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Abstract 

A significant portion of current and future space missions involves exploring 

unstructured environments, such as the surfaces of the Moon and Mars. These 

environments are characterized by complex and often unpredictable terrain, which 

presents unique challenges for autonomous robotic systems. Perception and 

mapping strategies play a crucial role in ensuring safe and efficient navigation in 

these environments. As a result, much research has been devoted to developing 

advanced techniques for perception and mapping in unstructured environments, and 

this is an active area of study in the field of robotics and space exploration. In 

particular, the increasing demand for real-time and reliable robotic perception 

systems has motivated the development of hardware acceleration algorithms. 

Hardware acceleration consists of the use of special-purpose hardware, which is 

specially designed to perform specific functions more efficiently than software 

running on a general-purpose CPU. Some of the advantages of hardware against 

software include speedup, lower power consumption, lower latency, and increased 

parallelism, at the cost of longer development times and reduced ability to update 

the designs after manufacturing. In the context of robotic perception, these 

algorithms aim to speed up the processing of visual and sensory data, allowing 

robots to make quick and accurate decisions in dynamic environments. For this 

purpose, hardware accelerators such as Graphics Processing Units (GPUs), Field-

Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuits 

(ASICs) have been adopted. This Master’s thesis focuses on the implementation of 

a hardware acceleration algorithm for the calculation of the surface represented by 

a point cloud. The surface can be determined through the computation of its normal 

vectors, which provide valuable information about the surface shape. In particular, 

the thesis work is centered on the development of a hardware unit that exploits the 

Principal Component Analysis (PCA). Indeed, the PCA can be used to find the 

principal directions of a dataset that, in the case of a point cloud, returns information 

about the vectors that are normal to the surface. The design of this computational 



 
 

unit was carried out to be implemented on a FPGA board. The results of this study 

demonstrate the feasibility of using hardware acceleration algorithms in robotic 

perception and provide insights into the trade-offs involved in the design of such 

systems. 
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Chapter 1 

Robotic perception techniques for 

planetary rovers 
Over the past five decades, robotic platforms have experienced a significant growth 

in their usage in planetary exploration missions, spanning a diversity of 

technologies, such as orbiting spacecrafts, space telescopes, stationary landers [1]. 

One of the most important sources of exploratory information is represented by 

planetary rovers, whose emphasis is increasing since this kind of robots is 

considered as the key to detailed planetary exploration because of the capability to 

move to different locations for wider area exploration. Indeed, planetary rovers are 

uniquely useful for almost all types of planetary missions on planets with solid 

surfaces ranging from small bodies, such as asteroids and comets, to the moons of 

gas giants or to terrestrial-type planets such as Mars [2]. Moreover, some of the 

other advantages of planetary rovers are the high degree of mobility, the ability of 

physical experimentation, the autonomous navigation, and the microscopic level of 

observations. These skills have been developed in the past couple of decades, 

during which planetary rovers have become increasingly complex and intelligent, 

employing a range of onboard sensors that enhance their autonomous capabilities. 

Concerning what has been stated, it is fundamental the role played by robotic 

perception algorithms. Robotic perception refers to the ability of robots to sense 

and interpret the environment around them. It is a critical component of autonomous 

robots, as it allows the robot to understand and interact with its surroundings. Some 

of the main techniques used in robotic perception are: 

1. Computer Vision: a field of study that focuses on enabling computers to 

interpret and understand visual information. In robotics, computer vision is used 

to analyze and understand the images captured by cameras, such as depth 

cameras, RGB cameras, and stereo cameras. This information is then used to 
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determine the position, orientation, and movement of objects in the 

environment. 

2. Lidar (Light Detection and Ranging): a technology that uses laser light to 

measure distances and generate 3D maps of the environment. Lidar is 

commonly used in robotics for perception tasks such as obstacle avoidance, 

navigation, and object recognition. 

3. Radar (Radio Detection and Ranging): a technology that uses radio waves to 

determine the position, velocity, and distance of objects in the environment. It 

is often used in robotics for tasks such as obstacle detection, navigation, and 

mapping. 

4. Sonar (Sound Navigation and Ranging): a technology that uses sound waves to 

measure distances and determine the shape and location of objects in the 

environment. It is commonly used in robotics for underwater perception tasks, 

such as navigation, object detection, and mapping. 

5. Inertial Measurement Units (IMUs): sensors that measure the orientation and 

acceleration of a robot. They are often used in robotics to track the position and 

orientation of the robot, as well as to provide feedback for control and 

navigation algorithms. 

1.1 Vision perception for planetary rovers 

For what regards planetary rovers, sophisticated vision systems, supported by 

onboard software, have been crucial in expanding their autonomous capabilities. In 

this context, the NASA’s Mars rover Curiosity pioneered the autonomous selection 

of rock targets for scientific analysis by its laser and telescopic camera suite, 

Chemistry and Camera (ChemCam), using the Autonomous Exploration for 

Gathering Increased Science (AEGIS) software: 
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Figure 1 ChemCam mounted on Curiosity rover 

 

This is just one of the many capabilities that complex vision systems provide on 

board planetary rovers. In fact, onboard vision systems have become critical 

components for rover autonomy in performing complex tasks, such as high-level 

surface mapping and relative localization using topological vision data, low-level 

visual feature detection, recognition and landmark tracking, and complex scientific 

procedures such as identification of the chemical compositions of Martian soil. It is 

possible to make a distinction in the vision techniques, based on the type of sensor 

used to capture scene data: cameras or LiDARs.  

1.1.1 Cameras 

In past and current missions, most of rovers employs cameras for terrain perception. 

In general, it is possible to distinguish between depth cameras and RGB cameras, 

which are all image acquisition devices used in computer vision, but they differ in 

the information they capture: 

1. Depth cameras, also known as range cameras or 3D cameras, directly 

capture depth information of the object, providing a depth map of the 

surrounding environment. Depth cameras capture images in which each 

pixel contains information about the distance to the object in the scene. They 

use a variety of techniques to measure depth, including structured light, 

time-of-flight, and stereo vision. Structured light depth cameras project a 



Chapter 1 

4 
 

pattern of light onto the scene and use the distortion of the pattern to 

compute the depth of each pixel. Time-of-flight depth cameras measure the 

time it takes for a pulse of light to travel from the camera to the object and 

back and use this time to calculate the distance. Stereo vision depth cameras 

use two cameras to capture the scene from different viewpoints and use the 

differences in the images to triangulate the depth of each pixel. Depth 

cameras are useful in a variety of applications, such as robotics, gaming, 

and augmented reality.  

2. RGB cameras, also known as color cameras, capture images in the visible 

spectrum of light. RGB cameras capture three color channels (red, green, 

and blue) and a brightness channel, also known as luminance. The camera 

lens focuses the incoming light onto a sensor, which is typically a charge-

coupled device (CCD) or a complementary metal-oxide-semiconductor 

(CMOS) sensor. The sensor is made up of millions of tiny light-sensitive 

elements called pixels, which convert the incoming light into electrical 

signals. The camera then processes these signals to create a digital image. 

Each pixel in an RGB camera is sensitive to a specific range of wavelengths 

of light, corresponding to the red, green, and blue color channels. By 

combining these three - color channels, the camera can capture a wide range 

of colors and shades of brightness. The brightness channel, or luminance, is 

often calculated as a weighted average of the three - color channels. RGB 

cameras are widely used in mobile devices, digital cameras, and 

surveillance systems due to their low cost and wide availability. 

Often, depth cameras can be used in conjunction with RGB cameras to provide 

additional information about the environment. For example, depth information can 

be used to separate objects in the scene from the background or to apply depth-

based effects to images or videos.   

In past and current planetary missions, stereo vision is considered as the baseline 

method for scene reconstruction and perception for planetary rovers. In this 

scenario, the pioneer is the rover Soujourner, which was landed by NASA on Mars 

in the 1997 Mars Pathfinder mission. The rover could navigate through a simple 

light-stripe sensor that measured twenty – five elevation point in front of the rover. 
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The lander had a multispectral stereo camera pair on a pan/tilt mast about 1.5 m 

high. The processing of the stereo imagery was performed on Earth by JPL’s real-

time stereo algorithm and it were produced excellent maps of terrain around the 

lander for rover operators to use in planning the mission. In this way, the stereo 

algorithm performance was validated with real Mars imagery.  

 

Figure 2 Soujourner rover of the 1997 NASA’s Mars Pathfinder mission 

 

Other examples of the usage of stereo vision algorithm are given by the NASA’s 

twin Mars Exploration Rovers (MER), that are Spirit and Opportunity. With respect 

to Soujourner, they were designed to accomplish more robust navigation tasks, such 

as obstacle detection and avoidance. For this reason, MER rovers have been 

equipped with three sets of stereo camera pairs: one pair of “hazcams” (hazard 

cameras) looking forward under the solar panel in front, another pair of hazcams 

looking backward under the solar panel in the back and a pair of “newcams” 

(navigation cameras) on the mast.   
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Figure 3 The twin Mars Exploration Rovers (MER), Spirit and Opportunity 

 

For what regards future missions, the ESA’s ExoMars rover, whose launch is 

scheduled for 2028, makes use of a perception system that uses a pair of stereo 

images to generate a disparity map. In detail, the rover is equipped with the so-

called Panoramic Camera System (PanCam), which consists of two wide-angle 

stereo cameras and a third high-resolution camera, used for capturing the 

surrounding terrain and for navigation. Over the past few decades, planetary rover 

missions have demonstrated and validated the viability of using stereo cameras and 

stereopsis as the primary technology for onboard 3D perception. This approach has 

several advantages, including its solid-state design, which makes it more 

mechanically robust and durable. In addition, research has shown that the Martian 

terrain offers enough textural information to support stereo vision almost anywhere 

on the planet. Several algorithms have been developed that can perform stereopsis 

and produce accurate and dense range imagery at a sufficient speed using the 

available computing resources. As a result, this approach has been widely regarded 

as the best trade-off between cost, risk, and performance for 3D terrain perception 

on planetary rovers. 
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1.1.2 LiDARs 

Light Detection and Ranging (LIDAR) technology is commonly used by terrestrial 

rovers covering very long distances. The functioning of LiDAR is based on 

measuring the time – of – flight of a laser pulse between emission and return of the 

reflected signal. The laser pulse is emitted by the LiDAR device and, once it reaches 

the surface of the object, it is reflected and returned to the LiDAR sensor. The 

LiDAR sensor detects the time taken by the laser pulse to return and, using the 

speed of light as a constant, it calculates the distance from the object. In space 

applications, LiDAR is used for spacecraft assistance with rendezvous and docking, 

depth estimation and mapping, scientific analysis and geological surveying [1]. An 

example of employment of the LiDAR sensor is the mission OSIRIS-Rex, aimed to 

map the carbonaceous asteroid Bennu for the purpose of studying its physical and 

chemical properties. The OSIRIS-REx Laser Altimeter (OLA) is the LiDAR sensor 

involved in the 3D mapping of asteroid Bennu’s shape and it has already completed 

all its requirements for the OSIRIS-REx mission. OLA’s scans of Bennu’s surface 

were used to create the high-resolution 3D global maps of Bennu’s topography that 

were crucial for selecting the primary and backup sample collection sites.  

 

Figure 4 OSIRIS-Rex Laser Altimeter (OLA) 

 

Different projects using LiDAR as a potential technology for planetary rovers have 

been developed, highlighting both the pros and cons. Some of the limitations with 

these sensors could be: weight and size, since LiDAR can be quite heavy and bulky, 
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which could make difficult to fit such a device onto a lander or rover, where space 

is limited; cost, since LiDARs can be expensive and represent a significant expense 

for a planetary exploration mission; the need for significant computational 

resources necessary to process 360° complete resolution scans. These cons are some 

of the reasons why planetary exploration missions often use other types of sensors. 

However, LiDAR could be used in the future in planetary exploration missions to 

enhance the ability to detect obstacles and map the surrounding environment. 

1.2 Surface reconstruction 

Some of the previously mentioned sensors are used to acquire point clouds. A point 

cloud is a 3D representation of an object or a surface, composed of a set of three-

dimensional points where each point represents a measurement taken by a sensor. 

A common step in the information extraction procedures is the surface 

reconstruction. Surface reconstruction is the process by which a 3D object is 

inferred, or ‘reconstructed’, from a collection of discrete points that sample the 

shape [4]. The surfaces considered in surface reconstruction are 2-manifolds that 

might have boundaries and are embedded in the Euclidean space ℝ3 [5]. In the 

surface reconstruction problem, the initial assumptions are a finite sample P ⊂ ℝ3 

of an unknown surface and the task is to compute a model of S from P. This problem 

is referred as the reconstruction of S from P and the obtained result should match 

the original one both geometrically and topologically. It is important to notice that 

the process of reconstruction is usually made up by two stages: first, a piece-wise 

linear surface is reconstructed, and second, a piecewise-smooth surface is built upon 

the mesh [5]. However, finding out the appropriate surface, that correctly matches 

the geometric and topological properties, is not an easy task and it depends on the 

characteristic of both the surface and the point cloud. Sometime additional 

information of the surface can be available, such as oriented/unoriented normals or 

presence of breaklines (i.e. feature line or polyline representing a ridge or some 

other feature, that the user wishes to preserve in a mesh made up of polygonal 

elements [6]).  In general, an increasing sampling density may ensure a better 

recovering of the surface, especially if the sample is dense in detailed area and 

sparse in featureless parts. The correct reconstruction algorithm depends on the 
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final application and, for each application, reconstruction methods vary based on 

several factors. For example, it is possible to distinguish between techniques that 

interpolate a point cloud without any additional information and methods that 

assume some priors to fix the imperfections in point cloud. Most reconstruction 

procedures are specially designed for static objects and scenes but advance in 

scanning techniques has enabled the acquisition of point clouds that vary 

dynamically and consequently the development of algorithms for dynamic 

reconstruction. Or alternatively, there exist specific algorithms aimed at surface 

reconstruction for urban environments while other methods are designed for 

specific-application recognition: the first class of reconstruction techniques does 

not require the reconstruction of fine details such as individual bricks on a building 

while dense coverage scans could be required, for example, in the field of 

archeology where it is needed for high-detail reconstruction.  

1.2.1 General overview 

In general, surface reconstruction algorithms may be divided into two classes: 

systems based on object measurements and systems that do not use measurements 

[6]. Systems based on objects measurements require the acquisition of 

measurements of the objects in the environment, which are used to reconstruct the 

surface. This class comprises both methods based on triangulation and approaches 

that estimate surface normals instead of 3D data.  These kinds of method rely on 

data coming from either passive sensor or active sensors. On the other hand, 

systems that do not use measurements rely on other types of data, such as images 

or videos, to reconstruct the surface. The generation of 3D models start from simple 

elements like polygonal boxes [6]. Overall, the main difference between these two 

approaches is the type of input data used, with systems based on object 

measurements requiring more specialized sensors and equipment, but potentially 

providing more accurate results, while systems that do not use measurements can 

be more versatile and use more widely available sensors but may be less accurate 

in certain situations. However, even if there exist thousands of surface 

reconstruction techniques, most of them are generally based on four steps: 
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1. Pre-processing, which consists of the editing operations on measured points. 

The pre-processing operations usually are: 

- data sampling, which could be uniform or based on the curvature of the 

points, but the uniform sampling is preferred since it allows to reduce 

certain types of errors. 

- noise reduction and removal of outliers. Points that are randomly 

distributed near the surface are traditionally considered to be noise while 

points far from the true surface are classified as outliers. While several 

algorithms infer the surface by passing near the point but not overfitting 

the noise, outliers should never be used for reconstruction purpose. 

- holes filling since physical constraints of the scanning devices cause 

missing data. These gaps are filled adding new points and using the 

density of surrounding points.  

2. Study of the global topology, that is the determination of the neighborhood 

relations between adjacent parts of the surface.  

3. Generation of the polygonal surface, which consists of the conversion from 

the given point cloud to a polygonal mesh, which is a collection of triangular 

or quadrilateral contiguous, non-overlapping faces, joined together along 

their edges [6]. The dataset is divided into small elements, typically triangles 

in 2D or tetrahedra in 3D, typically by means of finite element methods. The 

result of this step is the generation of vertices, edges and faces.  

4. Post-processing, that include a whole set of operations to refine and smooth 

the polygonal surface. Some of the most common post-processing activities 

are edges correction or triangles insertion, aimed at filling holes.  

 

1.2.2 Traversability concept 

The processing of data coming from several sensors, especially visual ones, is a 

fundamental step to extract information about the surrounding environment, which 

can be further used to navigate the mobile robot toward the safest and most 

traversable area. The perceived data can be processed to create a map of the 

environment, which could be employed in a variety of applications including 
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navigation, localization, and exploration. Maps, which can be either 2D or 3D, can 

include information about the localization of objects, the geometry of the 

environment, and other relevant features, such as obstacles and paths. In general, in 

mobile robot navigation, occupancy-based approaches are some of the most used 

methods. The occupancy-based algorithms use two or three-dimensional maps of 

the surrounding environment to determine whether a particular area of space is 

occupied by obstacles or other entities. This allows mobile robots to avoid obstacles 

and navigate safely and efficiently in complex environments. One of the most 

common methods used in occupancy-based approaches are occupancy-grid, which 

employs a 2D or 3D division of space into cells, where each cell stores a 

probabilistic estimate of its state (occupied or not).  

 

Figure 5 Example of occupancy grid 

 

Other approaches refer to the level of environment representation, that can be sorted 

in geometrical, topological, or topo-geometrical levels [7]. Geometrical maps are 

representations of the environment that are based on geometric properties, such as 

distances, angles, and shapes. These maps are typically represented in a coordinate 

system, such as Cartesian or polar coordinates and the result is usually very 

accurate. It is necessary a big amount of data to model the environment through this 

approach, therefore this method is of limited use, especially in poorly structured 

outdoor areas. An example of geometrical map is shown in the figure below. 
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Figure 6 Example of geometrical maps 

 

In a topological representation, the environment is represented as a graph, through 

a set of distinctive places, and the robot associates a particular sensory information 

to each of them, that makes them recognizable. Topological maps need the presence 

of repetitive elements, so they are mainly used in modelling indoor environments, 

but they are not suitable for a-priori unknown environments, especially outdoor 

ones. Moreover, hybrid representations have been developed, like a topological 

graph based on occupancy grid. 

One of the main tasks of visual data processing is to determine which area are 

traversable, so which localizations are suitable to be navigated. Depending on the 

characteristics of the crossed environment, the concept of traversability has a proper 

meaning. Concerning outdoor navigation, it is necessary to estimate some 

parameters that describe the propension of the terrain to be crossed but several 

works mainly make use of two parameters for the definition of traversable area, 

which are terrain slope and roughness degree, that represent the amount of deviation 

from the smoothed surface on a smaller scale. Across the literature, several 

computation methods for these parameters may be found. For example, in [7], 

terrain slope is defined as the existing angle between the surface normal vector (�⃗⃗� ) 

and the vector which is perpendicular to the horizontal surface (�⃗⃗⃗� 
𝜋), as shown in 

the picture below:  
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Figure 7 Slope definition and visualization 

 

On the other side, the roughness degree is defined as the measurement of the surface 

deviation and the computation of the roughness is based on the normal vector 

deviation in each point, with the calculus of a statistic quantity named spherical 

variance, which expresses the variation of the normal vector in a local region. At 

this point, traversable areas are defined considering both these parameters. It is 

important to underline that several parameters concur to the definition of 

traversability for a terrain, like the characteristics of the mobile robot itself or the 

task the robot is going to perform. 

1.2.3 Examples of traversability in planetary 

exploration 

For what regards planetary environments, the first concept of traversability for 

mobile robots operating in planetary environments is introduced in [8]. This index 

is expressed by linguistic fuzzy sets, quantifying how traversable a particular terrain 

is for a given rover [8]. In particular, the index is computed based on the two 

physical variables mentioned before, the terrain slope and the terrain roughness. 

Both these quantities can be computed starting from data provided by the on-board 

stereo vision, as indicated in [9]. For the definition of the traversability index, the 

slope is represented through four linguistic fuzzy sets {LOW, MEDIUM, HIGH, 

VERY HIGH} and, using this approach, a precise measurement is not needed but 

it is necessary only to define to which set the slope belongs. The terrain roughness 

can be computed by fuzzy inference from the measurements of rock size and rock 

concentration on the terrain and it could be represented by four linguistic fuzzy sets 

{SMOOTH, ROUGH, BUMPY, ROCKY}, as shown in the table below: 
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Figure 8 Fuzzy rules for terrain roughness 

 

At this point, the traversability index is defined as a set of fuzzy relations, depending 

on the slope and the roughness of the terrain. The traversability index is represented 

through the four linguistic fuzzy set T = {POOR, LOW, MEDIUM, HIGH} and it 

is determined according to the rule shown in the following table: 

 

Figure 9 Fuzzy rules for traversability index 

 

It is fundamental to outline that the traversability index does not depend only on the 

characteristics of the terrain but also on the properties of the rover, like size or 

climbing capability. Finally, just to point out the importance of parameters like the 

traversability index, it is crucial to say that the mentioned criteria is used to develop 

an autonomous navigation strategy that allows the robot to autonomously move in 

an a priori unknown environment.
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Chapter 2  

Overview about FPGAs 
In chapter 1, it has been highlighted how much image processing is becoming an 

important part for both terrestrial and planetary rovers. Real time vision systems 

require the availability of processors which can work at speeds in the gigahertz 

range, while consuming a certain amount of power. The problems arise when space 

system require to be low-power and such processors are unavailable. Given those 

restrictions, the use of FPGAs with embedded processors has become an 

increasingly attractive technique for embedded processing [10]. Integrating a 

sequential processor to do sequential tasks, and FPGA fabric to do vector and/or 

parallel processing enables the low power and high computation ability required for 

robotic applications. 

 

FPGAs, which stands for Field Programmable Gate Arrays, are integrated circuits 

(ICs), consisting of an array of programmable logic blocks which can be configured 

to implement simple logic functions (e.g., AND, OR) or to perform complex 

combinational functions. In both cases, hardware description languages (HDLs), 

such as VHDL or Verilog, can be exploited to design the FPGA configuration in 

the field. Modern FPGAs have become fast and powerful enough to enable the 

implementation of various algorithms in hardware, resulting in faster performance 

compared to software-only implementations on general-purpose microprocessors, 

as demonstrated in the articles [11-15]. Many researchers have focused on using 

FPGA accelerators to speed up the computationally intensive parts of programs, 

using different approaches to achieve acceleration, but all relying on some form of 

parallelism. Several applications are demanding increasing amounts of processing 

capability to achieve higher computational speeds but also lower power 

consumptions, acceptable manufacturing and packaging costs, rigorous time-to-

market requirements. The main fields in which FPGAs are widely applied are 

Digital Signal Processing (DSP) and Digital Image Processing (DIP) [17]. This 
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technology brings several advantages. First, FPGAs are faster than software 

algorithms on microprocessors because the hardware is tailored to a specific 

algorithm, so a speed increase of 10-100 times that of the equivalent software 

algorithm can be achieved, as demonstrated by authors in [18]. Additionally, FPGA 

implementation of software algorithms results in reduced power consumption, as 

FPGA clock frequencies are substantially lower (almost one tenth the speed) than 

those of microprocessors. Moreover, the usage of FPGAs implies a reduction of the 

payload per computation since most control is configured into the logic itself so 

overhead instructions (such as array indexing and loop computations) need not be 

emulated. However there exist other classes of ICs, like Application-Specific 

Integrated Circuits (ASICs), whose logic is fixed at fabrication time. Compared to 

ASICs, FPGAs are less dense and fast but they also bring several benefits to users, 

including faster time to market, re – programmability for users, no non-recurring 

engineering costs for fabrication or pre-tested silicon for use by the designer. 

2.1 Main aspects of FPGAs 

Technology markets have been driven by developments in silicon technology 

according to the progress described by Moore’s law, which predicted a doubling of 

the number of transistors every 18 months. Moreover, the reduction in the costs of 

transistors has been crucial. Early electronic systems were created on printed circuit 

boards (PCBs), by aggregating standard components such as microprocessors and 

memory chips with digital logic components [20].  The increasing number of 

transistors and input/output pins as well as the complexity of the implemented 

systems caused the integration step on PCBs to become harder and harder. 

Moreover, the need to develop systems that could easily adapt to evolving design 

requirements raised, pushed also by the desire to have the same flexibility allowed 

by microprocessors. In this context, the idea of Field-Programmable Device (FDP) 

emerged. The term FPD refers to a class of integrated circuits aimed at the design 

of digital hardware, where the chip is directly configured by the end user.  
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2.2 Evolution of FDPs 

One of the first user-programmable chip was the Programmable Read-Only 

Memory (PROM). A PROM consists of a fixed AND plane, connected to a 

programmable OR plane, as shown in Figure 10. The fixed AND plane acts as a 

decoder so it is responsible for reducing the number of input pins that go into the 

memory, by decoding the address input pins, while the data is stored in a storage 

area or memory array. The decoder generates various address lines using AND 

gates, and the outputs are combined using OR gates. In this way, given 𝑛 inputs and 

𝑚 output lines, the structure could store 𝑛2 𝑚-bit words. Since the programming 

step is realized through the burning of the fuses in the OR plane, it is easy to 

understand that this kind of technology can be programmed only once. This simple 

structure successfully allowed the implementation of logic functions, which were 

simply expressed as sum of products since designers usually made use of logic 

minimization techniques, such as those based on Karnaugh maps or Quine-

McCluskey minimization [20]. However, these kind of logic functions rarely need 

more than a few product terms while a PROM contains a full decoder for its address 

inputs, so this technology appears to be quite inefficient and nowadays it is not so 

adopted.   

 

Figure 10 Structure of a PROM 

 

Then Programmable Logic Array (PLA) was introduced, which is made by a 

programmable wired AND plane and a programmable wired OR plane and whose 

general structure is depicted in Figure 11: 
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Figure 11 Structure of a PLA 

In this kind of structure, it is possible to implement logic functions expressed as 

sum of products. Indeed, any of the inputs or their complements can be ANDed 

together in the AND array, so it is possible to generate only the required products 

by using these AND gates. At the same way, each output in the OR plane can be 

configured to produce the logical sum of any of the AND-plane outputs. An 

example of PLA is shown in Figure 12, implementing a sum – of – products 

function: 

 

Figure 12 Example of a PLA 

 

However, the presence of two programmable logic arrays caused not only 

difficulties in the manufacturing but also not so much satisfying performances in 

terms of speed. This is the reason why PLA were substituted by Programmable 

Array Logic (PAL), which are simply realized by the connection between a 

programmable AND plane and a fixed OR matrix. The general structure of a PAL 

is shown in figure 2.4: 
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Figure 13 Structure of a PAL 

 

As in PLAs, the inputs of AND gates are programmable so, based on the 

requirements, it is possible to program any of those inputs. On the other side, the 

inputs of OR gates are not programmable, therefore the number of inputs to each 

OR gate will be fixed. As the previous one, this structure allows to implement 

functions in the form sum – of – products. Figure 14 shows an example of sum – of 

– product function, implemented on a PAL device:  

 

Figure 14 Example of a PAL 

 

Since the PAL is characterized by less flexibility with respect to the PLA, it is 

implemented with several variants, like the number of inputs and outputs. The 

PAL16L8 is a demonstration of what has already been stated: indeed, it is a 

particular PAL implementation, provided with 16 inputs and 8 outputs: 

 



Chapter 2 

20 
 

 

Figure 15 PAL16L8 

 

As it is possible to see from the previous image, PAL are often supplied with flip-

flops to implement not only combinational but also sequential logic. In general, the 

last two types of devices, which have been presented till now, fall under the 

categorization of Simple Programmable Logic Devices (PLDs). Although their 

pros, such as low cost and versatility, the cons are represented by the fact that the 

structure of the programmable logic planes grow too quickly in size as the number 

of inputs is increased [21]. These problems have been solved by the introduction of 

Complex Programmable Logic Devices (CPLs), which consists of the arrangement 

of multiple SPLD-like blocks on a single chip. The main idea behind CPLD is to 

implement an architecture containing several logic blocks, each like a small PLD, 

instead of building larger PLDs with more inputs or product terms. Then the logic 

blocks can communicate with each other using signals routed through a 

programmable network of interconnects. Figure 16 shows an example of the generic 

architecture of a CPLD, consisting of four PLD sub-blocks: 

 



Chapter 2 

21 
 

 
Figure 16 Example of architecture for a CPLD 

 

However, it results quite complex to extend these architectures to high density 

designs. At this point, FPGAs were introduced as a trade-off between the high – 

density capabilities of ASICs and the flexibility provided by PLDs. Early 

architectures for FPGA were composed by: 

- programmable logic units, that could be programmed to implement logic 

functions; 

- programmable interconnections; 

- programmable I/O pins. 

A schematic architecture of early FPGAs is shown in Figure 17: 
 

 
Figure 17 Architecture of early FPGAs 

 

Today, FPGAs are still made by this array of simple circuit elements, called logic 

element, and interconnectable resources, which can be programmed by the end user. 

Each logic block consists of digital logic components, such as multiplexers, flip-

flops, look-up tables (arrays of data to map input values to output values, 
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approximating mathematical functions) or adders. The strength of FPGA is 

represented by the fact that the logic blocks within it are built with interconnections 

that can be reconfigured by the user using a hardware description language (HDL). 

The actual structure is quite similar to the architecture of the first ones but the 

number of cells in the same device has strongly grown. Indeed, according to the 

technology process described by Moore’s law, the increasing in the number of 

transistors is related to the shrinking in the physical dimensions of transistors, 

allowing for a higher number of logic blocks integrated on the same unit. Initially, 

the devices were made just by a single cell. The increasing in the number of cells 

has led to the need of connecting not only each single cell to the outside border of 

the physical component but also between themselves, so a programmable structure 

has been introduced to route the signal inside the component. This evolution is 

shown in the following picture, provided by Altera: 
 

 
Figure 18 Altera architecture evolution 

 

Moreover, the input/output capability was strongly affected by the increasing in the 

number of transistors so modern FPGAs can drive numerous signals, up to one 

thousand. So, nowadays, FPGAs, as illustrated in Figure 19, consist of an array of 

programmable logic blocks of potentially different types, including general logic, 

memory and multiplier blocks, surrounded by a programmable routing fabric [22]. 
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Figure 19 Basic FPGA structure 

 

2.3 Structure of modern FPGAs 
The main components of a FPGA device are: 

 

- Configurable Logic Blocks (CLBs) 

 A CLB is the fundamental piece of an FPGA. In its most basic form, a 

FPGA is a chip made by thousands of configurable logic blocks. The 

function of a single CLB and their interconnection can be programmed by 

the designer to perform any logic function. An individual CLB consists of a 

number of discrete logic components itself, such as look-up tables (LUTs) 

and flip-flops. Figure 20 shows an example of a logic cell, which is the 

building block of a CLB: 

 

 
Figure 20 Example of logic cell 
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A look-up table is a type of configurable logic block that can implement any 

Boolean function of its input signals. A LUT consists of a small block of 

memory, typically 4 to 6 bits wide, and a decoder circuit that selects one of 

the memory cells based on the input signals. The memory cells in the LUT 

are pre-programmed, with truth table values for the Boolean function that 

the LUT is intended to implement. For example, a 4-input LUT might have 

16 memory cells, with each cell representing one of the 16 possible input 

combinations and containing the corresponding output value for the 

Boolean function. When the input signals to the LUT change, the decoder 

selects the appropriate memory cell based on the input values, and the output 

of the LUT is set to the corresponding value stored in the memory cell. 

Moreover, the LUTs can also serve as a distributed RAM or a shift – 

register. The fact that registers are available in CLB means that it is possible 

to create sequential logic circuits by connecting the output of LUTs to flip-

flops. Some logic cells are provided with carry logic blocks, useful to 

implement fast arithmetic circuits. 

Typically, logic cells are grouped in slices and the proper interconnection 

between slices leads to the formation of configurable logic blocks. There 

exist both local and global interconnections, to offer wider opportunities of 

programmability. 

 

- Digital Signal Processing (DSP) Slice 

A DSP is a component designed to carry out digital signal processing 

functions, such as filtering or multiplying, much more efficiently than if the 

same functions were implemented using many CLBs. Each variable-

precision DSP block offers a range of multiplicative and additive support 

functionalities.  

 

- Transceivers 

Transceivers transmit and receive serial data to and from the FPGA at 

extremely high rates. The task of converting information on the FPGA into 

serial data, as well as receiving serial data externally and converting it into 
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useful information, while checking for errors in the data becomes more 

difficult to do with the configurable logic of the FPGA as speeds increase. 

This dedicated component allows for high-speed data transfer without 

consuming the logic resources of the FPGA. 

 

- Block Random Access Memory (BRAM) 

FPGAs are usually provided with on – chip Block Random Access 

Memories (BRAMs) as well as on – board SRAM or DRAM. Memory 

blocks can be particularly useful, for example if there is the need to store 

some previously data coefficients or if it is necessary to delay some values. 

BRAM is directly built into the FPGA fabric in such a way to offer more 

efficient storage for large amounts of data. BRAM is typically used to 

implement memory-intensive algorithms, such as image and video 

processing, where fast access to large amounts of data is critical. On the 

other side, both DRAM and SRAM are external to the FPGA device, but 

they offer larger amounts of storage capacity than BRAM. DRAM is 

commonly used in FPGA designs that require large amounts of data storage, 

such as high-performance computing and networking applications, while 

SRAM is often designs that require high-speed access to small amounts of 

data, such as cache memory or register files. 

 

- Input/Output (IO) Blocks 

Input/output blocks are the components through which data are transferred 

into the FPGA or out of it.  Input/Output pins are grouped in the so-called 

IO banks, which are configurable depending on the type of data to receive 

or transmit. They are like transceivers but operate at lower speeds and can 

maintain more functional flexibility.  
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2.4 Programming technologies for FPGAs 
An important criterion to distinguish the different types of FPGAs is based on the 

programming method through which connections are made. There are mainly three 

different types of FPGAs: 

 

- SRAM FPGAs 

SRAM-FPGAs make use of SRAM-based memory to store the logic and 

wiring information. The basic element of SRAM-FPGAs is a static random 

– access memory cell, which is based on CMOS technology. Each static 

memory cell is usually made by six transistors, four of which form two cross 

– coupled inverters, as shown in Figure 21: 

 

 
Figure 21 SRAM-based memory element 

 

SRAM can keep the stored information as long as power remains on and it 

does not need to be periodically refreshed but it is a volatile component, so 

the information is lost when the power is turned off. SRAM cells can be 

used both to store data in look-up tables and to select lines of the 

multiplexers, necessary to route interconnection signals. Because of the 

volatile nature of SRAMs, the configuration data shall be stored in an 

external nonvolatile memory, to be uploaded at power up. SRAM-FPGAs 

are the most common, not only due to the fact that they are reconfigurable 

but also because the adopted CMOS technology allows for high speeds and 

low power consumptions.  
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- Antifuse – based FPGAs 

In antifuse – based FPGAs, desired logic circuit can be realized by burning 

antifuses off. An antifuse is an electrical device, which behaves oppositely 

with respect to a fuse: while a fuse breaks a connection in a circuit when it 

is crossed by a high current, an antifuse has a high resistance at the 

beginning so it is designed to create an electrically conductive circuit path 

permanently, typically at high voltage. An antifuse can be implemented by 

placing a thin barrier of an insulating material between two metal 

conductors. When a high enough voltage is applied across the insulating 

material, it breaks down the antifuse and a low resistance path is established 

for the current to flow.  

With respect to SRAM-FPGAs, the occupied space can be reduced since 

there is no need of silicon area to realize the connections, even if the high 

currents that cross the circuit need to be supplied by larger transistors.  

Moreover, this kind of FPGAs is nonvolatile so there is no need of 

additional memory where the configuration program has to be stored and 

the device can instantly work when powered up. However, since antifuse – 

based FGPAs are based on burning off antifuses, they are one – time 

programmable (OTP) devices so they cannot be reconfigurable after the first 

programming. In particular, since anti-fuse-based FPGAs require a 

nonstandard CMOS process, they are typically well behind in the 

manufacturing processes that they can adopt compared to SRAM-based 

FPGAs [22]. 

 

- Flash FPGAs  

Flash – FPGAs are based on flash or EEPROM memory cells. In this type 

of FPGAs, the fundamental block is a floating – gate, an electrode formed 

within the gate insulator of a field-effect transistor, so it is placed between 

the normal gate electrode (the control gate) and the channel, as shown in 

Figure 27: 
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Figure 22 Flash memory cell 

 

The amount of charge stored on the floating gate determines whether the 

transistor will conduct or not. The switch element consists of two floating 

gate NMOS-transistors. A switch transistor turns on or off the data path and 

a programming transistor programs the floating gate voltage. The floating 

gate is completely surrounded by insulators so it can keep the charge 

independent of whether the circuit power supply voltage is present. Flash – 

FPGAs result to be reconfigurable and nonvolatile, so they represent a 

tradeoff between the two typologies of FPGAs previously discussed. The 

usage of this kind of FPGAs was not so common in the past because of the 

need of wide area but now suitable results in the shrinkage of the area have 

been achieved. One disadvantage of flash-based devices is that they are not 

infinitely reconfigurable because charge buildup in the oxide could prevent 

a proper erasing.  

 

2.5 FPGAs in space applications 
 

Recently, FPGAs are becoming widespread in space applications while the usage 

of microcontrollers is decreasing because of the effects of high ionizing radiations. 

Indeed, these radiations are absorbed by microcontrollers with a consequent 

decreasing in performances, while the physical structure of FPGAs allows to reject 

radiations. For this reason, FPGAs are said to be immune to SEEs (Single Event 

Effects). The SEEs are caused by a single ionizing particle, which creates an 

included charge. This latter one can immediately and temporarily affect the correct 
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operation of the device or destroy it [23]. In the following sub-paragraphs, some of 

the most common examples of usage of FPGAs in space applications are reported.  
2.5.1 Sojourner Rover  

As anticipated in chapter 1, the Sojourner Rover was the first Mars Rover to land 

in the Ares Vallis, the outflow channel on Mars, as part of Mars Pathfinder mission.  

 

Figure 23 A representative picture of Sojourner Rover 

 

This rover was equipped by the Athena Software Development Model (SDM), 

which used a highly distributed approach in adopting a 12 MHz/10 MIPS R3000 

CPU (drawing 2–3W of power) supported by FPGAs for low-level motor control 

[24]. The system comprises six remote engineering units and each unit is provided 

with an FPGA based motor controller that can control two brushed motors. The 

motor controller is a PID controller running at frequency of 1 𝑘𝐻𝑧, reading 

quadrature encoders and outputting the direction and pulse width modulated duty 

cycle to drive the motor. 

2.5.2 ESA Lunar Rover Mockup 

The Lunar Robotic Mockup was developed to provide a Lunar-like rover platform 

for mounting robotics payloads [25]. This rover is shown in Figure 24. 



Chapter 2 

30 
 

 

Figure 24  A representative picture of ESA Lunar Mockup 

 

The control software of this rover runs on a microcontroller that receives velocity 

and motor angle data through a serial line. A PID controller generates commands 

that are sent to the H-bridges for steering and to an FPGA where the PID controller 

is implemented [2]. 

2.5.3 Jet Propulsion Laboratory applications 

JPL has developed and applied stereo vision systems to rover in order to perform 

motion control. Different JPL stereo vision systems were accelerated by using 

FPGA. Thanks to this electronic device, it is possible to obtain a 16 times speedup 

in computer vision task with respect to a linear processor. 

FPGAs are widely adopted since the space for a processor is more and more 

constrained in terms of occupied space. It implies that processor speeds in the 

gigahertz range are unavailable, instead only processors less performant are allowed 

resulting in a failure in real-time stereo processing. For this reason, FPGAs with 

embedded processors are widespread in the space field. 

JPL is also developing a rover avionics module based on the Xilinx Virtex-II Pro 

FPGA which includes two embedded PowerPC 405 processor cores with a 

processing speed of 300MHz with the rest of the FPGA processing at 100 MHz. 

The adoption of FPGAs is exemplified in the design of the Kapvik micro-rover by 

implementing FPGA electronics to process images faster for autonomous 

navigation [2]. 
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Figure 25 Kapvik micro-rover 

 

This micro-rover is produced by Canadian Space Agency as a demonstration that 

micro-rovers could have similar functionalities of the larger ones. This last feature 

implies a cost reduction during the launch phase since the occupied volume and the 

weight decrease.  

2.5.4 Perseverance Rover 

Perseverance is a Rover developed by NASA and launched in 2020, aimed at 

exploring the Jezero crater. It makes use of an FPGA technology (Xilinx Virtex-5) 

as one of the main processing units. This unit is first responsible for rover entry, 

descent and landing on Mars and then it is programmed for computer vision tasks 

by NASA engineers from the Earth. Other units on Perseverance such as UHF 

transceivers, radar, X-ray (identifying chemicals), and cameras are controlled with 

XQR4VFX60 and XQR2V3000 FPGAs. 

 

Figure 26 A representative picture of Perseverance 
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2.5.5 Small Satellite Communication system 

FPGAs are also used in software defined radio (SDR) transponder design for the 

emerging SmallSat and CubeSat industry. Small spacecraft (SmallSats) consists of 

spacecraft lightweight since the concept is to obtain a system with a mass less than 

180 kg and the size is comparable with a large kitchen fridge [26]. Instead, CubeSat 

belongs to the class of nanosatellites that means a mass spanning from 1 Kg to 10 

Kg [26].  

 

Figure 27 An example of CubeSat 

 

The FPGA substitutes, also in this case, the role of the processor since in the SDR 

the software manages all the function of filtering, carrier recovery, error correction 

or framing [27]. Article [27] demonstrates how the usage of FPGA in this 

application highly simplifies the computational payload.  
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Chapter 3 

Normal estimation algorithm 
The aim of the thesis work here presented is to develop an algorithm which is able 

to reconstruct the surface represented by a point cloud. In the future, the algorithm 

should be part of the vision system mounted on a little rover, available in Thales 

Alenia Space facilities. As explained in the first chapter, there exist plenty of 

methods to reconstruct the surface, starting from a dataset representing it. The 

method followed in this work is the one based on [28]. 

3.1 Introduction of the problem 

A point cloud P is a collection of points in 3D, where the coordinates of each point 

𝑝𝑖 = (𝑥𝑖, 𝑦𝑖,  𝑧𝑖) are expressed with respect to a fixed coordinate system, usually 

having its origin at the sensing device used to acquire data [29]. Each point of the 

point cloud returns a measure of the distances between the investigated surface and 

the three axes, whose intersection point coincides with the assumed viewpoint.  In 

this case, the initial assumption about data is that a time – of – flight camera, 

mounted on top of a rover, returns a cloud of points equally spaced points. A time 

– of – flight camera is an imaging system that works by measuring the time it takes 

for a light signal to travel from a camera to an object and back again. The camera 

emits a short burst of light, usually in the form of a pulsed laser, which reflects off 

the object and returns to the camera. By measuring the time it takes for the light to 

make this round-trip, the camera can calculate the distance to the object. This 

process is repeated many times per second, allowing the camera to create a 3D map 

of the scene. In particular, the starting hypothesis is that there is no noise corrupting 

data. 

The aim of the proposed algorithm is to compute surface normals, 3D features 

which represent a fundamental source of information of the inspected surface. 

Indeed, surface normals indicate the direction that a surface is facing at each point 

and can be used to obtain crucial information about the environment, such as the 
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curvature of the surface or the presence of edges, as demonstrated in [30]. For 

example, article [31] introduces a geometrical index, computed from the three 

components of the normal vector 𝑁 = (𝑁𝑋 , 𝑁𝑌,  𝑁𝑍), and the index is employed in 

distinguish horizontal surfaces from vertical ones.   

To compute surface normals, it is important to outline the fact that the acquired 

point cloud represents a set of point samples on the real surface so there may two 

possibilities: 

• Compute an approximation of the surface from the acquired dataset, using 

surface meshing techniques and then compute the surface normals from the 

mesh. 

• Use approximations to infer the surface normals from the point cloud 

directly.  

In particular, I decided to develop the second method since it allows for faster 

computations, which may be crucial in space applications where resources are 

limited. For example, in [30], the adoption of the statistical approach avoids the 

clustering phase, since the edges are extracted exploiting only the computation of 

the eigenvalues of the covariance matrix. The problem of determining the normal 

to a point on the surface is approximated by the problem of estimating the normal 

of a plane tangent to the surface, which in turn becomes a least-square plane fitting 

estimation problem [29]. In particular, the followed approach is the one exploited 

in [28] and [30], where the Principal Component Analysis (PCA) is exploited in 

order to compute the normal vector in the considered point. At this point, it is crucial 

to outline that the computation of the normal involves the definition of a 

neighborhood of points, so the amount of its surrounding points is an important 

factor affecting accuracy of the point normal [32]. It is fundamental to define the 

correct number of neighbors and surrounding points are referred to as 𝑘 – neighbors, 

where 𝑘 is the number of the nearest points around the target one. Article [32] 

demonstrates how the number 𝑘 must be carefully chosen since a too small or too 

large value may lead to inappropriate computation of the normal.  
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3.2 PCA 

Principal Component Analysis (PCA) is an unsupervised learning method, which 

is widely exploited in the machine learning field to extract important features about 

the collected data. It raised in the context of psychometrics in the 1930’s and 

nowadays it is a well-established machine learning technique, adopted in a wide 

range of applications spanning from finance, medicine to engineering or image 

processing [28]. PCA allows for the computation of the directions of maximal 

variance for the input data, that are the orthogonal directions along which the 

variation of data is the highest. 

 

3.2.1 Mathematical explanation  

The starting hypothesis is a data matrix 𝐴 ∈  ℝ𝑑,𝑁, where 𝑑 represents the space 

dimension (i.e., the number of observed features) while 𝑁 represents the number of 

performed measurements, so 𝐴 = [𝑎(1) …𝑎(𝑁)], where 𝑎(𝑖) ∈ ℝ𝑑. At this point, it 

is possible to define the centered data matrix as: 

𝐴𝑐 = 𝐴 − �̂�𝟏𝑁
𝑇          �̂� ≐

1

𝑁
∑𝑎(𝑖)

𝑖

 

At the same way, centered data points are defined as: 

�̃�(𝑖) = 𝑎(𝑖) − �̂�,       𝑖 = 1, … , 𝑁 

Before moving on, it is important to introduce the concept of covariance matrix and 

the methods that can be used to estimate it.  

3.2.1.1 Covariance  

Given a collection of numbers 𝑧1, … , 𝑧𝑁, the variance is a measure of the mean 

spread distance of the data with respect to the center, which is defined as the average 

of the 𝑧𝑖: 
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𝜎2 =
1

𝑁
∑(𝑧𝑖 − �̂�)2

𝑁

𝑖=1

 

Input data may be vectors and not scalar, so let us consider the case in which the 

input data is a matrix 𝐴 ∈  ℝ𝑑,𝑁.  In this case, the measure of variation previously 

provided by the variance is expressed by means of the covariance matrix, which is 

a measure of how much each of the dimensions varies from the mean with respect 

to each other: 

𝑆 =
1

𝑁
∑(𝑎(𝑖) − �̂�)

𝑁

𝑖=1

(𝑎(𝑖) − �̂�)𝑇 =
1

𝑁
𝐴𝐶𝐴𝐶

𝑇 

The covariance matrix is a square matrix of dimension 𝑑𝑥𝑑. It is symmetric and 

positive – semidefinite. 

A direction in the space can be identified by a unit vector 𝑣 ∈ ℝ𝑑 so it is possible 

to define the score of an input datum 𝑥 ∈ ℝ𝑑 along direction 𝑣 as the projection of 

𝑥 onto 𝑣, which is computed by means of the scalar product 𝑣𝑇𝑥. At the same way, 

the scores of the centered data points along direction 𝑣 are expressed as: 

𝑠𝑖 = 𝑣𝑇(𝑎(𝑖) − �̂�)     𝑖 = 1,… ,𝑁 

The values 𝑠𝑖 provides an insight about the distribution of the data points along the 

considered direction 𝑣. In particular, the variance of the data along direction 𝑣 is 

given by: 

 

𝜎𝑣
2 =

1

𝑁
∑𝑠𝑖

2

𝑁

𝑖=1

=
1

𝑁
∑𝑣𝑇(𝑎(𝑖) − �̂�)

𝑁

𝑖=1

(𝑎(𝑖) − �̂�)𝑇𝑣

= 𝑣𝑇 (
1

𝑁
∑𝑣𝑇(𝑎(𝑖) − �̂�)

𝑁

𝑖=1

(𝑎(𝑖) − �̂�)𝑇)𝑣 = 𝑣𝑇𝑆𝑣 

 

Where 𝑆 is the sample covariance matrix. Then, the principal direction is the 

directional of maximal variance, so it can be obtained by solving the optimization 
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problem, with respect to the direction 𝑣, along which the variance assumes its 

higher value: 

𝑣𝑚𝑎𝑥 = max
||𝑣||2=1

𝑣𝑇𝑆𝑣 

Once the direction of highest variance has been found, it is possible to find the 

others, by following the deflation method. It consists of projecting the data points 

on the subspace which is orthogonal to the previously computed direction and then 

finding the direction of maximal variance for projected data. If the dimension of 

input space is equal to 𝑑, the process can be repeated 𝑑 times or it can be stopped 

at a certain 𝑘 < 𝑑.  Figure 28 is an example of a two – dimensions point cloud and 

its principal directions: 

 

Figure 28 Principal components of a dataset 

 

In this case, the first principal direction is the direction that maximizes the variance 

of the projected data while the second principal direction coincides with the 

smallest principal component, along which the variance is the smallest. There exist 

two main method that allows for the determination of the principal directions: 

• Eigenvalue decomposition (EVD) of the covariance matrix; 

• Singular value decomposition (SVD) of the (centered) data matrix.  

Only the first one is investigated in this thesis work.  
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3.2.1.2 Eigenvalue decomposition of the covariance matrix 

First, it is necessary to introduce the eigenvalue decomposition and the Rayleigh 

variational representation theorem. The algebra theorem for eigenvalue 

decomposition for symmetric matrices states that every symmetric matrix 𝑆 ∈

ℝ𝑚,𝑚 can be decomposed as: 

𝑆 = 𝑈Λ𝑈𝑇 

In the equation above, Λ = diag(𝜆1, … , 𝜆𝑚) is a diagonal matrix, whose entries are 

the eigenvalues of 𝑆, 𝜆1 ≥ ⋯ ≥ 𝜆𝑚 while 𝑈 = [𝑢1, … , 𝑢𝑝] is a 𝑚 × 𝑚 orthogonal 

matrix, containing the eigenvectors 𝑢𝑖 of 𝑆.  

The Rayleigh variational theorem states that, given a symmetric matrix 𝑆 ∈ ℝ𝑚,𝑚, 

then its largest and smallest eigenvalue can be computed by solving the two 

optimization problems: 

𝜆𝑀𝐴𝑋 = 𝜆1(𝑆) = max
𝑤  ∶  ||𝑤||2=1

𝑤𝑇𝑆𝑤 

𝜆𝑀𝐼𝑁 = 𝜆𝑚(𝑆) = min
𝑤  ∶  ||𝑤||2=1

𝑤𝑇𝑆𝑤 

The two optima are attained, respectively, at 𝑤𝑀𝐴𝑋 = 𝑢1 and 𝑤𝑀𝐼𝑁 = 𝑢𝑚.  

Before, it has been asserted that the principal direction can be find by solving the 

following optimization problem involving the sample covariance matrix: 

𝑣𝑚𝑎𝑥 = max
||𝑣||2=1

𝑣𝑇𝑆𝑣 

Since the covariance matrix is symmetric, its eigenvalue decomposition can be 

written as 𝑆 = ∑ 𝜆𝑖𝑢𝑖𝑢𝑖
𝑇𝑑

𝑖=1 , with 𝜆1 ≥ ⋯ ≥ 𝜆𝑑 and 𝑈 = [𝑢1, … , 𝑢𝑑] is orthogonal. 

According to the Rayleigh variational theorem, the above optimization problem is 

equal to: 

𝜆𝑀𝐴𝑋 = max
||𝑣||2=1

𝑣𝑇𝑆𝑣 

As a consequence, the solution for the optimization problem is 𝑢1, which is the 

eigenvector of S corresponding to its largest eigenvalue. At the same way, the 

eigenvector 𝑢2, which is the eigenvector of S associated to its second largest 
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eigenvalue, returns the second direction of maximal variance and so on. Finally, the 

𝑘 directions of largest variance can be obtained by performing the eigenvalue 

decomposition of the covariance matrix.  

 

3.2.2 PCA for the computation of normal vectors 

To reconstruct the surface represented by a point cloud, the main idea is to associate 

a tangent plane with each of the data points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), which locally 

approximates the surface. This plane represents the best least squares fitting to the 

point 𝑝𝑖 and its neighbors. The general equation for the tangent plane, lying in three 

dimensions, is: 

𝑃𝑇  ∶   𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 

The tangent plane can be fully represented by two quantities, a center 𝑝𝐶 =

(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶)  and the unitary normal vector 𝑁 = (𝑁𝑋 , 𝑁𝑌, 𝑁𝑍) which is orthogonal 

to the surface. The information provided by the normal vector is fundamental since 

its three components coincide with the coefficients 𝑎, 𝑏, 𝑐 defining the tangent 

plane. To compute the center and the normal vector, it is necessary to consider the 

𝑘 – neighborhood of 𝑝𝑖, which is the collection of the closest 𝑘 points with respect 

to 𝑝𝑖 and they are fundamental to capture the local geometry. At this point: 

• The center 𝑝𝐶 is computed as the centroid of the collection of points made 

by 𝑝𝑖 and its 𝑘 neighbors, according to the formula: 

𝑝𝐶 =
1

𝑘
∑𝑝𝑖

𝑘

𝑖=1

 

 

Since 𝑝𝐶 has three components, the above formula leads to the following 

three relations: 

 

𝑥𝐶 =
1

𝑘
∑𝑥𝑖

𝑘

𝑖=1

     𝑦𝐶 =
1

𝑘
∑𝑦𝑖

𝑘

𝑖=1

     𝑧𝐶 =
1

𝑘
∑𝑧𝑖

𝑘

𝑖=1
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• The normal vector 𝑁 is computed as one of the eigenvectors of the positive 

– semidefinite symmetric covariance matrix 𝐶𝑂𝑉: 

 

𝐶𝑂𝑉 = (

𝐶𝑜𝑣(𝑥, 𝑥) 𝐶𝑜𝑣(𝑥, 𝑦) 𝐶𝑜𝑣(𝑥, 𝑧)
𝐶𝑜𝑣(𝑦, 𝑥) 𝐶𝑜𝑣(𝑦, 𝑦) 𝐶𝑜𝑣(𝑦, 𝑧)
𝐶𝑜𝑣(𝑧, 𝑥) 𝐶𝑜𝑣(𝑧, 𝑦) 𝐶𝑜𝑣(𝑧, 𝑧)

)  

 

Each element of the covariance matrix can be computed as: 

𝐶𝑂𝑉(𝑥, 𝑥) =
1

𝑘
∑(𝑥𝑖 − 𝑥𝐶)

2

𝑘

𝑖=1

   

𝐶𝑂𝑉(𝑦, 𝑦) =
1

𝑘
∑(𝑦𝑖 − 𝑦𝐶)

2

𝑘

𝑖=1

 

𝐶𝑂𝑉(𝑧, 𝑧) =
1

𝑘
∑(𝑧𝑖 − 𝑧𝐶)

2

𝑘

𝑖=1

 

𝐶𝑂𝑉(𝑥, 𝑦) = 𝐶𝑂𝑉(𝑦, 𝑥) =
1

𝑘
∑(𝑥𝑖 − 𝑥𝐶)(𝑦𝑖 − 𝑦𝐶)

𝑘

𝑖=1

 

𝐶𝑂𝑉(𝑥, 𝑧) = 𝐶𝑂𝑉(𝑧, 𝑥) =
1

𝑘
∑(𝑥𝑖 − 𝑥𝐶)(𝑧𝑖 − 𝑧𝐶)

𝑘

𝑖=1

 

𝐶𝑂𝑉(𝑦, 𝑧) = 𝐶𝑂𝑉(𝑧, 𝑦) =
1

𝑘
∑(𝑦𝑖 − 𝑦𝐶)(𝑧𝑖 − 𝑧𝐶)

𝑘

𝑖=1

 

 

So, each entry of the covariance matrix is computed as the sum of the squared 

distances between each point 𝑝𝑗 belonging to the neighboorhod of point 𝑝𝑖 and the 

centroid 𝑝𝐶. Then, this sum is divided by the number of points 𝑘 used for the 

computation. Since 𝐶𝑂𝑉 ∈  ℝ3,3, the number of its eigenvalues is equal to three as 

well as the number of associated eigenvectors. The adopted representation is 𝜆1 ≥

 𝜆2 ≥ 𝜆3 for the eigenvalues and 𝑢1, 𝑢2, 𝑢3 for the respective eigenvectors. Before, 

it has been explained that PCA allows to find the principal components, which are 

the directions of maximal variation, as the eigenvectors of the covariance matrix, 
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which is built upon the input data. In particular, the eigenvector associated to the 

greatest eigenvalue returns the direction of maximal variance while the eigenvector 

associated to the smallest eigenvalue returns the direction of minimal variance. In 

this case, the two eigenvectors, 𝑢1 and 𝑢2, associated to the largest and to the second 

largest eigenvalues, 𝜆1 and 𝜆2, define the tangent plane upon which point 𝑝𝑖 and its 

𝑘 neighbors lay while the eigenvector 𝑢3, associated to the smallest eigenvalue 𝜆3, 

is perpendicular to this plane. It means that the normal vector can be found by 

computing the eigenvector associated to the smallest eigenvalue of the covariance 

matrix. It is important to outline that not only the three components of the normal 

vector have to be defined but also its orientation, in such a way to completely define 

an oriented tangent plane. Indeed, when computing the eigenvector 𝑢3 associated 

to the smallest eigenvalue 𝜆3 of the covariance matrix, it could be chosen either 

𝑁 = 𝑢3 or 𝑁 = −𝑢3. If the point cloud is obtained from range cameras, like the 

time – of – flight camera, it is easy to infer the orientation from the viewing 

direction. According to [29], if there is a single viewpoint 𝑣𝑝 (i.e., the point from 

where data are captured) and it is known, the normal vector computed for point 𝑝𝑖, 

indicated by 𝑁𝑖, is correctly oriented if the following equation is satisfied: 

 

�⃗⃗� 𝑖∙ (𝑣𝑝 − 𝑝𝑖) > 0 

 

If there are multiple acquisition viewpoints, it become harder to correctly orient the 

normal, but this aspect is not covered in this thesis work since it is out of the scope. 

In the context of surface reconstruction techniques, the importance of the definition 

of the 𝑝𝑖 neighborhood has been already pointed out. In [4], some common 

approaches consist of defining a neighborhood by considering the 𝑘 nearest points 

(KNNs) with respect to 𝑝𝑖 or by taking into account all the points lying within an ε 

– ball, that is a spherical neighborhood centered on 𝑝𝑖 and having radius ε. In this 

last case, all the 𝑘 points that satisfy the property to be distant from 𝑝𝑖 less than ε 

are considered as part of the 𝑝𝑖 neighborhood. For example, in [31] the least square 

best fitting plane of a point 𝑝𝑖 is determined by considering the neighborhood points 

that are contained in a sphere of radius 𝑟. In the case where the data contains little 
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or no noise, 𝑘 is not a crucial parameter since the output has been empirically 

observed to be stable over a wide range of settings [28]. In most of cases, it is 

usually better to choose a value of 𝑘 that automatically changes, based on the 

considered point 𝑝𝑖. In more general applications, it is important to define an 

appropriate value for 𝑘 since, if 𝑘 is not large enough, the noise prevails over true 

data and the eigenvalues, computed through the PCA, tend to attain close values. 

On the other side, if 𝑘 is too large, the points are much more widespread, and the 

surface curvature tends to increase the “thickness” of the neighborhood [28]. In the 

examined case, it is assumed a uniform sampling of the surface, so it is not 

necessary to adopt a complex technique to establish how many points shall be taken 

into account or which but simply the 𝑘 = 8 nearest points are included.  

 

3.2.3 Computation of the smallest eigenvector 

Previously, it has been asserted that, for each point 𝑝𝑖 of the point cloud, the vector 

which is normal to the surface can be computed by calculating the eigenvector 𝑢3, 

associated to the smallest eigenvalue 𝜆3 of the covariance matrix 𝐶𝑂𝑉. In particular, 

the covariance matrix is a positive – semidefinite symmetric matrix so it is included 

in the class of Hermitian matrices (a Hermitian matrix is a square complex matrix, 

which is equal to its conjugate transpose). For the class of Hermitian matrices, the 

most powerful and reliable algorithms are available [34]. The computation of the 

eigenvectors for a square 3 × 3 matrix is not so difficult to perform by hand but, in 

this case, it has to be developed to be performed by a FPGA so an iterative method 

shall be applied.  

The simplest eigenvalue problem is to compute the highest eigenvalue along with 

its eigenvector and, for this task, the power method is the simplest iterative method 

[34]. Before explaining how the power method works, it is necessary to define the 

dominant eigenvalue. Given the 𝑛 eigenvalues 𝜆1, … , 𝜆𝑛 of a 𝑛 × 𝑛 matrix 𝐴, 𝜆1 is 

called the dominant eigenvector of 𝐴 if  |𝜆1| > |𝜆𝑖| ∀ 𝑖 = 2,… , 𝑛. 

Power method allows for the computation of the dominant eigenvalue and the 

associated eigenvector. The classical power method is iterative and the first step 
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consists of making an assumption on the initial approximation of the dominant 

eigenvector, 𝑢0. Then, it is computed the following sequence: 

𝑢1 = 𝐴𝑢0 

𝑢2 = 𝐴𝑢1 = 𝐴2𝑢0 

⋮ 

𝑢𝑘 = 𝐴𝑢𝑘−1 = 𝐴𝑘𝑢0 

The value 𝑘 represents the maximum number of iterations. It could be chosen to 

stop before performing all the 𝑘 iterations if, for example, the difference between 

the eigenvector computed at the step 𝑗 and the eigenvector computed at the step 𝑗 −

1 is smaller than a certain threshold. However, the power method tends to produce 

approximations with large entries so some methods have been developed, that scale 

down the approximation before proceeding to the next iteration. One way to 

accomplish this scaling is to determine the component of 𝐴𝑢𝑖 that has the largest 

absolute value and to divide each entry of 𝐴𝑢𝑖 by this value. In this way, the 

resulting vectors has components whose absolute values are less than or equal to 1. 

Then, if 𝑢1 is the dominant eigenvector, the corresponding eigenvalue is computed 

by means of the so-called Rayleigh quotient: 

𝜆1 =
𝐴𝑢1 ∙ 𝑢1

𝑢1 ∙ 𝑢1
 

In [34], the following power method for Hermitian matrices is proposed: 

ALGORITHM – Power Method for HEP 

(1)   Choose an initial approximation 𝑢0 = �̅� for the dominant eigenvector. 

(2)   for 𝑘 = 1,2, … 

(3)         𝑢 =
𝑢0

||𝑢0||2
 

(4)         𝑢0 = 𝐴𝑢 

(5)         𝜆 = 𝑢𝑇𝑢0 

(6)         if ‖𝑢0 − 𝜆𝑢‖2 ≤ 휀𝑇𝐻𝑅|𝜆| stop 

(7)    end for 
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(8)    Dominant eigenvalue → 𝜆  

         Dominant eigenvector → 𝑢 

 

In this case, the scaling procedure consists of dividing the result of the previous 

computation (or the initial guess for 𝑘 = 1) by the 2-norm of the vector itself. Then, 

it is computed an estimate of the dominant eigenvector and the 2-norm of the 

difference between the newly computed eigenvector and the product between the 

previously computed eigenvector and the eigenvalue is compared with a threshold, 

defined as the product between the absolute value of the dominant eigenvalue and 

a certain coefficient 휀𝑇𝐻𝑅. Obviously, the smaller is 휀𝑇𝐻𝑅, the higher is the number 

of iterations necessary to achieve convergency and the better is the precision.  

However, in the considered case of the normal estimation, it is needed to estimate 

the eigenvector associated to the smallest eigenvalue. For this reason, the inverse 

iteration method for Hermitian matrices explained in [34] can result really useful. 

First, let us introduce the algorithm: 

ALGORITHM – Inverse power method 

(1)   Choose an initial approximation 𝑢0 = �̅� for the dominant eigenvector. 

(2)   for 𝑘 = 1,2, … 

(3)         𝑢 =
𝑢0

||𝑢0||2
 

(4)         𝑢0 = (𝐴 − 𝜎𝐼)−1𝑢 

(5)         𝜃 = 𝑢𝑇𝑢0 

(6)         if ‖𝑢0 − 𝜃𝑢‖2 ≤ 휀𝑇𝐻𝑅|𝜃| stop 

(7)    end for 

(8)    Dominant eigenvalue → 𝜆 = 𝜎 +
1

𝜃
  

         Dominant eigenvector → 𝑢 =
𝑢0

𝜃
  

 

 

The inverse power method is based on the simple consideration that, if an 

eigenvalue is the smallest one for a matrix, it is also the largest for the inverse of 
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the same matrix. So, it is possible to compute the dominant eigenvalue and the 

associated eigenvector for the inverse of the initial matrix and, at the end, the 

smallest eigenvalue of the initial matrix can be obtained as the reciprocal of the 

largest eigenvalue found for the inverse matrix. Moreover, since inversion is not 

always possible, it is sufficient to add or subtract to the entries of the matrix a little 

quantity, 𝜎, called shift. In this case, if the matrix 𝐴 is not invertible, it is possible 

to find a close approximation of its smallest eigenvector. Moreover, the inverse 

power method allows to find the eigenvalue closest to 𝜎 and, as we will see later, it 

results convenient for our algorithm, where surfaces are flat so the eigenvalues tend 

to be close to zero, as asserted in [30]. In general, if the eigenvalues are known, it 

is sufficient to choose 𝜎 very close to the desired eigenvalue and the inverse 

iteration can converge very quickly.  

 

3.3 Normal estimation algorithm 

Once all the theoretical bases have been introduced, it is possible to explain the 

algorithm developed in this thesis work. The main idea is to have a time – of – flight 

camera that returns a matrix of dimensions 25 × 25, for a total of 625 entries. Each 

entry of the matrix contains a point 𝑝𝑖 of the inspected surface, so it is made up by 

three coordinates, 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖). The computation of the normal can be 

performed only for those points that are surrounded by 8 points. The single cell 

involved in the computations has the following structure: 
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Figure 29 Single cell of the input matrix 

 

It means that, for each point 𝑝𝑖 with at least eight neighbors, the following steps are 

performed: 

1. Computation of the centroid 𝑝𝐶 = (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) of the neighborhood, 

according to the formula: 

𝑥𝐶 =
1

9
∑𝑥𝑖

9

𝑖=1

     𝑦𝐶 =
1

9
∑𝑦𝑖

9

𝑖=1

     𝑧𝐶 =
1

9
∑𝑧𝑖

9

𝑖=1

 

2. For each point 𝑝𝑗 belonging to the neighborhood of 𝑝𝑖, it is computed the 

Euclidean distance between the 𝑗𝑡ℎ point and the centroid 𝑝𝐶, according to 

the formula: 

 

𝑑𝑗 = √(𝑥𝑗 − 𝑥𝐶)2 + (𝑦𝑗 − 𝑦𝐶)2 + (𝑧𝑗 − 𝑧𝐶)2       𝑗 = 1,… ,9  

 

3. At this point, if the distance 𝑑𝑗 between the 𝑗𝑡ℎ point and the centroid 𝑝𝐶 is 

greater than a chosen threshold 𝑑𝑇𝐻𝑅, it would be discarded and the 

algorithm proceeds with the computation of the Euclidean distance between 

𝑝𝑖 
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the successive point 𝑝𝑗+1 and the centroid 𝑝𝐶. Otherwise, if the distance 𝑑𝑗 

is less than the threshold, the point 𝑝𝑗 can be used for the computation of 

the covariance matrix Σ𝑗 and a counter 𝑘 is increased. For point 𝑝𝑗, the 

covariance matrix is given by: 

 

Σ̂𝑗 = (

𝑥𝑗 − 𝑥𝐶

𝑦𝑗 − 𝑦𝐶

𝑧𝑗 − 𝑧𝐶

) (𝑥𝑗 − 𝑥𝐶 𝑦𝑗 − 𝑦𝐶 𝑧𝑗 − 𝑧𝐶) 

 

Σ̂𝑗 = (

(𝑥𝑗 − 𝑥𝐶)
2 (𝑥𝑗 − 𝑥𝐶)(𝑦𝑗 − 𝑦𝐶) (𝑥𝑗 − 𝑥𝐶)(𝑧𝑗 − 𝑧𝐶)

(𝑥𝑗 − 𝑥𝐶)(𝑦𝑗 − 𝑦𝐶) (𝑦𝑗 − 𝑦𝐶)
2 (𝑦𝑗 − 𝑦𝐶)(𝑧𝑗 − 𝑧𝐶)

(𝑥𝑗 − 𝑥𝐶)(𝑧𝑗 − 𝑧𝐶) (𝑦𝑗 − 𝑦𝐶)(𝑧𝑗 − 𝑧𝐶) (𝑧𝑗 − 𝑧𝐶)
2

) 

 

Each matrix Σ̂𝑗 is added to the covariance matrix computed for the previous 

points, since the total covariance matrix is given by the sum of the matrices 

computed for each point 𝑝𝑗. 

4. When the procedure to check how many points are at a distance from the 

centroid less than a certain threshold is completed, it is performed a control 

on 𝑘:  

 

• if the points within the threshold are less or equal to six, the 

algorithm cannot proceed with the computation of the normal and it 

is established that the three components of the normal vector are 

equal to zero. In this case, 𝑁 = (0,0,0). 

• If the points within the threshold are greater than six, the algorithm 

can proceed with the computation of the normal vector. Before going 

on with this step, it is necessary to divide all the entries of the 

covariance matrix Σ̂𝑖 (where 𝑖 represents the fact that the covariance 

matrix is computed for the 𝑖𝑡ℎ point of the input data) by the number 

of points 𝑘 used for the computation of the matrix. The final formula 

for the covariance matrix is: 
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Σ̂𝑖 =
1

𝑘
∑Σ̂𝑗

𝑘

𝑗=1

=
1

𝑘
∑(𝑝𝑗 − 𝑝𝐶)(𝑝𝑗 − 𝑝𝐶)

𝑇

𝑘

𝑗=1

 

5. Now, it is exploited the inverse power method for the computation of the 

eigenvector associated to the smallest eigenvalue of the covariance matrix 

Σ̂𝑖, which corresponds to the normal vector centered on point 𝑝𝑖. The steps 

to be performed are shown here: 

 

5.1 Compute the corrected covariance matrix, Σ̂𝑖,𝐼𝑁𝑉 = (Σ̂𝑖 − 𝜎𝐼)−1. 

5.2 Initialize the estimate for the eigenvector, 𝐸𝑉0 = (1 1 1). 

5.3 Compute the normalized eigenvector, 𝐸𝑉 =
𝐸𝑉0

‖𝐸𝑉0‖2
. 

5.4 Compute the new estimate for the eigenvector, 𝐸𝑉0 = Σ̂𝑖 ∙ 𝐸𝑉. 

5.5 Compute the corresponding eigenvalue, 𝜃 = 𝐸𝑉𝑇 ∙ 𝐸𝑉0. 

5.6 Compare the 2-norm of the vector that is computed as the difference 

between the estimate 𝐸𝑉0 and  𝜃𝐸𝑉 with a threshold, defined as the 

product between the absolute value of the eigenvalue 𝜃 and a certain 

threshold 𝛿. If ‖𝐸𝑉0 − 𝜃𝐸𝑉‖2 ≤ |𝜃|𝛿, then the algorithm can stop 

and the normal components are partially given by 𝐸𝑉0. Otherwise, it 

is necessary to restart from point 5.2. The algorithm can proceed 

until a maximum number of iterations, 𝑁𝑀𝐴𝑋 is achieved. However, 

when computations are completed, the final normal components are 

set equal to the last computed value of 𝐸𝑉0, divided by the last 

computed value of 𝜃. 
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3.4 Generation of the data and thresholds 

To prove the algorithm, the main idea is to create a matrix data that represents a 

surface like the one shown in figure: 

 

Figure 30 Surface used for the computations 

 

The surface shown in figure should represent a portion of area of dimensions 

5 × 5 𝑚𝑡. Each axis is equally divided in 25 parts and it is considered a point for 

each of these parts, for a total of 625 points. So, the main idea is to uniformly sample 

the 𝑥 and 𝑦 axes representing this surface. For what regards the value of coordinate 

𝑧, it can assume different values based on the considered region: 

• Clear blue region – The coordinate 𝑧 is equal to the highest value it could 

attain, that is 𝑧𝐻𝐼 = 0.5 𝑚𝑡. 

• Dark green region - The coordinate 𝑧 is equal to the lowest value it could 

attain, that is 𝑧𝐿𝑂 = 0 𝑚𝑡. 

• Clear green region – The coordinate 𝑧 takes on the values between 𝑧𝐻𝐼 and 

a middle value, 𝑧𝑀𝐼𝐷 = 0.25 𝑚𝑡. The set of values between 𝑧𝐻𝐼 and 𝑧𝑀𝐼𝐷 

are obtained by uniformly sampling the interval between the two extremes 

and the coordinate 𝑧 tends to decrease in this region, as the 𝑥 coordinate 

increases.  
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• Purple region – The coordinate 𝑧 takes on the values between 𝑧𝑀𝐼𝐷 and 𝑧𝐿𝑂. 

The set of values between 𝑧𝐿𝑂 and 𝑧𝑀𝐼𝐷 are obtained by uniformly sampling 

the interval between the two extremes and the coordinate 𝑧 tends to increase 

in this region, as the coordinate increases.  

The uniformly distributed samples, representing the surface, are placed as shown in 

the following picture: 

 

Figure 31 Sampling of the example surface 

 

The points that are placed on the border between the blue light region and the dark 

green region, as well as the points on the border between the clear – green region 

and the purple region should not be used for the normal computation since these 

points represent the limit case for the implemented algorithm. The reason why the 

discussed data distribution has been chosen is to demonstrate that the algorithm is 

able to identify in which neighborhood is not possible to compute the normal vector 

and those in which the computation is feasible. According to the input data, the 

thresholds and fixed values that are adopted in the algorithm have been set through 

a trial – and – error procedure, by using some data whose results were already 

known and by exploiting this data in a C code. The chosen values are the following 

ones: 
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- The threshold for the Euclidean distance has been set equal to 𝑑𝑇𝐻𝑅 =

0.3 𝑚𝑡. Then, considered a point 𝑝𝑖 and its neighborhood, if a point 𝑝𝑗 is 

distant from 𝑝𝑖 more than 0.3 𝑚𝑡, it is discarded. 

 

- The shift value used in the inverse power method algorithm is equal to ℴ =

0.001. In this way, the entries of the matrix are not so far from the original 

values, so that the final results are a good approximation of the original 

matrix eigenvectors. 

 

- The maximum number of iterations has been set equal to 𝑁𝑀𝐴𝑋 = 256. 

 

- The threshold to assert if the new estimate of the eigenvector can be 

accepted or not is set equal to 𝛿 = 0.005.
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Chapter 4 

Development of hardware unit  
The aim of the thesis is not only to develop an algorithm for the computation of the 

normal vectors but also to implement it on a FPGA. Indeed, as previously explained 

in chapter 2, a FPGA allows for a high level of parallelism which could result really 

useful if considered the high amount of mathematical operations performed on the 

data.  

4.1 Overview of embedded system 

In general, embedded systems represent the computing elements embedded within 

an electronic device. The main characteristics that distinguish embedded systems 

are: 

- the property to be single – functioned, so they repeatedly execute a single 

program; 

- the fact that they are relatively low – cost and low – power, while ensuring 

small dimensions and good performances in terms of speed [1]; 

- the reactiveness, so they continuously react to changes in the system’s 

environment and they are designed to compute certain results in real – time 

with almost zero delay.  

There exist three main types of architecture, by means of which an embedded 

system can be realized: 

- Single – purpose processors, that are digital circuit designed to execute one 

program. They are adopted as coprocessor or accelerators, so they are 

usually adopted to speed up computations. Then, single – purpose 

processors only contain the element necessary to execute a single program. 

The structure of a single – purpose processor is shown in Figure 32: 
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Figure 32 Single – purpose processor architecture 

 

The data path is the set of components used to perform functional operations 

on data and to store them on registers. It is the entity in charge to perform 

the computation between primary inputs, which provide the data to be 

elaborated, and primary outputs, which return the results of computation. 

The data path includes a set of hardware resources, that could be storage, 

functional or interconnection units, and it defines how those modules are 

connected each other. All the RTL components can be allocated in different 

quantities and types and can be connected at design time through different 

interconnection schemes, like a mux or a bus. On the other side, the flow of 

the data through the different blocks is monitored and determined by the 

controller. The management of the computations as well as the handling of 

the data flow in the data path is performed by setting control signals values. 

Controller inputs may come from primary inputs, the so-called control 

inputs, or from data path components, such as status signals that come as 

results of comparisons. Finally the results of the performed operations, as 

well as the input values, can be stored in a data memory. 

 

- Application – specific processors, that are programmable processors 

optimized for a particular class of applications having common 

characteristics. As it is possible to see in the figure below, in the 

architecture, one of the main differences with respect to the single – purpose 
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processor is the presence of a program memory, which is used to store 

executable code, such as the instructions that the software needs to execute 

in order to perform the particular task for which the system has been 

designed. The other major difference is the presence of a more structured 

control unit, which reads instructions from memory, decodes them, and 

executes them. Another difference is the presence of a custom Arithmetic 

Logic Unit (ALU), which performs a wide range of arithmetic and logical 

operations.  

 

 

Figure 33 Application – specific processor architecture 

 

- General-purpose processor, which is a type of central processing unit (CPU) 

that is designed to handle a wide variety of computational tasks, ranging 

from basic arithmetic operations to complex software programs. The 

architecture is very similar to the one of the application – specific processor 

but there is a general and not – custom ALU, which can perform a wider 

range of operations and the number of instructions that the processor can 

understand and execute is higher since general – purpose processors are 
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designed to handle a wider range of tasks. The general architecture is shown 

in the picture below: 

 

Figure 34 General – purpose processor architecture 

 

Moreover, the design of embedded systems differs in the way in which a digital 

circuit implementation is mapped onto an integrated circuit. The design could be 

realized exploiting: 

- Full – custom/VLSI, in which the digital implementation of the embedded 

system is fully customized so all the steps of placing transistors, sizing them 

and routing wires have to be performed.  

- Semi – custom, in which lower layers are fully or partially built so designers 

have to handle with routing of wires and placing blocks.  

Programmable Logic Devices (PLD), in which all layers already exist and 

connections between integrated circuits can be created or destroyed to implement 

desired functionality, belong to the second group. Here, it is possible to find FPGAs. 

 

4.2 Register Transfer Level (RTL) 

One of the main techniques used for the implementation of embedded system is the 

Register Transfer Level technique. It is a design technique in which a system is 
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described in terms of data transfer between registers. The data are stored in registers 

after they have been subjected to a certain number of operations and the flow of 

data through registers is controlled by means a controller, which is implemented as 

a finite – state machine. The principal steps to implement an embedded system 

through the RTL design technique are: 

1. Capture a high – level state machine, which described at high level the 

system’s desired behavior. High level state machines are an extension of 

finite state machines, in which states and transitions are not only simple 

Boolean operations on single – bit inputs and outputs.  

2. Create the data path which is in charge of carrying out the data operations 

of the high – level state machine.  

3. Derive the controller, which is usually represented as a finite state machine. 

Then, it is necessary to convert the high – level state machine to a finite – 

state machine for the controller, by replacing data operation with setting and 

reading of control signal to and from the data path. 

4. Connect the data path to the controller. 

 

The most common architecture for the design of digital circuits by means of the 

register transfer level technique is the following one: 

 

Figure 35 RTL Design Process architecture 
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4.3 Development of the algorithm 

The main task of this chapter is to describe the adopted method to develop a 

hardware unit which implements the previously – discussed algorithm. In 

particular, the hardware – unit here proposed is a single – purpose processor, since 

it is realized to implement the only operations discussed in the algorithm. The 

design is carried on by exploiting the register transfer level (RTL) technique and 

the VHDL (VHSIC Hardware Description Language) is the language used for the 

description of the circuit, which implements the mathematical operations needed to 

perform the steps of the normal estimation algorithm.  

The algorithm is characterized by several sequential operations that can be 

parallelized by means of the hardware realization of the algorithm. A reduction in 

the number of sequential operations allows for a reduction in the computation time 

so this common part of surface reconstruction algorithms, which is quite expensive 

from a time – consuming point of view, is well-suited to be implemented as a 

hardware accelerator. Moreover, the normal estimation algorithm’ steps are applied 

for each point that belongs to the point cloud, so it is repeated a huge number of 

times. This means that, the simple hardware unit here – implemented, could be 

adopted in future works to optimize the speed of the global surface reconstruction 

algorithm. Before going on with the explanation, it is important to point out that the 

design of the digital circuit has been carried on by means of the Intel® software 

Quartus®. 

At this point, the first step to be performed is describe the functions that the 

algorithm has to implement designing the high – level state machine, which 

described at high level the system’s desired behavior. Since the steps needed to 

compute the three components of the normal vector are a significant number, the 

explanation is performed by dividing the subchapters based on the step of the 

algorithm that has to be performed. In general, it is important to highlight which 

type of description is chosen for each part of the digital circuit. Indeed, a digital 

circuit could be represented behaviorally, if only the behavior at a high level of 

abstraction is specified, or structurally, if the components used and the structure of 
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the interconnection between the components are clearly specified. In this case, the 

data path is described in structural terms, the controller through a behavioral 

approach while the common interface between these two components is described 

structurally. As it has been highlighted previously, the circuit implementing the 

desired functions is realized through a register transfer level approach, so the result 

of computations are stored in registers. In particular, the design of the hardware unit 

is realized through a synchronous state machine so the flow of data is handled by 

the clock signal and the local storage are updated on clock edges only. Before going 

on with the explanation of data path and controller for each sub – unit implementing 

a step of the algorithm, it should be shown the elementary components exploited in 

the realization of the two subparts. For what regards simple components such as 

registers, multiplexers, or simple comparators, they have been designed by me 

while, for the arithmetical operations, the parametric IP cores provided by Intel® 

have been adopted. This latter choice is due to the fact that the required math 

operations involve floating point numbers so fast computations can be achieved 

only if well – optimized blocks, like the ones provided by Intel, are chosen.  

4.3.1 Basic blocks 

Between the basic blocks which have been designed to implement the algorithm, 

there are: 

- REGISTERS - RegN; 

- COUNTERS – Counter3, Counter4, Counter5, Counter8; 

- COMPARATORS (EQUALS TO) – CMP_0, CMP_1, CMP_2, CMP_7, 

CMP_8, CMP_9, CMP_10, CMP_16, CMP_255, CMP_1_D8BIT; 

- COMPARATORS (GREATER OR LESS THAN) – CMP_GT_6; 

- MULTIPLEXERS - MUX_2TO1, MUX_2TO1_1BIT, MUX_4TO1; 

- ROM MEMORY – X_ROM, Y_ROM, Z_ROM; 

- OTHERS – CHANGE_K. 
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Moreover, it has been designed a block, called NORM_COMPUTATION, which 

is exploited all the times that the norm of a vector 𝑣 ∈ ℝ3,1 must be computed.  

4.3.1.1 RegN 

The component called RegN is a simple register, which behaves as a memory 

element when the input load signal Ld is OFF while it stores the input word D when 

the load signal is ON and there is a rising edge of the clock signal, Clk. Moreover, 

the register can be reset if the input signal reset Rst is ON. In this case, the 

component has a synchronous reset Rst since the reset operation is performed only 

if there is a rising edge of the clock signal Clk. The component is described as a 

parametric one, so the length of the register is defined by a parameter N that can be 

set in the data path where the component is instantiated.  

4.3.1.2 Counter3, Counter4, Counter5, Counter8 

These three components behave all at the same way, but they differ in the maximum 

value they can reach and, consequently, in the number of bits for each. Indeed, 

Counter3, Counter4, Counter5 and Counter8 contain respectively registers on 3 bits, 

4 bits, 5 bits and 8 bits so they can respectively count up to 7, 15, 31 and 255. The 

four components are designed according to the same logic: when there is a rising 

edge of the input clock Clk, if the reset input signal Rst is equal to ‘1’, the output 

signal I is set equal to zero while, if the load input signal Ld is equal to ‘1’, the 

current value of the output is increased of a unit. In VHDL, it is not possible to read 

and write an output variable at the same time so, if the load input signal Ld is active, 

a signal called CURRENT_I is increased and the value of this signal is continuously 

assigned to the output variable I.  

4.3.1.3 Comparators 

These components are simple comparators that receive an input signal of variable 

length, depending on the variable they have to compare, and compare it with a given 

threshold, indicated in the name of the component itself. For example, CMP_7 

receives as input a signal D whose length is 8 bits and compares it with the number 

7 so that, if the two values are the same, its output D_EQS_7 is equal to ‘1’ while, 
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if the two values are not equal, the output is equal to ‘0’.  The only different 

component is CMP_GT_6. It is a comparator that receives as input a signal D whose 

length is 4 bits and the input value is compared with number six. If the input signal 

D is greater than six, the output signal D_GT_6 is set equal to ‘1’, otherwise it is 

set equal to ‘0’.  

 

4.3.1.4 MUX_2TO1, MUX_2TO1_1BIT, MUX_4TO1 

The components MUX_2TO1, MUX_2TO1_1BIT, MUX_4TO1 are three 

multiplexers, controlled by a selection signal. For what regards component 

MUX_2TO1 and MUX_2TO1_1BIT, the logic is the same: when the input 

selection signal SEL is equal to ‘0’, the output signal Q is equal to the first input 

signal D1 while, when the selection signal SEL is equal to ‘1’, the output signal Q 

is equal to the second input signal D2. The difference between the two components 

regards the length of the input signals D1 and D2 since they are declared as having 

length 1 bit in the component MUX_2TO1_1BIT while they are declared of generic 

length N in the component MUX_2TO1. Component MUX4TO1 is driven by the 

input selection signal SEL, whose length is 2 bits. Then, depending on the value 

taken by the selection signal, the output is equal to one of the four input signals, 

D1, D2, D3 and D4. As in MUX_2TO1, the input signals have generic length, 

expressed by a parameter N.  

 

4.3.1.5 X_ROM, Y_ROM and Z_ROM 

These three components are ROM memories, so each of them can be only read but 

not written. Inside each component, it is defined an array of 9 words, having length 

of 32 bits, as a new type. Then, it is defined a constant, called respectively ROMx, 

ROMy and ROMz, of the new defined type and each word of the array is initialized 

with some values. The input signal Address, having length of 4 bits, gives 

information about the array element that has to be read. These components are 

created since they are used to store the coordinates of the points that form the 
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neighborhood for each point 𝑝𝑖. It is declared and instantiated a ROM memory for 

each type of coordinate so, due to the fact that a point 𝑝𝑖 and its 𝑘 = 8 neighbors 

have to be considered, each array shall contain nine elements.  

 

4.3.1.6 CHANGE – K 

This component is a simple converter that receives as input a signal D_4 having 

length of 4 bits and returns as output a signal D_16 containing the same value but 

on 32 bits. Since the component can be used only if the number 𝑘 is greater than 

six, the only values it can take are 7, 8 and 9. Then, it is controlled if D_4 is equal 

to 7, 8 or 9 and then it is put equal to the corresponding number but on 32 bits and 

in floating point format.   

 

4.3.2 IP Blocks 

As it has been stated previously, the arithmetical operations that have to be 

performed in floating point numbers are quite expensive from a computational point 

of view so the choice of using predefined arithmetic blocks, which are fully 

optimized for what regards the clock latency, allows for an optimization of the 

computational resources and time. In this thesis work, the 

ALTERA_FP_FUNCTIONS IP core by Intel® has been used. The components of 

this library are fully configurable for what regards the latency and the frequency so 

it could be chosen to optimize either the latency, expressed in terms of clock cycles, 

or the frequency, expressed in MHz. The Quartus Prime® software provides a 

common interface, from which it is possible to choose the function that the block 

has to perform, the format of floating point data, the rounding operations, the 

available ports and the target parameter to be optimized. For each customizable 

block, the following input and output ports are available: 

- Clk, to which all input signals must be synchronous; 

- Areset, which is an asynchronous active – high reset; 
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- a, which is the first data input signal; 

- b, which is the second data input signal; 

- q, which represents the output data signal.  

Moreover, an optional enable input signal can be selected in such a way to allow 

for a block to be activated only when this signal is high. Moreover, the rounding 

option can be chosen, in such a way to speed up the computation in exchange of a 

most approximated final result. The IP blocks provided by Quartus were used to 

implement the following functions: 

• Adder, with a latency of 7 clock cycles; 

• Subtractor, with a latency of 10 clock cycles; 

• Multiplier, with a latency of 9 clock cycles; 

• Divider, with a latency of 16 clock cycles; 

• Comparator, with a latency of 2 clock cycles; 

• Square root, with a latency of 9 clock cycles; 

• Absolute value, with a latency of 1 clock cycle.  

In the slowest components, like the divider or the square root, the rounding option 

was set in such a way to optimize the speed of the implemented circuit. 

 

4.3.3 Explanation of the architecture 

To better understand the designed architecture, the explanation will follow the 

division in paragraphs introduced when the normal estimation algorithm was 

explained in Chapter 3. The two computational units, the data path and the control 

unit, are interfaced through the NE1 interface. The signals that command both units 

are the CLOCK signal and the RESET signal.  
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4.3.3.1 Computation of the centroid 

The state S0 of control unit is entirely dedicated to set the load signals of all registers 

and counter equal to ‘0’, the clear signals of all registers and counters equal to ‘1’ 

and the enable signals of all arithmetic blocks are set equal to ‘0’. After this first 

setup state, it is carried out the computation of the centroid coordinates. As 

explained before, the computation of the centroid consists of two main operations, 

which are the sum of the coordinates of the nine points and the division of this sum 

by the number of points, that is equal to 9. To perform this task, the following 

components are instantiated in the data path: 

TYPE OF COMPONENT NAME ALREADY 
INSTANTIATED 

RegN (32-bits) XC1 No 

RegN (32-bits) YC1 No 

RegN (32-bits) ZC1 No 

RegN (32-bits) XI No 

RegN (32-bits) YI No 

RegN (32-bits) ZI No 

RegN (32-bits) XC No 

RegN (32-bits) YC No 

RegN (32-bits) ZC No 

Adder (IP Block) ADDx No 

Adder (IP Block) ADDy No 

Adder (IP Block) ADDz No 

Multiplier (IP Block) MULTx No 

Multiplier (IP Block) MULTy No 

Multiplier (IP Block) MULTz No 

Counter3 OP1_CNT No 

Counter4 OP2_CNT No 

Counter4 I_CNT No 
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CMP_7 OP1_CMP_7 No 

CMP_9 OP2_CMP_9 No 

CMP_9 I_CMP_9 No 

X_ROM ROMx No 

Y_ROM ROMy No 

Z_ROM ROMz No 

Table 1 List of components in the data path 

The signals which are exchanged between the data path and the control unit are 

listed below: 

TYPE OF SIGNAL FROM TO NAME 

Load signal Control Unit Data path LOAD_XC1 

Load signal Control Unit Data path LOAD_YC1 

Load signal Control Unit Data path LOAD_ZC1 

Load signal Control Unit Data path LOAD_XI 

Load signal Control Unit Data path LOAD_YI 

Load signal Control Unit Data path LOAD_ZI 

Load signal Control Unit Data path LOAD_XC 

Load signal Control Unit Data path LOAD_YC 

Load signal Control Unit Data path LOAD_ZC 

Clear signal Control Unit Data path CLEAR_XC1 

Clear signal Control Unit Data path CLEAR_YC1 

Clear signal Control Unit Data path CLEAR_ZC1 

Clear signal Control Unit Data path CLEAR_XI 

Clear signal Control Unit Data path CLEAR_YI 

Clear signal Control Unit Data path CLEAR_ZI 

Clear signal Control Unit Data path CLEAR_XC 

Clear signal Control Unit Data path CLEAR_YC 

Clear signal Control Unit Data path CLEAR_ZC 

Clear signal Control Unit Data path CLEAR_OP1 
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Clear signal Control Unit Data path CLEAR_OP2 

Clear signal Control Unit Data path CLEAR_I 

Enable for counters Control Unit Data path INC_OP1 

Enable for counters Control Unit Data path INC_OP2 

Enable for counters Control Unit Data path INC_I 

Enable for math 
blocks 

Control Unit Data path EN_ADDER1 

Enable for math 
blocks 

Control Unit Data path EN_MULT1 

Results of 
comparisons 

Data path Control Unit OP1_EQS_7 

Results of 
comparisons 

Data path Control Unit OP2_EQS_9 

Results of 
comparisons 

Data path Control Unit I_EQS_9 

Table 2 List of signals exchanged between control unit and data path 

 

The counter I_CNT allows to cycle on the elements of the memories ROMx, ROMy 

and ROMz. In parallel, the coordinates 𝑥, 𝑦, 𝑧 of the 𝑖𝑡ℎ point are loaded on registers 

XI, YI, ZI. It is performed the sum between the value contained on these registers 

and those contained on registers XC1, YC1, ZC1 by means of the adders ADDx, 

ADDy, ADDz. Since each adder has a latency of 7 clock cycles, the OP1_CNT is 

exploited to count till seven. When the OP1_CNT finishes to count 7 clock cycles, 

the signal OP1_EQS_7 becomes equal to ‘1’, so the control unit understands that 

the sum operations are completed and the results of the computations are 

respectively stored on registers XC1, YC1, ZC1. To check if all the points in 

ROMx, ROMy and ROMz have been taken into account for the computation of the 

sum of coordinates, the comparator I_CMP_9 provides a signal called I_EQS_9. 

When this latter signal becomes equal to ‘1’, the controller understands that all the 

points have been considered. The sums of the nine values for the three types of 

coordinates are finally stored on XC1, YC1, ZC1 so the division by nine has to 

performed. Since the division operation is quite expensive from a point of view of 
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latency, it could be performed a multiplication by the inverse of nine, which is 

approximately equal to 0.11. This value is stored as a constant, CONSTANT_1, and 

it is fed as input to the MULT1 block. Since the multiplier needs for 9 clock cycles, 

the OP2_CNT is exploited to count till nine. When the nine clock cycles have been 

counted, the signal OP2_EQS_9 becomes equal to ‘1’ so that the control unit 

understands that the multiplier can be disenabled and the final results are stored on 

registers XC, YC, ZC.  

4.3.3.2 Computation of Euclidean distance 

After the computation of the centroid, it is required to compute the Euclidean 

distance between each point 𝑝𝑖 from the nine in the considered neighborhood and 

the centroid. In the data path, the following components are involved in the 

operations that led to the final result: 

TYPE OF COMPONENT NAME ALREADY 
INSTANTIATED 

RegN (32-bits) XI Yes 

RegN (32-bits) YI Yes 

RegN (32-bits) ZI Yes 

RegN (32-bits) XC Yes 

RegN (32-bits) YC Yes 

RegN (32-bits) ZC Yes 

RegN (32-bits) DIFFX1 No 

RegN (32-bits) DIFFY1 No 

RegN (32-bits) DIFFZ1 No 

RegN (32-bits) DIFFX2 No 

RegN (32-bits) DIFFY2 No 

RegN (32-bits) DIFFZ2 No 

RegN (32-bits) SQR_XY No 

RegN (32-bits) SQR_XYZ No 

RegN (1-bit) RESULT_1 No 
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Subtractor (IP Block) SUBx No 

Subtractor (IP Block) SUBy No 

Subtractor (IP Block) SUBz No 

Multiplier (IP Block) MULTx_2 No 

Multiplier (IP Block) MULTy_2 No 

Multiplier (IP Block) MULTz_2 No 

Adder (IP Block) ADDxy No 

Adder (IP Block) ADDxyz No 

Comparator (IP Block) CMP_THR No 

Counter4 I_CNT Yes 

Counter4 K_CNT No 

Counter3 OP1_CNT Yes 

Counter4 OP2_CNT Yes 

CMP_1 RESULT1_CMP_1 No 

CMP_7 OP1_CMP_7 Yes 

CMP_9 OP2_CMP_9 Yes 

CMP_10 OP2_CMP_10 No 

CMP_2 OP1_CMP_2 No 

X_ROM ROMx Yes 

Y_ROM ROMy Yes 

Z_ROM ROMz Yes 

Table 3 List of components in data path 

 

The signals which are exchanged between the data path and the control unit are 

listed below: 

TYPE OF SIGNAL FROM TO NAME 

Load signal Control Unit Data path LOAD_XI 

Load signal Control Unit Data path LOAD_YI 

Load signal Control Unit Data path LOAD_ZI 
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Load signal Control Unit Data path LOAD_DIFFX1 

Load signal Control Unit Data path LOAD_DIFFY1 

Load signal Control Unit Data path LOAD_DIFFZ1 

Load signal Control Unit Data path LOAD_DIFFX2 

Load signal Control Unit Data path LOAD_DIFFY2 

Load signal Control Unit Data path LOAD_DIFFZ2 

Load signal Control Unit Data path LOAD_SQR_XY 

Load signal Control Unit Data path LOAD_SQR_XYZ 

Load signal Control Unit Data path LOAD_RESULT1 

Clear signal Control Unit Data path CLEAR_XI 

Clear signal Control Unit Data path CLEAR_YI 

Clear signal Control Unit Data path CLEAR_ZI 

Load signal Control Unit Data path CLEAR_DIFFX1 

Load signal Control Unit Data path CLEAR_DIFFY1 

Load signal Control Unit Data path CLEAR_DIFFZ1 

Load signal Control Unit Data path CLEAR_DIFFX2 

Load signal Control Unit Data path CLEAR _DIFFY2 

Load signal Control Unit Data path CLEAR _DIFFZ2 

Load signal Control Unit Data path CLEAR _SQR_XY 

Load signal Control Unit Data path CLEAR _SQR_XYZ 

Load signal Control Unit Data path CLEAR _RESULT1 

Clear signal Control Unit Data path CLEAR_OP1 

Clear signal Control Unit Data path CLEAR_OP2 

Clear signal Control Unit Data path CLEAR_I 

Clear signal Control Unit Data path CLEAR_K 

Enable for counters Control Unit Data path INC_OP1 

Enable for counters Control Unit Data path INC_OP2 

Enable for counters Control Unit Data path INC_I 

Enable for counters Control Unit Data path INC_K 
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Enable for math 
blocks 

Control Unit Data path EN_SUB1 

Enable for math 
blocks 

Control Unit Data path EN_MULT2 

Enable for math 
blocks 

Control Unit Data path EN_ADD2 

Enable for math 
blocks 

Control Unit Data path EN_ADD3 

Enable for math 
blocks 

Control Unit Data path EN_CMP_THR 

Results of 
comparisons 

Data path Control Unit OP1_EQS_7 

Results of 
comparisons 

Data path Control Unit OP2_EQS_9 

Results of 
comparisons 

Data path Control Unit OP2_EQS_10 

Results of 
comparisons 

Data path Control Unit OP1_EQS_2 

Results of 
comparisons 

Data path Control Unit I_EQS_9 

Results of 
comparisons 

Data path Control Unit RESULT1_EQS_1 

Table 4 List of signals exchanged between control unit and data path 

 

For each point whose coordinates are kept on ROMx, ROMy and ROMz, the 

corresponding registers XI, YI and ZI are loaded to store the values. To cycle 

between the nine coordinates, the I_CNT counter is exploited and, when it reaches 

the 9 values, the I_EQS_9 signal becomes equal to ‘1’. In this way, the control unit 

understands that all the points have been taken into account and the following steps 

could be performed. Once XI, YI and ZI are loaded with the coordinates of the 𝑖𝑡ℎ 

point, it is performed the subtraction between the values store on registers XI, YI 

and ZI and the values stored on XC, YC, ZC. Since the subtractor needs for 10 

clock cycles, the OP2_CNT is exploited to count till ten. Once the ten clock cycles 

are counted, the signal OP2_EQS_10 becomes equal to ‘1’, so that the control unit 
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understands that the subtractor can be disenabled. The results of these operations 

are stored on registers DIFFX1, DIFFY1 and DIFFZ1. Then, these differences have 

to be squared so it is performed the square of these values through a multiplication 

between the same inputs. Since the multiplication needs for 9 clock cycles, the 

OP2_CNT is exploited to count till nine and, once the needed clock cycles are 

counted, the signal OP2_EQS_9 becomes high so that the controller unit 

understands that the multiplier can be disenabled and the results of the operations 

are stored on registers DIFFX2, DIFFY2 and DIFFZ2. Then it is performed the sum 

between the elements contained on DIFFX2 and DIFFY2, whose result is stored on 

register SQR_XY. Successively, the value on SQR_XY is added to DIFFZ2 and 

the final result is stored on register SQR_XYZ. Both additions require 7 clock 

cycles to be completed so OP1_CNT is exploited to count 7 clock cycles and, once 

the needed clock cycles are counted, the signal OP1_EQS_7 becomes high so that 

the control unit understands that ADDxy before and ADDxyz after can be 

disenabled. At this point, it should be computed the square root of the Euclidean 

distance so that it could be compared to the given threshold, which is stored on 

CONSTANT_2. Since the square root is quite expensive from a point of view of 

clock latency, it is performed the comparison between the square Euclidean 

distance and the square of the given threshold. The comparison between the two 

values is performed by CMP_THR, which receives as input the value stored on 

SQR_XYZ and CONSTANT_2 and it returns ‘1’ if SQR_XYZ is less than 

CONSTANT_2 or it returns ‘0’ if SQR_XYZ is greater than CONSTANT_2. Since 

the comparator needs 2 clock cycles, the OP1_CNT is exploited to count them and 

the signal OP1_EQS_2 becomes equal to ‘1’ after two clock cycles. In this way, the 

controller unit understands that the comparator can be disenabled. The result of the 

computation is stored on the register RESULT_1 and it is fed as input to the 

comparator RESULT1_CMP_1, which provides as output the signal 

RESULT1_EQS_1, which is equal to ‘1’ if RESULT_1 = ‘1’ or ‘0’ if RESULT_1 

= ‘0’. If RESULT1_EQS_1 is equal to ‘1’, the controller enables counter CNT_K 

to increase. In this case, the point 𝑝𝑖, whose Euclidean distance from the centroid 

has been computed, is exploited to compute the associated covariance matrix. 

Otherwise, if RESULT1_EQS_1 = ‘0’, CNT_I is increased and it is performed the 
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computation of the Euclidean distance for the next points, but only if I_EQS_9 is 

different from ‘0’.  

4.3.3.3 Computation of covariance matrix 

At this stage, if point 𝑝𝑖 is far from the centroid less than the given threshold, it can 

be involved in the computation of the covariance matrix. In particular, since it is 

symmetric, it is sufficient to compute just six entries of the matrix, instead of nine. 

The components that are interested in the computation of the covariance matrix are 

the following ones: 

TYPE OF COMPONENT NAME ALREADY 
INSTANTIATED 

RegN (32-bits) DIFFX1 Yes 

RegN (32-bits) DIFFY1 Yes 

RegN (32-bits) DIFFZ1 Yes 

RegN (32-bits) DIFFX2 Yes 

RegN (32-bits) DIFFY2 Yes 

RegN (32-bits) DIFFZ2 Yes 

RegN (32-bits) XY No 

RegN (32-bits) XZ No 

RegN (32-bits) YZ No 

RegN (32-bits) COV1 No 

RegN (32-bits) COV2 No 

RegN (32-bits) COV3 No 

RegN (32-bits) COV12 No 

RegN (32-bits) COV13 No 

RegN (32-bits) COV23 No 

RegN (32-bits) COVXX No 

RegN (32-bits) COVYY No 

RegN (32-bits) COVZZ No 
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RegN (32-bits) COVXY No 

RegN (32-bits) COVXZ No 

RegN (32-bits) COVYZ No 

Multiplier (IP Block) MULTxy No 

Multiplier (IP Block) MULTxz No 

Multiplier (IP Block) MULTyz No 

Adder (IP Block) SUMxx No 

Adder (IP Block) SUMyy No 

Adder (IP Block) SUMzz No 

Adder (IP Block) SUMxy No 

Adder (IP Block) SUMxz No 

Adder (IP Block) SUMyz No 

Divider (IP Block) DIVxx No 

Divider (IP Block) DIVyy No 

Divider (IP Block) DIVzz No 

Divider (IP Block) DIVxy No 

Divider (IP Block) DIVxz No 

Divider (IP Block) DIVyz No 

Counter3 OP1_CNT Yes 

Counter4 OP2_CNT Yes 

Counter5 OP3_CNT No 

Counter4 I_CNT Yes 

Counter4 K_CNT Yes 

CMP_7 OP1_CMP_7 Yes 

CMP_9 OP2_CMP_9 Yes 

CMP_16 OP3_CMP_16 No 

CMP_GT_6 K_CMP_6 No 

CHANGE_K CHANGE_K No 

Table 5 List of components in data path 
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The signals which are exchanged between the data path and the control unit are 

listed below: 

TYPE OF SIGNAL FROM TO NAME 

Load signal Control Unit Data path LOAD_XY 

Load signal Control Unit Data path LOAD_XZ 

Load signal Control Unit Data path LOAD_YZ 

Load signal Control Unit Data path LOAD_COV1 

Load signal Control Unit Data path LOAD_COV2 

Load signal Control Unit Data path LOAD_COV3 

Load signal Control Unit Data path LOAD_COV12 

Load signal Control Unit Data path LOAD_COV13 

Load signal Control Unit Data path LOAD_COV23 

Load signal Control Unit Data path LOAD_COVXX 

Load signal Control Unit Data path LOAD_COVYY 

Load signal Control Unit Data path LOAD_COVZZ 

Load signal Control Unit Data path LOAD_COVXY 

Load signal Control Unit Data path LOAD_COVXZ 

Load signal Control Unit Data path LOAD_COVYZ 

Clear signal Control Unit Data path CLEAR_XY 

Clear signal Control Unit Data path CLEAR_XZ 

Clear signal Control Unit Data path CLEAR_YZ 

Clear signal Control Unit Data path CLEAR_COV1 

Clear signal Control Unit Data path CLEAR_COV2 

Clear signal Control Unit Data path CLEAR_COV3 

Clear signal Control Unit Data path CLEAR_COV12 

Clear signal Control Unit Data path CLEAR_COV13 

Clear signal Control Unit Data path CLEAR_COV23 

Clear signal Control Unit Data path CLEAR_COVXX 
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Clear signal Control Unit Data path CLEAR_COVYY 

Clear signal Control Unit Data path CLEAR_COVZZ 

Clear signal Control Unit Data path CLEAR_COVXY 

Clear signal Control Unit Data path CLEAR_COVXZ 

Clear signal Control Unit Data path CLEAR_COVYZ 

Clear signal Control Unit Data path CLEAR_OP1 

Clear signal Control Unit Data path CLEAR_OP2 

Clear signal Control Unit Data path CLEAR_OP3 

Clear signal Control Unit Data path CLEAR_I 

Enable for counters Control Unit Data path INC_OP1 

Enable for counters Control Unit Data path INC_OP2 

Enable for counters Control Unit Data path INC_OP3 

Enable for math 
blocks 

Control Unit Data path EN_MULT3 

Enable for math 
blocks 

Control Unit Data path EN_ADDER4 

Enable for math 
blocks 

Control Unit Data path EN_DIVIDER1 

Results of 
comparisons 

Data path Control Unit OP1_EQS_7 

Results of 
comparisons 

Data path Control Unit OP2_EQS_9 

Results of 
comparisons 

Data path Control Unit OP3_EQS_16 

Results of 
comparisons 

Data path Control Unit K_GT_6 

Table 6 List of signals exchanged between control unit and data path 

 

Three of the six components of the covariance matrix have been already computed: 

- (𝑥𝑖 − 𝑥𝐶)
2, which is stored on DIFFX2. 

- (𝑦𝑖 − 𝑦𝐶)
2, which is stored on DIFFY2. 
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- (𝑧𝑖 − 𝑧𝐶)
2, which is stored on DIFFZ2. 

The remaining entries of the covariance matrix which have to be computed are: 

- (𝑥𝑖 − 𝑥𝐶)(𝑦𝑖 − 𝑦𝐶), which can be computed as the product between the 

value stored on DIFFX1 and DIFFY1. 

- (𝑥𝑖 − 𝑥𝐶)(𝑧𝑖 − 𝑧𝐶), which can be computed as the product between the 

value stored on DIFFX1 and DIFFZ1. 

- (𝑦𝑖 − 𝑦𝐶)(𝑧𝑖 − 𝑧𝐶), which can be computed as the product between the 

value stored on DIFFY1 and DIFFZ1. 

These three products are executed in parallel and they are performed through the 

multipliers MULTxy, MULTxz and MULTyz. As explained before, the 

multiplication needs for 9 clock cycles to be completed, so the OP2_CNT is 

exploited to count 9 clock cycles and, once this value is reached, the signal 

OP2_EQS_9 becomes equal to ‘1’. In this way, the controller unit understands that 

the multipliers can be disenabled and the results of the operations are stored on 

registers XY, XZ and YZ. Then, each entry of the covariance matrix has to be 

summed up with the ones computed for previous points so, for each point 𝑝𝑖, its 

entries are added to the ones computed previously and stored on registers COV1, 

COV2, COV3, COV12, COV13 and COV23. The operation is performed through 

adders SUMxx, SUMyy, SUMzz, SUMxy, SUMxz, SUMyz. As explained for 

previous adders, these components require 7 clock cycles to complete the operation 

and, for this purpose, OP1_CNT counts up to 7 clock cycles. When its stored value 

is equal to seven, the control unit receives the input signal OP1_EQS_7 from the 

comparator OP1_CMP_7, which reports that the adders can be disactivated.  

When all the nine points of the neighborhood have been considered, the counter 

K_CNT reports how many of those points have been used for the computation of 

the covariance matrix and consequently how many points are close to the centroid 

less than the chosen threshold. When the I_EQS_9 becomes equal to ’1’, the 

controller unit checks the value of K_CMP_6 output: if the signal K_GT_6 is equal 

to ‘1’, it means that more than six points have been exploited for the computation 

of the covariance matrix so the successive steps can be considered. On the other 
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side, if the signal K_GT_6 is equal to ‘0’, less than six or six points are sufficiently 

close to the centroid so the control unit directly jumps to the state where the three 

components of the normal vector are set equal to 0. On the other case, it is 

performed a division between the six elements of the covariance matrix stored on 

register COV1, COV2, COV3, COV12, COV13, COV23 and the value stored on 

K_CNT. Since the value stored on K_CNT is 4-bit long and it is an integer, it has 

to be converted as a 32-bit value and it has to be expressed in the floating-point 

format. For this reason, the K_CNT output is passed as input to the block 

CHANGE_K, which converts the number in the desired format and its output enters 

as second input in the six dividers, whose first input is the corresponding entry of 

the covariance matrix. The six divisions are executed in parallel but each of them 

require 16 clock cycles to be carried out. The 16 clock cycles are counted up through 

counter OP3_CNT and when it counts sixteen, the signal OP3_EQS_16 becomes 

equal to ‘1’. In this way, the control unit understands that the dividers can be 

disenabled and the results of the operations are stored on registers COVXX, 

COVYY, COVZZ, COVXY, COVXZ, COVYZ.  

4.3.3.4 Estimation of normal vector 

The next step is the estimation of the eigenvector associated to the smallest 

eigenvalue of the covariance matrix. As highlighted in Chapter 3, there are six sub-

steps to perform in order to compute the desired quantities. Moreover, the 

mathematical computations behind the realization of this part of the data path and 

the controller unit are explained in Appendix A.  

Compute the corrected covariance matrix. 

First, it is necessary to compute the shifted covariance matrix, Σ̂𝑖 − 𝜎𝐼. This matrix 

differs from the covariance matrix computed at the previous step only in the 

diagonal entries: indeed, the shift value must be subtracted to the elements in the 

diagonal, while the others remain unchanged. The tables below list the components 

which are involved in this part of the architecture: 
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TYPE OF COMPONENT NAME ALREADY 
INSTANTIATED 

RegN (32-bits) COVXX Yes 

RegN (32-bits) COVYY Yes 

RegN (32-bits) COVZZ Yes 

RegN (32-bits) COVXXs No 

RegN (32-bits) COVYYs No 

RegN (32-bits) COVZZs No 

Subtractor (IP Block) SUB_shiftXX No 

Subtractor (IP Block) SUB_shiftYY No 

Subtractor (IP Block) SUB_shiftZZ No 

Counter4 OP2_CNT Yes 

CMP_10 OP2_CMP_10 Yes 

Table 7 List of components in data path 

The signals which are exchanged between the data path and the control unit are 

listed below: 

TYPE OF SIGNAL FROM TO NAME 

Load signal Control Unit Data path LOAD_COVXXs 

Load signal Control Unit Data path LOAD_COVYYs 

Load signal Control Unit Data path LOAD_COVZZs 

Clear signal Control Unit Data path CLEAR_COVXXs 

Clear signal Control Unit Data path CLEAR_COVYYs 

Clear signal Control Unit Data path CLEAR_COVZZs 

Enable for counters Control Unit Data path INC_OP2 

Clear signal Control Unit Data path CLEAR_OP2 

Enable for math 
blocks 

Control Unit Data path EN_SUB3 

Results of 
comparisons 

Data path Control Unit OP2_EQS_10 

Table 8 List of signals exchanged between control unit and data path 
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The values stored on registers COVXX, COVYY and COVZZ are fed as input to 

subtractors SUB_shiftXX, SUB_shiftYY and SUB_shiftZZ, together with the value 

of the shift, which is stored on CONSTANT_6. Since the subtraction needs for ten 

clock cycles to be completed, the counter OP2_CNT counts up to ten and, when 

this value is reached, the signal OP2_EQS_10 becomes equal to ’1’. In this way, 

the control unit understands that subtraction operation is complete and set 

EN_SUB3 = ‘0’. The final results of subtractions are stored on registers COVXXs, 

COVYYs, COVZZs.  

Computation of the inverse shifted – covariance matrix. 

This part of the algorithm is one of the most computationally heavy, so the 

mathematical operations involved in the computation of the entries of the inverse 

matrix and those involved in the computation of the determinant have been fully 

parallelized. First, the involved components are shown in the table below: 

TYPE OF COMPONENT NAME ALREADY 
INSTANTIATED 

RegN (32-bits) COVXXs Yes 

RegN (32-bits) COVYYs Yes 

RegN (32-bits) COVZZs Yes 

RegN (32-bits) COVXY Yes 

RegN (32-bits) COVXZ Yes 

RegN (32-bits) COVYZ Yes 

RegN (32-bits) AUX1_MULT6 No 

RegN (32-bits) AUX2_MULT6 No 

RegN (32-bits) AUX3_MULT6 No 

RegN (32-bits) AUX4_MULT6 No 

RegN (32-bits) AUX5_MULT6 No 

RegN (32-bits) AUX6_MULT6 No 

RegN (32-bits) AUX7_MULT6 No 

RegN (32-bits) AUX8_MULT6 No 
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RegN (32-bits) AUX9_MULT6 No 

RegN (32-bits) AUX10_MULT6 No 

RegN (32-bits) AUX11_MULT6 No 

RegN (32-bits) AUX12_MULT6 No 

RegN (32-bits) AUX13_MULT6 No 

Multiplier (IP Block) MULT6_1 No 

Multiplier (IP Block) MULT6_2 No 

Multiplier (IP Block) MULT6_3 No 

Multiplier (IP Block) MULT6_4 No 

Multiplier (IP Block) MULT6_5 No 

Multiplier (IP Block) MULT6_6 No 

Multiplier (IP Block) MULT6_7 No 

Multiplier (IP Block) MULT6_8 No 

Multiplier (IP Block) MULT6_9 No 

Multiplier (IP Block) MULT6_10 No 

Multiplier (IP Block) MULT6_11 No 

Multiplier (IP Block) MULT6_12 No 

Multiplier (IP Block) MULT6_13 No 

RegN (32-bits) AUX1_MULT7 No 

RegN (32-bits) AUX2_MULT7 No 

RegN (32-bits) AUX3_MULT7 No 

RegN (32-bits) AUX4_MULT7 No 

RegN (32-bits) AUX5_MULT7 No 

RegN (32-bits) AUX6_MULT7 No 

RegN (32-bits) AUX7_MULT7 No 

Multiplier (IP Block) MULT7_1 No 

Multiplier (IP Block) MULT7_2 No 

Multiplier (IP Block) MULT7_3 No 

Multiplier (IP Block) MULT7_4 No 
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Multiplier (IP Block) MULT7_5 No 

Multiplier (IP Block) MULT7_6 No 

Multiplier (IP Block) MULT7_7 No 

RegN (32-bits) AUX1_ADDER9 No 

RegN (32-bits) AUX2_ ADDER9 No 

RegN (32-bits) AUX3_ ADDER9 No 

Adder (IP Block) ADDER9_1 No 

Adder (IP Block) ADDER9_2 No 

Adder (IP Block) ADDER9_3 No 

RegN (32-bits) AUX_ADDER10 No 

Adder (IP Block) ADDER10 No 

RegN (32-bits) AUX1_SUB3 No 

RegN (32-bits) AUX2_SUB3 No 

RegN (32-bits) AUX3_SUB3 No 

RegN (32-bits) AUX4_SUB3 No 

RegN (32-bits) AUX5_SUB3 No 

Subtractor (IP Block) SUB3_1 No 

Subtractor (IP Block) SUB3_2 No 

Subtractor (IP Block) SUB3_3 No 

Subtractor (IP Block) SUB3_3 No 

Subtractor (IP Block) SUB3_4 No 

RegN (32-bits) INV_COVXX No 

RegN (32-bits) INV_COVYY No 

RegN (32-bits) INV_COVZZ No 

RegN (32-bits) INV_COVXY No 

RegN (32-bits) INV_COVXZ No 

RegN (32-bits) INV_COVYZ No 

Divider (IP Block) DIV4_1 No 

Divider (IP Block) DIV4_2 No 
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Divider (IP Block) DIV4_3 No 

Divider (IP Block) DIV4_5 No 

Divider (IP Block) DIV4_5 No 

Divider (IP Block) DIV4_6 No 

Counter3 OP1_CNT Yes 

Counter4 OP2_CNT Yes 

Counter5 OP3_CNT Yes 

CMP_7 OP1_CMP_7 Yes 

CMP_9 OP2_CMP_9 Yes 

CMP_10 OP2_CMP_10 Yes 

CMP_16 OP3_CMP_16 Yes 

Table 9 List of components in data path 

 

The signals which are exchanged between the data path and the control unit are 

listed below: 

TYPE OF 
SIGNAL 

FROM TO NAME 

Load signal Control Unit Data path LOAD_COVXXs 

Load signal Control Unit Data path LOAD_COVYYs 

Load signal Control Unit Data path LOAD_COVZZs 

Load signal Control Unit Data path LOAD_AUX_MULT6 

Load signal Control Unit Data path LOAD_AUX_MULT7 

Load signal Control Unit Data path LOAD_AUX_ADDER9 

Load signal Control Unit Data path LOAD_AUX_ADDER10 

Load signal Control Unit Data path LOAD_AUX_SUB3 

Load signal Control Unit Data path LOAD_INV_COV 

Clear signal Control Unit Data path CLEAR_COVXXs 

Clear signal Control Unit Data path CLEAR_COVYYs 

Clear signal Control Unit Data path CLEAR_COVZZs 
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Clear signal Control Unit Data path CLEAR_AUX_MULT6 

Clear signal Control Unit Data path CLEAR_AUX_MULT7 

Clear signal Control Unit Data path CLEAR_AUX_ADDER9 

Clear signal Control Unit Data path CLEAR_AUX_ADDER10 

Clear signal Control Unit Data path CLEAR_AUX_SUB3 

Clear signal Control Unit Data path CLEAR_INV_COV 

Enable for 
counters 

Control Unit Data path INC_OP1 

Enable for 
counters 

Control Unit Data path INC_OP2 

Enable for 
counters 

Control Unit Data path INC_OP3 

Clear signal Control Unit Data path CLEAR_OP1 

Clear signal Control Unit Data path CLEAR_OP2 

Clear signal Control Unit Data path CLEAR_OP3 

Enable for math 
blocks 

Control Unit Data path EN_MULT6 

Enable for math 
blocks 

Control Unit Data path EN_MULT7 

Enable for math 
blocks 

Control Unit Data path EN_ADDER9 

Enable for math 
blocks 

Control Unit Data path EN_ADDER10 

Enable for math 
blocks 

Control Unit Data path EN_SUB3 

Enable for math 
blocks 

Control Unit Data path EN_DIV4 

Results of 
comparisons 

Data path Control Unit OP1_EQS_7 

Results of 
comparisons 

Data path Control Unit OP2_EQS_9 

Results of 
comparisons 

Data path Control Unit OP2_EQS_10 
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Results of 
comparisons 

Data path Control Unit OP3_EQS_16 

Table 10 List of signals exchanged between control unit and data path 

These components and the corresponding signals implement the computations 

explained in Appendix A. The multiplications involved in the computation of the 

determinant and the multiplications involved in the inversion of the matrix have 

been computed in parallel as much as possible, in such a way to speed up the 

computing time. For this reason, the command signals are in common for the blocks 

that perform the same kind of operation in parallel.  

Computation of the smallest eigenvector 

The remaining part is the computation of the eigenvector associated to the smallest 

eigenvector by means of the inverse power method. The components which are 

necessary to perform the computations are: 

TYPE OF COMPONENT NAME ALREADY 
INSTANTIATED 

RegN (32-bits) EV0_1 No 

RegN (32-bits) EV0_2 No 

RegN (32-bits) EV0_3 No 

RegN (32-bits) NORM_EV0 No 

RegN (32-bits) EV_1 No 

RegN (32-bits) EV_2 No 

RegN (32-bits) EV_3 No 

RegN (32-bits) INV_COVXX Yes 

RegN (32-bits) INV_COVYY Yes 

RegN (32-bits) INV_COVZZ Yes 

RegN (32-bits) INV_COVXY Yes 

RegN (32-bits) INV_COVXZ Yes 

RegN (32-bits) INV_COVYZ Yes 

RegN (32-bits) A No 
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RegN (32-bits) B No 

RegN (32-bits) C No 

RegN (32-bits) D No 

RegN (32-bits) E No 

RegN (32-bits) F No 

RegN (32-bits) G No 

RegN (32-bits) H No 

RegN (32-bits) J No 

RegN (32-bits) AB No 

RegN (32-bits) DE No 

RegN (32-bits) GH No 

RegN (32-bits) NEW_EV0_1 No 

RegN (32-bits) NEW_EV0_2 No 

RegN (32-bits) NEW_EV0_3 No 

RegN (32-bits) THETA1 No 
RegN (32-bits) THETA2 No 
RegN (32-bits) THETA1 No 
RegN (32-bits) THETA_NF No 
RegN (32-bits) THETA No 
RegN (32-bits) PART_VEC_CHECK1 No 
RegN (32-bits) PART_VEC_CHECK2 No 
RegN (32-bits) PART_VEC_CHECK3 No 
RegN (32-bits) VEC_CHECK1 No 
RegN (32-bits) VEC_CHECK2 No 
RegN (32-bits) VEC_CHECK3 No 
RegN (32-bits) NORM_VEC_CHECK No 
RegN (32-bits) ABS_THETA No 
RegN (32-bits) THETAxDELTA No 
Multiplier (IP Block) MULTa No 

Multiplier (IP Block) MULTb No 

Multiplier (IP Block) MULTc No 

Multiplier (IP Block) MULTd No 

Multiplier (IP Block) MULTe No 
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Multiplier (IP Block) MULTf No 

Multiplier (IP Block) MULTg No 

Multiplier (IP Block) MULTh No 

Multiplier (IP Block) MULTj No 

Adder (IP Block) ADDab No 

Adder (IP Block) ADDde No 

Adder (IP Block) ADDgh No 

Multiplier (IP Block) MULTtheta1 No 
Multiplier (IP Block) MULTtheta2 No 
Multiplier (IP Block) MULTtheta3 No 
Adder (IP Block) ADDtheta_nf No 
Adder (IP Block) ADDtheta No 
Multiplier (IP Block) MULTpartcheck No 
Multiplier (IP Block) MULTpartcheck No 
Multiplier (IP Block) MULTpartcheck No 
Subtractor (IP Block) SUBcheck1 No 
Subtractor (IP Block) SUBcheck2 No 
Subtractor (IP Block) SUBcheck3 No 
Absolute_value (IP Block) ABStheta No 
Multiplier (IP Block) MULTfinal_thr No 
Comparator (IP Block) EV_CMP_THR No 
Counter8 N_CNT No 

Counter5 OP3_CNT Yes 

Counter4 OP2_CNT Yes 

Counter3 OP1_CNT Yes 

CMP_16 OP3_CMP_16 Yes 

CMP_9 OP2_CMP_9 Yes 

CMP_7 OP1_CMP_7 Yes 

CMP_10 OP2_CMP_10 Yes 
CMP_2 OP1_CMP_2 No 
CMP_255 N_CMP_255 No 
MUX_2TO1 MUX_EV0_1 No 

MUX_2TO1 MUX_EV0_2 No 

MUX_2TO1 MUX_EV0_3 No 

Table 11 List of components in data path 
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TYPE OF 
SIGNAL 

FROM TO NAME 

Load signal Control Unit Data path LOAD_EV0_1 

Load signal Control Unit Data path LOAD_EV0_2 

Load signal Control Unit Data path LOAD_EV0_3 

Load signal Control Unit Data path LOAD_NORM_EV0 

Load signal Control Unit Data path LOAD_EV_1 

Load signal Control Unit Data path LOAD_EV_2 

Load signal Control Unit Data path LOAD_EV_3 

Load signal Control Unit Data path LOAD_A 

Load signal Control Unit Data path LOAD_B 

Load signal Control Unit Data path LOAD_C 

Load signal Control Unit Data path LOAD_D 

Load signal Control Unit Data path LOAD_E 

Load signal Control Unit Data path LOAD_F 

Load signal Control Unit Data path LOAD_G 

Load signal Control Unit Data path LOAD_H 

Load signal Control Unit Data path LOAD_J 

Load signal Control Unit Data path LOAD_AB 

Load signal Control Unit Data path LOAD_DE 

Load signal Control Unit Data path LOAD_GH 

Load signal Control Unit Data path LOAD_NEW_EV0_1 

Load signal Control Unit Data path LOAD_NEW_EV0_2 

Load signal Control Unit Data path LOAD_NEW_EV0_3 

Load signal Control Unit Data path LOAD_THETA1 

Load signal Control Unit Data path LOAD_THETA2 

Load signal Control Unit Data path LOAD_THETA3 

Load signal Control Unit Data path LOAD_PART_VEC_CHECK1 

Load signal Control Unit Data path LOAD_PART_VEC_CHECK2 

Load signal Control Unit Data path LOAD_PART_VEC_CHECK3 

Load signal Control Unit Data path LOAD_VEC_CHECK1 
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Load signal Control Unit Data path LOAD_VEC_CHECK2 
Load signal Control Unit Data path LOAD_VEC_CHECK3 
Load signal Control Unit Data path LOAD_NORM_VEC_CHECK 
Load signal Control Unit Data path LOAD_ABS_THETA 
Load signal Control Unit Data path LOAD_FINAL_THR 
Clear signal Control Unit Data path CLEAR_EV0_1 

Clear signal Control Unit Data path CLEAR_EV0_2 

Clear signal Control Unit Data path CLEAR_EV0_3 

Clear signal Control Unit Data path CLEAR_NORM_EV0 

Clear signal Control Unit Data path CLEAR_EV_1 

Clear signal Control Unit Data path CLEAR_EV_2 

Clear signal Control Unit Data path CLEAR_EV_3 

Clear signal Control Unit Data path CLEAR_A 

Clear signal Control Unit Data path CLEAR_B 

Clear signal Control Unit Data path CLEAR_C 

Clear signal Control Unit Data path CLEAR_D 

Clear signal Control Unit Data path CLEAR_E 

Clear signal Control Unit Data path CLEAR_F 

Clear signal Control Unit Data path CLEAR_G 

Clear signal Control Unit Data path CLEAR_H 

Clear signal Control Unit Data path CLEAR_J 

Clear signal Control Unit Data path CLEAR_AB 

Clear signal Control Unit Data path CLEAR_DE 

Clear signal Control Unit Data path CLEAR_GH 

Clear signal Control Unit Data path CLEAR_NEW_EV0_1 
Clear signal Control Unit Data path CLEAR_NEW_EV0_2 
Clear signal Control Unit Data path CLEAR_NEW_EV0_3 
Clear signal Control Unit Data path CLEAR_THETA1 
Clear signal Control Unit Data path CLEAR_THETA2 
Clear signal Control Unit Data path CLEAR_THETA3 
Clear signal Control Unit Data path CLEAR_PART_VEC_CHECK1 
Clear signal Control Unit Data path CLEAR_PART_VEC_CHECK2 
Clear signal Control Unit Data path CLEAR_PART_VEC_CHECK3 
Clear signal Control Unit Data path CLEAR_VEC_CHECK1 
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Clear signal Control Unit Data path CLEAR_VEC_CHECK2 
Clear signal Control Unit Data path CLEAR_VEC_CHECK3 
Clear signal Control Unit Data path CLEAR_NORM_VEC_CHECK 
Clear signal Control Unit Data path CLEAR_ABS_THETA 
Clear signal Control Unit Data path CLEAR_FINAL_THR 
Enable for 
counters 

Control Unit Data path INC_N 

Enable for 
counters 

Control Unit Data path INC_OP3 

Enable for 
counters 

Control Unit Data path INC_OP2 

Enable for 
counters 

Control Unit Data path INC_OP1 

Clear signal Control Unit Data path CLEAR_N 

Clear signal Control Unit Data path CLEAR_OP3 

Clear signal Control Unit Data path CLEAR_OP2 

Clear signal Control Unit Data path CLEAR_OP1 

Enable for math 
blocks 

Control Unit Data path EN_MULT4 

Enable for math 
blocks 

Control Unit Data path EN_ADDER5 

Enable for math 
blocks 

Control Unit Data path EN_ADDER6 

Enable for math 
blocks 

Control Unit Data path EN_MULT5 

Enable for math 
blocks 

Control Unit Data path EN_ADDER7 

Enable for math 
blocks 

Control Unit Data path EN_ADDER8 

Enable for math 
blocks 

Control Unit Data path EN_MULT6 

Enable for math 
blocks 

Control Unit Data path EN_SUB4 

Enable for math 
blocks 

Control Unit Data path EN_ABS1 

Enable for math 
blocks 

Control Unit Data path EN_MULT7 

Enable for math 
blocks 

Control Unit Data path EN_CMP2 
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Selection signal Control Unit Data path SEL_EV0 

Results of 
comparisons 

Data path Control Unit OP3_EQS_16 

Results of 
comparisons 

Data path Control Unit OP2_EQS_9 

Results of 
comparisons 

Data path Control Unit OP1_EQS_7 

Results of 
comparisons 

Data path Control Unit OP2_EQS_10 

Results of 
comparisons 

Data path Control Unit OP1_EQS_2 

Results of 
comparisons 

Control Unit Data path NORM_VEC_CHECK_LT_THR 

Results of 
comparisons 

Data path Control Unit N_EQS_255 

Table 12 List of signals exchanged between control unit and data path 

 

At this point, the iterative procedure to compute the eigenvector associated to the 

smallest eigenvalue can start. If it is the first iteration, the selection signal sel_EV0, 

which commands multiplexers MUX_EV0_1, MUX_EV0_2, MUX_EV0_3, is 

equal to ‘0’ and the three components of registers EV0_1, EV0_2 and EV0_3 are 

set equals to one. If it is not the first iteration, the last estimate of the eigenvector 

associated to the smallest eigenvalue is stored on registers EV0_1, EV0_2 and 

EV0_3. The first operation of the algorithm is the normalization of vector EV0, so 

it is computed its norm by means of the block NORM_COMPUTATION. The end 

of the norm computation is indicated by NORM_COMPUTATION’s output signal, 

called DONE, which becomes equal to ‘1’. The three components EV0_1, EV0_2 

and EV0_3 can be divided by the norm, stored on register NORM_EV0. Since the 

division needs for 16 clock cycles to be completed, the OP3_CNT counts up to 

sixteen. Therefore, when this value is reached, the control unit checks the status to 

OP3_EQS_16 to be equal to ‘1’. In this way, it set equals to ‘0’ the enable for the 

divider and the results of the operations are stored in the three registers EV_1, 

EV_2, EV_3. At this point, the product between the inverse – shifted covariance 

matrix and the vector EV0 should be computed, so the following operations have 

to be performed: 
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𝐸𝑉0 = Σ̂𝑖,𝐼𝑁𝑉 ∙ 𝐸𝑉 = (
𝐴11 𝐴12 𝐴13

𝐴12 𝐴22 𝐴23

𝐴13 𝐴23 𝐴33

)(
𝐸𝑉1

𝐸𝑉2

𝐸𝑉3

) 

𝐸𝑉0,1 = 𝐴11𝐸𝑉1 + 𝐴12𝐸𝑉2 + 𝐴13𝐸𝑉3 

𝐸𝑉0,2 = 𝐴12𝐸𝑉1 + 𝐴22𝐸𝑉2 + 𝐴23𝐸𝑉3 

𝐸𝑉0,3 = 𝐴13𝐸𝑉1 + 𝐴23𝐸𝑉2 + 𝐴33𝐸𝑉3 

The coefficients of the inverse shifted-covariance matrix, 𝐴11, 𝐴22, 𝐴33, 𝐴12, 𝐴13, 

𝐴23 are respectively stored on registers INV_COVXX, INV_COVYY, 

INV_COVZZ, INV_COVXY, INV_COVXZ, INV_COVYZ. Before, the 

multiplications between the coefficients and the elements of vector 𝐸𝑉 are 

performed and, to simplify the notation, the results of these operations are stored 

on register A, B, C, D, E, F, G, H, J. These nine multiplications are performed in 

parallel in such a way to speed up the estimation of the normal vector. However, 

each multiplication requires 9 clock cycles to be completed so the OP2_CNT counts 

up to 9 and, when this value is reached, the comparator OP2_CMP_9 set the signal 

OP2_EQS_9 equals ‘1’. In this way, the control unit understands that the operation 

has been carried out and it activates the load signals of the corresponding registers 

to save the results of the operations. Then, it has to be performed the sum between 

A, B, C and, at the same way the sum between D, E, F and the sum between G, H, 

J. To complete this task, it has to be first performed the sum between A and B, D 

and E, G and H and the results are respectively stored on registers AB, DE, GH. 

Then, the values stored on these registers are added to those stored on C, F, J. In 

both steps, the three adding operations are carried out in parallel but the OP1_CNT 

is exploited to count the 7 clock cycles needed to complete the sum. The results of 

the last sums are stored on registers NEW_EV0_1, NEW_EV0_2, NEW_EV0_3. 

At this point, 𝜃 has to be estimated, which is given by the product between the new 

estimate 𝐸𝑉0, whose components are stored on NEW_EV0_1, NEW_EV0_2, 

NEW_EV0_3, and vector 𝐸𝑉, whose components are stored on EV_1, EV_2, 

EV_3. The following operations have to be performed: 



Chapter 4 

91 
 

𝜃 = 𝐸𝑉0 ∙ 𝐸𝑉𝑇 = (

𝐸𝑉0,1

𝐸𝑉0,2

𝐸𝑉0,3

) (𝐸𝑉1 𝐸𝑉2 𝐸𝑉3)

= 𝐸𝑉0,1𝐸𝑉1 + 𝐸𝑉0,2𝐸𝑉2 + 𝐸𝑉0,3𝐸𝑉3 

The first step consists of computing the products between NEW_EV0_1 and EV_1, 

NEW_EV0_2 and EV_2, NEW_EV0_3 and EV_3, which are respectively stored 

on the new registers called THETA_1, THETA_2, THETA_3. Then, the value 

stored on registers THETA_1 and THETA_2 are added together and the result is 

stored on registers THETA_NF. Finally, the result on THETA_NF is added to the 

value stored on THETA_3. The output of these two sum operations is the final result 

value of 𝜃 and it is saved on the register called THETA. The next action consists of 

verifying the difference between the previous estimate and the new one. The check 

is performed on vector 𝐸𝑉0 − 𝜃𝐸𝑉, so the first action to take is to compute the three 

products, 𝜃𝐸𝑉1, 𝜃𝐸𝑉2 and 𝜃𝐸𝑉3. Then, these three products have to be subtracted 

to the values stored on NEW_EV0_1, NEW_EV0_2, NEW_EV0_3. The results of 

these subtractions are stored on registers VEC_CHECK1, VEC_CHECK2, 

VEC_CHECK3, which are fed as input to the block NORM_COMPUTATION. 

When the block completes the computation of the norm, the output signal DONE 

becomes equal to ‘1’ so it is performed the product between the absolute value of 

THETA and the threshold 𝛿, whose value is stored on CONSTANT_5. The absolute 

value of THETA is computed by means of the IP Block Absolute_value, which 

needs only one clock cycle to perform the computation. The comparison between 

this product, stored on register FINAL_THR, and the norm of vector 

VEC_CHECK, which is stored on the register called NORM_VEC_CHECK, is 

performed by the block EV_CMP_THR. The result of the comparison is analyzed 

by the control unit: if it is equal to ‘1’, it means that the condition ‖𝐸𝑉0 − 𝜃𝐸𝑉‖2 ≤

|𝜃|𝛿 is verified, so the algorithm can stop; otherwise, through the initial mux, the 

values NEW_EV0_1, NEW_EV0_2, NEW_EV0_3 are stored in EV0_1, EV0_2 

and EV0_3 and the steps are performed again. There is a counter, called N_CNT, 

that counts how many times the iterations are repeated and, when it reaches the 

value 255, even if the condition on the norm is not respected, the last computed 

values for EV0 are saved. If the algorithm finishes the computation of the three 
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components of EV0, the division by THETA can be performed and the final results 

are stored on final registers NX, NY, NZ.  At this point, the data path returns the 

three components of the normal vector as output to the common interface between 

data path and control unit.  

 

4.3.3.5 NORM_COMPUTATION 

During the explanation of the data path structure, it has been mentioned the 

component NORM_COMPUTATION. It is a fully – personalized basic 

component, which has been implement with the same architecture that has be 

exploited in the design of the normal estimation hardware unit. It means there is a 

data path, where the data are processed and a control unit, which enable the registers 

and mathematical blocks in the data path, in such a way to control the flow of data 

into it. Moreover, there is a common interface that links the two computational 

blocks. First, the list of the components involved in the data path are listed below: 

TYPE OF COMPONENT NAME ALREADY 
INSTANTIATED 

RegN (32-bits) X No 
RegN (32-bits) Y No 
RegN (32-bits) Z No 
RegN (32-bits) X2 No 
RegN (32-bits) Y2 No 
RegN (32-bits) Z2 No 
RegN (32-bits) SUMxy No 
RegN (32-bits) SUMxyz No 
RegN (32-bits) NORM No 
Multiplier (IP Block) MULT1 No 
Multiplier (IP Block) MULT2 No 
Multiplier (IP Block) MULT3 No 
Adder (IP Block) ADDER1 No 
Adder (IP Block) ADDER2 No 
Square root (IP Block) SQR_ROOT1 No 
Counter4 OP2_CNT No 
Counter3 OP1_CNT No 
CMP9 OP2_CMP_9 No 
CMP7 OP1_CMP_7 No 

Table 13 List of components in data path 
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The signals exchanged between the data path and the control unit are listed below: 

TYPE OF SIGNAL FROM TO NAME 

Load signal Control Unit Data path LOAD_X 

Load signal Control Unit Data path LOAD_Y 

Load signal Control Unit Data path LOAD_Z 

Load signal Control Unit Data path LOAD_X2 
Load signal Control Unit Data path LOAD_Y2 
Load signal Control Unit Data path LOAD_Z2 
Load signal Control Unit Data path LOAD_SUMxy 
Load signal Control Unit Data path LOAD_SUMxyz 
Load signal Control Unit Data path LOAD_NORM 
Clear signal Control Unit Data path CLEAR_X 
Clear signal Control Unit Data path CLEAR_Y 
Clear signal Control Unit Data path CLEAR_Z 
Clear signal Control Unit Data path CLEAR_X2 
Clear signal Control Unit Data path CLEAR_Y2 
Clear signal Control Unit Data path CLEAR_Z2 
Clear signal Control Unit Data path CLEAR_SUMxy 
Clear signal Control Unit Data path CLEAR_SUMxyz 
Clear signal Control Unit Data path CLEAR_NORM 
Enable for counters Control Unit Data path INC_OP1 
Enable for counters Control Unit Data path INC_OP2 
Clear signal Control Unit Data path CLEAR_OP1 
Clear signal Control Unit Data path CLEAR_OP2 
Enable for math 
blocks 

Control Unit Data path EN_MULT1 

Enable for math 
blocks 

Control Unit Data path EN_ADDER1 

Enable for math 
blocks 

Control Unit Data path EN_ADDER2 

Enable for math 
blocks 

Control Unit Data path EN_SQR_ROOT1 

Results of 
comparisons 

Data path Control Unit OP1_EQS_7 

Results of 
comparisons 

Data path Control Unit OP2_EQS_9 

Table 14 List of signals exchanged between control unit and data path 

 

First, there are two key aspects to highlight: 
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- The multiplier blocks, provided by Intel®, have a latency of nine clock 

cycles. It means that the final result is available only after nine clock cycles. 

For this reason, the counter called OP2_CNT is instantiated: indeed, it 

counts up to nine and, when this value is attained, the comparator 

OP2_CMP_9 returns the output signal OP2_EQS_9 equals ‘1’ to the control 

unit. In this way, the control unit turns off the enable signals for the 

multiplier block. The same considerations can be made for component 

SQR_ROOT, instantiation of the IP block square_root, which needs for nine 

clock cycles to produce the final result.  

- The adder blocks have a latency of seven clock cycles. It means that the 

final result is available only after seven clock cycles. For this reason, the 

counter called OP1_CNT is instantiated: indeed, it counts up to seven and, 

when this value is attained, the comparator OP1_CMP_7 returns the output 

signal OP1_EQS_7 equals ‘1’ to the control unit. In this way, the control 

unit turns off the enable signals for the adder block. 

The norm computation consists of computing the Euclidean norm of a vector 𝑣 =

[𝑣1 𝑣2 𝑣3]
𝑇. In this case, it is considered a vector having three components, so the 

steps to perform are: 

- To square the single components of vector 𝑣, in such a way to obtain 

𝑣1
2, 𝑣2

2, 𝑣3
2;  

- To sum these three squared components, in such a way to have 𝑣1
2 + 𝑣2

2 +

𝑣3
2; 

- To perform the square root of the last computed sum. The final norm is 

given by: 

‖𝑣‖2 = √𝑣1
2 + 𝑣2

2 + 𝑣3
22
 

The state S0 of control unit is entirely dedicated to set the load signals of all registers 

and counter equal to ‘0’, the clear signals of all registers and counters equal to ‘1’ 

and the enable signals of all arithmetic blocks are set equal to ‘0’. After this first 

setup state, the first operation to be performed is the square of the input values, 

which represent the components of the vector whose norm has to be computed. The 
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input components are stored on registers X, Y, Z. The square operation is carried 

out by multipliers MULT1, MULT2, MULT3, one for each component. When the 

operation is completed, the result is stored on registers X2, Y2, Z2. Then, these 

three squared values shall be added together, so it is first performed the sum 

between the values stored on X2 and Y2 through component ADDER1 and the 

result of this sum is stored on register SUMxy. Successively, the sum between the 

content of register SUMxy and the quantity stored on Z2 are added together through 

component ADDER2 and the result is stored on register SUMxyz. The last step to 

perform is the square root of the sum of the squared components, so the value stored 

on SUMxyz is fed as input to the block SQR_ROOT1. Finally, the result produced 

by this block is stored on register NORM, which represents the output of the whole 

NORM_COMPUTATION block. Moreover, to indicate that the whole activity of 

performing the norm computation is completed, the common interface between the 

data path and the control produces an output signal, called DONE, which becomes 

high to indicate the termination of operations.  
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Chapter 5  

Conclusions and future works 
5.1 Results of the synthesis process 
The module was synthesized using Intel’s Quartus Prime suite. The available 

synthesis tool generates a complete report after the compilation, to inform the user 

about the hardware resources needed to implement the desired functionalities. The 

hardware resources necessary to implement the present algorithm are listed in the 

table below. 

 
Total logic elements 39513/55856 (71%) 
Total registers 30330 
Total pins 100/322 (31%) 
Total virtual pins 0 
Total memory bits 405152/2396160 (17%) 
Embedded Multiplier 9-bit elements 260/312 (83%) 
Device Cyclone 10 LP 10CL055YF484C6G 

Table 15 Allocated hardware resources for the synthesis 

As it is possible to observe, the number of registers is considerable, which makes 

sense if it is considered the fact that the design has been carried out by means of the 

register transfer level technique, so by means of a technique that makes use of 

registers to store the computed values at the end of each operation.  

 

5.2 Numerical simulations 
After the synthesis, the simulation was performed by means of the ModelSim HDL 

Simulator. For this purpose, a simple testbench was developed in VHDL. Since the 

designed circuit implements the hardware unit computing the normal vector for a 

single point, the data points (so point 𝑝𝑖 and its 𝑘 – neighbors) for each simulation 

are written inside the components ROMx, ROMy, ROMz instantiated in the data 

path. 

 

 



Chapter 5 

97 
 

5.2.1 First test – Clear blue region 
This region is flat and the slope is everywhere the same. In particular, the coordinate 

𝑧 is equal to the highest value it could attain, that is 𝑧𝐻𝐼 = 0.5 𝑚𝑡. For example, a 

point of this region and its neighbors are defined as follow: 

 

𝑥 = 0 

𝑦 = 0 

𝑧 = 0.5 

𝑥 = 0 

𝑦 = 0.2083 

𝑧 = 0.5 

𝑥 = 0 

𝑦 = 0.4167 

𝑧 = 0.5 

𝑥 = 0.2083 

𝑦 = 0 

𝑧 = 0.5 

𝑥 = 0.2083 

𝑦 = 0.2083 

𝑧 = 0.5 

𝑥 = 0.2083 

𝑦 = 0.4167 

𝑧 = 0.5 

𝑥 = 0.4167 

𝑦 = 0 

𝑧 = 0.5 

𝑥 = 0.4167 

𝑦 = 0.2083 

𝑧 = 0.5 

𝑥 = 0.4167 

𝑦 = 0.4167 

𝑧 = 0.5 
Table 16 Data input for region 1 

In this case, the following results are obtained: 
 

𝑁𝑋 = −5.7253 ∙ 10−8 
 

𝑁𝑌 = −5.7253 ∙ 10−8 
 

𝑁𝑍 = 0.9994 
 
5.2.2 Second test – Dark green region 
This region is flat and the slope is everywhere the same. In particular, the coordinate 

𝑧 is equal to the lowest value it could attain, that is 𝑧𝐿𝑂 = 0 𝑚𝑡. For example, a 

point of this region and its neighbors are defined as follow: 

 

𝑥 = 3.9583 

𝑦 = 2.2917 

𝑧 = 0.5 

𝑥 = 3.9583 

𝑦 = 2.5 

𝑧 = 0.5 

𝑥 = 3.9583 

𝑦 = 2.7083 

𝑧 = 0.5 
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𝑥 = 4.1667 

𝑦 = 2.2917 

𝑧 = 0.5 

𝑥 = 4.1667 

𝑦 = 2.5 

𝑧 = 0.5 

𝑥 = 4.1667 

𝑦 = 2.7083 

𝑧 = 0.5 

𝑥 = 4.3750 

𝑦 = 2.2917 

𝑧 = 0.5 

𝑥 = 4.3750 

𝑦 = 2.5 

𝑧 = 0.5 

𝑥 = 4.3750 

𝑦 = 2.7083 

𝑧 = 0.5 
Table 17 Data input for region 2 

In this case, the following results are obtained: 
 

𝑁𝑋 = −5.7253 ∙ 10−8 
 

𝑁𝑌 = −5.7336 ∙ 10−8 
 

𝑁𝑍 = 0.9987 
 

5.2.3 Third test – Clear green region 
Also this region is flat but the coordinate 𝑧 takes on the values between 𝑧𝐻𝐼 and a 

middle value, 𝑧𝑀𝐼𝐷 = 0.25 𝑚𝑡. The set of values between 𝑧𝐻𝐼 and 𝑧𝑀𝐼𝐷 are obtained 

by uniformly sampling the interval between the two extremes. For example, a point 

of this region and its neighbors are defined as follow: 

 

𝑥 = 3.5417 

𝑦 = 0 

𝑧 = 0.4318 

𝑥 = 3.5417 

𝑦 = 0.2083 

𝑧 = 0.4318 

𝑥 = 3.5417 

𝑦 = 0.4167 

𝑧 = 0.4318 

𝑥 = 3.75 

𝑦 = 0 

𝑧 = 0.4091 

𝑥 = 3.75 

𝑦 = 0.2083 

𝑧 = 0.4091 

𝑥 = 3.75 

𝑦 = 0.4167 

𝑧 = 0.4091 

𝑥 = 3.958 

𝑦 = 0 

𝑧 = 0.3864 

𝑥 = 3.958 

𝑦 = 0.2083 

𝑧 = 0.3864 

𝑥 = 3.958 

𝑦 = 0.4167 

𝑧 = 0.3864 
Table 18 Data input for region 3 

 
In this case, the following results are obtained: 
 

𝑁𝑋 = −0.1084 
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𝑁𝑌 = 0 

 
𝑁𝑍 = −0.9941 

 
5.2.4 Fourth test – Purple region 
Also this region is flat but the coordinate 𝑧 takes on the values between 𝑧𝐿𝑂 and a 

middle value, 𝑧𝑀𝐼𝐷 = 0.25 𝑚𝑡. The set of values between 𝑧𝐿𝑂 and 𝑧𝑀𝐼𝐷 are obtained 

by uniformly sampling the interval between the two extremes. For example, a point 

of this region and its neighbors are defined as follow: 

 

𝑥 = 3.5417 

𝑦 = 3.9583 

𝑧 = 0.1364 

𝑥 = 3.5417 

𝑦 = 4.1667 

𝑧 = 0.1364 

𝑥 = 3.5417 

𝑦 = 4.3750 

𝑧 = 0.1364 

𝑥 = 3.75 

𝑦 = 3.9583 

𝑧 = 0.1591 

𝑥 = 3.75 

𝑦 = 4.1667 

𝑧 = 0.1591 

𝑥 = 3.75 

𝑦 = 4.3750 

𝑧 = 0.1591 

𝑥 = 3.958 

𝑦 = 3.9583 

𝑧 = 0.1818 

𝑥 = 3.958 

𝑦 = 4.1667 

𝑧 = 0.1818 

𝑥 = 3.958 

𝑦 = 4.3750 

𝑧 = 0.1818 
Table 19 Data input for region 4 

 
In this case, the following results are obtained: 
 

𝑁𝑋 = −0.1084 
 

𝑁𝑌 = 0 
 

𝑁𝑍 = 0.9941 
 
5.2.5 Analysis of the results 
 
The obtained results confirm the correctness of the algorithm as well as the fact that 

the designed circuit effectively implements the desired functions. Obviously, it has 

been reported only one point for each region, to give an idea of the results in the 

different areas. For what regards the results, they reflect the correct orientation of 
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the normal: the fact that the rounding settings have been set in the IP blocks as well 

as the fact that the involved matrix is not the original covariance one but the shift 

let the result be slightly different from the expected values. However the difference 

is quite small, so these results can be perfectly accepted. Another consideration to 

point out is the fact that there is a irregularity in signs: indeed, for the last region, 

the signs reflect the correct orientation of the normal vector, while it is not true for 

the third region. It means that, in a future work, it is crucial to orient all the normals 

according to the viewpoint. Finally, as expected, no result was produced for the 

points on the corner.  

 

5.3 Timing results 
 
From a point of view of timing, the resulting module has a high latency of more 

than 925 clocks latency (depending on the number of needed iterations N). 

However, there is the chance of improving the throughput of the designed 

architecture: indeed, the circuit needs for 104 clock cycles to return the first result 

about the centroid computation. It means that a good pipelining realization of the 

circuit could allow for a throughput of 104 clock cycles to be achieved. Moreover, 

the clock used in the simulation has 5 𝑛𝑠 period or 200MHz frequency. Considering 

the latency of the module, this means that it would take about 5 µ𝑠 until the first 

output is computed but exploiting the pipelining implementation the throughput 

could consistently decrease. 

 

5.4 Future works 
The aim of the thesis was to demonstrate the feasibility of implementing a well – 

know computer vision algorithm on a FPGA board. It has been shown how to 

correct minor problems raised during the definition of the algorithm and the 

corresponding hardware implementation for each step of the algorithm. Future 

works shall concentrate on optimizing the designed circuit, by decreasing the 

number of allocated resources and shared signals. At the same way, the design 

should be pipelined in such a way to increase the throughput. Finally, it could be 
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extended the use of the hardware unit, in such a way to compute the normal vector 

for all points in the point cloud.  
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Appendix A  

Mathematical computations behind 

data path realization of eigenvector 

estimation 
Given a generic matrix 𝐴 ∈ ℝ3,3, whose entries are the following ones: 

 

𝐴 = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

) 

 

Its inverse matrix can be computed only if det (𝐴) ≠ 0, since its expression is given 

by: 

 

𝐴−1 =
1

det (𝐴)
(
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

) 

 

Where each element of position (𝑖, 𝑗) is obtained as: 

 

𝐴𝑖,𝑗 = (−1)𝑖+𝑗𝐶𝑖𝑗 

 

Taking an element 𝑎𝑖,𝑗 of the matrix 𝐴, 𝐶𝑖𝑗 is the complementary minor relative to 

the element 𝑎𝑖,𝑗 and it is the determinant of the submatrix which is obtained from 𝐴 

by eliminating the i-th row and the j-th column. To compute the inverse matrix, it 

is then necessary to divide each entries for the determinant of matrix 𝐴, whose 

formula is: 
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det(𝐴) = 𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎31𝑎22𝑎13

− 𝑎32𝑎23𝑎11 − 𝑎33𝑎21𝑎12 

 

If matrix A is symmetric, its inverse matrix is: 

 

𝐴−1 =
1

det (𝐴)
(
𝐴11 𝐴12 𝐴13

𝐴12 𝐴22 𝐴23

𝐴13 𝐴23 𝐴33

) 

 

Each element of the inverse matrix is computed as: 

 

𝐴11 = (−1)1+1 (
𝑎22 𝑎23

𝑎23 𝑎33
) = 𝑎22𝑎33 − 𝑎23

2  

 

𝐴22 = (−1)2+2 (
𝑎11 𝑎13

𝑎13 𝑎33
) = 𝑎11𝑎33 − 𝑎13

2  

 

𝐴33 = (−1)3+3 (
𝑎11 𝑎12

𝑎12 𝑎22
) = 𝑎11𝑎22 − 𝑎12

2  

 

𝐴12 = 𝐴21 = (−1)1+2 (
𝑎12 𝑎23

𝑎13 𝑎33
) = −(𝑎12𝑎33 − 𝑎13𝑎23) 

 

𝐴13 = 𝐴31 = (−1)1+3 (
𝑎12 𝑎22

𝑎13 𝑎23
) = 𝑎12𝑎23 − 𝑎13𝑎22 

 

𝐴23 = 𝐴32 = (−1)2+3 (
𝑎11 𝑎13

𝑎12 𝑎23
) = −(𝑎11𝑎23 − 𝑎13𝑎12) 

 

Finally, the simplified formula for the determinant is the following one: 

det(𝐴) = 𝑎11𝑎22𝑎33 + 2𝑎12𝑎23𝑎31 − 𝑎13
2 𝑎22 − 𝑎23

2 𝑎11 − 𝑎12
2 𝑎33 
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In the considered case, the matrix that has to be inverted is the shifted covariance 

matrix: 

Σ̂ = (

𝐶𝑂𝑉𝑥𝑥 𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑥𝑧

𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑦 𝐶𝑂𝑉𝑦𝑧

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑦𝑧 𝐶𝑂𝑉𝑧𝑧

) 

 

Σ̂ − 𝜎𝐼3,3 = (

𝐶𝑂𝑉𝑥𝑥 − 𝜎 𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑥𝑧

𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑦 − 𝜎 𝐶𝑂𝑉𝑦𝑧

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑦𝑧 𝐶𝑂𝑉𝑧𝑧 − 𝜎
) 

 

The determinant of this new matrix is: 

det(Σ̂ − 𝜎𝐼3,3) = (𝐶𝑂𝑉𝑥𝑥 − 𝜎)(𝐶𝑂𝑉𝑦𝑦 − 𝜎)(𝐶𝑂𝑉𝑧𝑧 − 𝜎) + 2𝐶𝑂𝑉𝑥𝑦𝐶𝑂𝑉𝑦𝑧𝐶𝑂𝑉𝑥𝑧

− 𝐶𝑂𝑉𝑥𝑧
2 (𝐶𝑂𝑉𝑦𝑦 − 𝜎) − 𝐶𝑂𝑉𝑦𝑧

2 (𝐶𝑂𝑉𝑥𝑥 − 𝜎) − 𝐶𝑂𝑉𝑥𝑦
2 (𝐶𝑂𝑉𝑧𝑧 − 𝜎) 

While the elements of inverse matrix (Σ̂ − 𝜎𝐼3,3 )
−1 are: 

𝐴11 = (−1)1+1 (
𝐶𝑂𝑉𝑦𝑦 − 𝜎 𝐶𝑂𝑉𝑦𝑧

𝐶𝑂𝑉𝑦𝑧 𝐶𝑂𝑉𝑧𝑧 − 𝜎
)

= (𝐶𝑂𝑉𝑦𝑦 − 𝜎)(𝐶𝑂𝑉𝑧𝑧 − 𝜎) − 𝐶𝑂𝑉𝑦𝑧
2  

 

𝐴22 = (−1)2+2 (
𝐶𝑂𝑉𝑥𝑥 − 𝜎 𝐶𝑂𝑉𝑥𝑧

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑧𝑧 − 𝜎
)

= (𝐶𝑂𝑉𝑥𝑥 − 𝜎)(𝐶𝑂𝑉𝑧𝑧 − 𝜎) − 𝐶𝑂𝑉𝑥𝑧
2  

 

𝐴33 = (−1)3+3 (
𝐶𝑂𝑉𝑥𝑥 − 𝜎 𝐶𝑂𝑉𝑥𝑦

𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑦 − 𝜎
)

= (𝐶𝑂𝑉𝑥𝑥 − 𝜎)(𝐶𝑂𝑉𝑦𝑦 − 𝜎) − 𝐶𝑂𝑉𝑥𝑦
2  

 

𝐴12 = 𝐴21 = (−1)1+2 (
𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑧

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑧𝑧 − 𝜎
)

= −[𝐶𝑂𝑉𝑥𝑦(𝐶𝑂𝑉𝑧𝑧 − 𝜎) − 𝐶𝑂𝑉𝑥𝑧𝐶𝑂𝑉𝑦𝑧] 
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𝐴13 = 𝐴31 = (−1)1+3 (
𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑦 − 𝜎

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑦𝑧
)

= 𝐶𝑂𝑉𝑥𝑦𝐶𝑂𝑉𝑦𝑧 − 𝐶𝑂𝑉𝑥𝑧(𝐶𝑂𝑉𝑦𝑦 − 𝜎) 

 

𝐴23 = 𝐴32 = (−1)2+3 (
𝐶𝑂𝑉𝑥𝑥 − 𝜎 𝐶𝑂𝑉𝑥𝑧

𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑧
)

= −[(𝐶𝑂𝑉𝑥𝑥 − 𝜎)𝐶𝑂𝑉𝑦𝑧 − 𝐶𝑂𝑉𝑥𝑧𝐶𝑂𝑉𝑥𝑦] 
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