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Abstract
This project aims to create a ROS/Gazebo based environment for UAV controller

performance evaluation through simulated experiments. A general purpose interface is
also developed to integrate MATLAB/Simulink with ROS/Gazebo. The combined setting
allows for incorporating realistic environment constraints and uncertainty, system model
requirements, and other exogenous factors into the testing framework.

This work takes as case of study a quadrotor, which is widely used nowadays in mil-
itary, commercial and private purposes; these systems have a highly nonlinear behaviour
and different challenges to deal with like sensor noise, external disturbances (i.e. wind
gust), hard and precise maneuvers and payload release. The model of the quadrotor is
implemented on Gazebo taking into account a detailed aerodynamics model and feedback
sensor noise. All these effects are implemented on the URDF model with plugins that
are built on the testbench and can be activated by the user depending on the simulation
purpose.

The use of ROS/Gazebo and the implementation with MATLAB isn’t a straightforward
first approach application, so this thesis try to create and explain a better and clear
workflow to achieve the controller simulation. The work presents the experimental data
from simulation of different types of control techiniques to show if the interface between the
software tools is reliable. The simulated experiment on ROS/Gazebo and its performance
evaluation lead to a better testing phase and an optimization in the sofftware-in-the-loop
step in the design flow.
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Chapter 1

Introduction

1.1 Introduction and overview

Unmanned Aerial Systems (UAS), which are multi-component systems that incorporate
a ground-based controller, an unmanned aerial vehicle (UAV), and a communications
system between the two, have gained enormous popularity in recent decades. These
systems, often known as drones, are unmanned aircraft that may be remotely controlled
or fly autonomously without the need for a human pilot on board. These systems are
gaining popularity because they enable a wide range of missions and tasks that typically
require manned flight with aircraft like planes and helicopters to be completed at a fraction
of the cost. They also have the potential to be used to increase human productivity or
perform novel tasks that are either too risky or impossible for unaided humans.

Early UAV generations were mostly utilized for military purposes like surveillance
and reconnaissance missions. UAS and UAV utilization, however, has changed due to
technological developments, and they are now used for commercial, industrial, and civilian
applications. There are numerous uses for these systems, such as for surveying, mapping,
monitoring, search and rescue, agriculture, protecting wildlife, and providing delivery
services.

UAS and UAVs are being used in a variety of applications across numerous sectors,
despite the difficulties. Drones are employed in the agricultural sector for pesticide appli-
cation, crop monitoring, and mapping. Also, they are employed in wildlife conservation
to keep track of animal populations and to spot and stop poaching. Drones are being con-
sidered for usage in the delivery sector to speed up deliveries and lower prices. Moreover,
building sites and structures are being inspected by UAS and UAVs in the construction
sector, eliminating the need for human inspection and improving safety. They are also
employed in the oil and gas sector for pipeline surveillance and inspection. Drones are
employed in the film and entertainment industries for aerial photography and cinematog-
raphy.

The future of UAS and UAV technology is exciting and offers limitless possibilities.
With advancements in technology and continued development, these systems will be in-
creasingly deployed in a wide range of applications, making them an integral part of our
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daily lives. However, the growth of this technology must be balanced with adequate reg-
ulations and guidelines to ensure the safe and responsible use of these systems. Overall,
UAS and UAV technology offer significant benefits, and the potential for their continued
growth and impact on various industries is vast.

Some UAV types may be more suited for a given application than others: fixed-wing
vehicles are typically used when large areas need to be covered quickly and for a longer
period of time; multirotor vehicles are best when dealing with indoor environments or
needing hovering capability and more flexibility. (Figure 1.1).

(a) (b)

Figure 1.1: The Northrop Grumman MQ-4C Triton is an American high-altitude long
endurance unmanned aerial vehicle (UAV) under development for the United States Navy
as a surveillance aircraft[1], Onyxstar quadrotor from ESA(European Space Agency)(b)[2].

Multirotors are widely used in last years and the institutions have regularized the flight,
like FAA for USA and EASA (European Union Aviation Safety Agency) for Europe; the
aim is to set rules to control and differentiate the amateur flights with the professionals
ones and to avoid incidents and improper use. EASA provides a classification of UAVs
explained inf Figure 1.2.

Figure 1.2: EASA drone classification: open, specific and certified.[3]

The U.S. Department of Defence (D.o.D.) also made a classification of UAVs in different
groups shown in Figure 1.3.

Due to the easily access to drones for everybody, the operations of them should be
regulated proportional to the risk of the operation. Because of the large different types of
operations where a drone can be used, the EASA propose 3 categories: Open, Specified
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1.2 – Thesis organization

Figure 1.3: U.S. DoD Unmanned Aerial System group classification.[4]

and Certified.
The ‘open’ category addresses the lower-risk civil drone operations in , where safety is

ensured provided the civil drone operator complies with the relevant requirements for its
intended operation. This category is subdivided into three subcategories, namely A1, A2
and A3. Operational risks in the ‘open’ category are considered low and, therefore, no
operational authorisation is required before starting a flight.

The ‘specific’ category covers riskier civil drone operations, where safety is ensured by
the drone operator by obtaining an operational authorisation from the national competent
authority before starting the operation. To obtain the operational authorisation, the drone
operator is required to conduct a risk assessment, which will determine the requirements
necessary for the safe operation of the civil drones.

In the ‘certified’ category, the safety risk is considerably high; therefore, the certifica-
tion of the drone operator and its drone, as well as the licensing of the remote pilot(s), is
always required to ensure safety.

The management of drone traffic will be ensured through the U-space: a set of ser-
vices that will be deployed in airspace where heavier traffic is expected, such as in urban
areas. The U-space Regulation establishes and harmonises the necessary requirements
for manned and unmanned aircraft to operate safely in the U-space airspace, so as to
prevent collisions between aircraft and to mitigate air and ground risks. The U-space
regulatory framework will provide for safe aircraft operations in all areas and for all types
of unmanned aircraft operations. The U-space Regulation was adopted in April 2021.[3]

1.2 Thesis organization
The thesis is organized as following. Chapter 2 covers the literature review about the
mathematical modelling of a quadrotor describing all the dynamics involved on the model;
it also presents the literature review about the different types of controllers used in
the work. Chapter 3 presents the difference between Matlab/Simulink with respect to
ROS/Gazebo and why it is needed a workflow between them. It exploits the character-
istic of ROS and how it works. Chapter 4 describes the ROS repository created for the
thesis work and explain the workflow to connect the Matlab design with ROS tools to have
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the simulations. In the last two chapters simulations results are shown with conclusions
about them and explanation, and at the end will be the future improvements to the work
to increase the performance and the feasibility of the test bench environment.

4



Chapter 2

Literature review

2.1 Mathematical Model
This section decribes the Lagrange modelling of the quadrotor that includes aerodynamic
and gyroscopic effects. The quadrotor under study is shown in Fig. 1. The quadrotor
body is considered rigid and symmetric, with the arms aligned to xb and yb axes [5].

Figure 2.1: Quadrotor inertial and body farme.

The inertia matrix IB in the body frame is diagonal because of the symmetric structure
and Ix = Iy. Ix 0 0

0 Iy 0
0 0 Iz

 (2.1)

For the purpose of balancing the reaction torque the rotor induces and controlling the yaw
angle, the rotor’s angular velocities on the xb and yb axes have opposite signs (ω1,3 > 0,
ω2,4 < 0). the center of mass (COM) is located at (0, 0, HCOM )

hCOM =
(hb

2 ∗mb + (hp
2 + hb) ∗ 4 ∗mp

m
. (2.2)

where hb,mb, hp,mp are the height and mass of the body and propellers respectively, and
m the total mass of the quadrotor. The position in the inertial frame is expressed by the
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vector ζ while the attitude, defined as Euler angles coordinates in the inertial frame, is
represented by the vector η. Position and attitude are then grouped in the vector q ∈ R6.

ξ =

xy
z

 , η =

ϕθ
ψ

 , q =
5
ξ
η

6
(2.3)

In the body frame, the linear and the angular velocities are expressed by the vectors Vb
and ν respectively

VB =

vx,B
vy,B
vz,B

 , ν =

pq
r

 (2.4)

To compute the rotation matrix from the body frame and the inertial frame it is used
the 3-2-1 Euler rotation matrix, where s(x) = sin(x), c(x) = cos(x) and t(x) = tan(x).
The rotation matrix is obtained from the composition of Roll-Pitch-Yaw rotations; the
sequence is:

• z-rotation for roll angle:

Rz(ψ) =

c(ϕ) −s(ϕ) 0
s(ϕ) c(ϕ) 0

0 0 1

 (2.5)

• y-rotation for pitch angle:

Ry(θ) =

 c(θ) 0 s(θ)
0 1 0

−s(θ) 0 c(θ)

 (2.6)

• x-rotation for yaw angle:

Rz(ψ) =

1 0 0
0 c(ψ) −s(ψ)
0 s(ψ) c(ψ)

 (2.7)

Combining the three rotations as R321 = Rz(ϕ)Ry(θ)Rx(ψ)

R321 =

c(θ)c(ψ) s(ϕ)s(θ)c(ψ) − c(ϕ)s(ψ) c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)
c(θ)c(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) c(ϕ)s(θ)c(ψ) − s(ϕ)c(ψ)
−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

 (2.8)

Because rotation matrices have the orthogonality property, the rotation from the inertial
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frame to the body frame is supplied by the transpose of R321.ϕ̇θ̇
ψ̇

 =

1 s(ϕ)t(θ) c(ϕ)t(θ)
0 c(ϕ) −s(ϕ)
0 s(ϕ)/c(θ) c(ϕ)/c(θ)


ü ûú ý

W−1

pq
r

 ,
pq
r

 =

1 0 −s(θ)
0 c(ϕ) c(θ)s(ϕ)
0 −s(ϕ) c(ϕ)c(θ)


ü ûú ý

W

ϕ̇θ̇
ψ̇


(2.9)

W is invertible if θ /= (2k − 1), (k ∈ Z). (i.e. W is not singular). Each rotor produces
a force Ti in the direction of the rotor z-axis and proportional to the square of the rotor
velocity wi and to the lift constant k [6].

Ti = kω2
i (2.10)

The rotor angular velocities and acceleration also produce the torque τRi around the
rotor axis with b and IR being the drag constant and the inertia moment of the rotor
respectively.

τRi = bω2
i + IRω̇i (2.11)

For low speed maneuvers, it is common practice to consider k and b as constants despite
their dependence on air density, propeller shape and angle of attack [7]. Combining all
the rotor’s vertical force contributions, it is obtained the total thrust along the z-axis

TB =

0
0
T

 , T =
4Ø
i=1

Ti (2.12)

The torque vector τB represent the torques in the direction of the respective body frame
angles

τB =

τϕτθ
τψ

 =

 lk(ω2
4 − ω2

2)
lk(ω2

3 − ω2
1)

τR1 − τR2 + τR3 − τR4

 , (2.13)

where l is the lenght of the quadrotor arm. As a first approximation, the effect of ω̇i in
τψ is considered to be null.

Euler-Lagrange equations

The quadrotor dynamics may be described by the equation of motion expressed in the
following form [8]:

B(q)q̈ + C(q, q̇)q̇ + g = ζ (2.14)

where:

• B(q) ∈ R6x6 is the inertia matrix
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• C(q, q̇) ∈ R6x6 is the Christoffel matrix accounting for centrifugal and Coriolis effect

• g ∈ R6 is the vector accounting for the gravitational contribution

• ζ ∈ R6 is the vector of forces in the inertial reference frame and torques acting on
the UAV.

Equation (14) can be systematically determined using the Lagrangian formulation. The
total of the translational and rotational kinetic energies T minus the potential energy U
is the mechanical system’s Lagrangian.

L = T − U , (2.15)

which leads to
L(q, q̇) = 1

2mξ̇
T ξ̇ + 1

2 η̇
TJη̇ −mgzz, (2.16)

where J = W T IBW is the Jacobian matrix expressing the moment of inertia in the inertial
reference frame, and gz is the gravitational acceleration. The Lagrange equation is given
by

d

dt
(ϑL
ϑq̇

)T − (ϑL
ϑq

)T = ζ, (2.17)

and sets the relationship between the generalized forces applied to the quadrotor ζ and
the position q, velocities q̇ and accelerations q̈[8], which is rewritten as:5

f
τ

6
= d

dt
(ϑL
ϑq̇i

)T − (ϑL
ϑqi

)T ,

i = 1, ...,6
(2.18)

where the external forces and torques acting on the UAV are:

f = RTB, τ = τB. (2.19)

The equation of motion is derived solving (18) and it contains the following matrices:

B =
5
M 0
0 J

6
, C =

503x3 0
0 Cτ

6
, g =

#
0 0 mgz 0 0 0

$T (2.20)

where B,C ∈ R6x6, M = m ∗ I3x3 is the mass matrix, and Ct(η, η̇) = J̇ − 1
2
ϑ
ϑη (η̇TJ) is the

matrix that take into account the centrifugal and Coriolis effect produced by the angular
velocity.

C(η, η̇) =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 (2.21)

C11 = 0
C12 = (Iy − Iz)(θ̇CϕSϕ + ψ̇S2

ϕCθ) + (Iz − Iy)ψ̇C2
ϕCθ − Ixψ̇Cθ

C13 = (Iz − Iy)ψ̇CϕSϕC2
θ

C21 = (Iz − Iy)(θ̇CϕSϕ + ψ̇S2
ϕCθ) + (Iy − Iz)ψ̇C2

ϕCθ − Ixψ̇Cθ

8



2.1 – Mathematical Model

C22 = (Iz − Iy)ϕ̇CϕSϕ
C23 = −Ixψ̇SθCθ + Iyψ̇S

2
ϕCθSθ + Izψ̇C

2
ϕCθSθ

C31 = (Iy − Iz)ψ̇C2
θCϕSϕ − Ixθ̇Cθ

C32 = (Iz − Iy)(θ̇CϕSϕSθ) + (Iy − Iz)ϕ̇C2
ϕCθ + Ixψ̇SθCθ − Iyψ̇S

2
ϕCθSθ − Izψ̇C

2
ϕCθSθ

C33 = (Iy − Iz)ϕ̇CϕSϕC2
θ − Iy θ̇S

2
ϕCθSθ − Iz θ̇C

2
ϕCθSθ + Ixθ̇SθCθ

To further improve model accuracy, the gyroscopic effect and the aerodynamic drag
are considered and included in the model[5].

Gyroscopic Effect

The Gyroscopic effect is modeled as in [7]

Ggyro =
4Ø
i=1

S(ν)xIrωie3,

S(ν) =

 0 −r q
r 0 −p

−q p 0

 , (2.22)

where S(ν)x is the skew symmetric matrix with ν components. Factoring out the vector
position and Euler angle derivatives as

Ggyro = Ga(q, q̇, ω)q̇ (2.23)

, it can be rewritten equation (22), where

GT
a =



03x3 0 0 0

0 0 −Irz(
4q
i=1

ωi) 0

0 Irzcϕ(
4q
i=1

ωi) 0 0

0 Irzcθsϕ(
4q
i=1

ωi) Irzsθ(
4q
i=1

ωi) 0


6x6

. (2.24)

Aerodynamic drag

The aerodynamic forces acting on the quadrotor are modelled as [9], and expressed in the
matrix form to adapt to the Lagrange formulation. The drag forces responsible for the
multiple aerodynamic effects are:

• Blade flapping is a phenomenon that occurs when rotor blades are into translational
motion. A drag force is applied at the propeller COM as a result of this effect
opposing the UAV’s motion. Considering a small advance ratio µ = |vp|

ωr , where Vp
and ωr are the horizontal velocity respectively, the blade flapping drag is described
as

Dflap,i = Ti(Aflap
Vpi
ωi

+Bflap
ν

ωi
), (2.25)
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where

Aflap = 1
r

−A1c A1s 0
−A1s −A1c 0

0 0 0

 , (2.26)

and

Bflap =

−B2 B1 0
B1 −B2 0
0 0 0

 , (2.27)

are the parameter matrices that must be identified from flight testing.

• Because of the rotor’s thrust imbalance, which causes the advancing blade to produce
more lift than the retreating one, induced drag is generated. This effect opposes the
motion in the direction of the apparent wind and is most common in tiny quadrotor
UAVs because of the relatively rigid rotor blades. The induced drag is therefore
modelled as a drag force applied a the propeller COM

DI,i = KIVpi. (2.28)

• Similar to how airfoils experience induced drag associated with an increase in lift,
translational drag is produced when the rotor moves in forward flight. The force
model varies depending on the translational speed of the rotor

DT,i =
I
KT1Vpi Vpi < V̄pi

KT2(Vz,i − vi)4Vpi Vpi > V̄pi
, (2.29)

where Vz,i is the rotor z-axis linear velocity expressed in the body frame, vi is the
vertical velocity induced through the rotor, and V̄pi is the threshold velocity which
depends on the propeller. Only the first functional relationship is taken into account
because this force is applied to the rotor COM and the threshold velocity is not
exceeded for simplicity’s sake.

• Profile Drag is due to the transverse velocity on the propeller moving in to the air.
This effect is absent when hovering, but it increases drag when moving along the
body’s x, y-plane. The following linear model is a simplified variation of the complete
nonlinear one derived from Blade Element Theory[9] and is applied at the propeller
COM

DP,i = KPVpi. (2.30)

• The resistance created by the UAV’s flying envelope is called parasitic drag. For
small scale quadrotor travelling at less than 10 m/s, it is typically ignored. The
parasitic drag is described as

Dpar = Kpar|VB|VB,

Kpar = 1
2ρSCDpar

(2.31)

where ρ is the air density, S is the quadrotor lateral area and CDpar is drag coefficient.
The resulting force is applied to the quadrotor COM.
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2.2 – Control Problem

The drag coefficients KI , KT1 , KT2 , KP depend on the shape of propellers and need to be
empirically estimated. The sum of the aerodynamic forces acting on the propeller COM
are grouped in the vector

Di = Dflap,i +DI,i +DT1,i +DP,i (2.32)

and the torques induced on the quadrotor COM are described as

τD1 = S(D1)x(de1 + he3),
τD2 = S(D2)x(−de2 + he3),
τD3 = S(D3)x(−de1 + he3),
τD4 = S(D4)x(de2 + he3).

(2.33)

The total aerodynamic forces and torques are modelled as

Db = Dpar +
4Ø
i=1

Dflap,i +DI,i +DT1,i +DP,i, (2.34)

τD =
4Ø
i=1

τD1 (2.35)

The following matrix form represents the drag forces and torques after factoring out the
position and attitude derivative vector q̇5

Db

τD

6
= Fflap(q, q̇, ω)q̇ + FI(q, q̇)q̇ + FT (q, q̇)q̇ + Fp(q, q̇)q̇ + Fpar(q, q̇, |q̇|)q̇, (2.36)

Fflap, FI , FT , FP , Fpar ∈ R6x6.

Dynamic Equations of Motion

The gyroscopic effect and the aerodynamic forces are added to (11). Therefore, the
complete model becomes

B(q)q̈+C(q, q̇)q̇+g+Ga(q, q̇, ω)q̇+Fflap(q, q̇, ω)q̇+FI(q, q̇)q̇+FT (q, q̇)q̇+Fp(q, q̇)q̇+Fpar(q, q̇, |q̇|)q̇ = ζ.
(2.37)

Grouping the aerodynamic effect matrices into a single F , the model can be simplified as

B(q)q̈ + C(q, q̇)q̇ + g +Ga(q, q̇, ω)q̇ + F (q, q̇, |q̇|, ω)q̇ = ζ(ω). (2.38)

2.2 Control Problem
Similar to the majority of highly nonlinear systems, the dynamics of unmanned aerial
vehicles (UAV) have a number of features that make it challenging to design trajectory
tracking or stabilization.
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Unknown nonlinearities, underactuation, a tight coupling of subsystems, parametric
and nonparametric model uncertainties, measurement noise, output disruptions, and sys-
tem failure are some of these traits. The six degrees of freedom that quadrotors have,
which is more than the number of independent control inputs, is an example of an un-
deractuated system. This underactuation consequently reduces the number of system
configurations that may be directly controlled. Considering Ω ∈ R4 as the input, which
correspond to the square of the rotor angular velocity

Ω =
#
ω2

1
2
2 ω2

3 ω2
4
$T
, (2.39)

the equation of motion (34) cabe rewritten as

Bq̈ + Cq̇ + g +Gaq̇ + F q̇ = ζ = KζΩ, (2.40)

where Kζ ∈ R6x4 is the matrix which establish the relation between forces, torques and
the rotor velocities as 5

TB
τB

6
= K ′

ζΩ, (2.41)

and since f = R321TB, τ = τB, it is obtained

Kζ =
5
R321 0

0 I

6
K ′
ζ . (2.42)

Since rank(Kζ) = 4, the quadrotor is an underactuated system.[10] A solution for this
type of control problem can be found using a hierarchical control approach which consist
in two different loop control, one for the position control (outer loop) and one for the
attitude tracking (inner loop); both of them are controlled using PID technique. The
outer loop control action is designed following [7], where the position closed loop equation
for the position is

ξ̈ = ξ̈d +KPp(ξd − ξ) + kDp(ξ̇d − ξ̇). (2.43)

Taking the control vector U = ξ̈ = (U1, U2, U3)T , through (14), it follows

U = −gze3 + T

m
Re3, (2.44)

resulting to
RT (U + gze3) = T

m
e3, (2.45)

which, as stated in [7] by using some mathematical manipulation, it allows to compute
the desired pitch and roll attitude trajectory

θc1 = arctan

3
U1cosψ + U2sinψ

U3 + gz

4
, (2.46)

ϕc1 = arcsin

3
U1sinψ + U2cosψñ
U2

1 + U2
2 + (U3 + gz)2

4
, (2.47)
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which are the attitude-commanded inputs for the inner loop. From (45) it can be also
derived the total thrust that is generated from the fours rotors as a function of the attitude
and the control

Tc1 = m[U1(sinθcosψcosϕ+sinψsinϕ)+U2(sinθsinψcosϕ−cosψsinϕ)+(U3+gz)cosθcosϕ].
(2.48)

With the use of a PD controller strengthened by feedback linearization, the inner loop
regulates the torques τ . Following [8] the control action is formulated as

τc1 = J(η)y + Cτ (η, η̇)η̇, (2.49)

where the virtual control vector y = η̈ is

y = KPa(ηd − η) +KDa(η̇d − η̇). (2.50)

The controlled rotor squared velocities are determined after computing the appropriate
thrust and torques by
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To have a more realistic mathematical model of the quadrotor, it is added also the gyro-
scopic and aerodynamics effects. Equation (45) becomes

RT (U + gze3 + 1
m
F (q, q̇, |q̇|, ω)q̇) = T

m
e3, (2.52)

where the controlled roll and pitch angles result

θc2 = arctan

3
U∗

1 cosψ + U∗
2 sinψ

U∗
3 + gz

4
, (2.53)

ϕc2 = arcsin

3
U∗

1 sinψ + U∗
2 cosψñ

U∗2
1 + U∗2

2 + (U∗
3 + gz)2

4
, (2.54)

and the controlled thrust

Tc2 = m[U∗
1 (sinθcosψcosϕ+sinψsinϕ)+U∗

2 (sinθsinψcosϕ−cosψsinϕ)+(U∗
3 +gz)cosθcosϕ],

(2.55)
where

U∗
i = Ui + F ∗

i ,

F ∗
i = 1

m
ei
TF (q, q̇, |q̈|, ω)q̈.

(2.56)

The feedback linearization accounting for the torque caused by the aerodynamic drag is

τc1 = J(η)y + Cτ (η, η̇)η̇ +Gaτ (η, η̇, ω)η̇ + Fτ (η, η̇, |η̇|, ω)η̇. (2.57)

As a result, a cascade PD controller with feedback linearization is used as the control
strategy.
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Chapter 3

Problem Statement

Advanced robotic simulation tools like ROS and Gazebo are required to provide a real-time
and improved modeling of the controller design. These tools enable the creation of a real-
time 3D experiment environment where many scenarios and missions may be evaluated;
however, because of their not straightforward use, in a preliminary testing phase, it may be
challenging and consuming time to implement controller designs using C++ or Python.
For this reason the workflow between Matlab/Simulink and ROS/Gazebo can be very
powerful; Simulink is a tool that allow to design faster and easier a controller and with
the ROS toolbox provided by Mathworks it can be done the connection with ROS. This
chapter describes the functionality of each environment to have an overview on them,
focusing on ROS/Gazebo ones.

3.1 Software Environment

3.1.1 ROS

Robotic Operating System (ROS) is an open-source, meta-operating system that allows
robot simulations with hardware abstraction, low-level control, messages between nodes
and repository management[11].

ROS can only run on Unix-based platforms like Ubuntu and it is released regularly
with ROS distribution; distribution are collections of versioned stacks that can you install.
The one used in this work is ROS Noetic.

ROS provides tools and libraries needed to create, build and run codes (c++ or Python)
that can run on more devices and can communicate with them. In this operating system
there are different types of communication such as ROS services and ROS topics; the
execution processes are called nodes. Nodes have the capability of communication between
them and they are managed by a master; the master is a node that manage and give all
the information needed to the nodes to work.[12]
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Figure 3.1: ROS logo.[13]

ROS topic, publisher and subscriber

The publish-subscribe method ensures complete autonomy between the sources who gen-
erate the information, in this case, known as publishers, and those who receive it, known
as subscribers. The only term that unites the two parties is topic. The functionality calls
for one or more providers to distribute information on a specific subject via messages, and
recipients who are interested in receiving it to subscribe to that same topic. All of this
occurs without any logical interaction between the two parties. This method was made
possible by the nodes, which will be described in the sections that follow.

Package

ROS’s internal software is organized into packages. A package may contain the code
for one or more nodes, ROS message definitions, support classes for communication and
transport, test classes, etc.; however, in addition to these roughly related components of
the ROS architecture, it is also possible to insert configuration files, third-party software
products, and anything else that could possibly constitute a logical module on its own.
For this reason, the package is regarded as the smallest (atomic) item capable of being
assembled independently within the ROS environment. Its goal is to provide its own
functionalities in the most straightforward manner possible so that the software it contains
can be easily reused. A package should typically include enough internal functionality to
be considered useful, but not so much that it becomes burdensome or difficult for other
applications to use. It is possible to construct a package using either manual labor to create
the necessary files or appropriate tools, such as the catkin create pkg command.[14]

Node

The system’s internal processes are identified by the nodes. ROS was designed to be as
modular as possible in all respects, including the execution of the most basic operations.
In fact, a robotic control system only consists of various units that can be distinguished
not only from a physical level but also from a logical one. Every node must be capable
of functioning independently in order to guarantee a certain level of robustness in terms
of tolerance for potential updates, bugs, or attacks from other elements. Also, the intro-
duction of higher levels of modularity has the benefit of reducing the complexity of the
code in comparison to analogous monolithic systems because the implementation details
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of one module are not necessary for the other elements. A node during communication
may take on one or more roles beyond those anticipated, hence it is possible for it to
be both publisher and subscriber at once depending on the task assigned to each role.
The most popular way to launch a ROS node is by using the command rosrun, which
is followed by the name of the package from which the node is derived and then by the
name of the node’s executable. Additionally, it is possible to specify any command-line
arguments that might be used during the configuration phase. As is frequently assumed,
within a single machine, more nodes may be present. These nodes may be of different
types and open various roles, but it is also possible to have many nodes of the same kind
operating simultaneously.

ROS messages

Each node within the ROS architecture communicates with the others by distributing
information on related topics and employing data structures with various fields that vary
depending on the situation and take the form of messages. Every message can be defined
based on the conventional types: int, float, boolean, string, etc.; however, it is also possible
to define arrays. Finally, it is possible to create a more complex or simpler structure by
defining new message types while still using existing message fields. The structure of
each messages is defined within files with the extension ".msg" within the subdirectory
"msg" that will be created within the package. As expected, a message may occasionally
contain inside itself additional ROS messages in the form of fields. In particular, the
field:header, which gets its name from the same type and ought to be present in all
ROS messages. Certain common information is contained within it, such as the sequence
number, timestamp, and frame-ID; each of these can be set manually by the programmer
or automatically by the client libraries during the publishing phase.

Master

Its purpose is to enable the other system nodes to locate one another and then carry out
effective communication among themselves. As previously mentioned, the ROS architec-
ture implements a system based on publish-subscribe, which provides that the parties
involved in the communication are not aware of who would be sending the data or receiv-
ing it in advance. In actual practice, what happens is that each node of the system, when
it is being activated, has to know one other address in addition to the one for its own
machine, i.e. the Master’s. When a node wants to publish data in a message-based format
on a particular topic, the only action that needs to be taken is to inform the master. The
master will need to know, among other things, the address and port of the node that
initiated the request, the topic’s name, and the type of message. Later, if another node is
interested in receiving the data published on that topic, the only information that needs
to be provided is the topic’s name.

Catkin

The official build system for ROS is called Catkin, and it is required for the compilation
and linking of the many pieces of the code that make up the system. The decision
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to use a personalized build system in the context of ROS was made due to the need
to manage a system that is significantly larger and more complex than those used in
traditional environments. This system includes multiple programming languages and
systems, all of which have its own rules for compilation and unique dependencies that
would be challenging to manage using other tools. Catkin uses the Python scripts and
the CMake software’s fixed-size macros to provide several features that go beyond this
last one’s typical operation. The goal was to create a tool that was more compatible
than its predecessor, rosbuild, both in terms of structure and use, enabling better project
organization in addition to better support for cross-compiling and portable code. As
previously stated, Catkin’s functionality is quite similar to CMake’s, to which support for
automatic package identification inside the workspace and the simultaneous compilation
of multiple projects with reciprocal dependencies has been added. In general, a build
system is in charge of producing "target" objects that are created from source code. After
that, any final user will be able to use these last ones directly. Targets can be scripts,
header files, libraries, executables, or anything else that isn’t static code. As previously
stated, in the terminology of ROS, the source code is organized under "packages," and
each of these often consists of one or more targets that must be created during the build
process. The group of packages that Catkin is now considering during this procedure are
connected to the same workspace. Hence, Catkin enables simultaneous generation of more
targets belonging to several Packages while respecting their mutual dependencies. To be
able to do this, just like any other build system, it is necessary to know a number of details,
such as where the compilation tools are located (for example, the location of the C++
compiler), where the code source’s file system is located, what the various dependencies
are called and where they are stored, and where the executables will be generated and
installed. These details are often contained in a configuration file that must be accessible
by the build system; in the context of CMake and consequently also of Catkin, these
details are specified inside a file called "CMakeList.txt." In addition to a file of this type
designated at the workspace level, each package has a unique configuration file bearing
the same name that is located inside its own root directory.

Creation of new package

Use the catkin create pkg command to create a new package, followed by the name
you want to assign and any required dependencies. All requested files and order forms,
including CMakelist.txt, will be generated automatically. This final one will have a default
configuration that will then be customized based on user input. In addition to this file,
a manifest called "package.xml" is generated during the package creation phase. It is
always located inside the root directory and contains descriptions of all the package’s
properties, including its name, version, author, and dependencies on other packages; if
these were to be incorrect or incomplete, the program could still be compiled on its
own computer, provided it has all the necessary software. The code for creating nodes,
generating messages, or both may be contained in the various packages. Typically, the
node code will be placed in the src folder (generated automatically), while the message and
service files (.msg and.srv) will be placed inside the msg folder, which must be manually
created. In addition to "msg" it is also possible to manually include other folders, such
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as "launch" (which will contain the files with the previously described extensions) and
"config," which may contain one or more files in the ".yaml" format for configuring the
ingress parameters related to the various nodes.

3.1.2 Gazebo
Gazebo is an open-source robot 3D simulation tool that provides a realistic simulation
environment for robotics and automation applications. It is widely used in the robotics
industry to test and validate robot designs and control algorithms before deploying them
in the real world.[15]

One of the key components of Gazebo is its physics engine(ODE), which is responsible
for simulating the physical behavior of objects in the virtual world. The physics engine
calculates the motion and interaction of objects based on their physical properties, such
as mass, inertia, and friction. This allows Gazebo to provide a realistic simulation en-
vironment where robots can interact with objects and their surroundings just like they
would in the real world.

Plugins are another important component of Gazebo. They are used to extend the
functionality of Gazebo and provide additional features and capabilities. Plugins can be
used to add new sensors or actuators to a robot, to modify the behavior of the physics
engine, or to implement custom controllers for the robot.

Gazebo works by using a combination of models, sensors, controllers, and plugins to
create a virtual world where robots can operate. The user can create a robot model using
a 3D modeling tool and import it into Gazebo. The robot model is then equipped with
sensors and actuators, such as cameras, lidars, and motors, which are controlled by custom
controllers implemented using plugins.

The simulation can be visualized using the Gazebo GUI, which allows the user to
interact with the simulation in real-time, controlling the robot and observing its behavior.

In summary, Gazebo is a powerful simulation tool that provides a realistic virtual
environment for testing and validating robot designs and control algorithms. Its physics
engine, plugins, and models work together to create a realistic simulation environment
where robots can interact with objects and their surroundings just like they would in the
real world.

3.1.3 Matlab/Simulink
Matlab and Simulink are two software tools developed by MathWorks for numerical com-
puting and simulation, respectively.

Matlab is a high-level programming language and numerical computing environment
that is used by engineers, scientists, and mathematicians to solve complex problems in a
variety of domains, such as signal processing, control systems, image processing, and ma-
chine learning. It provides a rich set of functions and tools for data analysis, visualization,
and modeling, making it a popular choice for scientific computing.[17]

Simulink, on the other hand, is a graphical simulation tool that is built on top of
Matlab. It allows users to model and simulate complex dynamic systems, such as control
systems, power systems, and communication systems, using a block diagram environment.
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Figure 3.2: Gazebo logo.[16]

Simulink provides a library of pre-built blocks that can be used to construct models of
systems, and also allows users to create custom blocks to extend the functionality of
the tool. It provides a comprehensive set of tools for analyzing and optimizing system
performance, as well as tools for generating code for embedded systems.[17]

One of the key benefits of using Matlab and Simulink is their integration with each
other. Simulink models can be easily integrated with Matlab scripts, allowing users to
leverage the power of Matlab for data analysis and visualization. Matlab code can also
be used in Simulink models, making it easier to incorporate custom algorithms and func-
tionality.

Figure 3.3: MathWorks logo.[18]

These features are very useful for this project purpose, allowing to design and test the
controller in an user friendly environment and, only after, deploy the code in the ROS
environment as C++ code.
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ROS package

This chapter presents the ROS package created by the author. In the package are codes to
describe the quadrotor model, files to launch and manage the simulation world in Gazebo,
and plugins that go into describing the dynamics of the model. The tutorials [19], [20],
[21], [22], and the simulator presented in 2016, RotorS [23], were taken as reference for
creating the package. All the complete codes are in Appendix A.

Figure 4.1: Thesis package with sub-folders and files.

4.1 URDF
The robot’s model needs to be able to be understood by ROS and Gazebo to run the
simulation. The URDF is an XML format which is used to describe the robot model;
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ROS can parse the URDF through a C++ parser contained in the "URDF" package [24].
The format used is Xacro which is a XML macro language that support the use of macros
to create XML elements that are shorter and more understandable[20]. The parameters
for the robot creation are the ones used in the mathematical model of the Chapter 2 and
by doing so the generate model in Gazebo will work as the mathematical one.

4.1.1 Code Explanation
It is necessary to specify a namespace for the URDF file in order for it to be properly
parsed.[24]

<?xml version="1.4"?>
<robot name="quadrotor"

xmlns:xacro="http://www.ros.org/wiki/xacro">

The quadrotor model is created connecting different links with the use of joints. URDF
form allows to describe the main robot objects, links and joints, using tag. The "joint"
and "link" tags enable the specification of robot attributes like mass, inertia and spawn
position and pose for each link and joint. The base link of the quadrotor is a cylinder
shape link with a mass and inertia and describe the base frame of the model; the other
links are the propellers which are attached to the base link using joints. a joint can be of
four different types:

• fixed: don’t allow movements in any direction.

• revolute: allow rotation along a specified axis (x, y, z) with upper and lower limits.

• continuous: allow rotation along axis without upper and lower limits.

• prismatic: allow sliding movements along axis.

• floating: allow movements for all 6 degrees of freedom.

• planar: allow movements in a plane perpendicular to the axis.

In this case the joints are of type continuous and the axis specified is the z-axis. Below
the resulting lines of code for the base link, one of the propeller link and one of the joint.

<link name="frame">
<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<cylinder radius="${frame_radius}" length="${frame_height}"/>
</geometry>
<material name="frame_material">

<color rgba="0.8 0.8 0.8 1.0"/>
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</material>
</visual>
<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<cylinder radius="${frame_radius}" length="${frame_height}"/>
</geometry>

</collision>
<xacro:cylinder_inertial radius="${frame_radius}" height="${frame_height}"

mass="${frame_mass}">
<origin xyz="0 0 0" rpy="0 0 0" />

</xacro:cylinder_inertial>
</link>

<link name="propeller">
<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<cylinder radius="${propeller_radius}" length="${propeller_height}"/>
</geometry>
<material name="propeller_material"/>

</visual>
<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<cylinder radius="${propeller_radius}" length="${propeller_height}"/>
</geometry>

</collision>
<xacro:cylinder_inertial radius="${propeller_radius}"

height="${propeller_height}" mass="${propeller_mass}">
<origin xyz="0 0 0" rpy="0 0 0"/>

</xacro:cylinder_inertial>
</link>

<joint name="arm${i}_propeller${i}" type="continuous">
<parent link="arm${i}"/>
<child link="propeller${i}"/>
<origin xyz="${cos((i-1)*pi/2)*(frame_radius+arm_length)}

${sin((i-1)*pi/2)*(frame_radius+arm_length)}
${frame_height/2-arm_radius+propeller_height_offset}" rpy="0 0 0"/>

<axis xyz="0 0 1"/>
</joint>

Key part in the URDF file are the tags to insert the model plugins that will be attached
to the model during the spawn phase. As shown below, gazebo plugin tag allow to insert
different parameter which will be automatically passed to the plugin;this makes it more
efficient to change and tune key parameters without having to re-build the code.
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<gazebo>
<plugin name="drone_plugin" filename="libaerodynamic_plugin.so">

<updateRate>1000</updateRate>
<publishTf>true</publishTf>
<rotorThrustCoeff>0.000011487</rotorThrustCoeff>
<rotorTorqueCoeff>0.0000000269</rotorTorqueCoeff>
<sim_slow>20.0</sim_slow>

</plugin>
</gazebo>

<gazebo>
<plugin name="motorpid_plugin" filename="libmotorpid_plugin.so">
<kp>0.0005</kp>
<ki>0.0</ki>
<kd>0.0</kd>
<sim_slow>20.0</sim_slow>
</plugin>

</gazebo>

(a)

(b)

Figure 4.2: quadrotor spawned in the gazebo world showing the links mass(a), quadrotor
spawned showing the inertia box created by gazebo(b).
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4.2 Launch and world files

4.2.1 Launch
Both users and developers in ROS frequently work with launch files. They offer an easy
approach to initialize numerous nodes, a master, and other startup requirements including
specifying parameters. Launch files adopt a particular XML format and have the extension
.launch. Despite the fact that they can be put anywhere in a package directory, it is typical
to create a directory called "Launch" inside the workspace directory to keep track of all
your launch files. A pair of launch tags must separate the contents of a launch file. In order
to launch nodes some arguments must be provided using the node tag; these parameters
are:

• pkg, type, name: the input "type" denotes the name of the executable file for the
node, whereas "pkg" corresponds to the package associated with the node that is to
be started. The name argument can be used to replace the node’s name, which will
take precedence over the name specified in the code.

• Respawn/required: however optional, it’s common to either have a respawn argument
or a required argument, but not both. If respawn=true, then this particular node
will be restarted if for some reason it closed. Required=true will do the opposite,
that is, it will shut down all the nodes associated with a launch file if this particular
node comes down.

• ns: launching a node inside a namespace is another frequent application for a launch
file. When employing many instances of the same node, this is helpful. The "ns"
option can be used to specify a namespace.

• arg: a local variable must often be used in launch files; with the arg tag it is possible
to declare variables to make the file more understandable and organized.

The arg tag is really important because it allows to load the world file into the launch file
and allows to set important properties for the simulation in gazebo as []

• paused: start Gazebo in a paused state (default false).

• use_sim_time: tells ROS nodes asking for time to get the Gazebo-published simu-
lation time, published over the ROS topic /clock (default true).

• gui: launch the user interface window of Gazebo (default true).

• verbose: run gzserver and gzclient with –verbose, printing errors and warnings to
the terminal (default false).

<launch>

<!-- these are the arguments you can pass this launch file, for example
paused:=true -->
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<arg name="paused" default="true"/>
<arg name="use_sim_time" default="true"/>
<arg name="gui" default="true"/>
<arg name="headless" default="false"/>
<arg name="debug" default="false"/>

<!-- We resume the logic in empty_world.launch, changing only the name of
the world to be launched -->

<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find du_drone)/world/default.world"/>
<arg name="debug" value="$(arg debug)" />
<arg name="gui" value="$(arg gui)" />
<arg name="paused" value="$(arg paused)"/>
<arg name="use_sim_time" value="$(arg use_sim_time)"/>
<arg name="headless" value="$(arg headless)"/>

</include>

<!-- Load the URDF into the ROS Parameter Server -->
<param name="robot_description"

command="$(find xacro)/xacro --inorder ’$(find
du_drone)/URDF/drone.URDF.xacro’" />

<!-- Run a python script to the send a service call to gazebo_ros to spawn a
URDF robot -->

<node name="URDF_spawner" pkg="gazebo_ros" type="spawn_model"
respawn="false" output="screen"

args="-URDF -model quadrotor -param robot_description -z 0.1"/>

</launch>

4.2.2 World
An URDF file and a .world file have the same format. The URDF files, however, specify
the types of models that can be made with Gazebo. These models can be used in different
worlds if they are in their own file. A.world file describes a whole scene, including all of the
objects and models. To incorporate a model into your world, you can copy the contents
of a URDF file into your world file. Inside the world file several features can be set to
create a custom scenario such as gravity, atmosphere or magnetic field. In addition, the
physics engine to be used during the gazebo simulation can be chosen and the parameters
of it can be set. In this work, ODE was chosen as the physics engine, which is the one
used by default.

<?xml version="1.0" ?>
<sdf version="1.4">

<world name="default">
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<include>
<uri>model://ground_plane</uri>

</include>
<include>

<uri>model://sun</uri>
</include>
<gravity>0 0 -9.8</gravity>

<physics:ode>
<max_step_size>0.001</max_step_size>
<updateRate>1000</updateRate>

</physics:ode>
</world>

</sdf>

<max_step_size> and <updateRate> tags are used to force the simulation to run as fast
as it ca be done in order to reach a real time factor as close as possible to 1; in fact, the
real time factor parameter is a key variable in simulation as it goes to greatly affect in the
performance and quality of simulation.

4.3 Dynamic and Feedback plugin
Thanks to the URDF file, it is possible to create a simplified model of quadrotor; to make
it as realistic as possible for the purpose of having a proper simulation of its behavior,
two different plugins were created for the dynamic.

Aerodynamic plugin

The aerodynamic plugin, inspired by the work of [rotors], is responsible for the aero-
dynamic forces that the rotors experience. The forces examined are the same as those
described in Chapter 2, thrust force, torque and drag forces, while the gyroscopic effect
and Coriolis effect are simulated directly by Gazebo. The main functions in this plugin
are:

• Load() is responsible for defining variables, security checks and storing parameters
that are passed by the URDF.

• onUpdate() is the function that is automatically called at each gazebo clock; within
it are all the aerodynamic functions and actions of the model.

• updateForces() is contained in onupdate and within it all forces are calculated and
applied to the model.

Shown below are some lines of code that are used to store the link and joint pointers and
to apply forces ni certain frames accordingly.
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gazebo::physics::LinkPtr link_frame _model-GetLink("frame")
gazebo::physics::LinkPtr _link = _model->GetLink(link_v[i]);
gazebo::physics::JointPtr _joint = _model->GetJoint(joint_v[i]);
if (_link != NULL) {

_link->AddRelativeForce(ignition::math::Vector3<double>(0, 0, thrust));
link_frame->AddRelativeTorque(ignition::math::Vector3<double>(0, 0,

torque));
_link->AddRelativeForce(drag_forces);

Propeller rotation reaction torque is the only force that is applied to the quadrotor body
and not on the rotors; this is because, if put in the rotor reference system it would go
to disturb the next plugin, motor plugin, And the rotors would not be able to reach the
target speed.

Motor plugin

The role of the motor plugin is to take as input the controlled speeds of the rotors from
the controller and apply them to the joints. The velocities are subscribed through an
sdt::msgs of ROS, Float64MultiArray. In order to set up the subscriber node the following
lines of codes are used.

// Create our ROS node.
this->rosNode.reset(new ros::NodeHandle("rotor"));

// Create a named topic, and subscribe to it.
ros::SubscribeOptions so =

ros::SubscribeOptions::create<std_msgs::Float64MultiArray>(
"/" + this->model->GetName() + "/vel_cmd",
1000,
boost::bind(&MotorpidPlugin::OnRosMsg, this, _1),
ros::VoidPtr(), &this->rosQueue);

this->rosSub = this->rosNode1->subscribe(so);

As you can see, a subscriber node and a subscriber is created where the message type,
topic name and queue length is defined. The main function in the motor plugin are:

• Load() is responsible for defining variables, security checks and storing parameters
that are passed by the URDF.

• OnRosMsg() is called whenever there is a new incoming message; it stores the values
and sends them to the joint controller.

• QueueThread() is a function that help ROS to process the messages.
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In order to set a velocity on a joint in Gazebo and allow the propeller to spin, Gazebo
need a controller. From the Gazebo API, a pid controller is provided that is attached to
the joint and brings it to the target speed. The parameters of the pid have been tuned to
simulate a first-order motor with a τ -motor constant equal to 20.

KP KI KD

0.005 0.002 0.0

Table 4.1: Reference parameters.

Below are the lines of code to set the PID controller and apply it.

// Setup a PID-controller.
this->pid = gazebo::common::PID(kp, ki, kd);

// Apply the PID-controller to the joint.
this->model->GetJointController()->SetVelocityPID(

this->joint->GetScopedName(), this->pid);

// Set the velocity target
this->model->GetJointController()->SetVelocityTarget(
this->joint->GetScopedName(), vel_cmd);

Odometry plugin

The odometry plugin the simulates a sensor attached on the model in gazebo so it can take
all the feedback data needed by the controller and for performance evaluation purposes.
The message published by the plugin is a navmsgs/Odometry.msg provided by ROS and
it is composed as

Header header
string child_frame_id
geometry_msgs/PoseWithCovariance pose
geometry_msgs/TwistWithCovariance twist

where the pose and twist messages are defined by

// pose msg
geometry_msgs/Point position // x, y, z
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geometry_msgs/Quaternion orientation // x, y, z, q

// twist msg
geometry_msgs/Vector3 linear // linear velocity
geometry_msgs/Vector3 angular // angular velocity

. The main functions in the plugin are:

• Load(), where the node and the publisher are initialized and also where the function
rosThread() is called.

• onUpdate(), where for each clock iteration of Gazebo, the pose and velocity of the
model is stored.

• rosThread(), where there is the function publish() and it help ROS to process the
publisher setting a rate and allowing ROS to spin.

• publish() is the function responsible for the filling and publishing of the odometry
message and also for the application of noise errors.

To have more realism in the simulation of a sensor, an error model was adopted to be
added to the odometry data. The error model chosen is a white gaussian noise, which is
a highly used model in process and model simulation. The model is described as

Yi = Xi + Ei,

Ei ∼ N(0, N).
(4.1)

N identifies a normal distribution with a zero-mean value and with a variance N (the
noise boundary value). To achieve this error model in the plugin the following lines of
code are used

unsigned seed =
std::chrono::system_clock::now().time_since_epoch().count();

std::default_random_engine generator(seed);
std::normal_distribution<double> distribution_pos(0.0,

double_sigma_position);
std::normal_distribution<double> distribution_rpy(0.0,

double_sigma_quaternion);
/* white_gaussian_noise_error = distribution_pos(generator);*/

The first two lines are used to initialize a clock and a random value generator; the generator
will be applied on the normal distribution function to obtain the desired error model.
The value used for the variance is doubled to achieve a 95% of coverage of the normal
distribution.
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Chapter 5

Bridge Matlab/Simulink-
ROS/Gazebo

Matlab’s Rostoolbox allows its environment to be linked with that of ROS. This can be
done in two different ways:

• Enable external mode: this method allows you to connect the two environments by
running them simultaneously; from the Matlab/Simulink interface you launch the
deployment, which when finished will be loaded and started on ROS.

• Generate a standalone ROS node: this method allows a ros node to be generated
that can be built automatically or by the user in a defined workspace, and then run
at a later time.

The second method is more effective than the first one since the simultaneous use of the two
environments strongly impacts the computational performance by affecting the simulation.
In order to set up the model validation and the experiment some features of Simulink and
ROStoolbox are used. The Simulink code created for the model validation, fig(5.1), takes
the rotor speed signals as input and publishes them in the geometry_msgs/Float64MultiArray
topic and receives via a Subscriber block the odometry data published by the odometry
plugin in the simulation in a .mat file. The Simulink code is auto generated by creating 3
different files needed for the subsequent build (.sh file, rtw file and .tgz file). These three
file are moved and built to the workspace and built using the following two command line
terminal

$ ./build_ros_model.sh <filename>.tgz .
$ /workspace rosrun <filename> <filename>

Once the simulation is finished, the output .mat file will be generated in the same folder
where the node was launched.
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Figure 5.1: Simulink model for input/output model validation simulation.

5.1 ROS input/output
The ROS input subsystem is composed as

• Blank message: this block allow to select the type of ROS message to use, selecting
it from the topics available, and to set the length of the queue.

• Publish block: this block connect and send the message from the input to the topic
publisher in the simulation.

• Bus function: take as input the signal and fill the Blank message to match the
publisher type topic.

The ROS output subsystem is composed with a Subscriber block which takes infor-
mation from the selected topic whenever it is called, in this case the odometry topic, and
send the information to a .mat file which stores all the feedback data.

5.2 Model validation set up
The model validation consists of comparing two different models; the first, that of Matlab
mathematician, and already validated in [5], and the second the model presented in this
work on ROS. The two simulations will be compared using the same signal input. The
signal input, was created through trial and error to obtain an upward trajectory without
having angles reaching 90 degrees, in which case the mathematical model would encounter
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5.2 – Model validation set up

Figure 5.2: Speed input signal.

singularities and lose validity. The input signal is added as it is shown in fig(5.1) and in
the figure below, which represent the simply set up for the mathematical model.

Figure 5.3: Mathematical model set up.
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Chapter 6

Simulation

This chapter shows the results of model validation and deployment of the PID controller.
During the testing phase, it was noticed how Gazebo’s performance is highly variable
depending on several conditions; the first of all is the CPU power of the computer or
virtual machine on which the simulation is launched. Also by observing behaviors and
results that are sometimes very far from the results of the mathematical model, it was
found that another big cause of error is the ODE physics engine. Ode physics engine uses
numerical integration methods to calculate the motion of the objects and when fasting
rotating objects are simulated, the number of calculation required to accurately track their
motion increase significantly, which can cause errors. In fact, when there are objects in
the scenario that rotate at high speeds, as in this case there are the four rotors, Gazebo
cannot keep up with the simulation, thus leading to strange behaviors of the model that
exhibits slipping and bouncing effects as will be seen in several graphs. Furthermore,
the numerical integration can affect the value and property of the moment of inertia of
the model, leading to behavior different from that expected. To try to overcome this, a
velocity slowdown parameter was included in the plugins and for the model validation
different values of it have been tested; it must be remembered, however, that a slowdown
coefficient on the rotors goes to change the gyroscopic effect acting on them, so a trade of
between these problems must be pursued.

6.1 Model validation results
The results of the model validation are shown in the figures below in this section. The
graphs show the evolution of the state variables ξ, η, ξ̇ and η̇, given the defined input
signal in the previous chapter. Each drag force was simulated by turning off the others
to evaluate their behavior and error, and then went to test the simulation with all drag
forces present for different slowdown parameter values. The slowdown values chosen are
1, 8 and 18.
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Figure 6.1: x, y, z profile response

Figure 6.2: ex,y,z profile response
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6.1 – Model validation results

Figure 6.3: ϕ, θ, ψ profile response

Figure 6.4: ẋ, ẏ, ż profile response
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Figure 6.5: ϕ̇, θ̇, ψ̇ profile response

Figure 6.6: x, y, z parasitic response
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6.1 – Model validation results

Figure 6.7: ex.y.z parasitic response

Figure 6.8: ϕ, θ, ψ parasitic response
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Figure 6.9: ẋ, ẏ, ż parasitic response

Figure 6.10: ϕ̇, θ̇, ψ̇ parasitic response

40



6.1 – Model validation results

Figure 6.11: x, y, z translational response

Figure 6.12: ex,y,z translational response

41



Simulation

Figure 6.13: ϕ, θ, ψ translational response

Figure 6.14: ẋ, ẏ, ż translational response
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6.1 – Model validation results

Figure 6.15: ϕ̇, θ̇, ψ̇ translational response

Figure 6.16: x, y, z induced response
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Figure 6.17: ex,y,z induced response

Figure 6.18: ϕ, θ, ψ induced response
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6.1 – Model validation results

Figure 6.19: ẋ, ẏ, ż induced response

Figure 6.20: ,̇θ̇, ψ̇ induced response
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Figure 6.21: x, y, z all drag activated response with slowdown 1

Figure 6.22: ex,y,z all drag activated response with slowdown 1
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6.1 – Model validation results

Figure 6.23: ϕ, θ, ψ all drag activated response with slowdown 1

Figure 6.24: ẋ, ẏ, ż all drag activated response with slowdown 1
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Figure 6.25: ϕ̇, θ̇, ψ̇ all drag activated response with slowdown 1

Figure 6.26: x, y, z all drag activated response with slowdown 8
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6.1 – Model validation results

Figure 6.27: ex,y,z all drag activated response with slowdown 8

Figure 6.28: ϕ, θ, ψ all drag activated response with slowdown 8

49



Simulation

Figure 6.29: ẋ, ẏ, ż all drag activated response with slowdown 8

Figure 6.30: ϕ̇, θ̇, ψ̇ all drag activated response with slowdown 8
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6.1 – Model validation results

Figure 6.31: x, y, z all drag activated response with slowdown 10

Figure 6.32: ex,y,z all drag activated response with slowdown 10
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Figure 6.33: ϕ, θ, ψ all drag activated response with slowdown 10

Figure 6.34: ẋ, ẏ, ż all drag activated response with slowdown 10
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6.1 – Model validation results

Figure 6.35: ϕ̇, θ̇, ψ̇ all drag activated response with slowdown 10
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6.2 PID deployement
The reference signal used for the simulation of the controller is a spiral ascendant trajec-
tory, which is defined by

x = kx,1cos(kx,2 ∗ t) − x0

y = ky,1sin(ky,2 ∗ t) − y0

z = kz ∗ t− z0

ψ = 0

(6.1)

where all the constants kx,y describe the period and the amplitude of the trajectory, while
kz defines how fast the model go up.

kx,1, ky,1 2m
kx,2, ky,2 0.5Hz
kz 1m/s
x0, y0, z0 0

Table 6.1: Reference parameters.

Figure 6.36: Simulink set up for the PID node deployement.

At first, the parameters of the Matlab simulation scaled by a factor of 0.8 were used for
tuning the PID but this values lead to an unstable simulation and a crash of the controller
after 10s from the launch because of the differences between the mathematical model and
the ROS model explained above.

Even by re-tuning the controller, the results are not reliable for performance evaluation;
the causes could be found in the error sources mentioned at the beginning of the chapter, on
all of them the CPU power in numerical integration of the physics engine. The controller
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6.2 – PID deployement

PID Outer loop Inner loop
KP 2.4[1 1 1] 96[1 1 1]
KI 0.8[1 1 1] 96[1 1 1]
KD 0.125[1 1 90] 16[1 1 1]

Table 6.2: PID parameters.

is deployed, built and ran correctly showing the functionality of the bridge between the
two simulation environments. Future tests may investigate deeper into the sources of
errors, using a higher performance hardware or machine to run the simulations.
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Chapter 7

Conclusion and future work

From the results obtained from model validation and PID deployment, it can be concluded
that the model and ROS package follow the behavior of the proposed mathematical model;
however, the errors present in both model validation and deployment are too high for more
accurate performance evaluation of complex control systems. The causes of these errors
are many, as a to high complexity in the model, slipping and bouncing effects in Gazebo,
but the most prominent are the the power of the CPU and physics engine that must
support a complex mathematical model during simulation. The bridge between the two
simulation environments, Matlab/Simulink and ROS/Gazebo, is a very strong tool that
allows a more direct and intuitive design in the first and a more realistic testing phase in
the second. In order to improve and decrease the discrepancies between the two models,
several actions can be implemented for the future, such as the use of performing and
specific hardware that can withstand the numerical integration of the physics engine and
the simplification of the mathematical model, which in this case has a high number of drag
forces on each rotor. Also regarding the odometry plugin, in future work the modeling of
noise in the feedback data from white gaussian noise to a more realistic noise model can
be improved; the package can also be improved by expanding the plugins with scenarios
and weather conditions (i.e. wind gust) and by adding new models such as multirotors
since the aerodynamics plugin can be easily made interchangeable for different uses by
editing only the URDF file. The versatility and modularity of ROS/Gazebo allows you
to be able to create different test scenarios and goals, using a structure that can be easily
adapted even to different models.
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Appendix A

Code

A.1 quadrotor.urdf.xacro

<?xml version="1.0"?>
<robot xmlns:xacro="http://wiki.ros.org/xacro" name="quadrotor">

<!-- properties -->
<xacro:property name="frame_radius" value="0.1"/>
<xacro:property name="frame_height" value="0.025"/>
<xacro:property name="frame_mass" value="1.0"/>
<xacro:property name="arm_radius" value="0.0125"/>
<xacro:property name="arm_length" value="0.1"/>
<xacro:property name="arm_mass" value="0.0"/>
<xacro:property name="propeller_radius" value="0.075"/>
<xacro:property name="propeller_height" value="0.01"/>
<xacro:property name="propeller_height_offset" value="0.0168"/>
<xacro:property name="propeller_mass" value="0.01"/>
<xacro:property name="z_com" value="0.0132"/>

<xacro:macro name="arm" params="i">
</xacro:macro>
<xacro:macro name="propeller" params="i mat">

<link name="propeller${i}">
<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<cylinder radius="${propeller_radius}" length="${propeller_height}"/>
</geometry>
<material name="propeller_material"/>

</visual>
<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>
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<geometry>
<cylinder radius="${propeller_radius}" length="${propeller_height}"/>

</geometry>
</collision>

<inertial>
<mass value="0.01"/>
<origin xyz="0 0 0" rpy="0 0 0"/>
<inertia ixx="0.0000140625" ixy="0.0" ixz="0.0" iyy="0.0000140625"

iyz="0.0" izz="0.000028125"/>
</inertial>

</link>

<joint name="rotor${i}" type="continuous">
<parent link="frame"/>
<child link="propeller${i}"/>
<origin xyz="${cos((-i+1)*pi/2)*(frame_radius+arm_length)}

${sin((-i+1)*pi/2)*(frame_radius+arm_length)} 0.016826923076923"
rpy="0 0 0"/>

<axis xyz="0 0 1"/>
</joint>

<gazebo reference="propeller${i}">
<material>${mat}</material>

</gazebo>
</xacro:macro>

<!-- links -->

<link name="frame">
<visual>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<cylinder radius="${frame_radius}" length="${frame_height}"/>
</geometry>
<material name="frame_material">

<color rgba="0.8 0.8 0.8 1.0"/>
</material>

</visual>
<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<cylinder radius="${frame_radius}" length="${frame_height}"/>
</geometry>
</collision>

<inertial>
<mass value="1.0"/>
<origin xyz="0 0 0" rpy="0 0 0"/>
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<inertia ixx="0.006822916666667" ixy="0.0" ixz="0.0"
iyy="0.006822916666667" iyz="0.0" izz="0.013541666666667"/>

</inertial>
</link>

<xacro:propeller i="1" />
<xacro:propeller i="2" />
<xacro:propeller i="3" />
<xacro:propeller i="4" />

<!-- gazebo -->
<gazebo reference="frame">

<material>Gazebo/Red</material>
</gazebo>

<gazebo>
<plugin name="drone_plugin" filename="libaerodynamic_plugin.so">

<updateRate>1000</updateRate>
<publishTf>true</publishTf>
<rotorThrustCoeff>0.000011487</rotorThrustCoeff>
<rotorTorqueCoeff>0.0000000269</rotorTorqueCoeff>
<sim_slow>10.0</sim_slow>

</plugin>
</gazebo>

<gazebo>
<plugin name="motorpid_plugin" filename="libmotorpid_plugin.so">
<kp>0.0005</kp>
<ki>0.0</ki>
<kd>0.0</kd>
<sim_slow>10.0</sim_slow>
</plugin>

</gazebo>

<plugin name="odometry" filename="libodometry_plugin.so">
<rate>1000.0</rate>

</plugin>
</gazebo>

</robot>

A.2 quadrotor.launch

<launch>
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<!-- these are the arguments you can pass this launch file, for example
paused:=true -->

<arg name="paused" default="true"/>
<arg name="use_sim_time" default="true"/>
<arg name="gui" default="true"/>
<arg name="headless" default="false"/>
<arg name="debug" default="false"/>

<!-- We resume the logic in empty_world.launch, changing only the name of
the world to be launched -->

<include file="$(find gazebo_ros)/launch/empty_world.launch">
<arg name="world_name" value="$(find du_drone)/world/default.world"/>
<arg name="debug" value="$(arg debug)" />
<arg name="gui" value="$(arg gui)" />
<arg name="paused" value="$(arg paused)"/>
<arg name="use_sim_time" value="$(arg use_sim_time)"/>
<arg name="headless" value="$(arg headless)"/>

</include>

<!-- Load the URDF into the ROS Parameter Server -->
<param name="robot_description"

command="$(find xacro)/xacro --inorder ’$(find
du_drone)/urdf/drone.urdf.xacro’" />

<!-- Run a python script to the send a service call to gazebo_ros to spawn a
URDF robot -->

<node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model"
respawn="false" output="screen"

args="-urdf -model quadrotor -param robot_description -z 0.1"/>

</launch>

A.3 default.world

<?xml version="1.0" ?>
<sdf version="1.4">

<world name="default">
<include>

<uri>model://ground_plane</uri>
</include>
<include>

<uri>model://sun</uri>
</include>
<gravity>0 0 -9.8</gravity>

<physics:ode>
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<max_step_size>0.001</max_step_size>
<updateRate>1000</updateRate>

</physics:ode>
</world>

</sdf>

A.4 motorpid_plugin.cpp

#ifndef _MOTORPID_PLUGIN_HH_
#define _MOTORPID_PLUGIN_HH_

// Gazebo api
#include <gazebo/gazebo.hh>
#include <gazebo/physics/physics.hh>
#include <gazebo/transport/transport.hh>
#include <gazebo/msgs/msgs.hh>

// ROS
#include <thread>
#include "ros/ros.h"
#include "ros/callback_queue.h"
#include "ros/subscribe_options.h"
#include "std_msgs/Float64MultiArray.h"
#include <mutex>
#include <du_drone/MotorCommand.h>

/// \brief A plugin to control a Velodyne sensor.
class MotorpidPlugin : public gazebo::ModelPlugin
{
public:

/// \brief Constructor
MotorpidPlugin(){ }

virtual void Load(gazebo::physics::ModelPtr _model, sdf::ElementPtr sdf)
{

// Safety check
if (_model->GetJointCount() == 0)
{

std::cerr << "Invalid joint count, Motor plugin not loaded\n";
return;

}

if (sdf->HasElement("kp")) {
kp = sdf->GetElement("kp")->Get<double>();
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} else {
kp = 0.0;

}

if (sdf->HasElement("ki")) {
ki = sdf->GetElement("ki")->Get<double>();

} else {
ki = 0.0;

}

if (sdf->HasElement("kd")) {
kd = sdf->GetElement("kd")->Get<double>();

} else {
kd = 0.0;

}
if (sdf->HasElement("sim_slow")) {

rotor_vel_sim_slowdown = sdf->GetElement("sim_slow")->Get<double>();
} else {

rotor_vel_sim_slowdown = 10;
}

// Store the model pointer for convenience.
this->model = _model;

// Get the first joint. We are making an assumption about the model
// having one joint that is the rotational joint.
this->joint1 = _model->GetJoint("arm1propeller1");
this->joint2 = _model->GetJoint("arm2propeller2");
this->joint3 = _model->GetJoint("arm3propeller3");
this->joint4 = _model->GetJoint("arm4propeller4");

// Setup a P-controller, with a gain of 0.1.
this->pid = gazebo::common::PID(kp, ki, kd);

// Apply the P-controller to the joint.
this->model->GetJointController()->SetVelocityPID(

this->joint1->GetScopedName(), this->pid);

this->model->GetJointController()->SetVelocityPID(
this->joint2->GetScopedName(), this->pid);

this->model->GetJointController()->SetVelocityPID(
this->joint3->GetScopedName(), this->pid);

this->model->GetJointController()->SetVelocityPID(
this->joint4->GetScopedName(), this->pid);

// Create the node
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this->node = gazebo::transport::NodePtr(new gazebo::transport::Node());
#if GAZEBO_MAJOR_VERSION < 8
this->node->Init(this->model->GetWorld()->GetName());
#else
this->node->Init(this->model->GetWorld()->Name());
#endif

// Initialize ros, if it has not already bee initialized.
if (!ros::isInitialized())
{

int argc = 0;
char** argv = NULL;
ros::init(argc, argv, "gazebo_client",

ros::init_options::NoSigintHandler);
}

// Create our ROS node. This acts in a similar manner to
// the Gazebo node
this->rosNode1.reset(new ros::NodeHandle("rotor"));

// Create a named topic, and subscribe to it.
ros::SubscribeOptions so1 =

ros::SubscribeOptions::create<std_msgs::Float64MultiArray>(
"/" + this->model->GetName() + "/vel_cmd",
1000,
boost::bind(&MotorpidPlugin::OnRosMsg1, this, _1),
ros::VoidPtr(), &this->rosQueue);

this->rosSub1 = this->rosNode1->subscribe(so1);

// Spin up the queue helper thread.
this->rosQueueThread =

std::thread(std::bind(&MotorpidPlugin::QueueThread, this));
} // Load

void OnRosMsg1(const std_msgs::Float64MultiArray::ConstPtr& array)
{

int i = 0;
for(std::vector<double>::const_iterator it = array->data.begin(); it !=

array->data.end(); ++it)
{

//Arr[i] = *it;
if(i == 0){

vel_cmd = *it * (1/rotor_vel_sim_slowdown);
this->model->GetJointController()->SetVelocityTarget(

this->joint1->GetScopedName(), vel_cmd);
}else if(i == 1){

vel_cmd = *it * (1/rotor_vel_sim_slowdown);
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this->model->GetJointController()->SetVelocityTarget(
this->joint2->GetScopedName(), vel_cmd);
}else if(i == 2){

vel_cmd = *it * (1/rotor_vel_sim_slowdown);
this->model->GetJointController()->SetVelocityTarget(

this->joint3->GetScopedName(), vel_cmd);
}else if(i == 3){

vel_cmd = *it * (1/rotor_vel_sim_slowdown);
this->model->GetJointController()->SetVelocityTarget(

this->joint4->GetScopedName(), vel_cmd);
}

i++;
}

}

/// \brief ROS helper function that processes messages
void QueueThread()
{

static const double timeout = 0.01;

while (this->rosNode1->ok())
{

this->rosQueue.callAvailable(ros::WallDuration(timeout));
}

}

private:

double kp, ki, kd;
double vel_cmd;
double rotor_vel_sim_slowdown;
/// \brief Pointer to the model.
gazebo::physics::ModelPtr model;

/// \brief Pointer to the joint.
gazebo::physics::JointPtr joint1;
gazebo::physics::JointPtr joint2;
gazebo::physics::JointPtr joint3;
gazebo::physics::JointPtr joint4;

/// \brief A PID controller for the joint.
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gazebo::common::PID pid;

/// \brief A node used for transport
gazebo::transport::NodePtr node;

/// \brief A subscriber to a named topic.
gazebo::transport::SubscriberPtr sub;

/// \brief A node use for ROS transport
std::unique_ptr<ros::NodeHandle> rosNode1;

std::mutex _cmd_mtx;

/// \brief A ROS subscriber
ros::Subscriber rosSub1;

/// \brief A ROS callbackqueue that helps process messages
ros::CallbackQueue rosQueue;

/// \brief A thread the keeps running the rosQueue
std::thread rosQueueThread;

};

// Tell Gazebo about this plugin, so that Gazebo can call Load on this plugin.
GZ_REGISTER_MODEL_PLUGIN(MotorpidPlugin)

#endif // ifndef _MOTORPID_PLUGIN_HH_

A.5 aerodynamic_plugin.cpp

#include <iostream>
#include <array>
#include <cmath>
#include <Eigen/Dense>
#include <random>
#include <chrono>
#include <functional>
#include <thread>
#include <mutex>
#include <math.h>
#include <ros/ros.h>
#include <boost/bind.hpp>
#include <std_msgs/Float64MultiArray.h>
#include <ignition/math.hh>
#include <ignition/math/Vector3.hh>

67



Code

#include <ignition/math/Pose3.hh>
#include <gazebo/gazebo.hh>
#include <gazebo/physics/physics.hh>
#include <gazebo/common/common.hh>
#include <gazebo/common/Plugin.hh>

class AerodynamicPlugin : public gazebo::ModelPlugin {
public:

AerodynamicPlugin() : gazebo::ModelPlugin() {
std::cout << "Starting aerodynamic_plugin" << std::endl;

}

virtual ~AerodynamicPlugin() {
std::cout << "Closing aerodynamic_plugin" << std::endl;
delete _nh;

}

void Load(gazebo::physics::ModelPtr parent, sdf::ElementPtr sdf) {
_model = parent;
link_frame = _model->GetLink("frame");

link_v = {"propeller1", "propeller2", "propeller3", "propeller4"};
joint_v = {"arm1propeller1", "arm2propeller2", "arm3propeller3",

"arm4propeller4"};

if (sdf->HasElement("updateRate")) {
_rate = sdf->GetElement("updateRate")->Get<double>();

} else {
_rate = 100.0;

}

if (sdf->HasElement("rotorThrustCoeff")) {
_rotor_thrust_coeff = sdf->GetElement("rotorThrustCoeff")->Get<double>();

} else {
_rotor_thrust_coeff = 0.0000149;

}

if (sdf->HasElement("rotorTorqueCoeff")) {
_rotor_torque_coeff = sdf->GetElement("rotorTorqueCoeff")->Get<double>();

} else {
_rotor_torque_coeff = 0.0000000269;

}
if (sdf->HasElement("sim_slow")) {

rotor_vel_sim_slowdown = sdf->GetElement("sim_slow")->Get<double>();
} else {

rotor_vel_sim_slowdown = 10;
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}

if (!ros::isInitialized()) {
int argc = 0;
char** argv = NULL;
ros::init(argc, argv, "du_drone", ros::init_options::NoSigintHandler);

}

_nh = new ros::NodeHandle("");

_updateConnection =
gazebo::event::Events::ConnectWorldUpdateBegin(boost::bind(&AerodynamicPlugin::onUpdate,
this, _1));

}

void onUpdate(const gazebo::common::UpdateInfo& _info) {
_pose_mtx.lock();
_pose = link_frame->WorldCoGPose();
_pose_mtx.unlock();
sampling_time = _info.simTime.Double() - prev_sim_time;
prev_sim_time = _info.simTime.Double();
updateForces();

}

/*void calculatedragflap(double w, double vx, double vy, double bx, double
by, double t, double* dflapx, double* dflapy){

Eigen::Matrix3d Aflap;
Aflap << -20.0*0.1, 20.0/0.1, 0.0,

-20.0/0.1, -20.0/0.1, 0.0,
0.0, 0.0, 0.0;

Eigen::Matrix3d Bflap;
Bflap << -20.0, 20.0, 0.0,

20.0, -20.0, 0.0,
0.0, 0.0, 0.0;

Eigen::Vector3d vp(vx,vy,0.0);
Eigen::Vector3d omega(bx,by,0.0);
Eigen::Vector3d Flapvector;
if(w < 0.01){

*dflapx = 0.0;
*dflapy = 0.0;

} else{
Flapvector = t*(Aflap*(vp/w) + Bflap*(omega/w));
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*dflapx = Flapvector[0] * (-1);
*dflapy = Flapvector[1] * (-1);
}

}*/

double calculateThrust(double w) {
double thrust = _rotor_thrust_coeff * w * w;
return thrust;

}

double calculateTorque(double w) {

double torque = copysign(_rotor_torque_coeff * w * w, w);
return torque;

}

void updateThrust() {

int n = 4;
for (int i = 0; i < n; ++i) {

gazebo::physics::LinkPtr _link = _model->GetLink(link_v[i]);
gazebo::physics::JointPtr _joint = _model->GetJoint(joint_v[i]);
ignition::math::Vector3d joint_axis = _joint->GlobalAxis(0);
selectdragvector(i);
ignition::math::Vector3d propeller_linear_vel =

_link->RelativeLinearVel();
ignition::math::Vector3d drone_angular_vel =

_model->RelativeAngularVel();
ignition::math::Vector3d drone_lin_vel = _model->WorldLinearVel();
double body_x_ang = drone_angular_vel.X();
double body_y_ang = drone_angular_vel.Y();
ignition::math::Vector3d propeller_velocity_xy;
propeller_velocity_xy.X() = propeller_linear_vel.X();
propeller_velocity_xy.Y() = propeller_linear_vel.Y();
propeller_velocity_xy.Z() = 0;
real_rotor_velocity = _joint->GetVelocity(0) * rotor_vel_sim_slowdown;
double joint_vel = _joint->GetVelocity(0);

if (joint_vel / (2 * M_PI) > 1 / (2 * sampling_time)){
gzerr << "Aliasing";
return;

}
double dfx, dfy; //to use as outputs of function for Dflap
double thrust = calculateThrust(real_rotor_velocity);
//ROS_INFO("thrust %d: %f", i,thrust);
double torque = calculateTorque(real_rotor_velocity);
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ignition::math::Vector3d drag_torque(0, 0, torque);
//calculatedragflap(real_rotor_velocity, vp_x, vp_y, body_x_ang,

body_y_ang, thrust, &dfx, &dfy);
ignition::math::Vector3d induced_drag = (-0.01 * propeller_velocity_xy);
ignition::math::Vector3d transl_drag = (-0.0025 * propeller_velocity_xy);
ignition::math::Vector3d profile_drag = (-0.005 * propeller_velocity_xy);
ignition::math::Vector3d parasitic_drag = -0.003 * (drone_lin_vel.Abs()

* drone_lin_vel);
ignition::math::Vector3d drag_forces = induced_drag + transl_drag +

profile_drag + parasitic_drag;

//ROS_INFO("torque: %f", sampling_time );
if (_link != NULL) {

_link->AddRelativeForce(ignition::math::Vector3<double>(0, 0, thrust));
link_frame->AddRelativeTorque(ignition::math::Vector3<double>(0, 0,

torque));
_link->AddRelativeForce(drag_forces);

}
}
}

private:
ros::NodeHandle* _nh;
ros::Publisher _odom_pub;
ros::Subscriber sub;
std::thread _ros_thread;
std::mutex _pose_mtx;
std::mutex _cmd_mtx;
std::array<std::string,4> link_v;
std::array<std::string,4> joint_v;
std::array<double,4> vel_vector;
double rotor_vel_sim_slowdown;
double real_rotor_velocity;
double _rate;
double _rotor_thrust_coeff;
double _rotor_torque_coeff;
double sampling_time;
double prev_sim_time = 0;
gazebo::physics::ModelPtr _model;
gazebo::physics::LinkPtr link_frame;
gazebo::event::ConnectionPtr _updateConnection;
ignition::math::Pose3<double> _pose;
ignition::math::Vector3d dragvector;
tf::TransformBroadcaster _tf;

};
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GZ_REGISTER_MODEL_PLUGIN(AerodynamicPlugin)

A.6 odometry_plugin.cpp

#include <nav_msgs/Odometry.h>
#include <ros/ros.h>
#include <cmath>
#include <random>
#include <chrono>
#include <functional>
#include <thread>
#include <mutex>
#include <ros/ros.h>
#include "geometry_msgs/Quaternion.h"
#include <nav_msgs/Odometry.h>
#include "tf/transform_datatypes.h"
#include <ignition/math.hh>
#include <ignition/math/Pose3.hh>
#include <gazebo/gazebo.hh>
#include <gazebo/physics/physics.hh>
#include <gazebo/common/common.hh>
#include "gazebo_msgs/GetModelState.h"
#include "gazebo_msgs/ModelStates.h"
#include <tf/transform_broadcaster.h>

class DronePlugin : public gazebo::ModelPlugin {
public:

DronePlugin() : gazebo::ModelPlugin() {
std::cout << "Starting drone_plugin" << std::endl;

}

virtual ~DronePlugin() {
std::cout << "Closing drone_plugin" << std::endl;
delete _nh;

}

void Load(gazebo::physics::ModelPtr parent, sdf::ElementPtr sdf) {
_model = parent;

if (sdf->HasElement("updateRate")) {
_rate = sdf->GetElement("updateRate")->Get<double>();

} else {
_rate = 1000.0;

}
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if (!ros::isInitialized()) {
int argc = 0;
char** argv = NULL;
ros::init(argc, argv, "odometry", ros::init_options::NoSigintHandler);

}

_nh = new ros::NodeHandle("");
_odom_pub = _nh->advertise<nav_msgs::Odometry>("odom", 1000);

_ros_thread = std::thread(std::bind(&DronePlugin::rosThread, this));

_updateConnection =
gazebo::event::Events::ConnectWorldUpdateBegin(std::bind(&DronePlugin::onUpdate,
this));

}

void onUpdate() {
_pose_mtx.lock();
_pose = _model->WorldPose();
_pose_mtx.unlock();

}

void rosThread() {
ros::Rate rate(_rate);
while (ros::ok()) {

ros::spinOnce();
publishDronePose();
rate.sleep();

}
}
void publishDronePose() {

_pose_mtx.lock();
ignition::math::Pose3<double> pose = _pose;
_pose_mtx.unlock();

ignition::math::Vector3<double> rpy = pose.Rot().Euler();
geometry_msgs::Quaternion quat;
tf::Quaternion q(pose.Rot().X(), pose.Rot().Y(), pose.Rot().Z(),

pose.Rot().W());
tf::quaternionTFToMsg(q, quat);
tf::Matrix3x3 m(q);
double roll, pitch, yaw;
m.getRPY(roll, pitch, yaw);
double double_sigma_position = 2*0.0001053*0;
double double_sigma_rpy = 2*0.0001*0;
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unsigned seed =
std::chrono::system_clock::now().time_since_epoch().count();

std::default_random_engine generator(seed);
std::normal_distribution<double> distribution_pos(0.0,

double_sigma_position);
std::normal_distribution<double> distribution_rpy(0.0, double_sigma_rpy);

nav_msgs::Odometry odom_msg;
odom_msg.pose.pose.position.x = pose.Pos().X();
odom_msg.pose.pose.position.y = pose.Pos().Y();
odom_msg.pose.pose.position.z = pose.Pos().Z();
odom_msg.pose.pose.orientation.x = pose.Rot().X();
odom_msg.pose.pose.orientation.y = pose.Rot().Y();
odom_msg.pose.pose.orientation.z = pose.Rot().Z();
odom_msg.pose.pose.orientation.w = pose.Rot().W();

ignition::math::Vector3d drone_angular_vel = _model->RelativeAngularVel();
ignition::math::Vector3d drone_linear_vel = _model->WorldLinearVel();
odom_msg.twist.twist.linear.x = drone_linear_vel.X();
odom_msg.twist.twist.linear.y = drone_linear_vel.Y();
odom_msg.twist.twist.linear.z = drone_linear_vel.Z();
odom_msg.twist.twist.angular.x = drone_angular_vel.X();
odom_msg.twist.twist.angular.y = drone_angular_vel.Y();
odom_msg.twist.twist.angular.z = drone_angular_vel.Z();
_odom_pub.publish(odom_msg);

if (_publish_tf) {
tf::Transform T;
T.setOrigin(tf::Vector3(pose.Pos().X(), pose.Pos().Y(), pose.Pos().Z()));
T.setRotation(tf::Quaternion(pose.Rot().X(), pose.Rot().Y(),

pose.Rot().Z(), pose.Rot().W()));
_tf.sendTransform(tf::StampedTransform(T, ros::Time::now(), "world",

"drone"));
}

}

private:
ros::NodeHandle* _nh;
ros::Publisher _odom_pub;
tf::TransformBroadcaster _tf;
std::thread _ros_thread;
std::mutex _pose_mtx;
std::mutex _cmd_mtx;
double rotor_vel_sim_slowdown;
double _rate;
bool _publish_tf;
gazebo::physics::ModelPtr _model;
gazebo::event::ConnectionPtr _updateConnection;
ignition::math::Pose3<double> _pose;
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};

GZ_REGISTER_MODEL_PLUGIN(DronePlugin)
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