

Politecnico di Torino

Master’s Degree in Mechatronic Engineering

Master’s Thesis

Hardware acceleration for robotic perception

Supervisors Candidate

Prof. Marcello Chiaberge Federica Parisi

Ing. Andrea Merlo 289819

Ing. Patrick Roncagliolo

April 2023

Abstract

A significant portion of current and future space missions involves exploring

unstructured environments, such as the surfaces of the Moon and Mars. These

environments are characterized by complex and often unpredictable terrain, which

presents unique challenges for autonomous robotic systems. Perception and

mapping strategies play a crucial role in ensuring safe and efficient navigation in

these environments. As a result, much research has been devoted to developing

advanced techniques for perception and mapping in unstructured environments, and

this is an active area of study in the field of robotics and space exploration. In

particular, the increasing demand for real-time and reliable robotic perception

systems has motivated the development of hardware acceleration algorithms.

Hardware acceleration consists of the use of special-purpose hardware, which is

specially designed to perform specific functions more efficiently than software

running on a general-purpose CPU. Some of the advantages of hardware against

software include speedup, lower power consumption, lower latency, and increased

parallelism, at the cost of longer development times and reduced ability to update

the designs after manufacturing. In the context of robotic perception, these

algorithms aim to speed up the processing of visual and sensory data, allowing

robots to make quick and accurate decisions in dynamic environments. For this

purpose, hardware accelerators such as Graphics Processing Units (GPUs), Field-

Programmable Gate Arrays (FPGA) and Application-Specific Integrated Circuits

(ASICs) have been adopted. This Master’s thesis focuses on the implementation of

a hardware acceleration algorithm for the calculation of the surface represented by

a point cloud. The surface can be determined through the computation of its normal

vectors, which provide valuable information about the surface shape. In particular,

the thesis work is centered on the development of a hardware unit that exploits the

Principal Component Analysis (PCA). Indeed, the PCA can be used to find the

principal directions of a dataset that, in the case of a point cloud, returns information

about the vectors that are normal to the surface. The design of this computational

unit was carried out to be implemented on a FPGA board. The results of this study

demonstrate the feasibility of using hardware acceleration algorithms in robotic

perception and provide insights into the trade-offs involved in the design of such

systems.

Contents
Chapter 1 - Robotic perception techniques for planetary rovers 1

1.1 - Vision perception for planetary rovers ... 2

1.1.1 - Cameras ... 3

1.1.2 - LiDARs .. 7

1.2 - Surface reconstruction .. 8

1.2.1 - General overview ... 9

1.2.2 - Trasversability concept .. 10

1.2.3 - Examples of trasversability in planetary exploration 13

Chapter 2 - Overview about FPGAs .. 15

2.1 - Main aspects of FPGAs .. 16

2.2 - Evolution of FDPs .. 17

2.3 - Structure of modern FPGAs.. 23

2.4 - Programming technologies for FPGAs ... 26

2.5 - FPGAs in space applications .. 28

2.5.1 - Sojourner Rover ... 29

2.5.2 - ESA Lunar Rover Mockup .. 29

2.5.3 - Jet Propulsion Laboratory applications.. 30

2.5.4 - Perseverance Rover ... 31

2.5.5 - Small Satellite Communication system ... 32

Chapter 3 - Normal estimation algorithm ... 33

3.1 - Introduction of the problem .. 33

3.2 - PCA ... 35

3.2.1 - Mathematical explanation .. 35

3.2.1.1 - Covariance ... 35

3.2.1.2 - Eigenvalue decomposition of the covariance matrix 38

3.2.2 - PCA for the computation of normal vectors .. 39

3.2.3 - Computation of the smallest eigenvector... 42

3.3 - Normal estimation algorithm .. 45

3.4 - Generation of the data and thresholds ... 49

Chapter 4 - Development of hardware unit ... 52

4.1 - Overview of embedded system ... 52

4.2 - Register Transfer Level (RTL) ... 55

4.3 - Development of the algorithm .. 57

4.3.1 - Basic blocks ... 58

4.3.1.1 - RegN .. 59

4.3.1.2 - Counter3, Counter4, Counter5, Counter8 .. 59

4.3.1.3 - Comparators ... 59

4.3.1.4 - MUX_2TO1, MUX_2TO1_1BIT, MUX_4TO1 60

4.3.1.5 - X_ROM, Y_ROM and Z_ROM ... 60

4.3.1.6 - CHANGE – K ... 61

4.3.2 - IP Blocks .. 61

4.3.3 - Explanation of the architecture ... 62

4.3.3.1 - Computation of the centroid .. 63

4.3.3.2 – Computation of Euclidean distance .. 66

4.3.3.3 - Computation of covariance matrix .. 71

4.3.3.4 - Estimation of normal vector .. 76

4.3.3.5 - NORM_COMPUTATION... 92

Chapter 5 - Conclusion and future works .. 96

5.1 - Results of the synthesis process .. 96

5.2 – Numerical simulations ... 96

5.2.1 - First test – Clear blue region ... 97

5.2.2 - Second test – Dark green region .. 97

5.2.3 - Third test – Clear green region ... 98

5.2.4 - Fourth test – Purple region ... 99

5.2.5 - Analysis of the results ... 99

5.3 –Timing results.. 100

5.4 – Future works... 100

Appendix A - Mathematical computations behind data path realization of
eigenvector estimation .. 102

Chapter 1

1

Chapter 1

Robotic perception techniques for

planetary rovers
Over the past five decades, robotic platforms have experienced a significant growth

in their usage in planetary exploration missions, spanning a diversity of

technologies, such as orbiting spacecrafts, space telescopes, stationary landers [1].

One of the most important sources of exploratory information is represented by

planetary rovers, whose emphasis is increasing since this kind of robots is

considered as the key to detailed planetary exploration because of the capability to

move to different locations for wider area exploration. Indeed, planetary rovers are

uniquely useful for almost all types of planetary missions on planets with solid

surfaces ranging from small bodies, such as asteroids and comets, to the moons of

gas giants or to terrestrial-type planets such as Mars [2]. Moreover, some of the

other advantages of planetary rovers are the high degree of mobility, the ability of

physical experimentation, the autonomous navigation, and the microscopic level of

observations. These skills have been developed in the past couple of decades,

during which planetary rovers have become increasingly complex and intelligent,

employing a range of onboard sensors that enhance their autonomous capabilities.

Concerning what has been stated, it is fundamental the role played by robotic

perception algorithms. Robotic perception refers to the ability of robots to sense

and interpret the environment around them. It is a critical component of autonomous

robots, as it allows the robot to understand and interact with its surroundings. Some

of the main techniques used in robotic perception are:

1. Computer Vision: a field of study that focuses on enabling computers to

interpret and understand visual information. In robotics, computer vision is used

to analyze and understand the images captured by cameras, such as depth

cameras, RGB cameras, and stereo cameras. This information is then used to

Chapter 1

2

determine the position, orientation, and movement of objects in the

environment.

2. Lidar (Light Detection and Ranging): a technology that uses laser light to

measure distances and generate 3D maps of the environment. Lidar is

commonly used in robotics for perception tasks such as obstacle avoidance,

navigation, and object recognition.

3. Radar (Radio Detection and Ranging): a technology that uses radio waves to

determine the position, velocity, and distance of objects in the environment. It

is often used in robotics for tasks such as obstacle detection, navigation, and

mapping.

4. Sonar (Sound Navigation and Ranging): a technology that uses sound waves to

measure distances and determine the shape and location of objects in the

environment. It is commonly used in robotics for underwater perception tasks,

such as navigation, object detection, and mapping.

5. Inertial Measurement Units (IMUs): sensors that measure the orientation and

acceleration of a robot. They are often used in robotics to track the position and

orientation of the robot, as well as to provide feedback for control and

navigation algorithms.

1.1 Vision perception for planetary rovers

For what regards planetary rovers, sophisticated vision systems, supported by

onboard software, have been crucial in expanding their autonomous capabilities. In

this context, the NASA’s Mars rover Curiosity pioneered the autonomous selection

of rock targets for scientific analysis by its laser and telescopic camera suite,

Chemistry and Camera (ChemCam), using the Autonomous Exploration for

Gathering Increased Science (AEGIS) software:

Chapter 1

3

Figure 1 ChemCam mounted on Curiosity rover

This is just one of the many capabilities that complex vision systems provide on

board planetary rovers. In fact, onboard vision systems have become critical

components for rover autonomy in performing complex tasks, such as high-level

surface mapping and relative localization using topological vision data, low-level

visual feature detection, recognition and landmark tracking, and complex scientific

procedures such as identification of the chemical compositions of Martian soil. It is

possible to make a distinction in the vision techniques, based on the type of sensor

used to capture scene data: cameras or LiDARs.

1.1.1 Cameras

In past and current missions, most of rovers employs cameras for terrain perception.

In general, it is possible to distinguish between depth cameras and RGB cameras,

which are all image acquisition devices used in computer vision, but they differ in

the information they capture:

1. Depth cameras, also known as range cameras or 3D cameras, directly

capture depth information of the object, providing a depth map of the

surrounding environment. Depth cameras capture images in which each

pixel contains information about the distance to the object in the scene. They

use a variety of techniques to measure depth, including structured light,

time-of-flight, and stereo vision. Structured light depth cameras project a

Chapter 1

4

pattern of light onto the scene and use the distortion of the pattern to

compute the depth of each pixel. Time-of-flight depth cameras measure the

time it takes for a pulse of light to travel from the camera to the object and

back and use this time to calculate the distance. Stereo vision depth cameras

use two cameras to capture the scene from different viewpoints and use the

differences in the images to triangulate the depth of each pixel. Depth

cameras are useful in a variety of applications, such as robotics, gaming,

and augmented reality.

2. RGB cameras, also known as color cameras, capture images in the visible

spectrum of light. RGB cameras capture three color channels (red, green,

and blue) and a brightness channel, also known as luminance. The camera

lens focuses the incoming light onto a sensor, which is typically a charge-

coupled device (CCD) or a complementary metal-oxide-semiconductor

(CMOS) sensor. The sensor is made up of millions of tiny light-sensitive

elements called pixels, which convert the incoming light into electrical

signals. The camera then processes these signals to create a digital image.

Each pixel in an RGB camera is sensitive to a specific range of wavelengths

of light, corresponding to the red, green, and blue color channels. By

combining these three - color channels, the camera can capture a wide range

of colors and shades of brightness. The brightness channel, or luminance, is

often calculated as a weighted average of the three - color channels. RGB

cameras are widely used in mobile devices, digital cameras, and

surveillance systems due to their low cost and wide availability.

Often, depth cameras can be used in conjunction with RGB cameras to provide

additional information about the environment. For example, depth information can

be used to separate objects in the scene from the background or to apply depth-

based effects to images or videos.

In past and current planetary missions, stereo vision is considered as the baseline

method for scene reconstruction and perception for planetary rovers. In this

scenario, the pioneer is the rover Soujourner, which was landed by NASA on Mars

in the 1997 Mars Pathfinder mission. The rover could navigate through a simple

light-stripe sensor that measured twenty – five elevation point in front of the rover.

Chapter 1

5

The lander had a multispectral stereo camera pair on a pan/tilt mast about 1.5 m

high. The processing of the stereo imagery was performed on Earth by JPL’s real-

time stereo algorithm and it were produced excellent maps of terrain around the

lander for rover operators to use in planning the mission. In this way, the stereo

algorithm performance was validated with real Mars imagery.

Figure 2 Soujourner rover of the 1997 NASA’s Mars Pathfinder mission

Other examples of the usage of stereo vision algorithm are given by the NASA’s

twin Mars Exploration Rovers (MER), that are Spirit and Opportunity. With respect

to Soujourner, they were designed to accomplish more robust navigation tasks, such

as obstacle detection and avoidance. For this reason, MER rovers have been

equipped with three sets of stereo camera pairs: one pair of “hazcams” (hazard

cameras) looking forward under the solar panel in front, another pair of hazcams

looking backward under the solar panel in the back and a pair of “newcams”

(navigation cameras) on the mast.

Chapter 1

6

Figure 3 The twin Mars Exploration Rovers (MER), Spirit and Opportunity

For what regards future missions, the ESA’s ExoMars rover, whose launch is

scheduled for 2028, makes use of a perception system that uses a pair of stereo

images to generate a disparity map. In detail, the rover is equipped with the so-

called Panoramic Camera System (PanCam), which consists of two wide-angle

stereo cameras and a third high-resolution camera, used for capturing the

surrounding terrain and for navigation. Over the past few decades, planetary rover

missions have demonstrated and validated the viability of using stereo cameras and

stereopsis as the primary technology for onboard 3D perception. This approach has

several advantages, including its solid-state design, which makes it more

mechanically robust and durable. In addition, research has shown that the Martian

terrain offers enough textural information to support stereo vision almost anywhere

on the planet. Several algorithms have been developed that can perform stereopsis

and produce accurate and dense range imagery at a sufficient speed using the

available computing resources. As a result, this approach has been widely regarded

as the best trade-off between cost, risk, and performance for 3D terrain perception

on planetary rovers.

Chapter 1

7

1.1.2 LiDARs

Light Detection and Ranging (LIDAR) technology is commonly used by terrestrial

rovers covering very long distances. The functioning of LiDAR is based on

measuring the time – of – flight of a laser pulse between emission and return of the

reflected signal. The laser pulse is emitted by the LiDAR device and, once it reaches

the surface of the object, it is reflected and returned to the LiDAR sensor. The

LiDAR sensor detects the time taken by the laser pulse to return and, using the

speed of light as a constant, it calculates the distance from the object. In space

applications, LiDAR is used for spacecraft assistance with rendezvous and docking,

depth estimation and mapping, scientific analysis and geological surveying [1]. An

example of employment of the LiDAR sensor is the mission OSIRIS-Rex, aimed to

map the carbonaceous asteroid Bennu for the purpose of studying its physical and

chemical properties. The OSIRIS-REx Laser Altimeter (OLA) is the LiDAR sensor

involved in the 3D mapping of asteroid Bennu’s shape and it has already completed

all its requirements for the OSIRIS-REx mission. OLA’s scans of Bennu’s surface

were used to create the high-resolution 3D global maps of Bennu’s topography that

were crucial for selecting the primary and backup sample collection sites.

Figure 4 OSIRIS-Rex Laser Altimeter (OLA)

Different projects using LiDAR as a potential technology for planetary rovers have

been developed, highlighting both the pros and cons. Some of the limitations with

these sensors could be: weight and size, since LiDAR can be quite heavy and bulky,

Chapter 1

8

which could make difficult to fit such a device onto a lander or rover, where space

is limited; cost, since LiDARs can be expensive and represent a significant expense

for a planetary exploration mission; the need for significant computational

resources necessary to process 360° complete resolution scans. These cons are some

of the reasons why planetary exploration missions often use other types of sensors.

However, LiDAR could be used in the future in planetary exploration missions to

enhance the ability to detect obstacles and map the surrounding environment.

1.2 Surface reconstruction

Some of the previously mentioned sensors are used to acquire point clouds. A point

cloud is a 3D representation of an object or a surface, composed of a set of three-

dimensional points where each point represents a measurement taken by a sensor.

A common step in the information extraction procedures is the surface

reconstruction. Surface reconstruction is the process by which a 3D object is

inferred, or ‘reconstructed’, from a collection of discrete points that sample the

shape [4]. The surfaces considered in surface reconstruction are 2-manifolds that

might have boundaries and are embedded in the Euclidean space ℝ3 [5]. In the

surface reconstruction problem, the initial assumptions are a finite sample P ⊂ ℝ3

of an unknown surface and the task is to compute a model of S from P. This problem

is referred as the reconstruction of S from P and the obtained result should match

the original one both geometrically and topologically. It is important to notice that

the process of reconstruction is usually made up by two stages: first, a piece-wise

linear surface is reconstructed, and second, a piecewise-smooth surface is built upon

the mesh [5]. However, finding out the appropriate surface, that correctly matches

the geometric and topological properties, is not an easy task and it depends on the

characteristic of both the surface and the point cloud. Sometime additional

information of the surface can be available, such as oriented/unoriented normals or

presence of breaklines (i.e. feature line or polyline representing a ridge or some

other feature, that the user wishes to preserve in a mesh made up of polygonal

elements [6]). In general, an increasing sampling density may ensure a better

recovering of the surface, especially if the sample is dense in detailed area and

sparse in featureless parts. The correct reconstruction algorithm depends on the

Chapter 1

9

final application and, for each application, reconstruction methods vary based on

several factors. For example, it is possible to distinguish between techniques that

interpolate a point cloud without any additional information and methods that

assume some priors to fix the imperfections in point cloud. Most reconstruction

procedures are specially designed for static objects and scenes but advance in

scanning techniques has enabled the acquisition of point clouds that vary

dynamically and consequently the development of algorithms for dynamic

reconstruction. Or alternatively, there exist specific algorithms aimed at surface

reconstruction for urban environments while other methods are designed for

specific-application recognition: the first class of reconstruction techniques does

not require the reconstruction of fine details such as individual bricks on a building

while dense coverage scans could be required, for example, in the field of

archeology where it is needed for high-detail reconstruction.

1.2.1 General overview

In general, surface reconstruction algorithms may be divided into two classes:

systems based on object measurements and systems that do not use measurements

[6]. Systems based on objects measurements require the acquisition of

measurements of the objects in the environment, which are used to reconstruct the

surface. This class comprises both methods based on triangulation and approaches

that estimate surface normals instead of 3D data. These kinds of method rely on

data coming from either passive sensor or active sensors. On the other hand,

systems that do not use measurements rely on other types of data, such as images

or videos, to reconstruct the surface. The generation of 3D models start from simple

elements like polygonal boxes [6]. Overall, the main difference between these two

approaches is the type of input data used, with systems based on object

measurements requiring more specialized sensors and equipment, but potentially

providing more accurate results, while systems that do not use measurements can

be more versatile and use more widely available sensors but may be less accurate

in certain situations. However, even if there exist thousands of surface

reconstruction techniques, most of them are generally based on four steps:

Chapter 1

10

1. Pre-processing, which consists of the editing operations on measured points.

The pre-processing operations usually are:

- data sampling, which could be uniform or based on the curvature of the

points, but the uniform sampling is preferred since it allows to reduce

certain types of errors.

- noise reduction and removal of outliers. Points that are randomly

distributed near the surface are traditionally considered to be noise while

points far from the true surface are classified as outliers. While several

algorithms infer the surface by passing near the point but not overfitting

the noise, outliers should never be used for reconstruction purpose.

- holes filling since physical constraints of the scanning devices cause

missing data. These gaps are filled adding new points and using the

density of surrounding points.

2. Study of the global topology, that is the determination of the neighborhood

relations between adjacent parts of the surface.

3. Generation of the polygonal surface, which consists of the conversion from

the given point cloud to a polygonal mesh, which is a collection of triangular

or quadrilateral contiguous, non-overlapping faces, joined together along

their edges [6]. The dataset is divided into small elements, typically triangles

in 2D or tetrahedra in 3D, typically by means of finite element methods. The

result of this step is the generation of vertices, edges and faces.

4. Post-processing, that include a whole set of operations to refine and smooth

the polygonal surface. Some of the most common post-processing activities

are edges correction or triangles insertion, aimed at filling holes.

1.2.2 Traversability concept

The processing of data coming from several sensors, especially visual ones, is a

fundamental step to extract information about the surrounding environment, which

can be further used to navigate the mobile robot toward the safest and most

traversable area. The perceived data can be processed to create a map of the

environment, which could be employed in a variety of applications including

Chapter 1

11

navigation, localization, and exploration. Maps, which can be either 2D or 3D, can

include information about the localization of objects, the geometry of the

environment, and other relevant features, such as obstacles and paths. In general, in

mobile robot navigation, occupancy-based approaches are some of the most used

methods. The occupancy-based algorithms use two or three-dimensional maps of

the surrounding environment to determine whether a particular area of space is

occupied by obstacles or other entities. This allows mobile robots to avoid obstacles

and navigate safely and efficiently in complex environments. One of the most

common methods used in occupancy-based approaches are occupancy-grid, which

employs a 2D or 3D division of space into cells, where each cell stores a

probabilistic estimate of its state (occupied or not).

Figure 5 Example of occupancy grid

Other approaches refer to the level of environment representation, that can be sorted

in geometrical, topological, or topo-geometrical levels [7]. Geometrical maps are

representations of the environment that are based on geometric properties, such as

distances, angles, and shapes. These maps are typically represented in a coordinate

system, such as Cartesian or polar coordinates and the result is usually very

accurate. It is necessary a big amount of data to model the environment through this

approach, therefore this method is of limited use, especially in poorly structured

outdoor areas. An example of geometrical map is shown in the figure below.

Chapter 1

12

Figure 6 Example of geometrical maps

In a topological representation, the environment is represented as a graph, through

a set of distinctive places, and the robot associates a particular sensory information

to each of them, that makes them recognizable. Topological maps need the presence

of repetitive elements, so they are mainly used in modelling indoor environments,

but they are not suitable for a-priori unknown environments, especially outdoor

ones. Moreover, hybrid representations have been developed, like a topological

graph based on occupancy grid.

One of the main tasks of visual data processing is to determine which area are

traversable, so which localizations are suitable to be navigated. Depending on the

characteristics of the crossed environment, the concept of traversability has a proper

meaning. Concerning outdoor navigation, it is necessary to estimate some

parameters that describe the propension of the terrain to be crossed but several

works mainly make use of two parameters for the definition of traversable area,

which are terrain slope and roughness degree, that represent the amount of deviation

from the smoothed surface on a smaller scale. Across the literature, several

computation methods for these parameters may be found. For example, in [7],

terrain slope is defined as the existing angle between the surface normal vector (�⃗⃗�)

and the vector which is perpendicular to the horizontal surface (�⃗⃗⃗�
𝜋), as shown in

the picture below:

Chapter 1

13

Figure 7 Slope definition and visualization

On the other side, the roughness degree is defined as the measurement of the surface

deviation and the computation of the roughness is based on the normal vector

deviation in each point, with the calculus of a statistic quantity named spherical

variance, which expresses the variation of the normal vector in a local region. At

this point, traversable areas are defined considering both these parameters. It is

important to underline that several parameters concur to the definition of

traversability for a terrain, like the characteristics of the mobile robot itself or the

task the robot is going to perform.

1.2.3 Examples of traversability in planetary

exploration

For what regards planetary environments, the first concept of traversability for

mobile robots operating in planetary environments is introduced in [8]. This index

is expressed by linguistic fuzzy sets, quantifying how traversable a particular terrain

is for a given rover [8]. In particular, the index is computed based on the two

physical variables mentioned before, the terrain slope and the terrain roughness.

Both these quantities can be computed starting from data provided by the on-board

stereo vision, as indicated in [9]. For the definition of the traversability index, the

slope is represented through four linguistic fuzzy sets {LOW, MEDIUM, HIGH,

VERY HIGH} and, using this approach, a precise measurement is not needed but

it is necessary only to define to which set the slope belongs. The terrain roughness

can be computed by fuzzy inference from the measurements of rock size and rock

concentration on the terrain and it could be represented by four linguistic fuzzy sets

{SMOOTH, ROUGH, BUMPY, ROCKY}, as shown in the table below:

Chapter 1

14

Figure 8 Fuzzy rules for terrain roughness

At this point, the traversability index is defined as a set of fuzzy relations, depending

on the slope and the roughness of the terrain. The traversability index is represented

through the four linguistic fuzzy set T = {POOR, LOW, MEDIUM, HIGH} and it

is determined according to the rule shown in the following table:

Figure 9 Fuzzy rules for traversability index

It is fundamental to outline that the traversability index does not depend only on the

characteristics of the terrain but also on the properties of the rover, like size or

climbing capability. Finally, just to point out the importance of parameters like the

traversability index, it is crucial to say that the mentioned criteria is used to develop

an autonomous navigation strategy that allows the robot to autonomously move in

an a priori unknown environment.

Chapter 2

15

Chapter 2

Overview about FPGAs
In chapter 1, it has been highlighted how much image processing is becoming an

important part for both terrestrial and planetary rovers. Real time vision systems

require the availability of processors which can work at speeds in the gigahertz

range, while consuming a certain amount of power. The problems arise when space

system require to be low-power and such processors are unavailable. Given those

restrictions, the use of FPGAs with embedded processors has become an

increasingly attractive technique for embedded processing [10]. Integrating a

sequential processor to do sequential tasks, and FPGA fabric to do vector and/or

parallel processing enables the low power and high computation ability required for

robotic applications.

FPGAs, which stands for Field Programmable Gate Arrays, are integrated circuits

(ICs), consisting of an array of programmable logic blocks which can be configured

to implement simple logic functions (e.g., AND, OR) or to perform complex

combinational functions. In both cases, hardware description languages (HDLs),

such as VHDL or Verilog, can be exploited to design the FPGA configuration in

the field. Modern FPGAs have become fast and powerful enough to enable the

implementation of various algorithms in hardware, resulting in faster performance

compared to software-only implementations on general-purpose microprocessors,

as demonstrated in the articles [11-15]. Many researchers have focused on using

FPGA accelerators to speed up the computationally intensive parts of programs,

using different approaches to achieve acceleration, but all relying on some form of

parallelism. Several applications are demanding increasing amounts of processing

capability to achieve higher computational speeds but also lower power

consumptions, acceptable manufacturing and packaging costs, rigorous time-to-

market requirements. The main fields in which FPGAs are widely applied are

Digital Signal Processing (DSP) and Digital Image Processing (DIP) [17]. This

Chapter 2

16

technology brings several advantages. First, FPGAs are faster than software

algorithms on microprocessors because the hardware is tailored to a specific

algorithm, so a speed increase of 10-100 times that of the equivalent software

algorithm can be achieved, as demonstrated by authors in [18]. Additionally, FPGA

implementation of software algorithms results in reduced power consumption, as

FPGA clock frequencies are substantially lower (almost one tenth the speed) than

those of microprocessors. Moreover, the usage of FPGAs implies a reduction of the

payload per computation since most control is configured into the logic itself so

overhead instructions (such as array indexing and loop computations) need not be

emulated. However there exist other classes of ICs, like Application-Specific

Integrated Circuits (ASICs), whose logic is fixed at fabrication time. Compared to

ASICs, FPGAs are less dense and fast but they also bring several benefits to users,

including faster time to market, re – programmability for users, no non-recurring

engineering costs for fabrication or pre-tested silicon for use by the designer.

2.1 Main aspects of FPGAs

Technology markets have been driven by developments in silicon technology

according to the progress described by Moore’s law, which predicted a doubling of

the number of transistors every 18 months. Moreover, the reduction in the costs of

transistors has been crucial. Early electronic systems were created on printed circuit

boards (PCBs), by aggregating standard components such as microprocessors and

memory chips with digital logic components [20]. The increasing number of

transistors and input/output pins as well as the complexity of the implemented

systems caused the integration step on PCBs to become harder and harder.

Moreover, the need to develop systems that could easily adapt to evolving design

requirements raised, pushed also by the desire to have the same flexibility allowed

by microprocessors. In this context, the idea of Field-Programmable Device (FDP)

emerged. The term FPD refers to a class of integrated circuits aimed at the design

of digital hardware, where the chip is directly configured by the end user.

Chapter 2

17

2.2 Evolution of FDPs

One of the first user-programmable chip was the Programmable Read-Only

Memory (PROM). A PROM consists of a fixed AND plane, connected to a

programmable OR plane, as shown in Figure 10. The fixed AND plane acts as a

decoder so it is responsible for reducing the number of input pins that go into the

memory, by decoding the address input pins, while the data is stored in a storage

area or memory array. The decoder generates various address lines using AND

gates, and the outputs are combined using OR gates. In this way, given 𝑛 inputs and

𝑚 output lines, the structure could store 𝑛2 𝑚-bit words. Since the programming

step is realized through the burning of the fuses in the OR plane, it is easy to

understand that this kind of technology can be programmed only once. This simple

structure successfully allowed the implementation of logic functions, which were

simply expressed as sum of products since designers usually made use of logic

minimization techniques, such as those based on Karnaugh maps or Quine-

McCluskey minimization [20]. However, these kind of logic functions rarely need

more than a few product terms while a PROM contains a full decoder for its address

inputs, so this technology appears to be quite inefficient and nowadays it is not so

adopted.

Figure 10 Structure of a PROM

Then Programmable Logic Array (PLA) was introduced, which is made by a

programmable wired AND plane and a programmable wired OR plane and whose

general structure is depicted in Figure 11:

Chapter 2

18

Figure 11 Structure of a PLA

In this kind of structure, it is possible to implement logic functions expressed as

sum of products. Indeed, any of the inputs or their complements can be ANDed

together in the AND array, so it is possible to generate only the required products

by using these AND gates. At the same way, each output in the OR plane can be

configured to produce the logical sum of any of the AND-plane outputs. An

example of PLA is shown in Figure 12, implementing a sum – of – products

function:

Figure 12 Example of a PLA

However, the presence of two programmable logic arrays caused not only

difficulties in the manufacturing but also not so much satisfying performances in

terms of speed. This is the reason why PLA were substituted by Programmable

Array Logic (PAL), which are simply realized by the connection between a

programmable AND plane and a fixed OR matrix. The general structure of a PAL

is shown in figure 2.4:

Chapter 2

19

Figure 13 Structure of a PAL

As in PLAs, the inputs of AND gates are programmable so, based on the

requirements, it is possible to program any of those inputs. On the other side, the

inputs of OR gates are not programmable, therefore the number of inputs to each

OR gate will be fixed. As the previous one, this structure allows to implement

functions in the form sum – of – products. Figure 14 shows an example of sum – of

– product function, implemented on a PAL device:

Figure 14 Example of a PAL

Since the PAL is characterized by less flexibility with respect to the PLA, it is

implemented with several variants, like the number of inputs and outputs. The

PAL16L8 is a demonstration of what has already been stated: indeed, it is a

particular PAL implementation, provided with 16 inputs and 8 outputs:

Chapter 2

20

Figure 15 PAL16L8

As it is possible to see from the previous image, PAL are often supplied with flip-

flops to implement not only combinational but also sequential logic. In general, the

last two types of devices, which have been presented till now, fall under the

categorization of Simple Programmable Logic Devices (PLDs). Although their

pros, such as low cost and versatility, the cons are represented by the fact that the

structure of the programmable logic planes grow too quickly in size as the number

of inputs is increased [21]. These problems have been solved by the introduction of

Complex Programmable Logic Devices (CPLs), which consists of the arrangement

of multiple SPLD-like blocks on a single chip. The main idea behind CPLD is to

implement an architecture containing several logic blocks, each like a small PLD,

instead of building larger PLDs with more inputs or product terms. Then the logic

blocks can communicate with each other using signals routed through a

programmable network of interconnects. Figure 16 shows an example of the generic

architecture of a CPLD, consisting of four PLD sub-blocks:

Chapter 2

21

Figure 16 Example of architecture for a CPLD

However, it results quite complex to extend these architectures to high density

designs. At this point, FPGAs were introduced as a trade-off between the high –

density capabilities of ASICs and the flexibility provided by PLDs. Early

architectures for FPGA were composed by:

- programmable logic units, that could be programmed to implement logic

functions;

- programmable interconnections;

- programmable I/O pins.

A schematic architecture of early FPGAs is shown in Figure 17:

Figure 17 Architecture of early FPGAs

Today, FPGAs are still made by this array of simple circuit elements, called logic

element, and interconnectable resources, which can be programmed by the end user.

Each logic block consists of digital logic components, such as multiplexers, flip-

flops, look-up tables (arrays of data to map input values to output values,

Chapter 2

22

approximating mathematical functions) or adders. The strength of FPGA is

represented by the fact that the logic blocks within it are built with interconnections

that can be reconfigured by the user using a hardware description language (HDL).

The actual structure is quite similar to the architecture of the first ones but the

number of cells in the same device has strongly grown. Indeed, according to the

technology process described by Moore’s law, the increasing in the number of

transistors is related to the shrinking in the physical dimensions of transistors,

allowing for a higher number of logic blocks integrated on the same unit. Initially,

the devices were made just by a single cell. The increasing in the number of cells

has led to the need of connecting not only each single cell to the outside border of

the physical component but also between themselves, so a programmable structure

has been introduced to route the signal inside the component. This evolution is

shown in the following picture, provided by Altera:

Figure 18 Altera architecture evolution

Moreover, the input/output capability was strongly affected by the increasing in the

number of transistors so modern FPGAs can drive numerous signals, up to one

thousand. So, nowadays, FPGAs, as illustrated in Figure 19, consist of an array of

programmable logic blocks of potentially different types, including general logic,

memory and multiplier blocks, surrounded by a programmable routing fabric [22].

Chapter 2

23

Figure 19 Basic FPGA structure

2.3 Structure of modern FPGAs
The main components of a FPGA device are:

- Configurable Logic Blocks (CLBs)

 A CLB is the fundamental piece of an FPGA. In its most basic form, a

FPGA is a chip made by thousands of configurable logic blocks. The

function of a single CLB and their interconnection can be programmed by

the designer to perform any logic function. An individual CLB consists of a

number of discrete logic components itself, such as look-up tables (LUTs)

and flip-flops. Figure 20 shows an example of a logic cell, which is the

building block of a CLB:

Figure 20 Example of logic cell

Chapter 2

24

A look-up table is a type of configurable logic block that can implement any

Boolean function of its input signals. A LUT consists of a small block of

memory, typically 4 to 6 bits wide, and a decoder circuit that selects one of

the memory cells based on the input signals. The memory cells in the LUT

are pre-programmed, with truth table values for the Boolean function that

the LUT is intended to implement. For example, a 4-input LUT might have

16 memory cells, with each cell representing one of the 16 possible input

combinations and containing the corresponding output value for the

Boolean function. When the input signals to the LUT change, the decoder

selects the appropriate memory cell based on the input values, and the output

of the LUT is set to the corresponding value stored in the memory cell.

Moreover, the LUTs can also serve as a distributed RAM or a shift –

register. The fact that registers are available in CLB means that it is possible

to create sequential logic circuits by connecting the output of LUTs to flip-

flops. Some logic cells are provided with carry logic blocks, useful to

implement fast arithmetic circuits.

Typically, logic cells are grouped in slices and the proper interconnection

between slices leads to the formation of configurable logic blocks. There

exist both local and global interconnections, to offer wider opportunities of

programmability.

- Digital Signal Processing (DSP) Slice

A DSP is a component designed to carry out digital signal processing

functions, such as filtering or multiplying, much more efficiently than if the

same functions were implemented using many CLBs. Each variable-

precision DSP block offers a range of multiplicative and additive support

functionalities.

- Transceivers

Transceivers transmit and receive serial data to and from the FPGA at

extremely high rates. The task of converting information on the FPGA into

serial data, as well as receiving serial data externally and converting it into

Chapter 2

25

useful information, while checking for errors in the data becomes more

difficult to do with the configurable logic of the FPGA as speeds increase.

This dedicated component allows for high-speed data transfer without

consuming the logic resources of the FPGA.

- Block Random Access Memory (BRAM)

FPGAs are usually provided with on – chip Block Random Access

Memories (BRAMs) as well as on – board SRAM or DRAM. Memory

blocks can be particularly useful, for example if there is the need to store

some previously data coefficients or if it is necessary to delay some values.

BRAM is directly built into the FPGA fabric in such a way to offer more

efficient storage for large amounts of data. BRAM is typically used to

implement memory-intensive algorithms, such as image and video

processing, where fast access to large amounts of data is critical. On the

other side, both DRAM and SRAM are external to the FPGA device, but

they offer larger amounts of storage capacity than BRAM. DRAM is

commonly used in FPGA designs that require large amounts of data storage,

such as high-performance computing and networking applications, while

SRAM is often designs that require high-speed access to small amounts of

data, such as cache memory or register files.

- Input/Output (IO) Blocks

Input/output blocks are the components through which data are transferred

into the FPGA or out of it. Input/Output pins are grouped in the so-called

IO banks, which are configurable depending on the type of data to receive

or transmit. They are like transceivers but operate at lower speeds and can

maintain more functional flexibility.

Chapter 2

26

2.4 Programming technologies for FPGAs
An important criterion to distinguish the different types of FPGAs is based on the

programming method through which connections are made. There are mainly three

different types of FPGAs:

- SRAM FPGAs

SRAM-FPGAs make use of SRAM-based memory to store the logic and

wiring information. The basic element of SRAM-FPGAs is a static random

– access memory cell, which is based on CMOS technology. Each static

memory cell is usually made by six transistors, four of which form two cross

– coupled inverters, as shown in Figure 21:

Figure 21 SRAM-based memory element

SRAM can keep the stored information as long as power remains on and it

does not need to be periodically refreshed but it is a volatile component, so

the information is lost when the power is turned off. SRAM cells can be

used both to store data in look-up tables and to select lines of the

multiplexers, necessary to route interconnection signals. Because of the

volatile nature of SRAMs, the configuration data shall be stored in an

external nonvolatile memory, to be uploaded at power up. SRAM-FPGAs

are the most common, not only due to the fact that they are reconfigurable

but also because the adopted CMOS technology allows for high speeds and

low power consumptions.

Chapter 2

27

- Antifuse – based FPGAs

In antifuse – based FPGAs, desired logic circuit can be realized by burning

antifuses off. An antifuse is an electrical device, which behaves oppositely

with respect to a fuse: while a fuse breaks a connection in a circuit when it

is crossed by a high current, an antifuse has a high resistance at the

beginning so it is designed to create an electrically conductive circuit path

permanently, typically at high voltage. An antifuse can be implemented by

placing a thin barrier of an insulating material between two metal

conductors. When a high enough voltage is applied across the insulating

material, it breaks down the antifuse and a low resistance path is established

for the current to flow.

With respect to SRAM-FPGAs, the occupied space can be reduced since

there is no need of silicon area to realize the connections, even if the high

currents that cross the circuit need to be supplied by larger transistors.

Moreover, this kind of FPGAs is nonvolatile so there is no need of

additional memory where the configuration program has to be stored and

the device can instantly work when powered up. However, since antifuse –

based FGPAs are based on burning off antifuses, they are one – time

programmable (OTP) devices so they cannot be reconfigurable after the first

programming. In particular, since anti-fuse-based FPGAs require a

nonstandard CMOS process, they are typically well behind in the

manufacturing processes that they can adopt compared to SRAM-based

FPGAs [22].

- Flash FPGAs

Flash – FPGAs are based on flash or EEPROM memory cells. In this type

of FPGAs, the fundamental block is a floating – gate, an electrode formed

within the gate insulator of a field-effect transistor, so it is placed between

the normal gate electrode (the control gate) and the channel, as shown in

Figure 27:

Chapter 2

28

Figure 22 Flash memory cell

The amount of charge stored on the floating gate determines whether the

transistor will conduct or not. The switch element consists of two floating

gate NMOS-transistors. A switch transistor turns on or off the data path and

a programming transistor programs the floating gate voltage. The floating

gate is completely surrounded by insulators so it can keep the charge

independent of whether the circuit power supply voltage is present. Flash –

FPGAs result to be reconfigurable and nonvolatile, so they represent a

tradeoff between the two typologies of FPGAs previously discussed. The

usage of this kind of FPGAs was not so common in the past because of the

need of wide area but now suitable results in the shrinkage of the area have

been achieved. One disadvantage of flash-based devices is that they are not

infinitely reconfigurable because charge buildup in the oxide could prevent

a proper erasing.

2.5 FPGAs in space applications

Recently, FPGAs are becoming widespread in space applications while the usage

of microcontrollers is decreasing because of the effects of high ionizing radiations.

Indeed, these radiations are absorbed by microcontrollers with a consequent

decreasing in performances, while the physical structure of FPGAs allows to reject

radiations. For this reason, FPGAs are said to be immune to SEEs (Single Event

Effects). The SEEs are caused by a single ionizing particle, which creates an

included charge. This latter one can immediately and temporarily affect the correct

Chapter 2

29

operation of the device or destroy it [23]. In the following sub-paragraphs, some of

the most common examples of usage of FPGAs in space applications are reported.
2.5.1 Sojourner Rover

As anticipated in chapter 1, the Sojourner Rover was the first Mars Rover to land

in the Ares Vallis, the outflow channel on Mars, as part of Mars Pathfinder mission.

Figure 23 A representative picture of Sojourner Rover

This rover was equipped by the Athena Software Development Model (SDM),

which used a highly distributed approach in adopting a 12 MHz/10 MIPS R3000

CPU (drawing 2–3W of power) supported by FPGAs for low-level motor control

[24]. The system comprises six remote engineering units and each unit is provided

with an FPGA based motor controller that can control two brushed motors. The

motor controller is a PID controller running at frequency of 1 𝑘𝐻𝑧, reading

quadrature encoders and outputting the direction and pulse width modulated duty

cycle to drive the motor.

2.5.2 ESA Lunar Rover Mockup

The Lunar Robotic Mockup was developed to provide a Lunar-like rover platform

for mounting robotics payloads [25]. This rover is shown in Figure 24.

Chapter 2

30

Figure 24 A representative picture of ESA Lunar Mockup

The control software of this rover runs on a microcontroller that receives velocity

and motor angle data through a serial line. A PID controller generates commands

that are sent to the H-bridges for steering and to an FPGA where the PID controller

is implemented [2].

2.5.3 Jet Propulsion Laboratory applications

JPL has developed and applied stereo vision systems to rover in order to perform

motion control. Different JPL stereo vision systems were accelerated by using

FPGA. Thanks to this electronic device, it is possible to obtain a 16 times speedup

in computer vision task with respect to a linear processor.

FPGAs are widely adopted since the space for a processor is more and more

constrained in terms of occupied space. It implies that processor speeds in the

gigahertz range are unavailable, instead only processors less performant are allowed

resulting in a failure in real-time stereo processing. For this reason, FPGAs with

embedded processors are widespread in the space field.

JPL is also developing a rover avionics module based on the Xilinx Virtex-II Pro

FPGA which includes two embedded PowerPC 405 processor cores with a

processing speed of 300MHz with the rest of the FPGA processing at 100 MHz.

The adoption of FPGAs is exemplified in the design of the Kapvik micro-rover by

implementing FPGA electronics to process images faster for autonomous

navigation [2].

Chapter 2

31

Figure 25 Kapvik micro-rover

This micro-rover is produced by Canadian Space Agency as a demonstration that

micro-rovers could have similar functionalities of the larger ones. This last feature

implies a cost reduction during the launch phase since the occupied volume and the

weight decrease.

2.5.4 Perseverance Rover

Perseverance is a Rover developed by NASA and launched in 2020, aimed at

exploring the Jezero crater. It makes use of an FPGA technology (Xilinx Virtex-5)

as one of the main processing units. This unit is first responsible for rover entry,

descent and landing on Mars and then it is programmed for computer vision tasks

by NASA engineers from the Earth. Other units on Perseverance such as UHF

transceivers, radar, X-ray (identifying chemicals), and cameras are controlled with

XQR4VFX60 and XQR2V3000 FPGAs.

Figure 26 A representative picture of Perseverance

Chapter 2

32

2.5.5 Small Satellite Communication system

FPGAs are also used in software defined radio (SDR) transponder design for the

emerging SmallSat and CubeSat industry. Small spacecraft (SmallSats) consists of

spacecraft lightweight since the concept is to obtain a system with a mass less than

180 kg and the size is comparable with a large kitchen fridge [26]. Instead, CubeSat

belongs to the class of nanosatellites that means a mass spanning from 1 Kg to 10

Kg [26].

Figure 27 An example of CubeSat

The FPGA substitutes, also in this case, the role of the processor since in the SDR

the software manages all the function of filtering, carrier recovery, error correction

or framing [27]. Article [27] demonstrates how the usage of FPGA in this

application highly simplifies the computational payload.

Chapter 3

33

Chapter 3

Normal estimation algorithm
The aim of the thesis work here presented is to develop an algorithm which is able

to reconstruct the surface represented by a point cloud. In the future, the algorithm

should be part of the vision system mounted on a little rover, available in Thales

Alenia Space facilities. As explained in the first chapter, there exist plenty of

methods to reconstruct the surface, starting from a dataset representing it. The

method followed in this work is the one based on [28].

3.1 Introduction of the problem

A point cloud P is a collection of points in 3D, where the coordinates of each point

𝑝𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) are expressed with respect to a fixed coordinate system, usually

having its origin at the sensing device used to acquire data [29]. Each point of the

point cloud returns a measure of the distances between the investigated surface and

the three axes, whose intersection point coincides with the assumed viewpoint. In

this case, the initial assumption about data is that a time – of – flight camera,

mounted on top of a rover, returns a cloud of points equally spaced points. A time

– of – flight camera is an imaging system that works by measuring the time it takes

for a light signal to travel from a camera to an object and back again. The camera

emits a short burst of light, usually in the form of a pulsed laser, which reflects off

the object and returns to the camera. By measuring the time it takes for the light to

make this round-trip, the camera can calculate the distance to the object. This

process is repeated many times per second, allowing the camera to create a 3D map

of the scene. In particular, the starting hypothesis is that there is no noise corrupting

data.

The aim of the proposed algorithm is to compute surface normals, 3D features

which represent a fundamental source of information of the inspected surface.

Indeed, surface normals indicate the direction that a surface is facing at each point

and can be used to obtain crucial information about the environment, such as the

Chapter 3

34

curvature of the surface or the presence of edges, as demonstrated in [30]. For

example, article [31] introduces a geometrical index, computed from the three

components of the normal vector 𝑁 = (𝑁𝑋 , 𝑁𝑌, 𝑁𝑍), and the index is employed in

distinguish horizontal surfaces from vertical ones.

To compute surface normals, it is important to outline the fact that the acquired

point cloud represents a set of point samples on the real surface so there may two

possibilities:

• Compute an approximation of the surface from the acquired dataset, using

surface meshing techniques and then compute the surface normals from the

mesh.

• Use approximations to infer the surface normals from the point cloud

directly.

In particular, I decided to develop the second method since it allows for faster

computations, which may be crucial in space applications where resources are

limited. For example, in [30], the adoption of the statistical approach avoids the

clustering phase, since the edges are extracted exploiting only the computation of

the eigenvalues of the covariance matrix. The problem of determining the normal

to a point on the surface is approximated by the problem of estimating the normal

of a plane tangent to the surface, which in turn becomes a least-square plane fitting

estimation problem [29]. In particular, the followed approach is the one exploited

in [28] and [30], where the Principal Component Analysis (PCA) is exploited in

order to compute the normal vector in the considered point. At this point, it is crucial

to outline that the computation of the normal involves the definition of a

neighborhood of points, so the amount of its surrounding points is an important

factor affecting accuracy of the point normal [32]. It is fundamental to define the

correct number of neighbors and surrounding points are referred to as 𝑘 – neighbors,

where 𝑘 is the number of the nearest points around the target one. Article [32]

demonstrates how the number 𝑘 must be carefully chosen since a too small or too

large value may lead to inappropriate computation of the normal.

Chapter 3

35

3.2 PCA

Principal Component Analysis (PCA) is an unsupervised learning method, which

is widely exploited in the machine learning field to extract important features about

the collected data. It raised in the context of psychometrics in the 1930’s and

nowadays it is a well-established machine learning technique, adopted in a wide

range of applications spanning from finance, medicine to engineering or image

processing [28]. PCA allows for the computation of the directions of maximal

variance for the input data, that are the orthogonal directions along which the

variation of data is the highest.

3.2.1 Mathematical explanation

The starting hypothesis is a data matrix 𝐴 ∈ ℝ𝑑,𝑁, where 𝑑 represents the space

dimension (i.e., the number of observed features) while 𝑁 represents the number of

performed measurements, so 𝐴 = [𝑎(1) …𝑎(𝑁)], where 𝑎(𝑖) ∈ ℝ𝑑. At this point, it

is possible to define the centered data matrix as:

𝐴𝑐 = 𝐴 − �̂�𝟏𝑁
𝑇 �̂� ≐

1

𝑁
∑𝑎(𝑖)

𝑖

At the same way, centered data points are defined as:

�̃�(𝑖) = 𝑎(𝑖) − �̂�, 𝑖 = 1, … , 𝑁

Before moving on, it is important to introduce the concept of covariance matrix and

the methods that can be used to estimate it.

3.2.1.1 Covariance

Given a collection of numbers 𝑧1, … , 𝑧𝑁, the variance is a measure of the mean

spread distance of the data with respect to the center, which is defined as the average

of the 𝑧𝑖:

Chapter 3

36

𝜎2 =
1

𝑁
∑(𝑧𝑖 − �̂�)2

𝑁

𝑖=1

Input data may be vectors and not scalar, so let us consider the case in which the

input data is a matrix 𝐴 ∈ ℝ𝑑,𝑁. In this case, the measure of variation previously

provided by the variance is expressed by means of the covariance matrix, which is

a measure of how much each of the dimensions varies from the mean with respect

to each other:

𝑆 =
1

𝑁
∑(𝑎(𝑖) − �̂�)

𝑁

𝑖=1

(𝑎(𝑖) − �̂�)𝑇 =
1

𝑁
𝐴𝐶𝐴𝐶

𝑇

The covariance matrix is a square matrix of dimension 𝑑𝑥𝑑. It is symmetric and

positive – semidefinite.

A direction in the space can be identified by a unit vector 𝑣 ∈ ℝ𝑑 so it is possible

to define the score of an input datum 𝑥 ∈ ℝ𝑑 along direction 𝑣 as the projection of

𝑥 onto 𝑣, which is computed by means of the scalar product 𝑣𝑇𝑥. At the same way,

the scores of the centered data points along direction 𝑣 are expressed as:

𝑠𝑖 = 𝑣𝑇(𝑎(𝑖) − �̂�) 𝑖 = 1,… ,𝑁

The values 𝑠𝑖 provides an insight about the distribution of the data points along the

considered direction 𝑣. In particular, the variance of the data along direction 𝑣 is

given by:

𝜎𝑣
2 =

1

𝑁
∑𝑠𝑖

2

𝑁

𝑖=1

=
1

𝑁
∑𝑣𝑇(𝑎(𝑖) − �̂�)

𝑁

𝑖=1

(𝑎(𝑖) − �̂�)𝑇𝑣

= 𝑣𝑇 (
1

𝑁
∑𝑣𝑇(𝑎(𝑖) − �̂�)

𝑁

𝑖=1

(𝑎(𝑖) − �̂�)𝑇)𝑣 = 𝑣𝑇𝑆𝑣

Where 𝑆 is the sample covariance matrix. Then, the principal direction is the

directional of maximal variance, so it can be obtained by solving the optimization

Chapter 3

37

problem, with respect to the direction 𝑣, along which the variance assumes its

higher value:

𝑣𝑚𝑎𝑥 = max
||𝑣||2=1

𝑣𝑇𝑆𝑣

Once the direction of highest variance has been found, it is possible to find the

others, by following the deflation method. It consists of projecting the data points

on the subspace which is orthogonal to the previously computed direction and then

finding the direction of maximal variance for projected data. If the dimension of

input space is equal to 𝑑, the process can be repeated 𝑑 times or it can be stopped

at a certain 𝑘 < 𝑑. Figure 28 is an example of a two – dimensions point cloud and

its principal directions:

Figure 28 Principal components of a dataset

In this case, the first principal direction is the direction that maximizes the variance

of the projected data while the second principal direction coincides with the

smallest principal component, along which the variance is the smallest. There exist

two main method that allows for the determination of the principal directions:

• Eigenvalue decomposition (EVD) of the covariance matrix;

• Singular value decomposition (SVD) of the (centered) data matrix.

Only the first one is investigated in this thesis work.

Chapter 3

38

3.2.1.2 Eigenvalue decomposition of the covariance matrix

First, it is necessary to introduce the eigenvalue decomposition and the Rayleigh

variational representation theorem. The algebra theorem for eigenvalue

decomposition for symmetric matrices states that every symmetric matrix 𝑆 ∈

ℝ𝑚,𝑚 can be decomposed as:

𝑆 = 𝑈Λ𝑈𝑇

In the equation above, Λ = diag(𝜆1, … , 𝜆𝑚) is a diagonal matrix, whose entries are

the eigenvalues of 𝑆, 𝜆1 ≥ ⋯ ≥ 𝜆𝑚 while 𝑈 = [𝑢1, … , 𝑢𝑝] is a 𝑚 × 𝑚 orthogonal

matrix, containing the eigenvectors 𝑢𝑖 of 𝑆.

The Rayleigh variational theorem states that, given a symmetric matrix 𝑆 ∈ ℝ𝑚,𝑚,

then its largest and smallest eigenvalue can be computed by solving the two

optimization problems:

𝜆𝑀𝐴𝑋 = 𝜆1(𝑆) = max
𝑤 ∶ ||𝑤||2=1

𝑤𝑇𝑆𝑤

𝜆𝑀𝐼𝑁 = 𝜆𝑚(𝑆) = min
𝑤 ∶ ||𝑤||2=1

𝑤𝑇𝑆𝑤

The two optima are attained, respectively, at 𝑤𝑀𝐴𝑋 = 𝑢1 and 𝑤𝑀𝐼𝑁 = 𝑢𝑚.

Before, it has been asserted that the principal direction can be find by solving the

following optimization problem involving the sample covariance matrix:

𝑣𝑚𝑎𝑥 = max
||𝑣||2=1

𝑣𝑇𝑆𝑣

Since the covariance matrix is symmetric, its eigenvalue decomposition can be

written as 𝑆 = ∑ 𝜆𝑖𝑢𝑖𝑢𝑖
𝑇𝑑

𝑖=1 , with 𝜆1 ≥ ⋯ ≥ 𝜆𝑑 and 𝑈 = [𝑢1, … , 𝑢𝑑] is orthogonal.

According to the Rayleigh variational theorem, the above optimization problem is

equal to:

𝜆𝑀𝐴𝑋 = max
||𝑣||2=1

𝑣𝑇𝑆𝑣

As a consequence, the solution for the optimization problem is 𝑢1, which is the

eigenvector of S corresponding to its largest eigenvalue. At the same way, the

eigenvector 𝑢2, which is the eigenvector of S associated to its second largest

Chapter 3

39

eigenvalue, returns the second direction of maximal variance and so on. Finally, the

𝑘 directions of largest variance can be obtained by performing the eigenvalue

decomposition of the covariance matrix.

3.2.2 PCA for the computation of normal vectors

To reconstruct the surface represented by a point cloud, the main idea is to associate

a tangent plane with each of the data points 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), which locally

approximates the surface. This plane represents the best least squares fitting to the

point 𝑝𝑖 and its neighbors. The general equation for the tangent plane, lying in three

dimensions, is:

𝑃𝑇 ∶ 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0

The tangent plane can be fully represented by two quantities, a center 𝑝𝐶 =

(𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) and the unitary normal vector 𝑁 = (𝑁𝑋 , 𝑁𝑌, 𝑁𝑍) which is orthogonal

to the surface. The information provided by the normal vector is fundamental since

its three components coincide with the coefficients 𝑎, 𝑏, 𝑐 defining the tangent

plane. To compute the center and the normal vector, it is necessary to consider the

𝑘 – neighborhood of 𝑝𝑖, which is the collection of the closest 𝑘 points with respect

to 𝑝𝑖 and they are fundamental to capture the local geometry. At this point:

• The center 𝑝𝐶 is computed as the centroid of the collection of points made

by 𝑝𝑖 and its 𝑘 neighbors, according to the formula:

𝑝𝐶 =
1

𝑘
∑𝑝𝑖

𝑘

𝑖=1

Since 𝑝𝐶 has three components, the above formula leads to the following

three relations:

𝑥𝐶 =
1

𝑘
∑𝑥𝑖

𝑘

𝑖=1

 𝑦𝐶 =
1

𝑘
∑𝑦𝑖

𝑘

𝑖=1

 𝑧𝐶 =
1

𝑘
∑𝑧𝑖

𝑘

𝑖=1

Chapter 3

40

• The normal vector 𝑁 is computed as one of the eigenvectors of the positive

– semidefinite symmetric covariance matrix 𝐶𝑂𝑉:

𝐶𝑂𝑉 = (

𝐶𝑜𝑣(𝑥, 𝑥) 𝐶𝑜𝑣(𝑥, 𝑦) 𝐶𝑜𝑣(𝑥, 𝑧)
𝐶𝑜𝑣(𝑦, 𝑥) 𝐶𝑜𝑣(𝑦, 𝑦) 𝐶𝑜𝑣(𝑦, 𝑧)
𝐶𝑜𝑣(𝑧, 𝑥) 𝐶𝑜𝑣(𝑧, 𝑦) 𝐶𝑜𝑣(𝑧, 𝑧)

)

Each element of the covariance matrix can be computed as:

𝐶𝑂𝑉(𝑥, 𝑥) =
1

𝑘
∑(𝑥𝑖 − 𝑥𝐶)

2

𝑘

𝑖=1

𝐶𝑂𝑉(𝑦, 𝑦) =
1

𝑘
∑(𝑦𝑖 − 𝑦𝐶)

2

𝑘

𝑖=1

𝐶𝑂𝑉(𝑧, 𝑧) =
1

𝑘
∑(𝑧𝑖 − 𝑧𝐶)

2

𝑘

𝑖=1

𝐶𝑂𝑉(𝑥, 𝑦) = 𝐶𝑂𝑉(𝑦, 𝑥) =
1

𝑘
∑(𝑥𝑖 − 𝑥𝐶)(𝑦𝑖 − 𝑦𝐶)

𝑘

𝑖=1

𝐶𝑂𝑉(𝑥, 𝑧) = 𝐶𝑂𝑉(𝑧, 𝑥) =
1

𝑘
∑(𝑥𝑖 − 𝑥𝐶)(𝑧𝑖 − 𝑧𝐶)

𝑘

𝑖=1

𝐶𝑂𝑉(𝑦, 𝑧) = 𝐶𝑂𝑉(𝑧, 𝑦) =
1

𝑘
∑(𝑦𝑖 − 𝑦𝐶)(𝑧𝑖 − 𝑧𝐶)

𝑘

𝑖=1

So, each entry of the covariance matrix is computed as the sum of the squared

distances between each point 𝑝𝑗 belonging to the neighboorhod of point 𝑝𝑖 and the

centroid 𝑝𝐶. Then, this sum is divided by the number of points 𝑘 used for the

computation. Since 𝐶𝑂𝑉 ∈ ℝ3,3, the number of its eigenvalues is equal to three as

well as the number of associated eigenvectors. The adopted representation is 𝜆1 ≥

 𝜆2 ≥ 𝜆3 for the eigenvalues and 𝑢1, 𝑢2, 𝑢3 for the respective eigenvectors. Before,

it has been explained that PCA allows to find the principal components, which are

the directions of maximal variation, as the eigenvectors of the covariance matrix,

Chapter 3

41

which is built upon the input data. In particular, the eigenvector associated to the

greatest eigenvalue returns the direction of maximal variance while the eigenvector

associated to the smallest eigenvalue returns the direction of minimal variance. In

this case, the two eigenvectors, 𝑢1 and 𝑢2, associated to the largest and to the second

largest eigenvalues, 𝜆1 and 𝜆2, define the tangent plane upon which point 𝑝𝑖 and its

𝑘 neighbors lay while the eigenvector 𝑢3, associated to the smallest eigenvalue 𝜆3,

is perpendicular to this plane. It means that the normal vector can be found by

computing the eigenvector associated to the smallest eigenvalue of the covariance

matrix. It is important to outline that not only the three components of the normal

vector have to be defined but also its orientation, in such a way to completely define

an oriented tangent plane. Indeed, when computing the eigenvector 𝑢3 associated

to the smallest eigenvalue 𝜆3 of the covariance matrix, it could be chosen either

𝑁 = 𝑢3 or 𝑁 = −𝑢3. If the point cloud is obtained from range cameras, like the

time – of – flight camera, it is easy to infer the orientation from the viewing

direction. According to [29], if there is a single viewpoint 𝑣𝑝 (i.e., the point from

where data are captured) and it is known, the normal vector computed for point 𝑝𝑖,

indicated by 𝑁𝑖, is correctly oriented if the following equation is satisfied:

�⃗⃗� 𝑖∙ (𝑣𝑝 − 𝑝𝑖) > 0

If there are multiple acquisition viewpoints, it become harder to correctly orient the

normal, but this aspect is not covered in this thesis work since it is out of the scope.

In the context of surface reconstruction techniques, the importance of the definition

of the 𝑝𝑖 neighborhood has been already pointed out. In [4], some common

approaches consist of defining a neighborhood by considering the 𝑘 nearest points

(KNNs) with respect to 𝑝𝑖 or by taking into account all the points lying within an ε

– ball, that is a spherical neighborhood centered on 𝑝𝑖 and having radius ε. In this

last case, all the 𝑘 points that satisfy the property to be distant from 𝑝𝑖 less than ε

are considered as part of the 𝑝𝑖 neighborhood. For example, in [31] the least square

best fitting plane of a point 𝑝𝑖 is determined by considering the neighborhood points

that are contained in a sphere of radius 𝑟. In the case where the data contains little

Chapter 3

42

or no noise, 𝑘 is not a crucial parameter since the output has been empirically

observed to be stable over a wide range of settings [28]. In most of cases, it is

usually better to choose a value of 𝑘 that automatically changes, based on the

considered point 𝑝𝑖. In more general applications, it is important to define an

appropriate value for 𝑘 since, if 𝑘 is not large enough, the noise prevails over true

data and the eigenvalues, computed through the PCA, tend to attain close values.

On the other side, if 𝑘 is too large, the points are much more widespread, and the

surface curvature tends to increase the “thickness” of the neighborhood [28]. In the

examined case, it is assumed a uniform sampling of the surface, so it is not

necessary to adopt a complex technique to establish how many points shall be taken

into account or which but simply the 𝑘 = 8 nearest points are included.

3.2.3 Computation of the smallest eigenvector

Previously, it has been asserted that, for each point 𝑝𝑖 of the point cloud, the vector

which is normal to the surface can be computed by calculating the eigenvector 𝑢3,

associated to the smallest eigenvalue 𝜆3 of the covariance matrix 𝐶𝑂𝑉. In particular,

the covariance matrix is a positive – semidefinite symmetric matrix so it is included

in the class of Hermitian matrices (a Hermitian matrix is a square complex matrix,

which is equal to its conjugate transpose). For the class of Hermitian matrices, the

most powerful and reliable algorithms are available [34]. The computation of the

eigenvectors for a square 3 × 3 matrix is not so difficult to perform by hand but, in

this case, it has to be developed to be performed by a FPGA so an iterative method

shall be applied.

The simplest eigenvalue problem is to compute the highest eigenvalue along with

its eigenvector and, for this task, the power method is the simplest iterative method

[34]. Before explaining how the power method works, it is necessary to define the

dominant eigenvalue. Given the 𝑛 eigenvalues 𝜆1, … , 𝜆𝑛 of a 𝑛 × 𝑛 matrix 𝐴, 𝜆1 is

called the dominant eigenvector of 𝐴 if |𝜆1| > |𝜆𝑖| ∀ 𝑖 = 2,… , 𝑛.

Power method allows for the computation of the dominant eigenvalue and the

associated eigenvector. The classical power method is iterative and the first step

Chapter 3

43

consists of making an assumption on the initial approximation of the dominant

eigenvector, 𝑢0. Then, it is computed the following sequence:

𝑢1 = 𝐴𝑢0

𝑢2 = 𝐴𝑢1 = 𝐴2𝑢0

⋮

𝑢𝑘 = 𝐴𝑢𝑘−1 = 𝐴𝑘𝑢0

The value 𝑘 represents the maximum number of iterations. It could be chosen to

stop before performing all the 𝑘 iterations if, for example, the difference between

the eigenvector computed at the step 𝑗 and the eigenvector computed at the step 𝑗 −

1 is smaller than a certain threshold. However, the power method tends to produce

approximations with large entries so some methods have been developed, that scale

down the approximation before proceeding to the next iteration. One way to

accomplish this scaling is to determine the component of 𝐴𝑢𝑖 that has the largest

absolute value and to divide each entry of 𝐴𝑢𝑖 by this value. In this way, the

resulting vectors has components whose absolute values are less than or equal to 1.

Then, if 𝑢1 is the dominant eigenvector, the corresponding eigenvalue is computed

by means of the so-called Rayleigh quotient:

𝜆1 =
𝐴𝑢1 ∙ 𝑢1

𝑢1 ∙ 𝑢1

In [34], the following power method for Hermitian matrices is proposed:

ALGORITHM – Power Method for HEP

(1) Choose an initial approximation 𝑢0 = �̅� for the dominant eigenvector.

(2) for 𝑘 = 1,2, …

(3) 𝑢 =
𝑢0

||𝑢0||2

(4) 𝑢0 = 𝐴𝑢

(5) 𝜆 = 𝑢𝑇𝑢0

(6) if ‖𝑢0 − 𝜆𝑢‖2 ≤ 휀𝑇𝐻𝑅|𝜆| stop

(7) end for

Chapter 3

44

(8) Dominant eigenvalue → 𝜆

 Dominant eigenvector → 𝑢

In this case, the scaling procedure consists of dividing the result of the previous

computation (or the initial guess for 𝑘 = 1) by the 2-norm of the vector itself. Then,

it is computed an estimate of the dominant eigenvector and the 2-norm of the

difference between the newly computed eigenvector and the product between the

previously computed eigenvector and the eigenvalue is compared with a threshold,

defined as the product between the absolute value of the dominant eigenvalue and

a certain coefficient 휀𝑇𝐻𝑅. Obviously, the smaller is 휀𝑇𝐻𝑅, the higher is the number

of iterations necessary to achieve convergency and the better is the precision.

However, in the considered case of the normal estimation, it is needed to estimate

the eigenvector associated to the smallest eigenvalue. For this reason, the inverse

iteration method for Hermitian matrices explained in [34] can result really useful.

First, let us introduce the algorithm:

ALGORITHM – Inverse power method

(1) Choose an initial approximation 𝑢0 = �̅� for the dominant eigenvector.

(2) for 𝑘 = 1,2, …

(3) 𝑢 =
𝑢0

||𝑢0||2

(4) 𝑢0 = (𝐴 − 𝜎𝐼)−1𝑢

(5) 𝜃 = 𝑢𝑇𝑢0

(6) if ‖𝑢0 − 𝜃𝑢‖2 ≤ 휀𝑇𝐻𝑅|𝜃| stop

(7) end for

(8) Dominant eigenvalue → 𝜆 = 𝜎 +
1

𝜃

 Dominant eigenvector → 𝑢 =
𝑢0

𝜃

The inverse power method is based on the simple consideration that, if an

eigenvalue is the smallest one for a matrix, it is also the largest for the inverse of

Chapter 3

45

the same matrix. So, it is possible to compute the dominant eigenvalue and the

associated eigenvector for the inverse of the initial matrix and, at the end, the

smallest eigenvalue of the initial matrix can be obtained as the reciprocal of the

largest eigenvalue found for the inverse matrix. Moreover, since inversion is not

always possible, it is sufficient to add or subtract to the entries of the matrix a little

quantity, 𝜎, called shift. In this case, if the matrix 𝐴 is not invertible, it is possible

to find a close approximation of its smallest eigenvector. Moreover, the inverse

power method allows to find the eigenvalue closest to 𝜎 and, as we will see later, it

results convenient for our algorithm, where surfaces are flat so the eigenvalues tend

to be close to zero, as asserted in [30]. In general, if the eigenvalues are known, it

is sufficient to choose 𝜎 very close to the desired eigenvalue and the inverse

iteration can converge very quickly.

3.3 Normal estimation algorithm

Once all the theoretical bases have been introduced, it is possible to explain the

algorithm developed in this thesis work. The main idea is to have a time – of – flight

camera that returns a matrix of dimensions 25 × 25, for a total of 625 entries. Each

entry of the matrix contains a point 𝑝𝑖 of the inspected surface, so it is made up by

three coordinates, 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖). The computation of the normal can be

performed only for those points that are surrounded by 8 points. The single cell

involved in the computations has the following structure:

Chapter 3

46

Figure 29 Single cell of the input matrix

It means that, for each point 𝑝𝑖 with at least eight neighbors, the following steps are

performed:

1. Computation of the centroid 𝑝𝐶 = (𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶) of the neighborhood,

according to the formula:

𝑥𝐶 =
1

9
∑𝑥𝑖

9

𝑖=1

 𝑦𝐶 =
1

9
∑𝑦𝑖

9

𝑖=1

 𝑧𝐶 =
1

9
∑𝑧𝑖

9

𝑖=1

2. For each point 𝑝𝑗 belonging to the neighborhood of 𝑝𝑖, it is computed the

Euclidean distance between the 𝑗𝑡ℎ point and the centroid 𝑝𝐶, according to

the formula:

𝑑𝑗 = √(𝑥𝑗 − 𝑥𝐶)2 + (𝑦𝑗 − 𝑦𝐶)2 + (𝑧𝑗 − 𝑧𝐶)2 𝑗 = 1,… ,9

3. At this point, if the distance 𝑑𝑗 between the 𝑗𝑡ℎ point and the centroid 𝑝𝐶 is

greater than a chosen threshold 𝑑𝑇𝐻𝑅, it would be discarded and the

algorithm proceeds with the computation of the Euclidean distance between

𝑝𝑖

Chapter 3

47

the successive point 𝑝𝑗+1 and the centroid 𝑝𝐶. Otherwise, if the distance 𝑑𝑗

is less than the threshold, the point 𝑝𝑗 can be used for the computation of

the covariance matrix Σ𝑗 and a counter 𝑘 is increased. For point 𝑝𝑗, the

covariance matrix is given by:

Σ̂𝑗 = (

𝑥𝑗 − 𝑥𝐶

𝑦𝑗 − 𝑦𝐶

𝑧𝑗 − 𝑧𝐶

) (𝑥𝑗 − 𝑥𝐶 𝑦𝑗 − 𝑦𝐶 𝑧𝑗 − 𝑧𝐶)

Σ̂𝑗 = (

(𝑥𝑗 − 𝑥𝐶)
2 (𝑥𝑗 − 𝑥𝐶)(𝑦𝑗 − 𝑦𝐶) (𝑥𝑗 − 𝑥𝐶)(𝑧𝑗 − 𝑧𝐶)

(𝑥𝑗 − 𝑥𝐶)(𝑦𝑗 − 𝑦𝐶) (𝑦𝑗 − 𝑦𝐶)
2 (𝑦𝑗 − 𝑦𝐶)(𝑧𝑗 − 𝑧𝐶)

(𝑥𝑗 − 𝑥𝐶)(𝑧𝑗 − 𝑧𝐶) (𝑦𝑗 − 𝑦𝐶)(𝑧𝑗 − 𝑧𝐶) (𝑧𝑗 − 𝑧𝐶)
2

)

Each matrix Σ̂𝑗 is added to the covariance matrix computed for the previous

points, since the total covariance matrix is given by the sum of the matrices

computed for each point 𝑝𝑗.

4. When the procedure to check how many points are at a distance from the

centroid less than a certain threshold is completed, it is performed a control

on 𝑘:

• if the points within the threshold are less or equal to six, the

algorithm cannot proceed with the computation of the normal and it

is established that the three components of the normal vector are

equal to zero. In this case, 𝑁 = (0,0,0).

• If the points within the threshold are greater than six, the algorithm

can proceed with the computation of the normal vector. Before going

on with this step, it is necessary to divide all the entries of the

covariance matrix Σ̂𝑖 (where 𝑖 represents the fact that the covariance

matrix is computed for the 𝑖𝑡ℎ point of the input data) by the number

of points 𝑘 used for the computation of the matrix. The final formula

for the covariance matrix is:

Chapter 3

48

Σ̂𝑖 =
1

𝑘
∑Σ̂𝑗

𝑘

𝑗=1

=
1

𝑘
∑(𝑝𝑗 − 𝑝𝐶)(𝑝𝑗 − 𝑝𝐶)

𝑇

𝑘

𝑗=1

5. Now, it is exploited the inverse power method for the computation of the

eigenvector associated to the smallest eigenvalue of the covariance matrix

Σ̂𝑖, which corresponds to the normal vector centered on point 𝑝𝑖. The steps

to be performed are shown here:

5.1 Compute the corrected covariance matrix, Σ̂𝑖,𝐼𝑁𝑉 = (Σ̂𝑖 − 𝜎𝐼)−1.

5.2 Initialize the estimate for the eigenvector, 𝐸𝑉0 = (1 1 1).

5.3 Compute the normalized eigenvector, 𝐸𝑉 =
𝐸𝑉0

‖𝐸𝑉0‖2
.

5.4 Compute the new estimate for the eigenvector, 𝐸𝑉0 = Σ̂𝑖 ∙ 𝐸𝑉.

5.5 Compute the corresponding eigenvalue, 𝜃 = 𝐸𝑉𝑇 ∙ 𝐸𝑉0.

5.6 Compare the 2-norm of the vector that is computed as the difference

between the estimate 𝐸𝑉0 and 𝜃𝐸𝑉 with a threshold, defined as the

product between the absolute value of the eigenvalue 𝜃 and a certain

threshold 𝛿. If ‖𝐸𝑉0 − 𝜃𝐸𝑉‖2 ≤ |𝜃|𝛿, then the algorithm can stop

and the normal components are partially given by 𝐸𝑉0. Otherwise, it

is necessary to restart from point 5.2. The algorithm can proceed

until a maximum number of iterations, 𝑁𝑀𝐴𝑋 is achieved. However,

when computations are completed, the final normal components are

set equal to the last computed value of 𝐸𝑉0, divided by the last

computed value of 𝜃.

Chapter 3

49

3.4 Generation of the data and thresholds

To prove the algorithm, the main idea is to create a matrix data that represents a

surface like the one shown in figure:

Figure 30 Surface used for the computations

The surface shown in figure should represent a portion of area of dimensions

5 × 5 𝑚𝑡. Each axis is equally divided in 25 parts and it is considered a point for

each of these parts, for a total of 625 points. So, the main idea is to uniformly sample

the 𝑥 and 𝑦 axes representing this surface. For what regards the value of coordinate

𝑧, it can assume different values based on the considered region:

• Clear blue region – The coordinate 𝑧 is equal to the highest value it could

attain, that is 𝑧𝐻𝐼 = 0.5 𝑚𝑡.

• Dark green region - The coordinate 𝑧 is equal to the lowest value it could

attain, that is 𝑧𝐿𝑂 = 0 𝑚𝑡.

• Clear green region – The coordinate 𝑧 takes on the values between 𝑧𝐻𝐼 and

a middle value, 𝑧𝑀𝐼𝐷 = 0.25 𝑚𝑡. The set of values between 𝑧𝐻𝐼 and 𝑧𝑀𝐼𝐷

are obtained by uniformly sampling the interval between the two extremes

and the coordinate 𝑧 tends to decrease in this region, as the 𝑥 coordinate

increases.

Chapter 3

50

• Purple region – The coordinate 𝑧 takes on the values between 𝑧𝑀𝐼𝐷 and 𝑧𝐿𝑂.

The set of values between 𝑧𝐿𝑂 and 𝑧𝑀𝐼𝐷 are obtained by uniformly sampling

the interval between the two extremes and the coordinate 𝑧 tends to increase

in this region, as the coordinate increases.

The uniformly distributed samples, representing the surface, are placed as shown in

the following picture:

Figure 31 Sampling of the example surface

The points that are placed on the border between the blue light region and the dark

green region, as well as the points on the border between the clear – green region

and the purple region should not be used for the normal computation since these

points represent the limit case for the implemented algorithm. The reason why the

discussed data distribution has been chosen is to demonstrate that the algorithm is

able to identify in which neighborhood is not possible to compute the normal vector

and those in which the computation is feasible. According to the input data, the

thresholds and fixed values that are adopted in the algorithm have been set through

a trial – and – error procedure, by using some data whose results were already

known and by exploiting this data in a C code. The chosen values are the following

ones:

Chapter 3

51

- The threshold for the Euclidean distance has been set equal to 𝑑𝑇𝐻𝑅 =

0.3 𝑚𝑡. Then, considered a point 𝑝𝑖 and its neighborhood, if a point 𝑝𝑗 is

distant from 𝑝𝑖 more than 0.3 𝑚𝑡, it is discarded.

- The shift value used in the inverse power method algorithm is equal to ℴ =

0.001. In this way, the entries of the matrix are not so far from the original

values, so that the final results are a good approximation of the original

matrix eigenvectors.

- The maximum number of iterations has been set equal to 𝑁𝑀𝐴𝑋 = 256.

- The threshold to assert if the new estimate of the eigenvector can be

accepted or not is set equal to 𝛿 = 0.005.

Chapter 4

52

Chapter 4

Development of hardware unit
The aim of the thesis is not only to develop an algorithm for the computation of the

normal vectors but also to implement it on a FPGA. Indeed, as previously explained

in chapter 2, a FPGA allows for a high level of parallelism which could result really

useful if considered the high amount of mathematical operations performed on the

data.

4.1 Overview of embedded system

In general, embedded systems represent the computing elements embedded within

an electronic device. The main characteristics that distinguish embedded systems

are:

- the property to be single – functioned, so they repeatedly execute a single

program;

- the fact that they are relatively low – cost and low – power, while ensuring

small dimensions and good performances in terms of speed [1];

- the reactiveness, so they continuously react to changes in the system’s

environment and they are designed to compute certain results in real – time

with almost zero delay.

There exist three main types of architecture, by means of which an embedded

system can be realized:

- Single – purpose processors, that are digital circuit designed to execute one

program. They are adopted as coprocessor or accelerators, so they are

usually adopted to speed up computations. Then, single – purpose

processors only contain the element necessary to execute a single program.

The structure of a single – purpose processor is shown in Figure 32:

Chapter 4

53

Figure 32 Single – purpose processor architecture

The data path is the set of components used to perform functional operations

on data and to store them on registers. It is the entity in charge to perform

the computation between primary inputs, which provide the data to be

elaborated, and primary outputs, which return the results of computation.

The data path includes a set of hardware resources, that could be storage,

functional or interconnection units, and it defines how those modules are

connected each other. All the RTL components can be allocated in different

quantities and types and can be connected at design time through different

interconnection schemes, like a mux or a bus. On the other side, the flow of

the data through the different blocks is monitored and determined by the

controller. The management of the computations as well as the handling of

the data flow in the data path is performed by setting control signals values.

Controller inputs may come from primary inputs, the so-called control

inputs, or from data path components, such as status signals that come as

results of comparisons. Finally the results of the performed operations, as

well as the input values, can be stored in a data memory.

- Application – specific processors, that are programmable processors

optimized for a particular class of applications having common

characteristics. As it is possible to see in the figure below, in the

architecture, one of the main differences with respect to the single – purpose

Chapter 4

54

processor is the presence of a program memory, which is used to store

executable code, such as the instructions that the software needs to execute

in order to perform the particular task for which the system has been

designed. The other major difference is the presence of a more structured

control unit, which reads instructions from memory, decodes them, and

executes them. Another difference is the presence of a custom Arithmetic

Logic Unit (ALU), which performs a wide range of arithmetic and logical

operations.

Figure 33 Application – specific processor architecture

- General-purpose processor, which is a type of central processing unit (CPU)

that is designed to handle a wide variety of computational tasks, ranging

from basic arithmetic operations to complex software programs. The

architecture is very similar to the one of the application – specific processor

but there is a general and not – custom ALU, which can perform a wider

range of operations and the number of instructions that the processor can

understand and execute is higher since general – purpose processors are

Chapter 4

55

designed to handle a wider range of tasks. The general architecture is shown

in the picture below:

Figure 34 General – purpose processor architecture

Moreover, the design of embedded systems differs in the way in which a digital

circuit implementation is mapped onto an integrated circuit. The design could be

realized exploiting:

- Full – custom/VLSI, in which the digital implementation of the embedded

system is fully customized so all the steps of placing transistors, sizing them

and routing wires have to be performed.

- Semi – custom, in which lower layers are fully or partially built so designers

have to handle with routing of wires and placing blocks.

Programmable Logic Devices (PLD), in which all layers already exist and

connections between integrated circuits can be created or destroyed to implement

desired functionality, belong to the second group. Here, it is possible to find FPGAs.

4.2 Register Transfer Level (RTL)

One of the main techniques used for the implementation of embedded system is the

Register Transfer Level technique. It is a design technique in which a system is

Chapter 4

56

described in terms of data transfer between registers. The data are stored in registers

after they have been subjected to a certain number of operations and the flow of

data through registers is controlled by means a controller, which is implemented as

a finite – state machine. The principal steps to implement an embedded system

through the RTL design technique are:

1. Capture a high – level state machine, which described at high level the

system’s desired behavior. High level state machines are an extension of

finite state machines, in which states and transitions are not only simple

Boolean operations on single – bit inputs and outputs.

2. Create the data path which is in charge of carrying out the data operations

of the high – level state machine.

3. Derive the controller, which is usually represented as a finite state machine.

Then, it is necessary to convert the high – level state machine to a finite –

state machine for the controller, by replacing data operation with setting and

reading of control signal to and from the data path.

4. Connect the data path to the controller.

The most common architecture for the design of digital circuits by means of the

register transfer level technique is the following one:

Figure 35 RTL Design Process architecture

Chapter 4

57

4.3 Development of the algorithm

The main task of this chapter is to describe the adopted method to develop a

hardware unit which implements the previously – discussed algorithm. In

particular, the hardware – unit here proposed is a single – purpose processor, since

it is realized to implement the only operations discussed in the algorithm. The

design is carried on by exploiting the register transfer level (RTL) technique and

the VHDL (VHSIC Hardware Description Language) is the language used for the

description of the circuit, which implements the mathematical operations needed to

perform the steps of the normal estimation algorithm.

The algorithm is characterized by several sequential operations that can be

parallelized by means of the hardware realization of the algorithm. A reduction in

the number of sequential operations allows for a reduction in the computation time

so this common part of surface reconstruction algorithms, which is quite expensive

from a time – consuming point of view, is well-suited to be implemented as a

hardware accelerator. Moreover, the normal estimation algorithm’ steps are applied

for each point that belongs to the point cloud, so it is repeated a huge number of

times. This means that, the simple hardware unit here – implemented, could be

adopted in future works to optimize the speed of the global surface reconstruction

algorithm. Before going on with the explanation, it is important to point out that the

design of the digital circuit has been carried on by means of the Intel® software

Quartus®.

At this point, the first step to be performed is describe the functions that the

algorithm has to implement designing the high – level state machine, which

described at high level the system’s desired behavior. Since the steps needed to

compute the three components of the normal vector are a significant number, the

explanation is performed by dividing the subchapters based on the step of the

algorithm that has to be performed. In general, it is important to highlight which

type of description is chosen for each part of the digital circuit. Indeed, a digital

circuit could be represented behaviorally, if only the behavior at a high level of

abstraction is specified, or structurally, if the components used and the structure of

Chapter 4

58

the interconnection between the components are clearly specified. In this case, the

data path is described in structural terms, the controller through a behavioral

approach while the common interface between these two components is described

structurally. As it has been highlighted previously, the circuit implementing the

desired functions is realized through a register transfer level approach, so the result

of computations are stored in registers. In particular, the design of the hardware unit

is realized through a synchronous state machine so the flow of data is handled by

the clock signal and the local storage are updated on clock edges only. Before going

on with the explanation of data path and controller for each sub – unit implementing

a step of the algorithm, it should be shown the elementary components exploited in

the realization of the two subparts. For what regards simple components such as

registers, multiplexers, or simple comparators, they have been designed by me

while, for the arithmetical operations, the parametric IP cores provided by Intel®

have been adopted. This latter choice is due to the fact that the required math

operations involve floating point numbers so fast computations can be achieved

only if well – optimized blocks, like the ones provided by Intel, are chosen.

4.3.1 Basic blocks

Between the basic blocks which have been designed to implement the algorithm,

there are:

- REGISTERS - RegN;

- COUNTERS – Counter3, Counter4, Counter5, Counter8;

- COMPARATORS (EQUALS TO) – CMP_0, CMP_1, CMP_2, CMP_7,

CMP_8, CMP_9, CMP_10, CMP_16, CMP_255, CMP_1_D8BIT;

- COMPARATORS (GREATER OR LESS THAN) – CMP_GT_6;

- MULTIPLEXERS - MUX_2TO1, MUX_2TO1_1BIT, MUX_4TO1;

- ROM MEMORY – X_ROM, Y_ROM, Z_ROM;

- OTHERS – CHANGE_K.

Chapter 4

59

Moreover, it has been designed a block, called NORM_COMPUTATION, which

is exploited all the times that the norm of a vector 𝑣 ∈ ℝ3,1 must be computed.

4.3.1.1 RegN

The component called RegN is a simple register, which behaves as a memory

element when the input load signal Ld is OFF while it stores the input word D when

the load signal is ON and there is a rising edge of the clock signal, Clk. Moreover,

the register can be reset if the input signal reset Rst is ON. In this case, the

component has a synchronous reset Rst since the reset operation is performed only

if there is a rising edge of the clock signal Clk. The component is described as a

parametric one, so the length of the register is defined by a parameter N that can be

set in the data path where the component is instantiated.

4.3.1.2 Counter3, Counter4, Counter5, Counter8

These three components behave all at the same way, but they differ in the maximum

value they can reach and, consequently, in the number of bits for each. Indeed,

Counter3, Counter4, Counter5 and Counter8 contain respectively registers on 3 bits,

4 bits, 5 bits and 8 bits so they can respectively count up to 7, 15, 31 and 255. The

four components are designed according to the same logic: when there is a rising

edge of the input clock Clk, if the reset input signal Rst is equal to ‘1’, the output

signal I is set equal to zero while, if the load input signal Ld is equal to ‘1’, the

current value of the output is increased of a unit. In VHDL, it is not possible to read

and write an output variable at the same time so, if the load input signal Ld is active,

a signal called CURRENT_I is increased and the value of this signal is continuously

assigned to the output variable I.

4.3.1.3 Comparators

These components are simple comparators that receive an input signal of variable

length, depending on the variable they have to compare, and compare it with a given

threshold, indicated in the name of the component itself. For example, CMP_7

receives as input a signal D whose length is 8 bits and compares it with the number

7 so that, if the two values are the same, its output D_EQS_7 is equal to ‘1’ while,

Chapter 4

60

if the two values are not equal, the output is equal to ‘0’. The only different

component is CMP_GT_6. It is a comparator that receives as input a signal D whose

length is 4 bits and the input value is compared with number six. If the input signal

D is greater than six, the output signal D_GT_6 is set equal to ‘1’, otherwise it is

set equal to ‘0’.

4.3.1.4 MUX_2TO1, MUX_2TO1_1BIT, MUX_4TO1

The components MUX_2TO1, MUX_2TO1_1BIT, MUX_4TO1 are three

multiplexers, controlled by a selection signal. For what regards component

MUX_2TO1 and MUX_2TO1_1BIT, the logic is the same: when the input

selection signal SEL is equal to ‘0’, the output signal Q is equal to the first input

signal D1 while, when the selection signal SEL is equal to ‘1’, the output signal Q

is equal to the second input signal D2. The difference between the two components

regards the length of the input signals D1 and D2 since they are declared as having

length 1 bit in the component MUX_2TO1_1BIT while they are declared of generic

length N in the component MUX_2TO1. Component MUX4TO1 is driven by the

input selection signal SEL, whose length is 2 bits. Then, depending on the value

taken by the selection signal, the output is equal to one of the four input signals,

D1, D2, D3 and D4. As in MUX_2TO1, the input signals have generic length,

expressed by a parameter N.

4.3.1.5 X_ROM, Y_ROM and Z_ROM

These three components are ROM memories, so each of them can be only read but

not written. Inside each component, it is defined an array of 9 words, having length

of 32 bits, as a new type. Then, it is defined a constant, called respectively ROMx,

ROMy and ROMz, of the new defined type and each word of the array is initialized

with some values. The input signal Address, having length of 4 bits, gives

information about the array element that has to be read. These components are

created since they are used to store the coordinates of the points that form the

Chapter 4

61

neighborhood for each point 𝑝𝑖. It is declared and instantiated a ROM memory for

each type of coordinate so, due to the fact that a point 𝑝𝑖 and its 𝑘 = 8 neighbors

have to be considered, each array shall contain nine elements.

4.3.1.6 CHANGE – K

This component is a simple converter that receives as input a signal D_4 having

length of 4 bits and returns as output a signal D_16 containing the same value but

on 32 bits. Since the component can be used only if the number 𝑘 is greater than

six, the only values it can take are 7, 8 and 9. Then, it is controlled if D_4 is equal

to 7, 8 or 9 and then it is put equal to the corresponding number but on 32 bits and

in floating point format.

4.3.2 IP Blocks

As it has been stated previously, the arithmetical operations that have to be

performed in floating point numbers are quite expensive from a computational point

of view so the choice of using predefined arithmetic blocks, which are fully

optimized for what regards the clock latency, allows for an optimization of the

computational resources and time. In this thesis work, the

ALTERA_FP_FUNCTIONS IP core by Intel® has been used. The components of

this library are fully configurable for what regards the latency and the frequency so

it could be chosen to optimize either the latency, expressed in terms of clock cycles,

or the frequency, expressed in MHz. The Quartus Prime® software provides a

common interface, from which it is possible to choose the function that the block

has to perform, the format of floating point data, the rounding operations, the

available ports and the target parameter to be optimized. For each customizable

block, the following input and output ports are available:

- Clk, to which all input signals must be synchronous;

- Areset, which is an asynchronous active – high reset;

Chapter 4

62

- a, which is the first data input signal;

- b, which is the second data input signal;

- q, which represents the output data signal.

Moreover, an optional enable input signal can be selected in such a way to allow

for a block to be activated only when this signal is high. Moreover, the rounding

option can be chosen, in such a way to speed up the computation in exchange of a

most approximated final result. The IP blocks provided by Quartus were used to

implement the following functions:

• Adder, with a latency of 7 clock cycles;

• Subtractor, with a latency of 10 clock cycles;

• Multiplier, with a latency of 9 clock cycles;

• Divider, with a latency of 16 clock cycles;

• Comparator, with a latency of 2 clock cycles;

• Square root, with a latency of 9 clock cycles;

• Absolute value, with a latency of 1 clock cycle.

In the slowest components, like the divider or the square root, the rounding option

was set in such a way to optimize the speed of the implemented circuit.

4.3.3 Explanation of the architecture

To better understand the designed architecture, the explanation will follow the

division in paragraphs introduced when the normal estimation algorithm was

explained in Chapter 3. The two computational units, the data path and the control

unit, are interfaced through the NE1 interface. The signals that command both units

are the CLOCK signal and the RESET signal.

Chapter 4

63

4.3.3.1 Computation of the centroid

The state S0 of control unit is entirely dedicated to set the load signals of all registers

and counter equal to ‘0’, the clear signals of all registers and counters equal to ‘1’

and the enable signals of all arithmetic blocks are set equal to ‘0’. After this first

setup state, it is carried out the computation of the centroid coordinates. As

explained before, the computation of the centroid consists of two main operations,

which are the sum of the coordinates of the nine points and the division of this sum

by the number of points, that is equal to 9. To perform this task, the following

components are instantiated in the data path:

TYPE OF COMPONENT NAME ALREADY
INSTANTIATED

RegN (32-bits) XC1 No

RegN (32-bits) YC1 No

RegN (32-bits) ZC1 No

RegN (32-bits) XI No

RegN (32-bits) YI No

RegN (32-bits) ZI No

RegN (32-bits) XC No

RegN (32-bits) YC No

RegN (32-bits) ZC No

Adder (IP Block) ADDx No

Adder (IP Block) ADDy No

Adder (IP Block) ADDz No

Multiplier (IP Block) MULTx No

Multiplier (IP Block) MULTy No

Multiplier (IP Block) MULTz No

Counter3 OP1_CNT No

Counter4 OP2_CNT No

Counter4 I_CNT No

Chapter 4

64

CMP_7 OP1_CMP_7 No

CMP_9 OP2_CMP_9 No

CMP_9 I_CMP_9 No

X_ROM ROMx No

Y_ROM ROMy No

Z_ROM ROMz No

Table 1 List of components in the data path

The signals which are exchanged between the data path and the control unit are

listed below:

TYPE OF SIGNAL FROM TO NAME

Load signal Control Unit Data path LOAD_XC1

Load signal Control Unit Data path LOAD_YC1

Load signal Control Unit Data path LOAD_ZC1

Load signal Control Unit Data path LOAD_XI

Load signal Control Unit Data path LOAD_YI

Load signal Control Unit Data path LOAD_ZI

Load signal Control Unit Data path LOAD_XC

Load signal Control Unit Data path LOAD_YC

Load signal Control Unit Data path LOAD_ZC

Clear signal Control Unit Data path CLEAR_XC1

Clear signal Control Unit Data path CLEAR_YC1

Clear signal Control Unit Data path CLEAR_ZC1

Clear signal Control Unit Data path CLEAR_XI

Clear signal Control Unit Data path CLEAR_YI

Clear signal Control Unit Data path CLEAR_ZI

Clear signal Control Unit Data path CLEAR_XC

Clear signal Control Unit Data path CLEAR_YC

Clear signal Control Unit Data path CLEAR_ZC

Clear signal Control Unit Data path CLEAR_OP1

Chapter 4

65

Clear signal Control Unit Data path CLEAR_OP2

Clear signal Control Unit Data path CLEAR_I

Enable for counters Control Unit Data path INC_OP1

Enable for counters Control Unit Data path INC_OP2

Enable for counters Control Unit Data path INC_I

Enable for math
blocks

Control Unit Data path EN_ADDER1

Enable for math
blocks

Control Unit Data path EN_MULT1

Results of
comparisons

Data path Control Unit OP1_EQS_7

Results of
comparisons

Data path Control Unit OP2_EQS_9

Results of
comparisons

Data path Control Unit I_EQS_9

Table 2 List of signals exchanged between control unit and data path

The counter I_CNT allows to cycle on the elements of the memories ROMx, ROMy

and ROMz. In parallel, the coordinates 𝑥, 𝑦, 𝑧 of the 𝑖𝑡ℎ point are loaded on registers

XI, YI, ZI. It is performed the sum between the value contained on these registers

and those contained on registers XC1, YC1, ZC1 by means of the adders ADDx,

ADDy, ADDz. Since each adder has a latency of 7 clock cycles, the OP1_CNT is

exploited to count till seven. When the OP1_CNT finishes to count 7 clock cycles,

the signal OP1_EQS_7 becomes equal to ‘1’, so the control unit understands that

the sum operations are completed and the results of the computations are

respectively stored on registers XC1, YC1, ZC1. To check if all the points in

ROMx, ROMy and ROMz have been taken into account for the computation of the

sum of coordinates, the comparator I_CMP_9 provides a signal called I_EQS_9.

When this latter signal becomes equal to ‘1’, the controller understands that all the

points have been considered. The sums of the nine values for the three types of

coordinates are finally stored on XC1, YC1, ZC1 so the division by nine has to

performed. Since the division operation is quite expensive from a point of view of

Chapter 4

66

latency, it could be performed a multiplication by the inverse of nine, which is

approximately equal to 0.11. This value is stored as a constant, CONSTANT_1, and

it is fed as input to the MULT1 block. Since the multiplier needs for 9 clock cycles,

the OP2_CNT is exploited to count till nine. When the nine clock cycles have been

counted, the signal OP2_EQS_9 becomes equal to ‘1’ so that the control unit

understands that the multiplier can be disenabled and the final results are stored on

registers XC, YC, ZC.

4.3.3.2 Computation of Euclidean distance

After the computation of the centroid, it is required to compute the Euclidean

distance between each point 𝑝𝑖 from the nine in the considered neighborhood and

the centroid. In the data path, the following components are involved in the

operations that led to the final result:

TYPE OF COMPONENT NAME ALREADY
INSTANTIATED

RegN (32-bits) XI Yes

RegN (32-bits) YI Yes

RegN (32-bits) ZI Yes

RegN (32-bits) XC Yes

RegN (32-bits) YC Yes

RegN (32-bits) ZC Yes

RegN (32-bits) DIFFX1 No

RegN (32-bits) DIFFY1 No

RegN (32-bits) DIFFZ1 No

RegN (32-bits) DIFFX2 No

RegN (32-bits) DIFFY2 No

RegN (32-bits) DIFFZ2 No

RegN (32-bits) SQR_XY No

RegN (32-bits) SQR_XYZ No

RegN (1-bit) RESULT_1 No

Chapter 4

67

Subtractor (IP Block) SUBx No

Subtractor (IP Block) SUBy No

Subtractor (IP Block) SUBz No

Multiplier (IP Block) MULTx_2 No

Multiplier (IP Block) MULTy_2 No

Multiplier (IP Block) MULTz_2 No

Adder (IP Block) ADDxy No

Adder (IP Block) ADDxyz No

Comparator (IP Block) CMP_THR No

Counter4 I_CNT Yes

Counter4 K_CNT No

Counter3 OP1_CNT Yes

Counter4 OP2_CNT Yes

CMP_1 RESULT1_CMP_1 No

CMP_7 OP1_CMP_7 Yes

CMP_9 OP2_CMP_9 Yes

CMP_10 OP2_CMP_10 No

CMP_2 OP1_CMP_2 No

X_ROM ROMx Yes

Y_ROM ROMy Yes

Z_ROM ROMz Yes

Table 3 List of components in data path

The signals which are exchanged between the data path and the control unit are

listed below:

TYPE OF SIGNAL FROM TO NAME

Load signal Control Unit Data path LOAD_XI

Load signal Control Unit Data path LOAD_YI

Load signal Control Unit Data path LOAD_ZI

Chapter 4

68

Load signal Control Unit Data path LOAD_DIFFX1

Load signal Control Unit Data path LOAD_DIFFY1

Load signal Control Unit Data path LOAD_DIFFZ1

Load signal Control Unit Data path LOAD_DIFFX2

Load signal Control Unit Data path LOAD_DIFFY2

Load signal Control Unit Data path LOAD_DIFFZ2

Load signal Control Unit Data path LOAD_SQR_XY

Load signal Control Unit Data path LOAD_SQR_XYZ

Load signal Control Unit Data path LOAD_RESULT1

Clear signal Control Unit Data path CLEAR_XI

Clear signal Control Unit Data path CLEAR_YI

Clear signal Control Unit Data path CLEAR_ZI

Load signal Control Unit Data path CLEAR_DIFFX1

Load signal Control Unit Data path CLEAR_DIFFY1

Load signal Control Unit Data path CLEAR_DIFFZ1

Load signal Control Unit Data path CLEAR_DIFFX2

Load signal Control Unit Data path CLEAR _DIFFY2

Load signal Control Unit Data path CLEAR _DIFFZ2

Load signal Control Unit Data path CLEAR _SQR_XY

Load signal Control Unit Data path CLEAR _SQR_XYZ

Load signal Control Unit Data path CLEAR _RESULT1

Clear signal Control Unit Data path CLEAR_OP1

Clear signal Control Unit Data path CLEAR_OP2

Clear signal Control Unit Data path CLEAR_I

Clear signal Control Unit Data path CLEAR_K

Enable for counters Control Unit Data path INC_OP1

Enable for counters Control Unit Data path INC_OP2

Enable for counters Control Unit Data path INC_I

Enable for counters Control Unit Data path INC_K

Chapter 4

69

Enable for math
blocks

Control Unit Data path EN_SUB1

Enable for math
blocks

Control Unit Data path EN_MULT2

Enable for math
blocks

Control Unit Data path EN_ADD2

Enable for math
blocks

Control Unit Data path EN_ADD3

Enable for math
blocks

Control Unit Data path EN_CMP_THR

Results of
comparisons

Data path Control Unit OP1_EQS_7

Results of
comparisons

Data path Control Unit OP2_EQS_9

Results of
comparisons

Data path Control Unit OP2_EQS_10

Results of
comparisons

Data path Control Unit OP1_EQS_2

Results of
comparisons

Data path Control Unit I_EQS_9

Results of
comparisons

Data path Control Unit RESULT1_EQS_1

Table 4 List of signals exchanged between control unit and data path

For each point whose coordinates are kept on ROMx, ROMy and ROMz, the

corresponding registers XI, YI and ZI are loaded to store the values. To cycle

between the nine coordinates, the I_CNT counter is exploited and, when it reaches

the 9 values, the I_EQS_9 signal becomes equal to ‘1’. In this way, the control unit

understands that all the points have been taken into account and the following steps

could be performed. Once XI, YI and ZI are loaded with the coordinates of the 𝑖𝑡ℎ

point, it is performed the subtraction between the values store on registers XI, YI

and ZI and the values stored on XC, YC, ZC. Since the subtractor needs for 10

clock cycles, the OP2_CNT is exploited to count till ten. Once the ten clock cycles

are counted, the signal OP2_EQS_10 becomes equal to ‘1’, so that the control unit

Chapter 4

70

understands that the subtractor can be disenabled. The results of these operations

are stored on registers DIFFX1, DIFFY1 and DIFFZ1. Then, these differences have

to be squared so it is performed the square of these values through a multiplication

between the same inputs. Since the multiplication needs for 9 clock cycles, the

OP2_CNT is exploited to count till nine and, once the needed clock cycles are

counted, the signal OP2_EQS_9 becomes high so that the controller unit

understands that the multiplier can be disenabled and the results of the operations

are stored on registers DIFFX2, DIFFY2 and DIFFZ2. Then it is performed the sum

between the elements contained on DIFFX2 and DIFFY2, whose result is stored on

register SQR_XY. Successively, the value on SQR_XY is added to DIFFZ2 and

the final result is stored on register SQR_XYZ. Both additions require 7 clock

cycles to be completed so OP1_CNT is exploited to count 7 clock cycles and, once

the needed clock cycles are counted, the signal OP1_EQS_7 becomes high so that

the control unit understands that ADDxy before and ADDxyz after can be

disenabled. At this point, it should be computed the square root of the Euclidean

distance so that it could be compared to the given threshold, which is stored on

CONSTANT_2. Since the square root is quite expensive from a point of view of

clock latency, it is performed the comparison between the square Euclidean

distance and the square of the given threshold. The comparison between the two

values is performed by CMP_THR, which receives as input the value stored on

SQR_XYZ and CONSTANT_2 and it returns ‘1’ if SQR_XYZ is less than

CONSTANT_2 or it returns ‘0’ if SQR_XYZ is greater than CONSTANT_2. Since

the comparator needs 2 clock cycles, the OP1_CNT is exploited to count them and

the signal OP1_EQS_2 becomes equal to ‘1’ after two clock cycles. In this way, the

controller unit understands that the comparator can be disenabled. The result of the

computation is stored on the register RESULT_1 and it is fed as input to the

comparator RESULT1_CMP_1, which provides as output the signal

RESULT1_EQS_1, which is equal to ‘1’ if RESULT_1 = ‘1’ or ‘0’ if RESULT_1

= ‘0’. If RESULT1_EQS_1 is equal to ‘1’, the controller enables counter CNT_K

to increase. In this case, the point 𝑝𝑖, whose Euclidean distance from the centroid

has been computed, is exploited to compute the associated covariance matrix.

Otherwise, if RESULT1_EQS_1 = ‘0’, CNT_I is increased and it is performed the

Chapter 4

71

computation of the Euclidean distance for the next points, but only if I_EQS_9 is

different from ‘0’.

4.3.3.3 Computation of covariance matrix

At this stage, if point 𝑝𝑖 is far from the centroid less than the given threshold, it can

be involved in the computation of the covariance matrix. In particular, since it is

symmetric, it is sufficient to compute just six entries of the matrix, instead of nine.

The components that are interested in the computation of the covariance matrix are

the following ones:

TYPE OF COMPONENT NAME ALREADY
INSTANTIATED

RegN (32-bits) DIFFX1 Yes

RegN (32-bits) DIFFY1 Yes

RegN (32-bits) DIFFZ1 Yes

RegN (32-bits) DIFFX2 Yes

RegN (32-bits) DIFFY2 Yes

RegN (32-bits) DIFFZ2 Yes

RegN (32-bits) XY No

RegN (32-bits) XZ No

RegN (32-bits) YZ No

RegN (32-bits) COV1 No

RegN (32-bits) COV2 No

RegN (32-bits) COV3 No

RegN (32-bits) COV12 No

RegN (32-bits) COV13 No

RegN (32-bits) COV23 No

RegN (32-bits) COVXX No

RegN (32-bits) COVYY No

RegN (32-bits) COVZZ No

Chapter 4

72

RegN (32-bits) COVXY No

RegN (32-bits) COVXZ No

RegN (32-bits) COVYZ No

Multiplier (IP Block) MULTxy No

Multiplier (IP Block) MULTxz No

Multiplier (IP Block) MULTyz No

Adder (IP Block) SUMxx No

Adder (IP Block) SUMyy No

Adder (IP Block) SUMzz No

Adder (IP Block) SUMxy No

Adder (IP Block) SUMxz No

Adder (IP Block) SUMyz No

Divider (IP Block) DIVxx No

Divider (IP Block) DIVyy No

Divider (IP Block) DIVzz No

Divider (IP Block) DIVxy No

Divider (IP Block) DIVxz No

Divider (IP Block) DIVyz No

Counter3 OP1_CNT Yes

Counter4 OP2_CNT Yes

Counter5 OP3_CNT No

Counter4 I_CNT Yes

Counter4 K_CNT Yes

CMP_7 OP1_CMP_7 Yes

CMP_9 OP2_CMP_9 Yes

CMP_16 OP3_CMP_16 No

CMP_GT_6 K_CMP_6 No

CHANGE_K CHANGE_K No

Table 5 List of components in data path

Chapter 4

73

The signals which are exchanged between the data path and the control unit are

listed below:

TYPE OF SIGNAL FROM TO NAME

Load signal Control Unit Data path LOAD_XY

Load signal Control Unit Data path LOAD_XZ

Load signal Control Unit Data path LOAD_YZ

Load signal Control Unit Data path LOAD_COV1

Load signal Control Unit Data path LOAD_COV2

Load signal Control Unit Data path LOAD_COV3

Load signal Control Unit Data path LOAD_COV12

Load signal Control Unit Data path LOAD_COV13

Load signal Control Unit Data path LOAD_COV23

Load signal Control Unit Data path LOAD_COVXX

Load signal Control Unit Data path LOAD_COVYY

Load signal Control Unit Data path LOAD_COVZZ

Load signal Control Unit Data path LOAD_COVXY

Load signal Control Unit Data path LOAD_COVXZ

Load signal Control Unit Data path LOAD_COVYZ

Clear signal Control Unit Data path CLEAR_XY

Clear signal Control Unit Data path CLEAR_XZ

Clear signal Control Unit Data path CLEAR_YZ

Clear signal Control Unit Data path CLEAR_COV1

Clear signal Control Unit Data path CLEAR_COV2

Clear signal Control Unit Data path CLEAR_COV3

Clear signal Control Unit Data path CLEAR_COV12

Clear signal Control Unit Data path CLEAR_COV13

Clear signal Control Unit Data path CLEAR_COV23

Clear signal Control Unit Data path CLEAR_COVXX

Chapter 4

74

Clear signal Control Unit Data path CLEAR_COVYY

Clear signal Control Unit Data path CLEAR_COVZZ

Clear signal Control Unit Data path CLEAR_COVXY

Clear signal Control Unit Data path CLEAR_COVXZ

Clear signal Control Unit Data path CLEAR_COVYZ

Clear signal Control Unit Data path CLEAR_OP1

Clear signal Control Unit Data path CLEAR_OP2

Clear signal Control Unit Data path CLEAR_OP3

Clear signal Control Unit Data path CLEAR_I

Enable for counters Control Unit Data path INC_OP1

Enable for counters Control Unit Data path INC_OP2

Enable for counters Control Unit Data path INC_OP3

Enable for math
blocks

Control Unit Data path EN_MULT3

Enable for math
blocks

Control Unit Data path EN_ADDER4

Enable for math
blocks

Control Unit Data path EN_DIVIDER1

Results of
comparisons

Data path Control Unit OP1_EQS_7

Results of
comparisons

Data path Control Unit OP2_EQS_9

Results of
comparisons

Data path Control Unit OP3_EQS_16

Results of
comparisons

Data path Control Unit K_GT_6

Table 6 List of signals exchanged between control unit and data path

Three of the six components of the covariance matrix have been already computed:

- (𝑥𝑖 − 𝑥𝐶)
2, which is stored on DIFFX2.

- (𝑦𝑖 − 𝑦𝐶)
2, which is stored on DIFFY2.

Chapter 4

75

- (𝑧𝑖 − 𝑧𝐶)
2, which is stored on DIFFZ2.

The remaining entries of the covariance matrix which have to be computed are:

- (𝑥𝑖 − 𝑥𝐶)(𝑦𝑖 − 𝑦𝐶), which can be computed as the product between the

value stored on DIFFX1 and DIFFY1.

- (𝑥𝑖 − 𝑥𝐶)(𝑧𝑖 − 𝑧𝐶), which can be computed as the product between the

value stored on DIFFX1 and DIFFZ1.

- (𝑦𝑖 − 𝑦𝐶)(𝑧𝑖 − 𝑧𝐶), which can be computed as the product between the

value stored on DIFFY1 and DIFFZ1.

These three products are executed in parallel and they are performed through the

multipliers MULTxy, MULTxz and MULTyz. As explained before, the

multiplication needs for 9 clock cycles to be completed, so the OP2_CNT is

exploited to count 9 clock cycles and, once this value is reached, the signal

OP2_EQS_9 becomes equal to ‘1’. In this way, the controller unit understands that

the multipliers can be disenabled and the results of the operations are stored on

registers XY, XZ and YZ. Then, each entry of the covariance matrix has to be

summed up with the ones computed for previous points so, for each point 𝑝𝑖, its

entries are added to the ones computed previously and stored on registers COV1,

COV2, COV3, COV12, COV13 and COV23. The operation is performed through

adders SUMxx, SUMyy, SUMzz, SUMxy, SUMxz, SUMyz. As explained for

previous adders, these components require 7 clock cycles to complete the operation

and, for this purpose, OP1_CNT counts up to 7 clock cycles. When its stored value

is equal to seven, the control unit receives the input signal OP1_EQS_7 from the

comparator OP1_CMP_7, which reports that the adders can be disactivated.

When all the nine points of the neighborhood have been considered, the counter

K_CNT reports how many of those points have been used for the computation of

the covariance matrix and consequently how many points are close to the centroid

less than the chosen threshold. When the I_EQS_9 becomes equal to ’1’, the

controller unit checks the value of K_CMP_6 output: if the signal K_GT_6 is equal

to ‘1’, it means that more than six points have been exploited for the computation

of the covariance matrix so the successive steps can be considered. On the other

Chapter 4

76

side, if the signal K_GT_6 is equal to ‘0’, less than six or six points are sufficiently

close to the centroid so the control unit directly jumps to the state where the three

components of the normal vector are set equal to 0. On the other case, it is

performed a division between the six elements of the covariance matrix stored on

register COV1, COV2, COV3, COV12, COV13, COV23 and the value stored on

K_CNT. Since the value stored on K_CNT is 4-bit long and it is an integer, it has

to be converted as a 32-bit value and it has to be expressed in the floating-point

format. For this reason, the K_CNT output is passed as input to the block

CHANGE_K, which converts the number in the desired format and its output enters

as second input in the six dividers, whose first input is the corresponding entry of

the covariance matrix. The six divisions are executed in parallel but each of them

require 16 clock cycles to be carried out. The 16 clock cycles are counted up through

counter OP3_CNT and when it counts sixteen, the signal OP3_EQS_16 becomes

equal to ‘1’. In this way, the control unit understands that the dividers can be

disenabled and the results of the operations are stored on registers COVXX,

COVYY, COVZZ, COVXY, COVXZ, COVYZ.

4.3.3.4 Estimation of normal vector

The next step is the estimation of the eigenvector associated to the smallest

eigenvalue of the covariance matrix. As highlighted in Chapter 3, there are six sub-

steps to perform in order to compute the desired quantities. Moreover, the

mathematical computations behind the realization of this part of the data path and

the controller unit are explained in Appendix A.

Compute the corrected covariance matrix.

First, it is necessary to compute the shifted covariance matrix, Σ̂𝑖 − 𝜎𝐼. This matrix

differs from the covariance matrix computed at the previous step only in the

diagonal entries: indeed, the shift value must be subtracted to the elements in the

diagonal, while the others remain unchanged. The tables below list the components

which are involved in this part of the architecture:

Chapter 4

77

TYPE OF COMPONENT NAME ALREADY
INSTANTIATED

RegN (32-bits) COVXX Yes

RegN (32-bits) COVYY Yes

RegN (32-bits) COVZZ Yes

RegN (32-bits) COVXXs No

RegN (32-bits) COVYYs No

RegN (32-bits) COVZZs No

Subtractor (IP Block) SUB_shiftXX No

Subtractor (IP Block) SUB_shiftYY No

Subtractor (IP Block) SUB_shiftZZ No

Counter4 OP2_CNT Yes

CMP_10 OP2_CMP_10 Yes

Table 7 List of components in data path

The signals which are exchanged between the data path and the control unit are

listed below:

TYPE OF SIGNAL FROM TO NAME

Load signal Control Unit Data path LOAD_COVXXs

Load signal Control Unit Data path LOAD_COVYYs

Load signal Control Unit Data path LOAD_COVZZs

Clear signal Control Unit Data path CLEAR_COVXXs

Clear signal Control Unit Data path CLEAR_COVYYs

Clear signal Control Unit Data path CLEAR_COVZZs

Enable for counters Control Unit Data path INC_OP2

Clear signal Control Unit Data path CLEAR_OP2

Enable for math
blocks

Control Unit Data path EN_SUB3

Results of
comparisons

Data path Control Unit OP2_EQS_10

Table 8 List of signals exchanged between control unit and data path

Chapter 4

78

The values stored on registers COVXX, COVYY and COVZZ are fed as input to

subtractors SUB_shiftXX, SUB_shiftYY and SUB_shiftZZ, together with the value

of the shift, which is stored on CONSTANT_6. Since the subtraction needs for ten

clock cycles to be completed, the counter OP2_CNT counts up to ten and, when

this value is reached, the signal OP2_EQS_10 becomes equal to ’1’. In this way,

the control unit understands that subtraction operation is complete and set

EN_SUB3 = ‘0’. The final results of subtractions are stored on registers COVXXs,

COVYYs, COVZZs.

Computation of the inverse shifted – covariance matrix.

This part of the algorithm is one of the most computationally heavy, so the

mathematical operations involved in the computation of the entries of the inverse

matrix and those involved in the computation of the determinant have been fully

parallelized. First, the involved components are shown in the table below:

TYPE OF COMPONENT NAME ALREADY
INSTANTIATED

RegN (32-bits) COVXXs Yes

RegN (32-bits) COVYYs Yes

RegN (32-bits) COVZZs Yes

RegN (32-bits) COVXY Yes

RegN (32-bits) COVXZ Yes

RegN (32-bits) COVYZ Yes

RegN (32-bits) AUX1_MULT6 No

RegN (32-bits) AUX2_MULT6 No

RegN (32-bits) AUX3_MULT6 No

RegN (32-bits) AUX4_MULT6 No

RegN (32-bits) AUX5_MULT6 No

RegN (32-bits) AUX6_MULT6 No

RegN (32-bits) AUX7_MULT6 No

RegN (32-bits) AUX8_MULT6 No

Chapter 4

79

RegN (32-bits) AUX9_MULT6 No

RegN (32-bits) AUX10_MULT6 No

RegN (32-bits) AUX11_MULT6 No

RegN (32-bits) AUX12_MULT6 No

RegN (32-bits) AUX13_MULT6 No

Multiplier (IP Block) MULT6_1 No

Multiplier (IP Block) MULT6_2 No

Multiplier (IP Block) MULT6_3 No

Multiplier (IP Block) MULT6_4 No

Multiplier (IP Block) MULT6_5 No

Multiplier (IP Block) MULT6_6 No

Multiplier (IP Block) MULT6_7 No

Multiplier (IP Block) MULT6_8 No

Multiplier (IP Block) MULT6_9 No

Multiplier (IP Block) MULT6_10 No

Multiplier (IP Block) MULT6_11 No

Multiplier (IP Block) MULT6_12 No

Multiplier (IP Block) MULT6_13 No

RegN (32-bits) AUX1_MULT7 No

RegN (32-bits) AUX2_MULT7 No

RegN (32-bits) AUX3_MULT7 No

RegN (32-bits) AUX4_MULT7 No

RegN (32-bits) AUX5_MULT7 No

RegN (32-bits) AUX6_MULT7 No

RegN (32-bits) AUX7_MULT7 No

Multiplier (IP Block) MULT7_1 No

Multiplier (IP Block) MULT7_2 No

Multiplier (IP Block) MULT7_3 No

Multiplier (IP Block) MULT7_4 No

Chapter 4

80

Multiplier (IP Block) MULT7_5 No

Multiplier (IP Block) MULT7_6 No

Multiplier (IP Block) MULT7_7 No

RegN (32-bits) AUX1_ADDER9 No

RegN (32-bits) AUX2_ ADDER9 No

RegN (32-bits) AUX3_ ADDER9 No

Adder (IP Block) ADDER9_1 No

Adder (IP Block) ADDER9_2 No

Adder (IP Block) ADDER9_3 No

RegN (32-bits) AUX_ADDER10 No

Adder (IP Block) ADDER10 No

RegN (32-bits) AUX1_SUB3 No

RegN (32-bits) AUX2_SUB3 No

RegN (32-bits) AUX3_SUB3 No

RegN (32-bits) AUX4_SUB3 No

RegN (32-bits) AUX5_SUB3 No

Subtractor (IP Block) SUB3_1 No

Subtractor (IP Block) SUB3_2 No

Subtractor (IP Block) SUB3_3 No

Subtractor (IP Block) SUB3_3 No

Subtractor (IP Block) SUB3_4 No

RegN (32-bits) INV_COVXX No

RegN (32-bits) INV_COVYY No

RegN (32-bits) INV_COVZZ No

RegN (32-bits) INV_COVXY No

RegN (32-bits) INV_COVXZ No

RegN (32-bits) INV_COVYZ No

Divider (IP Block) DIV4_1 No

Divider (IP Block) DIV4_2 No

Chapter 4

81

Divider (IP Block) DIV4_3 No

Divider (IP Block) DIV4_5 No

Divider (IP Block) DIV4_5 No

Divider (IP Block) DIV4_6 No

Counter3 OP1_CNT Yes

Counter4 OP2_CNT Yes

Counter5 OP3_CNT Yes

CMP_7 OP1_CMP_7 Yes

CMP_9 OP2_CMP_9 Yes

CMP_10 OP2_CMP_10 Yes

CMP_16 OP3_CMP_16 Yes

Table 9 List of components in data path

The signals which are exchanged between the data path and the control unit are

listed below:

TYPE OF
SIGNAL

FROM TO NAME

Load signal Control Unit Data path LOAD_COVXXs

Load signal Control Unit Data path LOAD_COVYYs

Load signal Control Unit Data path LOAD_COVZZs

Load signal Control Unit Data path LOAD_AUX_MULT6

Load signal Control Unit Data path LOAD_AUX_MULT7

Load signal Control Unit Data path LOAD_AUX_ADDER9

Load signal Control Unit Data path LOAD_AUX_ADDER10

Load signal Control Unit Data path LOAD_AUX_SUB3

Load signal Control Unit Data path LOAD_INV_COV

Clear signal Control Unit Data path CLEAR_COVXXs

Clear signal Control Unit Data path CLEAR_COVYYs

Clear signal Control Unit Data path CLEAR_COVZZs

Chapter 4

82

Clear signal Control Unit Data path CLEAR_AUX_MULT6

Clear signal Control Unit Data path CLEAR_AUX_MULT7

Clear signal Control Unit Data path CLEAR_AUX_ADDER9

Clear signal Control Unit Data path CLEAR_AUX_ADDER10

Clear signal Control Unit Data path CLEAR_AUX_SUB3

Clear signal Control Unit Data path CLEAR_INV_COV

Enable for
counters

Control Unit Data path INC_OP1

Enable for
counters

Control Unit Data path INC_OP2

Enable for
counters

Control Unit Data path INC_OP3

Clear signal Control Unit Data path CLEAR_OP1

Clear signal Control Unit Data path CLEAR_OP2

Clear signal Control Unit Data path CLEAR_OP3

Enable for math
blocks

Control Unit Data path EN_MULT6

Enable for math
blocks

Control Unit Data path EN_MULT7

Enable for math
blocks

Control Unit Data path EN_ADDER9

Enable for math
blocks

Control Unit Data path EN_ADDER10

Enable for math
blocks

Control Unit Data path EN_SUB3

Enable for math
blocks

Control Unit Data path EN_DIV4

Results of
comparisons

Data path Control Unit OP1_EQS_7

Results of
comparisons

Data path Control Unit OP2_EQS_9

Results of
comparisons

Data path Control Unit OP2_EQS_10

Chapter 4

83

Results of
comparisons

Data path Control Unit OP3_EQS_16

Table 10 List of signals exchanged between control unit and data path

These components and the corresponding signals implement the computations

explained in Appendix A. The multiplications involved in the computation of the

determinant and the multiplications involved in the inversion of the matrix have

been computed in parallel as much as possible, in such a way to speed up the

computing time. For this reason, the command signals are in common for the blocks

that perform the same kind of operation in parallel.

Computation of the smallest eigenvector

The remaining part is the computation of the eigenvector associated to the smallest

eigenvector by means of the inverse power method. The components which are

necessary to perform the computations are:

TYPE OF COMPONENT NAME ALREADY
INSTANTIATED

RegN (32-bits) EV0_1 No

RegN (32-bits) EV0_2 No

RegN (32-bits) EV0_3 No

RegN (32-bits) NORM_EV0 No

RegN (32-bits) EV_1 No

RegN (32-bits) EV_2 No

RegN (32-bits) EV_3 No

RegN (32-bits) INV_COVXX Yes

RegN (32-bits) INV_COVYY Yes

RegN (32-bits) INV_COVZZ Yes

RegN (32-bits) INV_COVXY Yes

RegN (32-bits) INV_COVXZ Yes

RegN (32-bits) INV_COVYZ Yes

RegN (32-bits) A No

Chapter 4

84

RegN (32-bits) B No

RegN (32-bits) C No

RegN (32-bits) D No

RegN (32-bits) E No

RegN (32-bits) F No

RegN (32-bits) G No

RegN (32-bits) H No

RegN (32-bits) J No

RegN (32-bits) AB No

RegN (32-bits) DE No

RegN (32-bits) GH No

RegN (32-bits) NEW_EV0_1 No

RegN (32-bits) NEW_EV0_2 No

RegN (32-bits) NEW_EV0_3 No

RegN (32-bits) THETA1 No
RegN (32-bits) THETA2 No
RegN (32-bits) THETA1 No
RegN (32-bits) THETA_NF No
RegN (32-bits) THETA No
RegN (32-bits) PART_VEC_CHECK1 No
RegN (32-bits) PART_VEC_CHECK2 No
RegN (32-bits) PART_VEC_CHECK3 No
RegN (32-bits) VEC_CHECK1 No
RegN (32-bits) VEC_CHECK2 No
RegN (32-bits) VEC_CHECK3 No
RegN (32-bits) NORM_VEC_CHECK No
RegN (32-bits) ABS_THETA No
RegN (32-bits) THETAxDELTA No
Multiplier (IP Block) MULTa No

Multiplier (IP Block) MULTb No

Multiplier (IP Block) MULTc No

Multiplier (IP Block) MULTd No

Multiplier (IP Block) MULTe No

Chapter 4

85

Multiplier (IP Block) MULTf No

Multiplier (IP Block) MULTg No

Multiplier (IP Block) MULTh No

Multiplier (IP Block) MULTj No

Adder (IP Block) ADDab No

Adder (IP Block) ADDde No

Adder (IP Block) ADDgh No

Multiplier (IP Block) MULTtheta1 No
Multiplier (IP Block) MULTtheta2 No
Multiplier (IP Block) MULTtheta3 No
Adder (IP Block) ADDtheta_nf No
Adder (IP Block) ADDtheta No
Multiplier (IP Block) MULTpartcheck No
Multiplier (IP Block) MULTpartcheck No
Multiplier (IP Block) MULTpartcheck No
Subtractor (IP Block) SUBcheck1 No
Subtractor (IP Block) SUBcheck2 No
Subtractor (IP Block) SUBcheck3 No
Absolute_value (IP Block) ABStheta No
Multiplier (IP Block) MULTfinal_thr No
Comparator (IP Block) EV_CMP_THR No
Counter8 N_CNT No

Counter5 OP3_CNT Yes

Counter4 OP2_CNT Yes

Counter3 OP1_CNT Yes

CMP_16 OP3_CMP_16 Yes

CMP_9 OP2_CMP_9 Yes

CMP_7 OP1_CMP_7 Yes

CMP_10 OP2_CMP_10 Yes
CMP_2 OP1_CMP_2 No
CMP_255 N_CMP_255 No
MUX_2TO1 MUX_EV0_1 No

MUX_2TO1 MUX_EV0_2 No

MUX_2TO1 MUX_EV0_3 No

Table 11 List of components in data path

Chapter 4

86

TYPE OF
SIGNAL

FROM TO NAME

Load signal Control Unit Data path LOAD_EV0_1

Load signal Control Unit Data path LOAD_EV0_2

Load signal Control Unit Data path LOAD_EV0_3

Load signal Control Unit Data path LOAD_NORM_EV0

Load signal Control Unit Data path LOAD_EV_1

Load signal Control Unit Data path LOAD_EV_2

Load signal Control Unit Data path LOAD_EV_3

Load signal Control Unit Data path LOAD_A

Load signal Control Unit Data path LOAD_B

Load signal Control Unit Data path LOAD_C

Load signal Control Unit Data path LOAD_D

Load signal Control Unit Data path LOAD_E

Load signal Control Unit Data path LOAD_F

Load signal Control Unit Data path LOAD_G

Load signal Control Unit Data path LOAD_H

Load signal Control Unit Data path LOAD_J

Load signal Control Unit Data path LOAD_AB

Load signal Control Unit Data path LOAD_DE

Load signal Control Unit Data path LOAD_GH

Load signal Control Unit Data path LOAD_NEW_EV0_1

Load signal Control Unit Data path LOAD_NEW_EV0_2

Load signal Control Unit Data path LOAD_NEW_EV0_3

Load signal Control Unit Data path LOAD_THETA1

Load signal Control Unit Data path LOAD_THETA2

Load signal Control Unit Data path LOAD_THETA3

Load signal Control Unit Data path LOAD_PART_VEC_CHECK1

Load signal Control Unit Data path LOAD_PART_VEC_CHECK2

Load signal Control Unit Data path LOAD_PART_VEC_CHECK3

Load signal Control Unit Data path LOAD_VEC_CHECK1

Chapter 4

87

Load signal Control Unit Data path LOAD_VEC_CHECK2
Load signal Control Unit Data path LOAD_VEC_CHECK3
Load signal Control Unit Data path LOAD_NORM_VEC_CHECK
Load signal Control Unit Data path LOAD_ABS_THETA
Load signal Control Unit Data path LOAD_FINAL_THR
Clear signal Control Unit Data path CLEAR_EV0_1

Clear signal Control Unit Data path CLEAR_EV0_2

Clear signal Control Unit Data path CLEAR_EV0_3

Clear signal Control Unit Data path CLEAR_NORM_EV0

Clear signal Control Unit Data path CLEAR_EV_1

Clear signal Control Unit Data path CLEAR_EV_2

Clear signal Control Unit Data path CLEAR_EV_3

Clear signal Control Unit Data path CLEAR_A

Clear signal Control Unit Data path CLEAR_B

Clear signal Control Unit Data path CLEAR_C

Clear signal Control Unit Data path CLEAR_D

Clear signal Control Unit Data path CLEAR_E

Clear signal Control Unit Data path CLEAR_F

Clear signal Control Unit Data path CLEAR_G

Clear signal Control Unit Data path CLEAR_H

Clear signal Control Unit Data path CLEAR_J

Clear signal Control Unit Data path CLEAR_AB

Clear signal Control Unit Data path CLEAR_DE

Clear signal Control Unit Data path CLEAR_GH

Clear signal Control Unit Data path CLEAR_NEW_EV0_1
Clear signal Control Unit Data path CLEAR_NEW_EV0_2
Clear signal Control Unit Data path CLEAR_NEW_EV0_3
Clear signal Control Unit Data path CLEAR_THETA1
Clear signal Control Unit Data path CLEAR_THETA2
Clear signal Control Unit Data path CLEAR_THETA3
Clear signal Control Unit Data path CLEAR_PART_VEC_CHECK1
Clear signal Control Unit Data path CLEAR_PART_VEC_CHECK2
Clear signal Control Unit Data path CLEAR_PART_VEC_CHECK3
Clear signal Control Unit Data path CLEAR_VEC_CHECK1

Chapter 4

88

Clear signal Control Unit Data path CLEAR_VEC_CHECK2
Clear signal Control Unit Data path CLEAR_VEC_CHECK3
Clear signal Control Unit Data path CLEAR_NORM_VEC_CHECK
Clear signal Control Unit Data path CLEAR_ABS_THETA
Clear signal Control Unit Data path CLEAR_FINAL_THR
Enable for
counters

Control Unit Data path INC_N

Enable for
counters

Control Unit Data path INC_OP3

Enable for
counters

Control Unit Data path INC_OP2

Enable for
counters

Control Unit Data path INC_OP1

Clear signal Control Unit Data path CLEAR_N

Clear signal Control Unit Data path CLEAR_OP3

Clear signal Control Unit Data path CLEAR_OP2

Clear signal Control Unit Data path CLEAR_OP1

Enable for math
blocks

Control Unit Data path EN_MULT4

Enable for math
blocks

Control Unit Data path EN_ADDER5

Enable for math
blocks

Control Unit Data path EN_ADDER6

Enable for math
blocks

Control Unit Data path EN_MULT5

Enable for math
blocks

Control Unit Data path EN_ADDER7

Enable for math
blocks

Control Unit Data path EN_ADDER8

Enable for math
blocks

Control Unit Data path EN_MULT6

Enable for math
blocks

Control Unit Data path EN_SUB4

Enable for math
blocks

Control Unit Data path EN_ABS1

Enable for math
blocks

Control Unit Data path EN_MULT7

Enable for math
blocks

Control Unit Data path EN_CMP2

Chapter 4

89

Selection signal Control Unit Data path SEL_EV0

Results of
comparisons

Data path Control Unit OP3_EQS_16

Results of
comparisons

Data path Control Unit OP2_EQS_9

Results of
comparisons

Data path Control Unit OP1_EQS_7

Results of
comparisons

Data path Control Unit OP2_EQS_10

Results of
comparisons

Data path Control Unit OP1_EQS_2

Results of
comparisons

Control Unit Data path NORM_VEC_CHECK_LT_THR

Results of
comparisons

Data path Control Unit N_EQS_255

Table 12 List of signals exchanged between control unit and data path

At this point, the iterative procedure to compute the eigenvector associated to the

smallest eigenvalue can start. If it is the first iteration, the selection signal sel_EV0,

which commands multiplexers MUX_EV0_1, MUX_EV0_2, MUX_EV0_3, is

equal to ‘0’ and the three components of registers EV0_1, EV0_2 and EV0_3 are

set equals to one. If it is not the first iteration, the last estimate of the eigenvector

associated to the smallest eigenvalue is stored on registers EV0_1, EV0_2 and

EV0_3. The first operation of the algorithm is the normalization of vector EV0, so

it is computed its norm by means of the block NORM_COMPUTATION. The end

of the norm computation is indicated by NORM_COMPUTATION’s output signal,

called DONE, which becomes equal to ‘1’. The three components EV0_1, EV0_2

and EV0_3 can be divided by the norm, stored on register NORM_EV0. Since the

division needs for 16 clock cycles to be completed, the OP3_CNT counts up to

sixteen. Therefore, when this value is reached, the control unit checks the status to

OP3_EQS_16 to be equal to ‘1’. In this way, it set equals to ‘0’ the enable for the

divider and the results of the operations are stored in the three registers EV_1,

EV_2, EV_3. At this point, the product between the inverse – shifted covariance

matrix and the vector EV0 should be computed, so the following operations have

to be performed:

Chapter 4

90

𝐸𝑉0 = Σ̂𝑖,𝐼𝑁𝑉 ∙ 𝐸𝑉 = (
𝐴11 𝐴12 𝐴13

𝐴12 𝐴22 𝐴23

𝐴13 𝐴23 𝐴33

)(
𝐸𝑉1

𝐸𝑉2

𝐸𝑉3

)

𝐸𝑉0,1 = 𝐴11𝐸𝑉1 + 𝐴12𝐸𝑉2 + 𝐴13𝐸𝑉3

𝐸𝑉0,2 = 𝐴12𝐸𝑉1 + 𝐴22𝐸𝑉2 + 𝐴23𝐸𝑉3

𝐸𝑉0,3 = 𝐴13𝐸𝑉1 + 𝐴23𝐸𝑉2 + 𝐴33𝐸𝑉3

The coefficients of the inverse shifted-covariance matrix, 𝐴11, 𝐴22, 𝐴33, 𝐴12, 𝐴13,

𝐴23 are respectively stored on registers INV_COVXX, INV_COVYY,

INV_COVZZ, INV_COVXY, INV_COVXZ, INV_COVYZ. Before, the

multiplications between the coefficients and the elements of vector 𝐸𝑉 are

performed and, to simplify the notation, the results of these operations are stored

on register A, B, C, D, E, F, G, H, J. These nine multiplications are performed in

parallel in such a way to speed up the estimation of the normal vector. However,

each multiplication requires 9 clock cycles to be completed so the OP2_CNT counts

up to 9 and, when this value is reached, the comparator OP2_CMP_9 set the signal

OP2_EQS_9 equals ‘1’. In this way, the control unit understands that the operation

has been carried out and it activates the load signals of the corresponding registers

to save the results of the operations. Then, it has to be performed the sum between

A, B, C and, at the same way the sum between D, E, F and the sum between G, H,

J. To complete this task, it has to be first performed the sum between A and B, D

and E, G and H and the results are respectively stored on registers AB, DE, GH.

Then, the values stored on these registers are added to those stored on C, F, J. In

both steps, the three adding operations are carried out in parallel but the OP1_CNT

is exploited to count the 7 clock cycles needed to complete the sum. The results of

the last sums are stored on registers NEW_EV0_1, NEW_EV0_2, NEW_EV0_3.

At this point, 𝜃 has to be estimated, which is given by the product between the new

estimate 𝐸𝑉0, whose components are stored on NEW_EV0_1, NEW_EV0_2,

NEW_EV0_3, and vector 𝐸𝑉, whose components are stored on EV_1, EV_2,

EV_3. The following operations have to be performed:

Chapter 4

91

𝜃 = 𝐸𝑉0 ∙ 𝐸𝑉𝑇 = (

𝐸𝑉0,1

𝐸𝑉0,2

𝐸𝑉0,3

) (𝐸𝑉1 𝐸𝑉2 𝐸𝑉3)

= 𝐸𝑉0,1𝐸𝑉1 + 𝐸𝑉0,2𝐸𝑉2 + 𝐸𝑉0,3𝐸𝑉3

The first step consists of computing the products between NEW_EV0_1 and EV_1,

NEW_EV0_2 and EV_2, NEW_EV0_3 and EV_3, which are respectively stored

on the new registers called THETA_1, THETA_2, THETA_3. Then, the value

stored on registers THETA_1 and THETA_2 are added together and the result is

stored on registers THETA_NF. Finally, the result on THETA_NF is added to the

value stored on THETA_3. The output of these two sum operations is the final result

value of 𝜃 and it is saved on the register called THETA. The next action consists of

verifying the difference between the previous estimate and the new one. The check

is performed on vector 𝐸𝑉0 − 𝜃𝐸𝑉, so the first action to take is to compute the three

products, 𝜃𝐸𝑉1, 𝜃𝐸𝑉2 and 𝜃𝐸𝑉3. Then, these three products have to be subtracted

to the values stored on NEW_EV0_1, NEW_EV0_2, NEW_EV0_3. The results of

these subtractions are stored on registers VEC_CHECK1, VEC_CHECK2,

VEC_CHECK3, which are fed as input to the block NORM_COMPUTATION.

When the block completes the computation of the norm, the output signal DONE

becomes equal to ‘1’ so it is performed the product between the absolute value of

THETA and the threshold 𝛿, whose value is stored on CONSTANT_5. The absolute

value of THETA is computed by means of the IP Block Absolute_value, which

needs only one clock cycle to perform the computation. The comparison between

this product, stored on register FINAL_THR, and the norm of vector

VEC_CHECK, which is stored on the register called NORM_VEC_CHECK, is

performed by the block EV_CMP_THR. The result of the comparison is analyzed

by the control unit: if it is equal to ‘1’, it means that the condition ‖𝐸𝑉0 − 𝜃𝐸𝑉‖2 ≤

|𝜃|𝛿 is verified, so the algorithm can stop; otherwise, through the initial mux, the

values NEW_EV0_1, NEW_EV0_2, NEW_EV0_3 are stored in EV0_1, EV0_2

and EV0_3 and the steps are performed again. There is a counter, called N_CNT,

that counts how many times the iterations are repeated and, when it reaches the

value 255, even if the condition on the norm is not respected, the last computed

values for EV0 are saved. If the algorithm finishes the computation of the three

Chapter 4

92

components of EV0, the division by THETA can be performed and the final results

are stored on final registers NX, NY, NZ. At this point, the data path returns the

three components of the normal vector as output to the common interface between

data path and control unit.

4.3.3.5 NORM_COMPUTATION

During the explanation of the data path structure, it has been mentioned the

component NORM_COMPUTATION. It is a fully – personalized basic

component, which has been implement with the same architecture that has be

exploited in the design of the normal estimation hardware unit. It means there is a

data path, where the data are processed and a control unit, which enable the registers

and mathematical blocks in the data path, in such a way to control the flow of data

into it. Moreover, there is a common interface that links the two computational

blocks. First, the list of the components involved in the data path are listed below:

TYPE OF COMPONENT NAME ALREADY
INSTANTIATED

RegN (32-bits) X No
RegN (32-bits) Y No
RegN (32-bits) Z No
RegN (32-bits) X2 No
RegN (32-bits) Y2 No
RegN (32-bits) Z2 No
RegN (32-bits) SUMxy No
RegN (32-bits) SUMxyz No
RegN (32-bits) NORM No
Multiplier (IP Block) MULT1 No
Multiplier (IP Block) MULT2 No
Multiplier (IP Block) MULT3 No
Adder (IP Block) ADDER1 No
Adder (IP Block) ADDER2 No
Square root (IP Block) SQR_ROOT1 No
Counter4 OP2_CNT No
Counter3 OP1_CNT No
CMP9 OP2_CMP_9 No
CMP7 OP1_CMP_7 No

Table 13 List of components in data path

Chapter 4

93

The signals exchanged between the data path and the control unit are listed below:

TYPE OF SIGNAL FROM TO NAME

Load signal Control Unit Data path LOAD_X

Load signal Control Unit Data path LOAD_Y

Load signal Control Unit Data path LOAD_Z

Load signal Control Unit Data path LOAD_X2
Load signal Control Unit Data path LOAD_Y2
Load signal Control Unit Data path LOAD_Z2
Load signal Control Unit Data path LOAD_SUMxy
Load signal Control Unit Data path LOAD_SUMxyz
Load signal Control Unit Data path LOAD_NORM
Clear signal Control Unit Data path CLEAR_X
Clear signal Control Unit Data path CLEAR_Y
Clear signal Control Unit Data path CLEAR_Z
Clear signal Control Unit Data path CLEAR_X2
Clear signal Control Unit Data path CLEAR_Y2
Clear signal Control Unit Data path CLEAR_Z2
Clear signal Control Unit Data path CLEAR_SUMxy
Clear signal Control Unit Data path CLEAR_SUMxyz
Clear signal Control Unit Data path CLEAR_NORM
Enable for counters Control Unit Data path INC_OP1
Enable for counters Control Unit Data path INC_OP2
Clear signal Control Unit Data path CLEAR_OP1
Clear signal Control Unit Data path CLEAR_OP2
Enable for math
blocks

Control Unit Data path EN_MULT1

Enable for math
blocks

Control Unit Data path EN_ADDER1

Enable for math
blocks

Control Unit Data path EN_ADDER2

Enable for math
blocks

Control Unit Data path EN_SQR_ROOT1

Results of
comparisons

Data path Control Unit OP1_EQS_7

Results of
comparisons

Data path Control Unit OP2_EQS_9

Table 14 List of signals exchanged between control unit and data path

First, there are two key aspects to highlight:

Chapter 4

94

- The multiplier blocks, provided by Intel®, have a latency of nine clock

cycles. It means that the final result is available only after nine clock cycles.

For this reason, the counter called OP2_CNT is instantiated: indeed, it

counts up to nine and, when this value is attained, the comparator

OP2_CMP_9 returns the output signal OP2_EQS_9 equals ‘1’ to the control

unit. In this way, the control unit turns off the enable signals for the

multiplier block. The same considerations can be made for component

SQR_ROOT, instantiation of the IP block square_root, which needs for nine

clock cycles to produce the final result.

- The adder blocks have a latency of seven clock cycles. It means that the

final result is available only after seven clock cycles. For this reason, the

counter called OP1_CNT is instantiated: indeed, it counts up to seven and,

when this value is attained, the comparator OP1_CMP_7 returns the output

signal OP1_EQS_7 equals ‘1’ to the control unit. In this way, the control

unit turns off the enable signals for the adder block.

The norm computation consists of computing the Euclidean norm of a vector 𝑣 =

[𝑣1 𝑣2 𝑣3]
𝑇. In this case, it is considered a vector having three components, so the

steps to perform are:

- To square the single components of vector 𝑣, in such a way to obtain

𝑣1
2, 𝑣2

2, 𝑣3
2;

- To sum these three squared components, in such a way to have 𝑣1
2 + 𝑣2

2 +

𝑣3
2;

- To perform the square root of the last computed sum. The final norm is

given by:

‖𝑣‖2 = √𝑣1
2 + 𝑣2

2 + 𝑣3
22

The state S0 of control unit is entirely dedicated to set the load signals of all registers

and counter equal to ‘0’, the clear signals of all registers and counters equal to ‘1’

and the enable signals of all arithmetic blocks are set equal to ‘0’. After this first

setup state, the first operation to be performed is the square of the input values,

which represent the components of the vector whose norm has to be computed. The

Chapter 4

95

input components are stored on registers X, Y, Z. The square operation is carried

out by multipliers MULT1, MULT2, MULT3, one for each component. When the

operation is completed, the result is stored on registers X2, Y2, Z2. Then, these

three squared values shall be added together, so it is first performed the sum

between the values stored on X2 and Y2 through component ADDER1 and the

result of this sum is stored on register SUMxy. Successively, the sum between the

content of register SUMxy and the quantity stored on Z2 are added together through

component ADDER2 and the result is stored on register SUMxyz. The last step to

perform is the square root of the sum of the squared components, so the value stored

on SUMxyz is fed as input to the block SQR_ROOT1. Finally, the result produced

by this block is stored on register NORM, which represents the output of the whole

NORM_COMPUTATION block. Moreover, to indicate that the whole activity of

performing the norm computation is completed, the common interface between the

data path and the control produces an output signal, called DONE, which becomes

high to indicate the termination of operations.

Chapter 5

96

Chapter 5

Conclusions and future works
5.1 Results of the synthesis process
The module was synthesized using Intel’s Quartus Prime suite. The available

synthesis tool generates a complete report after the compilation, to inform the user

about the hardware resources needed to implement the desired functionalities. The

hardware resources necessary to implement the present algorithm are listed in the

table below.

Total logic elements 39513/55856 (71%)
Total registers 30330
Total pins 100/322 (31%)
Total virtual pins 0
Total memory bits 405152/2396160 (17%)
Embedded Multiplier 9-bit elements 260/312 (83%)
Device Cyclone 10 LP 10CL055YF484C6G

Table 15 Allocated hardware resources for the synthesis

As it is possible to observe, the number of registers is considerable, which makes

sense if it is considered the fact that the design has been carried out by means of the

register transfer level technique, so by means of a technique that makes use of

registers to store the computed values at the end of each operation.

5.2 Numerical simulations
After the synthesis, the simulation was performed by means of the ModelSim HDL

Simulator. For this purpose, a simple testbench was developed in VHDL. Since the

designed circuit implements the hardware unit computing the normal vector for a

single point, the data points (so point 𝑝𝑖 and its 𝑘 – neighbors) for each simulation

are written inside the components ROMx, ROMy, ROMz instantiated in the data

path.

Chapter 5

97

5.2.1 First test – Clear blue region
This region is flat and the slope is everywhere the same. In particular, the coordinate

𝑧 is equal to the highest value it could attain, that is 𝑧𝐻𝐼 = 0.5 𝑚𝑡. For example, a

point of this region and its neighbors are defined as follow:

𝑥 = 0

𝑦 = 0

𝑧 = 0.5

𝑥 = 0

𝑦 = 0.2083

𝑧 = 0.5

𝑥 = 0

𝑦 = 0.4167

𝑧 = 0.5

𝑥 = 0.2083

𝑦 = 0

𝑧 = 0.5

𝑥 = 0.2083

𝑦 = 0.2083

𝑧 = 0.5

𝑥 = 0.2083

𝑦 = 0.4167

𝑧 = 0.5

𝑥 = 0.4167

𝑦 = 0

𝑧 = 0.5

𝑥 = 0.4167

𝑦 = 0.2083

𝑧 = 0.5

𝑥 = 0.4167

𝑦 = 0.4167

𝑧 = 0.5
Table 16 Data input for region 1

In this case, the following results are obtained:

𝑁𝑋 = −5.7253 ∙ 10−8

𝑁𝑌 = −5.7253 ∙ 10−8

𝑁𝑍 = 0.9994

5.2.2 Second test – Dark green region
This region is flat and the slope is everywhere the same. In particular, the coordinate

𝑧 is equal to the lowest value it could attain, that is 𝑧𝐿𝑂 = 0 𝑚𝑡. For example, a

point of this region and its neighbors are defined as follow:

𝑥 = 3.9583

𝑦 = 2.2917

𝑧 = 0.5

𝑥 = 3.9583

𝑦 = 2.5

𝑧 = 0.5

𝑥 = 3.9583

𝑦 = 2.7083

𝑧 = 0.5

Chapter 5

98

𝑥 = 4.1667

𝑦 = 2.2917

𝑧 = 0.5

𝑥 = 4.1667

𝑦 = 2.5

𝑧 = 0.5

𝑥 = 4.1667

𝑦 = 2.7083

𝑧 = 0.5

𝑥 = 4.3750

𝑦 = 2.2917

𝑧 = 0.5

𝑥 = 4.3750

𝑦 = 2.5

𝑧 = 0.5

𝑥 = 4.3750

𝑦 = 2.7083

𝑧 = 0.5
Table 17 Data input for region 2

In this case, the following results are obtained:

𝑁𝑋 = −5.7253 ∙ 10−8

𝑁𝑌 = −5.7336 ∙ 10−8

𝑁𝑍 = 0.9987

5.2.3 Third test – Clear green region
Also this region is flat but the coordinate 𝑧 takes on the values between 𝑧𝐻𝐼 and a

middle value, 𝑧𝑀𝐼𝐷 = 0.25 𝑚𝑡. The set of values between 𝑧𝐻𝐼 and 𝑧𝑀𝐼𝐷 are obtained

by uniformly sampling the interval between the two extremes. For example, a point

of this region and its neighbors are defined as follow:

𝑥 = 3.5417

𝑦 = 0

𝑧 = 0.4318

𝑥 = 3.5417

𝑦 = 0.2083

𝑧 = 0.4318

𝑥 = 3.5417

𝑦 = 0.4167

𝑧 = 0.4318

𝑥 = 3.75

𝑦 = 0

𝑧 = 0.4091

𝑥 = 3.75

𝑦 = 0.2083

𝑧 = 0.4091

𝑥 = 3.75

𝑦 = 0.4167

𝑧 = 0.4091

𝑥 = 3.958

𝑦 = 0

𝑧 = 0.3864

𝑥 = 3.958

𝑦 = 0.2083

𝑧 = 0.3864

𝑥 = 3.958

𝑦 = 0.4167

𝑧 = 0.3864
Table 18 Data input for region 3

In this case, the following results are obtained:

𝑁𝑋 = −0.1084

Chapter 5

99

𝑁𝑌 = 0

𝑁𝑍 = −0.9941

5.2.4 Fourth test – Purple region
Also this region is flat but the coordinate 𝑧 takes on the values between 𝑧𝐿𝑂 and a

middle value, 𝑧𝑀𝐼𝐷 = 0.25 𝑚𝑡. The set of values between 𝑧𝐿𝑂 and 𝑧𝑀𝐼𝐷 are obtained

by uniformly sampling the interval between the two extremes. For example, a point

of this region and its neighbors are defined as follow:

𝑥 = 3.5417

𝑦 = 3.9583

𝑧 = 0.1364

𝑥 = 3.5417

𝑦 = 4.1667

𝑧 = 0.1364

𝑥 = 3.5417

𝑦 = 4.3750

𝑧 = 0.1364

𝑥 = 3.75

𝑦 = 3.9583

𝑧 = 0.1591

𝑥 = 3.75

𝑦 = 4.1667

𝑧 = 0.1591

𝑥 = 3.75

𝑦 = 4.3750

𝑧 = 0.1591

𝑥 = 3.958

𝑦 = 3.9583

𝑧 = 0.1818

𝑥 = 3.958

𝑦 = 4.1667

𝑧 = 0.1818

𝑥 = 3.958

𝑦 = 4.3750

𝑧 = 0.1818
Table 19 Data input for region 4

In this case, the following results are obtained:

𝑁𝑋 = −0.1084

𝑁𝑌 = 0

𝑁𝑍 = 0.9941

5.2.5 Analysis of the results

The obtained results confirm the correctness of the algorithm as well as the fact that

the designed circuit effectively implements the desired functions. Obviously, it has

been reported only one point for each region, to give an idea of the results in the

different areas. For what regards the results, they reflect the correct orientation of

Chapter 5

100

the normal: the fact that the rounding settings have been set in the IP blocks as well

as the fact that the involved matrix is not the original covariance one but the shift

let the result be slightly different from the expected values. However the difference

is quite small, so these results can be perfectly accepted. Another consideration to

point out is the fact that there is a irregularity in signs: indeed, for the last region,

the signs reflect the correct orientation of the normal vector, while it is not true for

the third region. It means that, in a future work, it is crucial to orient all the normals

according to the viewpoint. Finally, as expected, no result was produced for the

points on the corner.

5.3 Timing results

From a point of view of timing, the resulting module has a high latency of more

than 925 clocks latency (depending on the number of needed iterations N).

However, there is the chance of improving the throughput of the designed

architecture: indeed, the circuit needs for 104 clock cycles to return the first result

about the centroid computation. It means that a good pipelining realization of the

circuit could allow for a throughput of 104 clock cycles to be achieved. Moreover,

the clock used in the simulation has 5 𝑛𝑠 period or 200MHz frequency. Considering

the latency of the module, this means that it would take about 5 µ𝑠 until the first

output is computed but exploiting the pipelining implementation the throughput

could consistently decrease.

5.4 Future works
The aim of the thesis was to demonstrate the feasibility of implementing a well –

know computer vision algorithm on a FPGA board. It has been shown how to

correct minor problems raised during the definition of the algorithm and the

corresponding hardware implementation for each step of the algorithm. Future

works shall concentrate on optimizing the designed circuit, by decreasing the

number of allocated resources and shared signals. At the same way, the design

should be pipelined in such a way to increase the throughput. Finally, it could be

Chapter 5

101

extended the use of the hardware unit, in such a way to compute the normal vector

for all points in the point cloud.

Appendix A

102

Appendix A

Mathematical computations behind

data path realization of eigenvector

estimation
Given a generic matrix 𝐴 ∈ ℝ3,3, whose entries are the following ones:

𝐴 = (

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎33

)

Its inverse matrix can be computed only if det (𝐴) ≠ 0, since its expression is given

by:

𝐴−1 =
1

det (𝐴)
(
𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

𝐴31 𝐴32 𝐴33

)

Where each element of position (𝑖, 𝑗) is obtained as:

𝐴𝑖,𝑗 = (−1)𝑖+𝑗𝐶𝑖𝑗

Taking an element 𝑎𝑖,𝑗 of the matrix 𝐴, 𝐶𝑖𝑗 is the complementary minor relative to

the element 𝑎𝑖,𝑗 and it is the determinant of the submatrix which is obtained from 𝐴

by eliminating the i-th row and the j-th column. To compute the inverse matrix, it

is then necessary to divide each entries for the determinant of matrix 𝐴, whose

formula is:

Appendix A

103

det(𝐴) = 𝑎11𝑎22𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎31𝑎22𝑎13

− 𝑎32𝑎23𝑎11 − 𝑎33𝑎21𝑎12

If matrix A is symmetric, its inverse matrix is:

𝐴−1 =
1

det (𝐴)
(
𝐴11 𝐴12 𝐴13

𝐴12 𝐴22 𝐴23

𝐴13 𝐴23 𝐴33

)

Each element of the inverse matrix is computed as:

𝐴11 = (−1)1+1 (
𝑎22 𝑎23

𝑎23 𝑎33
) = 𝑎22𝑎33 − 𝑎23

2

𝐴22 = (−1)2+2 (
𝑎11 𝑎13

𝑎13 𝑎33
) = 𝑎11𝑎33 − 𝑎13

2

𝐴33 = (−1)3+3 (
𝑎11 𝑎12

𝑎12 𝑎22
) = 𝑎11𝑎22 − 𝑎12

2

𝐴12 = 𝐴21 = (−1)1+2 (
𝑎12 𝑎23

𝑎13 𝑎33
) = −(𝑎12𝑎33 − 𝑎13𝑎23)

𝐴13 = 𝐴31 = (−1)1+3 (
𝑎12 𝑎22

𝑎13 𝑎23
) = 𝑎12𝑎23 − 𝑎13𝑎22

𝐴23 = 𝐴32 = (−1)2+3 (
𝑎11 𝑎13

𝑎12 𝑎23
) = −(𝑎11𝑎23 − 𝑎13𝑎12)

Finally, the simplified formula for the determinant is the following one:

det(𝐴) = 𝑎11𝑎22𝑎33 + 2𝑎12𝑎23𝑎31 − 𝑎13
2 𝑎22 − 𝑎23

2 𝑎11 − 𝑎12
2 𝑎33

Appendix A

104

In the considered case, the matrix that has to be inverted is the shifted covariance

matrix:

Σ̂ = (

𝐶𝑂𝑉𝑥𝑥 𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑥𝑧

𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑦 𝐶𝑂𝑉𝑦𝑧

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑦𝑧 𝐶𝑂𝑉𝑧𝑧

)

Σ̂ − 𝜎𝐼3,3 = (

𝐶𝑂𝑉𝑥𝑥 − 𝜎 𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑥𝑧

𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑦 − 𝜎 𝐶𝑂𝑉𝑦𝑧

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑦𝑧 𝐶𝑂𝑉𝑧𝑧 − 𝜎
)

The determinant of this new matrix is:

det(Σ̂ − 𝜎𝐼3,3) = (𝐶𝑂𝑉𝑥𝑥 − 𝜎)(𝐶𝑂𝑉𝑦𝑦 − 𝜎)(𝐶𝑂𝑉𝑧𝑧 − 𝜎) + 2𝐶𝑂𝑉𝑥𝑦𝐶𝑂𝑉𝑦𝑧𝐶𝑂𝑉𝑥𝑧

− 𝐶𝑂𝑉𝑥𝑧
2 (𝐶𝑂𝑉𝑦𝑦 − 𝜎) − 𝐶𝑂𝑉𝑦𝑧

2 (𝐶𝑂𝑉𝑥𝑥 − 𝜎) − 𝐶𝑂𝑉𝑥𝑦
2 (𝐶𝑂𝑉𝑧𝑧 − 𝜎)

While the elements of inverse matrix (Σ̂ − 𝜎𝐼3,3)
−1 are:

𝐴11 = (−1)1+1 (
𝐶𝑂𝑉𝑦𝑦 − 𝜎 𝐶𝑂𝑉𝑦𝑧

𝐶𝑂𝑉𝑦𝑧 𝐶𝑂𝑉𝑧𝑧 − 𝜎
)

= (𝐶𝑂𝑉𝑦𝑦 − 𝜎)(𝐶𝑂𝑉𝑧𝑧 − 𝜎) − 𝐶𝑂𝑉𝑦𝑧
2

𝐴22 = (−1)2+2 (
𝐶𝑂𝑉𝑥𝑥 − 𝜎 𝐶𝑂𝑉𝑥𝑧

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑧𝑧 − 𝜎
)

= (𝐶𝑂𝑉𝑥𝑥 − 𝜎)(𝐶𝑂𝑉𝑧𝑧 − 𝜎) − 𝐶𝑂𝑉𝑥𝑧
2

𝐴33 = (−1)3+3 (
𝐶𝑂𝑉𝑥𝑥 − 𝜎 𝐶𝑂𝑉𝑥𝑦

𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑦 − 𝜎
)

= (𝐶𝑂𝑉𝑥𝑥 − 𝜎)(𝐶𝑂𝑉𝑦𝑦 − 𝜎) − 𝐶𝑂𝑉𝑥𝑦
2

𝐴12 = 𝐴21 = (−1)1+2 (
𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑧

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑧𝑧 − 𝜎
)

= −[𝐶𝑂𝑉𝑥𝑦(𝐶𝑂𝑉𝑧𝑧 − 𝜎) − 𝐶𝑂𝑉𝑥𝑧𝐶𝑂𝑉𝑦𝑧]

Appendix A

105

𝐴13 = 𝐴31 = (−1)1+3 (
𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑦 − 𝜎

𝐶𝑂𝑉𝑥𝑧 𝐶𝑂𝑉𝑦𝑧
)

= 𝐶𝑂𝑉𝑥𝑦𝐶𝑂𝑉𝑦𝑧 − 𝐶𝑂𝑉𝑥𝑧(𝐶𝑂𝑉𝑦𝑦 − 𝜎)

𝐴23 = 𝐴32 = (−1)2+3 (
𝐶𝑂𝑉𝑥𝑥 − 𝜎 𝐶𝑂𝑉𝑥𝑧

𝐶𝑂𝑉𝑥𝑦 𝐶𝑂𝑉𝑦𝑧
)

= −[(𝐶𝑂𝑉𝑥𝑥 − 𝜎)𝐶𝑂𝑉𝑦𝑧 − 𝐶𝑂𝑉𝑥𝑧𝐶𝑂𝑉𝑥𝑦]

106

Bibliography and sitography
[1] Shaukat, Affan, Peter Blacker, Conrad Spiteri, e Yang Gao. «Towards Camera-

LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and

Analysis». Sensors 16, fasc. 11 (20 novembre 2016): 1952.

https://doi.org/10.3390/s16111952.

[2] Ellery, Alex. Planetary Rovers: Robotic Exploration of the Solar System. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2016. https://doi.org/10.1007/978-3-642-

03259-2.

[3] Matthies, Larry, Mark Maimone, Andrew Johnson, Yang Cheng, Reg Willson,

Carlos Villalpando, Steve Goldberg, Andres Huertas, Andrew Stein, e Anelia

Angelova. «Computer Vision on Mars». International Journal of Computer Vision

75, fasc. 1 (18 luglio 2007): 67–92. https://doi.org/10.1007/s11263-007-0046-z.

[4] Berger, Matthew, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Gaël

Guennebaud, Joshua A. Levine, Andrei Sharf, e Claudio T. Silva. «A Survey of

Surface Reconstruction from Point Clouds». Computer Graphics Forum 36, fasc. 1

(gennaio 2017): 301–29. https://doi.org/10.1111/cgf.12802.

[5] Cazals, Frédéric, e Joachim Giesen. «Delaunay Triangulation Based Surface

Reconstruction». In Effective Computational Geometry for Curves and Surfaces, a

cura di Jean-Daniel Boissonnat e Monique Teillaud, 231–76. Berlin, Heidelberg:

Springer, 2006. https://doi.org/10.1007/978-3-540-33259-6_6.

[6] Remondino, Fabio. «From Point Cloud to Surface: The Modeling and

Visualization Problem». Application/pdf, 2003, 11p.

https://doi.org/10.3929/ETHZ-A-004655782.

[7] Castejón, Cristina, Beatriz L. Boada, Dolores Blanco, e Luis Moreno.

«Traversable Region Modeling for Outdoor Navigation». Journal of Intelligent and

Robotic Systems 43, fasc. 2–4 (24 dicembre 2005): 175–216.

https://doi.org/10.1007/s10846-005-9005-5.

https://doi.org/10.3390/s16111952
https://doi.org/10.1007/978-3-642-03259-2
https://doi.org/10.1007/978-3-642-03259-2
https://doi.org/10.1007/s11263-007-0046-z
https://doi.org/10.1111/cgf.12802
https://doi.org/10.1007/978-3-540-33259-6_6
https://doi.org/10.3929/ETHZ-A-004655782
https://doi.org/10.1007/s10846-005-9005-5

107

[8] Seraji, H. «Traversability Index: A New Concept for Planetary Rovers». In

Proceedings 1999 IEEE International Conference on Robotics and Automation

(Cat. No.99CH36288C), 3:2006–13. Detroit, MI, USA: IEEE, 1999.

https://doi.org/10.1109/ROBOT.1999.770402.

[9] Gennery, Donald B. «Traversability Analysis and Path Planning for a Planetary

Rover».

[10] Villalpando, Carlos. «Acceleration of Stereo Correlation in Verilog».

[11] Buell, D., El-Ghazawi, T., Gaj, K., Kindratenko, V.: ‘High-performance

reconfigurable computing’, IEEE Comput., 2007, 40, (3), pp. 23–27.

[12] Herbordt, M.C., et al.: ‘Achieving high performance with FPGA-based

computing’, IEEE Comput., 2007, 40, (3), pp. 50– 57.

[13] El-Ghazawi, T., El-Araby, E., Huang, M., Gaj, K., Kindratenko, V., Buell, D.:

‘The promise of high-performance reconfigurable computing’, IEEE Comput.,

2008, 41, (2), pp. 69– 76.

[14] VanCourt, T., Herbordt, M.C.: ‘Elements of high-performance reconfigurable

computing’, Adv. Comput., 2009, 75, pp. 113 –157.

[15] Underwood, K.: ‘FPGAs vs. CPUs: trends in peak floating-point performance’.

Proc. ACM/SIGDA 12th Int. Symp. on FieldProgrammable Gate Arrays (FPGA),

Monterey, CA, USA, February 2004, pp. 171– 180.

[16] Jovanović, Ž., e V. Milutinović. «FPGA Accelerator for Floating-Point Matrix

Multiplication». IET Computers & Digital Techniques 6, fasc. 4 (2012): 249.

https://doi.org/10.1049/iet-cdt.2011.0132.

[17] Woods, Roger, John McAllister, Gaye Lightbody, e Ying Yi. FPGA-Based

Implementation of Signal Processing Systems. Second edition. Hoboken, NJ: John

Wiley & Sons Inc, 2017.

[18] Gokhale, Maya B., and Paul S. Graham. Reconfigurable computing:

Accelerating computation with field-programmable gate arrays. Springer Science

& Business Media, 2006.

https://doi.org/10.1109/ROBOT.1999.770402
https://doi.org/10.1049/iet-cdt.2011.0132

108

[19] Todman, T.J., G.A. Constantinides, S.J.E. Wilton, O. Mencer, W. Luk, e

P.Y.K. Cheung. «Reconfigurable Computing: Architectures and Design Methods».

IEE Proceedings - Computers and Digital Techniques 152, fasc. 2 (2005): 193.

https://doi.org/10.1049/ip-cdt:20045086.

[20] Woods, Roger, John McAllister, Gaye Lightbody, e Ying Yi. FPGA-Based

Implementation of Signal Processing Systems. Second edition. Hoboken, NJ: John

Wiley & Sons Inc, 2017.

[21] Brown, Stephen, e Jonathan Rose. «Architecture of FPGAs and CPLDs: A

Tutorial».

[22] Kuon, Ian, Russell Tessier, e Jonathan Rose. «FPGA Architecture: Survey and

Challenges». Foundations and Trends® in Electronic Design Automation 2, fasc. 2

(2007): 135–253. https://doi.org/10.1561/1000000005.

[23] https://www.generatecnologias.es/en/space-fpga.html

[24] Biesiadecki, J., Maimone, M., and Morrison, J. (2001) ‘‘Athena SDM rover:

A testbed

for Mars rover mobility,’’ Proceedings International Symposium Artificial

Intelligence

and Robotics in Space, Montreal, Canada.

[25]https://www.esa.int/ESA_Multimedia/Images/2006/09/The_Lunar_Robotic_

Mockup_LRM

[26] https://www.nasa.gov/content/what-are-smallsats-and-cubesats

[27] Varnavas, Kosta, e Dr William Herbert Sims. «The Use of Field Programmable

Gate Arrays (FPGA) in Small Satellite Communication Systems».

[28] Hoppe, Hugues, Tony DeRose, Tom Duchamp, John McDonald, e Werner

Stuetzle. «Surface Reconstruction from Unorganized Points».

[29] Rusu, Radu Bogdan. «Semantic 3D Object Maps for Everyday Manipulation

in Human Living Environments». KI - Künstliche Intelligenz 24, fasc. 4 (novembre

2010): 345–48. https://doi.org/10.1007/s13218-010-0059-6.

https://doi.org/10.1049/ip-cdt:20045086
https://doi.org/10.1561/1000000005
https://www.generatecnologias.es/en/space-fpga.html
https://www.nasa.gov/content/what-are-smallsats-and-cubesats
https://doi.org/10.1007/s13218-010-0059-6

109

[30] Bazazian, Dena, Josep R. Casas, e Javier Ruiz-Hidalgo. «Fast and Robust Edge

Extraction in Unorganized Point Clouds». In 2015 International Conference on

Digital Image Computing: Techniques and Applications (DICTA), 1–8. Adelaide,

Australia: IEEE, 2015. https://doi.org/10.1109/DICTA.2015.7371262.

[31] Rodriguez-Cuenca, B., S. Garcia-Cortes, C. Ordonez, e M. C. Alonso. «A

Study of the Roughness and Curvature in 3D Point Clouds to Extract Vertical and

Horizontal Surfaces». In 2015 IEEE International Geoscience and Remote Sensing

Symposium (IGARSS), 4602–5. Milan, Italy: IEEE, 2015.

https://doi.org/10.1109/IGARSS.2015.7326853.

[32] Hsieh, Cheng-Tiao. «An Efficient Development of 3D Surface Registration by

Point Cloud Library (PCL)». In 2012 International Symposium on Intelligent Signal

Processing and Communications Systems, 729–34. Tamsui, New Taipei City,

Taiwan: IEEE, 2012. https://doi.org/10.1109/ISPACS.2012.6473587.

[33] The Elements of Statistical Learning. Data Mining, Inference and Prediction –

J. Friedman.

[34] M. Gu – Single- and Multiple- Vector Iterations (Section 4.3). In Z. Bai, J.

Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors, Templates for the

Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM,

Philadelphia, 2000.

https://doi.org/10.1109/DICTA.2015.7371262
https://doi.org/10.1109/IGARSS.2015.7326853
https://doi.org/10.1109/ISPACS.2012.6473587

