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Abstract

Robotics is a sector in deep ferment and constant change. The great interest
that this area attracts is due to the ability of robots to carry out demanding and
repetitive tasks with higher speed and precision than a human operator, a reason
which has led to the strong growth in the development and adoption of large
machinery belonging to the important sub-category of industrial robots.

However, world society has also undergone stark changes thanks to rapid tech-
nological development in all areas, with the result that, although new lifestyles,
new needs, and new problems have arisen, novel solutions that can make the life
of people easier have also come to light. From this point of view, a particularly
active and lively segment called Service Robotics is coming to the fore, ready to
bring clear improvements mainly in contexts such as medicine, precision agriculture,
logistics, security, the office, the home, and smart cities, settling down as one of
the most promising emerging technological trends. The fascinating side of the
development of this sector is the incessant propensity to bring robots closer to
humans, making them increasingly collaborative and demonstrating over time that
they can perform tasks better and better.

The actual bridge between these two worlds can deservedly be represented by
Artificial Intelligence, another technology that is becoming increasingly popular
nowadays and allows smartly solving intricate conceptual problems characterized
by complex mathematical and computer algorithms behind them.

The project presented in this thesis work is an example of the union of these two
cutting-edge disciplines and consists of the development of a deep learning model
capable of classifying some types of dynamic hand gestures; the interpretation
of the performed gesture provided as output by this model will then be used
to make a wheeled robot, designed for a domestic environment, perform some
specific maneuvering procedures. To achieve this result, recognizing and classifying
a frame-by-frame sequence of hand landmarks coordinates, a 2D Convolutional
LSTM Deep Neural Network architecture has been chosen, using a softmax layer
as the output layer.

The advantages offered by this solution mainly reside in the absence of commu-
nication interfaces, such as touch screens and joysticks, for controlling the robot
and in the reduced amount of data to be processed by an algorithm that is also
relatively light in terms of size and required computational capacity; these features
allow to obtain a remarkable rapidity in classifying hand gestures and executing
actions, that makes this solution combinable with other models for better usability
and scalable for different contexts in which gesture recognition can be functional.
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Chapter 1

Introduction

1.1 Motivation and Aim of the work

Non-verbal communication plays an important role in human interactions and

several studies have been conducted on this. To report some of the most significant

ones, it is considered proper to mention the experiments done by the psychologists

Michael Argyle and Albert Mehrabian. The former outlined what the main forms

of nonverbal communication actually are, namely gestures, facial expression, eye

contact (or fixed gaze), posture, touch, and spatial behavior (or proxemics)[1]; the

latter showed, in one of his studies[2], that what is perceived in a voice message

of neutral valence, in the context of a workshop, and emitting the message but

expressing a different one with body language, can be broken down as follows:

• Body movements: 55 %

• Vocal aspect (volume, tone, rhythm): 38 %

• Verbal appearance (words): 7 %1

1The psychologist highlighted the fact that this percentage division in every context must not be
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Introduction

The effectiveness of a message thus depends only minimally on the literal

meaning of what is said, and the way this message is perceived is heavily influenced

by nonverbal communication factors.

It results that body movements are the most expressive form of non-verbal

communication, in particular eye motions, facial expressions, and body gestures.

If for a human individual these can, however, be considered easily recognizable

and interpretable in any communicative context, this is not so immediate for a

robot, in particular if in absence of sensors that would pick up such signs and

communicate directly to the machine the data collected about them. This is an

interesting as well as fascinating challenge that is posed within the human-machine

communication context nowadays and finds a solution in the ever-evolving field of

Computer Vision (CV).

In fact, although the use of joysticks, touch screens, or simply other devices

wireless connected to the robot may be more accurate, giving greater certainty of

the correct reception of the desired instruction and subsequent realization, CV may

prove to be the bridge that can take us from a scenario where robots have to be

continuously assisted by an operator to one where they can be more autonomous

and collaborative towards humans, both in work contexts - with great benefit in the

perspective of the development of Industry 4.0 -, like in agriculture - monitoring

soils and helping with sowing and harvesting - and in industry, especially in logistics,

but also in domestic contexts caring for the elderly or people with disabilities, in

medicine, security, and in smart cities development.

The robotics segment that is involved in the development of all these contexts is

called Service Robotics, which includes all fields of application in which a robot is

not used in heavy industrial manufacturing and actually represents one of the most

promising emerging technological trends (according to Statista.com, revenue in the

generalized for every context. In particular, this is valid for emotional or affective communication.

2
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Service Robotics segment is projected to reach €25.45bn in 2023[3]). This thesis

project illustrates the realization of a DL model capable of classifying different

dynamic hand gestures (DHGs) and its implementation on a robot, which performs

different movement procedures based on the outputs returned by the classification

model. It is a multidisciplinary project encompassing topics in Service Robotics,

Artificial Intelligence (AI), and some of its articulations such as DL and Data

Science, used in particular for the creation of an ad-hoc dataset of sequences of

frames reporting skeletal data coordinates of hands extrapolated from the videos of

Nvidia’s larger dataset "NVIDIA Dynamic Hand Gesture Dataset" (nvGesture)[4].

The robot in question is intended for a preferably domestic context being of

small dimensions, while the technology which guides it within the environment

can essentially also be applied to different robots since this is based on a video

classification network. The aspects that I chose to prefer in designing the network

are the quickness in recognizing the gesture, reducing as much as possible the time

gap between this phase and the actual execution of the corresponding command

by the robot, and therefore also computational lightness and a high level of

classification reliability based on the classical metrics of accuracy, precision, recall,

and F-Score. To pursue this guideline, I chose to design a truly simple architecture

for the Machine Learning (ML) model, that is a 2D Recurrent Convolutional Neural

Network (2D-RCNN), that can be fed with arrays containing the gestures in form

of skeletal data provided by using Google’s model "Mediapipe"[5][6][7] to obtain a

strong reduction in the number of data collected compared to using a more classic

video classification method.

1.2 Background concepts

The focus of this thesis project is the development of a DL model capable of

classifying videos of the selected types of DHGss captured by a camera. It is

3



Introduction

therefore useful to recall some theoretical notions related to DL and CV and give

them an expository outline. But first is better to see where these concepts come

from by analyzing a brief outline of Machine Learning, and for this purpose, I will

mainly refer to the text that I have mostly used in the study of these subjects,

namely "Hands-on Machine Learning with Scikit-Learn, Keras and Tensorflow" by

Aurélien Géron[8].

Figure 1.1: AI map

1.2.1 Machine Learning overview

Artificial Intelligence is defined as the theory and development of computer systems

able to perform tasks that normally require human intelligence, such as visual

perception (better known as Computer Vision), written and spoken human language

recognition, decision-making, and translation between languages. A major branch

of AI is Machine Learning, which is a subfield of Computer Science that enables

4
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computers to learn without being explicitly programmed.[9] In order to do this, in

ML estimators2, which are algorithms based on mathematical models with tunable

parameters called hyperparameters, are used. The learning phase of an estimator

consists in continuously tuning these parameters to fit the model with the available

data given as input.

There are so many different types of ML algorithms that it is useful to classify

them into broad categories, based on the following criteria:

1. Whether or not they are trained with human supervision: Supervised, Unsu-

pervised, and Reinforcement Learning.

2. Whether or not they can learn incrementally on the fly: Online versus Batch

Learning.

3. Whether they work by simply comparing new data points to known data

points, or instead by detecting patterns in the training data and building a

predictive model, much like scientists do: Instance-based versus Model-based

Learning.

Many problems can be solved with the help of ML, and even more are the approaches,

represented by the algorithms, that can also be used taking into account the type

and number of data available. Let’s consider the cases highlighted in the first point

of the list above.

In Supervised Learning, the training data fed to the algorithm include the

desired solutions, called labels, and the two tasks covered are classification, where

the model has to distinguish between two (binary classification) or more (multi-

class classification) classes of data provided, and regression, where the model has

2For the sake of comprehension, the term "model" in general ML applications refers to the
mathematical model on which an ML algorithm is based, while in DL applications the term
"model" refers to the considered artificial neural network.

5
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to predict a numerical value, called target, given a set of values called features

or predictors. Some of the most important Supervised Learning algorithms are

K-Nearest Neighbors, Linear Regression, Logistic Regression, Support Vector

Machines, Decision Trees, Random Forests, and finally, Neural Networks (NNs),

which are the object of interest of an essential sub-branch of ML.

In Unsupervised Learning, instead, the training data are unlabeled and the

algorithms identify commonalities in the data and react based on the presence or

absence of such commonalities in each new piece of data; hence, some of the covered

tasks are visualization and dimensionality reduction, in which the goal is to simplify

the data without losing too much information, anomaly and novelty detection and

clustering, in which the model tries to detect groups, or even subgroups (hierarchical

clustering), of similar objects.

Finally, in Reinforcement Learning, the learning system, called agent, can observe

the environment, select and perform actions, and get rewards or penalties in return.

It must then learn by itself what is the best strategy, called policy, to get the most

reward over time. A policy defines what action the agent should choose when it is

in a given situation.

Briefly summarizing the above concepts, Machine Learning can help solve

very complex tasks without programming from scratch; more than one solution,

represented by a trainable model, can be used to solve one of these tasks. The

bottleneck of the problem is not the choice of the most suitable model, but the

data available for training: if a model that can process with the maximum possible

accuracy every input provided during the so-called "inference phase" is desirable,

a lot of data should be provided during training. Therefore, data should also

cover all the different output cases homogeneously and be pre-processed; the pre-

processing phase consists in cleaning the data and getting them adequately prepared,

managing the missing values, converting the categorical features into numbers and

6
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transforming them into a format that the estimator can understand. Although

there are many ML approaches to solving a task and every one of them is based

on complex mathematical and statistical algorithms, the ML library Scikit-learn

provides a simple flowchart map to follow in order to highlight the problem and

the right estimator to use based on the available data, and also coding tools in

order to develop models and manipulate data to feed them with[10].

Figure 1.2: Scikit-learn flowchart map on estimator selection

In general, taking as an example a supervised learning case, the training process

is carried out according to the following code framework:

Algorithm 1 Estimator training with some Scikit-learn functions
1: ▷ X and y are the features matrix and the labels vector of the dataset
2: ▷ Split X and y in Xtrain, ytrain, Xtest, ytest using the train_test_split function
3: ▷ Set the classifier using the desired library
4: ▷ Fit and train the estimator with Xtrain, ytrain data using the fit function

1.2.2 Deep Learning

ML also includes computational models and algorithms that have similar structures

and functions to the brain’s biological NNs. These computational models are

7
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often referred to as Artificial Neural Networks (ANN). When these ANN process

information from numerous input flows, they have the ability to “learn” and alter

their structure in much the same way that the neurons in our brain are altered

with memory. The sub-branch of AI, coming from ML, that concerns ANN is

called Deep Learning. Deep Learning calls for these NNs to be organized in a

multiple-layered hierarchical structure, where the output of a layer is the input of

the successive one. Given these premises, the first layer of the network has therefore

been conventionally called as input layer, the last as output layer, and those placed

between these two hidden layers; when an ANN contains a deep stack of hidden

layers, it is called a Deep Neural Network (DNN). The field of DL studies DNNs,

and more generally models containing deep stacks of computations. Finally, the

fundamental units that make up each layer have been defined as neurons.

In 1943, mathematicians Walter Harry Pitts and Warren McCulloch released a

paper called "A Logical Calculus of Ideas Immanent in Nervous Activity"[11], which

proposed the first mathematical model of a NN. The basic unit of this network

model, the formal representation of a single neuron, is still the standard reference

in the field of NNs and is often referred to as the McCulloch–Pitts neuron, a unit

that could only perform logical AND, OR and NOT operations and comparisons,

thus the only inputs and the outputs were 0 and 1.

In 1957 Frank Rosenblatt invented the Perceptron, which is based on a slightly

different artificial neuron called a Threshold Logic Unit (TLU). The inputs and

output are numbers (instead of binary ON or OFF values), and each input connec-

tion is associated with a weight. The TLU computes a weighted sum of its inputs

(z = w1x1 + w2x2 + ... + wnxn = xT w), then applies a step function to that sum

and outputs the result: h(x) = step(z). The inputs xi that a TLU receives come

from TLUs arranged in the upper layer; a single layer is composed of a certain

amount of TLUs and a bias neuron, which outputs a constant value b (and thus

8
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has no input), and if all the neurons in a layer are connected to every neuron in

the previous layer (i.e., its input neurons), the layer is defined as fully connected or

dense layer. The output of the fully connected layer is represented by the following

equation:

hW,b(X) = ϕ(XW + b) (1.1)

In this equation:

• X represents the matrix of input features. It has one row per instance and

one column per feature.

• The weight matrix W contains all the connection weights except for the ones

from the bias neuron. It has one row per input neuron and one column per

artificial neuron in the layer.

• The bias vector b contains all the connection weights between the bias neuron

and the artificial neurons. It has one bias term per artificial neuron.

• The function ϕ is called the activation function: when the artificial neurons

are TLUs, it is a step function.

Perceptron, therefore, represents the basis of modern NNs. However, they offered

greater scope for innovation only by undermining some of their characteristics

which, if kept fixed, would severely limit their use.

First of all, the training of the network consists of a continuous update of the

weights of every TLU following a variant of the so-called Hebbian Rule3: more

specifically, the Perceptron is fed one training instance at a time, and for each

instance it makes its predictions. For every output neuron that produces a wrong

3From the study reported by the behavior psychologist Donald Hebb in 1949 in "The Organi-
zation of Behavior" talking about the connections between biologic neurons.
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prediction, it reinforces the connection weights from the inputs that would have

contributed to the correct prediction. The rule is shown in the following equation:

w
(nextstep)
i,j = wi,j + η(yj − ŷj)xi (1.2)

In this equation:

1. wi,j is the connection weight between the ith input neuron and the jth output

neuron.

2. xi is the ith input value of the current training instance.

3. ŷj is the output of the jth output neuron for the current training instance.

4. yj is the target output of the jth output neuron for the current training

instance.

5. η is the learning rate.

If the training instances are linearly separable, this algorithm will converge to a

solution (Perceptron convergence theorem).

Summarizing and highlighting the limitations of these networks, Perceptrons

are artificial networks that solve complex, but linear, problems (like simple clas-

sifications) based on a layer of TLUs that process input values coming from the

input layer and return predictions as the output of the network. These predictions

are also based on a hard threshold represented by the step activation functions of

the neurons. As things stand, Perceptrons did not represent a valid and robust

solution, being also dropped by researchers in favor of higher-level problems such

as logic, problem-solving, and search. For example, as depicted by Marvin Minsky

and Seymour Papert in their 1969 monograph "Perceptrons: An introduction to

Computation Geometry"[12], Perceptrons are not even able to solve the trivial

Exclusive OR (XOR) classification problem.

10
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It turns out that some of the limitations of Perceptrons can be eliminated by

stacking multiple Perceptrons. The resulting ANN is called Multilayer Perceptron

(MLP). An MLP is composed of one (passthrough) input layer, one or more layers

of TLUs, called hidden layers, and one final layer of TLUs called the output layer.

Figure 1.3: Images taken from [8] illustrating a TLU neuron with a step function
as activation function(left) and a Multilayer Perceptron artificial NN

The so-obtained MLPs could also solve the XOR problem but were difficult to

train due to the multi-layered configuration and the step activation function of TLUs

that make the Hebbian rule and the higher complexity of the model useless. Finally,

in 1986, David Rumelhart, Geoffrey Hinton, and Ronald Williams introduced

the Backpropagation training algorithm, which is still used today, in their paper

"Learning representations by back-propagating errors"[13]. The algorithm can be

summarized in the following steps:

1. The model handles one mini-batch at a time (for example, containing 32

instances each), and it goes through the full training set multiple times. Each

pass is called epoch.

2. Each mini-batch is passed to the network’s input layer, which sends it to the

first hidden layer. The algorithm then computes the output of all the neurons

in this layer (for every instance in the mini-batch). The result is passed on

to the next layer, its output is computed and passed to the next layer, and

11
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so on until the output of the last layer is obtained. This is the forward pass,

and it is exactly like making predictions, except all intermediate results are

preserved since they are needed for the backward pass.

3. Next, the algorithm measures the network’s output error using a loss function

that compares the desired output and the actual output of the network and

returns some measure of the error.

4. Then it computes how much each output connection contributed to the error.

This is done analytically by applying the chain rule, which makes this step

fast and precise.

5. The algorithm then measures how much of these error contributions came

from each connection in the layer below, again using the chain rule, working

backward until the algorithm reaches the input layer. As explained earlier, this

reverse passage efficiently measures the error gradient across all the connection

weights in the network by propagating the error gradient backward through

the network (hence the name of the algorithm).

6. Finally, the algorithm performs a Gradient Descent step to tweak all the

connection weights in the network, using the error gradients it just computed.

In order for this algorithm to work properly, its authors made a key change

to the MLP’s architecture: they replaced the step function with the logistic

(sigmoid) function. This was essential because the step function contains only

flat segments, so there is no gradient to work with (Gradient Descent cannot

move on a flat surface), while the logistic function has a well-defined nonzero

derivative everywhere. Furthermore, these functions introduce some non-linearity

between layers, validating the multi-layer configuration of the network; in fact,

composing more linear functions (coming from every layer of the network) gives
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as result another linear function, the same as keeping only one layer. Thus, the

backpropagation algorithm works well with many other activation functions, not

just the logistic function. The table below reports some examples of the most

common ones.

ReLU f(x) =
0 for x ≤ 0

x for x > 0

Softmax fi(x⃗) = exiqN
j=1 exj

i = 1, ..., N

tanh f(x) = tanh(x) = (ex − e−x)
(ex + e−x)

Sigmoid f(x) = 1
1+e−x

Table 1.1: Examples of activation functions, operating either element-wise or
vector-wise, depending on the function

From a mathematical point of view, these are all functions that are differentiable

and zero-centered, so that their output is symmetrical at zero and so do the

gradients.

The advantages of using ANNs to solve Regression and Classification tasks

instead of more classical ML estimators reside in the following characteristics:

1. Ability to learn complex patterns:

2. Improved performance

3. Ability to handle large datasets

4. Continuous improvement

However, it’s important to note that DL models can be computationally expensive

and may require large amounts of data to train effectively. The training itself, also,

due to the presence of many hyperparameters to set and tune and the general
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complexity of the model, it’s a more intricate step to realize and requires a bigger

amount of time than training an estimator with Scikit-learn because, in general, a

trial & error process is needed. Recalling Algorithm1, the procedure for training

MLPs is quite similar, and is also possible to get already developed NNs used in

similar projects, but generally, a NN can be constructed from scratch characterizing

every aspect of it.

First of all, the training of a NN needs the data to be split differently, dividing

the dataset in Training set, to make the network learn patterns and behavior

associating features with their true labels, Validation set, in order to verify at every

learning epoch if the patterns have been learned properly, and finally a Test set,

to evaluate the behavior of the trained model. In general, a proportion of data

of 70/20/10 is suggested for splitting. Therefore, for what concerns Training and

Validation sets, these can be provided to the network in groups of samples called

batches. The size of them represents an important hyperparameter to tune: a small

batch size can lead the model to better generalization because it is forced to update

its parameters more frequently; however, a larger batch size can lead the model to

faster training, even with higher stress on GPU, the component able to process

mathematical tensors, like data are.

The next phase is the construction of the NN. There are some end-to-end ML

frameworks usable with their APIs in order to handle projects involving NNs in

every phase, like PyTorch, Caffe, and Tensorflow; in this thesis project, Tensorflow

is the utilized framework, also combining it with Keras, a Python built-in API that

runs on top of it and that principally handles NNs. Keras allows the construction

(by initialization) of the NN using two different APIs:

1. Sequential API: The model is constructed layer-by-layer, obtaining a previously

analyzed MLP for example.

2. Functional API: Layer can share inputs and output and be branched, forming

14



Introduction

more complex but powerful models. Multiple Inputs and Multiple Outputs

are also contemplated by the network.

Figure 1.4: Images taken from Keras official websites illustrating a Sequential
API’s model configuration (left) and a Functional API’s one (right)[14].

Focusing on Sequential API, layers have to be added, sized, and characterized one

by one. Different types of layers need to be used to build a NN. The fundamental

ones are:

1. The previously cited Dense layers.

2. One Flatten layer that transforms the inputs into a one-dimensional array and

is used before feeding the dense network.

3. Batch Normalization (or BatchNorm) layers, that work by adjusting and

scaling the activations from the previous layer based on the mean and variance

of the current mini-batch. Their working principle is explained in the following

equation

x̂i = xi − µ√
σ2 + ϵ

where yi = γx̂i + β (1.3)

where xi is the input to the BatchNorm layer for the i-th sample in a mini-

batch, µ is the mean of the mini-batch, σ is the variance of the mini-batch,
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ϵ is a small constant value (≈ 10−8) added for numerical stability, x̂i is the

normalized input for the i-th sample, γ and β are learnable scaling and shifting

parameters respectively, and yi is the output of the BatchNorm layer for the

i-th sample.

4. Dropout layers that randomly inhibit a predefined percentage of neurons in

the previous layer at every step of training, which becomes less sensitive to

slight changes in the inputs, getting a more robust network that generalizes

better.

For more particular tasks, other layers are required, like the LSTM layers and the

combination of Convolution and Pooling layers; further explanations about these

layers are accurately treated in the next subsection, but for sake of comprehension

can be briefly reported that LSTMs are useful layers proper of recurrent NNs that

let the model learn the temporal associations between parts of a sample, while

Convolution and Pooling layers are typical of Classification NNs that usually work

with images (or video frames), and let the model learn spatial associations between

elements of the same picture. Thus, the contemporary presence of these layers

lets the model notice and take also into account spatial and temporal patterns

in order to make more accurate predictions in projects in which these features

are fundamentals (like the one treated by this thesis project). Furthermore, for

what concerns the selected layers, also the number of neurons inside them and the

activation functions must be properly set.

Once the model is defined, it must be compiled: during the successive training

phase, the weights of the neurons will be continuously modified to maximize a

metric, which must be pointed out before this phase together with the optimizer

(i.e. the optimization algorithm of the weights) and a function to be minimized the

most possible that takes account of the difference between the predicted outputs of

the model and the correct ones, called loss function.
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After the model has been compiled, like for an ML estimator it must be fitted with

input data and trained. The training of a Supervised DL model consists of learning

patterns in the training set and testing the deducted associations on validation

data; once the predictions are done, the true labels of validation data get revealed

and the loss of this learning step is calculated and analyzed by the optimizer, which

in the backpropagation adjusts the weights of the neurons. The loss function gets

calculated both on training and validation data, and considering "accuracy" as the

metric to maximize during the training phase, four curves measuring performances

are obtained: training accuracy, validation accuracy, training loss and validation

loss. The best-case scenario that can be outlined at the end of the training is the

one in which the validation loss has settled its trend value under an acceptable

value, with the consequent achievement by the desired metric of an acceptable

high value. If so, the model can be further evaluated by making predictions on the

test features and comparing the result with the test labels before passing to the

inference phase. Otherwise, two main problems can occur:

1. Underfitting: the model is too simple or not complex enough, and the perfor-

mance on both the training and validation data are poor. It turns out that

validation loss keeps following the training loss and both settle down to an

unsatisfying value.

2. Overfitting: the model is too complex and learns the training data too well

(like it is "learning by heart"), resulting in poor generalization to new data. It

turns out that validation loss stops following the training loss and inverts its

descending trend maintaining a growing one.

If one of these two problems occurs, it is possible to make adjustments to the

data to obtain significant performance improvements; in particular, it is possible to

add new input data and normalize them between 0 and 1 since the input data within

a smaller range make the optimization problem more well-behaved or setting a
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learning rate schedule in the optimizer. During training, the optimization algorithm

calculates the gradients of the loss function with respect to the model parameters

and then updates them based on the learning rate. If the learning rate is too small,

the model may take a long time to converge to the optimal solution, while if it

is too large, the model may overshoot the optimal solution and fail to converge.

Hence, it is possible to point out for the learning rate a step function with the

desired value or to impose a schedule, i.e. a more complex function varying on

training epochs.

Going instead into the specifics of the cases, if underfitting occurs it is good

practice to increase the complexity of the model (number of layers and/or neurons

inside them), train it for more epochs, or consider more features for input data.

On the other hand, if overfitting occurs, it can be useful to reduce complexity, add

BatchNorm and Dropout layers, and also apply regularization techniques to the

Dense layers (that add penalty terms to the loss function, encouraging the weights

to be small) and data augmentation techniques, that are transformations randomly

realized on the existing data without permanently modifying them.

MSE (Mean Square Error)
qN

i=1 (yi − ŷi)2

N

(Binary) Cross Entropy
(average reduction on higher dimensions)

qN
i=1

qC
j=1 ŷi log (yi,j)

N

Categorical Cross Entropy
(sum reduction on higher dimensions) −qN

i=1 ŷi + log
1qN

i=1
qC

j=1 yi,j

2

Table 1.2: Some of the most common loss functions. y is the output of the
network, N is the batch size multiplied by the number of outputs (e.g. pixels), C
is the number of classes, and ŷ is the correct output.
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Figure 1.5: Images taken from [15] illustrating underfitting(left), optimal fitting
(center), and overfitting (right) behaviors of a model on training and validation
data.

1.2.3 Computer Vision

Computer vision is an interdisciplinary field of study concerning algorithms and

techniques to allow computers to reproduce functions and processes of the human

visual system. In other words, it is the ability to reconstruct a context around the

image, giving it a real meaning. In recent years, attention to CV has significantly

grown thanks to the advent of increasingly advanced ML techniques, which have

made it possible to achieve performances comparable to human ones, and to the

diffusion of digital images and videos.

Computer Vision algorithms can carry out more or less in-depth investigations

on an image, depending on the techniques used, the type of image, and the type of

task performed. Possible tasks include:
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1. Image Classification: analysis of the image content and attribution of a label.

2. Object Detection: identification of one or more entities within an image.

3. Image Segmentation: subdivision of the image into sections (e.g. to highlight

the pixels of a medical report in which a tumor is found).

4. Face Recognition: recognition of people’s faces.

5. Action Recognition: identification of one or more entities and their relationship

in time and space, to identify and describe specific actions (for example DHGss,

study-case of this thesis work).

6. Visual Relationship Detection: understanding the relationship between objects

in an image.

7. Emotion Recognition: detection of the sentiment of an image.

8. Image Editing: changes to an image (e.g. obscuring sensitive data).

Figure 1.6: Some examples of CV tasks taken from [16]

There are several ways in which a CV architecture can extract information from

images – Hand Crafted Features, Computer Vision Features, and Data-Driven

Features – chosen individually or combined depending on the needs of the analysis.

The former is based on the concept that algorithms can extract and define what is
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relevant in the image (e.g. a specific color/shape, area, or size), while the second is

based on the subdivision of the image into small regions to allow a deeper analysis.

But the real frontier of CV is the set of techniques based on Data-Driven Features,

which allow the recognition and classification of images (even natural ones) without

having to plan the feature extraction phase, which is carried out by a particular

type of DL model. This type of model plays a protagonist role in this thesis

project for what concerns frames features recognition, but also in the entire CV

landscape considering that it represents the ultimate evolutionary stage of the very

first prototype of a model-based solution that was conceived at the dawn of this

discipline.

The first studies on CV date back to 1959, with the Pandemonium, a model

suggested by Oliver Selfridge in the homonym paper "Pandemonium"[17] which

presents a framework that describes how the brain processes visual images. The

pandemonium model is a fixed, hierarchical model with a pre-defined structure,

based on independent entities that process visual stimuli and tell if a pattern has

been recognized or not, deciding together the nature of the image. These entities

are called demons, and, as exposed in [18], are organized in:

1. Image demons, that record the image that is received in the retina.

2. Feature demons, that are many and every one of them represents a specific

feature. Each feature demon’s job is to "yell" if they detect a feature that they

correspond to.

3. Cognitive demons, that watch the "yelling" from the feature demons. Each

cognitive demon is responsible for a specific pattern and their "yelling" is based

on how much of their pattern was detected by the feature demons. The more

features the cognitive demons find that correspond to their pattern, the louder

they "yell".
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4. Decision demon, that listens to the "yelling" produced by the cognitive demons

and selects the loudest one. The demon that gets selected becomes the most

reliable conscious perception.

Figure 1.7: Pandemonium architecture highlighting its demons

Inevitably, looking at the figure above, the Pandemonium architecture is known

to be quite similar to a modern neural network previously described in chapter 1.2.2,

and indeed Selfridge can be considered a pioneer of AI and CV. However, although

his model could already perform some simple tasks (such as the recognition of

some geometric figures or letters of the alphabet), the major limitation of this

architecture was the low computational power of the first digital computers on

which it was installed. The development of computers would clearly have laid the

foundations for a revival of the model, but the advent of NNs, which were much

more versatile given their ability to adapt their neurons to new input data, and
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without presenting the same fixed pattern for each different type of case, made this

technology obsolete as a model-based solution. Also, Deep Networks are highly

effective for the analysis of natural images and lend themselves very well to transfer

learning.

Focusing on the structure of ML models designed for the different CV tasks that

may be encountered, although basic NNs can be sufficient to solve simpler problems,

these turn out to be unsuitable when the images to be analyzed are too articulated,

presenting many details and colors, or with unclear shapes due to bad illumination

conditions. Thus, modern DL models for Computer Vision keep presenting a dense

network for feature extraction and classification, but with a series of special layers

placed before it. These types of models are named Convolutional Neural Networks

(CNNs), and they are fundamentals for CV applications due to their ability to

recognize complex and peculiar patterns in an image. Moreover, this ability can be

combined with other structures to solve tasks like Voice Recognition or Natural

Language Processing, not related to CV.

The structure of these networks takes inspiration from the brain’s Visual Cortex,

in which, as reported in some studies conducted by David H. Hubel and Torsten

Wiesel on cats[19][20] and monkeys[21], many neurons have a small local receptive

field, meaning they react only to visual stimuli located in a limited region of the

visual field. The receptive fields of different neurons may overlap, and together they

tile the whole visual field. Moreover, the authors showed that some neurons react

only to images of horizontal lines, while others react only to lines with different

orientations (two neurons may have the same receptive field but react to different

line orientations). They also noticed that some neurons have larger receptive

fields and react to more complex patterns that are combinations of the lower-level

patterns. These observations led to the idea that the higher-level neurons are based

on the outputs of neighboring lower-level neurons. This robust architecture can
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detect all sorts of complex patterns in any area of the visual field.

A truly similar approach in DL resides in Convolutional Layers: these layers

apply some filter, or kernels (that represent the visual receptive fields of biological

neurons), upon the input matrix to recalculate its values. The recalculation occurs

by making a kernel slide along aligned series of pixels and taking the weighted sums

of the overlapping elements of the two matrices. The obtained output matrices

from these convolution operations are called feature maps.

Figure 1.8: Images taken from [8] illustrating one convolution step. fh and fw

are the dimensions of the kernel matrix, sh and sw are the strides.

Based on the main directions followed by the kernel matrix during convolutional

operations, the Convolutional layers get distinguished in:

1. Conv1D layers, when the convolution occurs only in one spatial dimension of

the input tensor.

2. Conv2D lavers, where convolution occurs in two spatial dimensions. This type

of convolutional layer is particularly used when the input tensors represent

grayscale images, which have only one color channel.

3. Conv3D layers, where convolution occurs in three spatial dimensions. This

type of convolutional layer is particularly used when the input tensors represent

colored images, which generally have three different color channels (RGB), or
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videos.

Figure 1.9: Image illustrating different convolution operations performed by
Conv1D (a), Conv2D (b), and Conv3D (c) layers. The convolution operations
performed by kernels following the highlighted movement directions along the sides
of the input tensors on the left produce the output tensors on the right.

It can be noticed that the produced kernel dimensions are equal to N − D

dimensions of the input tensor at most, where N represents the number of size

parameters of the input tensor and D the directions along which convolution occurs.

Formal mathematical computation of the Convolutional operation to calculate

the value of a cell Si,j of the output matrix can be explained by the following

equation:

Si,j = (I ∗ K)i,j =
m−1Ø
a=0

n−1Ø
b=0

Ii+a,j+bKa,b (1.4)

In this equation:

1. I and K are the Input matrix and the kernel

2. i and j are the coordinates of a general cell in the output matrix.
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3. m and n are the rows and the columns of the kernel

To not obtain smaller output matrices, a frame of 0s can be applied around

the input matrix; this operation is called padding. Two types of padding can be

passed as a parameter in the function of the layer, which are "valid" padding and

"same" padding. "Valid" padding means that no padding is added to the input,

and the output size of the convolution operation is smaller than the input size.

"Same" padding means that the amount of padding added to the input is chosen

such that the output size of the convolution operation is the same as the input size.

Moreover, the kernel could also slide more than one matrix cell of step at a time.

This is called stride and can be set on every sliding direction singularly.

Having many filters can be an advantage because more patterns can be in-

vestigated, but like the biological neurons do when analyzing images to consider

more complex patterns, the first ones must be combined together. This step can

be realized in DL models by convolving the previously obtained feature maps to

obtain new ones, but this approach inevitably ends up dramatically expanding

the spatiality of the problem, increasing the number of parameters at each step

and the computation effort. To overcome these problems, another layer must be

inserted between two different Convolutional layers: a Pooling layer. Pooling layers

"summarize" the pieces of information contained in the feature maps taking the most

important ones. This downsampling procedure reduces the number of parameters

and the computation effort. The working principle of these layers is quite the same

as the Convolutional ones: a sliding kernel moves along the input matrix, but

instead of operating a weighted sum of the overlapping values, it applies a rule on

the input values in the kernel window to produce one output value. These rules

define the type of Pooling Layer: so we can use a Max Pooling Layer when the

output coincides with the highest value of the input matrix within the pooling

region, or an Average Pooling Layer when the output is the average between the
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values within the pooling region.

Figure 1.10: Images taken from [8] illustrating one pooling step operated by a
MaxPooling layer.

Other than reducing computations, memory usage, and the number of pa-

rameters, a MaxPooling layer also introduces some level of invariance to small

translations, a small amount of rotational invariance, and slight scale invariance.

Such invariance (even if it is limited) can be useful in cases where the prediction

should not depend on these details, such as in classification tasks.

Typical CNN architectures stack a few Convolutional layers (each one generally

followed by a ReLU layer), then a Pooling layer, then another few Convolutional

layers (+ReLU), then another Pooling layer, and so on. The image gets smaller

and smaller as it progresses through the network, but it also typically gets deeper

and deeper (i.e., with more feature maps), thanks to the Convolutional layers. At

the top of the stack, a regular Feed Forward NN is added, composed of a few

fully connected layers (+ReLUs), and the final layer outputs the prediction (e.g.,

a softmax layer that outputs estimated class probabilities). In this sense, the

dense network recognizes the pattern found in the feature map obtained after the

convolution of the input image.

The next step in order of difficulty lies in the analysis of video samples, which

from this point of view can be considered as ordered sequences of images called
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Figure 1.11: Images taken from [8] illustrating a typical CNN architecture.

frames. Both a simple DNN or a CNN can handle sequence processing, the former

for very short sequences and the latter for very long ones. Recurrent Neural

Networks (RNNs) are networks specialized in time series data of quite every length.

An RNN is also composed of neurons like DNNs, called recurrent neurons. The

configuration of these neurons is such that it receives at time t the input x(t) and

its previous output y(t) when it is the only neuron in a network, while, when there

are more neurons organized in a layer, they receive both the input vector X and

the output vector y.

Figure 1.12: Images taken from [8] illustrating on the left the configurations of
recurrent neurons (up) and a recurrent layer (down), and on the right their working
principle through time.

The configurations and working principles of these types of systems recall the
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ones of a memory. As a matter of fact, a part of a NN that preserves some state

across time steps is called memory cell. In general, a cell’s state at time step t,

denoted h (that stands for “hidden”), is a function of some inputs at that time step

and its state at the previous time step: h(t) = f(h(t−1), x(t)). Its output at time

step t, denoted y(t), is also a function of the previous state and the current inputs.

Figure 1.13: Images taken from [8] illustrating a general memory cell configuration
and working principle

The single recurrent neuron or a recurrent layer are two simple examples of

memory cells that perform better on a decade of time steps. However, due to the

transformations that the data goes through when traversing an RNN, some piece

of information is lost at each time step. After a while, the RNN’s state virtually

contains no trace of the first inputs. To tackle this problem, various types of cells

with long-term memory have been introduced. The most popular of these long-term

memory cells is the LSTM cell, proposed in 1997 by Sepp Hochreiter and Jürgen

Schmidhuber[22].

The LSTM layer uses an optimized implementation when running on a GPU,

which is a perfect starting point because, using Keras and Tensorflow for the

development of the model, data are already managed in tensor form. The LSTM

cell looks exactly like a regular cell, except that its state is split into two vectors:

h and c (“c” stands for “cell”), with h considered as the short-term state and c as
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the long-term state.

Figure 1.14: Images taken from [8] illustrating an LSTM cell.The forget gate
(controlled by f ) controls which parts of the long-term state should be erased,
the input gate (controlled by i) controls which parts of g should be added to the
long-term state, and, finally, the output gate (controlled by o) controls which parts
of the long-term state should be read and output at this time step, both to h and
to y.

The key idea is that the network can learn what to store in the long-term state,

what to discard, and what to read from it. As the long-term state c(t−1) traverses

the network from left to right, it first goes through a forget gate, dropping some

memories, and then it adds some new memories via the addition operation (which

adds the memories that were selected by an input gate). The result c(t) is sent

straight out, without any further transformation. So, at each time step, some

memories are dropped and some memories are added. Moreover, after the addition

operation, the long-term state is copied and passed through the tanh function, and

then the result is filtered by the output gate. This produces the short-term state

h(t) (which is equal to the cell’s output for this time step, y(t)).

The current input vector x(t) and the previous short-term state h(t−1) are fed to
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four different fully connected layers. They all serve a different purpose:

1. The main layer is the one that outputs g. It has the usual role of analyzing

the current inputs x and the previous (short-term) state h. In a basic cell,

there is nothing other than this layer, and its output goes straight out to y

and h. In contrast, in an LSTM cell, this layer’s output does not go straight

out, but instead its most important parts are stored in the long-term state

(and the rest is dropped).

2. The three other layers are gate controllers. Since they use the logistic activation

function, the range of their output goes from 0 to 1. As can be seen, their

outputs are fed to element-wise multiplication operations, so if they output 0s

they close the gate, and if they output 1s they open it.

The following equation summarizes how to compute the cell’s long-term state,

its short-term state, and its output at each time step for a single instance (the

equations for a whole mini-batch are very similar).

i(t) = σ(W T
xix(t) + W T

hih(t1) + bi)

f(t) = σ(W T
xfx(t) + W T

hfh(t1) + bf )

o(t) = σ(W T
xox(t) + W T

hoh(t1) + bo)

g(t) = tanh(W T
xgx(t) + W T

hgh(t1) + bg)

c(t) = f(t)
p

c(t−1) + i(t)
p

g(t)

y(t) = h(t) = o(t)
p

tanh(c(t))

(1.5)

With:

1. Wxi, Wxf , Wxo, and Wxg are the weight matrices of each of the four layers for

their connection to the input vector x(t).

2. Whi, Whf , Who, and Whg are the weight matrices of each of the four layers for

their connection to the previous short-term state h(t−1) .
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3. bi, bf , bo, and bg are the bias terms for each of the four layers. Note that

TensorFlow initializes bf to a vector full of 1s instead of 0s. This prevents

forgetting everything at the beginning of training.

Artificial vision systems find numerous applications, from object recognition to

biometrics, from smart surveillance (intelligent or cloud-based surveillance cameras

to analyze recorded images and identify infringements) to movement tracking and

diagnostic analysis in telemedicine, but also in the industrial and manufacturing

fields, thanks to the possibility of being directly integrated into production lines

and factory environments. Here are some examples of some fields of interest that

are leveraging this technology:

1. Predictive maintenance: Computer Vision algorithms for monitoring industrial

assets - mainly machinery - with a view to predictive maintenance (avoiding

machine downtime by intervening in possible failures or malfunctions).

2. Product monitoring: systems for quality control and analysis of any product

defects, to guarantee the highest level of customer satisfaction and limit any

problems in the after-sales phase.

3. Safety in the workplace: systems for monitoring images of the plant, workers,

and their actions, to identify any risk situations and/or accidents harmful to

people or the environment.
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Chapter 2

State of the Art

2.1 Hand Gesture Recognition problem

As reported by the scientific research on the matter and given the various case

studies in which they are articulated, Machine Learning algorithms and, more

specifically, DL models are demonstrated to be admirably able to classify different

classes of objects given some type of input data (for example different species

of dogs given images of them, different words given audio data, or categories of

products received by a shop given a structured database). Considering a model

trained on an acceptable amount of data, the simpler the input, the faster and

easier it is for the algorithm the recognition. However, in the case of Dynamic Hand

Gesture Recognition (DHGR), this assumption can be misleading: a hand gesture

is an articulated motion, so for the recognition of a single class, many detailed data

can be required by the model.

In this sense, the study conducted by the American psychologist Glenn David

McNeil is illuminating to give a structure to the above problem. As reported in his

paper "The Ontogenesis and Phylogenesis of Gestures: An Integrative Framework"

[23], a dynamic hand gesture can be broken down into three phases: preparation,
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stroke, and retraction. The preparation phase refers to the initial positioning of the

hand before the gesture is made, the stroke phase refers to the movement of the

hand during the gesture and the retraction phase refers to the final positioning of

the hand after the gesture is completed. Generally, when executing a gesture, all

these phases will be detected, and it would be futile and costly to try to focus only

on the stroke phase, mistakenly considering it to be the most important phase for

characterizing the entire dynamic gesture; in fact, the order in which these phases

occur makes the gesture such, and this can only be classified in this sense if seen

as a whole.

This can be noticed, for example, in the execution of two antagonistic gestures

such as a "swipe left" and "swipe left", in which the preparation phase of one

corresponds to the retraction phase of the other and vice versa, as shown in the

figure below.

Figure 2.1: Image taken from [4] illustrating the comparison of ’swipe left’ and
’swipe right’ gesture sequences

If only the stroke phase were to be considered, however, another type of problem

would be addressed, namely the classification of a static gesture, which can be

used, for example, in sign language recognition or in other cases where only simpler

and more direct concepts can be expressed. From the point of view of a robust
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Human Machine Interaction, using static hand gestures is generally much more

limiting than using dynamic ones; the latters are more natural and rich in pieces

of information, so more concepts can be easily expressed.

Returning to the heart of the problem, this variety of expression has a cost in

terms of data complexity: if for a static gesture much simpler data could be counted

on, such as an image or coordinates of some points in space, for a dynamic gesture

instead is required a series of data which always show the following characteristics:

1. Temporal correlation, because these are temporal sequences of values.

2. Spatial correlation, which can be absolute (coordinates of points in space) or

relative (for example positions of fingertips concerning the wrist articulation).

In recent years, given the advantages reported in Chapter 1 of this thesis, it can

be deduced that the best technology to use for the recognition and classification of

DHGs is a DNN, whatever the nature of the input data they receive, even though

the complexity of these requires the models to be more complex (more layers and

more neurons) and, consequently, computationally costing.

In the next section of this Chapter, some different solutions coming from other

scientific papers to tackle the problem are shown.

2.2 Related work

2.2.1 Recognition by Sensors Data

The first method presented involves the use of devices, hold by the hand or worn on

it, mounting motion sensors on them. The main advantages of these devices are that

sensors (principally accelerometers and electromagnetic sensors) are very sensitive

to linear as well as angular movements, so they can produce precise data even in

low-light or noisy environments. Furthermore, they can help reduce variability
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in hand gestures, as they can provide consistent data even if the hand gesture is

performed slightly differently each time. On the other hand, these devices should

have small dimensions and weight to not be cumbersome and limit movement,

have more limited computing capacity and memory than computers, and also have

to perform parallel data acquisition, pre-processing of acquired data, and output

prediction by the DNN, and these are actions that unfortunately can negatively

affect inference.

To control the movement of a UAV with DHGs, Changli Yu et al. developed

a wireless data glove integrating multiple sensors[24]. Gesture data acquisition,

gesture recognition, and UAV control command transmission are all realized at

the data glove end. The wireless data glove is composed of a control module

based on an STM32 microprocessor, a sensing data acquisition module based on

flexible sensors and inertial sensors, a rechargeable power supply module based on a

lithium battery, and a wireless transmission module. In this article, a dual network

gesture recognition method for UAV control that can be deployed in STM32 is

proposed. The network includes the backpropagation network and bidirectional

gated recurrent unit (Bi-GRU) network. The backpropagation network has a weak

ability but low computational complexity to extract data features. This method is

used for static gesture recognition with low difficulty. The GRU network is a variant

of the LSTM network, which is also suitable for extracting the time dimension

characteristics of the sensed sequence. However, compared with the LSTM network,

the GRU network has lower computational complexity and smaller model weight.

This method is utilized for the recognition of dynamic gestures that are difficult to

recognize and are used as time series. The recognized gesture is converted into the

corresponding UAV control command and sent to the UAV flight control terminal

through wireless data transmission. Using two networks makes more efficient use of

processor resources and improves the battery life of the system. Furthermore, the
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recognition accuracy of each of the 15 gesture categories is higher than 95%, and

the recognition time of a static gesture is 0.24 ms and that of a dynamic gesture is

155.15 ms.

Figure 2.2: Image taken from paper[24] illustrating diagram of data glove (a) and
real prototype (b).

Villani et al. proposed in [25] a more natural infrastructure-less solution to

communicate with wheeled robots using a smartwatch or a sensorized wristband

to obtain measurements of accelerations and angular velocities to recognize user’s

gestures and define velocity commands for the robots. The experimental setup

consisted of a Samsung Gear S smartwatch, a Pioneer P3-AT mobile robot, and

a computer with a ROS-implemented architecture on it to process the signals

coming from the smartwatch. After processing signals, the computer sends an

acknowledgment to the user imposing a short vibration to the smartwatch, providing

haptic feedback after gesture recognition. The usability (considered as the time

required to follow three paths, having different goals and setups, by the two piloting

modalities) of the proposed approach was experimentally evaluated and compared

to the use of a remote control device for the teleoperation of the robot, and the

use of the smartwatch proved to be more intuitive and easy, allowing, in the 97%
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of the performed trials, to complete the tasks in much less than the time taken by

the latter approach.

Figure 2.3: Image taken from paper[25] illustrating the procedure experimental
framework of the project.

Finally, Fungini et al., within the industrial research project named "Seamless",

aimed to build a virtual environment where data collected by IoT sensors can

be navigated through a gesture interface and virtual reality tools, presented in

[26] a solution using a device that, differently from a smartwatch like used in the

previously reported paper, performs the specific function of gesture controller, the

Tactigon Skin[27] (or T-Skin). This device, developed by Next Industries, offers

increased performance in gesture capture and motion recognition thanks to its

AI algorithm, a Bluetooth Low Energy Interface, magnetic and pressure sensor

to measure linear and angular motions, and four programmable keys for different

command combinations. Collected data of gestures, after filtering, segmentation,

and normalization pre-processing phases, have been passed to a classification net;

during the projects, different experiments have been done on two different ML
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Figure 2.4: Tactigon Skin device.

models: a dynamic time warping (DTW) network and a simple Feed Forward

network. The recognition software reached a performance ranging from 86% to

97% of correctly recognized gestures, depending on the single user and the gesture-

performing conditions.

2.2.2 Recognition by Video Data

Solutions that implement classification NNs that receive video data as input are

among the most popular in CV projects. The numerous variants of video CNNs

generally present Convolutional layers for spatial classification of images and

residual blocks, such as LSTMs, for temporal classification. For what concerns

Convolutional layers, backbones (complex convolutional architectures made up of

many layers that are placed before the Feed Forward network) are often used, and

several papers present innovative architectures to improve the performances of the

models more and more[28][29][30][31][32].

Purely video-type data are presented as dimension tensors (frames, pixel_height,
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pixel_length, channels) for each sample, where:

1. frames are the images composing the video in every time instance of it;

2. pixel_height and pixel_lenght are the characteristic dimensions of every frame

(generally, 256×256);

3. channels are the color channels that the camera adopts to represent the video;

for example, RGB cameras have three channels, while greyscale cameras only

have one.

One of the first uses of CNNs for video classification was presented by Du Tran et al.

in [33], where the authors proposed the use of a 3D-CNN architecture, called C3D,

to learn both spatial and temporal patterns of the input video tensors. They suc-

cessfully demonstrated that the features of the architecture, combined with a linear

classifier, can outperform or approach the best methods of that time on different

video analysis benchmarks (Sport1M[34], UCF101[35], ASLAN[36], YUPPENN[37],

and UMD[38].), for the tasks of Action Recognition, Action Similarity Labelling,

and Scene and Object Recognition, in addition to being efficient, compact, and

extremely simple to use.

The reference paper of this thesis project is the one by Molchanov et al. on

behalf of NVIDIA called "Online Detection and Classification of Dynamic Hand

Gestures with Recurrent 3D Convolutional Neural Networks"[4], where the video

benchmark "Nvidia nvGesture", which will be detailed in the next chapter, is

presented. The project is about the DHGR of command motions while driving a

car, so in addition to creating the dataset, the team also developed a DL model to

classify the different actions too, which is a Recurrent 3D Convolutional Neural

Network, that consists of a deep 3D-CNN for spatiotemporal feature extraction, a

recurrent layer for global temporal modeling, i.e. an LSTM layer, and a softmax

layer for predicting class-conditional gesture probabilities. It performs excellent
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results on the presented dataset and other benchmarks, both using singular sensors

or cameras, combining them in different ways.

Figure 2.5: Image taken from [4] illustrating the model framework.

2.2.3 Recognition by Skeletal Data

Another interesting solution for solving the DHGR problem is represented by

Skeletal Input Data, which are tensors presenting the x,y, and z coordinates of

some landmarks of a human subject, for example the entire human body points,

retina points, facial points, and, obviously, hands points. Reporting every object

configuration for every time instance, an entire gesture can be represented with

a tensor shape of (time_instances, landmarks, coordinates). Comparing a ges-

ture represented by video data tensor of shape (50 frames,256 pixel_height, 256

pixel_length,3 color channels) and by a skeletal data tensor shape (50 frames, 21

landmarks, 3 coordinates), it is noticeable that the number of values of the latter

corresponds to the 0.032% of the matter ones (3150 vs. 9830400). This strong

reduction of values can correspond also to a less complex model and an increased
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recognition speed during the inference phase, but also to the possible need for

another model that can extrapolate skeletons out of video-recorded subjects.

Devineau et al. in [39] introduced a 3D HGR approach based on a CNN where

sequences of hand skeletal joints’ positions are processed by parallel convolutions;

in particular, the architecture presents a multi-channel CNN with two feature

extraction modules and a residual branch per channel, as shown in the figure below:

Figure 2.6: Image taken from [39] illustrating the model framework.

As explained by the team in the paper, the advantage of using two convolutional

branches over a single one is that it allows the architecture to access different

time resolutions of each signal; in addition, the use of residual connection for each

signal allows the gradient to better backpropagate in the NN. It’s interesting to

notice that the so-obtained convolutional model seems to be competitive in terms

of performance with other methods which use GRUs or LSTM layers. However,

another interesting solution was proposed by Xinghao et al. in [40], presenting

an alternative model based only on LSTM layers, but managing skeletal data in

different ways before feeding the network with them. In particular, the model

extracts and uses Finger Motion Features (by using a variational autoencoder),

Global Motion Features, and the entire skeleton sequence data passing them to

three parallel branches of LSTM layers placed before a fully connected network
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used for classification.

Figure 2.7: Image taken from [40] illustrating the model framework.

Both the presented methods reached an accuracy of around 91.3% after having

been tested on DHG 14/28 dataset [41].

In the other two studies, solutions presenting both CNNs and LSTM layers were

presented: in particular, Nuñez et al. in [42] proposed a model able to recognize

human activities and hand gestures receiving 3D data sequences as input data, and

a double-training strategy where first CNN then the entire model were trained,

while Kenneth Lai et al. in [43] presented a CNN+RNN model that uses both

skeletal and depth data in three different compared ways to make predictions,

that are feature-level fusion, score-level fusion, the decision-level fusion of these

data types. Finally, it can be also useful to report the study conducted by Niels

Schlüsener et al. in [44] in which they implemented Google’s model "Mediapipe"[5]

to extract skeleton data by RGB videos to feed the network with, that is the

approach used also in this thesis project.
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Figure 2.8: Image taken from [43] illustrating the model framework.
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Chapter 3

Tools and Followed

Methodology

This thesis project aims to design an AI architecture capable of recognizing DHGs

acquired by a camera. This model will be installed on a home robot to raise its level

of Human Machine Interaction, and will therefore be able to operate simultaneously

with other models installed on it and focused on other purposes, such as the one

responsible for recognizing voice commands. Therefore, I thought that the model

to be designed should obtain high accuracy to best perform its task but, at the

same time, it should be light and fast to be able to maintain high performances

without execution lags, in particular when supported during the use by another

model. For these purposes, I decided to develop a model that can receive as input

a series of skeletal data, that correspond to the coordinates of landmarks of the

recognized hand for every frame of the acquired video. As reported in subsection

2.2.3, this method offers performances in terms of accuracy comparable to the more

classic one in which video data with frames corresponding to RGB images are used

as input, but the number of values to be processed gets drastically reduced to
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0.032% using the same shapes reported in the aforementioned passage of (50,21,3).

In addition, by processing light data, also the model can be simpler than a video

processing one, with a consequent computational effort decrease and execution

speed increase.

3.1 Main Python Libraries

3.1.1 OpenCV

Figure 3.1: OpenCV logo[45]

As reported on the official website openCV.org[45], "OpenCV (Open Source

Computer Vision Library) is an open-source computer vision and machine learning

software library. OpenCV was built to provide a common infrastructure for

computer vision applications and to accelerate the use of machine perception in

commercial products. Being an Apache 2 licensed product, OpenCV makes it easy

for businesses to utilize and modify the code. The library has more than 2500

optimized algorithms, including a comprehensive set of classic and state-of-the-art

computer vision and machine learning algorithms. These algorithms can be used

to detect and recognize faces, identify objects, classify human actions in videos,

track camera movements, track moving objects, extract 3D models of objects,

produce 3D point clouds from stereo cameras, stitch images together to produce a

high-resolution image of an entire scene, find similar images from an image database,

remove red eyes from images taken using flash, follow eye movements, recognize
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scenery and establish markers to overlay it with augmented reality, etc. OpenCV

has more than 47 thousand people of user community and an estimated number

of downloads exceeding 18 million. The library is used extensively by companies,

research groups, and by governmental bodies."

As regards the use made of this library in the thesis project, through OpenCV it

was possible to acquire data from the video cameras used during the tests or directly

from the .mp4 files of the videos passed as input and to manipulate the frames

obtained as NumPy arrays. Through the cv2 method, it is possible to initialize

objects or execute functions capable of performing these actions, in particular:

1. cv2.VideoCapture(0): Initializes a VideoCapture object able to read data

received from "0" camera (or from a video file). Applying the method read() a

boolean value asserting the acquisition or not of the image by the camera and

the NumPy array of the frame are obtained.

2. cv2.COLOR_RGB2BGR: Initializes a constant value that represents a color

space conversion code from RGB space to BGR one.

3. cv2.cvtColor(frame, cv2.COLOR_RGB2BGR): Function that applies the color

conversion on a frame read by VideoCapture following a conversion rule like

cv2.COLOR_RGB2BGR returning the modified frame.

4. cv2.flip(frame, 1): Function that flips an image frame horizontally (or vertically

setting the second parameter to 0, or both vertical and horizontally setting a

negative value).

5. cv2.imshow(’Camera’, frame): Initializes a ’Camera’ window representing the

frame as an image. Noticing that this is a non-blocking function (which means

that the program execution does not pause when the image is displayed), to

keep the window open until the user closes it, cv2.waitKey() function can be

used.
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6. cv2.destroyAllWindows(): Function that closes all the windows created using

cv2.imshow().

3.1.2 MediaPipe

[h]

Figure 3.2: MediaPipe logo[5][6][7]

As reported in [5], "MediaPipe is a framework for building pipelines to perform

inference over arbitrary sensory data. With MediaPipe, a perception pipeline can

be built as a graph of modular components, including model inference, media

processing algorithms, data transformations, etc. Sensory data such as audio

and video streams enter the graph, and perceived descriptions such as object

localization and face landmark streams exit the graph. MediaPipe is designed

for machine learning (ML) practitioners, including researchers, students, and

software developers, who implement production-ready ML applications, publish

code accompanying research work, and build technology prototypes. The main

use case for MediaPipe is rapid prototyping of perception pipelines with inference

models and other reusable components.". Some of the ML solutions proposed by

MediaPipe are shown in the figure below.

The offered ML solutions are also cross-platform, working on Android and iOS

mobile operative systems, and presenting libraries and functions written in Python

and JavaScript programming languages.

For what concerns the purposes of this thesis project, the hands module

(mediapipe. solutions. mediapipe. python. solutions. hands) was particularly

used in combination with the OpenCV library for video data acquisition first
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Figure 3.3: Image taken from [6] illustrating ML solutions offered by MediaPipe.
"Hands", for hands recognition, is the one used in this project.

initializing the Hands Class, which processes an image and returns the hand

landmarks and handedness (left v.s. right hand) of each detected hand, as

mp_hands.Hands(model_complexity=1, min_detection_confidence=0.5,

min_tracking_confidence=0.2, max_num_hands=1), where:

1. model_complexity is a boolean value that takes account of model complexity

("0" for low or "1" for high); a high model complexity means high landmark

accuracy as well as high inference latency.

2. min_detection_confidence that takes account of the minimum confidence

value (to choose between 0.0 and 1.0) from the hand detection model for the

detection to be considered successful.

3. min_tracking_confidence that takes account of the minimum confidence value

(to choose between 0.0 and 1.0) from the landmark-tracking model for the hand

landmarks to be considered tracked successfully, or otherwise hand detection

will be invoked automatically on the next input image.

4. max_num_hands that takes account of how many hands to detect.

51



Tools and Followed Methodology

This Class is initialized using Python Keyword with inside a while loop in charge

of taking frames by the video source and passing them to hands.process(frame)

method that returns a Hands object that contains several attributes that provide

information about the detected hands, such as: multi_hand_landmarks, that is a

list of hand landmarks for each detected hand, and multi_handedness, that is a list

of handedness information for each detected hand. It is important to highlight that

the coordinates of the landmarks get directly normalized between 0 and 1 by the

MediaPipe library considering the bottom left corner of the image as (0;0) and the

right one (1;1); the z coordinate, in particular, does not represent the distance of a

landmark from the camera but from the wrist landmark (i.e. the number 0), and

is positive if a generic point is between camera and wrist, negative in the opposite

case. In the figure below the landmarks of a hand are reported:

Figure 3.4: Image taken from [46] illustrating landmarks scheme and their
enumeration.

3.2 Dataset Handling

The dataset chosen for the training of the developed model is the "Nvidia nvGesture"

presented in [4]. This video dataset presents 25 different video classes of DHGs

executed by 20 subjects from 3 to 5 times for each gesture and each recording

device displaced in the room; subjects execute gestures sitting on a chair, in a
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closed environment, recorded by different RGB-D cameras and Stereo-IR sensors

displaced near them. The gestures in the dataset are:

1. Right swipe 11. Release 21. Clockwise Rotation
2. Left swipe 12. Trembling hand 22. Push with two fingers
3. Upward swipe 13. One/ Index up 23. "Hi"/ Open-close hand
4. Downward swipe 14. Two 24. "OK"/ Thumb up
5. Left-to-right rotation 15. Three 25. "OK"/ "O" in sign-language
6. Right-to-left rotation 16. Raising hand
7. Up-to-down rotation 17. Lowering hand
8. Down-to-up rotation 18. Push/ Stop
9. Click 19. Approaching hand

10. "Come here" 20. Counterclockwise
rotation

Table 3.1: Nvidia nvGesture Dataset HGs.

Figure 3.5: Image taken from [4] illustrating the environment for data collection.
(Top) Driving simulator with a main monitor displaying simulated driving scenes
and a user interface for prompting gestures, (A) a SoftKinetic depth camera (DS325)
recording depth and RGB frames, and (B) a DUO 3D camera capturing stereo IR.
Both sensors capture 320×240 pixels at 30 frames per second. (Bottom) Examples
of each modality, from left: RGB, optical flow, depth, IR-left, and IR-disparity.

The reasons why this dataset was chosen are:

1. The wide variety of gesture classes and video available: in addition to simple

movements, the robot could in fact receive commands via gestures to perform
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more complex procedures, such as following the operator, going to the charging

station, etc., so it could be useful to have more particular gestures than the

simplest ones.

2. The presence of an RGB camera posed in front of the subjects: this can

simulate the frontal camera with which the robot can observe the operator

performing gestures.

3. The presence of other several sensors and cameras: these are extra data that

could have been added if necessary.

4. This was a starting point for the definition of skeletal data extraction strategy

through Python software: both model training and inference phases need

skeletal data to be extracted from videos after hand recognition in every frame,

so a similar code for these phases had been developed since the beginning of

the project.

In order to create the training, validation, and test datasets, composed of skeletal

data tensors, from the Nvidia nvGesture dataset, a Python script processing videos

of the subjects performing the actions was written in order to perform the following

actions:

1. Through the OpenCV library, videos are opened and displayed after flipping

their frames horizontally to work in "selfie view" and changing the color space

from RGB to BGR;

2. Upon a so-displayed video, the MediaPipe library applies a virtual skeleton

upon the hand that executes the gesture. The skeleton is composed of 21

landmarks, each one characterized by three coordinates.

3. For every frame of video, in a secondary NumPy array of the video the

coordinates of the landmarks are saved. When no hands were recognized by
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MediaPipe, a matrix of shape (21, 3) full of 0s were saved.

4. These passages were repeated for every video of a class, forming the NumPy

array of the class of shape (n_videos,max_n_frames,21 landmarks, 3 coordi-

nates), and for every considered gesture class.

This just described is the general procedure for obtaining skeletal data from videos.

However, some problems related to the creation of the dataset were polluting the

data by acquiring useless gestures or movements that had nothing to do with

the actual class, i.e. the presence of more than one person during the gesture

acquisition, poor or exaggerated lighting in some videos, which made it difficult for

MediaPipe to recognize hands, the hands visible on the steering wheel, which were

recognized while remaining stationary (thus acquiring useless data), or the hands

already present in the center of the video frame, which were simply retraction

gestures cut from the immediately preceding videos, which was therefore followed by

a dead time by staying on the steering wheel and the actual execution of the gesture

of the video. To overcome these completely random drawbacks within the videos

and to have the most reliable data possible, software filters have been implemented

with the internal tools of the OpenCV and MediaPipe libraries, namely:

1. BGR color space instead of RGB: blue tonalities helped to get the skins more

recognizable under every lighting condition and with every skin color.

2. Detection of only one hand in the frames: using the parameter num_hands=1

in the "Hands" class, only the clearer hand recognized gets the skeleton applied

on it, and so only its landmarks are recorded in the array.

3. "Over the Steering wheel" filter: From the starting time instance time instant

of the video, if the x coordinates of the landmarks 8 (i.e. the index fingertip)

do not cross the vertical line x = 0.08 (that is the vertical line averagely
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tangent to the steering wheel) going along the right direction, the gesture

detection does not take place.

4. "On the Steering wheel" filter: If the landmarks 8 and 20 (i.e. the index

and pinky fingertips) cross the line x = 0.08 going left during the gesture

detection and after 30 frames after the starting time instant of the video,

staying between 0 and 0.08 for more than 20 consecutive frames, acquisition

gets stopped.

5. "False-start" filter: If at the beginning of the video, the hand is detected

right to the vertical line x = 0.08, the gesture detection does not take place,

waiting for the hand to return to resting position to the left of the line (on

the steering wheel); when the hand will cross this line going to the right, the

gesture detection will start.

Furthermore, for some video samples the team released in a text file the beginning

and the ending frame in which the gestures are executed; for these special samples,

all the filters were avoided and only the frames of the highlighted interval were

considered, while the other were directly transformed in blank matrices.

After some tests, and considering some basics motions for the robot and some

service commands, I decided to select 7 types of gestures to be distinguished by

the model, which are:

1. Class 9: Service Gesture.

2. Class 10: Motion Gesture, designed for forward movement towards the opera-

tor.

3. Class 18: Motion Gesture, designed for backward movement, moving away

from the operator.

4. Class 20: Motion Gesture, designed for counterclockwise rotation.
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Figure 3.6: Software filters in action: "On the Steering wheel" filter (top), "Over
the Steering wheel" filter (center), "False-start" filter (bottom), BGR color filter
applied, one-hand recognition.

5. Class 21: Motion Gesture, designed for clockwise rotation.

6. Class 23: Service Gesture.

7. Class 24: Service Gesture.

The obtained NumPy arrays can be defined as groups of frame-by-frame reports

of the coordinates of the noticed hand in every video. In order to consider only

the gestures from the videos, the most prolonged sequences of not-blank frame

matrices are extrapolated, with a tolerance of 10 blank frames in the sequence,
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which will not be saved in the new gestures array. Then, in order to keep only the

most consistent data, only the arrays presenting from 30 to 100 frames per gesture

have been considered.

Figure 3.7: Distribution of samples per labels. The number of samples for Class
9 is 49, for Class 10 is 57, for Class 18 is 65, for Class 20 is 64, for Class 21 is 61,
for Class 23 is 52, and for Class 24 is 62.

Considering the previously defined classes, the dataset is composed of a total of

410 samples. At this moment, in order to obtain NumPy arrays only containing

gestures of the same shape, these had to be resampled. The resampling procedure

consists in taking every sample and, applying linear interpolations to every function

of landmark coordinates over time (i.e. over frames), obtaining new arrays of shape

(50 resampled_frames, 21 landmarks, 3 coordinates). Finally, all the values of every

array had been normalized between 0 and 1 values. This procedure might seem

redundant because, as previously said as assumed by the team, MediaPipe already

collects data normalized between these two values, but for an internal precision

issue of the library, it is proved that data get collected between -0.2 and 1.2 values.

Ending the pre-processing procedures, the 50 frames of a sample get grouped, by
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using a reshaping function, all together in a bi-dimensional tensor of shape (50

frames, 63 features, 1 channel), where the features are the coordinates of every

landmark in a single frame, which are now disposed all on the same row.

Finally, it is fundamental to highlight that, considering a front view of the

observed scene, the recognized hand is always the one standing on the right of

the video record. This will make the model able to recognize DHGR only if these

are executed by the right hands. In order to overcome this situation, a simple

solution can be offered by the MediaPipe model itself, which is able to recognize

the handedness and return a boolean value to distinguish the two hands. Thus, if

the action is performed by the left hand, a correction can be made immediately

before the normalization process by flipping the coordinates of the landmarks along

a vertical axis in all frames.

3.2.1 Data Augmentation

Given the limited amount of data samples, I decided to use some Data Augmentation

techniques to enhance the performance of the model during training. Considering

that the classical approaches only regard images, I had to develop some ad-hoc Data

Augmentation functions from scratch. However, treating the frames representing

the hands no longer as images but as sets of skeletal data offers the advantage of

dealing with a set of 21 points in the space, so data augmentation functions can be

seen as simple geometrical or vectorial transformations. These functions are:

1. Zoom-in: Scaling of the distance vectors connecting the landmarks from 1 to

20 with the wrist landmark, 0, about this point, which has the result to bring

the points closer to the landmark 0 of a factor comprised between 30% and

50%. 
X ′ = KvX + (1 − Kv)X0

Kv ∈ [0.5; 0.8]
(3.1)
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Where X ′ is the scaled frame matrix of landmarks coordinates, X is the

original frame matrix of landmarks coordinates, X0 is the vector of the wrist

landmark coordinates, and Kv is the scaling factor.

2. Zoom-out: Scaling of the distance vectors connecting the landmarks from 1 to

20 with the wrist landmark, 0, about this point, which has the result to move

the points away from the landmark 0 of a factor comprised between 20% and

40%. 
X ′ = KvX + (1 − Kv)X0

Kv ∈ [1.2; 1.4]
(3.2)

3. Gaussian noise addition: Addition of random values from a normal distribution,

of mean µ equal to 0 and standard deviation σ equal to 0.001, to the data.

y = 1
σ

√
2π

e− (x−µ)2

2σ2 (3.3)

All these functions were randomly applied (picking a value from a random

generator function and comparing it to a decimal number representing a probability)

through the function map() to some samples at every epoch during the training

process.

3.3 Developed Model and training

3.3.1 Description and Scheme

Having defined the input data after merging the arrays of the desired gestures

and mixing their values, the machine learning model to be able to operate the

recognition of DHGs was also designed. The requirements that I wanted to establish

to be satisfied were an accuracy that settled at a value higher than 90%, that it was

light, and that it used less computational resources than normal video recognition
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models. I would like to remind you that this model is not designed to be used alone,

but instead to be combined with other models with whom can act simultaneously

for the recognition of the commands to be given to a robot.

By the nature of the problem, i.e. a multi-class classification (i.e. of dataset

elements equipped with exclusive labels) of DHGs, involving videos converted into

arrays containing the modifications of the coordinates of a hand frame after frame,

the model must take into account both the spatial configuration and the temporal

succession of the frames. Therefore, given the advantages reported in the previous

chapters, I opted for the use of a 2D Convolutional Recurrent Neural Network.

For what concerns the spatial analysis, given these explanations and the avail-

ability of relatively not many data, I decided to use three Convolutional layers

successively accompanied by a Pooling layer each instead of using a pre-trained

convolutional backbone. Thus, given the limited amount of data for every sample to

be analyzed, after some tests, the best configuration I opted to use for Convolutional

layers was the Conv2D layer, while, for Pooling operations, three MaxPooling2D

layers were used. For what concerns the temporal analysis, instead, a simple LSTM

layer placed between the convolutional block (Convolutional and Pooling layers)

and the Feed Forward NN was used.

Figure 3.8: Model scheme.
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3.3.2 Network operating principle and Training

Starting by formalizing the operations performed by the model, a tensor of area

Ct ∈ Rm×(lk) of m = 50 sequential resampled frames with k = 3 coordinates per

l = 21 landmarks as values each at time t is defined. Each tensor is transformed

into a feature representation ft by a 2D-CNN, whose Conv2D layers have Relu as

the activation function, and a recurrent LSTM network F :

F : Rm×(lk) −→ Rq, where ft = F(Ct) (3.4)

by applying spatiotemporal and batch normalization filters to the clip. Then,

this feature map is processed by a Flatten layer which transforms it into a 1D

vector, which is finally given as input to the Feed Forward Network, whose Dense

layers, except for the output one, have a Relu as activation function. Finally, the

output of the entire model is given by the last layer of the latter network, i.e. a

Softmax-activated Dense layer whose function is:

σ(X)j = eXjqK
k=1 eXk

(3.5)

where x is a vector of scores for each of the K classes, and σ(z)j is the proba-

bility assigned to class j by the softmax function and that is also used in online

classification to output the gesture prediction.

The training of this DL model was carried out considering batches X =

{V0, V1, ..., VP −1} of P samples V⟩, in the form of 3D tensors containing frames with

skeletal coordinates of every hand landmark, at a time. Each tensor consists of T

frames, making X a set of N=TP frames. Using predisposed functions, all of them

had previously got the data augmentation functions applied by us map() functions,

then had been cached in memory and shuffled 3 times in a buffer of dimension

1000, while, after the batch composition, they were also prefetched, reshaped and

normalized, obtaining batches of P samples of dimension (F frames, L landmarks
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coordinates). As the training cost function, it was considered the "Categorical

Cross-Entropy" function

L(ŷ, y) = −
KØ

i=1
yi log (σ(ŷ)i) , (3.6)

where

1. ŷ = (ŷ1, . . . , ŷK) is the predicted probability distribution over K classes;

2. y = (y1, . . . , yK) is the one-hot encoded true label;

3. σ(ŷ)i = exp(ŷi)qK

j=1 exp(ŷj)
is the softmax function applied to the predicted probabili-

ties.

To optimize the network parameters with respect to the loss functions, stochastic

optimizer "Adam"[47] was used with default parameters and defining a Cosine

Decay learning rate schedule function

ηt = 1
2 · ηmax ·

3
1 + cos

3
π · t

T

44
(3.7)

where

1. ηt is the learning rate at iteration t;

2. ηmax is the maximum learning rate;

3. T is the total number of iterations;

4. t is the current iteration number.

This function was projected to reach the minimum value of 10−4, starting from 10−3

at the first iteration, after 200 epochs, maintaining this value for the remaining 30

epochs.

Lastly, in order to reduce overfitting effects, regularization and dropout tech-

niques were also used in the Feed Forward NN, in particular:
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1. L2 Kernel Regularizers options in every dense layer, except for the output one,

with values equal to 2% in the first three and 1% in the fourth;

2. Four Dropout layers, one between every couple of Dense layers, with values

equal to 2% for the first three and 1% for the last one.

3.4 Testing phases

3.4.1 Trained model integration and Inference phase test

After achieving desired theoretical requirements from the training phase, the model

was saved and downloaded in TFlite format following an ad-hoc procedure for the

presence of the recurrent LSTM layer that does not permit the one suggested on

Tensorflow website[48]. This procedure involves creating a tf_function as run_model

= tf.function(lambda x: model(x)) and using it with the get_concrete_function

method as

concrete_func = run_model.get_concrete_function(tf.TensorSpec([1, 50, 63,1],

model.inputs[0].dtype)) following suggestions on Tensorflow website at page[49]

where are highlighted the benefit in using tf_functions. concrete_func is then used

as signatures parameter when calling model.save function and finally opening and

writing the saved model file after its conversion in TFlite format.

The downloaded model has then been integrated into a Python script to be

utilized for the Inference phase using another procedure suggested on Tensorflow

website page[50] in which is exposed how an Interpreter object gets created from

the model for making predictions. Briefly, the script initiates camera recording and

applies MediaPipe skeletons upon the hand of a recognized subject while perform-

ing a gesture, captures frame-by-frame the landmark coordinates of the skeleton,

and creates an input tensor of that motion. The camera recording gets stopped

when a minimum of 30 frames, in which the hand is recognized, are collected and,
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subsequently, 20 consecutive frames without hands are detected (thus, the subject

has to perform a gesture and then hide his hands from the camera angle), and

when more than 100 valid frames get collected, in order to keep this maximum

size, the next ones are appended while the first ones get canceled. The so-obtained

tensor gets pre-processed by applying resampling, reshaping, and normalization

transformations on it. Finally, the prediction is performed by passing this input

tensor to the Interpreter using set_tensor method and invoking it with invoke()

method, which returns as output an array containing the percentage probabilities

of the predicted labels. It is important to highlight that the LSTM layer inside the

model presents an active behavior during the inference phase, keeping in memory

the collected states of the previously predicted gestures, which tampers all those

that occur after the first; therefore, it is not possible to benefit from this layer’s

ability to analyze frames that follow one after another to extrapolate the temporal

patterns of the tensor. In order to avoid this issue, the reset_all_variables()

function gets called before passing the newly collected input data to the Interpreter.

The Inference phase is then performed by running this script on a PC using a

webcam. The obtained results are reported in the following chapter.

3.4.2 Experimental Setup and Wheeled Robot testing

The next test has been performed on a TurtleBot2[51] wheeled robot mounting an

Intel RealSense d435 camera[52] and a NUC Intel i5 computer.

To make the robot move, the Python script used during the inference phase has

been readjusted to obtain a ROS2 node in which is defined a Node Class and its

functions, also following the procedures highlighted on ROS official website[53].

The function spin(Node) creates an infinite loop in which the node is initialized

and performs the actions defined in a callback function cyclically, i.e. opening the
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Figure 3.9: Figure illustrating the TurtleBot2 wheeled robot, the Intel RealSense
D435 camera, and the NUC Intel i5 computer.

device 4 of the Intel RealSense d435, the RGB camera, collecting and pre-processes

frames obtained by the camera topic which the node has subscribed to, and creating

the input tensor of the model. After the gesture recognition, the highest predicted

value is passed to a switch case selector; every case contains a different moving

procedure realized with combinations of variables linear and angular that compose

a "Twist" geometry message using the functionTwist(), highlighting the translation

or rotation axes and the linear or angular velocity values. The obtained message is

published by the node on the cmd_vel topic, which communicates to the motors
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the motion to perform as is also present a subscriber node that reads the message

on the robot. The messages are published in a for loop at every defined time step

for security reasons.

Since the purpose of the TurtleBot’s movement in this experiment is purely

demonstrative, the performed motions are rather simple and there is no control

sensing of any kind to support the execution. In addition, since it was not possible

to use a dedicated graphics card (or at least as high performance as that of a

modern desktop or laptop PC) for the execution of the code and the computational

procedures required for the model, these functions were fulfilled by the CPU of the

NUC, resulting in reduced computational performance and dilation of the execution

timelines; therefore, it was decided not to collect time metrics of any kind for this

phase, merely recording the success of having moved the robot as the conclusion of

the thesis project. The motion procedures are the following:

Corresponding dataset class Movement procedure
Gesture 1 9 (Click) Slow BW mov. + Fast FW mov.
Gesture 2 10 ("Come here") Slow FW movement
Gesture 3 18 (Push / Stop) Slow BW movement
Gesture 4 20 (CW rotation) Slow CCW rotation
Gesture 5 21 (CCW rotation) Slow CW rotation
Gesture 6 23 ("Hello") Slow CCW rot. + Slow CW rot.
Gesture 7 24 (Ok / Thumb up) Prolonged CCW rotation

Table 3.2: Movement procedures for every gesture.

Every singular action is performed in 2 seconds, so procedures 1 and 6 are 4

seconds long. Furthermore, to explain what may seem a counter-intuitive choice,

procedures 4 and 5 are such as to make the robot move in the opposite direction of

rotation to that of the fingers, since if the subject wishes to see the front part of the

TurtleBot (the one presenting the camera) go, for example, turning right, will move

the index and middle fingers in that direction in clockwise rotation, starting from

a vertical position with these pointing upwards. The robot, however, according
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to its reference system, will have to rotate counterclockwise to see the camera go

more and more to the left. The movement is therefore such to support the intuitive

point of view of the operator.

Figure 3.10: Footage from two cameras of a rotational gesture. The upper figure
shows the image taken by the Intel RealSense d435 camera, while the lower figure
shows the shot of the action by the camera on my smartphone.
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Chapter 4

Results

4.1 Model Performances and Experimental Re-

sults

Before designing the configuration of the latest model, several tests were conducted

on others. As a neophyte on the subject of AI, the first important step of this

project was the study of the necessary theoretical rudiments of Python and ML to

independently carry the project out. In the beginning, I, therefore, used a simple

MLP neural network and then I started to use 1D-CNNs, in which the first one able

to give the first significant results was characterized by two sequences of Conv1D,

Conv1D, and MaxPooling1D layers before a Feed Forward Network for output

prediction. Considering that the performances didn’t improve, I decided to use

techniques to reduce overfitting, i.e. kernel regularization and the use of Dropout

and Batch Normalization layers, obtaining the latest 1D-CNN configuration. The

performances continued to be poor, therefore I thought that the problem could

lie in the 1D Convolution type, so I updated the network with Conv2D layers to

better analyze the inputs of dimension (50,63,1). The metrics utilized to measure
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the final performances of every model are Accuracy, Recall, Precision, and F-Score,

which are defined by the equations below:

Accuracy = True Positives + True Negatives
True Positives + True Negatives + False Positives + False Negatives

(4.1)

Recall = True Positives
True Positives + False Negatives (4.2)

Precision = True Positives
True Positives + False Positives (4.3)

F-score = 2 · Precision · Recall
Precision + Recall (4.4)

Where:

1. True Positives are the actual positive labels that were predicted as positive.

2. True Negatives are the actual negative labels that were predicted as negative.

3. False Positives are the actual negative labels that were predicted as positive.

4. False Negatives are the actual positive labels that were predicted as negative.

These cases can be highlighted in a graphical method using a so-called Confusion

Matrix, considering the vertical axis as the axis of the actual values and the

horizontal axis as the axis of the predicted values.

Returning to the model, having obtained a substantial improvement by also

applying the previously described Data Augmentation techniques, I decided, in

order to reach an acceptable accuracy value starting from the 2D configuration

obtained at the end of this study and testing process, to act on the number of

classes. The classes to be recognized were initially twelve (i.e. classes 1, 2, 5, 6, 10,

71



Results

13, 14, 15, 18, 20, 21, and 24), and the obtained performances obtained by these

models are reported in Table 4.1, but since the data available were not sufficient to

offer many examples for each gesture and some of these were excessively redundant

for the actions to be performed, I decided to reduce the number of classes to the

seven considered and described in the previous chapter.

Val. Accuracy Val. Loss Recall Precision F-Score
MLP 0.7143 1.6034 0.7143 0.7329 0.7235

First 1D-CNN 0.7532 1.0538 0.7532 0.7446 0.7489
Last 1D-CNN 0.7922 1.1454 0.7922 0.7882 0.7902

2D-CNN 0.8441 0.5030 0.8442 0.8252 0.8346
2D-CNN+DA 0.8701 0.4924 0.8701 0.8310 0.8501

Table 4.1: Performances and metrics of models using 12 classes.

As expected, first dividing the data only into training and validation datasets

(corresponding to 80% and 20% of the total samples available), the performances

of the models using this reduced number of gestures and the Data Augmentation

techniques have significantly improved, in particular in the latest 2D configuration,

but a last interesting suggestion resided in using also an LSTM layer which could

take into account the succession of frames (i.e. rows of input tensors). The result

was to obtain the configuration previously described in Chapter 3, the definitive

one, which was able to perform at its best in terms of accuracy and loss of validation

data (which are the parameters mainly taken into account to improve and tune

the networks), but also in terms of Recall, Precision and F-Score metrics. Since,

however, by dividing the available dataset into percentages equivalent to 70%, 20%,

and 10% for the training, validation, and test data, in order to measure the metrics

above, the performances were greatly worsened given the shortage of data for the

model training, I decided to personally record 6 executions for each class of gestures

and to process them in the same way as the videos belonging to the Nvidia dataset.

I performed the recordings as if I were a hypothetical subject number 26, placing
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myself at a distance from the camera comparable to the one kept by the Nvidia

team and executing the gestures with the right hand starting from the left of the

camera. The arrays containing the motion I recorded became the test dataset,

while the others compounded the training and validation datasets of the model.

The obtained results are shown numerically in the following table, while the

plots relating to the accuracy trend and the related Confusion Matrix are shown in

the following images.

Val. Accuracy Val. Loss Recall Precision F-Score
MLP 0.8568 0.7086 0.6905 0.6673 0.6787

First 1D-CNN 0.9031 0.5477 0.8333 0.8279 0.8306
Last 1D-CNN 0.8981 0.4707 0.9047 0.8950 0.8998

2D-CNN 0.9153 0.4344 0.9523 0.9517 0.9520
2D-RCNN 0.9368 0.3040 0.9762 0.9758 0.9760

Table 4.2: Performances and metrics of models using 7 classes.

Figure 4.1: Validation and training accuracies (left) and the Confusion Matrix of
the 2D-RCNN model (right).

4.2 Strenghts and Critical issues

Briefly recalling the desired characteristics that the model should have had at the

end of the training, this should have been fast in recognizing gestures, light from
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a computational point of view, and reliable in terms of accuracy. While the last

characteristic is verified by the analysis of the previously exposed training metrics,

the first and the second ones were estimated by conducting various tests in the

inference phase from which the following results arose:

1. Mean Temporal Footprint: 5.8 ms. This measure has been obtained by

measuring the difference between the time that an input tensor of shape

(50,21,3) is obtained by camera acquisition of gesture and MediaPipe processing,

and the time instant the model produces the output. This process involves

pre-processing of input tensor phases of skeletal data conversion by MediaPipe,

reshaping of data into (50,63,1) shape, normalization of the values, conversion

of them to a float 32 format, and processing by the model.

2. Number of model parameters: 269071. This is a fantastic result when compared

to those shared in [54], which shows how this characteristic is related to different

video recognition models that use a classical approach of image acquisition as

input. In particular, it can be seen that two MobileNet[55][56]-based models

have the minimum amount of parameters among all the exposed models, with

a value of 2.5 millions of parameters but in contrast to the accuracy of 65.5%

at most. Furthermore, these models work under a frame rate of 5 FPS, while

the model proposed in this thesis project works with data acquired at 30

FPS of camera record without any time lag during the execution of software

running with it.

3. Input number of values: 3150. This value represents the 0.032% of an RGB

input video of the same amount of frames and a dimension of 256 pixels ×

256 pixels for every frame.

Looking at these data, I consider myself proudly satisfied with the obtained

results and with the learned concepts. The targets I set for the model have been
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achieved and, from this point of view, the model could represent a valid alternative

to the more classical video classification models or at least could be considered an

interesting starting point to study skeleton data networks in deep.

However, it is also important to highlight the critical points found in the use of

this model and to comment on them:

1. The model cannot efficiently recognize gestures at a distance from the camera

higher than 2 meters. This can be seen as a criticality of limited importance

for what is the use to which this model is designed, i.e. the use of it on a

collaborative home robot, which therefore only in some cases could be very

distant from the operator of which it must recognize the gesture. In this sense,

other models that benefit from other aspects than a visual input could still

assume greater importance.

2. Close dependence on a second model like MediaPipe to derive skeletal data.

The network, therefore, works by default already alongside another strictly

necessary model. Therefore, the fact that it is light and does not require a great

computational effort assumes even more importance, but it is also true that

these characteristics must also be respected by the model that extrapolates

the skeletal data. In the case of MediaPipe, these requirements are respected

and it does not appear to be the bottleneck on the reception and processing

speed of the data until the output is obtained, but it could affect the accuracy.

3. Often the output is influenced by the direction in which the gesture is performed

and by the handedness. Although there were comparable quantities of samples

for each gesture to be provided to the network for training and metrics testing,

the model was trained with gestures performed only by right hands and

presenting the preparation phase starting from the left of the video for then

converging to the right for the stroke phase. The model, therefore, lacks a lot
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in recognizing gestures performed with the left hand and which are carried

out from right to left. However, these problems can be solved by adding

further correction instructions in the pre-processing phase, like reflections

with respect to a vertical axis (passing vertically through the wrist point or

through the x=0.5 coordinate of the reference system) and rigid translations.

These transformations were discarded during the Data Augmentation process

as, unfortunately, they failed to improve the training performances, but, as

the others used, they are geometrical, and can therefore act very quickly with

the input tensor data. All this is aimed at restoring the registered movement

to the standard conditions recognized by the model. The obligation of having

to invert the labels relating to the "clockwise rotation" and "counterclockwise

rotation" gestures will obviously have to be taken into account since the

reflection transformation in turn reverses the directions of execution.

4. Absence of "No gesture" Class: Having not so many data didn’t permit to

easily integrate a too much general "No gesture" class, which would have led

to the only result of lowering performances during training. Furthermore,

the model naturally elaborates on every gesture when recognizing hands with

the camera, and this can lead to undesired predictions and motions by the

robot. In order to tackle this problem, a possible solution is to integrate into

the software in which the model has been utilized a sort of attention trigger,

a signal after which the model is authorized to acquire and process data.

Some examples can be a specific vocal command, to be given by an external

model, or a human recognition system. In this specific case, the OpenCV and

MediaPipe libraries themselves offer some embedded functions to recognize

the entire human body, or some parts of it, like the face. In this sense, a

possible trigger could also be a smile recognition system or simply the fact

that a human face is undoubtedly recognized, like the operator is explicitly
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directing attention to the robot, which at this moment is called into question

to interpret the incoming gesture.

4.3 Further comments and Personal impressions

Personally, I found this experimental thesis project very stimulating, interesting,

and instructive. To pursue the prefixed targets immediately after giving shape to

the idea of the problem to be solved, I thought that the skeleton data solution

could offer satisfactory solutions, as indeed it was. However, the approach was

far from simple as, unfortunately, I noticed that the attention that is placed in

the literature on this type of solution, despite the benefits it can bring, is rather

marginal compared to what are the more classic solutions of video classification,

especially with regards to DHGs. Starting from the delivery, this is already quite

pioneering, as it would have been much simpler if it had concerned static HGs,

which could have required a common image classification model based on a sign

language dataset, of which there are many available online. Video classification

models exist and are also the subjects of many studies about them, but the available

ones are pre-trained on mostly RGB video data, which does not make them a valid

starting point for this type of problem, and therefore the model was also built from

scratch. The real problem for me to solve in this thesis, however, was the crucial

point of any machine learning project: the number of data. in fact, the datasets

that include skeletal data for gesture recognition are scarce, both as regards the

number of samples and as regards the availability of classes; so much so that the

data of this project were obtained from the nvGesture dataset through a script in

Python language developed by me that extrapolated the data of each class from

every video shot by frontal RGB camera. Regarding the Nvidia dataset, I think

it’s useful to point out the two big problems that unfortunately affect it and which

I had to handle:
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1. The initial data extraction. Although the team provides two Python scripts for

reading and extracting the videos, this procedure is unfortunately very smoky

and tedious, since the files have to be understood and modified meticulously,

apart from the fact that there are other datasets in which simple videos are

provided in .zip format that can be extracted and ready to use. I do not agree

with this choice, since in any case the dataset is made publicly usable.

2. The presence of disturbing elements, in particular, some of the participants of

the dataset creation experience themselves, in a considerable amount of videos.

The dataset remains of considerable interest as regards the great variety of

hand actions filmed by different video cameras and performed by different

subjects. A classic video classification model would greatly benefit in terms of

data quantity and generalization by networks, and so it remains inexplicable

that the team has made available repetitions of gestures in which the subjects

involved in the filming were disturbed by other members of the cast while

performing gestures, often invading the camera angle as well. These elements

inevitably pollute the dataset, since the study situations of a person driving a

vehicle who performs gestures behind the steering wheel are distorted (there

can be no people standing and/or moving around a person sitting in the

driver’s seat), and other hands are seen and picked up as they move. This is

all a pity for the merits that the dataset offers in particular for troubleshooting

HGR tasks.

In retrospect, given the actual number of classes used and the fact that finally

I had to register the test dataset myself, I think that, from a practical point of

view, it would have been better to use a different dataset, perhaps with standing

people; however, from an educational point of view, the manipulation of this dataset

was enormously instructive due to the complexity of the tasks I had to solve to

obtain the skeletal data I needed, not to mention that the acquired skills and the
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code scripts written for these purposes were very useful for solving other problems

encountered during the subsequent stages of model development.

79





Chapter 5

Conclusions and Future

Work

This thesis project illustrates the implementation of a 2D-RCNN model capable of

recognizing seven different dynamic hand gestures, captured by a video camera in

a home environment, and its subsequent implementation on a robot so that it can

perform as many motion procedures based on the recognized gestures. The model

is fed by skeletal data of the hands obtained by the use of the MediaPipe framework

by Google applied on each acquired video frame. The experience demonstrated

the effective feasibility of a fast, reliable, and computationally light model, all so

that it can interoperate with other models in parallel to further improve the level

of Human Machine Interaction and the user experience of the robotic device using

this technology. Ultimately, the setup used for the experimental tests on the robot

and the movement procedures carried out for demonstration purposes only are

also illustrated, highlighting the actual quality of the Human Machine Interaction

level on which the future work of this project would be based. In particular, future

work would certainly reside in trying to retrain the model by including many more
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different data, perhaps obtaining skeletal data from other datasets or, even better,

creating a new one, considering that the videos produced hardly exceeded the

duration of 10 seconds. This could be useful to solve the criticalities residing in

recognizing gestures from a distance higher than 2 meters and reduce the influence

of the direction in which the gesture is performed and the handedness. It would

also be interesting to introduce a "No gesture" type class and a trigger system, in

order to refine the integration of the model in terms of interoperability between

man and the machine. Lastly, some tests combining the model with other more

complex ones for handling a home robot can be conducted in order to verify the

performance obtained during their use in parallel.

82





Appendix A

Classical Computer Vision
approach

It should also not be forgotten how much the technological progress of vision
systems has affected the development of Computer Vision. From what has been
deduced so far, man has always tried to design machinery capable of carrying out
heavy work faster without tiring, however replicating his more complex cognitive
and sensory structures to organize their logical structures and make the most of
their potential; just think of the robotic arms, the neurons of artificial networks
and vision systems, which want to replicate the functioning of human eyes. This
is also a very interesting challenge since although computers have access to a
calculation and image acquisition speed higher than that of humans, the latter
has developed cognitive-brain characteristics that can count on the fact that data
are acquired at a very high resolution and that the image association process is
immediate and dictated by the experience and growth of the individual, as well
as by the emotions that he feels every day in acquiring external stimuli that are
much better fixed in memory. It is therefore simplistic to think of being able to
recreate only the structure of the human visual system in a machine to facilitate
its subsequent functions that lead to the recognition of the object. Over time,
therefore, procedures and mathematical models, that could simplify the task of
robots in the phases in which they are more deficient than humans and enhance
their ultimate goals, have been developed.

According to these assumptions, a general hierarchical organization of actions,
based on mathematical methods, can be assumed for computer vision tasks[57]:

1. Perception

2. Pre-processing

3. Segmentation
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4. Description

5. Recognition

6. Interpretation

The perception phase is the process necessary to provide (digital) images to the
computer. The main objects of attention in this phase are the subject to be filmed
and the video camera used for acquiring the images: the lighting techniques of the
subject, the camera calibration, and the vision model are therefore defined (i.e.
the transformations that bring to the estimate of the coordinates of the acquired
points in space) that it uses. After the image has been acquired by the camera, it
must be digitized before being processed, and therefore the sampling operations
are performed (which converts the continuous image signal into a discrete one,
corresponding to a series of pixels, by taking measurements at regular intervals) and
quantization (which discretizes the color signals of the image, reducing the number
necessary to represent it). All this could also have the purpose of converting sharp
and colored images into binary images, i.e. images organized in pixels that can
assume only the white or black color; this practice is very commonly used in the
manufactory industrial operation of computer vision.

The pre-processing phase deals with the filtering of the acquired images before
the segmentation phase. The most common filtering techniques used in this phase
are neighborhood average filtering, median filtering, and average of multiple images.
In neighborhood average filtering, given an image f(x,y), a filtered image g(x,y) is
generated where the intensity of each pixel is obtained through the average of the
intensities of pixels of f in a predetermined neighborhood of (x,y).

g(x, y) = 1
P

Ø
(m,n)∈S

f(m, n) (A.1)

The neighborhood average tends to blur margins and sharp contours (useful for
segmentation). This can mitigate this inconvenience by using the median value
instead of the average one which tends to force pixels with very different intensities
to be more similar to their neighboring ones, eliminating isolated transients; however,
this requires a higher computational effort.
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Figure A.1: A) Original image, B) Altered image, C) Neighborhood average, D)
Median filtering

Furthermore, these two filters can be applied on input images using geometrical
artificials called stencils, which are small bidimensional sets, whose coefficients are
selected to reveal a given property or feature in an image (they work basically on
the same principle of the kernel exposed in Appendix B). Stencils are also very
useful for the next phase of preprocessing, edge detection. Considering for simplicity
binary images, an edge is characterized by a sharp variation in the intensity of near
pixels, that due to the sampling is generally ramp-shaped; to seek the presence of
a monodimensional edge the first derivative of the intensity of the pixels is used,
while to determine whether pixels lay on the bright or on the dark side of an edge
the sign of the second derivative is used. Focusing on the whole bi-dimensional
image, the principle still utilizes the gradient instead of the first derivative and the
Laplacian operator instead of the second derivative, computed for discrete images.

The gradient is defined as:

G[f(x, y)] =
A

Gx

Gy

B
=


∂f

∂x
∂f

∂y

 (A.2)

Its magnitude is then used to detect edges:

G[f(x, y)] =
ñ

G2
x + G2

y (A.3)
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Figure A.2: Application of first and second derivatives on a bidimensional edge
of an image (top) and stencils of Gradient/Sobel and Laplacian operators

For a digital image, it must be discretized as:

Gx =
3

∂f

∂x

4
= f(x, y) − f(x − 1, y)

Gy =
A

∂f

∂y

B
= f(x, y) − f(x, y − 1)

(A.4)

However, this type of discretization is very sensitive to disturbances, thus an
alternative solution can be found in the computation of Sobel operators, based on
stencils theory1:

Gx = [f(x + 1, y − 1) + 2f(x + 1, y) + f(x + 1, y + 1)]+
−[f(x − 1, y − 1) + 2f(x − 1, y) + f(x − 1, y + 1)]

Gy = [f(x − 1, y + 1) + 2f(x, y + 1) + f(x + 1, y + 1)]+
−[f(x − 1, y − 1) + 2f(x, y − 1) + f(x + 1, y − 1)]

(A.5)

1There exist many other approximations of the gradient (e.g. Prewitt, Roberts, etc.) that
lead to different results depending on the starting image
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Figure A.3: Stencil of the Gradient or Sobel operator

Also, the Laplacian can be approximated in a similar fashion using stencils. It
is mathematically defined as:

L[f(x, y)] = ∂2f

∂x2 + ∂2f

∂y2 (A.6)

For a discrete image it can be approximated with:

L[f(x, y)] = [f(x+1, y)+f(x−1, y)+f(x, y+1)+f(x, y−1)]−4f(x, y) (A.7)

And realized with the stencil:

Figure A.4: Stencil of the Laplacian of a discrete image.

Another efficient approach for edge detection is Thresholding. It is particularly
used in industrial vision systems to detect objects, especially when a high processing
speed is required. Supposing that the image comprises bright objects on a dark
background, such that objects and background pixels have intensities that can be
grouped into two dominant groups, a straightforward method to isolate objects
from the background is to select a threshold T able to partition the two intensity;
any point (x,y) such that f(x,y)>T is recognized as a point of the object, otherwise
it is assumed to belong to the background. The critical point of this strategy is the
choice of the threshold T. Summarizing, this approach produces a binary image
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with the following rule:

g(x, y) =
1 if f(x, y) > T

0 if f(x, y) ≤ T
(A.8)

Edge detection and Thresholding are then fundamentals for the next phase
of the framework, the Segmentation phase. Segmentation is the process that
subdivides the scene into its constituent parts, or objects, and it is one of the most
important steps in Computer Vision because at this stage objects are extracted from
a representation toward a subsequent identification and analysis. Segmentation
is based on discontinuity and similarity concepts, satisfied by edge detection
and thresholding procedures respectively for highlighting objects. In fact, ideally,
gradient-based techniques should provide only pixels laying at the boundary between
the object and the background, but practically, the selected pixel set seldom
characterizes an edge because of disturbances and edge interruptions due to the
non-uniformity of lightning and other disturbances. Edge detection algorithms are
therefore followed by other procedures to connect and define edges, grouping pixels
in significant sets representing the objects’ contours. The first phase is called local
analysis. In local analysis, the characteristics of pixels in a small neighborhood
(e.g. 3X3 or 5X5) of each point (x,y) of an image that has already undergone a
basic edge detection algorithm are analyzed; all the points labeled as similar are
connected, forming a contour containing pixels that share common features. The
two main criteria to assess similarity within neighborhoods the magnitude and
the direction of the gradient vector, so two pixels (x, y) and (x′, y′) are considered
similar if: |G[f(x, y)] − G[f(x′, y′)]| ≤ T

|θ − θ′| ≤ A
(A.9)

In this equation:

1. T is a threshold value;

2. θ = tan−1
A

Gy

Gx

B
;

3. A is a threshold angle;

Successively, through global analysis, contour points get connected if they lay on
a predefined curve. Considering n points laying on straight lines, all the possible
lines that can connect two of them together are n(n−1)

2 ≈ n2, with n2(n−1)
2 ≈ n3

comparisons to do. To avoid this computationally prohibitive approach, the Hough
transform can be utilized. Introduced by Paul Hough in 1962 in the paper "Method
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and Means for Recognizing Complex Patterns"[58], it consists in transforming
the image space to a parameter space in which patterns could be represented as
curves. This method was later popularized and widely used in computer vision
and image processing applications.2. The motivation for using this transform is
that, while in the Cartesian plane infinite lines pass through a point, depending on
the values of parameters a and B, in the parameter space, a line corresponds to
the set of (infinite) lines that pass through a point in the Cartesian space; thus,
the intersection of two lines in the parameter space corresponds, in the Cartesian
space, to the line that contains two given points.

Figure A.5: Representing a line in Cartesian and parameter space.

Discretizing the parameter space in accumulator cells A(I,j) and defining a
matrix with null initial entries, for each point (xk, yk) of the Cartesian plane, the
parameter a is set equal to each of the values allowed by the discretization and the
corresponding values b = −xka + yk are derived, approximating b to the closest
value on the discretized b axis. If ap gives as a solution bp we increment by one
unit the cell corresponding to the pair (ap,bp). A value M in the cell A(i,j) means
that there are M points in the Cartesian plane that lay on the line y = aix + bj.
Dividing axis a into K elements, K corresponding values of B will be obtained, so,
evaluating n points, nK operations have to be performed. A big problem resides
in vertical lines detection, having a slope that tends to infinity, so the solution is
to use polar coordinates to describe the lines; the difference is that the set of lines

2The Hough transform as it is universally used today was invented by Richard Duda and Peter
Hart in 1972, who called it a "generalized Hough transform"[59] after the related 1962 patent of
Paul Hough. The transform was then popularized in the computer vision community by Dana
H. Ballard through a 1981 journal article titled "Generalizing the Hough transform to detect
arbitrary shapes"[60].
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in the Cartesian plane corresponds to a sinusoidal in the parameter space, but the
approach to follow is exactly the same.

Figure A.6: Accumulator cells.

The description problem in the visual process is the extraction of features of
an object. In theory, descriptors should be independent of the object dimensions,
position, and orientation, and should contain sufficient information to distinguish
unequivocally one object from another. The main description procedure is repre-
sented by the development of a chained code combined with shape normalization
techniques. to derivation of the code consists in:

1. Selecting a grid with an adequate resolution, and if at least a given part of
the cell (usually 50%) falls inside the contour, the cell is set to 1, otherwise to
0. Then, the cells set to 1 with the chained code get connected.

2. Alternatively, by dividing the contour into segments of the same length, the
extremities of each segment are connected with a straight line, and the closest
direction to those allowed is assigned to each line by the chained code.

For normalization, two main approaches are usually utilized:

1. With respect to the starting point, treating the code as a circular sequence
and redefining the starting point such that the resulting sequence of numbers
is the smallest possible integer.

2. With respect to rotations, using the prime difference of the code.

Previous normalizations are exact only if the contours do not vary with respect
to rotations and scale changes. With characteristic shape functions, that are
monodimensional functional descriptors of the shape of a contour. In practice, the
same object digitized in two different orientations will generally present different
shapes of its contour. Other hybrid descriptors are the Characteristic shapes
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functions, which are monodimensional functional descriptors of the shape of the
contour of an object. To obtain them, first a chained code is constructed with
respect to the starting point, and then the characteristic shape of the code is
computed; to distinguish between shapes, function moments can be used. The
curves can be successively normalized between 0 and 1.

Figure A.7: Examples of characteristic shape functions.

Moreover, also descriptors based on Fourier transforms can be utilized; in fact,
these are easy to normalize with respect to scale changes, rotations, starting point
of the contour.

Finally, for the Recognition phase, the descriptors xi of an object are collected in
a so-called pattern vector X. Given M object classes, represented with ω1, ω2, .., ωM ,
the basic recognition problem using the decision theory is to identify M decision
functions d1, d2, .., dM with the property that the following inequality holds for each
pattern x∗ belonging to class ωi:

di(x∗) > dj(x∗) for j = 1, 2, ..., M ; j /= i (A.10)

An example is the recognition realized by computing Euclidean distance between
descriptor and a prototype vector (or average) mj corresponding to the j-th class of
objects:

Dj(x∗) = ||x∗ − mj|| with j = 1, 2, ..., M

mj = 1
N

NØ
k=1

xk

(A.11)

x∗ is assigned to class ωj if the distance Dj(x∗) is the shortest one. Recognition
phase winks at the Machine Learning because of the tools used to concretize the
effective object recognition, for example:
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1. Probabilistic classifiers (e.g. Bayesian);

2. Supervised and unsupervised neural networks;

3. Clustering algorithms;

4. Fuzzy logic systems

5. Hybrid systems (neuro-fuzzy, fuzzy clustering, etc.)
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