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Summary

This investigation project consist in the emergence of a novel technique for contin-
uous spectrum estimation based on a recursive approach in which the spectrum
estimation will be continuously corrected implementing an Extended-Kalman Fil-
ter. In order to investigate a bond between the control theory and oceanography,
enhancing and modernize the wave spectrum estimation.

It was used the Extended-Kalman Filter (EKF) cyclical procedure, after had
have analyzed the results. In this path was considered the stochastic behaviour of
the ocean based on JONSWAP spectrum and also implementing a linearization to
the model that allowed to obtain a narrow band spectra evaluating each frequency at
the time on the basis of the contributing to reduce the complexity of the state-space
model at the time, because it was used constant frequencies.

It was opted chose the Least-Squares spectral approximation based on JONSWAP
spectrum because it would give a formal solution that helped to model a State-space
based of on a cascade of two second order filter and considering the basic principles
of a stochastic signal processing in order to implement the robust control technique
that allowed to correctly predict the JONSWAP spectrum.

After setting the State-Space model for the EKF (Plan model P-M), another
State-space model was prepared (Nominal Model N-M) using the same procedure
as for the P-M in order to check the behaviour of the control technique when
it was introduced not only similar conditions but also different. The estimation
error obtained in each of the performed tests where significantly low, around of
0.094848, when analysing the P-M and N-M in equal conditions, reveling the
accurate behaviour that the EKF presented. In the other hand the MSE from the
analysis of P-M and N-M in different conditions exhibit a good performance. Also
it was deducted that the JONSWAP shape parameter that generated a significant
increase in the overall MSE, was the Hs (significant wave height).

Finally in this investigation was observed that the most remarkable result was
the performance of the EKF into the JONSWAP spectrum estimation,revealing
that each of the obtained realization was desirable as realistic sea waves under this
conditions evaluated.
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ẋ2 - P-M conditions Hs = 1.1, γ=2, Tp=10 . . . . . . . . . . . . . 34
4.5 a)Target and Estimated realizations b)Spectrum c)State Variable
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Chapter 1

Introduction

1.1 Motivation

Over the years the interest of finding more sustainable ways of buying energy has
a concern, specially in the need to lessen reliance on fossil fuels and the resources
of other entities.

Oceans offer significant potential for renewable energy production on the route to
de-carbonizing of the energy mix, including offshore wind, tides, waves, temperature
and salinity gradients. However, the water is a demanding environment that poses
a serious challenge to both equipment and structures. In particular, waves play a
crucial role in determining whether or not many maritime operations are feasible
since they pose both a significant threat and a potential source of energy. Ocean
waves take on a wide variety of shapes, making them a rich scientific subject for
research in disciplines like hydrodynamics, applied mathematics, statistical physics,
or oceanography.

In the path of understanding the different phenomena of the ocean is crucial
to investigate a novel technique for continuous spectrum estimation based on a
recursive method in which the spectrum estimation will be continuously corrected
in the manner of an adaptive Kalman filter using the differences observed in real
time between, on the one hand, the sensor measurements, and, on the other hand,
those expected given the current spectrum estimation. By establishing a fresh link
between control theory and oceanography, this method seeks to modernize and
strengthen spectrum estimation.
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1.2 Previous Work
The majority of the previous wave spectrum estimation research has been done
on prediction the surface elevation. One method based on spatial prediction of
wave elevation through physical or stochastic propagation models at a given point
can then be seen as the sum of cosines with various frequencies and phases, using
one or more observations in the area of the point of interest. As a result, recursive
models for representing waves were developed.

Additionally, there is another method in which the sea elevation is then divided
into a number of components with various selected frequencies. Only considering
previous measurements made at the point of interest; these techniques treat the
wave elevation as a time series, with each frequency component’s phase and am-
plitudes being determined by resolving a least squares problem using the initial
data and a Kalman filter is latter applied to the model as developed in the article
"Filter Approaches to wave kinematics approximations" of P-T. D. Spanos and
"Contrained Optimal Control of a Heaving Buoy Wave-Energy Converter" Hels et al.

The selection of the harmonic component frequencies and their distribution
within the range is crucial in those recursive approaches. A uniform distribution
over the range is the most reliable option because it won’t be significantly impacted
by a change in the wave spectrum. The frequencies are constant in time and are
not easily determinable. These two issues are addressed by Kalman filter and
auto-regressive models.

Also, P-T. D. Spanos Implements the auto-regressive models [1], in which is
presented three different algorithms for simulating a time series that is appropriate
for a specific power spectrum of ocean waves but only focusing in a sum of a linear
combination of previous values and a linear combination of white noise deviates.

In the other hand Budal and Falnes [2] have implemented the Kalman Filter
to adaptively calculate, based on remote pressure data, the frequency, phase and
amplitude of the wave excitation force acting on a heaving body. The validity of
these very rigorous simplifying hypothesis, which call for simple sinusoidal behavior
of the excitation force and mono-directional wave propagation, is not evaluated in
actual sea conditions.

A wave prediction using linear digital filters and inputs of either distant pres-
sure measurements or distant wave height was proposed in more recent solutions.
However, the intrinsically behaviour of the waves, is crucial treating it as a non
linear problem.

2
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1.3 Objectives
• The main research direction for this thesis is to contribute with the recursive es-

timation implementing a Extended-Kalman Filter clearly formulated.Analyzing
numerically the obtained results in order to implement estimators and varia-
tions in the co-variances matrices in order to generate an extended Kalman
Filter and adapted.

• The analysis is fitted by applying the stochastic behaviour of the ocean. While
estimating the ocean spectrum in real conditions and for sake of simplicity
implement a linearization to the model that allows to obtain a narrow band
spectra by means of the recursive analysis of the evaluated frequencies.

• The response of the Kalman Filter incorporates an optimization in diverse
conditions taking into consideration the confident intervals for a normal and
gaussian likelihood.

1.4 Work content
The following investigation is divided in five chapters, in which the introduction is
the first.

Chapter 2: Literature Review. In the following chapter is introduced
the basic and implemented literature about Gaussian description of ocean waves,
statistical fundamentals and control analysis fundamentals.

Chapter 3: Methods In this chapter is presented the methodology followed,
Starting from the Least-Squares spectral approximation, subsequently the state
space model is defined. Then, the previously state-space is excited with a unit
intensity white-noise signal input to extract the JONSWAP spectrum and before
introducing it into the extended-kalman filter (EKF) it necessary to pre process
the signal by selecting its frequency bandwidth and applying a Low pass filter in
order to create a discrete signal ready to be used in the EKF. Finally the EKF is
designed taking into account some considerations.

Chapter 4: Results and Discussion The main quality criterion used to state
if the EKF is performing quiet approximated narrow estimations is the confidence
interval. Also it is used the MSE calculation along variation of the plan model

3
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(P-M), meaning that the approximation done by the filter kalman can be considered
as well performed.

Chapter 5: Conclusion and Potentially future work In this last chapter
is summarized all the obtained results. And it is given some considerations in order
to continue improving not only the estimation of the JONSWAP spectrum but also
the different other types existing.

Appendix A: Attestation de Stage Here is presented the company in where
I performed and acquire a wide view of this field and all the required tools to
develop my investigation.

Appendix B: Extended - Kalman Filter MATLAB code implementa-
tion The equations, algorithms and calculations used along the developing of the
Extended-Kalman filter are gathered in this appendix.

Appendix C: Least-Squares MATLAB code implementation The Least-
Square spectral approximation equation, algorithms and calculation are used in
the following appendix.

4



Chapter 2

Literature review

2.1 Introduction
In this chapter is for introduce to the reader the concepts needed to understand
the wave prediction. First, it outlines the basics of ocean wave descriptions.

2.2 Gaussian Description of Ocean Waves

2.2.1 Gaussian Description Ocean Waves
Ocean waves can be observed as Gaussian random process, waves are steady-state,
ergodic random process for which the probability distribution of displacement from
the mean value (namely wave profile), follows the normal probability law with zero
mean and a variance representing the sea severity [3].

2.2.2 Spectral density function
Representation of potential and kinematic energies of random waves, also known
as the wave spectrum. Often significant role in evaluating the statistical properties
of stochastic waves.

The magnitude of the auto-correlation function for any time t represents the
time average of the wave energy [3].

It is also possible to express the average energy of a wave in frequency domain
applying the Fourier transform for x(t) obtaining X(w) =

s∞
−∞ |x(t)e−iwt dt by the

Parseval theorem (Eq.2.1).

5
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Ú ∞

−∞
x(t)2 dt = 1

2π

Ú ∞

−∞

Ú ∞

−∞
|x(t)e−iwt dt|2 dw (2.1)

Moreover,is possible to interpret according to the properties of the auto-correlation
function that, the area under the curve from spectrum is also equal to the variance
of waves. By this, in order to have a proper representation of the spectral density
distribution for ocean waves, it is defined as follows:

Sxx = lim
T →∞

1
2T

|X(w)|2 (2.2)

2.2.3 Wave severity (Hs)
Expressed as the wave height of the spectrum, is equal to four times the square-root
of the area under the curve of the spectral density function.

2.2.4 Pierson-Moskowitz spectrum
This formulation was obtained from the analysis of measured data obtained in the
North Atlantic in 1964. Proposing that if the wind blew steadily for a long time
over a large are, the waves would come into equilibrium with the wind. Which is a
concept of fully developed sea, e.g under a given constant wind speed a state of
energy saturation in which a balance is set up from a rate at which the energy is
increase from the wind and the rate at energy lost[4].

S(w) = αg2

w5 exp

C
−β

3
wo

w

44
D

(2.3)

In order to obtain a better approximation the following constant from the Eq.2.3
must be follow as, α = 8.1x10−3, β = 0.74, wo = g/U and U is the wind speed at
a height of 19.5 m above the sea surface [5].

2.2.5 JONSWAP spectrum
Wave measurement program known as the Joint Norh Sea Wave Project carried out
in 1968 and 1969 along a line extending over 160 km into the North Sea from Sylt
Island. The spectrum represents the wind-generated seas which fetch limitation,
and wind speed and fetch length are inputs to this formulation.[3]

S(f ) = α
g2

(2π)4
1
f 5 − 1.25

A
fm

f

B4

γexp[(−f−fm)2/2(σfm)2] (2.4)

Be f the wave frequency, g the constant of gravity, fm = 3.5(g/Ũ) modal
frequency,Ũ wind speed, α = 0.076x̃(−0.22) dimensionless fetch length, x fetch

6
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length and σ = 0.07 for f ≤ fm and 0.09 for f > fm.

This theoretical model is obtained by the measuring of the rough North sea but
not only is implemented in this regions but also in geographically specific locations
where it is important to obtain the characteristic wave frequency.

2.2.6 Wiener-Khintchine theorem

Wiener theorem is used in the analysis of stochastic analysis of random waves
mainly on the relation that exist between between the auto-correlation function
(Eq.2.5) defined in time domain and the Spectral Density Function (SDF) (Eq.2.6)
defined in the frequency domain. Both are the Fourier transform of each other[6].

Rxx(τ) = 1
π

Ú ∞

−∞
Sxx(w)e−iwt dw (2.5)

Sxx(w) = 1
π

Ú ∞

−∞
Rxx(τ)e−iwt dτ (2.6)

Thus, having the spectral density function such the area under Sxx(w) is equal
to the variance of x(t).

Ú ∞

0
Sxx(w) dw = Rxx(0) = V ar[x(t)] (2.7)

2.3 Statistical Fundamentals

2.3.1 Stochastic Process

Also known as random process, can be defined as a group of variables x(t, w), t ∈
T ∧ w ∈ W . Considering variable t as time and w as sampled space. This ran-
dom function can be seen either as discrete time process or a continuous time
process.And x(t, .) are random values obtained in space (state space), while fixing
x(., w) obtaining the sample function trajectory which is the single outcome of a
stochastic process [7].

This is associated to the impossibility to find the probability measure to all
subsets of W. By this each probability and stochastic process are associated only
with the value in each set.

7
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2.3.2 Markov Process
Is considered as a stochastic model in which are described a sequence of events in
which the probability of an event, depend only on the state of the last event and
not in any other state in the past (memory-less property) [8].

2.3.3 Least Squares
The least-square method finds the optimal parameter values by minimizing the
sum of squared residuals [9].The residuals considered as the observed value of the
dependent function S(f) and the value predicted by the model Ŝ(f).

F = minΣ[S(f) − Ŝ(f)]2 (2.8)

The objective is principally to adjust the parameters from an estimated function
model from a initial function model in order to fit in the best way a estimated
model.

2.3.4 Steady-state ergodic random process
An aleatory signal that does not change its statistical behaviour during the time
is considered as steady-state random process. And the ergodicity of an aleatory
signal is present only if one realization represents all the rest, also the ergodicity
only will be present in stationary processes[10].

As a result a random process is said to be ergodic in auto-correlation , if time
averaged auto-correlation if time averaged in ACF is equal to ensemble averaged
ACF.

2.3.5 Correlation
The correlation helps to obtain the information of how different set of variables are
associated being possible to obtain information from a variables just knowing the
previous one.

r = Cov(Z(x), Z(y))
σZxσZy

(2.9)

2.3.6 Auto-Correlation
As state previously the variance can give the information of how much noise is
presented in a signal. To analyse this behaviour not only over the time but also on
the frequency domain is used the ACF.

8
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The auto-correlation function (Eq. 2.10) is essentially a covariance function, on
account of the weakly steady-state condition, the covariance function for any given
time t and t + τ will only depend on the time difference τ . The ACF is defined to
produce the variance of the stochastic waves in the time domain, also it is usefully
for transferring from the time domain to the frequency domain[11].

Rxx(τ) = lim
T →∞

1
2T

Ú T

−T
x(t)x(x + τ) dt (2.10)

Also, Eq.2.10 expressed in the time domain, can be used in the frequency
domainm applying a temporal-spectral relationship known as the Wiener-Khintchine
theorem Eq. 2.5 and Eq. 2.6

2.3.7 White noise signal

For a given random signal in which its ACF is δ(τ) (dirac delta function) having
Rxx = 0 every where except on τ = 0. Taking into account that the ACF will
be represented as "dirac" pulse, its Fourier transform is equivalent to a constant
frequency spectrum (Fig 2.1).

Figure 2.1: White noise representation - A) time domain B) frequency domain

Also, a white noise signal is independent, because at any sample time signal it
is completely uncorrelated from any other sample time signal.

Often signal can be filter out the white noise source to achieve a non-white noise
or colored noise source limited in a specific frequency bandwidth and correlated
domain.

9
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2.3.8 Covariance Function
Having two stochastic processes Z(x), t ∈ T ∧ Z(y), t ∈ Y the covariance function
will express how much these two stochastic variables will change [12].The covariance
function will be express as:

Cov[Z(x), Z(y)] = E[Z(x) − E(Z(x))][Z(y) − E(Z(y))]T (2.11)
Consequently shows a dependency measure between values from the stochastic

process in different T instant, providing information of its variations. In the case
it is obtained that Z(x), t ∈ T ∧ Z(y), t ∈ Y are the same, this situation must be
considered as auto-covariance function, where µ corresponds to the mean of each
random process.

Cov[Z(x), Z(y)] = E[(Z(x) − µx)(Z(y) − µy)] (2.12)

2.3.9 Confidence Interval
In a range of possible values of estimates, it is important to create confidence
intervals in order to define how confident the measurement is with respect to the
true parameter value is likely to be in this interval [9].

Figure 2.2: Critical values of the standard normal distribution

In Figure 2.2, the two symmetric values (Z±α/2) with respect to the mean of
a normal distribution Z ∼ N(0,1). The area under the curve 1 − α represents
the probability to fall in this interval. The remaining sections of the curve α/2
corresponds to the probability to be outside the confidence level.

Z = X − µ

σ
(2.13)

The standard score (Eq.2.13), allow to normalize a given a random process
X ∼ N(µ, σ2) at designated confidence level.

10
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2.4 Control Analysis Fundamentals

2.4.1 State space model

A set of mathematical dynamic equations with multiple input/output which rep-
resents a physical dynamic system, utilizing first-order differential equations.The
representation in continuous-time (2.14) and discrete-time are (2.15) [13]:

ẋ = Ax + Bu

y = Cx + Du
(2.14)

żt = Azt + But

yt = Czt + Dut

(2.15)

2.4.2 Controllability

Refers to a system by means of an unconstrained control vector that is possible to
be transfered from any initial state x(t0) to any other state in a finite interval of
time.[14]

2.4.3 Observability

Refers to a system in any time t0 in which is possible to determine this state from
the observation of the output over a finite time interval [14]. Indeed, measures how
properly the intrinsic states of a dynamic system perturb the acquisition of the
outputs.

2.4.4 Sample time

Refers to the rate rate at which a discrete systems samples its inputs.
The effect of ideal sampling time is to replicate the

2.4.5 Aliasing

The aliasing is phenomenon generated from the conversion from analog to discrete
domain (i.e. an alias of the sampled signal is reconstructed) and may occur for any
type of signal if the sampling rate is not properly chosen.

11
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2.4.6 Shannon’s theorem
In order to avoid aliasing effect, is need to understand the aliasing effect. For
this when a spectrum S(w) is needed to be sampled, its signal bandwidth must be
defined as:

w− = minw : |Sw| /= 0∧w0 = maxw : |Sw| /= 0∧wb = w0 −w− → w0 < ∞ (2.16)

A signal is said to be band-limited if its amplitude spectrum goes to zero for
all frequencies beyond some threshold called the cutoff frequency w0. The ideal
sampling frequency ws is to replicate the original spectrum as:

ws > 2w0 → w0 <
ws

2 = wn → NyquistFrequency (2.17)

2.4.7 Spectrogram
The spectrogram based on the short-time Fourier transform was proposed a tool to
study the time frequency evolution of the properties of ocean wind waves [15].

This mathematical tool provides a proper representation of the averaged fre-
quencies, evaluating in frames (signal chunks) across the whole duration of the
random realization. This will contribute to obtain the amount of power spectral
density and also determine from which point the the signal has low amplitudes.

2.4.8 Kalman filter
The Kalman filter algorithm is a mathematical tool that contributes to the estima-
tion of unknown variables, taking into account observed data during certain period
of time. Also can be used for stochastic estimation from noisy sensor measurements.

The Kalman filter is essentially a set of mathematical equations that implement
a predictor-corrector type estimator that is optimal in the sense that it minimizes
the estimated error covariance [16].

This algorithm has to steps, one is related to the time update and the second
is measurement which is sub-divided in two other steps called prediction and
correction.

The the state-space model is developed the estimation of the state x ∈ Rn of a
discrete-time controlled process that is obtained by the linear stochastic equation.

xt = Axt−1 + But−1 + wt−1 (2.18)

zt = Hxt + vt (2.19)

12



Literature review

Knowing that n are the number of states in the system, r is the dimensionality
of the control commands (inputs) and m are the number of observations in the
system (outputs)

• A - n x n matrix that describes how the state evolves from t − 1 to t without
controls or noise.

• B - n x r matrix that describes how the control ut changes the state from t1
to t.

• H - m x n matrix that describes how the state variables xt are mapped into a
response of the system zt.

• wt−1 , vt - Random variables that represent the process and measurement noise
which are assumed as independent and normally distributed (white noise) with
covariance R and Q respectively.

Prediction Step

This step is also known as thetime update step. In which Eq. 2.20 project forward
in time the current state an error variance, in order to obtain estimates from the
next time step.

x̂−
t = Ax̂t−1 + But−1 (2.20)

P −
t = APt−1A

T + Q (2.21)

• x̂−
t - Represents the prior estimate, that an approximated calculation before

the measurement update correction.

• x̂t - Represents the precedent estimate, that an approximated calculation
before the measurement update correction.

• e−
t = xt − x̂−

t - A priori estimate error.

• et = xt − x̂t - A posteriori estimate error.

• P −
t = E[e−

t e−
t

T ] - A priori error covariance.

• Pt = E[ete
T
t ] - A posteriori error covariance.

• Q = E[wwT ] - Represents the covariance matrix of the Gaussian noise wk.

13
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Correction Step

This step is also known as the measurement update step. These equations also
contribute to feedback and upgrade and estimate from apriori estimate [17].

Kt = P −
t HT (HP −

t HT + R)−1 (2.22)

x̂t = x̂−
t + Kt(zt − Hx̂−

t ) (2.23)

Pt = (I − KtH)P −
t (2.24)

• Kt - Kalman gain is a n x m matrix, is called the gain or blending factor, that
minimizes the precedent error covariance equation Pk.

• R = E[vvT ] - Represents the covariance matrix of the Gaussian noise vk.

• zt − Hx̂−
t - The residual and represents tje difference between the predicted

measurement Hx̂−
t and the actual measurement zk.

Calculation Procedure

Starting from the measurement update.

1- Set initial estimates for x̂t−1 and Pt−1.

2- Compute first the Kalman gain Kt from Eq. 2.22.

3- Compute the measurement zk from Eq. 2.26.

4- Compute the precedent estimate x̂t from Eq. 2.23.

5- Compute a posteriori error covariance Pt from Eq. 2.24.

Then proceed with Time update.

6- Compute next time instant t, a priori error covariance P −
t from Eq. 2.21

with obtained Pt−1 at previous time instant (starting from initial conditions).

7- Compute the prior estimate x̂−
t with the previous precedent estimate x̂t based

on Eq. 2.20.

8- Restart again the calculation procedure.

14
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2.4.9 Extended Kalman Filter EKF
Most realistic problems involve nonlinear functions. For this the following linear
model (Eq. 2.25 and Eq. 2.26) must be change into a nonlinear model.

xt = Axt−1 + But−1 + wt−1 (2.25)

zt = Hxt + vt (2.26)

The main problem of using the nonlinear function is that will lead to non-
gaussian distributions and the normal kalman filter is not applicable anymore.
Thus, the following nonlinear model is considered (Eq. 2.27 and Eq. 2.28) .

xt = g(ut, xt−1) + wt−1 (2.27)

zt = h(xt) + vt (2.28)

To implement EKF is need to apply local linearization based on Taylor which is
basically taking a point and computing its partial derivative around this lineariza-
tion point.

Looking around the prediction step is analysed how far is the actual measurement.

g(ut, xt−1) ≈ g(ut, νt−1) + ∂g(ut, νt−1)
∂xt−1

(xt−1 − νt−1) (2.29)

Also the correction step is linearized.

h(xt) ≈ h(ût) + ∂h(ût)
∂xt

(xt − ût) (2.30)

Also, is important to remark that the differential term corresponds to the Jaco-
bian, which is the orientation of the tangent plane to the vector-valued function at
a given point.

In general aspects the Eq. 2.20 will be follow as:

ν̂−
t = g(ut, νt−1) (2.31)

And Eq.2.23 leads to:

x̂t = x̂−
t + Kt(zt − h(ν̂−

t )) (2.32)

The calculation procedure explained in the above section 2.4.8 Kalman filter, is
performed in the same manner but applying the previously changes.
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Chapter 3

Methods

3.1 Introduction
In this chapter will be presented the different methods considered in order to
calculate a estimation of the wave spectrum. In first instance, is introduced
the different sources of prediction numerical tools. The Least-squares Spectral
approximation based on JONSWAP spectrum.Which would give a formal solution
in order to implement the robust control technique that will allow to correctly
predict the JONSWAP spectrum.

3.2 Least-Squares Spectral Approximation - LS
The JONSWAP spectrum is a modification of the Pierson-Moskowitz spectrum as
a consequence of fetch limitations and makes it possible to modulate a spectral
sharpness (Eq. 3.1).

S(w) = 5
16

H2
s w4

m

w5 exp

C
−5

4

3
wm

w

44
D

γexp[−(w−wm)2/2(σwm)2] (3.1)

An approximation obtained for the Pierson-Moskowitz spectrum which was
modeled by employing a cascade of two linear second filter by Spanos T-P (Eq.
3.3), which in technical aspects is considered a fourth order filter.

Hj(w) = g1w
2

(w2 − k1)2 + (c1w)2
g2w

2

(w2 − k2)2 + (c2w)2 (3.2)

Above expression will be used for JONSWAP spectrum calculation due to the
adequacy of the spectral matching for several wind velocities. Eq.3.2 has five fitting
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parameters which develop a crucial role at the moment of calculating a specific
spectrum.

To have a narrow representation of the JONSWAP the following constraints
must be set:

• g1, g2, k1, k2, c1, c2 ≥ 0 These constraints must be greater than zero in order
to guaranty the controllability in the state space system modelling and the
stability as well. This procedure was done by mean of control analysis theory
in Section 3.3.5.

Hj(w) = Gw4

[(w2 − k1)2 + (c1w)2][(w2 − k2) + (c2w)2)] (3.3)

• G – Will behave as a gain while the energy spectrum increase. Also it is the
product of g1g2.

• c1/
√

k1, c2/
√

k2 – Assuming their behaviour as the critical damping ratios
[18]. The enhancing of the spectral sharpness γ will be due to the decreasing
of the c1/

√
k1 and the increasing of the c2/

√
k2 damping ratios.

The main objective is to obtain a model that allows to predict a JONSWAP
spectrum from a data set. By having this model, it is able to adjust the data sets
from any others if needed.

Studies for the implementation of ARMA algorithms for ocean wave modelling
has been integrated in the sake of simplicity of existence of approximations simpler
and logically accurate. Although, the Least-Square method for approximation of
the JONSWAP spectrum has been chosen because it is one of the most practical
ways for providing a clearly formulated solution ([19]).

F = minΣ[S(f) − Ŝj(w)]2 (3.4)

JONSWAP spectrum contributes in certain manner to modify the Pierson-
Moskowitz spectrum as a consequence of fetch limitations and it is possible to
realize a spectral sharpness, allowing to determine the predominance of certain
frequencies. Also it was decided that the approach done for the Pierson-Moskowitz
spectrum, employing a cascade of two linear second filter done by Spanos T-P
obtaining an spectral coincidence [18].
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Figure 3.1: Gain and Critical Damping Ratio vs Peak Enhancement factor (γ)

3.2.1 Initial Conditions
Due to the practical usefulness, the parameters were calculated for values of γ from
1-10. After several iterations and observing the variation of the fitted parameters
with respect to the Peak enhancement γ by looking to the different solution from
the LS approximation method.

The initial values for the fitted parameters assumed for this model represen-
tation are the selected by having a minimum variation with respect of the peak
enhancement increase corresponding to γ = 7, the pertinent numerical data are
shown:

G k1 k2 c1 c2

6.183 0.398 1.794 0.085 2.709

Table 3.1: Initial conditions - Fitted Parameters
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Figure 3.2: Fitting parameter vs Peak Enhancement factor (γ)

Taking into account the above considerations, a well approximated spectrum is
deducted. It is important to remark that the JONSWAP spectrum shape parameters
to obtain the following spectrum are Hs = 1,γ = 2 and Tp = 10 (Fig.3.4).

3.3 Response of the System to Random Inputs
In order to obtain a power spectrum close to the JONSWAP spectrum, it was done
an excitation by unit-intensity i.e S(w) = |Fw(jw)|2.

3.3.1 State- Space Modelling

The model used is based on a cascade of two second order filters (Eq.3.2). In first
instance, It is needed to derived this representation from a differential second order
dynamic system as follows:

Set the second order non-homogeneous differential equation (DE) for second
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Figure 3.3: Fitting parameter vs Peak Enhancement factor (γ) - Initial conditions

order filter.
Mẍ + Cẋ + Kx = f(t) (3.5)

Solving the non-homogeneous DE. The solution will be given by x(t) = Xewt.

X[−Mw2 + jwC + K] = F (t) (3.6)

Obtaining the system response.

X = F (t)
(K − Mw2) + jwC

(3.7)

In order to acquire the needed gain (g) is now need to factor out the inertial
constant M .
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Figure 3.4: Spectral density function - Target spectrum and Approximate spec-
trum Hs = 1,γ = 2 and Tp = 10

X =
F (t)
M

(k − w2) + jwc
(3.8)

Finally, to have the form a of a second order filter is needed to multiply by K
K

.
And remembering that K

M
= w2

X =
F (t)w2

K

(k − w2) + jwc
(3.9)

Be g = F (t)
K

X = gw2

(k − w2) + jwc
(3.10)

From Eq. 3.5 is now implemented the following differential equations in order
to create the State-Space model.

ẍ1 + c1ẋ1 + k1x1 = g1 (3.11)

ẍ2 + c2ẋ2 + k2x2 = g2 (3.12)
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Once this representation is set, it is necessary to transform it in a State-space
model form. Starting from the first second order filter.

C
ẋ1
ẍ1

D
=
C

0 1
−k1 −c1

D C
x1
ẋ1

D
+
C
0
1

D
g1 (3.13)

Note that the measurable output which allows to understand the dynamics is the
variable ẋ1.

y1 =
è
0 1

é Cx1
ẋ1

D
(3.14)

Following the same procedure above the second State-space model will be set as:

C
ẋ2
ẍ2

D
=
C

0 1
−k2 −c2

D C
x2
ẋ2

D
+
C
0
1

D
g2 (3.15)

The output measurable variable will be ẋ2:

y2 =
è
0 1

é Cx2
ẋ2

D
(3.16)

Having these two State-space models which represents a second order filter each
one. Now is necessary to have a general expression for a cascade of two State-space
models as follows:

ẋ1 = A1x1 + B1u1

y1 = C1x1 + D1u1
(3.17)

ẋ2 = A2x2 + B2u2

y2 = C2x2 + D2u2
(3.18)
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Be the output y1 of the expression 3.17 is the input u2 of the expression 3.18.The
expression 3.18 will be written as:

ẋ2 = A2x2 + B2(C1x1 + D1u1)
y2 = C2x2 + D2(C1x1 + D1u1)

(3.19)

Be expression 3.17 in expression 3.19 is obtained the expressions 3.20. This
is the compact State-Space model form needed to be implemented:


ẋ1 = A1x1 + B1u1

ẋ2 = A2x2 + B2C1x1 + B2D1u1

y2 = C2x2 + D2C1x1 + D2D1u1

(3.20)

Above expression can be written in matrix form:

ẋ1

ẋ2

 =
 A1 0
B2C1 A2

x1

x2

+
 B1

B2D1

u1

y2 =
è
D2C1 C2

é x1

x2

+
è
D2D1

é
u1

(3.21)

Taking into account expression 3.21, Eq 3.11 and Eq 3.12, also considering the
product between g1g2 = G The implemented State-space model is:

xt =


x1
ẍ1
x2
ẍ2

 =


C

0 1
−k1 −c1

D C
0 0
0 0

D
C
0
1

D è
0 1

é C
0 1

−k2 −c2

D


x1
ẋ1
x2
ẋ2

+


0
1
0
0

G (3.22)

The output expression of the State-space model is:

yt =
è
0 0 0 1

é 
x1
ẋ1
x2
ẋ2

 (3.23)
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3.3.2 Stochastic signal processing
The resulting State-space model from Eq. 3.22 when excited by unit-intensity white
noise, its power spectrum is close to the JONSWAP spectrum i.e S(w) = |Fw(jw)|2
[20]. Every time this model is excited with random signal, the result will be called
a realization.

At this point, to obtain the spectral properties and notice a clear pattern of
JONSWAP spectrum from the realizations performed before, it was implemented
averaging across different repetitions of random realizations in a time t each SDF.

When this procedure is ready, is observed an attenuation (Aliasing effect) (Fig.
3.5) of the spectrum after exciting it with the unit-intensity white noise. This is
mainly due to not selecting the proper bandwidth spectrum. For this, an extreme
caution must be taken for selecting the frequency bandwidth.

Figure 3.5: Spectral density function - Approximate spectrum and Target Spec-
trum

In real time measuring, it is not possible to know what are going to be the
signals that our system will deal with. By sorting the measured signals into a
specific category and delimiting the statistical properties of the class of expected
inputs will contribute in a proper signal processing.
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Before calculating the SDF, it is needed to analyze the State-space model’s
bandwidth frequency by using a frequency analysis in order to find a proper sam-
pling time.

3.3.3 Bandwidth selection
To select the bandwidth signal implemented in the spectrogram based on the
Short-Time Fourier Transform.

In Figure 3.6, it is observed that the frequencies along the entire duration of the
random realization, the beyond 0.95Hz, the color pattern is having a similar color
intensity (according to the range of representation in color of the power/frequency).
From this point on, it is not added any value for the analysis of the signal because
there is a low amplitude. Consequently, it was decided that this is the best lower
frequency limit is 0Hz and the upper frequency bandwidth limit 0.95Hz.

Figure 3.6: Spectrogram - γ = 5 Hs = 5 Tp = 10

3.3.4 Low Pass Filter (LPF) Design
In real life signals are not band limited, in such cases, spectra overlapping and
aliasing effects can not be avoided. The aim of applying a LPF is to prevent aliasing
effect. Therefore the higher frequency components are neglected.
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The anti-aliasing filter implemented is a classic IIR Butterworth. Having the
bandwidth wb = 0.95Hz − 0Hz,it enables to select the minimum sampling rate
also known as nyquist frequency wn = 2wb and the time intervals Ts = 1/wn. The
SDF obtained with the selected bandwidth and changing the JONSWAP shape
parameters are shown in Fig 3.7.

Figure 3.7: SDF comparison

Note that this procedure was only to introduce a JONSWAP spectrum contained
in a white noise signal and having a proper state space model to develop the Kalman
filter design. Considerable care must be taken when performing future simulations
by taking into consideration the statistical properties and set a proper bandwidth
and sensor as well.
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3.3.5 Stability and Steady state analysis
In order to guaranty the stability in the state-space model, it is needed to set the
poles in the left section of the z-plane. Taking into account the constraints in
Subsection. 3.2, the values of the poles in Fig.3.8 will define a stable behaviour of
the state space model.

Figure 3.8: Zero and Poles locations

Furthermore, it was decided that the best procedure to verify its stability was
to excite the State-Space model with a step signal. As can be seen in Fig. 3.9, it
will result in several oscillations due to the poles locations, also its settling time
(extinction quickness) will around 82.2 seconds.

3.4 Kalman Filter Design
The kalman filter design is considered combining the results obtained in the previ-
ously state-space model Eq. 3.22 and Eq. 3.23 which is also a discrete time linear
system.

The random variables wt−1 and vt based on Eq.2.25 and Eq.2.26 respectively
are also independent from each other. One considered white noise process noise
and the other, a normal distributed measurement noise.

xt = Axt−1 + But−1 + wt−1 (3.24)

27



Methods

Figure 3.9: Step response

yt = Cxt + vt (3.25)

The design of the Extended Kalman Filter was also based the initial conditions
are xo = [0 0 0 0]T and initial estimate for the covariance matrix Po = BQBT and
be Q = 1 (white noise). Also any input signal ut−1 be considered.

3.4.1 Prediction step
In every time step t of the system its propagated the estimate forward in time
according to the dynamics of state-space model. Great care must be taken, because
in Eq.3.26 the term wt−1 stated in Eq. 3.24 do not appear due to it has zero mean
(white noise).

x̂−
t = g(ut, xt−1) (3.26)

The covariance (uncertainty of the estimate), in literature also known as A
priori error covariance is propagated forward in time. The A priori estimate error
e−

t = xt − x̂−
t in the discrete time system evolves as, e−

t = Ae−
t−1 + wt and applying

Eq.2.11 is obtained Eq.3.27

P −
t = APt−1A

T + Q (3.27)
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3.4.2 Correction Step
Once a measurement from any JONSWAP spectrum is given to the kalman filter,
the gain matrix Kt is computed in Eq. 3.28. Note that R = E[vvT ] represent the
covariance matrix of the normal distributed measurement noise vt :

Kt = P −
t CT (CP −

t CT + R)−1 (3.28)

This Eq. 3.28 is use to update its precedent estimate state x̂t (Eq. 3.29) and
the A posteriori error covariance (Eq. 3.30):

x̂t = x̂−
t + Kt(yt − h(ν̂−

t )) (3.29)

Pt = (I − KtC)P −
t (3.30)

3.4.3 Block diagram scheme
The plan model in Fig.3.10, is excited with a the process noise w (unity intensity
white-noise signal), this is the only input for the kalman filter is the plant model
with a measurement noise added. It will not be considered any other input. Next,
this plant model passes through the LPF preventing any aliasing effect. Consecu-
tively, is performed the discretization of the system (A/D), because the kalman
filter has been modeled in the continuous time-domain.

Figure 3.10: Block diagram Scheme

In addition, the sensor noise has been considered with a low covariance as
possible, assuming the measurement are not going to be disrupted in a big manner.

These are the signals on the scheme:

• w - Unity intensity white-noise signal.
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• y - Output of the plan model (P-M) after the discretization.

• yp - Output of the plan model (P-M) after adding the measurement noise.

• ŷ - Estimated output from the kalman filter.
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Chapter 4

Results and Discussion

4.1 Calculation Procedure Setup
4.1.1 Equivalent conditions
The general aspects for the kalman filter are already performed, from now on the
state-space model used to design its behaviour is named as "nominal model" (N-M).
It is important to remark that this model have been optimized according to the
Least-Squares Spectral approximation (Ch.3.1) and assumed JONSWAP spectrum
shape parameters (Table 4.1).

Hs γ Tp

1 2 10

Table 4.1: Assumed spectrum parameters - Nominal model

Firstly, in order to analyse the behaviour of the kalman filter is considered
a plant model (P-M) which generates random realization signal as an input to
the Extended Kalman Filter with the same assumed JONSWAP spectrum shape
parameters (Table 4.1).

In Fig 4.1, is observed that the kalman random realization is almost equal to
the P-M random realization. This is also evident after performing the estimation
error calculation between these two signals i.e |Target − Estimated| = 0.0055473.
Also by setting the confidence intervals can be deducted that at 95% confidence
level the prediction error (Kalman Filter-Estimated) will be within.

Subsequently, it is calculated the SDF for each realization after averaging them
across 10.000 different repetitions for each time t (Fig.4.2), obtaining a quite narrow
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Figure 4.1: Target and Estimated realizations - Equivalent conditions

estimation of the P-M target spectrum.

Figure 4.2: P-M Target Spectrum, Kalman filter - Estimated Spectrum - Equiva-
lent conditions

In the other hand, the only state variable (ẋ2) that is controlled in the out-
put of the state space model (Eq.3.23) will behave within the confidence inter-
vals (confidence level 95%) as expected from a normal distribution and the error
|Target − Estimated| = 0.094848 (Fig.4.3).

Finally, the observed estimating behaviour of the kalman filter in equal condition
with respect to the plan model is clearly well approximated. This test reveals the
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Figure 4.3: State Variable ẋ2 - Equivalent conditions

accurate behaviour that the EKF is presenting. As forecast, this analysis prove
the excellent performance using the EKF to estimate the JONSWAP spectrum,
although in the following subsections the random conditions are going to be con-
sidered.

4.1.2 Different conditions
Hs = 1.1, γ=2, Tp=10

In Fig.4.7.a, is observed the estimation error between these two signals (output re-
sponse) i.e |Target − Estimated| = 0.011478. Apart from the slight non-alignment
by setting the confidence intervals,the result is confirmation ofthe prediction error
(Kalman Filter- Estimated) will be within at least the 95% of the runs of the
random realizations.

Its SDF for each realization averaged across 10.000 different repetitions for each
time t (Fig.4.7.b), the estimated JONSWAP spectrum is quite close to the P-M
target spectrum, as expected based on Fig.4.7.a.

The state variable (ẋ2) will behave within the confidence intervals (confi-
dence level 95%) as expected from a normal distribution and the error |Target −
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Estimated| = 0.099882 (Fig.4.7.c).

Figure 4.4: a)Target and Estimated realizations b)Spectrum c)State Variable ẋ2 -
P-M conditions Hs = 1.1, γ=2, Tp=10

Hs = 1, γ=2,5 Tp=11

In Fig.4.5.a, is observed the estimation error between these two signals (output
response) i.e |Target − Estimated| = 0.023377. Also by setting the confidence
intervals, the 95% of the runs of the random realizations are within.

Despite of the non- alignment of the estimated JONSWAP spectrum (Fig.4.5.b),
the findings appear to be close to the P-M target spectrum, as expected based on
Fig.4.5.a.

The state variable (ẋ2) will behave within the confidence intervals (confi-
dence level 95%) as expected from a normal distribution and the error |Target −
Estimated| = 0.10594 (Fig.4.5.c).
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Figure 4.5: a)Target and Estimated realizations b)Spectrum c)State Variable ẋ2 -
P-M conditions Hs = 1, γ=2,5 Tp=11

Hs = 1.1, γ=2,5 Tp=11

It is observed in Fig.4.6, the estimation error between these two signals (output
response) i.e |Target−Estimated| = 0.024497. Notwithstanding the non-alignment
between the trends,by setting the confidence intervals, the prediction error (Kalman
Filter- Estimated) will be within at least the 95% of the runs of the random real-
izations.

Its SDF for each realization averaged across 10.000 different repetitions for each
time t (Fig.4.6.b), the estimated JONSWAP spectrum is quite close to the P-M
target spectrum, as expected based on Fig.4.6.a.

The state variable (ẋ2) has a significant behaviour behave within the confidence
intervals (confidence level 95%) as expected from a normal distribution and the
error |Target − Estimated| = 0.10537 (Fig.4.6.c).
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Figure 4.6: a)Target and Estimated realizations b)Spectrum c)State Variable ẋ2 -
P-M conditions Hs = 1.1, γ=2,5 Tp=11

Hs = 1, γ=2,5 Tp=10

In Fig.4.6.a, is observed the estimation error between these two signals (output
response) i.e |Target − Estimated| = 0.023554. Also by setting the confidence
intervals, the prediction error (Kalman Filter- Estimated) will be within at least
the 95% of the runs of the random realizations.

For each realization the SDF averaged across 10.000 different repetitions for
each time t (Fig.4.6.b). Apart from this slight discordance, the result confirms that
the estimated JONSWAP spectrum is quite close to the P-M target spectrum, as
expected based on Fig.4.6.a.

The state variable (ẋ2) will behave within the confidence intervals (confi-
dence level 95%) as expected from a normal distribution and the error |Target −
Estimated| = 0.1002 (Fig.4.6.c).
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Figure 4.7: a)Target and Estimated realizations b)Spectrum c)State Variable ẋ2 -
P-M conditions Hs = 1, γ=2,5 Tp=10

Hs = 1, γ=2 Tp=11

In Fig.4.8.a, is observed the estimation error between these two signals (output
response) i.e |Target − Estimated| = 0.023188. Also by setting the confidence
intervals, the prediction error (Kalman Filter- Estimated) will be within at least
the 95% of the runs of the random realizations.

Across 10.000 different repetitions for each realization averaged, its SDF for
each time t (Fig.4.8.b), the estimated JONSWAP spectrum is quite close to the
P-M target spectrum, as expected based on Fig.4.8.a.

The state variable (ẋ2) will behave within the confidence intervals (confi-
dence level 95%) as expected from a normal distribution and the error |Target −
Estimated| = 0.10703 (Fig.4.8.c).
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Figure 4.8: a)Target and Estimated realizations b)Spectrum c)State Variable ẋ2 -
P-M conditions Hs = 1, γ=2 Tp=11

Hs = 2, γ=3 Tp=11

In Fig.4.9.a, is observed the estimation error between these two signals (output
response) i.e |Target − Estimated| = 0.018441. Also by setting the confidence
intervals, the prediction error (Kalman Filter- Estimated) will be within at least
the 95% of the runs of the random realizations.

Its SDF for each realization averaged across 10.000 different repetitions for each
time t (Fig.4.9.b), the estimated JONSWAP spectrum is quite close to the P-M
target spectrum, as expected based on Fig.4.9.a.

The state variable (ẋ2) will behave within the confidence intervals (confi-
dence level 95%) as expected from a normal distribution and the error |Target −
Estimated| = 0.18681 (Fig.4.9.c).
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Figure 4.9: a)Target and Estimated realizations b)Spectrum c)State Variable ẋ2 -
P-M conditions Hs = 2, γ=3 Tp=11

Hs = 3 γ=3.3 Tp=12

In Fig.4.10.a, is observed the estimation error between these two signals (output
response) i.e |Target − Estimated| = 0.029165. Also by setting the confidence
intervals, the prediction error (Kalman Filter- Estimated) will be within at least
the 95% of the runs of the random realizations.

Its SDF for each realization averaged across 10.000 different repetitions for each
time t (Fig.4.10.b), the estimated JONSWAP spectrum is quite close to the P-M
target spectrum, as expected based on Fig.4.10.a.

The state variable (ẋ2) will behave within the confidence intervals (confi-
dence level 95%) as expected from a normal distribution and the error |Target −
Estimated| = 0.2619 (Fig.4.10.c).
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Figure 4.10: a)Target and Estimated realizations b)Spectrum c)State Variable
ẋ2 - P-M conditions Hs = 3 γ=3.3 Tp=12

Hs = 1 γ=3 Tp=10

In Fig.4.11.a, is observed the estimation error between these two signals (output
response) i.e |Target − Estimated| = 0.021647. Also by setting the confidence
intervals, the prediction error (Kalman Filter- Estimated) will be within at least
the 95% of the runs of the random realizations.

Its SDF for each realization averaged across 10.000 different repetitions for each
time t (Fig.4.11.b), the estimated JONSWAP spectrum is quite close to the P-M
target spectrum, as expected based on Fig.4.11.a.

The state variable (ẋ2) will behave within the confidence intervals (confi-
dence level 95%) as expected from a normal distribution and the error |Target −
Estimated| = 0.10507 (Fig.4.11.c).
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Figure 4.11: a)Target and Estimated realizations b)Spectrum c)State Variable
ẋ2 - P-M conditions Hs = 1 γ=3 Tp=10

Hs = 3 γ=2 Tp=10

In Fig.4.12.a, is observed the estimation error between these two signals (output
response) i.e |Target − Estimated| = 0.024996. Also by setting the confidence
intervals, the prediction error (Kalman Filter- Estimated) will be within at least
the 95% of the runs of the random realizations.

Its SDF for each realization averaged across 10.000 different repetitions for each
time t (Fig.4.12.b), the estimated JONSWAP spectrum is quite close to the P-M
target spectrum, as expected based on Fig.4.12.a.

The state variable (ẋ2) will behave within the confidence intervals (confi-
dence level 95%) as expected from a normal distribution and the error |Target −
Estimated| = 0.27898 (Fig.4.12.c).
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Figure 4.12: a)Target and Estimated realizations b)Spectrum c)State Variable
ẋ2 - P-M conditions Hs = 3 γ=2 Tp=10

Hs = 1 γ=2 Tp=12

In Fig.4.13.a, is observed the estimation error between these two signals (output
response) i.e |Target − Estimated| = 0.023896. Also by setting the confidence
intervals, the prediction error (Kalman Filter- Estimated) will be within at least
the 95% of the runs of the random realizations.

Its SDF for each realization averaged across 10.000 different repetitions for each
time t (Fig.4.13.b), the estimated JONSWAP spectrum is quite close to the P-M
target spectrum, as expected based on Fig.4.13.a.

The state variable (ẋ2) will behave within the confidence intervals (confi-
dence level 95%) as expected from a normal distribution and the error |Target −
Estimated| = 0.11687 (Fig.4.13.c).
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Figure 4.13: a)Target and Estimated realizations b)Spectrum c)State Variable
ẋ2 - P-M conditions Hs = 1 γ=2 Tp=12

4.1.3 MSE analysis - Varying JONSWAP shape parameters
in plant model (P-M)

To have a wide view of the kalman filter estimation behaviour, it is needed to
understand how the prediction error (yt − h(ν̂−

t )) will change while differing JON-
SWAP shape parameters from the P-M with respect to the nominal model (N-M).

The values obtained for Hs in Fig. 4.14 (significant wave height) varies between
0.7 to 2. It is observed that its maximum MSE at 0.00267 and its minimum value
MSE at 0.0001825. At this minimun value correlates favorably well coinciding with
the Hs = 1 at the plan model (P-M). This confirms well that the MSE must be the
minimum value when the conditions with respect the N-M and P-M are similar.

The Tp (peak wave period) in Fig. 4.15 varies between 4 to 12. Interestingly,
it has found that its maximum MSE at 0.00133 and its minimum value MSE at
0.0001979 approximates to Tp = 10 and this last value has a significant correlation
between P-M and N-M at identical conditions.
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Figure 4.14: MSE - Varying Hs

The γ in Fig. 4.16 varies between 1.5 to 2.5. It is observed that its maximum
MSE at 0.001055 and its minimum value MSE approximates to 0.00018307. This
minimum is used to confirm when γ = 2 is because not only N-M but also P-M are
in the same γ conditions.

4.2 Results Comparison
4.2.1 Analysis at different conditions
In Table.4.2 are gathered all the different test performed assuming the N-M with
the spectrum parameters in Table.4.1 and varying the P-M as observed in Sub-
Section.4.1.2. It can be deducted, a clearly good approximations in the estimations,
because not only the estimation error but also the errorẋ2 are too small, this
means the estimated values obtained with the kalman filter are close to the output
response and state value of the P-M at each test.
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Figure 4.15: MSE - Varying Tp

N°test Hs γ Tp estimation error errorẋ2

1 1 2 10 0.011238 0.093905
2 1.1 2 10 0.011478 0.099882
3 1 2.5 10 0.023554 0.1002
4 1 2 11 0.023188 0.10703
5 3 2 10 0.024996 0.27898
6 1 3 10 0.021647 0.10507
7 1 2 12 0.023896 0.11687
8 1.1 2.5 11 0.024497 0.10537
9 1 2.5 11 0.023377 0.10594
10 2 3 11 0.018441 0.18681
11 3 3.3 12 0.029165 0.2619

Table 4.2: Different test varying the JONSWAP spectrum shape parameters with
respect the N-M

As evidenced in Table. 4.2, the JONSWAP spectrum parameters that cause an
increase in the estimation error and errorẋ2 are the Hs (significant wave height) and
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Figure 4.16: MSE - Varying γ

Tp (peak wave period) and γ (peak enhancement factor) does not have a significant
weight in the variation of the prediction. Note, these results will behave in this
manner only if the previously theoretical condition are accomplished.

4.2.2 MSE - Analysis
The correlation in Figure.4.14, Figure.4.15 and Figure.4.16 is observed at the
beginning of each figure a inversely decay in the MSE, caused by variation of
each JONSWAP shape factor in the P-M. Thus, as respective JONSWAP shape
factor from the P-M is getting close to the N-M which was used to design the
EKF. The MSE starts to reach its minimum. This behaviour is mainly due to the
EKF will generate a big positive/negative gain while it is far away from its similar
condition and small positive/negative gain when the conditions are close each other.

In the other hand, once the conditions are similar or close each another, the
subsequently estimations are going increase but not abruptly. Taking into consider-
ation that MSE measures the variation with respect to the actual estimation. Note
that is once again confirmed that the JONSWAP spectrum parameters that will
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tend to increase the MSE are the Hs (significant wave height) and Tp (peak wave
period) while γ (peak enhancement factor) does not have a significant increase in
the MSE as it gets close to the N-M JONSWAP shape parameters.
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Chapter 5

Conclusion and Potentially
Future Work

In this research was looked to contribute with a recursive estimation of the wave
spectrum by implementing an Extended-Kalman Filter.

The most marked observation to emerge from the data comparison was the
performance of the EKF into the JONSWAP spectrum estimation, observing that
each of the obtained realization will be desirable as realistic sea waves under this
conditions. In addition the state-space model’s complexity was reduced by intro-
ducing a LPF taking into account certain frequency range.

It is important to note that the comparison of the estimated spectrum obtained
from the EKF with respect to the ideal JONSWAP spectrum shows a minimum
MSE, meaning the estimations performed are acceptable, not only working close to
the assumed (realistic) JONSWAP spectrum parameters(N-M) but also far away
from them. It is important to take into consideration at any measurement a proper
set of prior values, to obtain better and fast estimations.

5.1 Future Work
Future work need to improve the predictions of the Kalman Filter in order to
establish whether is needed to take into consideration the different variations of the
kalman filter for a nonlinear models as unscented kalman filter based on the EKF
which performs a non-lineal transformation around a singular point or adaptive
kalman filter that is based on the non-updating of the process-covariance matrix
and used as initial guest for all the iteration steps.

48



Conclusion and Potentially Future Work

Further studies, which take different type of sea states (a swell with narrow
spectrum, a wind sea with broad spectrum and a mixed sea state with two-peak spec-
trum) into consideration that for each sea state, the prior initial estimates will affect
in the time required for the kalman filter to obtain a proper estimation of the values.
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Appendix A

Attestation de Stage

Figure A.1: Attestation de Stage
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Appendix B

Extended - Kalman Filter
MATLAB code
implementation

1 c l c
2

3 c l o s e a l l
4

5 c l e a r
6

7 rng ( ’ s h u f f l e ’ )
8

9 %% −−−−−−−−Def in ing the f requency range f o r the Kalman−−−−−−−−
10

11 df = 1e −3; % frequency step [ Hz ]
12

13 f c = 2 ; % cut−o f f f r equency [ Hz ]
14

15 Tsim = 1000 ; % Duration o f the s imulated s i g n a l [ s ]
16

17 Bandwidth = 0.95 −0; % [ Hz ]
18

19 dt = 1/(2∗ Bandwidth ) ; % Time step
20

21 f s = 1/ dt ; % Frequency Step
22

23 t = 0 : dt : Tsim ; % Time
24

25 f = ( 0 : 0 . 0 0 0 1 : 1 ) ∗ f c ;
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26

27 w = 2∗ pi ∗ f ; % frequency range [ rad/ s ]
28

29 %% −−−−−−−− Kalman SSM − NOMINAL−−−−−−−−
30

31 Hs = 1 ; % s i g n i f i c a n t wave he ight [m]
32

33 gamma = 2 ; % peak enhancement f a c t o r . R e a l i s t i c va lue s are between 1
and 6 .

34

35 Tp = 10 ; % peak wave per iod [ s ] .
36

37 [ S , sys_nom ] = OPTIFUNCIONv2(w, Tp, Hs , gamma, dt ) ; %Continous Nominal
Model

38

39 sys_t = c2d ( sys_nom , dt ) ;
40 A_nom = sys_t .A; % To i n s e r t in Kalman f i l t e r
41 B_nom = sys_t .B; % To i n s e r t in Kalman f i l t e r
42 C_nom = sys_t .C; % To i n s e r t in Kalman f i l t e r
43 D_nom = sys_t .D; % To i n s e r t in Kalman f i l t e r
44

45 %% −−−−−−−− External Spectrum − Plant−−−−−−−
46

47 Hs_pm = 1 ; % s i g n i f i c a n t wave he ight [m]
48

49 gamma_pm = 2 ; % peak enhancement f a c t o r
50

51 Tp_pm = 10 ; % peak wave per iod [ s ] .
52

53 R = 0 . 0 0 1 ; % Measurement no i s e covar iance
54

55 %−−−−−−−− Continous Plan Model−−−−−−−−
56

57 [ S1 , sys_plant ] = OPTIFUNCIONv2(w,Tp_pm,Hs_pm,gamma_pm, dt ) ;
58

59 sys_plantd = c2d ( sys_plant , dt ) ;
60

61 S_pm = sys_plantd ; % Every p lant must be c a l l e d as S_pm
62

63 %%−−−−−−−− Empty matr i ce s to be f i l l e d −−−−−−−−
64

65 x_estimate = ze ro s (4 , l ength ( t ) ) ; % Empty matrix to save est imated
s t a t e s

66

67 x_predicted = ze ro s (4 , l ength ( t ) ) ; % Empty matrix to save ac tua l
s t a t e s

68

69 g = 1∗ randn ( s i z e ( t ) ) . ’ ; % White no i s e − To s e t the below matrix s i z e s
70
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71 random_reali=l s im ( sys_t , g , t ) ; % To s e t the below matrix s i z e s
72

73 [ SDP_es , f 1 ] = periodogram ( random_reali , [ ] , [ ] , f s ) ; % To s e t the above
matrix s i z e s

74

75 l = 1000 ; % Number o f i t e r a t i o n s to c r e a t e time s e r i e s o f random
r e a l i s a t i o n s

76

77 moy_k = ze ro s ( l ength (SDP_es) , l ) ; %Empty matrix to i n s e r t a l l the
va lue s from the SDP_k

78

79 moy_p = ze ro s ( l ength (SDP_es) , l ) ; %Empty matrix to i n s e r t a l l the
va lue s from the SDP_p

80

81 %% −−−−−−−− To c r e a t e random r e a l i s a t i o n s −−−−−−−−
82 f o r a = 1 : l
83

84 %%−−−−−−−− White no i s e and input plant−−−−−−−−
85

86 % White no i s e and plant s imu la t i on are app l i ed i n s i d e de loop to
obta in

87 % each time a d i f f e r e n t random r e a l i s a t i o n and then average them .
88

89 g = 1∗ randn ( s i z e ( t ) ) ; % White no i s e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ s enso r
90

91 [ y , ~ ,x_p ] = ls im (S_pm, g , t ) ; % Plant + no i s e ( Process no i s e ) − Kalman
input

92 v = sq r t (R) ∗ randn ( l ength ( t ) ,1 ) ;
93 x_p = x_p ’ ;
94 y_p = y+v ;
95

96 %% −−−−−−−− (Non−too lbox ) Kalman F i l t e r −−−−−−−−
97

98 Q = B_nom∗B_nom. ’ ; % Process no i s e covar iance
99

100 y_estimated2 = ze ro s ( l ength ( t ) ,1 ) ; % Empty matrix to save es t imate
va lue s

101

102 ye r ro r = ze ro s ( l ength ( t ) ,1 ) ; % Empty matrix to save es t imate va lue s
103

104 L = ze ro s (4 , l ength ( t ) ) ; % Gain matrix
105

106 x = [ 0 ; 0 ; 0 ; 0 ] ; % I n i t i a l c o n d i t i o n s f o r the s t a t e s
107

108 x0 = [ 0 ; 0 ; 0 ; 0 ] ; % I n i t i a l c o n d i t i o n s f o r the s t a t e s
109

110 P = Q; % Process covar iance matrix can be s e t as a non−zero value
111

112 % −−−−−−−− Jacobians ( L i n e a r i z a t i o n part )−−−−−−−−
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113

114 syms x1 x2 x3 x4
115

116 s t a t e = A_nom∗ [ x1 ; x2 ; x3 ; x4 ] ;
117

118 re sponse = C_nom∗ [ x1 ; x2 ; x3 ; x4 ] ;
119

120 A_nom = jacob ian ( s tate , [ x1 , x2 , x3 , x4 ] ) ; % Class = Sym
121 C_nom = jacob ian ( response , [ x1 , x2 , x3 , x4 ] ) ; % Class = Sym
122

123 A_nom = double (A_nom) ; % Class = Double
124 C_nom = double (C_nom) ; % Class = Double
125

126 %% −−−−−−−− State Space − Kalman −−−−−−−−
127

128 f o r k = 1 : l ength ( t )
129

130 % −−−−−−−− 1 Ca lcu la te the gain−−−−−−−−
131 K = P∗C_nom’ / (C_nom∗P∗C_nom’+R) ; % Kalman Gain
132

133 % −−−−−−−− 2 Ca lcu la te the cur rent est imate−−−−−−−−
134 x = x + K∗(y_p( k )−C_nom∗x ) ; % Current s t a t e e s t imate
135 x_estimate ( : , k ) = x ; % To save s t a t e va lue s
136 % y_predicted ( k ) = C_nom∗x ;
137

138 % −−−−−−−− 3 Ca lcu la te the new e r r o r e s t imate P ( Process Covariance
Matrix

139 P = ( eye (4 )−K∗C_nom) ∗P; % Process Covariance Matrix ( Error
e s t imate )

140 y_estimated2 ( k ) = C_nom∗x ; % Current re sponse es t imate
141 L ( : , k ) = K; % Save the gain
142

143

144 % −−−−−−−− Caculate the new e r r o r est imate−−−−−−−−
145 x = A_nom∗x + B_nom∗0 ; %Actual s t a t e at x_o c o n d i t i o n s
146 P = A_nom∗P∗A_nom’ + Q; % Update the new e r r o r e s t imate P
147

148 x_predicted ( : , k ) = x ; % To save s t a t e va lue s
149

150 end
151 [SDP_k, f_k ] = periodogram ( y_estimated2 , [ ] , [ ] , f s ) ; % SDF − Kalman
152 [ SDP_es , f 1 ] = periodogram (y_p , [ ] , [ ] , f s ) ; % SDF − model input
153 moy_k ( : , a ) = SDP_k; % Send each value o f SDF to t h i s empty matrix
154 moy ( : , a ) = SDP_es ; % Send each value o f SDF to t h i s empty matrix }
155 end
156 % mean_error = mean_error . ^ 2 ;
157 % ECM( : , i ) = mean( mean_error , 2 )
158 SDF_km = mean(moy_k, 2 ) ; % Mean o f s e v e r a l i t e r a t i o n o f the SDP from

the Kalman f i l t e r
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159 SDF_m = mean(moy , 2 ) ; % Mean o f s e v e r a l i t e r a t i o n o f the SDP from the
Model input

160 ye r ro r = sum ( ( ye r ro r ) . ^2 ) / l ength ( ye r ro r ) ;
161

162 %%−−−−−−−− To p lo t kalman f i l t e r −−−−−−−−
163 f i g u r e
164 p lo t ( t , L)
165 % −−−−−−−− Plot Target re sponse vs Est imation Response−−−−−−−−
166 f i g u r e
167 subplot ( 3 , 1 , 1 )
168 p lo t ( t , y_p , ’ r ’ , t , y_estimated2 , ’ b−−’)
169 x l a b e l ( ’ Time ( $$s$$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )
170 y l a b e l ( ’ Displacement ($$m$$) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )
171 t i t l e ( ’ Estate Space Response − Random Rea l i s a t i on s ’ , ’ I n t e r p r e t e r ’ , ’

l a tex ’ , ’ FontSize ’ , 1 2 )
172 l egend ( ’ Target ’ , ’ Estimation ’ )
173

174 %% −−−−−−−− To p lo t Sta t e s and e r r o r s t a t e s , r e sponse and e r r o r
response−−−−−−−−

175

176 % dt_kalm = std (x_p ( 1 , : ) ) ;
177 % Plot State v a r i a b l e 1 vs Estimated s t a t e v a r i a b l e 1
178 subplot ( 4 , 1 , 1 )
179 p lo t ( t , x_p ( 1 , : ) , ’ r ’ , t , x_predicted ( 1 , : ) , ’ b ’ , t , ( x_predicted ( 1 , : )−x_p

( 1 , : ) ) , ’ g−−’)
180 % y l i n e (−dt_kalm ∗2) ; y l i n e ( dt_kalm ∗2)
181 x l a b e l ( ’ time ( $$s$$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )
182 y l a b e l ( ’ $$x_1$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )
183 l egend ( ’ Target ’ , ’ Estimation ’ , ’ $$error_ {x_1}$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex

’ , ’ FontSize ’ , 9 )
184 t i t l e ( [ ’ Estate Space − State v a r i a b l e s $$error_ {x_1}$$ = ’ , num2str (sum

( abs ( x_predicted ( 1 , : )−x_p ( 1 , : ) ) ) / l ength (x_p ( 1 , : ) ) ) ] , ’ I n t e r p r e t e r
’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )

185 % Plot State v a r i a b l e 2 vs Estimated s t a t e v a r i a b l e 2
186 subplot ( 4 , 1 , 2 )
187 p lo t ( t , x_p ( 2 , : ) , ’ r ’ , t , x_predicted ( 2 , : ) , ’ b ’ , t , ( x_predicted ( 2 , : )−x_p

( 2 , : ) ) , ’ g−−’)
188 x l a b e l ( ’ time ( s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )
189 y l a b e l ( ’ $$\dot{x_1}$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )
190 l egend ( ’ Target ’ , ’ Estimation ’ , ’ $$error_ {\ dot{x_1}}$$ ’ , ’ I n t e r p r e t e r ’ , ’

l a tex ’ , ’ FontSize ’ , 9 )
191 t i t l e ( [ ’ $$error_ {\ dot{x_1}}$$ = ’ , num2str (sum( abs ( x_predicted ( 2 , : )−x_p

( 2 , : ) ) ) / l ength (x_p ( 2 , : ) ) ) ] , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )
192 % Plot State v a r i a b l e 3 vs Estimated s t a t e v a r i a b l e 3
193 subplot ( 4 , 1 , 3 )
194 p lo t ( t , x_p ( 3 , : ) , ’ r ’ , t , x_predicted ( 3 , : ) , ’ b ’ , t , ( x_predicted ( 3 , : )−x_p

( 3 , : ) ) , ’ g−−’)
195 x l a b e l ( ’ time ( s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )
196 y l a b e l ( ’ $$x_2$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )
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197 l egend ( ’ Target ’ , ’ Estimation ’ , ’ $$error_ {x_2}$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex
’ , ’ FontSize ’ , 9 )

198 t i t l e ( [ ’ $$error_ {x_2}$$ = ’ , num2str (sum( abs ( x_predicted ( 3 , : )−x_p ( 3 , : ) )
) / l ength (x_p ( 3 , : ) ) ) ] , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 2 )

199 % Plot State v a r i a b l e 4 vs Estimated s t a t e v a r i a b l e 4
200 subplot ( 4 , 1 , 4 )
201 p lo t ( t , x_p ( 4 , : ) , ’ r ’ , t , x_predicted ( 4 , : ) , ’ b ’ , t , ( x_predicted ( 4 , : )−x_p

( 4 , : ) ) , ’ g−−’)
202 x l a b e l ( ’ time ( s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
203 y l a b e l ( ’ $$\dot{x_2}$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
204 dt_kalm = std (x_p ( 4 , : ) ) ;
205 CI = 1 . 9 6 ;
206 y l i n e (−dt_kalm∗CI ) ; y l i n e ( dt_kalm∗CI )
207 l egend ( ’ Plan Model − Target ’ , ’Kalman F i l t e r − Estimated ’ , ’ $$error_ {\

dot{x_2}}$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 1 )
208 t i t l e ( [ ’ $$error_ {\ dot{x_2}}$$ = ’ , num2str (sum( abs ( x_predicted ( 4 , : )−x_p

( 4 , : ) ) ) / l ength (x_p ( 4 , : ) ) ) ] , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
209

210

211

212 % −−−−−−−− Plot Spectrum−−−−−−−−
213 f i g u r e
214 subplot ( 2 , 1 , 1 )
215 % plo t ( f1 ,SDF_m, ’ b−−’,f_k ,SDF_km, ’ g ’ , f , S1 , ’ r − ’)
216 p lo t ( f , S1 , ’ r ’ , f1 ,SDF_m, ’ b ’ )
217 xlim ( [ 0 0 . 5 ] )
218 x l a b e l ( ’ Frequency ( $$Hz$$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
219 y l a b e l ( ’SDF’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
220 t i t l e ( [ ’SDF obtained from the white no i s e r e a l i z a t i o n s Hp = ’ , num2str (

Hs_pm) , ’ $$\gamma$$ = ’ , num2str (gamma_pm) , ’ Tp = ’ , num2str (Tp_pm) , ’
$$dt$$ = ’ , num2str ( dt ) ] , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 5 )

221 % legend ( ’ Plant Model − Spectrum ’ , ’Kalman F i l t e r − Estimatimated
Spectrum ’ , ’ Target Spectrum ’ )

222 l egend ( ’ Target Spectrum ’ , ’ Approximate Spectrum ’ , ’ I n t e r p r e t e r ’ , ’ l a tex
’ , ’ FontSize ’ , 1 1 )

223

224 % −−−−−−−− Plot Target re sponse vs Est imation Response−−−−−−−−
225 subplot ( 2 , 1 , 2 )
226 p lo t ( t , y_p , ’ r − ’ , t , y_estimated2 , ’ b−−’, t , ( y_estimated2−y_p) , ’ g−−’)
227 x l a b e l ( ’ Time ( $$s$$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
228 y l a b e l ( ’ $$\ eta$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
229 dt_kalm = std ( y ) ;
230 CI = 1 . 9 6 ;
231 y l i n e (−dt_kalm∗CI ) ; y l i n e ( dt_kalm∗CI )
232 t i t l e ( ’ Estate Space Response − Random Rea l i z a t i on s ’ , [ ’ Est imation

Error = ’ , num2str (sum( abs ( y_estimated2−y_p) ) / l ength (y_p) ) ] , ’
I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )

233 l egend ( ’ Plan Model − Target ’ , ’Kalman F i l t e r − Estimated ’ , ’
$$error_y$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 1 )
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234

235

236 %−−−−−−−− Plot Spectrum noi sy / without no i se −−−−−−−−
237 f i g u r e
238 p lo t ( t , y , ’ r ’ , t , y_p , ’ b−−’)
239 x l a b e l ( ’ Time ( $$s$$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
240 y l a b e l ( ’ $$\ eta$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
241 t i t l e ( ’Random r e a l i s a t i o n Noise f r e e / Noisy ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’

FontSize ’ , 1 7 )
242 l egend ( ’ Noise f r e e ’ , ’ Noisy ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 1 )
243

244 %% This p l o t i s to obta in SS response o f the random r e a l i z a t i o n , the
SDF

245 % And \x_2 dot v a r i a b l e which correspond to the only c o n t r o l l a b l e
v a r i a b l e

246 % In the system
247

248 f i g u r e
249 subplot ( 3 , 1 , 1 )
250 p lo t ( t , y_p , ’ r − ’ , t , y_estimated2 , ’ b−−’, t , ( y_estimated2−y_p) , ’ g−−’)
251 x l a b e l ( ’ Time ( $$s$$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
252 y l a b e l ( ’ $$\ eta$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
253 dt_kalm = std ( y ) ;
254 CI = 1 . 9 6 ;
255 y l i n e (−dt_kalm∗CI ) ; y l i n e ( dt_kalm∗CI )
256 t i t l e ( ’ a ) Estate Space Response − Random Rea l i z a t i on s ’ , [ ’ Est imation

Error = ’ , num2str (sum( abs ( y_estimated2−y_p) ) / l ength (y_p) ) ] , ’
I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )

257 l egend ( ’ Plan Model − Target ’ , ’Kalman F i l t e r − Estimated ’ , ’
$$error_y$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 1 )

258

259 subplot ( 3 , 1 , 2 )
260 p lo t ( f , S1 , ’ r ’ , f_k ,SDF_km, ’ b−−’)
261 xlim ( [ 0 0 . 5 ] )
262 x l a b e l ( ’ Frequency ( $$Hz$$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
263 y l a b e l ( ’SDF’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
264 t i t l e ( [ ’ b ) SDF obtained from the white no i s e r e a l i z a t i o n s Hs = ’ ,

num2str (Hs_pm) , ’ $$\gamma$$ = ’ , num2str (gamma_pm) , ’ Tp = ’ , num2str (
Tp_pm) , ’ $$dt$$ = ’ , num2str ( dt ) ] , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize
’ , 1 7 )

265 % legend ( ’ Plant Model − Spectrum ’ , ’Kalman F i l t e r − Estimatimated
Spectrum ’ , ’ Target Spectrum ’ )

266 l egend ( ’ Plant Model − Target Spectrum ’ , ’ Kalman F i l t e r − Estimatimated
Spectrum ’ , ’JONSWAP ALGORIHM’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 1 )

267

268 subplot ( 3 , 1 , 3 )
269 p lo t ( t , x_p ( 4 , : ) , ’ r ’ , t , x_predicted ( 4 , : ) , ’ b ’ , t , ( x_predicted ( 4 , : )−x_p

( 4 , : ) ) , ’ g−−’)
270 x l a b e l ( ’ time ( s ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
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271 y l a b e l ( ’ $$\dot{x_2}$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
272 dt_kalm = std (x_p ( 4 , : ) ) ;
273 CI = 1 . 9 6 ;
274 y l i n e (−dt_kalm∗CI ) ; y l i n e ( dt_kalm∗CI )
275 l egend ( ’ Plan Model − Target ’ , ’Kalman F i l t e r − Estimated ’ , ’ $$error_ {\

dot{x_2}}$$ ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 1 )
276 t i t l e ( [ ’ c ) $$error_ {\ dot{x_2}}$$ = ’ , num2str (sum( abs ( x_predicted ( 4 , : )−

x_p ( 4 , : ) ) ) / l ength (x_p ( 4 , : ) ) ) ] , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
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Appendix C

Least-Squares MATLAB
code implementation

1 f unc t i on [ S1 , sys_c ] = OPTIFUNCIONv2(w,Tp_pm,Hs_pm,gamma_pm, dt )
2

3 %% −−−−−−−− JONSWAP Spectrum −−−−−−−−
4 nw=length (w) ;
5 f=w/(2 .∗ pi ) ;
6 A=0.3125∗Hs_pm^2/Tp_pm^4;
7 B=1.25/Tp_pm^4;
8 fp =1./Tp_pm;
9 m0=0. ;

10 m_1=0. ;
11 Pwave=0. ;
12 Hw=zero s (1 ,nw) ;
13 S1=ze ro s (1 ,nw) ;
14 f o r i =2:nw
15 f c =0.5∗( f ( i )+f ( i −1) ) ;
16 df=f ( i )−f ( i −1) ;
17 S1 ( i )=A/ f c ^5∗exp(−B/ f c ^4) ;
18 i f ( fc<fp )
19 sigma =0.07;
20 e l s e
21 sigma =0.09;
22 end
23 pa=exp(−( fc−fp ) ^2/(2 .∗ sigma ^2∗ fp ^2) ) ;
24 S1 ( i )=S1 ( i ) ∗gamma_pm^pa ;
25 m0=m0+S1 ( i ) ∗ df ;
26 m_1=m_1+S1 ( i ) / f c ∗ df ;
27 end
28 alpha=Hs_pm^2/(16 .∗m0) ;
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29 Te=m_1/m0;
30 f o r i =2:nw
31 df=f ( i )−f ( i −1) ;
32 S1 ( i )=S1 ( i ) ∗ alpha ;
33 Hw( i )=sq r t ( 2 . ∗ S1 ( i ) ∗ df ) ;
34 Pwave=Pwave +0.25∗1025 .∗9 .81∗9 .81∗Hw( i ) ∗Hw( i ) /w( i ) ;
35 end
36 %% LPF
37 d i g F i l t=d e s i g n f i l t ( ’ l o w p a s s i i r ’ , ’ PassbandFrequency ’ , 0 . 9 5 , ’

StopbandFrequency ’ , 2 , ’ PassbandRipple ’ , 1 , ’ StopbandAttenuation ’ , 6 0 , ’
SampleRate ’ , 1 0 0 ) ;

38 S1 = f i l t e r ( d i g F i l t , S1 ) ;
39

40

41 % −−−−−−−− LS −−−−−−−−
42 ydata1 = S1 ;
43 x = w;
44

45 % Optimized v a r i a b l e s
46 G1 = optimvar ( ’G’ , ’ LowerBound ’ , 0 )
47 k1 = optimvar ( ’ k ’ , 2 , ’ LowerBound ’ , 0 )
48 c1 = optimvar ( ’ c ’ , 2 , ’ LowerBound ’ , 0 )
49

50 % −−−−−−−−JONSWAP Spectrum funct ion −−−−−−−−
51

52 fun1 = ( (G1) . ∗ x .^4 ) . / ( ( ( x.^2−k1 (1 ) ) .^2+( c1 (1 ) . ∗ x ) .^2 ) . ∗ ( ( ( x .^2 )−k1 (2 )
) .^2 . . .

53 +(c1 (2 ) . ∗ x ) .^2 ) ) ; % Fouth order f i l t e r
54 obj1 = sum ( ( ydata1 − fun1 ) .^2 ) ; % Least−Squares
55

56 l sqproblem1 = optimproblem ( " Object ive " , obj1 ) ; % So lv ing LSQ func t i on
57

58 % I n i t i a l va luab l e s
59 x1 .G = [ 6 . 1 8 3 ] ;
60 x1 . k = [ 0 . 3 9 8 1 . 7 9 4 ] ;
61 x1 . c = [ 0 . 0 8 5 2 . 7 0 9 ] ;
62

63 % x1 .G = [ rand ] ;
64 % x1 . k = [ rand rand ] ;
65 % x1 . c = [ rand rand ] ;
66

67 % Solv ing the opt imiza t i on problem
68 show ( lsqproblem1 ) %Shows the LS opt imiza t i on problem
69 [ so l1 , f v a l 1 ] = s o l v e ( lsqproblem1 , x1 , ’ s o l v e r ’ , " fmincon " )
70 di sp ( s o l 1 .G)
71 di sp ( s o l 1 . k )
72 di sp ( s o l 1 . c )
73

74 % Save the new c o e f f i e n t s
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75 x1 .G = s o l 1 .G
76 x1 . k = s o l 1 . k
77 x1 . c = s o l 1 . c
78

79 f i g u r e
80 responsedata = eva luate ( fun1 , s o l 1 ) ;
81 p lo t ( f , ydata1 , ’ r −−’, f , responsedata , ’ b−−’) ; hold on ;
82 xlim ( [ 0 0 . 5 ] )
83 l egend ( ’ Target spectrum ’ , ’ Approximate Spectrum ’ )
84 x l a b e l ( ’ Frequency ( $$Hz$$ ) ’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
85 y l a b e l ( ’SDF’ , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )
86 t i t l e ( [ ’SDF obtained from LS Hs = ’ , num2str (Hs_pm) , ’ $$\gamma$$ = ’ ,

num2str (gamma_pm) , ’ Tp = ’ , num2str (Tp_pm) , ’ $$dt$$ = ’ , num2str ( dt )
] , ’ I n t e r p r e t e r ’ , ’ l a tex ’ , ’ FontSize ’ , 1 7 )

87 hold on
88 g r id on
89

90 %−−−−−−−−State Space model−−−−−−−−
91

92 % Cascading Two second order f i l t e r s
93

94 % F i r s t f i l t e r
95 A_1_a = [0 1 ; −x1 . k (1 ) −x1 . c (1 ) ] ;
96 B_1_a = [ 0 ; 1 ] ;
97 C_1_a = [ 0 1 ] ;
98 D_1_a = ze ro s (2 , 1 ) ;
99 % Second f i l t e r

100 A_2_a = [0 1 ; −x1 . k (2 ) −x1 . c (2 ) ] ;
101 B_2_a = sq r t ( x1 .G) . ∗ [ 0 ; 1 ] ;
102 C_2_a = [ 0 1 ] ;
103 D_2_a = ze ro s (2 , 1 ) ;
104 % ABCD s t a t e space form
105 A_a = [A_1_a ze ro s (2 , 2 ) ; B_2_a. ∗C_1_a A_2_a ] ;
106 B_a = [B_1_a;D_1_a ] ;
107 C_a = [ z e ro s (1 , 2 ) C_2_a ] ;
108 D_a = 0 ;
109

110 sys_c = ss (A_a,B_a,C_a,D_a) ; % State− Space Coninuous
111 end
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