
POLITECNICO DI TORINO
Master of Science Degree in Computer Engineering

MASTER’S THESIS
In collaboration with

California State University Los Angeles

Cloud-native Kubernetes application to
efficiently and securely stream and collect

real-time data

Supervisors

Prof. Giovanni MALNATI

Prof. Marina MONDIN

Candidate

Alessio SANTANGELO

April 2023

Abstract

Properly collecting and distributing data has become more and more important
in recent years. The vast majority of companies, universities, research groups,
and other similar entities need to manage some kind of data. For this reason,
it is really important to have a system capable of suitably performing this task.
The objective of this thesis is to design, develop and test such a system. More
specifically, the intent is to build a product that can be easily adapted to most of the
applications in which is important to gather and distribute big amounts of data in
real-time. Nevertheless, in order to study a real use case with actual requirements,
it has been developed a system capable of efficiently and securely collecting and
streaming real-time data representing electromagnetic field (EMF) measurements,
which allows human users to study, both utilizing real-time and historical data, the
cellular coverage in California. To tackle this problem, a Microservices architecture
has been chosen. This architecture was selected because it is well suited for the goal
of having a scalable, flexible, and easily extensible distributed system. Kubernetes
has been utilized as the containers orchestrator and the entirety of the cluster has
been hosted on Google Cloud. The data is streamed and stored using Apache
Kafka and MongoDB, respectively, while the security of the system is managed
with the use of Anthos Service Mesh. The final product is able to properly and
flawlessly process the necessary requests to suitably analyze the cellular coverage
of the whole of California. In addition, it does so without overpaying for unused
resources that have been carefully allocated to specifically meet the requirements.

To my mom

Table of Contents

List of Tables iv

List of Figures v

Acronyms vii

1 Introduction 1
1.1 Case study . 2
1.2 Thesis outline . 2

2 Distributed Systems 4
2.1 Key characteristics . 5
2.2 Microservices architecture . 6

2.2.1 Example . 7
2.2.2 When to use the microservices architecture? 8

2.3 Containerization . 8
2.3.1 How does it work? . 9
2.3.2 Benefits . 10

2.4 Cloud computing . 10
2.4.1 Types of cloud computing 11
2.4.2 The cloud computing stack 12

2.5 Security . 13
2.5.1 Cryptography . 14
2.5.2 Transport Layer Security (TLS) 15

3 Applicable technologies 17
3.1 Docker . 17
3.2 Kubernetes . 18

3.2.1 Architecture . 19
3.3 Google Cloud Platform . 20

3.3.1 Google Kubernetes Engine 21

ii

3.3.2 Anthos Service Mesh . 21
3.4 Apache Kafka . 22

3.4.1 Architecture . 23
3.5 MongoDB . 24
3.6 Spring . 26

4 Design 28
4.1 Requirements . 28
4.2 Challenges and solutions applied . 30

4.2.1 Architecture . 31
4.2.2 Data format and flow . 34

5 Components 36
5.1 Data streaming . 38

5.1.1 Kafka Cluster . 39
5.1.2 Kafka Connect . 40
5.1.3 Kafka Bridge . 42

5.2 Data storage . 43
5.3 Historical Data Service . 44
5.4 Authentication Service . 45
5.5 API Gateway . 46

5.5.1 Endpoints . 46

6 Security 48
6.1 Inner-mesh communication . 49
6.2 Outer-mesh communication . 50

6.2.1 Encryption . 50
6.2.2 Authentication and access control 51

7 Tests and Results 52
7.1 Google Cloud Platform monitoring 52
7.2 Performance analysis and bechmarking 53

7.2.1 Bytes processed . 54
7.2.2 Cost . 55
7.2.3 CPU utilization . 55
7.2.4 Memory utilization . 58

8 Conclusions 61
8.1 Future works . 62

Bibliography 64

iii

List of Tables

7.1 CPU utilization represented in figure 7.3 at 6 pm. 57
7.2 Memory utilization represented in figure 7.4 at 6 pm. 60

iv

List of Figures

2.1 Microservices application example [4]. 7
2.2 Containerization architecture [6]. 9
2.3 Cloud computing stack [9]. 12

3.1 Simplified view of the Apache Kafka architecture. 24

4.1 System architecture overview . 33

5.1 GKE’s workload overview page . 38
5.2 GKE’s services overview page . 39

7.1 GKE Nodes, Containers, and Pods 53
7.2 Bytes associated with 1200 req/sec. 55
7.3 CPU utilization with 1200 req/sec. 56
7.4 Memory utilization with 1200 req/sec. 59

v

Acronyms

A

AI Artificial Inteligence
API Application Programming Interface
AWS Amazon Web Service

C

CA Certificate Authority
CPU Central Processing Unit
CSP Cloud Services Provider

D

DBMS Database Management System

E

EMF Electric and Magnetic Fields

G

GCP Google Cloud Platform
GKE Google Kubernetes Engine

H

HTTP HyperText Transfer Protocol

I

IaaS Infrastructure as a service
IDE Integrated Development Environment
IoT Internet of Things
IP Internet Protocol

vii

IT Information Technology

J

JSON JavaScript Object Notation
JWT JSON Web Token

K

K8s Kubernetes

M

MAC Message authentication code
mTLS mutual TLS

O

OOP Object Oriented Programming
OS Operating System

P

PaaS Platform as a service
PC Personal Computer

R

RAM Random Access Memory

S

SaaS Software as a service
SQL Structured Query Language
SSL Secure Sockets Layer

T

TCP Transmission Control Protocol
TLS Transport layer security

V

VM Virtual Machine

viii

Chapter 1

Introduction

The term data is nowadays used in every possible context. At its most basic, data is
a mere collection of different information like measurements, findings, and numbers,
that is formatted in a way compatible with what handles it. As simple as it looks,
this concept has drastically changed how we live our lives and how every company
and organization around the world works. Any business produces tons of data
every day and, at the same time, it knows, if it wants to be competitive and grow,
it is vital to collect and analyze all the possible information related to its activities.
Modern businesses make use of data in a variety of ways. They discover faults in
their system by analyzing logs, improve their services by gathering information
obtained from customer surveys, and of course data, in form of results, is what is
needed to understand what has already been done well. The list can go on and on,
but, at this point, it is evident how important this concept is.
Every company, university, research group, and whatsoever type of entity studies
and analyzes data in the way that is more suitable for what is their objective.
However, what they all have in common and what they all need is a way for
collecting it. For this reason, it is crucial to have a system capable of properly
performing this task.

Over the years thousands of solutions have been developed to suitably collect
data. The most straightforward way is obviously to manually write it on a piece
of paper or on a text file. However, it is equally obvious as this is not the most
efficient, flexible, and up-to-date solution. Instead, what is commonly used nowa-
days is a database, a set of data stored in a computer that is set up for easy access,
management, and updating. Every database could be local, meaning that it is
possible to access it only from the machine in which it is held. Nevertheless, a
local solution would not suitably work in most cases since every data source would
have to be directly connected to the computer hosting the database. To solve this
problem, an architecture that allows to access the data from different locations is

1

Introduction

needed. It is possible to build a piece of software capable of accessing the database
and exposing it to the Internet in order to be accessed by other devices around the
world. This is one of the most basic distributed systems architectures in which we
have a single server, accessing and exposing the database, and different clients that
retrieve the data by contacting the server through the Internet. However, one of
the main drawbacks of this type of architecture is that we actually need a server
machine capable of performing this task. In some cases, this could be expensive
and hard to set up. For this reason, Cloud providers, like Google or Amazon, offer
their own servers where developers can run their software. This drastically cuts
costs and eases the configuration process. Distributed applications developed using
this idea are named Cloud-native applications.

This thesis work is exactly about the study, design, development, and testing
of the last described type of architecture to solve the aforementioned data collection
problem. In particular, the project consists of the development of a Cloud-native
application capable of collecting and distributing data in a reliable and secure way.

1.1 Case study
Even if the system developed can be easily applied to every application in which
is important to gather and stream in real-time big amounts of data; it has been
chosen to tackle a specific case study in order to deal with a real-world problem
with actual requirements. In particular, the objective has been to develop an
application capable of streaming in real-time and, at the same time, storing for
future access electromagnetic field (EMF) measurements to study the cellular
coverage in California.

1.2 Thesis outline
The thesis is organized into an introduction, 6 main chapters, and conclusions. The
content of the main chapters is briefly described hereinafter:

• Distributed systems It explains some of the most important theoretical
topics required to properly understand what is covered in the following.

• Applicable technologies This chapter briefly describes the main technologies
utilized in the development of the system studied in this thesis.

• Design It starts with an analysis of the requirements to later move to what
design choices have been made in order to meet those requirements. In
particular, the developed architecture, including its data format and flow, is
presented.

2

Introduction

• System components It includes a detailed description of every component
of the system from its configuration to what benefits it provides to the overall
application.

• Security This chapter explains how the system has been protected and secured
from possible attacks. In particular, the chapter is divided into two different
sections that separately discuss inner and outer cluster (i.e. the set of servers
where the application was hosted) security.

• Tests and Results Here the testing tools utilized and results obtained are
presented. Specifically, a series of graphs and tables show how the developed
application adequately works when subject to real use cases.

3

Chapter 2

Distributed Systems

Most of the software built today works in a distributed environment. This means
software components are not produced as an isolated system anymore but instead
they are designed to communicate with other likewise entities through a network
(the Internet in most cases). The vast majority of modern applications are conceived
as different distributed components from the ground up. This technique allows
completing the job more efficiently and, often, with benefits unreachable by a single
local machine. One of the most significant examples is preventing the single point
of failure problem. Having different distributed components in the system means
that when a single one of them stops working, all the others can keep functioning.
This characteristic is of fundamental importance, especially for those applications
that are defined as mission critical where even a brief downtime is likely to have
negative consequences.

There are 4 different types of distributed systems [1]:

1. Client-server With this technique several clients send requests to a single
central server that returns an output response to the clients. It is considered
the most simple and traditional type of distributed system.

2. Peer-to-peer Here a decentralized architecture is followed. Each component
can operate as both the client and server. Every process has the same privileges
and capabilities as all the other processes in the system.

3. Three-tier This type of architecture uses different servers for different ac-
tivities. Most specifically, it includes a presentation layer to manage the
user interface, an application layer to access the data and provide it to the
presentation layer, and a data tier that hosts the database. With respect to
the simple client-server model, this technique allows independent deployment
and more scalability

4

Distributed Systems

4. N-tier It is an extension of the three-tier model where several layers, each
one for a single physical server, perform different functions in the network. A
typical example of n-tier architecture is the Microservices-based architecture
where each service is responsible for its own data and communicates with the
other services in order to compute the final output to send to the clients.

2.1 Key characteristics
Distributed systems have several features and characteristics that make them
so widely used and important for IT and computer science. Some of the most
important ones are [2]:

• Scalability The ability to grow when the size of the workload increases. This
can be achieved with vertical or horizontal scaling. With the first technique,
scalability is obtained by adding more power (e.g. CPU and/or RAM) to an
existing machine, whereas with horizontal scaling more machines are added to
the pool of resources.

• Concurrency The different components of the system can run simultaneously
and independently.

• Availability/fault tolerance If a node fails, the others can keep working
without, in most cases, big issues.

• Transparency A distributed system is usually exposed to its users as a single
computation unit. An external programmer or end user does not need to deal
with the complexity of the different internal components.

• Heterogeneity The nodes composing the system have the possibility to
use different hardware and software since they represent different physical
components.

• Replication Distributed systems enable a server to be replicated, meaning
that two or more servers menages the same redundant resource to provide
more reliability and scalability

It is already been partially described as those characteristics come with different
vantages. The overall system is more reliable and better performing (easier to
scale) and, at the same time, it enables greater flexibility with its heterogeneity and
transparency. Nevertheless, it is essential to notice that distributed systems also
come with some disadvantages with respect to traditional computing environments.
They are more complex to design, manage and understand. In addition, properly

5

Distributed Systems

synchronizing the processes can be really challenging and requires careful program-
ming. Finally yet importantly, a distributed system includes different components
each of which introduces the possibility of security breaches and issues.

However, it is important to understand and specify the relationship between
advantages and disadvantages and how this applies differently depending on the
specific distributed system considered. Usually, if properly designed, the more
an architecture is distributed (higher number of components in different physical
locations), the more of its benefits are achieved, but, at the same time, a more
complex and insecure system is obtained. When designing a distributed system,
there are so many variables and technologies to study and consider. That is why
every final product is different from all the others and none of them share the exact
same properties.

2.2 Microservices architecture
As already briefly mentioned at the beginning of this chapter, the Microservices
architecture is a type of n-tier distributed system. This kind of architecture has been
conceived to deal with the complex and huge codebases most modern businesses
work with nowadays. In this context, different requirements need to be satisfied [3]:

• several teams need to be able to work on the same application at the same
time

• new members must be able to quickly understand the architecture, most
specifically the components they will be working on, in order to promptly
become productive

• all the different elements composing the application must be easy to deploy,
modify, and replicate

• the company needs to be able to smoothly and quickly integrate new technolo-
gies in order to keep being competitive

The solution to address these requirements is to design an architecture that struc-
tures the application as a set of small, loosely coupled, and collaborating services,
each one for a specific function. In this way, all the different components are inde-
pendent and thus easily understandable, deployable, and testable. Every team can
simultaneously work on a single service without impacting the work of other teams
and vice versa allowing faster productivity and lower communication overhead.
Furthermore, having isolated services with separate functionalities improves fault
isolation. If there is a problem in a service and thus in a single functionality, only

6

Distributed Systems

that component will be affected while the others can continue to work.

Every service manages its own database in order to be further decoupled from the
other services. Whenever a component necessitates some information from another
element in the system, it needs to request it from the other party since it cannot
directly access other databases that are not its own.

Two communication methods are mainly used in Microservices architectures: syn-
chronous and asynchronous. The first one needs the entity asking for information
to wait until it receives a response and, at the same time, the other entity needs
to be up and running in order to receive the request; a typical example is HTTP.
On the other hand, what happens with asynchronous protocols is that the two
communicating elements send messages to a third party that works as a broker.
In this way, neither of the two services needs to be up and listening to the other
simultaneously. Instead, they can retrieve the message from the message broker
whenever they deem it necessary. Typical examples of technologies based on a
message broker are RabbitMQ and Apache Kafka.

2.2.1 Example
A typical example of a Microservices application is shown below in figure 2.1. In
particular, a simplified view of an E-Commerce App is depicted.

Figure 2.1: Microservices application example [4].

The figure shows 4 different microservices (Catalog, Shopping Cart, Discount, and
Ordering) with their own private databases. They communicate with each other

7

Distributed Systems

using a message broker, thus asynchronous intra-service communication is used.
Furthermore, an API Gateway is introduced. This component is of fundamental
importance for Microservices architecture, it is the proxy that accepts requests
from client applications, in this case, Web and Mobile clients, and routes them to
the appropriate service. It is through this element that the transparency property
is obtained.

2.2.2 When to use the microservices architecture?
This type of architecture is designed to deeply exploit most of the benefits a
distributed system has to offer, plus some extra advantages such as faster devel-
opment and deployment thanks to the small and highly isolated elements of the
system. However, this also means dealing with the often challenging intra-service
interactions and, generally, with the extra complexity and security issues introduced.

It can be really hard, especially for a small company or a startup, to design,
deploy and maintain a microservices architecture and, furthermore, it might not
be a good idea to use it if the objective is to obtain an application that will
not likely need to scale and/or evolve in the future. Nevertheless, if the goal is
to rapidly evolve the business model and corresponding application, introducing
new functionalities and technologies and, simultaneously, being able to satisfy the
hopefully increasing number of customers, adopting a Microservices architecture
could be a valuable and smart solution.

2.3 Containerization
Typically, whenever it is needed to run a software program on a specific machine,
the properly compatible version of that software for the used hardware and oper-
ating system needs to be employed. However, even if this technique can work for
desktop or mobile apps, it is not the best solution for server applications where
developers often need to be able to run the same piece of software on different
physical machines without big changes. In addition, in an environment in which a
single server needs to be able to run several software elements at the same time,
lightweight and performing applications are necessary.

In the early 2000s, virtualization was mainly used to tackle this problem. A
Virtual Machine (VM) is a digital copy of the host machine’s physical hardware,
with its own operating system, used to run programs and deploy apps. A single
physical device can run several VMs at the same time. In this context, every
instance shares the physical CPUs and memory with all the other VM instances.
Virtualization allows an application to be portable to all the systems capable of

8

Distributed Systems

running VMs, not a big constraint since there are several free and multi-platform
applications capable of running Virtual Machines.

However, this method is not the most efficient solution because an application just
needs a small set of all the functionalities offered by an OS. For this reason, another
technique, called containerization, exploded in popularity in 2013. According to
AWS: "containerization is a software deployment process that bundles an applica-
tion’s code with all the files and libraries it needs to run on any infrastructure" [5].
It is a concept similar to virtualization, but here applications are provided with
the exact resources they need.

2.3.1 How does it work?
Software developers build the so-called images. These represent the written code
plus all the dependencies and configuration properties needed to run that code
in a containerized environment. To obtain this last element, a containerization
architecture is needed. As illustrated in Figure 2.2, it is composed of 4 different
layers [5]:

Figure 2.2: Containerization architecture [6].

• Infrastructure Starting off with the lowest one, the infrastructure represents
the hardware of the physical machine that runs the containerized applications.
It can be a bare-metal server, a Cloud infrastructure (better described in the
next section), or even a common PC.

9

Distributed Systems

• Operating System The second layer simply represents the operating system.
Its specific type depends on the infrastructure in use.

• Container Engine This is the broker between the container (software package
containing code and all the related resources to run it) and the OS. It is the
entity that allocates resources to the different containerized applications.

• Applications and dependencies The topmost layer contains the different
running containers. In addition to the already mentioned application code,
configuration files, and dependencies. Every element in this layer might also
contain a lightweight OS that gets installed over the host operating system.

2.3.2 Benefits
Containerization is so popular today because of the following advantages [5]:

• Portability An application written using containers, can be run in every
system capable of operating a container engine

• Scalability Containers are composed of the essential elements for running a
specific application. Thus, they only consume the minimum physical resources
they need, leaving space for other containers to run on the same machine.

• Efficency The lightweight application does not usually need to boot an
operating system or any other unnecessary components and is, thereby, faster.

• Fault tolerance Every container operates in an isolated user space. For this
reason, a single faulty container does not affect the others.

• Agility Since applications run in an isolated environment, developers do not
need to worry about the OS, hardware, or any other element when they want
to change or troubleshoot the application.

2.4 Cloud computing
IBM describes Cloud computing as "on-demand access, via the Internet, to com-
puting resources . . . hosted at a remote data center managed by a cloud services
provider (or CSP). The CSP makes these resources available for a monthly sub-
scription fee or bills them according to usage" [7].

Using this type of service has become more and more common in recent years. This
is due to the numerous benefits it brings. First of all, Cloud computing greatly
cuts costs. There is no more need for a proprietary rack of servers that requires

10

Distributed Systems

adequate software, setup, and a group of IT experts that manages it.
Second of all, it is much faster to start working on a new product. It only takes
a few minutes to create a cluster on a cloud platform, whereas it is much more
time-consuming to purchase and configure the hardware and software required to
start a even simple server machine. Similarly, when, later on, the already developed
and working system requires scaling, it is simple and fast to perform such a task
in a cloud environment. In some cases, it is also possible to allocate resources
dynamically depending on the current traffic.
Another benefit regards the possibility to have a reliable and fast system every-
where in the world since, usually, a CSP has servers spread in a lot of different
geographical locations.

Cloud technologies are nowadays utilized everywhere. Most of the modern online
services take advantage of some sort of cloud service behind the scene. The possible
uses are uncountable. However, some of the 2 most representing examples regard
storing, backing up, recovering, and analyzing data and creating, testing, and build-
ing cloud-native (built from the group up on a cloud environment) applications.
The just described use cases are often extended and integrated with several other
additional tools that the Cloud Platform provides such as load balancers, data
analytics, machine learning, technologies to strengthen the developed product’s
security, and more.

2.4.1 Types of cloud computing
There are three different types of cloud computing architectures [8]:

1. Public cloud It is operated and owned by a third-party CSP that offers its
services over the Internet. With this type of architecture, the developers do
not directly own and manage the hardware and software utilized, the CSP
does. Usually, a single public cloud is utilized by several clients that belong
to different businesses or organizations. Some examples of public clouds are
Google Cloud Platform (GCP), Amazon Web Service (AWS), and Microsoft
Azure.

2. Private cloud In this case, the cloud computing resources are allocated
specifically for a single organization. For this reason, all the related hardware
is often situated on the company’s on-site datacenter and uses a private network.
In this way, the business that owns it has access to all the advantages of a
cloud platform (e.g. scalability and easy deployment) plus enhanced security
and access control provided by the on-premises infrastructure. However, all of
this comes with, obviously, much higher costs with respect to the first type of
architecture.

11

Distributed Systems

3. Hybrid cloud It combines public and private clouds. Specifically, the busi-
ness’s private cloud services are combined with some of the public cloud
services to create a flexible infrastructure. This is because the organization
can decide the optimal cloud for each application, or even change it on the fly,
thus, it can meet its technical and business objectives more effectively and
cost-efficiently than it could with public or private cloud alone.

2.4.2 The cloud computing stack
There are different types of services that a CSP can provide to its clients. These
are commonly categorized using the cloud computing stack (figure 2.3).

Figure 2.3: Cloud computing stack [9].

As it is shown in the picture, there are 3 different categories built on top of each
other. This means that all the services belonging to a certain layer also belong to
all the lower ones.

• Infrastructure as a service (IaaS) Starting off with the lowermost layer,
the developers simply "rent" physical resources (e.g. virtual machines, storage,
operating system) from a cloud provider and use them as needed to create
their own applications and set up the system to run it. In most cases, this is
a pay-as-you-go service.

12

Distributed Systems

• Platform as a service (PaaS) The CSP offers an environment that makes
it easier for developers to quickly create, test and deploy software applications.
Specifically, developers only need to care about the application development
without worrying about setting up and managing the hardware and software
underneath. In this case, the client pays for the actual resource used, as it
would do with IaaS alone, plus an extra cost for the development platform
provided.

• Software as a service (SaaS) This is basically a method for delivering
software applications over the Internet. The CSP manages both the application
and its underlying infrastructure while the client only needs to access the
service through the Internet, commonly utilizing a web browser. Clients
usually pay for a monthly subscription to get access to the service

2.5 Security
Security in computer science is a really wide topic. It can be described, at its most
basic, as the study of all the IT systems’ vulnerabilities and what can be done to
avoid people unsolicitedly exploiting them for their own interests. Some examples
of possible unwanted actions that can be performed by nefarious users are: reading
private data, masquerading as another person or entity, and destroying, altering,
or providing false information. Specifically, security is critical when talking about
distributed systems, where data is usually transferred on public networks and
servers can be accessed by whoever has a valid address.

In this context, it is crucial to provide the following [10]:

• Confidentiality It represents the state in which information is hidden from
unauthorized individuals. It is usually addressed by encrypting the data. In
such circumstances, whether or not this data is accessible to a user depends
on their identity.

• Integrity It deals with the trustworthiness of data. It allows identifying if
some information has been unsolicitedly changed. Other than verifying the
correctness of data, integrity is also useful to authenticate users and entities.

• Availability It is about having access to computing resources by users. In
particular, it refers to how accessible and properly functioning a system is.
Attackers can perform some harmful actions that make the IT system stop
working properly, impairing its availability,

13

Distributed Systems

2.5.1 Cryptography
Cryptography essentially represents the study of techniques to secure communica-
tions in front of unwanted and unauthorized external actions. It is used to provide
encryption and authentication, but it can also offer integrity and nonrepudiation
(assuring an entity cannot deny the creation of a message).
One of the most fundamental applications of cryptography is encryption, a tech-
nique used to convert human-readable information (often called plaintext) into
incomprehensible data (also known as ciphertext). One or more keys are usually
used to encrypt (plaintext to ciphertext) and decrypt (ciphertext to plaintext) the
message.
In particular, there are two different types of encryption:

• Symmetric encryption The same key is used to both encrypt and decrypt
the message. This is a fast technique but needs the two parties to share the
same key, this can be a complication since an attacker could read that key
while it is distributed. This type of encryption is widely used to provide
confidentiality.

• Asymmetric encryption Here two different keys are used, private and public
keys. Whenever one of the two is used to encrypt the message, the other must
be used to decrypt it. Usually, a public key is accessible by everybody while a
private key is only known by a single entity.
This type of algorithm is slower than the symmetric version but it is usually
more secure since no key distribution is needed. Asymmetric encryption
is widely used to digitally sign messages (described below) and distribute
symmetric keys. This last operation is performed by encrypting the key that
needs to be distributed with a public key. In this way, it is certain that only
who owns the associated private key can decrypt and read the encrypted key.

Another important method studied in cryptography is cryptographic hashing, A
hash function is similar to encryption because it generates incomprehensible data
from human-readable information. However, it differs from encryption because the
output of a hash function has always the same amount of bits.
This technique can be used to provide integrity, whenever a message is sent on
a public network, its hash code (the output of a hash function) is sent with it.
Doing so, who receives the message can easily check the message was not modified
by an attacker simply recomputing its hash code and comparing it with the one
sent by the other party. However, it is easy for an attacker to recompute the
hash and modify that as well. For this reason, message authentication codes have
been introduced (MAC). With this technique, the hash function is combined with
asymmetric encryption in order to allow only those who know the encryption key
to properly compute and verify a MAC. This technique provides authentication

14

Distributed Systems

and integrity but does not provide nonrepudiation. It is not possible to tell for sure
which one of the two parties involved in the conversation has actually generated
the data.

A digital signature is similar to a MAC but it also provides nonrepudiation. In this
case, the hash code is encrypted using the sender’s private key. Only one of the
two parties has access to that key and, for this reason, it is unquestionably clear
who generated the message.

2.5.2 Transport Layer Security (TLS)
TLS is a cryptographic protocol that provides end-to-end security to data sent
over the Internet. It is most known for being used to establish security when web
browsing, but it can also be spent for providing security to other applications such
as e-mail, file transfer, and voice-over-IP. TLS evolved from Secure Socket Layers
(SSL) which was originally developed to secure web sessions. In particular, TLS is
based on SSL 3.0.

TLS and SSL are not neatly positioned in one of the 4 layers of the TCP/IP
model. Instead, they can be considered placed in between the application and
transport layers. This is because, by definition, TLS and SSL run on top of a
reliable transport layer to provide services to an application layer.
Their main functionality is to encrypt data sent over the Internet to avoid unau-
thorized users to read it. As already mentioned, TLS is really used when accessing
web pages, this is because, usually, a lot of sensitive information, such as login
credentials and credit card details, is being sent between the web browser and
the backend (server-side software). Nevertheless, it can be utilized in all the con-
texts in which is needed to protect sensitive data sent over a public network. In
addition, TLS can be also used to authenticate one or both the entities involved
in the communication. In the case of web browsing, only the server is commonly
authenticated. This is due to the fact that in most of the web applications it is the
client that sends sensitive information to the server and thus, he is the one who
must verify to whom or what this data is being sent.
When only one of the two entities is authenticated, TLS is commonly called simple
TLS, whereas it is named mutual TLS or mTLS when both parties are authenticated.

TLS uses symmetry encryption to protect the data sent. However, before do-
ing that, the two parties need to exchange a key to perform encryption and
decryption. To do so, asymmetric encryption is used. In the typical example of
a web browser communicating with a web server, a digital certificate associates
a public key to the server. A digital certificate is a file that ties the identity of

15

Distributed Systems

a node in a network to an asymmetric key pair. A certificate basically assures
that the certified entity owns and knows the private key associated with the public
key indicated on the certificate. This document, in order to be trusted, needs a
certificate authority (CA) that digitally signs it. A CA is simply an entity that
issues certificates. Most modern browsers already include a set of trusted CAs
when installed.
As mentioned, simple TLS is used in most cases and, in this context, it is the server
that is authenticated and needs a digital certificate. However, whenever mTLS is
utilized, also the client requires a certificate to share with the server.

It is important to point out that setting up a TLS session is surely a time-consuming
operation. This must be taken into consideration when designing a distributed
system. However, it still remains the choice of a lot of engineers since, in the
majority of cases, it is a price worth paying to suitably protect the application.

16

Chapter 3

Applicable technologies

Several technologies have been used during the development of the application
studied in this thesis. Why every one of them has been specifically chosen is
comprehensively described in the next chapter, while it has been decided to list
and define all the tools used in the current chapter. This approach provides a
concise overview of the stack utilized and might help in better understating why
some choices have been made in the design of the developed system.

3.1 Docker
It has already been described in the previous chapter what containers are and
Docker is nothing less than the most famous and used container engine.
It is defined on its official website as: "an open platform for developing, shipping,
and running applications. Docker enables you to separate your applications from
your infrastructure so you can deliver software quickly." [11].
Specifically, it does so, differently from the traditional development environment,
by creating a system that understands, through proper user setup, what are the
requirements to run a specific software application independently of the infrastruc-
ture (i.e. mainly hardware components and OS).
In other words, being a container engine, Docker is used to develop and test an
application (with its dependencies) in an isolated and lightweight environment
(container) and allows to easily and efficiently ship, modify, and scale such an
application to production. All of this, without worrying about properly setting up
the various systems to run a specific application since it is enough to install Docker
in those systems to be able to run every type of Docker container.

Docker is written using the Go programming language and exploits some features
of Linux to work as a container engine. In particular, it uses Linux namespaces to

17

Applicable technologies

provide isolated containers. In particular, every characteristic of each container
runs in a specific namespace and cannot be accessed from elsewhere.

Docker uses a client-server application where the server is represented by the
daemon, the component that actually manages the containers. Instead, the client
is simply a piece of software that communicates with the daemon and asks it to
perform the operations needed to run applications.

Another important functionality provided by Docker is Docker registry. It repre-
sents a place where to store different Docker images. One of the most important
registries is Docker Hub which is managed by Docker itself and is public, this means
everyone can host their own Docker registry on it. In addition, it provides free
access to most of the commonly used pieces of software such as operating systems,
databases, and development environments. A lot of public images publish there
often represent the starting point for new custom images.

3.2 Kubernetes
"Kubernetes, also known as K8s, is an open-source system for automating deploy-
ment, scaling, and management of containerized applications" [12].
It has already been described why containers are an efficient way of developing,
testing, and deploying an application. However, in modern software products, it is
really common to have different containers that run together in a cluster of servers
in order to provide a powerful, scalable, and fast system. In this context, ensuring
that all the components run smoothly without downtimes and/or errors could be
really hard to achieve. For this reason, a container orchestrator, like Kubernetes,
is needed.
More specifically, the main features of Kubernetes are [12]:

• Service discovery and load balancing Kubernetes is able to expose a
container to the other containers in the cluster or directly to the public Internet
providing an IP address and network port. In addition, whenever there is high
traffic, Kubernetes can load balance requests to the different instances of the
same container.

• Storage orchestration K8s allows to automatically mount a storage system
to the containers it manages. It supports different types of storage, including
the "virtual" ones offered by cloud platforms.

• Automated rollouts and rollbacks Every time the system manager wants
to change the state of a deployment (i.e. a set of containers that run the
same image to offer scalability and availability), Kubernetes allows doing it

18

Applicable technologies

smoothly without any downtime. For example, when the system requires to
increase or decrease the number of replicas of a deployment, it is enough to
slightly modify a configuration file and K8s performs the update while keeping
the deployment up and available.

• Automatic bin packing It is possible to specify how many resources to
allocate for each container in the system and Kubernetes, considering the
current state of the cluster, automatically allocates such resources in the most
efficient way.

• Self-healing Every time a container of the system stops working, K8s either
restarts it or kills and substitutes it with another working one.

• Secret and configuration management Kubernetes stores and manages
all the configuration information needed for the cluster to work. Whenever a
configuration change occurs, it automatically detects it and performs the due
actions to update the system. It also permits storing sensitive information such
as passwords and cryptographic keys without exposing them to unauthorized
users.

3.2.1 Architecture
The Kubernetes architecture is complex and composed of several elements, deeply
describing it is out of the scope of this thesis. However, it is important to briefly
explain its main components, what abstractions provides, and how engineers can
interact with it.
A Kubernetes cluster mainly consists of a set of working machines, called nodes, and
a control panel that manages them. The system manager can use a group of APIs
to talk with the control panel and configure the cluster (i.e. change the state of the
nodes). Every worker node hosts one or more Pods that in turn host one or more
containers. A Pod is the smallest manageable unit in Kubernetes. This means that
does not exist a smaller component that can be created, updated, or deleted by K8s.

Engineers do not usually create Pods directly but instead, they create Delpoyments.
A Deployment is one of the so-called Kubernetes Objects, elements used to represent
the state of the cluster. Specifically, they can describe what containers are running,
what resources are allocated, how storage is managed, how network policies are
applied and so much more. To create Objects, the Kubernetes APIs need to be
called. A common technique to perform such a task is to declare Objects through
specific .yaml files and then use the official command-line interface, called kubectl,
to directly contact the control plane.
Some examples of Kubernetes Objects, other than Deployments, are Services (used

19

Applicable technologies

to expose a network application that is running on a Pod), PersistentVolumes (de-
fine pieces of storage in the cluster), and HorizontalPodAutoscalers (automatically
scales a workload resource to match the current load).

For its characteristics, Kubernetes is the perfect solution for orchestrating mi-
croservices applications. In such systems, it is very common to deploy different
technologies that follow different principles and need specific management. In this
context, it can be really difficult for a human user to properly create and handle
all the necessary default Kubernetes resources to run this diversity of techniques.
Having to manually deal with such complexity every time a new component is
added to Kubernetes can be a huge waste of time and human resources. For this
reason, two K8s features have been introduced: custom resources and Operators.
The first one allows extending the default Kubernetes APIs in order to enable the
creation of new resources represented by a set of specific objects. In this way, an
engineer only needs to refer to a small group of functions added to the default APIs
to create all the objects necessary to deploy a specific technology. For example, a
newly added custom resource, called myDB, could allow, with the use of a single
and simple .yaml file, creating a set of Deployments, Services, and configuration
files to set up and run a specific database.
Side to side with custom resources there are Operators. Their objective is to auto-
mate all the repetitive processes regarding the management of custom resources.
For instance, an operator could automatically handle updates, take backups of a
resource’s state, and choose a leader for a distributed component.
Both custom resources and Operators are widely used for the development of a
lot of Kubernetes applications since they deeply help in the proper deployment of
some well-known technologies such as Apache Kafka and MongoDB.

3.3 Google Cloud Platform

Google Cloud Platform or GCP [13] is a collection of cloud computing services
offered by Google. The huge clusters of servers and backbone that allows Google
to provide these cloud services to its client are also the same that Google uses to
develop its own products such as Gmail and YouTube.
Google Cloud has been used by different important companies around the world
including Twitter, PayPal, and Carrefour
It offers more than 150 cutting-edge products, most of them available with a
pay-as-you-go service. It gives the possibility to create and run virtual machines,
store and retrieve huge amounts of data, deploy fully managed databases, use AI
tools, and much more.

20

Applicable technologies

3.3.1 Google Kubernetes Engine
Google Kubernetes Engine (GKE) [14] is one of the most powerful tools provided
by GCP. It gives the possibility to host an entire Kubernetes cluster entirely using
the infrastructure owned by Google. GKE provides both the control plane and a
set of worker nodes, where the user can decide to request as much computational
power (in terms of worker nodes, CPUs and memory) as they need. In addition to
providing the resources to run a Kubernetes cluster, GKE is also integrated with
some other Google Cloud Platform features, such as logging, monitoring, network,
and security solutions in order to help developers to build a more reliable and
forefront system.

GKE services have a cost that depends on how many resources (nodes, CPUs,
and memory) have been allocated to the cluster, plus the cost of all the other
integration tools that have been used to enhance the system. In this context, it is
really common for clients to over-allocate resources that are eventually never used.
For this reason, Google Cloud Platform offers two different modes of operating a
GKE cluster:

• Autopilot The cluster is already configured by Google to host production-
ready workloads (containers). Every time the developers deploy a new work-
load, GKE automatically optimizes the cluster to allocate the necessary
resources to do that. Thus, users will not have to overpay for allocated
resources that were never needed.

• Standard The engineers who are using the service have full control of the
cluster and its nodes’ infrastructure. They will pay for the nodes and resources
they have explicitly requested.

3.3.2 Anthos Service Mesh
A service mesh is a dedicated infrastructure layer that can be "attached" to a
distributed system to transparently add capabilities such as security and observ-
ability. It is mainly used in systems with several components, such as microservices
applications, since most of the features it provides usually regard inter-cluster
communication (i.e. communication between the components in the system). Gen-
erally, whenever a distributed system has a service mesh installed and configured,
it is enough to add a new component to the architecture to automatically and
transparently let the service mesh provide its features to this new component.

Anthos Service Mesh [15] is the Google implementation of the famous Istio open-
source project, a highly configurable and powerful open-source service mesh plat-
form.

21

Applicable technologies

Anthos Service Mesh, together with most of the other service meshes, consists of a
control plan and a data plan:

• Control plan It configures the communications between components in the
system. Anthos Service Mesh offers two different types of control plan. The
first one, called managed control plane, is fully managed by Google, meaning
that the system administrators only need to configure it and then Google will
do all the work to make it work properly. The second type of control plane is
called in-cluster control plane. In this case, the system engineers are the ones
responsible for administrating the control plane.

• Data plan This is the part of the service mesh that actually handles the
communications in the system. It works through proxies deployed as sidecars
(i.e. containers that run alongside the main containers to provide extra
features). This means that every workload in the service mesh is supported
by a proxy that performs all the actions useful to provide the extra features
that the service mesh offers. A simple example is encrypting and decrypting
the traffic sent and received.

Anthos Service Mesh offers a set of features that helps manage, observe, and secure
system components in a simple and effective way. For instance, it can provide
fine-grained control over intra-cluster communication, auto-gather and log a lot
of information regarding how the cluster is working, set up mutual TLS between
elements in the network, furnish API gateway, and more.

3.4 Apache Kafka
"Apache Kafka is an open-source distributed event streaming platform used by
thousands of companies for high-performance data pipelines, streaming analytics,
data integration, and mission-critical applications" [16].

To properly understand what just cited is fundamental to know what event stream-
ing is. It is the practice of capturing data from different sources, such as web
applications, databases, and IoT sensors and storing it for later retrieval by other
software entities. A lot of people think of an event streaming platform as a digital
equivalent of the human body’s central nervous system. It is a system that receives
data from some units and reroutes it to other units. Such a system is essential for
most modern software applications where there is a continuous flow of information
that needs to be at the right place and at the right time.

As already mentioned, Apache Kafka works as an event streaming platform. In
particular, it provides three capabilities to its users:

22

Applicable technologies

1. It gives the possibility to publish (write) and subscribe (read) events (data
processed by Kafka) in a real-time fashion.

2. All the events can be stored for as long as needed. Even if some data is read,
it is not deleted and can be read again.

3. Events can be consumed both when they occur or even later on when consumers
actually need them.

All of this is provided in a secure, scalable, and reliable way. Additionally, Kafka
can be deployed as a classical application on bare metal hardware, but also on
virtual machines and containers, and on-premises as well as in the cloud.

3.4.1 Architecture
Kafka is run as a cluster composed of several distributed servers. The brokers
represent Kafka’s core, they are the servers responsible for storing and distributing
the events (data produced and consumed). Usually, there are different brokers to
increase availability and performance. Specifically, every event can be replicated
and partitioned to different brokers. This means that various copies of the same
event can be sent to different servers, avoiding loss of data when a broker goes
down and thus leading to increased availability. At the same time, the same event
is divided into several servers allowing a consumer to process the same event in
parallel and obtain better performance.
Other types of servers run alongside the brokers. One or more of them usually
work as "coordinators". A typical example is ZooKeeper, this piece of software is
responsible for storing and handling information regarding the Kafka cluster and
details of the consumer clients. This component is also in charge of managing
partitions, topic creations, and failures.
Another type of software component often present in a Kafka cluster is Kafka
Connect. It allows continuously producing and consuming data from/by an existing
system such as a database or even another Kafka cluster.

Image 3.1 shows a simplified view of a Kafka ecosystem. It is possible to see
how several consumers and producers can interact with the cluster and how differ-
ent brokers in the cluster manage different topic partitions. In particular, a single
broker usually handles some topics which are leaders and some others which are
replicas. All the consumers that want to read a specific partition of a particular
topic, will do it from the leader partition. Replicas, instead, are only used when
the broker managing the master partition crushes.

23

Applicable technologies

Figure 3.1: Simplified view of the Apache Kafka architecture.

It has already been mentioned how Apache Kafka can be deployed as a container
and also on a cloud platform. Thus, it is an ideal candidate for Kubernetes and
GCP. Public images of the various Kafka components are available for free on
Docker Hub and it is, thus, possible to deploy Kafka on Kubernetes a piece at a
time. However, since properly setting up the several elements of a Kafka cluster
could be complex, various Kubernetes Operators and customer resources have been
formulated to easily perform such a task. A popular and open-source tool that
simplifies the process of deploying, configuring, and managing Kafka clusters on
Kubernetes is Strimzi. Other than its main purpose (i.e. operating Apache Kafka
on K8s), Strimzi provides extra suites to enhance the security, operativity, and
observability of the cluster.

3.5 MongoDB
NoSQL stands for not only SQL and refers to all the database technologies that
do not strictly follow the constraints imposed by SQL. This fundamentally means
this type of database does not need to store data in form of tables with rows and
columns and, as a result, a system with a flexible data model is obtained. However,
it is important to point out that NoSQL does not mean that none of the SQL
principles can be used but, on the contrary, it is its developers that can choose if
to apply all, some or none of those principles.
There are different types of NoSQL databases such as document databases, key-
value stores, wide-column databases, and graph databases. All of them come with
some pros and some cons and whether to choose one or another depends on the
specific application. Describing every data model is out of the scope of this thesis.
However, it is important to remark that usually most NoSQL databases have in
common, independently from the specific type, to be built from the ground up to
efficiently process big amounts of data.

24

Applicable technologies

One of the most known NoSQL databases is MongoDB [17]. Specifically, it is a
document-oriented NoSQL database, meaning that it is designed to store docu-
ments, which consist of key-value pairs that are grouped into collections that are
in turn grouped into databases. In particular, its syntax follows the JSON format
that is based on the object notation of the famous JavaScript programming language.

Some of the most important properties of MongoDB are:

• The size and number of fields of each document can be different from the
others in the same collection.

• The JSON format is in line with what usually deal with since it highly recalls
how objects are represented in most OOP languages.

• Every document can contain other smaller documents forming a hierarchical
structure. This often avoids performing join operations that are usually quite
expensive.

• It is not necessary to define a schema for a collection. Even if there are ways
to do that, it is usually an operation that is not performed since, after doing
that, part of the flexibility the database provides is lost.

• MongoDB offers the possibility to replicate the data it stores to different
servers in order to increase availability and performance.

• Other than replication, MongoDB also provides sharding, a technique that
consists in splitting the data in different machines to support very large
datasets and offer higher throughput.

• It is possible to deploy MongoDB both in an on-promise server and cloud
environment. In addition, a lot of distributions and versions are available,
most of them also accessible as container images.

Considering all its properties, MongoDB should be definitely taken into considera-
tion for all those applications in which is important to rapidly and reliably store
and retrieve unstructured information.

As it happens with Kafka, deploying MongoDB could result in a complex distributed
system with numerous components that is hard to be appropriately configured and
managed. Therefore, MongoDB itself provides Kubernetes Operators and custom
resources to automate and make its deployment as smooth as possible for the
developers. In particular, two different official MongoDB Kubernetes Operators
are available. The first one is community-driven and free but has some limitations
(e.g. sharding is not available) while the other version, called enterprise, needs a
subscription to be used but offers much more functionalities.

25

Applicable technologies

3.6 Spring
Spring [18] is a Java and Kotlin framework that mainly helps in the development
of web applications. However, its core features and some others can be used by
any Java/Kotlin application. It is the most known and used Java framework. Its
popularity is due to the fact that it makes Java programming quicker, easier, and
safer. It saves developers from writing a lot of boilerplate code (i.e. code that is
often repeated with only little modifications) and provides many out-of-the-box
solutions that are helpful for a vast variety of use cases. Moreover, it is supported
by a huge worldwide community which makes finding support and resources related
to every aspect of the framework really straightforward.

Spring was born with the idea of simplifying the often complex relationships
that happen in OOP. In particular, it wants to facilitate the configuration phase
(object instantiation and bindings) to allow developers to mainly focus on the logic
of the code. Spring abstracts the concept of objects and provides some mechanisms
to create a, even really complex, app by simply defining its components and declar-
ing their configuration. In this way, it is the framework that will add later all the
other elements needed to form a complete and working Java application.
In particular, the Spring core is based on three principles:

• Inversion of Control Instead of having the developer that uses, in their
custom code, functions of the framework to solve general tasks, it is the custom
code written by the developer that is called by the framework.

• Dependency Injection Whenever an object or function is developed, the
dependencies it depends on are injected by the framework. This highly
separates the concerns of using objects. Developers do not need to focus on
how to connect the various objects but on what external functions the objects
need and they will be provided by the framework. As a result, loosely coupled
programs are obtained.

• Aspect Oriented Programming There are often some pieces of code
that are needed in different parts of the program. For instance, a function
to perform logging could need to be called in most of the objects of the
application developed. For this reason, in order to avoid all these repetitions,
Aspect Oriented Programming allows specifying the code to perform an often
repeated action in a single place and then, through proper configuration, the
framework spreads this piece of code where it is needed.

These properties represent only the principles on which Spring is built and they point
out how, as already mentioned, this framework highly helps developers by providing

26

Applicable technologies

an easy, flexible, and fast way of writing Java and Kotlin applications. Nevertheless,
there are much more other features it provides that are worth mentioning. Spring
has really high performance; it is fast to start up, execute and shut down. All
of this, while taking high care of security concerns. Vulnerabilities and issues
are always immediately fixed. Moreover, many modules, both proprietary and
third-party owned, are offered and some new ones come out very often. Spring
is well integrated to work with most of the new techniques and technologies. It
provides modules to deal with cloud computing, serverless applications, reactive
programming, microservices, and much more.

27

Chapter 4

Design

This chapter starts with describing what is the problem at hand, firstly outlining
what the general idea is and then imposing some specific requirements in order
to deal with a real use case scenario. In particular, other than listing what are
the actual functionalities and performance requested, it will be described how the
series of constraints imposed leads to a problem that needs particular attention to
be properly solved. At the same time, it will be briefly mentioned what are the
last trends in the industry and will be specified that the objective of this thesis is
not to only build a working system that meets the requirements; the goal is to do
so with the most advanced techniques and cutting-edge technologies that a real
competitive company would use.

The second section of this chapter will describe what are the design choices made,
both in terms of techniques and technologies utilized. Especially, it will take
into consideration why they have been chosen, what benefits they can provide,
and what problems they can solve for the studied use case. After characterizing
each component on its own, the complete and final architecture of the developed
system is shown and analyzed. Finally, the last part of this chapter is dedicated to
specifying the format and flow of the data managed by the application.

4.1 Requirements
As already briefly mentioned in the first chapter, the objective of this thesis is
to build an application capable of reliably, efficiently, and securely streaming in
real-time and storing data coming from EMF sensors. All of this with the goal
of allowing human users to access such data to study the cellular coverage of the
whole of California. In particular, the human users need to have the possibility
to retrieve in real-time all the measurements just performed by all the sensors,

28

Design

and, to conduct deeper studies, they must also be able to retrieve data related to
measurements of the past.

However, the objective is not only to develop an application that can be uti-
lized for this specific use case, on the contrary, the goal is to obtain a system as
flexible, modular, and extensible as possible. In particular, the system should be
easily adapted, with small changes (e.g. regarding the data format, the resources
allocated, and/or some endpoints), to every application in which is requested to
reliably and securely stream and store big amounts of data.

Another important requirement of the studied application is to be "industry ready".
First of all, this means that the developed system must be accessible from the
public internet (i.e. a valid and public IP address is needed). Second of all, the
system needs to be secure.
Distributed system security is a really wide topic and a lot of different requirements
can be requested for an application depending on the different types of attacks it
deems to be protected from. Specifically, for the system studied in this thesis, it is,
firstly, required for the app to only be accessible through HTTPS (HTTP on top
of TLS) and by authenticated users. Secondly, all the communications inside the
cluster (i.e. between components of the system) are required to be authenticated
and encrypted.

General requirements have been discussed so far, but, as mentioned above, in
order to meet actual performance requirements, a specific application needs to be
taken into consideration. The use case of choice requires gathering EMF measure-
ments that cover the whole of California. To do that, considering that California
has an area of 423,970 km2 and that every EMF sensor covers approximately 12
km2, about 35.000 sensors are necessary. In addition, in order to properly study
cellular coverage, measurements need to be collected from every sensor every 30
seconds roughly. This leads to a requirement of about 1200 requests per second
that the application needs to be able to process. It is important to notice that
human users’ requests are not considered since it would be a much lower number
with respect to the ones sent by the sensors.

A final requirement for the application is to obtain a product that would be
affordable even for small businesses. Since a reliable and secure "industry ready"
application is requested, actual costly resources need to be utilized to meet all the
requirements and, in this context, it is easy to mistakenly over-allocate resources
(i.e. use more CPUs, memory, and/or machines than the ones needed). The
objective of this thesis is to perform numerous tests in order to allocate just the
required resources needed to meet the requirements. To this end, some margins will

29

Design

be considered in order to avoid anomalous crushes in the event that more requests
than the ones predicted are received by the system.

4.2 Challenges and solutions applied
The list of requirements described in the previous section leads to a product that
needs meticulous study in order to work properly. This is due to the fact that,
when building such complex systems, it is common to obtain some properties at
the expense of others. Thus, the main challenge has been to carefully choose every
technique and technology utilized with the objective to get the benefits it brings
without being too affected by the disadvantages its use could imply (e.g. some
security protocols could drastically slow the system down).

To obtain the required adaptability, modularity, and extensibility, it has been
chosen to use a Microservices architecture. Other than all its benefits, such as
fast deployment and fault isolation, this type of distributed system makes adding
and removing functionalities quite simple since it is possible to smoothly add and
remove microservices. This property permits the system developed to be highly
versatile. Most of the specific features needed by every single application can be
added by simply adding services. The reason for this is that the core features, such
as data gathering and storing, authentication, and security, are usually needed
by all the applications belonging to the type addressed (i.e. securely and reliably
store and stream data). At the same time, specific functionalities can be typically
included modularly through single microservices.
In addition, this type of architecture is really useful to meet the high availability
requested. Another benefit of a Microservices architecture is, as already mentioned,
its modularity. This, other than helping in including and/or removing functionali-
ties, eases adding replicas of single components. Such a technique is widely used to
increase the availability of an element in a distributed system. Other than that, it
increases scalability and performance. For these reasons, replicas have been widely
utilized in the development of the application examined.

Nonetheless, even if the architecture chosen helps, it could still be hard to config-
ure the system to add replicas. Moreover, other than different functions, various
applications have different requirements in terms of performance (e.g. number of
requests per second to be processed and level of availability required). Therefore,
some sort of additional help needs to be added in order to ease configuring the
system to meet the various performance requirements considered.
In this context, Kubernetes is the technology that perfectly matches the needs.
Other than offering a lot of features that are really helpful for a Microservices

30

Design

distributed system (this type of architecture and Kubernetes are often used to-
gether in modern complex applications), it really helps in configuring the different
components of the system to meet the specific requirements the various applications
request. With K8s it is as easy as modifying single lines in some .yaml files to
change the replicas, CPUs and memory allocated to each element in the system.

The design choices discussed so far only regard software components. However,
since an industry-ready system needs to be developed, an actual hardware infras-
tructure is required to run all the elements of the system. Specifically, supporting
a microservices application that runs "on top" of Kubernetes requires a complex
cluster of servers which can be really expensive and complex to set up and configure,
especially for a small company that could not have the necessary workforce and
capital to build and manage such a system. In addition, since the objective is
also to create a product that can be adaptable to various applications and that,
thus, needs to easily acquire and release resources depending on the requirements,
it is required an infrastructure that can afford and dynamically manage extra
machines in case they are needed. For these reasons, it has been decided to exploit
the infrastructure already offered by a Cloud provider and thus a Cloud-native
application has been developed. In particular, Google Cloud Platform was the
provider of choice. Other than being one of the most renamed cloud providers that
offers a huge infrastructure where is possible to essentially deploy every type of
application, GCP has been chosen for its comprehensive Kubernetes integration
and for its additional security and observability tools that are of big help for the
correct development and testing of the system.

Specifically, for what concern the security requirements, Google Cloud Service
offers its own service mesh that can be installed on top of a Kubernetes cluster.
With proper configuration of this powerful GCP’s tool, it is possible to meet all the
security concerns mentioned in the previous section. Precisely, it provides support
for mTLS between every component of the mesh and it allows to deploy an API
gateway that is able to work as TLS endpoint and authentication system.

On the other hand, the extensive observability tools offered by Google are critical
for correctly allocating the resources required by the system for meeting the perfor-
mance requirements and for avoiding overpaying for allocated resources that were
not actually needed.

4.2.1 Architecture
All the techniques and technologies presented up to this point regard only what is
the high-level design of the product. The specific elements composing the system

31

Design

have not been mentioned yet. Nevertheless, important design choices regarding
every component of the system are essential to building a product that satisfies all
the needs.

This subsection shows through a schema what is an overview of the architec-
ture of the system. Successively, every element will be briefly described in order to
give an outline of how the overall system works. A thorough description of every
component will be provided in the next chapter.

Figure 4.1 illustrates the schema just mentioned. The first thing important to
notice is that the cluster that hosts the application is everything contained inside
the block "Google Cloud Platform" while everything outside of it represents the
external actors (i.e. who or what accesses the application from outside the cluster).
In particular, in this category, two different types of entities are depicted. The
first one is constituted by the human users that are who access the measurements,
both real-time and historical, in order to study the cellular coverage. The second
group corresponds to all the sensors that continuously send EMF measurements to
the cluster. In this context, the human users could be considered as who always
"consumes" data and the sensor as what always "produces" it.

Moving now to the actual architecture, as already described, being a Cloud-native
application, everything is deployed inside GCP and, in particular, inside a specific
service that allows the deployment of a Kubernetes application called Google
Kubernetes Engine (more details on its set up and configuration are outlined in
the next chapter). On top of that, there is the service mesh that mainly supports
the application with security features (this component is meticulously described in
the sixth chapter that is completely dedicated to the security of the system).

For what regards the single components depicted in the schema 4.1:

• Istio Gateway It represents the entry point for all the external users (sensors
and human users) that want to communicate with the application to receive
or send data. This type of gateway is provided by Anthos Service Mesh
and, other than working as API gateway, it is the main load balancer of the
system. In addition, it offers several security features. All the communications
between outside and the gateway use simple TLS, In this context, the Istio
gateway works as the TLS termination proxy. Moreover, the gateway provides
support for authenticating external users. Specifically, among all the possible
authentication methods it offers, it has been chosen to use JSON Web Tokens
(JWTs) that are issued by the Authentication Service.

32

Design

Figure 4.1: System architecture overview

• Authentication Service Spring Boot application that manages sign-up
and log-in of external users. For every log-in request, it verifies if matching
credentials exist and, if so, returns an according JWT.

• Kafka It works as the central component of the system. All the measurements
are processed by Kafka. It has been chosen for its high performance (in terms
of speed, scalability, and availability), vast user community, and integration
with several databases and cloud platforms. It is deployed using Strimzi, one
of the most famous open-source Kubernetes operators for Kafka.
Kafka Cluster (the actual message broker) is composed of 3 brokers managed
by Zookeeper. Kafka Bridge is used to allow to interact with Kafka using an
HTTP-based interface. Finally, Kafka Connect is integrated with a MongoDB
plug-in in order to send all received measurements to MongoDB for future
access.

33

Design

• MongoDB The database of choice is MongoDB. It has been selected for
its flexibility, performance, scalability, simplicity, and cloud support. It is
deployed using the MongoDB Community Kubernetes Operator. Specifically,
a replica set composed of 3 different instances is used in this architecture.

• Historical Data Service Spring Boot application that exposes a HTTP
interface to retrieve old sensor data from MongoDB.

4.2.2 Data format and flow
The data format schema of the measurements send and retrieved is indicated below
(other data collections are used in the application and are described in the data
storage section of the next chapter. They are not cited here as well because they
are not as important and only represent "accessory" information):

1 {
2 " $schema " : " https : // json−schema . org / d r a f t /2020−12/schema " ,
3 " $ id " : " http : //my−exemple−id . com/measurement . schema . j son " ,
4 " t i t l e " : " Measurement " ,
5 " d e s c r i p t i o n " : "A measurement from an EMF senso r " ,
6 " type " : " ob j e c t " ,
7 " p r o p e r t i e s " : {
8 " va lue " : {
9 " d e s c r i p t i o n " : "The EMF value measured " ,

10 " type " : " number "
11 } ,
12 " timestamp " : {
13 " d e s c r i p t i o n " : "The time in which the measurement has

been performed " ,
14 " type " : " s t r i n g "
15 } ,
16 " s en so r Id " : {
17 " d e s c r i p t i o n " : " id o f the s enso r where the measurement

has been performed " ,
18 " type " : " i n t e g e r "
19 }
20 } ,
21 " r equ i r ed " : [" va lue " , " timestamp " , " zoneId "]
22 }

As is shown by the schema, no more information than the measurement value,
sensor id, and timestamp is needed. This is because all the other data related

34

Design

to the zone and/or the peculiar type of sensor can be retrieved, through the sen-
sorId, from another collection that contains sensor information. In this case, it
is necessary to perform a join operation. However, it is uncommon to read sen-
sor details if compared to how often measurements (without such specific details)
are read. Thus, performing a slow join operation from time to time is not a big issue.

Referring to figure 4.1, the direction of the arrows indicates the flow of data.
In particular, as already mentioned, all the requests go through the Istio gateway.
Specifically, every sensor sends its measurements to the gateway approximately
every 30 seconds while human users request them from the system whenever needed.
In both cases, all the requests must have a valid JWT in order to be authenticated
by the gateway. For this reason, before sending/retrieving measurements, a JWT
must be obtained from the Authentication service.

After going through the gateway and being authenticated, all the incoming sensor
data is forwarded to Kafka Bridge which in turn forwards it to Kafka Cluster.
The measurements, at this point, are "inside" Kafka’s partitions, and from there
they are shipped to two different entities. They are sent to MongoDB through
the Kafka Connector, and, at the same time, they are forwarded to all the human
users who are requesting them in real-time. In particular, human users can request
real-time data by HTTP requests to the Kafka bridge that of course will have to
pass through the gateway as well to arrive there.

For what instead regards the data flow when referring to measurements retrieval,
other than the real-time one just described, the human users interested in obtaining
historical data contact an HTTP interface provided by the Historical Data Service
that in turn talks with MongoDB and retrieves the asked measurements. Also in
this case, all the requests go through the gateway that takes care of all the security
concerns and forwarding rules.

35

Chapter 5

Components

This chapter is dedicated to a complete description of the developed system’s
components. Particular focus will regard how every element has been set up and
configured and what specific functionalities it offers. Specifically, the objective
of this chapter is not to be a tutorial on how to build a cloud-native application.
Instead, it wants to point out how every component has been configured and linked
to the others to obtain a complete product capable of efficiently satisfying the
requirements.

Before dealing specifically with every single component, it is necessary a description
of how the Google Cloud Platform and Google Kubernetes Engine have been
utilized and set up in order to host the application with all its components.
GCP offers a complete environment for developers that contains a series of in-
terfaces dedicated to all the possible services provided. Other than this, it gives
the possibility to access a powerful IDE from where developers can code and run
commands to deploy pieces of software to Google Cloud. Moreover, its integrated
bash offers native support for a lot of command-line tools useful to directly contact
GCP’s services.
In particular, after having created a project and having activated the required APIs
to use GKE, the command used to deploy the Kubernetes cluster that will host
the studied application is:

1 $ gcloud conta ine r c l u s t e r s c reate −auto t h e s i s −p r o j e c t −−r eg i on=us−
west2 sh_id=proj−$PROJECT_NUMBER"

This command creates a Kubernetes cluster of name thesis-project in the region
us-west2 and with the autopilot mode of operation. The region simply specifies
where the cluster’s resources are located. The western United States region has
been chosen to be as close as possible to where the EMF sensors are situated. In

36

Components

this regard, it is important to point out that the application can be contacted from
everywhere in the world regardless, independently of the specific region selected.
The only difference is that the further from the west coast of the United States,
the higher the delay.

It is possible to use a multi-cloud environment where resources are located in
different regions, but this highly complicates the system and only gives advantages
in terms of how fast human users can access the measurements, a requirement that
is not so strict. It is enough that human users can access the data with a delay of
a few hundred seconds, something that is obtained with the cluster located in a
single region.

For what regards the mode of operation, the autopilot mode has been selected in
order to let GKE automatically optimize the cluster’s resources allocation. This
does not mean developers do not need to care about that. It only means that the
level of abstraction is different. Developers only need to manage resources at the
Kubernetes level and not also at the Google Cloud level (i.e. they do not have to
contact GCP to request resources, Google allocates them automatically depending
on the resources requested through K8s).

After having created the cluster, the service mesh needs to be installed. This
process will be described in the next chapter dedicated to the security of the sys-
tem. The important thing to understand now is that every component that will be
deployed on the system comes with a proxy that provide some security features to it.

Before starting to describe every component of the system, Figure 5.1 shows
what is the workload (i.e. applications running on K8s pods) of the completely
deployed and ready-to-use product. In particular, the picture is a snapshot of
the web page section dedicated to GKE to check the status of all the workload
components. From this view, among other information like the type of the workload
and namespace it belongs, it is possible to immediately see, from the Pods column,
how many replicas are associated with each element and, in addition, by clicking on
one of them, it is provided access to all the details related to every single element
such as logs, errors, containers, associated configuration files, and more. This page
has been of fundamental importance for the development of the system since it
provides a really straightway and complete way for debugging the application,
allowing an immediate understanding of where and when something is not working
the way it should.

On the other hand, figure 5.2 displays the services overview. It shows a list of all
the Kubernetes services with their status and endpoints. By clicking on every one

37

Components

Figure 5.1: GKE’s workload overview page

of them, all the details related to that specific service are displayed.
Even if a lot of services have an IP address associated, this does not mean they
can be accessed from everywhere. In particular, the only publicly accessible service
is the Istio gateway (named istio-ingressgateway in the picture) that exposes three
different endpoints out of which only the one with port 443, associated with the
TLS connection, is the one that actually allows contacting the application. The
other two ports are used only for testing and health-checking purposes.
The IP associated with all the other services are only accessible from within the
cluster and are, thus, not public.

5.1 Data streaming
As already mentioned, the data streaming platform of choice for the developed
application is Apache Kafka. All the Kafka components have been deployed thanks
to the help of the Kafka Kubernetes operators and custom resources called Strimzi.
Setting it up is as easy as running a simple command that installs all the required
elements to use Strimzi in the cluster. After having done that, it is possible to
deploy the custom resources related to Kafka. In particular, the main component
necessary to make everything work is the group of brokers and ZooKeeper. To avoid
confusion, this group of elements will be called "Kafka Cluster" in the following.

38

Components

Figure 5.2: GKE’s services overview page

Instead, whenever the term "cluster" is used without being preceded by "Kafka",
the entirety of the application hosted on the Google Cloud Platform is meant.
Other two components offered by Strimzi that have been widely used are Kafka
Connect and Kafka Bridge, their setup and use are described later in this chapter.
Even if Strimzi is completely integrated with Kafka Connect (i.e. it offers the
possibility to deploy it through K8s custom resources), it is a feature naively offered
by Apache Kafka. On the other hand, Kafka Bridge is provided by Strimzi which
extends what is natively provided by Kafka.

5.1.1 Kafka Cluster
The Kafka Cluster is deployable through a custom resource called "Kafka". Specifi-
cally, it does not only create a Kafka Cluster with as many brokers as requested, but
it also deploys ZooKeeper and two other operators that are useful to manage Kafka
users and topics in a declarative way. The "Kafka" YAML file allows requesting
specific resources for all the elements (i.e. Kafka Cluster, ZooKepers, users operator,
and topic operator) separately.
The level of customization offered by Strimzi is impressive. It is possible to configure
a lot of aspects of the Kafka Cluster. For example, other than the number of
brokers and some characteristics related to ZooKeepers, Strimzi provides a way to
specify the exact version of Kafka, the authorization and authentication techniques
used, the type of storage attached, and so much more.

Specifically, some of the properties important for the thesis regard the type of
listeners specified (i.e. how Kafka is exposed and accessible from the outside).
In this context, it has been sufficient to expose the message broker internally

39

Components

to the Kubernetes cluster and without any form of encryption. That is because
such security properties are provided by the service mesh that deploys its proxies
alongside every component in the cluster.

Another important property is obviously the number of brokers. It has been
chosen to deploy three brokers. This number is really common in production
environments since it is the minimum number that makes really unlikely to have
all of the replicas down at the same time.

Other than the properties related to the actual deployment of the Kafka ecosystem,
it is obviously possible to configure internal characteristics of the even streaming
platform, such as log and message format, timeouts, consumer and producer-specific
properties, and so on. In particular, a fundamental configuration property for
this thesis project is the log retention that has been set to one minute. It is so
important because a lot of data is produced and it would be easy to quickly fill
Kafka’s memory. Deleting the measurements from Kafka is not a problem because
they are stored in the database. The retention factor could have been lower but a
minute has been selected to be sure all the produced measurements are written in
the database and to allow every human user that is requesting the data in real-time
to receive them.

Another major characterization of a Kafka ecosystem surely regards its topics. The
Strimzi topic operator allows to define them declaratively through YAML files.
The corresponding resources created can be modified on the fly both by updating
the YAML files associated and by directly contacting Kafka’s APIs. The most
important topic used in the studied application is the signals topic. In particular, it
has been configured to have 3 different partitions and a replication factor of 3. This
decision permits the topic to be as available and reliable as possible considering
the cluster setup.

5.1.2 Kafka Connect
Kafka Connect is an additional component that can be integrated with the Kafka
Cluster in order to provide two functionalities: writing data coming from an ex-
ternal source to one or many Kafka topics and reading data from one or many
topics and writing it to an external system. How to interact with the different
external entities depends on the external entity itself. However, Kafka Connect
was born with the idea of providing a uniform and standard interface to send and
retrieve data, independently of the source/destination. For this reason, every time
the developers want to integrate a new system with Kafka Connect, they need to
use a plugin (called connector) that specifically orchestrates how the data can be

40

Components

moved in and out of Kafka to go or come from/to the other system. Fortunately,
a lot of modern and famous databases, message brokers, and big data platforms
already provide their own plugins. In this case, the developers only need to install
and configure the required plugin for their system and everything is ready to work.
It has already been mentioned how the data can go through Kafka Connect from a
topic to an external source or vice versa. In the first case, the connector is called
source connector whereas in the second case is called sink connector.

Kafka Connect is useful in the application studied to retrieve the measurements
from the signals topic and write them on a MongoDB collection. Hence, what the
application requires is a sink connector. Luckily, MongoDB provides both sink and
source connectors free of charge.
After a "KafkaConnect" resource with the proper plugins installed and two replicas
for improved performance has been deployed on GKE. Another custom resource
needs to be defined in order to make the connector work. Such resource is called
"KafkaConnector" and the specific YAML file describing its configuration for the
deployed application is shown below.

1 ap iVers ion : kafka . s t r i m z i . i o / v1beta2
2 kind: KafkaConnector
3 metadata:
4 name: my−mongo−s ink−connector
5 l a b e l s :
6 s t r i m z i . i o / c l u s t e r : my−connect−c l u s t e r
7 spec :
8 c l a s s : com . mongodb . kafka . connect . MongoSinkConnector
9 tasksMax: 2

10 c o n f i g :
11 t o p i c s : s i g n a l s
12 connect ion . u r i : mongodb://my−user :my−user@mongodb − 0
13 database: myDb
14 namespace . mapper : com . mongodb . kafkaconnect . s ink . namespace .

mapping . FieldPathNamespaceMapper
15 namespace . mapper . key . database . f i e l d : "db"
16 namespace . mapper . key . c o l l e c t i o n . f i e l d : "topic"
17 key . conve r t e r . schemas . enable : fa l se
18 value . conve r t e r . schemas . enable : fa l se
19 key . conve r t e r : org . apache . kafka . connect . j son . JsonConverter
20 value . conve r t e r : org . apache . kafka . connect . j son . JsonConverter

What it is important to notice in this file is, first of all, the number of tasks that
can be run in parallel (it has been chosen equal to the number of replicas the
Kafka Connect has) and, second of all, everything inside the "config" section. In

41

Components

particular, it specifies:

• the topic from where to retrieve data

• the address of the MongoDB database management system

• on which specific database the data needs to be written (this property is
considered only if the database is not specified with the mapper as described
below)

• how to map some fields’ values of the key of the messages written in the topics
considered to the name of the database and collection to use to write the data
on MongoDB. In particular, in the YAML file considered, it is specified that
the fields of the key named "db" and "topic" indicate where to search for the
database and topic name, respectively

• how to convert the data from the topic to the MongoDB collection. In the
studied case, a simple JSON converter without referring to any particular
schema is used

5.1.3 Kafka Bridge

In order to produce and consume messages to/from Kafka it is necessary to use a
specific protocol that is provided by Kafka itself. However, since the objective of
this application is to be as adaptable and flexible as possible, having clients that
need to follow a so specific protocol to perform what is one of the most important
functions of the system (i.e. producing and consuming data) would be not ideal.
For this reason, it has been decided to take advantage of one of the additional
functionalities that Strimzi offers to Apache Kafka that is called Kafka Bridge,
This component provides an HTTP interface, on top of the proprietary Kafka
protocol, to contact the Kafka Cluster. In this way, clients do not need to interpret
the Kafka-specific protocol anymore, it is enough to simply send HTTP requests
to Kafka Bridge that will interpret and transform them to be compatible with Kafka.

On the other hand, as will be described in more detail in the testing chapter,
this component represents one of the main bottlenecks of the system. Consequently,
4 different replicas are deployed to avoid killing the performance. However, when-
ever the use case analyzed requires higher speed, it could be considered to remove
this component and "lose" the interoperability obtained with the HTTP interface
to obtain a faster system and also save some hardware resources.

42

Components

5.2 Data storage

As described in the design chapter, the database management system of choice
is MongoDB. It has been deployed with the use of the open-source MongoDB
Kubernetes Community Operator. In particular, a replica set composed of three
different replicas has been deployed to obtain higher availability and redundancy.
The selected data storage system contains all the measurement data produced and
some additional information related to the EMF sensors and external users of the
system. In particular, two different databases are hosted on MongoDB.

The first one is called "authentication" and contains a collection that stores all
the data regarding the authentication process. More specifically, the collection
contains the usernames, type (i.e. human user or sensor), and passwords of all the
registered users. It is possible to register new users only through one of the system
administrators that have to insert the user’s credentials in the collection manually.
This is required since it should not be allowed for everybody (it is enough to know
the public IP of the application to access it) to create an account and then access
the measurements. Only the specific engineers that are hired to study the cellular
coverage of California and the sensors will acquire their credentials in the system.
Having the system administrator register all the external users "by hand" is not a
big problem because the sensors almost never change and only a few people will
access the data thus not a lot of management for them is required. The collection
is accessed by the Authentication service that, by checking the users’ credentials,
creates conforming JWTs that will be later utilized to authenticate the external
users.

The second database, called "measurements", contains two collections. One that
stores information related to the characteristics of each sensor, such as sensor id,
position, and model. This collection is called "sensors". The second one, instead, is
the "signals" collection and stores all the measurements produced. The schema of
data it contains has already been presented in the previous chapter. The signals
collection is definitely the most important one in the system and will store much
more data with respect to the other collections.
Both collections in the measurements database can be accessed by external users
through the HistoricalData service which is described in the next section.

A central decision that has been made in the design of MongoDB is to divide the
data into two different databases. This is really important to be compliant with one
of the major principles in Microservices architectures that is: every microservice
owns its data. This means that two different components of the system cannot
access the data of the other one without going through the component that actually

43

Components

owns the data. Such a principle lowers what is the coupling of the system. Every
service needs to be as independent as possible from the others in order to be more
scalable, fault isolated, and flexible.
Even if in a lot of Microservices applications is common to have two completely
different data storage systems (e.g. a SQL and a NoSQL database), it has been
decided to go for MongoDB as the only data storage system because, firstly, the
Microservices principle is not violated. The two databases are independent of each
other even if hosted in the same MongoDB replica set, the services that access
them cannot access any other database other than their own, and MongoDB has
been deployed as a replica set and thus it is difficult for it to crash and lose all the
data. Secondly, it has been thought that having two distinct database management
systems for the two different databases was not a good idea for the following reason:
the authentication database contains only little data and a single collection, it
would have been overkill to have an entire DBMS only for such a small mole of
information.

5.3 Historical Data Service
The Historical Data Service offers an HTTP interface for human users contacting
the application from outside to access the measurements and sensors data. Specifi-
cally, it provides different endpoints that allow retrieval of information from both
the "signals" and "sensors" collections stored in the "measurements" database.

The service has been developed using the Spring framework for the Java pro-
gramming language. In particular, the only two modules utilized are Spring Boot
and Spring MongoDB. Any other module was not required because most of the
needed features are already provided by external components such as GKE, the
service mesh, and the API gateway. The only task for the Historical Data Service
is to connect to MongoDB and retrieve all the data that the users request when
contacting the service. In particular, the Entity, Repository, and RestController
functionalities of Spring have been used to access the database, retrieve the data,
and expose the endpoints, respectively.

The deployment of the service has been performed with the help of Docker. Par-
ticularly, after having tested the system locally, a Docker image has been defined
and pushed to a private Docker Hub repository. In this way, to have the service up
and running in the Google Kubernetes Engine cluster, it is enough to create a K8s
Deployment that works with the aforementioned image and expose it to the other
entities in the cluster (it is the API gateway that exposes the service to the public
Internet) through a Service Kubernetes resource.

44

Components

5.4 Authentication Service

The Authentication Service provides an HTTP interface to obtain JWTs in order
to be authenticated by the API gateway and get access to the main functionalities
of the application. Specifically, the main endpoint exposed by the Authentication
Service, called /login, expects to receive in every request a username and a password.
After having verified this information is actually present, it tries to match such
credentials to a document in the "users" collection of the "authentication" database.
If such a document exists and both username and password match, the user is
provided with a valid JWT. In particular, a possible example of a decoded JWT is
shown below:

1 {
2 " header " : {
3 {
4 " a l g " : "RS256 " ,
5 " k id " , "myKeyId "
6 " typ " : "JWT"
7 } ,
8 " payload " : {
9 {

10 " sub " : " myUsername " ,
11 " category " : "human user " ,
12 " i s s u e r " : " the s i s@secu r e . com" ,
13 " i a t " : 1516239022
14 " exp " : 1516326115
15 }
16 }
17 }

As it is possible to see, other than some general information such as the algorithm
used and the "typ" (type) field, the token indicates the username of the authen-
ticated entity ("sub" field), if its a human user or a sensor ("category"), the issue
and the expiration dates ("iat" and "exp", respectively), and some fields specifically
dedicate to the signer of the token that are named "kid" and "issuer". These fields
are used by the API gateway to verify the token is valid (how this is performed is
described in the next section dedicated to the API gateway). In this context, it is
important to point out that it is possible to use JWTs in the developed application
only because all communications are properly encrypted by means of TLS. Hence,
the exchanged JSON Web Tokens cannot be read by unauthorized entities.

45

Components

As happens with the Historical Data Service, the Authentication Service is devel-
oped with the use of the Spring framework for Java. Also in this case the Spring
Boot and MongoDB modules, and the Entity, Repository, and RestController
functionalities are used. Moreover, similarly to the component described in the
previous section, the Authentication Service is deployed on Google Kubernetes
Engine using a Docker image pushed on Docker Hub and pulled by a Deployment
that is exposed through a Service.

5.5 API Gateway
The API gateway represents the only component in the system from where external
users can access the application. In particular, its primary role is to expose the
application on the public Internet and, after receiving a valid request, forward it to
the right microservice. Nonetheless, the API gateway offers some other important
functionalities. First of all, it is the main load balancer of the whole cluster. As
already specified, all the requests go through this component and are thus load
balanced by it. Secondly, it manages different security mechanisms. It handles
the TLS connections with the external users and also authenticates them through
validating the JWT present in every request (but the one to obtain the JWT itself).

The API gateway deployment has been possible thanks to the support of the
Anthos Service Mesh. which is based on the Istio Service Mesh (for this reason, the
gateway is often called "Istio gateway"), which provides capabilities to make use of
this powerful service. In particular, the gateway has been deployed on the studied
cluster with the default configuration provided by Istio. This includes, other than a
Deployment and a Service, some additional Kubernetes resources that enhance the
overall system such as a HorizontalPodAutoscaler that scales the 3 default replicas
of the gateway up to 5 when the average utilization is above 80%.

5.5.1 Endpoints
After the gateway has been deployed, it is necessary to further configure it to set up
the routing rules and security features specifically for the developed system. More
details on how the security features provided by the gateway have been configured
are specified in the next chapter. Instead, for what regards the first task which is
the configuration of the routing rules, it is enough to define a single Kubernetes
custom resource provided by Istio that is called "VirtualService". Specifically, the
part of the used YAML file that specifies which ones are the requests to forward to
the Historical Data Service is shown below:

46

Components

1
2
3

4 http:
5 - name: "historicaldata -routes"
6 match:
7 - u r i :
8 p r e f i x : / h i s t o r i c a l /
9 r e w r i t e :

10 u r i : /
11 route :
12 - d e s t i n a t i o n :
13 port :
14 number: 8080
15 host : h i s t o r i c a l d a t a
16

17
18

Every entry in the "http" section of the file specifies a particular routing rule. This
means that other entries are present in the complete file that indicate all the rules
for the other services. However, it is not necessary to show and describe all of
them because they are all similar to the Historical Data one, what changes is only
related to the port and service names.
Each rule has a name associated with it ("historicaldata-routes" in the illustrated
case) and, after that, it indicates what uri prefix such a rule refers to and where
to forward the matched requests (indicated in the destination field). Moreover,
following what is written in the "rewrite" field, the gateway modifies every request to
remove the first part ("historical/" in the shown example) because, in the designed
system, that section of the uri is only useful for the gateway itself to understand
where to route the request. The service which will receive the request does not
understand that prefix that is, therefore, removed.

47

Chapter 6

Security

This chapter describes what are the security features that the application possesses
and how they have been set up to work with the developed system hosted in the
Google Kubernetes Engine cluster. In particular, the technology that has been used
is a service mesh (i.e. an infrastructure that manages the communication between
services). Every packet that goes from one service to another passes first through
a proxy, present in each service of the cluster, that manipulates such a packet to
introduce some security features. Specifically, it has been taken advantage of the
Google Cloud service called Anthos that offers a service mesh specifically for GKE
that is based on a powerful and famous service mesh for Kubernetes called Istio.

Before describing how the service mesh has been installed in the developed ap-
plication, it is important to understand some details about the Istio and Anthos
Service Mesh architecture. It is composed of two elements: the data plan and the
control plane. The first component represents the set of all the proxies installed on
each service of the system whereas the second element is a sort of coordinator that
manages all the proxies.
Google provides two ways of deploying its Anthos Service Mesh. The first one is
called Managed and its peculiarity is that Google handles a lot of work for the
developers. It manages the updates, security concerns, and scaling for them. In
this way, developers can focus more on the actual application development and
let Google handle most of the configuration and management required by Anthos.
On the other hand, the second type of deployment for the Anthos Service Mesh
is the so-called In-cluster control plane where the users have full control of the
installation, scaling, and upgrade of the mesh.

The deployment mode of choice for the studied system is the Managed mode.
This type of deployment provides several features that are enabled by default.
Some of them regard traffic logs, cloud monitoring and tracing, and several security

48

Security

features. In particular, what is really important for the developed application is
that all the data are authenticated and encrypted. In this context, it is necessary
to distinguish inner and outer mesh communication. How this has specifically been
managed is described in the two sections of this chapter.

Before starting a detailed description of the system’s traffic security, briefly specify-
ing how the Managed Anthos Service Mesh can be installed in a GKE cluster and
how it works is important to understand the overall mechanism behind everything
that is provided by Anthos and Istio.
Enabling the Managed service mesh requires registering the Kubernetes cluster to
a fleet (i.e. a group of clusters. It is useful for multi-cluster deployments and so it
will not be relevant for the studied system) where the service mesh has already been
enabled. Then, it is required to specifically activate the automatic management of
each individual cluster and, after that, the mesh is up and running. In particular,
every Kubernetes component that is deployed to a namespace (i.e. a way for
grouping K8s resources) labeled with istio-injection=enabled will be injected with
a istio-proxy and thus will receive all the features the mesh provides.

6.1 Inner-mesh communication
The inner-mesh communication regards all the communications happening between
two or more microservices of the application. Differently from what takes place
in a simple application deployed in a small private cluster, where usually only a
few entities communicate with each other through a private network, in a Cloud-
native application, the components are deployed on a third-party cluster and can
communicate through the public Internet. In this context, other than a cluster
in which developers do not have full control, an infrastructure where data ca be
exchanged through a public network is highly prone to attacks. For this reason, it
is fundamental to protect every communication of the application, even if between
components inside the cluster.

Fortunately, the Managed Anthos Service Mesh provides by default mTLS for
all the communications happening inside the GKE cluster. As already specified
in the second chapter, mTLS offers encryption of all the data exchanged, and,
moreover, both parties involved in the connection are authenticated through digital
certificates. The service mesh control plane automatically manages the distribution
of the certificates among the various elements inside the cluster.
Even if mTLS is enabled by default, all the services in the mesh still accept both
plain-text and encrypted traffic. For this reason, it has been imposed, through the
PeerAuthentication Kubernetes policy, that only encrypted traffic is acceptable.

49

Security

6.2 Outer-mesh communication
It has already been mentioned that the Istio gateway is the only way external
users can access the system. In addition to its functionalities as load balancer and
requests "router", the gateway manages all the security features that regard the
communication between the users and the system (i.e. the outer-mesh communica-
tion). Specifically, what has been used in the developed system is the Istio-provided
ingress (for traffic entering the cluster) gateway. This element is composed of
a standalone istio-proxy which is the component that runs on every service and
represents the data plane of the service mesh and that, by itself, can work as a
gateway. It supports a lot of security features and it has been used in the studied
system to provide encryption, authentication, and access control for the outer-mesh
communication.

6.2.1 Encryption
In the previous chapter, it has been described how the API gateway has been
configured to follow some specific routing rules. Similarly, it is necessary to configure
the gateway to expose it and allow users to access the application. This can be
performed with the help of a Kubernetes-specific YAML file. The main part of the
one used in the developed application is depicted below:

1
2

3 - port :
4 number: 443
5 name: https
6 pro to co l : HTTPS
7 t l s :
8 mode: SIMPLE
9 credentialName: https−c r e d e n t i a l

10

11

The file configures the gateway to be accessible through the HTTPS (HTTP on
top of TLS) protocol on port 443. In addition, it specifies some peculiar properties
for the protocol utilized. The SIMPLE in the mode field solely represents that the
simple mode of operation of TLS is employed. This means that only the gateway
will be authenticated by the protocol. In particular, the digital certificate and
associated private key needed are specified in a Kubernetes secret that must be
indicated in the credentialName field of the YAML file.

50

Security

6.2.2 Authentication and access control
For what are the requirements of the application, it is not sufficient to have a
simple TLS connection for outer-mesh communications. No client authentication is
supplied. For this reason, it is necessary to provide some sort of authentication to
place side by side with the simple TLS protocol. Fortunately, the Istio gateway
also offers help for what regards the authentication process. In particular, it is
compatible with JSON Web Tokens. Hence, it is possible to combine the Authenti-
cation Service (that provides JWTs to signed-up users) with the gateway in order
to obtain a complete authentication system.

More specifically, every external user needs to obtain a JWT from the Authentica-
tion service before having complete access to the system’s functionalities. However,
every request must go through the Istio gateway to reach such a service and, at
the same time, the gateway needs a valid JWT to allow requests inside the system.
Hence, some access control mechanism must be imposed to deny access to any
requests without a valid token but the ones for the Authentication service. It is
possible to define an AuthorizationPolicy YAML file to impose such a constraint.
In particular, the one utilized in the studied application simply specifies that all
the requests directed to a URI that does not start with "/auth" (the ones for the
Authentication service) need to contain a valid JWT.

The only remaining configuration to perform in order to have a working and
complete authentication system regards how to validate the JWTs. Again, as
happens for most of the components in the system, it is possible to define a YAML
file to provide the needed configuration. Particularly, to properly instruct the
Istio gateway to validate the tokens, a RequestAuthentication Kubernetes resource
needs to be defined. It specifies, firstly, that a JWT authentication is utilized and,
secondly, who is the issuer of the tokens and what is the public key to verify the
signature associated with each token. When the Authentication service is created,
it is given a private key to sign every issued token. Such a key, as with every
private key, comes with an associated public key that is exactly the one that must
be indicated in the RequestAuthentication configuration file.

51

Chapter 7

Tests and Results

This chapter is divided into two sections. The first one regards a brief description
of what are the services provided by the Google Cloud Platform to help developers
monitor and test their applications. Moreover, it illustrates, through one of the
dashboards that GCP offers, what is an overview of some of the resources utilized
by the cluster that has hosted the studied application.
On the other hand, the second section of this chapter shows and analyzes what are
the results of the tests that have been performed on the system. Particular focus is
placed on how the developed application performs when it processes around 1200
requests per second which is the typical load in a real-case scenario. In this context,
different graphs, mainly regarding resource usage, are presented and analyzed with
the objective to demonstrate that only the right amount of resources needed for
the application to work properly have been allocated. This section also reports the
cost needed to run the final product on GCP.

7.1 Google Cloud Platform monitoring
Google offers the users of its Cloud services a whole section dedicated to monitoring.
In order to provide such a functionality, most of the services are always "observed"
by GCP that keeps track of a lot of information regarding the operations that
such services perform. Specifically, all this data can be explored from the Google’s
monitoring page which offers a huge amount of metrics regarding a lot of aspects of
the cloud functionalities used. Some examples are: bytes received by the deployed
system, resource consumption, errors, and costs. In addition, Google gives the
possibility to create dashboards (i.e. a set of metrics shown, in form of graphs or
tables, in a single place) that are really useful to have a global view of what has
been happening in the system. GCP also suggests some already-created dashboards
that refer only to what are the services that the users have actually been utilizing.

52

Tests and Results

For instance, a dashboard that was suggested by Google while the studied applica-
tion was running is the one depicted in figure 7.1.

Figure 7.1: GKE Nodes, Containers, and Pods

The figure shows an overview of the deployed Google Kubernetes Engine cluster
that focuses on the number of nodes, containers, and Pods running. The displayed
numbers are so high because, other than the fact that every deployed component
comes with the proxy sidecar and thus doubles the count, the dashboard also
considers the resources that are automatically deployed by Google to make the
Kubernetes cluster and the Google Cloud services work. Examples of the services
that run without direct deployment by the developers are: some monitoring, logging,
and security tools, some Anthos components, K8s control plane, and all the services
needed to manage and interact with the Google Cloud Platform in general.

7.2 Performance analysis and bechmarking
Before presenting and describing the graphs representing the state of the system
when dealing with a typical real-life load, it is important to mention what have
been the tools used to actually test the application. In particular, the studied
system has been tested throughout the entire development, at first, to understand
if the application was working properly and later, when the complete system was
deployed, to actually examine if the final product could meet the imposed require-
ments. In the first phase, cURL[19] (a really popular command line tool that allows
sending HTTP(S) requests) has been mainly used to test the system every time
a new functionality was added or an existing one was modified. Later, when the

53

Tests and Results

application was finished, loadtest[20] (another command line tool to send HTTP(S)
but more specific to test high and real-world loads) has been utilized to properly
scale the system to be able to process all the requests necessary for the application
to function appropriately. To this end, it is important to point out that, firstly,
even if the system needs to process that specific load, it has not been forgotten,
during testing, that it needs to do so while caring about the other requirements in
terms of speed, resource allocation, security, and reliability. Secondly, when the
term "scale" is used, it is meant for both vertical and horizontal scaling. Hence, the
application has gone through a process that considers both increasing the memory
and CPUs of single components and deploying more replicas of the same component.

It has already been specified different times how particular attention has been
put to not over-allocate resources. In order to do so, a gradual testing process
has been performed on the final system. At first, every component of the ar-
chitecture was given only the minimum quantity of resources and few req/sec
(around 400) was sent to the system that was able to process all of them without
crashing. The load was then increased to 800. In this context, the system started
to have some problems and, even if not immediately, the it stopped working. For
this reason, thanks to the metrics provided by GCP, more resources (in terms of
CPUs and memory) were allocated to the components of the system that crashed
or that were about to. This process continued until the required 1200 req/sec
where reached. However, reaching the goal with this type of approach has the
risk of over-allocating resources in the "last step" of the incremental procedure.
Therefore, other tests were performed to see if some of the CPUs and memory
allocated to some components could be decreased without impairing the application.

It is of fundamental importance to point out, considering that in real-case scenarios
it could happen that more than the usual load is witnessed, that further additional
test cases where the requests per second were higher than the usual value have
been considered, and the system, even if with some delays, was still able to work
as desired. In particular, the application was able to work with around 100 req/sec
more than the normal load.

7.2.1 Bytes processed
To give more context to what is the actual load that the system has to deal with
when all the sensors send their measurements every 30 seconds and thus produce the
renowned 1200 requests per second, figure 7.2 shows what are the bytes associated
with such a number of HTTP requests.
As it is possible to see from the picture, more than 10 Mega Bytes per second are
processed by the application when it gathers data from all the sensors. Requests

54

Tests and Results

from human users are not considered because really few if compared with the ones
sent by the sensors.

Figure 7.2: Bytes associated with 1200 req/sec.

The bytes that can be processed are only to be considered as a piece of information
to relate to the total cost of the application and not as its maximum capacity. It is
possible to have a system capable of processing more data if more resources are
strategically allocated, but this comes with higher costs and would not make sense
for the chosen use case.

7.2.2 Cost
The total cost of the Google Cloud services used, which mainly include, as not free
components, Google Kubernetes Engine and Anthos Service Mesh, is around $120
per day. One of the requirements of the application was to be affordable, even for
small companies. An average cost of $3600 per month to rent an entire cluster
and host such a complex application is something that most companies should be
willing to pay and afford.

7.2.3 CPU utilization
Figure 7.3 represents the CPU utilization of the various architecture components
when the application processes the usual 1200 requests per second. As happens
with the previous graph, only a time frame of 10 minutes is shown for visualization
purposes. Nevertheless, several other tests have been run where longer time frames,
and more req/sec, were considered and the application was still able to work
satisfactorily.
Specifically, the picture shows for every component of the architecture what is the
percentage of the CPU allocated that is actually being used (e.g. 1 means that

55

Tests and Results

Figure 7.3: CPU utilization with 1200 req/sec.

all the requested CPU for that component is being used at that moment). In this
context, it is important to notice from the graph that for some elements the limit
of 100% (1) is exceeded. This is because Kubernetes allows for some short period
of time to use more CPU that the one allocated. However, if this happens for too
long and with a value that goes too much over the threshold (that depends on the
specific architecture deployed) the component will crash. As will be described in
the next subsection, the same cannot happen for memory allocation. In this case,
every component cannot get more than 100% of the requested RAM.

As was expected and as is also illustrated in the graph, only some elements
of the system witness high load while others only use a small portion of the CPU
allocated for them. This is totally normal since the heavy operations that the
application performs are streaming and storing measurements. Such activities only
regard some of the components of the system while others are only used to provide
"accessories" functionalities. For instance, the Authentication and HistoricalData
Services only work when the application needs to provide some JWTs and histori-
cal data, respectively. Both requests are performed rarely if compared with the
constant and fast flow of measurements that all the sensors send to the cluster.
The minimum resources that GKE with the Autopilot mode of operation allows
allocating for each Pod are 0.25 vCPU (stands for virtual CPU and represents
the portion of the real CPU that is assigned to a particular virtual machine or
container) and 0.5 GiB. Even if these values have been assigned to the "low-load"
components, they are still a lot for the few simple operations that such components
perform. Hence, some resources had to be assigned and only partially used as it
is possible to see from those flat lines present in figure 7.3. In this context, it is
important to specify that two different lines are present for both the element’s
container and the isto-proxy.

56

Tests and Results

For illustration purposes, a specific time in the graph has been randomly cho-
sen (the precise moment chosen does not matter as far as it is in the tested time
frame since the behavior is somehow constant) and its values have been reported in
table 7.1. In particular, only the 9 highest values at that moment are reported and
what they represent is not the specific CPU utilization for those specific components
at that exact time but the average value in the whole minute considered.

Table 7.1: CPU utilization represented in figure 7.3 at 6 pm.

Pod name Container name Value
my-kafka-0 kafka 1.003
mongodb-1 mongodb 0.957
my-bridge.2 istio-proxy 0.898
mongodb-0 mongodb 0.889
mongodb-2 mongodb 0.851
my-bridge-0 istio-proxy 0.829
my-bridge-1 istio-proxy 0.825
my-kafka-0 isto-proxy 0.754
my-bridge-3 istio-proxy 0.643

As expected, all the components with high CPU utilization are the ones that have
to deal with data gathering and streaming.
First on the list is one of the Kafka brokers that slightly exceed the 100% usage.
However, it does so only by 0.3%, and, as already mentioned, this is something that
Kubernetes allows. In a normal context, it would be weird to have only one of the
three Kafka brokers appears in the list since it would be imposed on every sensor
to only publish messages having the sensor id both in the key and value of the
message itself. Hence, different partitions would be assigned to different sensors.
However, for testing purposes, the same message was published over and over again
and thus only one of the brokers actually had a partition where measurements were
published (this without obviously considering replicas that instead concern all the
brokers).

Lower in the list, there are all the MongoDB replica set instances, this was
predictable since all the measurements are written and replicated in the database
instances and, moreover, such operations are quite resource-demanding. It can
be seen that only the Kafka and MongoDB Pods are the ones that have more
CPU utilization for the main container instead of the istio-proxy. This is prob-
ably due to the fact that, taking into consideration how expensive some TLS

57

Tests and Results

operations are, only those elements that have to perform complex operations (i.e.
Kafka and MongoDB in the studied case) utilize more resources than the isto-proxy.

Close to the MongoDB replicas, there are the Kafka Bridge replicas. In par-
ticular, the sidecar proxies of those Pods. Again, this can be explained by thinking
about how expensive the TLS protocol is with respect to what the Kafka Bridge
main container does (i.e. translating HTTP requests to Kafka messages and vice
versa). Properly allocating resources for this component was challenging. It often
crushed and it was necessary to perform a lot of tests to make it suitably work.
Specifically, it was required to deploy 4 Kafka Bridge replicas in order to meet the
requirements.
Even if the operation performed by this component is simple, it demands a lot of
resources. As it is possible to notice from the table, all 4 replicas are present among
the 9 highest resource-demanding Pods containers in the system. All of this with
the only objective of providing more flexibility (through HTTP access to Kafka) to
the application. As it will be also mentioned in the concluding chapter, if the use
case considered requires higher performance and the developers are willing to deal
with the Kafka protocol every time a message needs to be produced or consumed,
then a good idea could be to remove the Kafka Bridge component from the system
and have external users directly communicating, after the API gateway, with the
Kafka cluster.

The only component in the table that has not been mentioned yet is the istio-proxy
instance of the my-kafka-0 Pod. Even if, as just specified, TLS related operations
are most likely not as expensive as most of the operations performed by the Kafka
cluster, it still processes all the measurements that go through the system and is
therefore in the table as well.

7.2.4 Memory utilization
Figure 7.4 represents the memory utilization of the various architecture components
when the application processes 1200 requests per second. The same time frame as
the previous graph is depicted and so these values are to consider in relation to the
ones presented in the previous subsection.
Differently from what happens with CPU limits, memory limits cannot be exceeded
in Kubernetes. In case more than the maximum allocated memory is occupied,
the component simply crashes. Hence, it is good practice to keep a good margin
with respect to the limit in order to avoid inconvenient situations. Specifically,
considering the system studied, a margin of roughly 20% is kept when 1200 req/sec
are processed. As already mentioned, the system has been tested with more requests
than the usual ones and in those cases, no more than 90% of memory was reached.

58

Tests and Results

Figure 7.4: Memory utilization with 1200 req/sec.

Another difference between this graph and the CPU utilization one is that a lot of
components seem to utilize most of the memory available at the same time. This
is probably due to the way the operating system used by the nodes on the Google
Cloud Platform frees memory. Most likely, the difference in the two graphs can be
explained by the fact that data are kept in memory for some time while CPU highly
depends on the specific operations that are performed at the moment analyzed. In
this context, it is important to cite one of the configuration choices that has been
made when Kafka has been deployed. It regards how the Kafka Cluster manages
the retention of the messages produced. In order to avoid keeping a lot of messages
at the same time, which could easily fill the allocated memory, a retention of 1
minute has been set up. As is noticeable from the 7.2, even if, considering the
testing framework, only one of the three brokers is what receives all the messages, it
is not present among the highest 9 memory-demanding components. What would
have probably happened with a higher retention value would have been the Kafka
broker crashing abruptly.

As happens in the table of the previous subsection and as has been just men-
tioned, table 7.2 indicates the 9 components that requested more memory in the
minute considered (6:00 pm). Similarly to CPU utilization, the istio-proxy that is
present as a sidecar in all components consumes a lot of resources also in terms of
memory. In particular, again similarly to the previous table, the sidecars associated
with Kafka Bridge use up a lot of memory. This is easily noticeable from the table
that contains all 4 replicas of Kafka Bridge istio-proxy. During the testing phase,
one or more of the Kafka Bridge replicas crashed also for low memory allocation
other than low CPU. This proves even more how it should be considered to remove
such a component in applications where it is important to save resources and/or
have higher processing speed and, at the same time, it is not so fundamental

59

Tests and Results

to access Kafka through HTTP. Moreover, this time differently from the CPU
consumption table, an entry is also dedicated to the Kafka Bridge "main" container
that, even if should perform quite simple operations, utilizes a lot of RAM.

Table 7.2: Memory utilization represented in figure 7.4 at 6 pm.

Pod name Container name Value
my-bridge-1 istio-proxy 0.820
my-kafka-0 istio-proxy 0.756

my-connect-0 my-connect 0.689
my-bridge-3 istio-proxy 0.672

my-connect-2 my-connect 0.659
my-bridge-0 istio-proxy 0.649
my-bridge-2 istio-proxy 0.554
my-kafka-2 isto-proxy 0.530
my-bridge-0 my-bridge 0.524

The other two entries containing the istio-proxy in the "Container name" column
are both Kafka brokers. Being the central data streaming unit of the system, it
is not surprising to find them in the table. However, what is instead surprising is
that, in this case, it is the sidecar that consumes more resources than the main con-
tainer. Such behavior is the opposite of the one witnessed in the previous subsection.

The last element in the list yet to consider is Kafka Connect. Specifically, it
is present two times. This means that, despite being not so demanding CPU wise,
requires a lot of memory. In particular, its main container is the one that appears
to be one of the most memory-intensive elements of the system.

60

Chapter 8

Conclusions

The objective of this work has been to develop a distributed system capable of
streaming and storing big amounts of data in a secure, reliable, and efficient way.
All of this with the use of cutting-edge technologies and the most up-to-date
techniques in the industry. Moreover, the system is required to be as flexible and
cheap as possible in order to be adaptable to a lot of applications and usable by
even small companies. Specifically, this last aspect represents what is the biggest
contribution of this thesis. The whole study required knowledge of all the aspects
of what are backend design, development, and testing. The entirety of the project
demanded an understanding of several topics from basic decentralized schemes and
principles to advanced security concerns and complex distributed architectures.

The main challenge has been properly designing a system capable to meet all
the imposed requirements at the same time. In order to do so, the coordination
of different technologies and techniques has been required. First of all, to obtain
a reliable, scalable, and flexible architecture, a Microservices approach has been
chosen. However, this type of architecture can be expensive to deploy and hard to
manage and coordinate. The latter issue has been solved thanks to the use of the
famous container orchestrator Kubernetes while the first problem has been tackled
with the help of Google Cloud services. In particular, its capability of hosting
Kubernetes applications on its clusters was the solution needed for the problem.
Instead, for what regards security, a proper technique was required to protect such
a complex system. Fortunately, an ad hoc solution for this type of problem is
available. It allows building a dedicated network over the traditional network in
which the application is deployed. It imposes specific rules on the components of
the cluster and the data exchanged within and outside of it. Such a technique
is called service mesh and several implementations are provided by open-source
projects and private companies. In particular, Google offers its own implementation
named Anthos Service Mesh which is based on the open-source Istio project.

61

Conclusions

After having decided what techniques and technologies to build, manage and deploy
the application infrastructure, it has been necessary to choose and configure the
single elements composing the Microservices architecture. This phase also needed a
thorough study to properly opt for the right components for the cloud environment
chosen and, moreover, that could be introduced in the architecture without impair-
ing the normal function of the system that must meet all requirements. In this
context, the efficient and well-known distributed event streaming platform offered
by Apache Kafka has been used as the central data distribution technology while a
MongoDB replica set, thanks to its flexibility and reliability, has been deployed as
data storage. Two other components of the architecture, that have been developed
with the use of the Spring framework for Java, manage what is the retrieval of data
from the database and part of the authentication process. The last element of the
system is the API gateway that load-balances and routes to the right microservice
all the requests reaching the cluster. In addition, it also performs a fundamental
role concerning data encryption and end-users authentication.

Up to this point, it has not been mentioned if a specific use case has been considered.
That is to further highlight what is the most important result of this thesis which
is the adaptability of the system developed. The described architecture can be
utilized in most situations where efficient streaming and collection of big amounts
of data is required. However, in order to test the system within a real case scenario
a specific use case was needed. In particular, an application capable of gathering
data from EMF sensors to allow human users to study the cellular coverage of a
specific area has been examined. In this context, the developed application was
successfully able to satisfy the expectations. Specifically, cluster resources have
been accurately allocated in order to obtain a system that could gather, store,
and stream all the sensors data in the most resource-efficient way. This has led to
an application that costs $50 dollars per day which is acceptable and affordable
considering the complexity and functionalities of the product.

8.1 Future works
One of the main characteristics of the developed application, thanks to its Microser-
vices nature, is to be extensible. For this reason, some of the future works that
could be performed on the system in the future could be the integration with other
functionalities with the objective to extend or enhance the current product. For
instance, all the information stored in MongoDB may be enhanced with some data
analytics and machine learning tools. Moreover, adding a frontend application to
provide a graphical user interface to the end users would surely benefit the overall
system.

62

Conclusions

In addition, more testing could be performed to further improve the performance
of the application. For example, the Kafka Bridge component, which needs a lot of
resources to work, could be removed to analyze how much faster the system can
get without it, or the sharding functionality of MongoDB may be introduced in
use cases where a high number of requests of historical data is witnessed.
Another aspect that may be further explored in future works is security. Even
though the security features implemented in the system presented in this thesis
are all correctly working, some improvements may be introduced for what regards
certificate management and the authentication technique. Especially, a highly
tested and secure external authentication provider may substitute the internal one
utilized in the developed application.

63

Bibliography

[1] Indeed Editorial Team. 4 Distributed Systems Types (Plus Pros and Cons).
[Online; accessed 09-February-2023]. Aug. 2022. url: https://www.indeed.
com/career-advice/career-development/distributed-systems-types
(cit. on p. 4).

[2] Splunk. What Are Distributed Systems? [Online; accessed 09-February-2023].
Feb. 2021. url: https://www.splunk.com/en_us/data-insider/what-
are-distributed-systems.html (cit. on p. 5).

[3] Chris Richardson. Pattern: Microservice Architecture. [Online; accessed 10-
February-2023]. 2023. url: https://microservices.io/patterns/micros
ervices.html (cit. on p. 6).

[4] Mehmet Ozkaya. Microservices Architecture. [Online; accessed 10-February-
2023]. Sept. 2023. url: https://medium.com/design-microservices-arch
itecture-with-patterns/microservices-architecture-2bec9da7d42a
(cit. on p. 7).

[5] AWS. What Is Containerization? [Online; accessed 11-February-2023]. url:
https://aws.amazon.com/what-is/containerization/#:~:text=Con
tainerization%20is%20a%20software%20deployment,matched%20your%
20machine’s%20operating%20system. (cit. on pp. 9, 10).

[6] TIBC. What is Containerization? [Online; accessed 11-February-2023]. url:
https://www.tibco.com/reference-center/what-is-containerizatio
n (cit. on p. 9).

[7] IBM. What is cloud computing? [Online; accessed 17-February-2023]. url:
https://www.ibm.com/topics/cloud-computing (cit. on p. 10).

[8] Microsoft Azure. What is cloud computing? [Online; accessed 24-February-
2023]. url: https://azure.microsoft.com/en-us/resources/cloud-
computing-dictionary/what-is-cloud-computing (cit. on p. 11).

[9] Arron Fu, CTO UniPrint.net. 7 Different Types of Cloud Computing Struc-
tures. [Online; accessed 24-February-2023]. url: https://www.uniprint.
net/en/7-types-cloud-computing-structures/ (cit. on p. 12).

64

https://www.indeed.com/career-advice/career-development/distributed-systems-types
https://www.indeed.com/career-advice/career-development/distributed-systems-types
https://www.splunk.com/en_us/data-insider/what-are-distributed-systems.html
https://www.splunk.com/en_us/data-insider/what-are-distributed-systems.html
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html
https://medium.com/design-microservices-architecture-with-patterns/microservices-architecture-2bec9da7d42a
https://medium.com/design-microservices-architecture-with-patterns/microservices-architecture-2bec9da7d42a
https://aws.amazon.com/what-is/containerization/#:~:text=Containerization%20is%20a%20software%20deployment,matched%20your%20machine's%20operating%20system.
https://aws.amazon.com/what-is/containerization/#:~:text=Containerization%20is%20a%20software%20deployment,matched%20your%20machine's%20operating%20system.
https://aws.amazon.com/what-is/containerization/#:~:text=Containerization%20is%20a%20software%20deployment,matched%20your%20machine's%20operating%20system.
https://www.tibco.com/reference-center/what-is-containerization
https://www.tibco.com/reference-center/what-is-containerization
https://www.ibm.com/topics/cloud-computing
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-cloud-computing
https://www.uniprint.net/en/7-types-cloud-computing-structures/
https://www.uniprint.net/en/7-types-cloud-computing-structures/

BIBLIOGRAPHY

[10] Paul Krzyzanowski. Distributed Systems Security. [Online; accessed 24-February-
2023]. Apr. 2021. url: https://people.cs.rutgers.edu/~pxk/417/notes/
crypto.html#:~:text=Security (cit. on p. 13).

[11] Docker. Docker overview. [Online; accessed 25-February-2023]. url: https:
//docs.docker.com/get-started/overview/ (cit. on p. 17).

[12] Kubernetes. Kuberetes. [Online; accessed 26-February-2023]. url: https:
//kubernetes.io/ (cit. on p. 18).

[13] Google. Google Cloud Platform. [Online; accessed 28-February-2023]. url:
https://cloud.google.com/ (cit. on p. 20).

[14] Google. Google Kubernetes Engine. [Online; accessed 28-February-2023]. url:
https://cloud.google.com/kubernetes-engine (cit. on p. 21).

[15] Google. Anthos Service Mesh. [Online; accessed 28-February-2023]. url:
https://cloud.google.com/anthos/service-mesh (cit. on p. 21).

[16] Apache. Apache Kafka. [Online; accessed 01-March-2023]. url: https://
kafka.apache.org/ (cit. on p. 22).

[17] MongoDB. MongoDB. [Online; accessed 02-March-2023]. url: https://www.
mongodb.com (cit. on p. 25).

[18] Spring. Spring framework. [Online; accessed 03-March-2023]. url: https:
//spring.io/ (cit. on p. 26).

[19] Daniel Stenberg. cURL. [Online; accessed 15-March-2023]. url: https://
curl.se/ (cit. on p. 53).

[20] Alex Fernández and contributors. loadtest. [Online; accessed 15-March-2023].
url: https://github.com/alexfernandez/loadtest (cit. on p. 54).

65

https://people.cs.rutgers.edu/~pxk/417/notes/crypto.html#:~:text=Security
https://people.cs.rutgers.edu/~pxk/417/notes/crypto.html#:~:text=Security
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://kubernetes.io/
https://kubernetes.io/
https://cloud.google.com/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/anthos/service-mesh
https://kafka.apache.org/
https://kafka.apache.org/
https://www.mongodb.com
https://www.mongodb.com
https://spring.io/
https://spring.io/
https://curl.se/
https://curl.se/
https://github.com/alexfernandez/loadtest

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Case study
	Thesis outline

	Distributed Systems
	Key characteristics
	Microservices architecture
	Example
	When to use the microservices architecture?

	Containerization
	How does it work?
	Benefits

	Cloud computing
	Types of cloud computing
	The cloud computing stack

	Security
	Cryptography
	Transport Layer Security (TLS)

	Applicable technologies
	Docker
	Kubernetes
	Architecture

	Google Cloud Platform
	Google Kubernetes Engine
	Anthos Service Mesh

	Apache Kafka
	Architecture

	MongoDB
	Spring

	Design
	Requirements
	Challenges and solutions applied
	Architecture
	Data format and flow

	Components
	Data streaming
	Kafka Cluster
	Kafka Connect
	Kafka Bridge

	Data storage
	Historical Data Service
	Authentication Service
	API Gateway
	Endpoints

	Security
	Inner-mesh communication
	Outer-mesh communication
	Encryption
	Authentication and access control

	Tests and Results
	Google Cloud Platform monitoring
	Performance analysis and bechmarking
	Bytes processed
	Cost
	CPU utilization
	Memory utilization

	Conclusions
	Future works

	Bibliography

