNet method, and the exe-
cution of a PIT search over some of the models obtained with a SuperNet-only
search. In order to provide a full significative comparison of all the methods
each benchmark has been used to test PIT, SuperNet, PITSuperNet, and fi-
nally PIT after SuperNet. Please note, that thanks to the modularity of the
developed code, a SuperNet search can be performed with the PITSuperNet
method specifying autoconvert_layers=False (Section 4.3.2).

For each benchmark, the reference seed model has been modified to con-
tain some PITSuperNet modules. In the ICL benchmark all convolutional
operations have been replaced by a PITSuperNetModule except for the ones
contained in the residual branches of the network. For KWS and VWW
all depthwise separable convolutional operations have been substituted by a
PITSuperNetModule leaving untoched all other operations. An example of
the first layers of the modified model for PITSuperNet is provided in Figure
5.2 compared to the original seed model in Figure 5.1.
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Figure 5.1. First layers of DSCNN model (KWS).
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Figure 5.2. First layers of DSCNN model (KWS) modified for PITSuperNet.
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Each PITSuperNetModule has been equipped with 3 or 4 candidate mod-
ules containing:

• a 3x3 convolution

• a 5x5 convolution

• a depthwise separable convolution

• an identity operation (possibly)

Each of these candidate modules has its own BatchNorm and ReLU op-
eration (see Section 5.1.1)

In the following, all the results reported have been obtained, unless other-
wise specified, using the Gumbel softmax described in Section 4.3.3. The ta-
bles reported contain the Pareto points corresponding to architectures found
with the specified method, each point is described by the λ value i.e., reg-
ularizer strength, used during the search phase, the number of parameters
contained in the resulting architecture, and the accuracy result obtained on
the task. Each accuracy result obtained is an average of 6 fine-tuning results
obtained with different seed values.

As described in Section 4.3.3, PITSuperNet supports both size and macs as
regularizers. With size, the regularization term is the number of parameters
of the layers involved in the search phase, while with macs the number of
multiply and accumulate operations of the same involved layers is used. For
time reasons, the tests conducted in this thesis work have only used the size
regularizer. The usage of the macs regularizer was tested in the early stages
of this work and gave similar results to the one obtained with size but a full
exhaustive comparison is still to be done.
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5.1 Preliminary Experiments

5.1.1 Shared BatchNorm vs Independent BatchNorm
Each one of the PITSuperNetModule candidate modules has been equipped
with its own BatchNorm and ReLU operation because sharing these opera-
tions with all the candidate modules sometimes caused some troubles in the
fine-tuning phase of the training. For instance, in the KWS benchmark, for
some lambda values the model found using a shared BatchNorm operation
got stuck in the fine-tuning phase to an accuracy value of 8.34%. This value
is clearly really low compared to the 91.88% of the reference model but most
importantly is almost random for a 12-class task. The same problem oc-
curred in the VWW benchmark where some architectures could not improve
from a 52% accuracy value during the fine-tuning, again an almost random
accuracy value since VWW is a binary task. By using an independent Batch-
Norm operation for each candidate module in the PITSuperNetModule this
issue was fixed.

5.1.2 Softmax, Gumbel Softmax, Loss ICV
In this section, the results of the techniques employed to face the problem of
non-polarized architectural parameters α, described in Section 4.3.3, will be
reported.

alpha branch 0 alpha branch 1 alpha branch 2 alpha branch 3
0.22 0.14 0.32 0.31

Table 5.1. Standard softmax alpha values.

In Table 5.1 a sample of the architectural parameters α values for a PIT-
SuperNetModule in the final step of a search phase are reported. Since the 4
values are similar to each other all 4 candidate layers will play a significant
part in determining the output of the weighted sum computed in the forward
function of the combiner. When the export function gets called, it will select
branch number 2 since it has a slightly higher value suddenly changing what
the model had been used to see and optimize during the search phase.

In Table 5.2 the same α values obtained in a search phase using loss icv
are reported. This time the values are definitely polarized towards a single
choice i.e., branch 2, thus solving the problem highlighted before with the

57



5 – Results

standard softmax. Another option consists of using the Gumbel softmax

alpha branch 0 alpha branch 1 alpha branch 2 alpha branch 3
0.00 0.01 0.97 0.02

Table 5.2. Loss ICV alpha values.

with the hard softmax option 5.3. Using this option the α values consist of
a one-hot vector as described in Section 4.3.3.

alpha branch 0 alpha branch 1 alpha branch 2 alpha branch 3
0.0 0.0 1.0 0.0

Table 5.3. Gumbel hard softmax alpha values.
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Figure 5.3. ICL SuperNet results with diffrent softmax functions and loss icv.
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Lambda (λ) Model’s size (# parameters) Accuracy
3e-7 46414 83.5
5e-7 20718 80.5
1e-6 16814 77.0

Table 5.4. ICL SuperNet with Standard Softmax Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
5e-8 99166 83.0
1e-8 66014 78.0
1e-6 21258 73.5

Table 5.5. ICL SuperNet with Loss ICV Pareto points.

Figure 5.3 shows the comparison between the three different techniques
employed while testing the SuperNet method on the ICL benchmark. Com-
pared to the ones found with the Gumbel softmax (blue curve, results in Sec-
tion 5.2) the other two curves clearly show some significant accuracy drops.
The standard softmax results show how the non-polarization of the α values
during the search phase could lead to not well-optimized models. One pos-
sible solution to this problem is the usage of a loss icv (described in Section
4.3.3), however, the search phase with this technique converged too fast to
architectures that are clearly not performant. While it is probably possible
to solve this problem by tuning the strength of the loss icv regularizer, in
this thesis this solution has not been explored since the Gumbel softmax
technique offered way better results right away. Similar results have been
found on the KWS benchmark.
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5.2 Image Classification (ICL)
ICL is an image classification task available in the MLPerf Tiny benchmarks
suite. Image classification is a task that consists of classifying images into
some predefined classes or categories. It represents one of the most relevant
tasks of Computer Vision (CV) and also one of the first tasks where Deep
Learning raised lots of attention because it was able to outperform many
other methods. The dataset used in this task is CIFAR-10 [30] which consists
of 60000 32x32 RGB images in 10 classes, with 6000 images per class. The
10 classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. The dataset is divided into five training batches and one test
batch, each with 10000 images. The reference or seed model used in the
tests is ResNet-8 [17] composed of 78052 parameters it achieves an 88%
maximum accuracy on the task. The reference model has been modified by
replacing each convolutional operation with a PITSuperNetModule except
for the convolutions of the residual branches of the network.

Lambda (λ) Model’s size (# parameters) Accuracy
5e-7 62543 87.5
5e-6 35326 86.67
1e-5 31218 85.42
3e-5 17222 83.17
5e-5 11400 78.08

Table 5.6. ICL PIT Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
7e-7 103722 88.42
9e-7 54954 88.25
3e-6 20714 87
5e-6 14954 84.17

Table 5.7. ICL SuperNet Pareto points.
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Figure 5.4. CIFAR-10 [30] samples.

Lambda (λ) Model’s size (# parameters) Accuracy
9e-7 78338 88.5
2e-6 39568 84.75
3e-6 38828 82.58
5e-6 16810 81.5

Table 5.8. ICL PITSuperNet Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
5e-7 45330 88.5
1e-5 35489 88
2e-5 14729 80.7
3e-5 9266 77.2

Table 5.9. ICL PIT after SuperNet λ=9e-7 Pareto points.

62



5.2 – Image Classification (ICL)

Lambda (λ) Model’s size (# parameters) Accuracy
1e-6 20157 85
1e-7 17483 83.5
3e-5 14290 81.2
5e-5 7854 79.1

Table 5.10. ICL PIT after SuperNet λ=3e-6 Pareto points.

Figure 5.5. ICL results.
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By looking at the blue curve in Figure 5.5 we can see that SuperNet
achieved an 88.25% accuracy with a 54954 parameters model (λ = 9e-7) that
compared to the original ResNet-8 model corresponds to a size reduction
of 29.6% with 0.25% accuracy improvement. By performing a fine-grained
search (see green curve) on the model obtained with the coarse-grained one
performed by SuperNet a further accuracy improvement was found bringing
the total improvement of accuracy compared to the ResNet-8 model to 0.5%
(λ=5e-7). This improvement comes with an even smaller model of only 45330
parameters corresponding to a size reduction of 42% with respect to ResNet-
8. In the same green curve, an even smaller model was found (λ=1e-5) with
35489 parameters corresponding to a size reduction of 54.5% and a final
accuracy result that matches the one of ResNet-8.

More in general, while the approach of performing the fine-grained search
after the coarse-grained one was effective for some of the points just men-
tioned improving both PIT (orange curve) and SuperNet (blue curve) results,
the approach of mixing and performing both searches at the same time led
to unsatisfying results with significant accuracy drops (see the red curve of
PITSuperNet).

The reasons for PITSuperNet’s unsatisfying results could be related to
the complexity of the optimization problem since PITSuperNet must opti-
mize a significant number of architectural parameters having to manage both
PIT and SuperNet parameters. Moreover, the fine-grained optimization per-
formed by PIT could be suffering from having to select a shared mask for all
the candidate layers of a PITSuperNetModule, thus probably having to find
a trade-off between the actual more suitable mask that each candidate layer
would prefer for itself.
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5.3 Keyword Spotting (KWS)
Keyword spotting is a task that consists of detecting phrases or keywords
within audio signals representing utterances. Keyword spotting allows for
the identification of specific commands given with the voice thus being par-
ticularly useful for modern voice assistants like Apple’s Siri [31], Amazon’s
Alexa [32], or Google Assistant [33]. These devices need to remain idle while
waiting to detect specific wake-up words while consuming as little energy
as possible. As soon as a keyword is detected they wake up and perform
the speech processing. The dataset employed in the keyword spotting task
available in the MLPerf Tiny suite is the Speech Commands dataset [34].
The classes of the dataset are represented by the following list of 10 words:
“Yes”, “No”, “Up”, “Down”, “Left”, “Right", “On”, “Off”, “Stop”, and “Go”.
Two additional classes bring the count to 12 and they are “Silence” and “Un-
known”. Each sample has a duration of one second and since most of the
samples simply represent silence or background noise the false positives must
be minimized in order to obtain good accuracy results. The reference model
for the KWS task is a Depthwise Separable Convolutional Neural Network
(DSCNN) composed of 40396 parameters and achieves a 91.88% top-1 ac-
curacy. The reference model has been modified by replacing each depthwise
separable convolutional operation with a PITSuperNetModule.

Lambda (λ) Model’s size (# parameters) Accuracy
1e-7 40255 92.36
3e-5 22802 91.52
5e-5 12482 88.95
7e-5 9082 86.13

Table 5.11. KWS PIT Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
1e-6 40908 92.05
9e-6 35852 90.64
3e-5 25740 88.72
7e-5 20684 84

Table 5.12. KWS SuperNet Pareto points.
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Lambda (λ) Model’s size (# parameters) Accuracy
5e-6 47058 89.95
1e-5 18438 88.82
2e-5 11023 87.56
3e-5 7623 84.20

Table 5.13. KWS PITSuperNet Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
4e-6 32607 91.32
1e-5 24794 91.23
2e-5 13647 88.85
3e-5 11895 88.46

Table 5.14. KWS PIT after SuperNet λ=9e-6 Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
1e-5 18699 88.52
3e-5 14111 87.88
4e-5 8669 84.99

Table 5.15. KWS PIT after SuperNet λ=3e-5 Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
2e-5 18593 83.26
3e-5 14971 83.07
4e-5 10718 82.72

Table 5.16. KWS PIT after SuperNet λ=7e-5 Pareto points.
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Figure 5.6. KWS results.
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In this benchmark, the combined coarse and fine-grained search did not
provide any benefit either with the mixed approach or the separated one.
These results show how the baseline hand-tuned model is already well-suited
for the task and trying to find different alternative architecture layers with a
SuperNet coarse-grained search (blue curve in Figure 5.6) does not provide
any improvements. The fine-grained search performed by PIT appears to be
the best approach to further improve, with small adjustments, an already
well-performing architecture and in fact, none of the other methods could
outperform PIT’s results (orange curve).

PIT was able to find an accuracy improvement of almost 0.5% with a model
of 40255 parameters (λ=1e-7) corresponding to a small size reduction of 0.3%
with respect to the seed model. Another interesting point found by PIT is
with λ=3e-5 where a model of just 22802 parameters (size reduction: 43.6%)
achieved an accuracy of 91.52% just 0.36% lower than the one achieved by
the seed model.

Moreover, it is worth pointing out how again the separated approach to
combine the coarse- and fine-grained search seemed to be more effective than
the mixed approach with PITSuperNet even though in this case it did not
provide improvements to the fine-grained search.
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5.4 Visual Wake Words (VWW)
Visual Wake Words is a classification task that aims to detect whether a
person is present in an image or not. It is a particularly useful task for the
IoT camera sensors that are becoming more and more popular with time.
The dataset employed is the Visual Wake Words Dataset [35], a subset of
the MSCOCO dataset [36], composed of 115000 images and 2 classes that are
"Person” and “Not-person”. The task has been called visual wake words be-
cause in the same fashion as the keyword spotting task, the involved devices
get woken up by the presence of a person in the frame with the necessity
of consuming little power while being idle. Whenever a person is detected,
higher computing resources are delivered to enable image processing. The
reference model for this task is MobileNetV1 [37] composed of 213586 param-
eters and archives an 83.32% top accuracy. The reference model has been
modified by replacing each depthwise separable convolutional operation with
a PITSuperNetModule.

This benchmark has a significantly bigger dataset and a much deeper seed
model compared to ICL and KWS and for this reason the training times
required are noticeably higher.

Figure 5.7. VWW dataset [35] samples.
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Lambda (λ) Model’s size (# parameters) Accuracy
1e-10 13736 84.82
1e-8 12751 84.7
1e-6 9914 84.49
1e-5 2564 80.78

Table 5.17. VWW PIT Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
7e-8 155786 84.82
9e-8 105674 84.68
1e-6 55418 83.52
1e-5 49554 82.01

Table 5.18. VWW SuperNet Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
1e-10 13908 85.14
5e-7 10581 84.19
1e-6 8881 83.86
5e-6 4148 81.76

Table 5.19. VWW PIT after SuperNet λ=7e-8 Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
5e-7 10585 84.36
1e-6 9280 84.32
5e-6 8074 83.80
1e-5 4485 81.69

Table 5.20. VWW PIT after SuperNet λ=9e-8 Pareto points.

Lambda (λ) Model’s size (# parameters) Accuracy
1e-6 4253 83.76
5e-6 3933 83.68
1e-5 2903 82.29

Table 5.21. VWW PIT after SuperNet λ=1e-6 Pareto points.
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Figure 5.8. VWW results.
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Figure 5.9. VWW results (zoom PIT).
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The results in Figure 5.8 highlight how the model employed in this task
has plenty of room for improvements and optimization. By looking at PIT
results (orange curve), it is possible to see how the architectures found are
significantly shrunk down in terms of size while being able to reach higher
accuracy results. For instance, the architecture obtained with λ=1e-10 is
made of 13736 parameters corresponding to a size reduction of 93.6% and
an accuracy improvement of 1.5%. SuperNet alone is able to find more
performing models than the seed MobileNetV1 but it does not reach the
level of size reduction obtained by PIT for the same performance.

To test the combination of the coarse- and fine-grained search for this
benchmark only the second sequential approach has been tried, while PIT-
SuperNet has not been tested for time reasons (VWW benchmark has sig-
nificantly higher training times compared to ICL and KWS) and because it
was not providing improved results in the preceding benchmarks.

Noteworthy, by cascading the output of λ=7e-8 SuperNet output with
PIT (purple curve in Figure 5.9) with λ=1e-10 we achieved an architecture
of 13908 parameters (93.5% size reduction) and an accuracy of 85.14% which
is 1.8% higher than the seed one.

Another interesting result is shown by the light blue curve in Figure 5.9
which corresponds to PIT applied on the SuperNet model obtained with
λ=1e-6. The architecture found with λ=1e-6 has only 4253 parameters and
is still able to increase the accuracy by 0.4% with the huge size reduction of
98%.
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Chapter 6

Conclusions and Future
Works

The number of Artificial Intelligence applications has been significantly grow-
ing over the past few decades allowing the automation of a large number of
different tasks that before were only possible with human intervention. This
growth has been driven by the increasing availability and improvements of
computing power and by the emergence of new Deep Learning techniques that
have made possible a higher level of automation. Deep Learning methods au-
tomate the extraction of useful information from the data thus requiring less
human intervention and knowledge to perform the tasks, however, lots of
expertise and time are still required to design Neural Networks that are best
suited for the needed task. For this reason, a lot of effort is being given to the
objective of automating the process of designing Neural Networks in order
to avoid a time-consuming manual trial-and-error approach. Neural Archi-
tecture Search represents the answer to this quest, and Differentiable NAS
is certainly one of the most promising approaches in this field. To meet the
increasing demand for AI applications on IoT edge devices, NAS techniques
have to consider not only the model performance but also some other metrics
order to be deployed on small devices such as to name some, the size of the
model, the latency, the memory occupation, and the power consumption.

This work contributed to the development and expansion of the PLiNIO
library which aims to provide a user-friendly tool to enable the comparison
and testing of different DNAS methods in order to ease the research in the
NAS field and the deployment of AI on small edge devices. In particular,
firstly a SuperNet method has been developed to allow a coarse-grained kind
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of search different from the fine-grained one performed by the already exist-
ing PIT algorithm. Secondly, the SuperNet method has been transformed
into PITSuperNet, a new method able to combine the two types of search.
PITSuperNet still allows for a SuperNet-only search if required but it also
enables one to perform a PIT search at the same time as the SuperNet one.
The combination of the coarse- and fine-grained search has been tested on
three of the MLPerf Tiny benchmarks following two approaches: a mixture
of the two methods and a sequential application of SuperNet and PIT. The
first mixed approach did not give the hoped results while the second showed
some improvements over both the fine-grained- or coarse-grained-only search.

In summary, with the combination of the fine- and coarse-grained search
it was possible to obtain for the ICL benchmark an architecture of 45330
parameters corresponding to a size reduction of 42% with respect to the seed
model and an accuracy improvement of 0.5% or an architecture of 35489
parameters corresponding to a size reduction of 54.5% with the same accuracy
of ResNet-8, the seed model. For the VWW benchmark, it was possible to
obtain an architecture of 13908 parameters i.e., a 93.5% size reduction with
respect to MobileNetV1 (seed model) with a 1.8% accuracy improvement or
a 4253 parameters architecture corresponding to a 98% size reduction with
an accuracy improvement of 0.4%.

As already said, the first mixed approach of combining a fine- and coarse-
grained search with PITSuperNet did not provide the hoped results however,
since this approach of PITSuperNet is for sure way more convenient than
having to perform N PIT searches for each SuperNet point found, it could be
interesting in future works to further examine the PITSuperNet algorithm,
for instance, trying new training scheduling techniques which could possibly
consist of freezing PIT parameters for a predefined number of epochs at the
start of the training.
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