
POLITECNICO DI TORINO

Master’s Degree in mechatronics engineering

Master’s Degree Thesis

Beehive monitoring with computer vision

Supervisors

Marcello CHIABERGE

Simone ANGARANO

Candidate

Cyrian FROISSART

2022

Summary

The bee is an essential species for the pollination of many crops; its abnormally
high extinction rate is therefore particularly worrying. Domestic bee populations
are being carefully observed to identify the reason for this decline. In this context,
video hive monitoring aims to enable real-time monitoring while avoiding laborious
human labour.

We’ll Bee is a start-up seeking to automate certain hive monitoring processes.
A tool used to count the number of entries and exits of bees to the hive already
exists. The subject of this internship is the improvement of this system in order to
determine the proportion of bees bringing pollen back to the hive. Since pollen is
used to feed bee larvae, it is indeed a good indicator of the growth of the hive.

Figure 1: Observation system diagram

The observation system consists of a translucent box placed at the entrance to
the hive (Fig. 1); openings to the outside and to the hive allow the bees to circulate,
while a Plexiglas plate ensures that the bees walk at the bottom of this box. A
raspberry Pi equipped with a camera attached to the top of the box films the bees
at a speed of 15 frames per second. The lighting is natural so as not to disturb
the behaviour of the bees. The raspberry is powered by a battery. Ultimately, the
objective would be to make the system autonomous by charging the battery with a
photovoltaic panel. The objective of this internship was to create a classification
algorithm to separate the images of bees bringing pollen to the hive from those
not bringing it back. To make such an algorithm useful, video acquisition, image

ii

segmentation and tracking of each bee from frame to frame are required. Finally,
in order to be able to train an algorithm to classify bees, it is necessary to create a
set of catalogued images.

iii

Table of Contents

List of Figures vii

Literature review 1

1 Video acquisition and pre-processing 2
1.1 Manual Distortion . 2
1.2 Automatic distortion . 3

2 Segmentation 8
2.1 Segmentation with blue background 8
2.2 Segmentation with white background 12

3 Bee tracking 18

4 Dataset creation 20

5 Classification 22
5.1 SVM . 25
5.2 K-Nearest-Neighbourgh . 27
5.3 Artificial Neural Network . 28

5.3.1 MLP . 29
5.3.2 CNN . 34

Conclusion 38

A arguments effect of initundistortrectifymap() 39

B Choice of the number of thresholds for the segmentation by lumi-
nosity 41

C Example of a tracking list 43

v

D Automatic undistortion program 45

E Segmentation program 49

F Tracking program 58

G Dataset creation program 65

Bibliography 73

vi

List of Figures

1 Observation system diagram . ii

1.1 Raw picture . 3
1.2 Picture undistorted and cropped . 3
1.3 illustration of the hypothesis used; points of the border must be

moved in order to obtain straight lines 4
1.4 picture with guidelines for the selection of 18 points (14 intersection

plus the 4 corners) . 6
1.5 picture undistorted with the program 7

2.1 Picture img2 obtained after undistorting 8
2.2 Picture res showing elements distinct from the background 9
2.3 Integral picture . 9
2.4 Stencil applied to the integral picture 10
2.5 Picture res2 ; homogeneous area are more clearly outlined 10
2.6 Picture res2b, mapping local maxima of res2 11
2.7 Illustration of the intersection between two bounding boxes. Beware,

axis Y is oriented downward . 11
2.8 Picture obtained after bees’ position identification on blue back-

ground through colour comparison 12
2.9 Picture distorted . 13
2.10 Picture res showing elements distinct from the background 13
2.11 Picture res2 . 14
2.12 Picture obtained after bees’ position identification on white back-

ground through colour comparison 14
2.13 Picture obtained through thresholding the original picture with a

single luminosity threshold . 15
2.14 Result of a thresholding using three different thresholds 15
2.15 Picture res2 . 16
2.16 Picture res2b, mapping local minima of res2 16
2.17 Result of bees’ position identification on white background through

luminosity thresholding . 17

vii

2.18 Result after a better choice of parameters 17

3.1 example of a list containing bees’ coordinates 19

4.1 interface of the dataset creation program 21

5.1 a positive (left) and a negative (right) cases from the dataset [4] . . 23
5.2 a positive (left) and a negative (right) cases obtained with the

observation system . 23
5.3 pixel importance mapping according to the random forest algorithm

for each colour, and the sum of the three 25
5.4 distribution of positive cases (yellow) and negative ones (blue) . . . 26
5.5 Example of a picture preprocessed by blackening pixels for which

blue is the most important colour 27
5.6 Precision reached by KNN algorithm as a function of N 28
5.7 Example of a Deep & Wide architecture (source : [6]) 29
5.8 Diagram of an MLP architecture (source : [6]) 30
5.9 Illustration of a PCA: the data is not randomly distributed in the

plane, and can be projected onto the first dimension with little loss
of information (source : https://programmathically.com/) 31

5.10 Graph of the maximum variance conserved by the dataset as a
function of the number of dimensions of the hyperplane on which it
is projected . 32

5.11 A bee picture (left) and its reconstruction after a PCA (right) . . . 33
5.12 Diagram of principle of convolutional layers (source : [6]) 34
5.13 Effects of a pooling layer (source : [6]) 35
5.14 Tested CNN architecture . 36
5.15 The two activation functions tested in dense layers (source : [6]) . . 36

A.1 overcompensation of the radial distortion, and creation of an han-
dlebar distortion . 39

A.2 amplified radial distortion . 39
A.3 C : tangential distortion created along the vertical axis 40
A.4 D : tangential distortion created along the horizontal axis 40
A.5 picture obtained with correct parameters 40
A.6 image after distortion compensation and cropping 40

B.1 result of a segmentation by half of picture 41
B.2 result of a segmentation by thirds of picture 42
B.3 result of a segmentation by ninth of picture 42

C.1 trajectory of bees in the video and associated list (1) 43
C.2 trajectory of bees in the video and associated list (2) 43

viii

C.3 trajectory of bees in the video and associated list (3) 44

D.1 picture with guidelines for the selection of 18 points (14 intersection
plus the 4 corners) . 46

D.2 picture undistorted with the program 48

F.1 exemple of data printed . 64

G.1 once a picture is labelled . 72

ix

Literature review

In recent years, several studies have been carried out to prove the feasibility of
video surveillance of bees.

Different methods of image segmentation are possible, either by comparing an
image with a "large" number of images preceding it to bring out the changing pixels
[1], or by using the colour differences between the bees and the background of the
image [2] .

Tracking bees along a video is possible by comparing the actual position of a
bee to a predicted position [3] . For this purpose, a bounding box is assigned to
each position. Indeed, this comparison uses the notion of Intersection over Union
(IoU) rather than a simple distance between the two positions.

Once images of bees were obtained, several classification methods were created
to distinguish bees carrying pollen. The extraction of some parameters related to
the colours and the shape of the bees can be enough to classify the bees with a
satisfactory precision [1]. More advanced algorithms such as convolutional neural
networks (CNN) can also be used to achieve the same goal, either by directly
seeking to classify the bee image [4], or by searching for the presence of pollen bags
in the picture [5].

The main difference between these studies and the work presented, is the goal
to create a real-time algorithm able to classify bees using few computational power.
As such, the accuracy of the algorithm is less important in this thesis than its
capacity to be run by lightweight hardware.

The book “Hands on machine learning” [6] serves as a guide for all experiments
related to classification algorithms.

1

Chapter 1

Video acquisition and
pre-processing

1.1 Manual Distortion
The camera of the observation system is controlled by a raspberry Pi. The objective
is that this raspberry can process the images and directly determine the number of
bees carrying pollen in real time.

In order to obtain videos to train a classification algorithm, five-minute videos
are recorded at regular intervals (at 5:00 a.m., 6:30 a.m., 8:00 a.m. . . until 8:00
p.m.). The videos are saved on an SD card plugged to the raspberry; during the
thesis, the hive was in an area covered by a wifi network, it was then possible to
download the videos via an SSH connection.

Since the camera has a wide angle of view, the image obtained is very distorted
(Figure 1.1). Pre-processing is therefore necessary before analysing the image.

We observe a barrel distortion due to the camera lens. This distortion is
inconvenient, but the use of such a lens is necessary to capture the bottom in its
full length with a camera relatively close to it. There is also a much less present
tangential distortion, due to the misalignment of the camera and the observed
plane.

In order to be able to analyse the image, it must be deformed in such a way as
to remove the distortions present (Figure 1.2).

The opencv library offers a function to correct these distortions. A transformation
matrix is first formed by calling the initUndistortRectifyMap() function, then the
transformation is applied to the image by calling the remap() function.

The transformation matrix is chosen by trial and error: several images are
reformed using different parameters of the initUndistortRectifyMap() function (see
appendix A). These are selected one by one, refining the image processing step by

2

Video acquisition and pre-processing

Figure 1.1: Raw picture

Figure 1.2: Picture undistorted and cropped

step.

1.2 Automatic distortion
The process of selecting appropriate distortion parameters is long and tedious.
Moreover, it has to be done for each time a camera is set up. Indeed, the distortion

3

Video acquisition and pre-processing

observed and the fitting correction needed change significantly with the placement
of the camera.

In order to avoid doing this task manually in the future, a program was made
to find correct parameters more easily and by spending less time. This program
needed to be as simple as possible, in order to be used by personnel with little to
no training in optics and informatics if needed.

The distortion parameters are found using characteristic points in the picture
and making some hypothesis. The border of the bee’s circulation space (the bottom
of the box) appear clearly curbed and we can suppose without risk that it should
form straight lines on an undistorted picture (Figure 1.3). The hypothesis used is
that all points belonging to the border should have the same Y coordinates. The Y
coordinates of the upper point for the upper border and the lower point for the
low border are kept in order to extend the picture. Indeed, if we were to diminish
the picture size, some pixels would be lost (especially in the center of the picture)
and some pieces of information with them.

Figure 1.3: illustration of the hypothesis used; points of the border must be
moved in order to obtain straight lines

4

Video acquisition and pre-processing

Since OpenCV and the initUndistortRectifyMap() function use the Brown-
Conrady model to describe to distortion of a picture, this model was also used for
the program.

xu = xd + (xd − xc)(K1r
2 + K2r

4 + K3r
6) + P1(r2 + 2(xd − xc)2)+

2P2(xd − xc)(yd − yc)

yu = yd + (yd − yc)(K1r
2 + K2r

4 + K3r
6) + P1(r2 + 2(yd − yc)2)

+ 2P2(xd − xc)(yd − yc)

Here xu and yu are the coordinates of the points in the undistorted picture (i.e.
the coordinates we want to reach in order to have straight borders). xd and yd

are the coordinates of the points on the distorted picture, and r is the distance
from the center of the distorted picture. Ki are the radial distortion coefficient,
numbered 3; while Pj are the tangential distortion coefficient, numbered 2.

The picture is used to get yd, and the straight border hypothesis fixes yu. The
equation of the Brown-Conrady model will be used to find the distortion coefficient
needed.

To begin with, the operator has to select a number of points belonging to the
borders of the distorted picture. The operator simply click on some points in a
specific order and the coordinates of the points are saved thanks to the function
ginput(). As the picture is more distorted away from the center, it is indicated to
select the four corners of the bee’s circulation space; but it is also necessary to select
points along the whole borders. In order to help the operator, some evenly-spaced
lines are drawn on the picture: the operator then need to select the intersection
between those lines and the borders. (Figure 1.4)

Selecting the points lead to have all the ydi
needed; in order to obtain straight

horizontal lines yui
are set equal to the higher yd for all the points of the high

border, and equal to the lower yd for all the points of the low border.
Once ydi

and yui
are fixed, the distortion coefficients are to be determined using

equations derived from the Brown-Conrady model:

yir
2
i K1 + yiri4K2 + (2yi + r2

i)P1 + 2xiyiP2 + yir
6
i K3 = yui

− yi

Where y = yd − yc for practicality.
Please note that only the Y-coordinates are forced; letting the X-coordinates

free is needed to correct the distortion. This means the pixels will tend to move
away from the center, and not necessarily on a vertical “motion”.

5

Video acquisition and pre-processing

Figure 1.4: picture with guidelines for the selection of 18 points (14 intersection
plus the 4 corners)

Having 5 unknown variables means we could theoretically find the distortion
coefficients with a 5 equations system. This would mean the operator would have
to select only five points. However, this approach didn’t bring satisfying results,
and more points had to be selected leading to have more equations than unknown
variables. In order to find a result, the least-squares solution was used to find the
result fitting approximately all the equation.

Now that the distortion coefficients are found, the picture is undistorted. The
result, albeit far from perfect, shows much less distortion on the bee’s circulation
space and is clear enough to be used for the following works. (Figure 1.5)

6

Video acquisition and pre-processing

Figure 1.5: picture undistorted with the program

7

Chapter 2

Segmentation

2.1 Segmentation with blue background
Once the deformation of the image has been processed (Figure 2.1), it is necessary
to make the segmentation of the image in order to differentiate the bees from the
background. Succeeding in distinguishing between bees is also necessary to track
of each of them.

Figure 2.1: Picture img2 obtained after undistorting

The pixels are compared to the background colour. This colour is approximated
by the variable bgd: a BRG vector which is the average of the BRG vectors of
all the pixels in the image. The comparison is made via a cross product after
normalization of the BRG vector. This normalization makes it possible to limit
the influence of the luminosity, which varies with the distance from the edge of the
box. A "res" grayscale image is formed (Figure 2.2), for which each pixel takes the
value resulting from this calculation:

8

Segmentation

res[y, x] = 1 − np.dot(normalize(img2[y, x]), normalize(bgd)) (1)

Figure 2.2: Picture res showing elements distinct from the background

In this image, some bees stand out sharply, while others are more difficult to
distinguish. In order to make all the bees present as visible as each other, the pixels
are compared to a variable threshold (adaptive thresholding). For this an integral
image is used (Figure 2.3). This is a gray level image whose pixel value in (x,y) is
calculated according to the formula:

Integral[x, y] = res[x, y] + res[x − 1, y] + res[x, y − 1] − res[x − 1, y − 1] (2)

Figure 2.3: Integral picture

A stencil of 11x11 size is applied to “integral” in order to bring out the shapes
of the bees present in the initial image (Figure 2.4). We then obtain a “res2”

9

Segmentation

image in gray level where the bees form spots quite distinct from the background
(Figure 2.5).

Figure 2.4: Stencil applied to the integral picture

Figure 2.5: Picture res2 ; homogeneous area are more clearly outlined

Finally, the “res2b” image is formed by applying a 5x5 stencil to “res2”; it keeps
only the pixel with the maximum value and sets the values of the other pixels to 0.
“res2b” only has a few distinct points, which will be used to determine the position
of the bees (Figure 2.6).

Once the image has been processed, we seek to determine the position of each
bee in the image. A list is created, to which the coordinates of the pixels having a
non-zero value in "res2b" are added, in descending order of value. If a pixel is too
close to another already present in the list, then the coordinates of the new pixel
are not added to the list. To do this, a square with a side of 20 pixels (a bounding
box) is assigned to each of the two pixels to which we want to know if they are

10

Segmentation

Figure 2.6: Picture res2b, mapping local maxima of res2

too close; then the Intersection over Union (IoU) is computed between these two
squares (Figure 2.7).

Figure 2.7: Illustration of the intersection between two bounding boxes. Beware,
axis Y is oriented downward

A position vector P is associated with each bounding box according to the
following format: P = [y, x, h, l], where y and x are the coordinates of the upper
left point of the bounding box, h is its height and l its length. H and l can have a
value other than 20 to prevent the bounding box from going out of the image.

The IoU of two bounding boxes A and B is computed as follows:

11

Segmentation

dy = min(ya + ha, yb + hb) − max(ya, yb) (3)

dx = min(xa + la, xb + lb) − max(xa, xb) (4)

I = dx ∗ dy(5) (5)

U = ha ∗ la + hb ∗ lb − I (6)

IoU = I

U
(7)

Obviously, the calculations (5) to (7) are only performed if an intersection exists;
that is, if dx and dy are strictly positive.

If the IoU is superior to a determined threshold, the pixels are considered too
close, and the new coordinates are not saved.

Figure 2.8: Picture obtained after bees’ position identification on blue background
through colour comparison

In figure 2.8 we can see the result obtained. Most bees have been recognized; the
presence of the edges of the box in the image generates several false identifications.
However, these artifacts are not a problem when analysing bees crossing the box.

2.2 Segmentation with white background
Since the videos obtained during the internship had a white background (Figure 2.9),
the segmentation of the image had to be reworked.

12

Segmentation

Figure 2.9: Picture distorted

Colour segmentation was performed following the same procedure. We note
here that the use of a variable threshold makes it possible to bring out forms
(Figure 2.11) that are almost invisible otherwise (Figure 2.10).

Figure 2.10: Picture res showing elements distinct from the background

Here the colour segmentation shows its limits: where reflections were present,
the algorithm fails to distinguish the bees (rather gray on the image, therefore
close to white) from the background (Figure 2.12, see top right).

Brightness seems to be a more appropriate criterion to segment the image in
this case. Brightness is calculated as the average of the BRG values of a pixel.

A first test is made by whitening all the pixels whose luminosity is above a
certain threshold (Figure 2.13). This threshold is relative to the average brightness
of the image so that it is relevant all day.

13

Segmentation

Figure 2.11: Picture res2

Figure 2.12: Picture obtained after bees’ position identification on white back-
ground through colour comparison

However, choosing a single threshold for the whole image does not make it
possible to obtain a correct segmentation: in the luminous zones, close to the
exterior, some bees are associated with the background; while in dark areas the
background is associated with bees.

In order to limit this problem, different segmentations on portions of images have
been performed. Cutting the image into three horizontal bands for segmentation
provides the best result. (Figure 2.14, see appendix B)

The procedure is then the same except for one detail: instead of looking for local
maxima in the “res2” image (Figure 2.15), we look for local minima (Figure 2.16).

The segmentation is better, despite some bees still “invisible” due to a reflection
on the plexiglass (Figure 2.17). Another flaw is the presence of duplicates: two

14

Segmentation

Figure 2.13: Picture obtained through thresholding the original picture with a
single luminosity threshold

Figure 2.14: Result of a thresholding using three different thresholds

squares are sometimes assigned to the same bee. This problem is solved by changing
two parameters: the size of the stencil applied to res2 to find the local minima and
the size of the bounding boxes associated with the bees.

A series of analyzes was carried out with stencils ranging in size from 11x11
to 21x21, and bounding boxes from 20 to 40 pixels per side. The number of bees
recognized indicates the most promising results; for example, there are 69 bees
in this image. The best parameters are then chosen by checking the number of
duplicates on each picture.

15

Segmentation

Figure 2.15: Picture res2

Figure 2.16: Picture res2b, mapping local minima of res2

16

Segmentation

Figure 2.17: Result of bees’ position identification on white background through
luminosity thresholding

Figure 2.18: Result after a better choice of parameters

17

Chapter 3

Bee tracking

Once the position of each bee has been defined on a picture, it is necessary to
follow the animal from one picture to another.

A “tracklet” list is created to contain the coordinates of the bees on several
pictures. By analogy with a matrix, each row of the list contains the coordinates
of the bounding boxes of a single bee, and each column n contains the coordinates
of each bee on the nth image following the appearance of this bee in the field of
view of the camera. The lines do not all have the same length, hence the use of a
list (see appendix C).

The "tracklet" list is initialized with the coordinates of the bounding boxes of
the bees of the first picture obtained. For subsequent pictures, the coordinates of
each bee on the new picture are compared to the coordinates saved in the list when
analyzing the previous image. If a bee is close enough to a recorded coordinate,
the new coordinates are recorded on the same line after the old close coordinates
(it is a bee continuing on its way). If, on the contrary, no coordinates correspond, a
new line is created: it is a bee that has just entered the field of view of the camera.

Finally, if a bee leaves the field of the camera, its last coordinates recorded in
the list will not correspond to any new position: in this case the line is deleted.

It may also be necessary to know if a bee should be analyzed (to classify it
for example). A binary variable carrying this information has been added to the
vector containing the first coordinates of the bees. It is worth 1 if the bee must
be analyzed (typically if it comes from outside the hive) and 0 otherwise (the bee
comes from the hive or has already been analyzed).

Example of figure 3.1: the tracklet list contains the positions of 12 visible bees
in two pictures. The coordinate vectors are composed of the coordinates of the
upper left point of the bounding box, and the length of its sides.

18

Bee tracking

Figure 3.1: example of a list containing bees’ coordinates

19

Chapter 4

Dataset creation

The objective of this thesis was to make an algorithm allowing the classification of
bees into two categories: those carrying pollen and those that do not.

Training an algorithm requires having a set of labeled data; a preliminary human
work is therefore necessary. In order to facilitate this work and to obtain a set of
data similar to those that the algorithm will have to process, a program has been
written by applying the image processing and analysis seen previously to a video
file.

A first simple approach was to record a bee image as soon as an animal was
recognized. The bee image has a size similar to its bounding box, 20x20 pixels for
the first video obtained, on a blue background.

The operator then had to indicate whether the bee was transporting pollen
(positive case), or not (negative case). The program interface is shown in Figure 4.1.
The program saved the image in a folder and under a name appropriate to the
class of the bee.

It was also possible that the image was not clear enough to determine if the
bee was carrying pollen, or that the recorded image did not contain a bee (the
edges of the box being white, the colour segmentation separated them from the
blue background). In this case, the image was deleted.

This approach had some flaws. First of all, since each bee is present several times
in the dataset, the dataset is probably not representative of the observed population.
Moreover, the deformation of the image not being perfectly compensated (in
particuliar at the edges), keeping only the images of the bees close to the middle of
the image allows to have a "cleaner" data set. The most important thing, however,
is to have data close to what the algorithm will have to classify. Finally, the
recorded images contain bees leaving the hive, which have no interest in being
classified by the algorithm. Including them in the data set is therefore a waste of
time for the operator.

A second program is created to avoid the flaws of the first. This time bee

20

Dataset creation

tracking is used so that each bee coming from outside is only “photographed” once,
when it passes from the upper half to the lower half of the image. Images of bees
leaving the hive are never recorded.

Two datasets are created by this program: one containing images of all the bees
entering the hive, and the other containing as many images of bees carrying pollen
as images of bees without pollen. Having a set in which both classes of bees are
equally represented allows for better training of several classification algorithms.

Figure 4.1: interface of the dataset creation program

21

Chapter 5

Classification

Classification consists of assigning a bee image to a class. In our case, two classes
exist: the bees transporting pollen (positive cases) and those which do not transport
it (negative cases).

Classification is done using an algorithm trained on a set of data; the first We’ll
Bee corporate videos were produced late, so we were unable to use our own datasets.
A set of images produced by Ivan Rodriguez and associates, from the University of
Puerto Rico [4], was used. This set contains 714 images, divided into 345 negative
and 369 positive cases. This dataset was chosen because the images were similar
to what was expected from images produced by We’ll Bee: bees of the species Apis
Mellifera had been photographed against a blue background (Figure 5.1).

However, there are two notable differences with the expected images. The
resolution of the images of the set [4] is 180x300 pixels, much higher than the
expected 20x20 pixels (Figure 5.2). Moreover, in this set all the bees have a
close orientation (almost vertical); however, the orientation of the bees during the
analysis of the videos are lot less regular (hence the use of square images).

It is customary not to use the entire data set to train an algorithm: this method
presents the risk of not being able to see if the algorithm overfits the data on which
it is training . It then makes an analysis that is very suitable for the training data
but generalizes very poorly.

We prefer to separate the dataset into two portions (not necessarily equal): the
training set (whose name clearly explains its use) and the verification set which is
not used during training but after: it is used to check that the analysis performed
by the algorithm can be generalized to other data.

The dataset was separated into a training set of 535 images and a verification
set of 179 images. The split is done randomly using the train_test_split() function
from the scikit-learn library, but the sets are the same for all tested algorithms.

Several types of algorithms for performing classification have been tested to
determine the most efficient one.

22

Classification

Figure 5.1: a positive (left) and a negative (right) cases from the dataset [4]

Figure 5.2: a positive (left) and a negative (right) cases obtained with the
observation system

23

Classification

A first approach was to target the areas in the images of bees where pollen
would possibly be visible. We hoped that this approach would eliminate noise and
allow us to focus only on the important points of the images.

A “random forest” type algorithm was trained. It is an algorithm composed of
several decision trees, each tree being formed of decision nodes. Each tree predicts
a class for an analyzed image and the result of the “random forest” is the prediction
given by the majority of the trees.

This algorithm succeeds in correctly classifying the images of the verification
set in 84% of cases. Although this result is not extraordinary, it guarantees that
the algorithm does not overfit.

The “random forest” type of algorithm was chosen more to determine the areas
of interest in the image than to be applied directly to the classification problem.
While it is difficult to understand the precise operation of the “random forest” in its
entirety, one can obtain what information makes it possible to distinguish the two
classes of bees most effectively. Each node is associated with a gini impurity index:
the purer the groups at the exit of the node (the positive cases are less mixed with
the negative cases), the lower this index is. A data importance is calculated from
these indices to favor the data allowing an accurate classification.

A mapping of the importance of the pixels and their color channels was carried
out: the clearer the pixels appeared on the mapping, the more they were useful to
make a clear distinction between the two groups of bees (Figure 5.3).

The largest groups of pixels are at the bottom of the images, on the sides. This
is the general location of the hind legs of bees, where pollen is accumulated if there
is any. The right side seems more important than the left side, probably because
of the lighting of the bees whose left side is more illuminated for this dataset. A
third area, located in the upper third of the image, is also of some importance for
unknown reasons.

We also observe a large disparity in the importance according to the color
channels: the blue values are generally more important than that of red, while the
importance of the green values is very small and seems to be randomly distributed
in the image.

A study [1] indicating that brightness and color variance could be used to classify
bees, these two quantities were measured for each image of the training set.

The color of the pixels is defined by a vector c = [B, R, G], where B, R and G
successively indicate the intensity of the blue, red and green channel. The average
color of an image i is µi = [µb, µr, µg]

The variance V of the colors of an image i is defined as being the sum of the
variances v of its pixels:

v(i, y, x) = E((c − µi)2) (8)

24

Classification

Figure 5.3: pixel importance mapping according to the random forest algorithm
for each colour, and the sum of the three

V (i) =
Ø

v(i, y, x) (9)

There is a very slight difference between the two groups of bees; positive cases
appear to have less color variance. However, the groups remain indistinguishable
according to the sole criteria of luminosity and color variance.

5.1 SVM
Support Vector Machines (SVM) are a family of algorithms with a reputation for
being both fast and suitable for binary classification (where only two groups exist).

An SVM seeks the hyperplane discerning the two groups with the largest possible
margins. However, if the two groups are intermingled (as in figure 5.4) it is impossi-
ble to find a satisfactory hyperplane. We can then authorize certain transgressions
of the margins: we speak of “soft margin”. An adimensional hyperparameter C
establishes the acceptable degree of transgression: the larger C is, the more “rigid”
the margins are. A hyperplane better separating the training data is usually found,
but there is no guarantee that the boundary thus found does not generalize well.

25

Classification

Figure 5.4: distribution of positive cases (yellow) and negative ones (blue)

Conversely, the weaker C is, the less the particular cases have importance; the risk
here is to ignore an entire sub-group.

SVMs were trained by taking into account three data: brightness, color variance,
and the average intensity of the red color in the lower half of the image. In
order to find the best model different SVMs are trained with a C hyperparameter
ranging from 10−12 to 1012; then the accuracy of each model is calculated with the
verification set.

The results are very disappointing: the best precision obtained is 63.7% for
C=0.01.

This imprecision shows the shortcomings of the approach aimed at targeting
precise areas and characteristics of the images: too much information had been
eliminated to allow an effective classification.

This approach has therefore been abandoned, and the entire images are now
provided to the algorithms. Other SVM models are then trained: an accuracy of
82.7% is achieved this time.

In order to further improve accuracy, various techniques were used to remove
background noise from images.

A first technique consists in blackening the pixels where the blue channel

26

Classification

(background color) is predominant (Figure 5.5). Accuracy rises to 83.8%.

Figure 5.5: Example of a picture preprocessed by blackening pixels for which
blue is the most important colour

A second technique is to use the proximity of a pixel’s color to the background
(as in color segmentation) to choose which pixels to darken. Surprisingly this
slightly decreases the accuracy, which reaches 81.5%.

A last technique is tried, consisting in not transmitting the blue channel to
the SVMs. Accuracy barely decreases, down to 82.1%. This result relativizes the
importance of the blue channel, which nevertheless seemed to be the most useful
color for an effective classification according to the analysis of the random forest.

These data processing only slightly affect the accuracy of the model, but demon-
strate that an improvement in the classification remains possible. If the first
technique seems better, it will still be necessary to test these techniques again on
the data that we will produce to check their effect.

5.2 K-Nearest-Neighbourgh
Another model that looks promising is the K-Nearest-Neighbourgh (KNN). This
algorithm keeps in memory the training data and classifies the images according to
the class of their N nearest neighbors.

27

Classification

N is a parameter chosen by the programmer. In order to find the best parameter,
several models are trained, with N ranging from 1 to 19. The optimal N seems
to be 11, providing an accuracy of 83.8% (Figure 5.6). The precision drops for N
greater than 17, indicating that a search beyond this value would be superfluous.

Figure 5.6: Precision reached by KNN algorithm as a function of N

5.3 Artificial Neural Network
Artificial Neural Networks (ANN) are models composed of several units called
neurons organized in layers.

A neuron generally receives values that it combines before processing them
through an activation function: the result of this function is the value that the
neuron will transmit to the neurons of the next layer. Several activation functions
exist, such as sigmoids, ReLU. . .

The first layer receives the raw data given to the model, while the last must
provide values that can be easily interpreted. In the case of a binary classification,
the last layer is composed of a single neuron. If the value returned by this neuron
exceeds a threshold, the analysed picture is considered to be a positive case;
otherwise, the picture is a negative case.

Many architectures are made possible thanks to the modularity allowed by
neurons: it is possible to organize a model in many layers of neurons (deep

28

Classification

learning), to pass certain information directly to the last layer (deep and wide,
Figure 5.7). Finally, there are layers of neurons created for specific purposes.

Figure 5.7: Example of a Deep & Wide architecture (source : [6])

Training of the model is necessary so that it can give correct results. The
neurons combine the data received by assigning them different coefficients, and the
training of the model aims to optimize them.

The training takes place in several phases, called epoch. At each epoch, the
entire training set is analysed by the model, as if it were to classify the data. A
backpropagation algorithm is then used to determine which coefficients caused the
model to make good or bad predictions. These coefficients are then modified by an
optimization algorithm in order to correct the errors of the previous epoch.

5.3.1 MLP
The first model tested on our classification problem is a Multi-Layer Perceptron
(MLP). This is a relatively simple model: successive layers of neurons relay infor-
mation in order to bring out relevant features of the picture so that the last layer
can determine the class of the picture.

In an MLP, each neuron is linked to all the neurons of the previous layer: the
layers are called “dense” (Figure 5.8).

A simple architecture was chosen: between the first layer and the last there are
N layers composed of n neurons each.

Before building the model, it is interesting to simplify the data by reducing their
dimensions. Indeed, for pictures of 180*300 pixels with 3 colour channels, we have
to process data with 162,000 dimensions. The technique of Principal Component
Analysis (PCA) is used to reduce the dimensions of our data by keeping the main
information allowing to differentiate the data between them. Reducing the number

29

Classification

Figure 5.8: Diagram of an MLP architecture (source : [6])

of dimensions makes it possible to train an algorithm more quickly; moreover, a
simpler architecture can be used, thus reducing the image analysis time (despite
the time required to transform each image).

PCA assumes that the data is not equally distributed in the space of possible
pictures with a resolution of 180*300 pixels, but that it is close to a hyperplane:
by projecting the data onto a good hyperplane, it is possible to reduce the number
of dimensions by losing little information (Figure 5.9).

The best hyperplane is chosen based on the variance of the training set preserved
by the projection. It is possible to reduce the dimensions of our data several times
until reaching a chosen fraction of the original variance.

A PCA was applied to the training set, with the limit of keeping 95% of the
original variance (Figure 5.10). The transformation thus obtained makes it possible
to reduce the number of dimensions of our data from 162,000 to 229. This drastic
reduction is possible thanks to the great similarity between our images: a lot
of information is redundant or useless (the blue background on the edges of the
image. . .).

For information, here is an image extracted from the set [4] and its reconstruction
after PCA (Figure 5.11). We notice that the bag of pollen remains visible, despite
the alteration of the image

30

Classification

Figure 5.9: Illustration of a PCA: the data is not randomly distributed in the
plane, and can be projected onto the first dimension with little loss of information
(source : https://programmathically.com/)

A check is made to verify that the PCA does not affect the accuracy of our
algorithms too much. An SVM is trained with the training set transformed by the
PCA. Its accuracy is the same (82.7%) as the SVM trained on the untransformed
set; the PCA does not imply a notable loss of precision in our case.

In an MLP several hyperparameters can be tweaked: the number of layers, the
number of neurons they contain, but also the learning rate (lr). The latter affects
the way the model is optimized: the larger it is, the more the parameters of the
model will be modified at each epoch. A model trained with a high learning rate
will therefore tend to converge quicker but will also be quick to miss the optimal
solution by oscillating between two neighbouring solutions.

Keeping a fixed learning rate is not the most efficient way to optimize a model.
It is preferable to use a large learning rate for the first epochs to quickly approach
the optimal solution, then to gradually reduce the learning rate. However, finding
a good fixed learning rate is a necessary step to find the maximum learning rate
with a regressive learning rate [6].

Also, since the data used is not what will be produced by the hive observation
system, the goal here is to get an order of magnitude of hyperparameters to use on

31

Classification

Figure 5.10: Graph of the maximum variance conserved by the dataset as a
function of the number of dimensions of the hyperplane on which it is projected

a similar problem more than to create an optimal model.
A few trials with random hyperparameters are used to find a range in which to

search for possible solutions. Models are trained with a number of layers ranging
from 2 to 6, a number of neurons per layer ranging from 40 to 100 and a learning
rate ranging from 10−4 to 10−2.

With models giving only the assumed class of a picture (SVM, KNN), precision
was used to determine the best model. Now that we use models giving a probability
that a picture belongs to a class, more relevant metrics are available.

This time the metric used to measure the effectiveness of the models is not
their accuracy, but a score linked to their “binary crossentropy”. This quantity
takes into account not only the class assigned to an image, but also the probability
calculated by the algorithm that the image belongs to this class. The activation
function of our last layer being a sigmoid, if the value returned by this layer is 0 or
1 the algorithm is “certain” that the analyzed image is a negative or positive case;
if this value is between the two, a doubt exists. The use of the binary crossentropy
encourages to select a model which is more sure of its classifications

32

Classification

(a) (b)

Figure 5.11: A bee picture (left) and its reconstruction after a PCA (right)

33

Classification

5.3.2 CNN
One type of model that performs well in image analysis is the Convolutional Neural
Network (CNN). This model uses convolutional layers to extract information from
the image before transmitting it to dense layers, similar to those present in an
MLP.

Figure 5.12: Diagram of principle of convolutional layers (source : [6])

Unlike dense layers, in convolutional layers each neuron is only connected to
only certain neurons of the previous layer. Predetermined side squares (kernel) are
analyzed by each neuron.

Another type of layers present in CNN are the pooling layers. These layers
apply a stencil to the received data in order to reduce its size. Generally, the
maximum value present in the stencil area is kept, but it is also possible to extract
the minimum or average value. The pooling layers, in addition to reducing the
dimension of the data, make it possible to make the algorithm more robust in the
face of weak translations or rotations (Figure 5.13).

A relatively simple architecture was chosen to test a CNN (Figure 5.14). This
architecture was created by Aurélien Géron in order to process the classification of
the MNIST dataset (a set of 10*10 pixels pictures, showing handwritten digits). The
images produced by Ivan Rodriguez and associates have a much higher resolution
but training a model with a more complex architecture requires more memory than

34

Classification

Figure 5.13: Effects of a pooling layer (source : [6])

we had available.
During the first training sessions of this model, it happened that the parameters

did not converge. Moreover, when the training converged on a solution, the model
sometimes classified all the images into the same category.

Hyperparameters that do not affect the architecture of the model have been
modified this time. The activation functions of the dense layers have been changed
to leaky ReLU in order to avoid having “dead neurons”. These are neurons whose
output is always the same regardless of the input data. With ReLU-like functions,
it was possible that the model had this problem, as neurons could saturate at 0
(Figure 5.15).

Although there are other activation functions avoiding this saturation problem
(ELU. . .), the leaky ReLU function has the advantage of being able to be computed
simply. This simplicity makes it possible to create models that quickly classify data
with limited computing power.

Another problem that could explain the behaviour of the models would be
the vanishing gradient. This phenomenon can take place during training: the
parameters of the model are less and less modified as the optimization algorithm
progresses towards the lower layers of the model. To avoid this phenomenon,
a “batch normalization” procedure has been implemented: after each layer, an

35

Classification

Figure 5.14: Tested CNN architecture

Figure 5.15: The two activation functions tested in dense layers (source : [6])

operation is added to center on zero (by creating an offset) and normalize the
outputs of each neuron for the training set.

Finally, different optimization algorithms were tested: the Stochastic Gradient
Descent used by default in Scikit-learn, the Nesterov Accelerated Gradient which
adds an inertia to the gradients modifying the parameters of the model and the
RMSprop which in addition to the inertia implements an adaptive learning rate.
Using RMSprop provides the best results.

Once these choices are fixed, different learning rates are tested, ranging from
10−1 to 10−9. Binary crossentropy is always the criterion for selecting the best
model. This one is found with a learning rate of 10−5, by training it on 5 epoch.

36

Classification

Beyond that, the model begins to overfit: it is more accurate on the training set
but less on the verification set.

37

Conclusion

The initial objective of this internship was to create an algorithm capable of
distinguishing bees bringing back pollen. Although this goal could not be fulfilled,
all the preliminary steps were reworked or done.

The segmentation on bees on a different background and adapted to the different
luminosities encountered during the day was carried out. Bee monitoring now
includes the number of analyses a bee must pass. Finally, a dataset was created
using the pictures produced by We’ll Bee.

It now remains to create the classification algorithm. The pictures created
being of much lower quality than those with which algorithms have been tested,
the precision will undoubtedly be greatly reduced. It remains to be seen which
algorithms allow real-time analysis, and whether it is possible to analyse each bee
several times (if possible at each picture as in [5]).

Given the low proportion of positive cases observed, it will also be essential to
adjust the classification thresholds of these algorithms in order to limit the number
of false positives.

38

Appendix A

arguments effect of
initundistortrectifymap()

The initUndistortRectifyMap() uses five arguments in order to estimate and correct
the distortion on a picture. A, B, and E deal with radial distortion (Figure A.1
& A.2). C and D deal with tangential distortion, each along a different axis
(Figure A.3 & A.4).

Figure A.1: overcompensation of the
radial distortion, and creation of an han-
dlebar distortion

Figure A.2: amplified radial distortion

39

arguments effect of initundistortrectifymap()

Figure A.3: C : tangential distortion
created along the vertical axis

Figure A.4: D : tangential distortion
created along the horizontal axis

Figure A.5: picture obtained with cor-
rect parameters

Figure A.6: image after distortion
compensation and cropping

40

Appendix B

Choice of the number of
thresholds for the
segmentation by luminosity

When a single luminosity threshold is used to segment the whole picture, the result
is unusable (see chapter 2.2).

Figure B.1: result of a segmentation by half of picture

By using a different threshold for each half of the image, the segmentation is
clearer despite some artifacts at the edge of the halves (Figure B.1).

Image processing by thirds gives good results. (Figure B.2)

If the image is processed in smaller fractions (in ninths in Figure B.3 to adapt

41

Choice of the number of thresholds for the segmentation by luminosity

Figure B.2: result of a segmentation by thirds of picture

Figure B.3: result of a segmentation by ninth of picture

to a possible difference in luminosity along the horizontal axis), the segmentation
is bad in the areas where few bees are present .

42

Appendix C

Example of a tracking list

Without a bee in the camera’s field of view, the tracklet list is empty. When a bee
is seen for the first time, a line is created with its position (A1). (Figure C.1)

Figure C.1: trajectory of bees in the video and associated list (1)

The first bee continues on its way, its second position (A2) is recorded after the
first. A second bee is detected, and a second line is dedicated to it, containing its
position (B1). (Figure C.2)

Figure C.2: trajectory of bees in the video and associated list (2)

The list is updated every frame, so the last item in a line is always the current
position of a bee. (Figure C.3)

43

Example of a tracking list

Figure C.3: trajectory of bees in the video and associated list (3)

44

Appendix D

Automatic undistortion
program

1 import matp lo t l i b
2 from __future__ import pr int_funct ion
3 from ipywidgets import i n t e r a c t , i n t e r a c t i v e , f i xed , interact_manual
4 import ipywidgets as widgets
5 import cv2
6 from skimage import data , i o
7 import matp lo t l i b . pyplot as p l t
8 import numpy as np
9 from math import sq r t

10

11 %matp lo t l i b qt
12

13 img=io . imread (’ f i r s t_ f rame . jpg ’)
14

15 p l t . imshow (img)
16

17 xc=img . shape [1] / 2 #cente r ’ s c oo rd ina t e s (supposedly cente r o f
d i s t o r t i o n)

18 yc=img . shape [0] / 2
19

20 #s e l e c t n po in t s :
21 n=18
22

23 p l t . imshow (img)
24 #plo t some l i n e s as guide :
25 f o r i in range (1 , n//2−1) :
26 x=i ∗ img . shape [1] / (n//2−1)
27 yh=20

45

Automatic undistortion program

28 y l=img . shape [0] −20
29 p l t . p l o t ([x , x] , [yh , y l] , ’ r− ’)
30

31

32

33

34 P=p l t . g input (n) #[(x1 , y1) ,
35 # (x2 , y2) ,
36 # (x . . , y . .) ,
37 # (xn , yn)] p i x e l c oo rd ina t e s

Figure D.1: picture with guidelines for the selection of 18 points (14 intersection
plus the 4 corners)

1

2 # Compute parameters to und i s t o r t the p i c t u r e −−−−−−−−−−−−−−−−−
3

4 f o c a l =1000
5 x=np . z e r o s (n)

46

Automatic undistortion program

6 y=np . z e r o s (n)
7 r=np . z e r o s (n)
8

9 f o r i in range (0 , n) :
10 x [i]=(P[i] [0] − xc) / f o c a l
11 y [i]=(P[i] [1] − yc) / f o c a l
12 r [i]= sq r t (x [i] ∗ x [i]+y [i] ∗ y [i])
13

14

15 #f i x some und i s to r t ed coo rd ina t e s to make the problem s o l v a b l e
16 #hypothes i s : h o r i z o n t a l l i n e s are s t r a i g h t
17

18 yuh=min (y [: n //2])
19 yul=max(y [n / / 2 :])
20 yu=np . z e ro s (n)
21

22 f o r i in range (0 , n//2) : #po in t s on top l i n e f i r s t ,
23 yu [i]=yuh
24 f o r i in range (n//2 ,n) : #then po in t s on bottom l i n e
25 yu [i]= yul
26

27 A=[]
28 B=[]
29 f o c a l 2=3
30

31 f o r i in range (0 , n) :
32 A. append ([y [i] ∗ r [i]∗∗2 , y [i] ∗ r [i]∗∗4 , r [i]∗∗2+2∗y [i]∗∗2 , 2∗x [i] ∗ y

[i] , y [i] ∗ r [i] ∗ ∗ 6])
33 B. append ((yu [i]−y [i]) / f o c a l 2)
34

35 #Find the l e a s t square s o l u t i o n to a∗x = b −−−−−−−−−−−−−−−−−−−
36

37 X = np . l i n a l g . l s t s q (A, B, rcond=None)
38 X[0] # [k1 , k2 , p1 , p2 , k3]
39

40

41 #Use the computed parameters to und i s t o r t the p i c t u r e −−−−−−−−−−−−−−−
42

43 de f func (params , cx , cy , x , y , w, h , f o c a l) :
44 K = np . array ([[1 0 0 0 , 0 , i n t (cx)] , [0 , 1000 , i n t (cy)] , [0 , 0 , 1]])
45 K2 = np . array ([[f o c a l , 0 , i n t (cx)] , [0 , f o ca l , i n t (cy)] , [0 , 0 , 1]])
46

47 map1 , map2 = cv2 . in i tUndi s tor tRect i fyMap (K, params , None , K2, (
img . shape [1] , img . shape [0]) , cv2 .CV_32FC1)

48 img2 = cv2 . remap (img , map1 , map2 , cv2 .INTER_LINEAR)
49 p l t . f i g u r e (f i g s i z e =(14 ,14))
50 p l t . imshow (img2)
51 re turn img2
52

47

Automatic undistortion program

53

54 img2 = func(−X[0] , xc , yc , 0 , 0 , 1024 , 768 ,700)

Figure D.2: picture undistorted with the program

48

Appendix E

Segmentation program

1 from __future__ import pr int_funct ion
2 from ipywidgets import i n t e r a c t , i n t e r a c t i v e , f i xed , interact_manual
3 import ipywidgets as widgets
4

5 import cv2
6 from skimage import data , i o
7 import matp lo t l i b . pyplot as p l t
8 import numpy as np
9 import glob , os

10

11 # common f u n c t i o n s −−−
12

13 de f func (a , b , c , d , e , cx , cy , x , y , w, h , f o c a l) :
14 K = np . array ([[1 0 0 0 , 0 , i n t (cx)] , [0 , 1000 , i n t (cy)] , [0 , 0 , 1]])
15 K2 = np . array ([[f o c a l , 0 , i n t (cx)] , [0 , f o ca l , i n t (cy)] , [0 , 0 , 1]])
16 a/=100
17 b/=100
18 c/=100
19 d/=100
20 e/=100
21 map1 , map2 = cv2 . in i tUndi s tor tRect i fyMap (K, np . array ([a , b , c , d , e])

, None , K2, (img . shape [1] , img . shape [0]) , cv2 .CV_32FC1)
22 img2 = cv2 . remap (img , map1 , map2 , cv2 .INTER_LINEAR)
23 re turn img2 [y : y+h , x : x+w, [0 , 1 , 2]]
24

25 de f normal ize (x) :
26 x = x . astype (np . f l o a t 3 2)
27 l = x [0] ∗ x [0] + x [1] ∗ x [1] + x [2] ∗ x [2]
28 i f l <= 0 : re turn x
29 re turn x/np . sq r t (l)
30

49

Segmentation program

31 de f bee_map(e) : r e turn max(0 , ((255 − e [2]) ∗2 − e [1] + 2∗ e [0]) //4)
32

33 de f iou (r , s) :
34 dy = (min (r [0]+ r [2] , s [0]+ s [2]) − max(r [0] , s [0]))
35 i f dy <= 0 : re turn 0
36 dx = (min (r [1]+ r [3] , s [1]+ s [3]) − max(r [1] , s [1]))
37 i f dx <= 0 : re turn 0
38 re turn dx∗dy /(r [2] ∗ r [3])
39

40 de f get_background_color (img) :
41 re turn np . mean(img [: : 2 , : : 2] , a x i s = (0 , 1))
42

43 de f getFirstFrame (v i d e o f i l e) :
44 vidcap = cv2 . VideoCapture (v i d e o f i l e)
45 f ou r c c=cv2 . VideoWriter_fourcc (’H ’ , ’ 2 ’ , ’ 6 ’ , ’ 4 ’)
46 succes s , image = vidcap . read ()
47 i f s u c c e s s :
48 cv2 . imwrite (" first_frame_WBG . jpg " , image) # save frame as

JPEG f i l e
49 e l s e :
50 pr in t (" could not open f i l e ")
51

52 # −−−
53

54 path=’C: / Users / F r o i s s a r t /Code_Thesis/first_frame_WBG . jpg ’
55 img = io . imread (path)
56

57 img2 = func (−20 , −90, −1, −1, 100 , 625 , 500 , 310 , 365 , 600 , 220 ,400)
#Undi s to r t ing and cropping

58 bgd=get_background_color (img2)
59 pr in t (" background : " , bgd)
60 r e s = np . z e r o s ((img2 . shape [0] , img2 . shape [1]))
61

62 f o r y in range (r e s . shape [0]) :
63 f o r x in range (r e s . shape [1]) :
64 r e s [y , x] = 1 − np . dot (normal ize (img2 [y , x]) , normal ize (bgd)) #

blue around [0 . 1 , 0 . 5 , 1] . [1 39 , 141 , 128] near center ,
[1 6 0 . 0 , 1 6 5 . 0 , 1 0 7 . 0] a b i t b e t t e r

65

66 i n t e g r a l = np . array (res >0.005 , dtype = np . f l o a t 3 2)
67

68 f o r y in range (r e s . shape [0]) :
69 f o r x in range (1 , r e s . shape [1]) :
70 i n t e g r a l [y , x] += i n t e g r a l [y , x−1]
71 f o r y in range (1 , r e s . shape [0]) :
72 f o r x in range (r e s . shape [1]) :
73 i n t e g r a l [y , x] += i n t e g r a l [y−1,x]
74

75

50

Segmentation program

76 dim = 5
77 r e s2 = np . z e ro s ((img2 . shape [0] , img2 . shape [1]))
78 f o r y in range (r e s . shape [0]) :
79 f o r x in range (0 , r e s . shape [1]) :
80 A = np . array ([max(y−dim , 0) , max(x−dim , 0)]) #[y−5, x−5]
81 B = np . array ([max(y−dim , 0) , min (x+dim , r e s . shape [1] −1)]) #[y

−5, x+5]
82 C = np . array ([min (y+dim , r e s . shape [0] −1) , max(x−dim , 0)]) #y+5,

x−5
83 D = np . array ([min (y+dim , r e s . shape [0] −1) , min (x+dim , r e s . shape

[1] −1)]) #y+5 x+5
84 r e s2 [y , x] = i n t e g r a l [D[0] ,D [1]] − i n t e g r a l [B [0] ,B [1]] −

i n t e g r a l [C[0] ,C [1]] + i n t e g r a l [A[0] ,A [1]]
85

86

87 res2b = np . array (r e s2)
88

89 f o r y in range (r e s . shape [0]) :
90 f o r x in range (0 , r e s . shape [1]) :
91 w = 2
92 va l = np . max(r e s2 [max(y−w, 0) : min (y+w+1, r e s . shape [0]) , max(x−w

, 0) : min (x+w+1, r e s . shape [1])])
93 i f r e s2 [y , x] < va l :
94 res2b [y , x] = 0 #keep only l o c a l maximums
95

96

97 r e s3 = np . array (img2)
98 sample = np . array (res2b)
99

100 r e c t = []
101

102 f o r i in range (10000) :
103 k = np . argmax (sample) #coo rd ina t e s o f the maximum
104 y , x = k// re s2 . shape [1] , k%re s2 . shape [1]
105

106 i f sample [y , x] == 0 : break
107 aux = [y−10,x −10 ,20 ,20]
108 f o r e in r e c t :
109 i f iou (aux , e) > 0 . 2 : break
110 e l s e :
111 i f x > 5 and y > 5 :
112 r e c t += [aux] #x=x−10 y=y−10
113 r e s3 [max(y−10 ,0) : y+10,max(x−10 ,0) : x+10] = [2 5 5 , 0 , 0]

#rec tang l e , cente red on x , y
114 r e s3 [max(y−8 ,0) : y+8,max(x−8 ,0) : x+8] = img2 [max(y−8 ,0) : y

+8,max(x−8 ,0) : x+8]
115 sample [max(y−10 ,0) : y+10,max(x−10 ,0) : x+10] = −1
116

51

Segmentation program

117 #Segmentation
−−−

118 #try ing three segmentat ions on t h i r d s o f p i c t u r e
119

120 Y1third=i n t (img2 . shape [0] / 3)
121 Y2third=i n t (2∗ img2 . shape [0] / 3)
122 meanUp=np . mean(img2 [: Y1third , : , :])
123 meanMid=np . mean(img2 [Y1third : Y2third , : , :])
124 meanBottom=np . mean(img2 [Y2third : , : , :])
125

126 t e s t 2 = np . array (img2)
127 a=0.6 #mean por t i on thr e sho ld
128

129 f o r y in range (Y1third) :
130 f o r x in range (0 , img2 . shape [1]) :
131 i f np . mean(t e s t 2 [y , x])>meanUp∗a :
132 t e s t 2 [y , x]= [255 ,255 ,255]
133

134 f o r y in range (Y1third , Y2third) :
135 f o r x in range (0 , img2 . shape [1]) :
136 i f np . mean(t e s t 2 [y , x])>meanMid∗a :
137 t e s t 2 [y , x]= [255 ,255 ,255]
138

139 f o r y in range (Y2third , img2 . shape [0]) :
140 f o r x in range (0 , img2 . shape [1]) :
141 i f np . mean(t e s t 2 [y , x])>meanBottom∗a :
142 t e s t 2 [y , x]= [255 ,255 ,255]
143

144 p l t . f i g u r e (f i g s i z e =(14 ,14))
145 p l t . imshow (t e s t 2)
146 p l t . t i t l e (’ Br ightnes s segmentat ion (on t h i r d s o f p i c t u r e) ’)
147

148 # −−−
149

150 test2G = np . z e ro s ((img2 . shape [0] , img2 . shape [1]))
151

152 f o r y in range (test2G . shape [0]) :
153 f o r x in range (test2G . shape [1]) :
154 test2G [y , x] = i n t (np . mean(t e s t 2 [y , x , :]))
155

156

157 i n t e g r a l = np . array (test2G , dtype = np . f l o a t 3 2)
158

159 f o r y in range (r e s . shape [0]) :
160 f o r x in range (1 , r e s . shape [1]) :
161 i n t e g r a l [y , x] += i n t e g r a l [y , x−1]
162 f o r y in range (1 , r e s . shape [0]) :
163 f o r x in range (r e s . shape [1]) :
164 i n t e g r a l [y , x] += i n t e g r a l [y−1,x]

52

Segmentation program

165

166

167 dim = 5
168 r e s2 = np . z e ro s ((img2 . shape [0] , img2 . shape [1]))
169 f o r y in range (r e s . shape [0]) :
170 f o r x in range (0 , r e s . shape [1]) :
171 A = np . array ([max(y−dim , 0) , max(x−dim , 0)]) #[y−5, x−5]
172 B = np . array ([max(y−dim , 0) , min (x+dim , r e s . shape [1] −1)]) #[y

−5, x+5]
173 C = np . array ([min (y+dim , r e s . shape [0] −1) , max(x−dim , 0)]) #y+5,

x−5
174 D = np . array ([min (y+dim , r e s . shape [0] −1) , min (x+dim , r e s . shape

[1] −1)]) #y+5 x+5
175 r e s2 [y , x] = i n t e g r a l [D[0] ,D [1]] − i n t e g r a l [B [0] ,B [1]] −

i n t e g r a l [C[0] ,C [1]] + i n t e g r a l [A[0] ,A [1]]
176

177 p l t . f i g u r e (f i g s i z e =(14 ,14))
178 p l t . imshow (i n t e g r a l)
179

180 p l t . f i g u r e (f i g s i z e =(14 ,14))
181 p l t . imshow (res2 , cmap=’ gray ’)
182 p l t . t i t l e (" r e s2 ")
183

184 r e s 2 s c a l e d =255∗ r e s2 /np . max(r e s2)
185

186 p l t . f i g u r e (f i g s i z e =(14 ,14))
187 p l t . imshow (r e s2 s ca l ed , cmap=’ gray ’)
188 p l t . t i t l e (" r e s 2 s c a l e d ")
189

190 res2b = np . array (r e s 2 s c a l e d)
191

192 f o r y in range (r e s . shape [0]) :
193 f o r x in range (0 , r e s . shape [1]) :
194 w = 2
195 va l = np . min (r e s 2 s c a l e d [max(y−w, 0) : min (y+w+1, r e s . shape [0]) ,

max(x−w, 0) : min (x+w+1, r e s . shape [1])]) #np . max(r e s2 [y−w: y+w, x−w: x+w
])

196 i f r e s 2 s c a l e d [y , x] > va l :
197 res2b [y , x] = 255 #keep only l o c a l maximums
198

199 r e s3 = np . array (img2)
200 sample = np . array (res2b)
201

202 r e c t = []
203

204 f o r i in range (10000) :
205 k = np . argmax (sample) #coo rd ina t e s o f the maximum
206 y , x = k// re s2 . shape [1] , k%re s2 . shape [1]
207

53

Segmentation program

208 i f sample [y , x] == 0 : break
209 aux = [y−10,x −10 ,20 ,20]
210 f o r e in r e c t :
211 i f iou (aux , e) > 0 . 2 : break
212 e l s e :
213 i f x > 5 and y > 5 :
214 r e c t += [aux] #x=x−10 y=y−10
215 r e s3 [max(y−10 ,0) : y+10,max(x−10 ,0) : x+10] = [2 5 5 , 0 , 0]

#rec tang l e , c ent r é sur x , y
216 r e s3 [max(y−8 ,0) : y+8,max(x−8 ,0) : x+8] = img2 [max(y−8 ,0) : y

+8,max(x−8 ,0) : x+8]
217 sample [max(y−10 ,0) : y+10,max(x−10 ,0) : x+10] = −1
218

219

220 # Size o f bounding boxes s e l e c t i o n
−−

221 #1 s t p i c t u r e has 73 bees
222 f o r HBS in range (10 ,20) :
223 #r e s t e s t 3 = np . array (img2)
224 #samplete s t = np . array (test2_2d)
225 r e s3 = np . array (img2)
226 sample = np . array (res2b)
227

228

229 r e c t = []
230 #HBS=15 #Hal f Bee S i z e : h a l f s i d e o f square
231

232 f o r i in range (10000) :
233 k = np . argmax (sample)
234 y , x = k// res2b . shape [1] , k%res2b . shape [1]
235

236 i f sample [y , x] == 0 : break
237 aux = [y−HBS, x−HBS,2∗HBS,2∗HBS]
238 f o r e in r e c t :
239 i f iou (aux , e) > 0 . 2 5 : break #0 .2
240 e l s e :
241 i f x > 5 and y > 5 :
242 r e c t += [aux] #x=x−10 y=y−10
243 r e s3 [max(y−HBS, 0) : y+HBS, max(x−HBS, 0) : x+HBS] =

[2 5 5 , 0 , 0] #rec tang l e , c ent r é sur x , y
244 r e s3 [max(y−HBS+2 ,0) : y+HBS−2,max(x−HBS+2 ,0) : x+HBS−2] =

img2 [max(y−HBS+2 ,0) : y+HBS−2,max(x−HBS+2 ,0) : x+HBS−2]
245 sample [max(y−HBS, 0) : y+HBS, max(x−HBS, 0) : x+HBS] = 0 #don ’ t

search at t h i s p lace again
246 pr in t (’HBS=’ ,HBS, ’ bee counted=’ , l en (r e c t))
247 p l t . f i g u r e (f i g s i z e =(14 ,14))
248 p l t . imshow (r e s3)
249 p l t . t i t l e (’HBS=’+s t r (HBS))
250

54

Segmentation program

251 #HBS=13 g i v e s a good number , but the re are some doublons . HBS=14
i d e n t i f i e s more c l e a r l y the bess : s e e on l e f t

252

253 # Parameters cho i c e : Bounding boxes + k e r n e l s
254 −−−
255 #1 s t p i c t u r e has 73 bees
256

257 f o r dim in range (3 ,10) : #5
258

259 r e s2 = np . z e ro s ((img2 . shape [0] , img2 . shape [1]))
260

261 f o r y in range (img2segG . shape [0]) :
262 f o r x in range (0 , img2segG . shape [1]) :
263 A = np . array ([max(y−dim , 0) , max(x−dim , 0)]) #[y−5, x−5]
264 B = np . array ([max(y−dim , 0) , min (x+dim , r e s . shape [1] −1)]) #

[y−5, x+5]
265 C = np . array ([min (y+dim , r e s . shape [0] −1) , max(x−dim , 0)]) #

y+5, x−5
266 D = np . array ([min (y+dim , r e s . shape [0] −1) , min (x+dim , r e s .

shape [1] −1)]) #y+5 x+5
267 r e s2 [y , x] = i n t e g r a l [D[0] ,D [1]] − i n t e g r a l [B [0] ,B [1]] −

i n t e g r a l [C[0] ,C [1]] + i n t e g r a l [A[0] ,A [1]]
268

269 r e s 2 s c a l e d =255∗ r e s2 /np . max(r e s2)
270 res2b = np . array (r e s 2 s c a l e d)
271

272 f o r w in range (1 , 5) : #2
273

274 f o r y in range (r e s . shape [0]) :
275 f o r x in range (0 , r e s . shape [1]) :
276 va l = np . min (r e s 2 s c a l e d [max(y−w, 0) : min (y+w+1, r e s .

shape [0]) , max(x−w, 0) : min (x+w+1, r e s . shape [1])]) #np . max(r e s2 [y−w: y
+w, x−w: x+w])

277 i f r e s 2 s c a l e d [y , x] > va l :
278 res2b [y , x] = 255 #keep only l o c a l maximums
279

280 f o r HBS in range (14 ,19) : #10
281 r e s3 = np . array (img2)
282 sample = np . array (res2b)
283 r e c t = []
284

285 f o r i in range (10000) :
286 k = np . argmin (sample)
287 y , x = k// res2b . shape [1] , k%res2b . shape [1]
288

289 i f sample [y , x] >= 254 : break
290 aux = [y−HBS, x−HBS,2∗HBS,2∗HBS]
291 f o r e in r e c t :
292 i f iou (aux , e) > 0 . 2 : break

55

Segmentation program

293 e l s e :
294 i f x > 5 and y > 5 and x<img2 . shape [1] −5 and y<

img2 . shape [0] −5 : #avoid borders
295 r e c t += [aux] #x=x−10 y=y−10
296 r e s3 [max(y−HBS, 0) : y+HBS, max(x−HBS, 0) : x+HBS] =

[2 5 5 , 0 , 0] #rec tang l e , c ent r é sur x , y
297 r e s3 [max(y−HBS+2 ,0) : y+HBS−2,max(x−HBS+2 ,0) : x+

HBS−2] = img2 [max(y−HBS+2 ,0) : y+HBS−2,max(x−HBS+2 ,0) : x+HBS−2]
298 sample [max(y−HBS, 0) : y+HBS, max(x−HBS, 0) : x+HBS] = 255 #

don ’ t search at t h i s p lace again
299 pr in t (’HBS=’ ,HBS, ’ dim=’ ,dim , ’ w=’ ,w, ’ bee counted=

’ , l en (r e c t))
300

301 p l t . f i g u r e (f i g s i z e =(14 ,14))
302 p l t . imshow (r e s3)
303 p l t . t i t l e (’HBS=’+s t r (HBS)+’ dim=’+s t r (dim)+’ w=’+s t r (

w)+’ bee counted=’+s t r (l en (r e c t)))
304

305 #

56

Segmentation program

57

Appendix F

Tracking program

1 # Read Video and Tracking
−−−

2

3 import cv2
4 from skimage import data , i o
5 import matp lo t l i b . pyplot as p l t
6 import numpy as np
7 import glob , os
8

9 de f de t e c t (img , mapx , mapy , crop , thresho ld , dim) :
10 img2 = cv2 . remap (img , mapx , mapy , cv2 .INTER_LINEAR)
11 img2 = img2 [crop [1] : crop [1]+ crop [3] , crop [0] : crop [0]+ crop [2]] #

crop =[xmin , ymin , width , he ight]
12 r e s = np . z e r o s ((img2 . shape [0] , img2 . shape [1]))
13

14

15 de f getFirstFrame (v i d e o f i l e) :
16 vidcap = cv2 . VideoCapture (v i d e o f i l e)
17 succes s , image = vidcap . read ()
18 i f s u c c e s s :
19 cv2 . imwrite (" first_frame_WBG . jpg " , image) # save frame as

JPEG f i l e
20

21 de f normal ize (x) :
22 x = x . astype (np . f l o a t 3 2)
23 l = x [0] ∗ x [0] + x [1] ∗ x [1] + x [2] ∗ x [2]
24 i f l <= 0 : re turn x
25 re turn x/np . sq r t (l)
26

27 de f bee_map(e) : r e turn max(0 , ((255 − e [2]) ∗2 − e [1] + 2∗ e [0]) //4)
28

58

Tracking program

29 de f iou (r , s) :
30 dy = (min (r [0]+ r [2] , s [0]+ s [2]) − max(r [0] , s [0]))
31 i f dy <= 0 : re turn 0
32 dx = (min (r [1]+ r [3] , s [1]+ s [3]) − max(r [1] , s [1]))
33 i f dx <= 0 : re turn 0
34 re turn dx∗dy /(r [2] ∗ r [3])
35

36

37 de f get_background_color (img) :
38 re turn np . mean(img [: : 2 , : : 2] , a x i s = (0 , 1))
39

40 de f compare (r1 , r2) :
41 re turn np . s q r t ((r1 [0] − r2 [0]) ∗(r1 [0] − r2 [0]) + (r1 [1] − r2 [1])

∗(r1 [1] − r2 [1]))
42

43

44 #dim , w, and HBS to be s e t be f o r e
45 de f d e t e c t b i s (img , mapx , mapy , crop , th r e sho ld) :
46 img2 = cv2 . remap (img , mapx , mapy , cv2 .INTER_LINEAR)
47 img2 = img2 [crop [1] : crop [1]+ crop [3] , crop [0] : crop [0]+ crop [2]] #

crop =[xmin , ymin , width , he ight]
48 r e s = np . z e r o s ((img2 . shape [0] , img2 . shape [1]))
49

50 #image segmentat ion by t h i r d s :
51 Y1third=i n t (img2 . shape [0] / 3)
52 Y2third=i n t (2∗ img2 . shape [0] / 3)
53 meanUp=np . mean(img2 [: Y1third , : , :])
54 meanMid=np . mean(img2 [Y1third : Y2third , : , :])
55 meanBottom=np . mean(img2 [Y2third : , : , :])
56

57 img2seg = np . array (img2)
58 a=0.6 #mean por t i on thr e sho ld
59

60 f o r y in range (Y1third) :
61 f o r x in range (0 , img2 . shape [1]) :
62 i f np . mean(img2seg [y , x])>meanUp∗a :
63 img2seg [y , x]= [255 ,255 ,255]
64

65 f o r y in range (Y1third , Y2third) :
66 f o r x in range (0 , img2 . shape [1]) :
67 i f np . mean(img2seg [y , x])>meanMid∗a :
68 img2seg [y , x]= [255 ,255 ,255]
69

70 f o r y in range (Y2third , img2 . shape [0]) :
71 f o r x in range (0 , img2 . shape [1]) :
72 i f np . mean(img2seg [y , x])>meanBottom∗a :
73 img2seg [y , x]= [255 ,255 ,255]
74

75

59

Tracking program

76 img2segG = np . z e ro s ((img2 . shape [0] , img2 . shape [1])) #segmented
image in gray l e v e l s

77

78 f o r y in range (img2segG . shape [0]) :
79 f o r x in range (img2segG . shape [1]) :
80 img2segG [y , x] = i n t (np . mean(img2seg [y , x , :]))
81

82 i n t e g r a l = np . array (img2segG , dtype = np . f l o a t 3 2)
83

84 f o r y in range (img2segG . shape [0]) :
85 f o r x in range (1 , r e s . shape [1]) :
86 i n t e g r a l [y , x] += i n t e g r a l [y , x−1]
87 f o r y in range (1 , r e s . shape [0]) :
88 f o r x in range (img2segG . shape [1]) :
89 i n t e g r a l [y , x] += i n t e g r a l [y−1,x]
90

91 r e s2 = np . z e ro s ((img2 . shape [0] , img2 . shape [1])) #scan i n t e g r a l
image f o r " f l a t s "

92

93 f o r y in range (img2segG . shape [0]) :
94 f o r x in range (0 , img2segG . shape [1]) :
95 A = np . array ([max(y−dim , 0) , max(x−dim , 0)]) #[y

−5, x−5]
96 B = np . array ([max(y−dim , 0) , min (x+dim , r e s .

shape [1] −1)]) #[y−5, x+5]
97 C = np . array ([min (y+dim , r e s . shape [0] −1) , max(x−dim , 0)]) #

y+5, x−5
98 D = np . array ([min (y+dim , r e s . shape [0] −1) , min (x+dim , r e s .

shape [1] −1)]) #y+5 x+5
99 r e s2 [y , x] = i n t e g r a l [D[0] ,D [1]] − i n t e g r a l [B [0] ,B [1]] −

i n t e g r a l [C[0] ,C [1]] + i n t e g r a l [A[0] ,A [1]]
100

101 r e s 2 s c a l e d =255∗ r e s2 /np . max(r e s2)
102 res2b = np . array (r e s 2 s c a l e d)
103

104 f o r y in range (r e s . shape [0]) :
105 f o r x in range (0 , r e s . shape [1]) :
106 va l = np . min (r e s 2 s c a l e d [max(y−w, 0) : min (y+w+1, r e s . shape

[0]) , max(x−w, 0) : min (x+w+1, r e s . shape [1])]) #np . max(r e s2 [y−w: y+w, x−
w: x+w])

107 i f r e s 2 s c a l e d [y , x] > va l :
108 res2b [y , x] = 255 #keep only l o c a l maximums
109

110 r e s3 = np . array (img2)
111 sample = np . array (res2b)
112 r e c t = []
113 f o r i in range (10000) :
114 k = np . argmin (sample)
115 y , x = k// res2b . shape [1] , k%res2b . shape [1]

60

Tracking program

116 i f sample [y , x] >= 254 : break
117 aux = [y−HBS, x−HBS,2∗HBS,2∗HBS]
118 f o r e in r e c t :
119 i f iou (aux , e) > 0 . 2 : break
120 e l s e :
121 i f x > 5 and y > 5 and x<img2 . shape [1] −5 and y<img2 . shape

[0] −5 : #avoid borders
122 r e c t += [aux]
123 r e s3 [max(y−HBS, 0) : y+HBS, max(x−HBS, 0) : x+HBS] =

[2 5 5 , 0 , 0] #rec tang l e , c ent r é sur x , y
124 r e s3 [max(y−HBS+2 ,0) : y+HBS−2,max(x−HBS+2 ,0) : x+HBS−2] =

img2 [max(y−HBS+2 ,0) : y+HBS−2,max(x−HBS+2 ,0) : x+HBS−2]
125 sample [max(y−HBS, 0) : y+HBS, max(x−HBS, 0) : x+HBS] = 255 #don ’ t

search at t h i s p lace again
126 re turn img2 , r e c t
127

128

129

130 # c l a s s used to make the t r a c k l e t l i s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

131

132 c l a s s BeeTracker :
133 de f __init__(s e l f , shape) :
134 ww, hh = shape [1] , shape [0]
135 K = np . array ([[1 0 0 0 , 0 , 625] , [0 , 1000 , 500] , [0 , 0 , 1]])
136 K2 = np . array ([[4 0 0 , 0 , 625] , [0 , 400 , 500] , [0 , 0 , 1]])
137 s e l f . mapx , s e l f . mapy = cv2 . in i tUndi s tor tRect i fyMap (K, np .

array ([−0.2 , −0.9 , −0.01 , −0.01 ,1]) , None , K2, (ww, hh) , cv2 .CV_32FC1)
138 s e l f . t r a c k l e t = []
139 s e l f . index = 0
140

141 de f execute (s e l f , img) :
142 s e l f . last_img , stub = d e t e c t b i s (img , s e l f . mapx , s e l f . mapy

, [3 1 0 , 3 6 5 , 6 0 0 , 2 2 0] , 0 . 0 5)
143 s e l f . index += 1
144 re turn s e l f . index , s e l f . update (stub)
145

146 de f p l o t (s e l f , f o l d e r) :
147 s c r e en = s e l f . last_img
148 f o r t r in s e l f . t r a c k l e t :
149 f o r i in range (1 , l en (t r)) :
150 cv2 . l i n e (screen , (t r [i −1] [1]+10 , t r [i −1] [0]+10) , (t r [

i] [1] + 1 0 , t r [i] [0] + 1 0) , (255 ,0 , 0))
151 cv2 . r e c t a n g l e (screen , (t r [− 1] [1] , t r [− 1] [0]) , (t r [−1] [1]+

t r [− 1] [2] , t r [−1] [0]+ t r [− 1] [3]) , (255 ,0 , 0))
152 i o . imsave (" {}/WBGimg{} . jpg " . format (f o l d e r , s e l f . index) ,

s c r e en)
153

154 de f update (s e l f , stub) :

61

Tracking program

155 enter , e x i t = 0 , 0
156 match = []
157 f o r k , t r in enumerate (s e l f . t r a c k l e t) :
158 s s co re , ind = dim∗4 , −1 #s s c o r e =20
159 f o r i in range (l en (stub)) :
160 s co r e = compare (t r [−1] , stub [i]) #t r [−1]= l a s t element

o f t r
161 i f s c o r e > s s c o r e : cont inue
162 s s co re , ind = score , i
163 i f ind < 0 : cont inue #i f no correspondance between t h i s

t r [] and any stub [i] , sk ip next
164 f o r j in range (l en (match)) :
165 i f match [j] [1] == ind :
166 i f s s c o r e < match [j] [0] : #i f b e t t e r proximity i s

found
167 match [j] = (s sco re , ind , k) #" proximity " ,

stub ind i c e , t r a c k l e t (bee) i n d i c e
168 break
169 e l s e :
170 match += [(s s co re , ind , k)]
171 ## metto i match in ord ine ed e l im ino q u e l l i doppi
172 f o r m in match :
173 s e l f . t r a c k l e t [m[2]] += [stub [m[1]]] #add new p o s i t i o n
174 new_tr = []
175 f o r i , t in enumerate (s e l f . t r a c k l e t) :
176 f o r m in match :
177 i f m[2] == i :
178 i f t [0] [4]==1 and t [− 1] [1] > s e l f . last_img . shape

[0] / 2 : #i f the bee must be scanned AND i t i s gone through h a l f the
image

179 s e l f . scan (t [−1])
180 t [0] [4] = 0 #remove " must be scanned " f l a g
181 break
182 e l s e :
183 #questa catena v iene e l im ina ta
184 i f t [0] [1] + t [0] [3] < s e l f . last_img . shape [0] / 2 and t

[− 1] [1] > s e l f . last_img . shape [0] / 2 : #i f y i n i t i a l in upper h a l f o f
pic , and y f i n a l in bottom h a l f (remember y ax i s po in t s downward

!)
185 ente r += 1
186 i f t [0] [1] > s e l f . last_img . shape [0] / 2 and t [−1] [1]+ t

[− 1] [3] < s e l f . last_img . shape [0] / 2 :
187 e x i t += 1
188 cont inue
189 new_tr += [t] #l i s t o f p o s i t i o n kept i f a match i s found
190 ##
191 s e l f . t r a c k l e t = new_tr
192 f o r i , s in enumerate (stub) :
193 f o r m in match :

62

Tracking program

194 i f m[1] == i : break
195 e l s e : #a new bee entered the s c r e en
196 i f s [1] < s e l f . last_img . shape [0] / 2 :
197 s +=[1] #i f bee comes from upper l i m i t (ou t s id e) ,

i t must be scanned : f l a g=1
198 e l s e :
199 s +=[0] #t h i s bee must not be scanned
200 s e l f . t r a c k l e t += [[s]]
201

202 re turn enter , e x i t
203

204

205 de f scan (s e l f , pos) :
206 dx=14
207 dy=14 #1/2 he ight and 1/2 width bee p i c t u r e
208 pos [0]+=10
209 pos [1]+=10 #cente r on bee
210 i f pos [0] −dx<0: #avoid borders to have f u l l p i c t u r e
211 pos [0]= dx
212 i f pos [0]+ dx>s e l f . last_img . shape [1] :
213 pos [0]= s e l f . last_img . shape [1] −dx
214 bee_image = s e l f . last_img [pos [1] −dy : pos [1]+ dy , pos [0] −dx : pos

[0]+ dx]
215 f o l d e r=" b e e p i c t u r e s "
216 index=len (os . l i s t d i r ("C: / Users / F r o i s s a r t /Code_Thesis/

b e e p i c t u r e s ")) #number o f f i l e s in f o l d e r
217 i o . imsave (" {}/ img {} . jpg " . format (f o l d e r , index) , bee_image)
218

219

220

221

222

223

224 # Parameters op t im i sa t i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
225

226 Data =[]
227 #best parameters so f a r : 3 , 7 , 10 / 3 , 7 , 11
228 f o r w in range (3 , 6) :
229 f o r dim in range (6 , 12) :
230 f o r HBS in range (10 , 15) :
231 getFirstFrame (’ 2022_07_31_15_30_00 . h264 ’)
232 img = io . imread (" first_frame_WBG . jpg ")
233 cap = cv2 . VideoCapture (’ 2022_07_31_15_30_00 . h264 ’)
234 t rack = BeeTracker ((1296 , 972 ,3)) ###img . shape
235 #
236 count=0
237 whi le cap . isOpened () :
238 i f t rack . index > 100 : break
239 ret , frame = cap . read ()

63

Tracking program

240 i f r e t == False : break
241 pr in t (t rack . execute (frame [: , : , : : − 1]))
242 t rack . p l o t (" . / tracking_WBG")
243 #
244 #once the t ra ck ing i s done on 100 p i c tu r e s , check l enght

o f l i s t
245 m=0
246 M=0
247 f o r i in range (0 , l en (t rack . t r a c k l e t)) :
248 m+=len (t rack . t r a c k l e t [i])
249 i f l en (t rack . t r a c k l e t [i])>M:
250 M=len (t rack . t r a c k l e t [i])
251

252 m/=len (t rack . t r a c k l e t)
253 pr in t ("w=" ,w, " dim=" ,dim , " HBS=" ,HBS, " mean length=

" ,m, " max length=" ,M)
254 Data . append ([w, dim ,HBS,m,M])
255 pr in t (Data)

Figure F.1: exemple of data printed

64

Appendix G

Dataset creation program

1 from __future__ import pr int_funct ion
2 from ipywidgets import i n t e r a c t , i n t e r a c t i v e , f i xed , interact_manual
3 import ipywidgets as widgets
4 from ipywidgets import Button , HBox
5 from IPython . d i sp l ay import d i sp l ay
6 import glob , os
7

8 import cv2
9 from skimage import data , i o

10 import matp lo t l i b . pyplot as p l t
11 import numpy as np
12

13 de f func (a , b , c , d , e , cx , cy , x , y , w, h , f o c a l) :
14 K = np . array ([[1 0 0 0 , 0 , i n t (cx)] , [0 , 1000 , i n t (cy)] , [0 , 0 , 1]])
15 K2 = np . array ([[f o c a l , 0 , i n t (cx)] , [0 , f o ca l , i n t (cy)] , [0 , 0 , 1]])
16 a/=100
17 b/=100
18 c/=100
19 d/=100
20 e/=100
21 map1 , map2 = cv2 . in i tUndi s tor tRect i fyMap (K, np . array ([a , b , c , d , e])

, None , K2, (img . shape [1] , img . shape [0]) , cv2 .CV_32FC1)
22 img2 = cv2 . remap (img , map1 , map2 , cv2 .INTER_LINEAR)
23 p l t . f i g u r e (f i g s i z e =(14 ,14))
24 p l t . imshow (img2 [y : y+h , x : x+w, [0 , 1 , 2]])
25 re turn img2 [y : y+h , x : x+w, [0 , 1 , 2]]
26

27 de f normal ize (x) :
28 x = x . astype (np . f l o a t 3 2)
29 l = x [0] ∗ x [0] + x [1] ∗ x [1] + x [2] ∗ x [2]
30 i f l <= 0 : re turn x

65

Dataset creation program

31 re turn x/np . sq r t (l)
32

33 de f bee_map(e) : r e turn max(0 , ((255 − e [2]) ∗2 − e [1] + 2∗ e [0]) //4)
34

35 de f iou (r , s) :
36 dx = (min (r [0]+ r [2] , s [0]+ s [2]) − max(r [0] , s [0]))
37 i f dx <= 0 : re turn 0
38 dy = (min (r [1]+ r [3] , s [1]+ s [3]) − max(r [1] , s [1]))
39 i f dy <= 0 : re turn 0
40 re turn dx∗dy /(r [2] ∗ r [3])
41

42 de f getFirstFrame (v i d e o f i l e) :
43 vidcap = cv2 . VideoCapture (v i d e o f i l e)
44 succes s , image = vidcap . read ()
45 i f s u c c e s s :
46 cv2 . imwrite (" f i r s t_ f rame . jpg " , image) # save frame as JPEG

f i l e
47

48

49 #det e c t i on on blue background −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
50

51 de f de t e c t (img , mapx , mapy , crop , thresho ld , dim) :
52 img2 = cv2 . remap (img , mapx , mapy , cv2 .INTER_LINEAR)
53 img2 = img2 [crop [1] : crop [1]+ crop [3] , crop [0] : crop [0]+ crop [2]]
54

55 c o l o r = normal ize (get_background_color (img2))
56

57 r e s = np . z e r o s ((img2 . shape [0] , img2 . shape [1]))
58 f o r y in range (r e s . shape [0]) :
59 f o r x in range (r e s . shape [1]) :
60 r e s [y , x] = 1 − np . dot (normal ize (img2 [y , x]) , c o l o r)
61 mask = r e s > thre sho ld
62 i n t e g r a l = np . array (mask , dtype = np . f l o a t 3 2)
63 f o r y in range (r e s . shape [0]) :
64 f o r x in range (1 , r e s . shape [1]) :
65 i n t e g r a l [y , x] += i n t e g r a l [y , x−1]
66 f o r y in range (1 , r e s . shape [0]) :
67 f o r x in range (r e s . shape [1]) :
68 i n t e g r a l [y , x] += i n t e g r a l [y−1,x]
69

70 r e s2 = np . z e ro s ((img2 . shape [0] , img2 . shape [1]))
71 f o r y in range (r e s . shape [0]) :
72 f o r x in range (0 , r e s . shape [1]) :
73 A = np . array ([max(y−dim , 0) , max(x−dim , 0)])
74 B = np . array ([max(y−dim , 0) , min (x+dim , r e s .

shape [1] −1)])
75 C = np . array ([min (y+dim , r e s . shape [0] −1) , max(x−dim , 0)])
76 D = np . array ([min (y+dim , r e s . shape [0] −1) , min (x+dim , r e s .

shape [1] −1)])

66

Dataset creation program

77 r e s2 [y , x] = i n t e g r a l [D[0] ,D [1]] − i n t e g r a l [B [0] ,B [1]] −
i n t e g r a l [C[0] ,C [1]] + i n t e g r a l [A[0] ,A [1]]

78

79 res2b = np . array (r e s2)
80

81 f o r y in range (r e s . shape [0]) :
82 f o r x in range (0 , r e s . shape [1]) :
83 w = 3
84 va l = np . max(r e s2 [max(y−w, 0) : min (y+w+1, r e s . shape [0]) , max

(x−w, 0) : min (x+w+1, r e s . shape [1])])
85 i f r e s2 [y , x] < va l : res2b [y , x] = 0
86

87 sample = np . array (res2b)
88 r e c t = []
89 f o r i in range (10000) :
90 k = np . argmax (sample)
91 y , x = k// re s2 . shape [1] , k%re s2 . shape [1]
92

93 i f sample [y , x] < dim∗dim ∗ 0 . 5 : break
94 aux = [max(x−dim ∗2 ,0) ,max(y−dim ∗2 ,0) , min (x+dim∗2 , img . shape

[1]) − max(x−dim ∗2 ,0) , min (y+dim∗2 , img . shape [0]) − max(y−dim ∗2 ,0)]
95 f o r e in r e c t :
96 i f iou (aux , e) > 0 . 3 : break
97 e l s e :
98 i f x > dim and y > dim and x < img . shape [1] −dim and y <

img . shape [0] −dim :
99 r e c t += [aux]

100 sample [max(y−10 ,0) : y+10,max(x−10 ,0) : x+10] = −1
101 re turn img2 , r e c t
102

103 de f get_background_color (img) :
104 re turn np . mean(img [: : 2 , : : 2] , a x i s = (0 , 1))
105

106 de f compare (r1 , r2) :
107 re turn np . s q r t ((r1 [0] − r2 [0]) ∗(r1 [0] − r2 [0]) + (r1 [1] − r2 [1])

∗(r1 [1] − r2 [1]))
108

109

110 # c l a s s used to make the t r a c k l e t l i s t
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

111

112 c l a s s BeeTracker :
113 de f __init__(s e l f , shape) :
114 ww, hh = shape [1] , shape [0]
115 K = np . array ([[1 0 0 0 , 0 ,ww//2] , [0 , 1000 , hh //2] , [0 , 0 , 1]])
116 K2 = np . array ([[3 9 4 , 0 ,ww//2] , [0 , 394 , hh //2] , [0 , 0 , 1]])
117 s e l f . mapx , s e l f . mapy = cv2 . in i tUndi s tor tRect i fyMap (K, np .

array ([− 1 , 0 . 7 , 0 . 0 1 , 0 . 0 1 , 0 . 3 7]) , None , K2 , (ww, hh) , cv2 .CV_32FC1)
118 s e l f . t r a c k l e t = []

67

Dataset creation program

119 s e l f . index = 0
120

121 de f execute (s e l f , img) :
122 s e l f . last_img , stub = detec t (img , s e l f . mapx , s e l f . mapy

,[264+6 ,311+15 ,512 −12 ,168 −43] , 0 . 05 , 5)
123 s e l f . index += 1
124 re turn s e l f . index , s e l f . update (stub)
125

126 de f p l o t (s e l f , f o l d e r) :
127 s c r e en = s e l f . last_img
128 f o r t r in s e l f . t r a c k l e t :
129 f o r i in range (1 , l en (t r)) :
130 cv2 . l i n e (screen , (t r [i −1] [0]+10 , t r [i −1] [1]+10) , (t r [

i] [0] + 1 0 , t r [i] [1] + 1 0) , (255 ,0 , 0))
131 cv2 . r e c t a n g l e (screen , (t r [− 1] [0] , t r [− 1] [1]) , (t r [−1] [0]+

t r [− 1] [2] , t r [−1] [1]+ t r [− 1] [3]) , (255 ,0 , 0))
132 i o . imsave (" {}/WBGimg{} . jpg " . format (f o l d e r , s e l f . index) ,

s c r e en)
133

134 de f update (s e l f , stub) :
135 enter , e x i t = 0 , 0
136 match = []
137 f o r k , t r in enumerate (s e l f . t r a c k l e t) :
138 s s co re , ind = dim∗4 , −1 #s s c o r e =20
139 f o r i in range (l en (stub)) :
140 s co r e = compare (t r [−1] , stub [i]) #t r [−1]= l a s t element

o f t r
141 i f s c o r e > s s c o r e : cont inue
142 s s co re , ind = score , i
143 i f ind < 0 : cont inue #i f no correspondance between t h i s

t r [] and any stub [i] , sk ip next
144 f o r j in range (l en (match)) :
145 i f match [j] [1] == ind :
146 i f s s c o r e < match [j] [0] : #i f b e t t e r proximity i s

found
147 match [j] = (s sco re , ind , k) #" proximity " ,

stub ind i c e , t r a c k l e t (bee) i n d i c e
148 break
149 e l s e :
150 match += [(s s co re , ind , k)]
151 ## metto i match in ord ine ed e l im ino q u e l l i doppi
152 f o r m in match :
153 s e l f . t r a c k l e t [m[2]] += [stub [m[1]]] #add new p o s i t i o n
154 new_tr = []
155 f o r i , t in enumerate (s e l f . t r a c k l e t) :
156 f o r m in match :
157 i f m[2] == i :

68

Dataset creation program

158 i f t [0] [4]==1 and t [− 1] [1] > s e l f . last_img . shape
[0] / 2 : #i f the bee must be scanned AND i t i s gone through h a l f the
image

159 s e l f . scan (t [−1])
160 t [0] [4] = 0 #remove " must be scanned " f l a g
161 break
162 e l s e :
163 #questa catena v iene e l im ina ta
164 i f t [0] [1] + t [0] [3] < s e l f . last_img . shape [0] / 2 and t

[− 1] [1] > s e l f . last_img . shape [0] / 2 : #i f y i n i t i a l in upper h a l f o f
pic , and y f i n a l in bottom h a l f (remember y ax i s po in t s downward

!)
165 ente r += 1
166 i f t [0] [1] > s e l f . last_img . shape [0] / 2 and t [−1] [1]+ t

[− 1] [3] < s e l f . last_img . shape [0] / 2 :
167 e x i t += 1
168 cont inue
169 new_tr += [t] #l i s t o f p o s i t i o n kept i f a match i s found
170 ##
171 s e l f . t r a c k l e t = new_tr
172 f o r i , s in enumerate (stub) :
173 f o r m in match :
174 i f m[1] == i : break
175 e l s e : #a new bee entered the s c r e en
176 i f s [1] < s e l f . last_img . shape [0] / 2 :
177 s +=[1] #i f bee comes from upper l i m i t (ou t s id e) ,

i t must be scanned : f l a g=1
178 e l s e :
179 s +=[0] #t h i s bee must not be scanned
180 s e l f . t r a c k l e t += [[s]]
181

182 re turn enter , e x i t
183

184 de f scan (s e l f , pos) :
185 dx=13
186 dy=13 #1/2 he ight and 1/2 width bee p i c t u r e
187 pos [0]+=10
188 pos [1]+=10 #cente r on bee
189 i f pos [0] −dx<0: #avoid borders to have f u l l p i c t u r e
190 pos [0]= dx
191 i f pos [0]+ dx>s e l f . last_img . shape [1] :
192 pos [0]= s e l f . last_img . shape [1] −dx
193 bee_image = s e l f . last_img [pos [1] −dy : pos [1]+ dy , pos [0] −dx : pos

[0]+ dx]
194 f o l d e r=" b e e p i c t u r e s "
195 index=len (os . l i s t d i r ("C: / Users / F r o i s s a r t /Code_Thesis/

b e e p i c t u r e s ")) #number o f f i l e s in f o l d e r
196 i o . imsave (" {}/ img {} . jpg " . format (f o l d e r , index) , bee_image)
197

69

Dataset creation program

198

199

200 # c l a s s used to make the l a b e l i n g i n t e r f a c e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

201

202 c l a s s C l a s s i f i e r :
203

204 de f __init__(s e l f , i m l i s t) :
205 s e l f . path=i m l i s t [0]
206 s e l f . imindex=0 #index o f p i c in i m l i s t
207 s e l f . img=cv2 . imread (s e l f . path)
208 p l t . f i g u r e (f i g s i z e =(10 ,10))
209 p l t . imshow (s e l f . img [: , : , [2 , 1 , 0]])
210 #display_buttons ()
211

212 de f d isp lay_buttons (s e l f) :
213 buttonP=Button (d e s c r i p t i o n=’ P o s i t i v e ’ , button_style=’ s u c c e s s ’

)
214 buttonN=Button (d e s c r i p t i o n=’ Negative ’ , button_style=’ warning ’

)
215 buttonO=Button (d e s c r i p t i o n=’Unknown ’ , button_style=’ danger ’)
216 d i sp l ay (HBox ([buttonP , buttonN , buttonO]))
217 buttonP . on_cl ick (s e l f . P_case)
218 buttonN . on_cl ick (s e l f . N_case)
219 buttonO . on_cl ick (s e l f . O_case)
220

221 de f P_case (s e l f , b) : #p o s i t i v e ca s e s are rare , so they are always
kept

222 index=len (os . l i s t d i r ("C: / Users / F r o i s s a r t /Code_Thesis/
f u l l _ d a t a s e t / p o s i t i v e s ")) #number o f f i l e s in f o l d e r

223 i o . imsave (" f u l l _ d a t a s e t / p o s i t i v e s /P{} . jpg " . format (index) ,
s e l f . img)

224 index=len (os . l i s t d i r ("C: / Users / F r o i s s a r t /Code_Thesis/
balanced_dataset / p o s i t i v e s ")) #number o f f i l e s

225 i o . imsave (" balanced_dataset / p o s i t i v e s /P{} . jpg " . format (index) ,
s e l f . img)

226 os . remove (" b e e p i c t u r e s /{} " . format (i m l i s t [s e l f . imindex] . s p l i t (
" \\ ") [1])) #d e l e t e p i c t u r e from b e e p i c t u r e s f o l d e r

227 pr in t ("P{} saved " . format (index))
228 s e l f . nextimg ()
229

230 de f N_case (s e l f , b) : #saved in balanced datase t i f the re are no
more nega t i v e s than p o s i t i v e s

231 index=len (os . l i s t d i r ("C: / Users / F r o i s s a r t /Code_Thesis/
f u l l _ d a t a s e t / nega t i v e s "))

232 i o . imsave (" f u l l _ d a t a s e t / nega t i v e s /N{} . jpg " . format (index) ,
s e l f . img)

233 indexP=len (os . l i s t d i r ("C: / Users / F r o i s s a r t /Code_Thesis/
balanced_dataset / p o s i t i v e s "))

70

Dataset creation program

234 indexN=len (os . l i s t d i r ("C: / Users / F r o i s s a r t /Code_Thesis/
balanced_dataset / nega t i v e s "))

235 i f indexN<=indexP :
236 i o . imsave (" balanced_dataset / nega t i v e s /N{} . jpg " . format (

indexN) , s e l f . img)
237 os . remove (" b e e p i c t u r e s /{} " . format (i m l i s t [s e l f . imindex] . s p l i t (

" \\ ") [1]))
238 pr in t ("N{} saved " . format (index))
239 s e l f . nextimg ()
240

241 de f O_case (s e l f , b) : #other : image not c l e a r enough f o r
c l a s s i f i c a t i o n

242 index=len (os . l i s t d i r ("C: / Users / F r o i s s a r t /Code_Thesis/ Nul l "))
243 i o . imsave (" Nul l /O{} . jpg " . format (index) , s e l f . img)
244 os . remove (" b e e p i c t u r e s /{} " . format (i m l i s t [s e l f . imindex] . s p l i t (

" \\ ") [1]))
245 pr in t ("O{} saved " . format (index))
246 s e l f . nextimg ()
247

248 de f nextimg (s e l f) :
249 #r e p l a c e prev ious image by next in i m l i s t
250 s e l f . imindex+=1
251 s e l f . path=i m l i s t [s e l f . imindex]
252 s e l f . img=cv2 . imread (s e l f . path)
253 p l t . f i g u r e (f i g s i z e =(10 ,10))
254 p l t . imshow (s e l f . img [: , : , [2 , 1 , 0]])
255

256 de f t e s t (s e l f) :
257 pr in t (" working ")

1 # F i r s t approach : save a l l bee p i c t u r e s from video to / b e e p i c t u r e s
2

3 getFirstFrame (" ViewBees .mp4")
4 cap = cv2 . VideoCapture (" ViewBees .mp4")
5 t rack = BeeTracker (img . shape)
6

7 count=0
8 whi le cap . isOpened () :
9 i f t rack . index > 100 : break

10 ret , frame = cap . read ()
11 i f r e t == False : break
12 pr in t (t rack . execute (frame [: , : , : : − 1]))
13 t rack . p l o t (" . / r e s u l t s ")

1 # Second approach : l a b e l the p i c t u r e s in / b e e p i c t u r e s

71

Dataset creation program

2

3 path=" b e e p i c t u r e s / "
4 i m l i s t= glob . g lob (os . path . j o i n (path , ’ ∗ . jpg ’))
5

6 c l a s s i=C l a s s i f i e r (i m l i s t)
7

8 c l a s s i . t e s t ()
9 c l a s s i . d i sp lay_buttons ()

Figure G.1: once a picture is labelled

72

Bibliography

[1] Z. Babic et al. «Pollen bearing honey bee detection in hive entrance video
recorded by remote embedded system for pollination monitoring». In: ISPRS
Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences
(2016) (cit. on pp. 1, 24).

[2] Sai Kiran Reka. «A Vision-Based Bee Counting Algorithm for Electronic Mon-
itoring of Langsthroth Beehives». In: All Graduate Theses and Dissertations.
4960 (2016) (cit. on p. 1).

[3] Ngo et al. «A real-time imaging system for multiple honey bee tracking and
activity monitoring». In: Computers and Electronics in Agriculture 163 (2019)
(cit. on p. 1).

[4] Ivan F. Rodriguez, Remi Megret, Edgar Acuna, Jose L. Agosto-Rivera, and
Tugrul Giray. «Recognition of Pollen-Bearing Bees from Video Using Convolu-
tional Neural Network». In: 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV). 2018, pp. 314–322. doi: 10.1109/WACV.2018.
00041 (cit. on pp. 1, 22, 23, 30).

[5] Cheng Yang and John Collins. «Deep Learning for Pollen Sac Detection
and Measurement on Honeybee Monitoring Video». In: 2019 International
Conference on Image and Vision Computing New Zealand (IVCNZ). 2019,
pp. 1–6. doi: 10.1109/IVCNZ48456.2019.8961011 (cit. on pp. 1, 38).

[6] A. Géron. Hands-On Machine Learning with Scikit-learn, Keras, and Tensor-
Flow. O’Reilly, 2019 (cit. on pp. 1, 29–31, 34–36).

73

https://doi.org/10.1109/WACV.2018.00041
https://doi.org/10.1109/WACV.2018.00041
https://doi.org/10.1109/IVCNZ48456.2019.8961011

	List of Figures
	Literature review
	Video acquisition and pre-processing
	Manual Distortion
	Automatic distortion

	Segmentation
	Segmentation with blue background
	Segmentation with white background

	Bee tracking
	Dataset creation
	Classification
	SVM
	K-Nearest-Neighbourgh
	Artificial Neural Network
	MLP
	CNN

	Conclusion
	arguments effect of initundistortrectifymap()
	Choice of the number of thresholds for the segmentation by luminosity
	Example of a tracking list
	Automatic undistortion program
	Segmentation program
	Tracking program
	Dataset creation program
	Bibliography

