
Politecnico di Torino
Institut EURECOM

Master of Science Double Degree in Computer Engineering and Data Science

Deep Models of Decision

Supervisors
Prof. Bartolomeo Montrucchio1

Prof. Marios Kountouris2

Dr. Alix Lhéritier3

Nicolas Bondoux3

Dr. Rodrigo Acuna Agost3

Dr. Eoin Thomas3

Candidate
Federico Tiblias

Academic Year 2022 - 2023

1Politecnico di Torino
2EURECOM

3Amadeus IT Group

To anyone who believed in me.
And to anyone who didn’t.

Abstract

Decision Theory is a branch of mathematics and economics that studies the process
of decision-making under uncertainty. It provides a framework for analyzing the
choices made by individuals or organizations and gives guidance on how to make
the best decisions possible given the limited information and resources available.
Choice Modeling is a subfield of Decision Theory that aims to explain and mea-
sure how people or groups make decisions when presented with various options.
It achieves this by modeling the link between the characteristics of those options
and the likelihood that a person will select one over another. Some of its applica-
tions include analyzing consumer behavior in marketing research, predicting voter
preferences in political campaigns, optimizing public policy decisions, and design-
ing recommendation systems for online platforms. The main goal of this thesis
is to propose and assess novel approaches to Choice Modeling that leverage the
expressivity of deep machine learning models. The first approach we investigate is
an application of deep learning in conjunction with Quantum Decision Theory, a
framework developed by cognitive psychologists that proposes a way of modeling
phenomena such as uncertainty and interactions between alternatives inspired by
quantum mechanics. The second one is based on the Attention Mechanism, no-
toriously used in deep learning for modeling long-distance relationships between
inputs. We aim to explore the capabilities of these new models and provide a
general way of applying them to new choice problems. We evaluate the efficacy of
these new methods on three different Choice Modeling datasets of increasing com-
plexity. Furthermore, we compare our methods against reference models from both
Classical and Quantum Decision Theory. Finally, we discuss potential avenues for
future research.

i

Résumé

La théorie de la décision est une branche des mathématiques et de l’économie
qui étudie le processus de prise de décision dans l’incertitude. Elle fournit un
cadre pour l’analyse des choix effectués par des individus ou des organisations
et donne des conseils sur la manière de prendre les meilleures décisions possibles
compte tenu des informations et des ressources limitées disponibles. La modélisa-
tion des choix est un sous-domaine de la théorie de la décision qui vise à expliquer
et à mesurer la façon dont les personnes ou les groupes prennent des décisions
lorsqu’on leur présente diverses options. Elle y parvient en modélisant le lien
entre les caractéristiques de ces options et la probabilité qu’une personne en choi-
sisse une plutôt qu’une autre. Certaines de ses applications comprennent l’analyse
du comportement des consommateurs dans la recherche marketing, la prédiction
des préférences des électeurs dans les campagnes politiques, l’optimisation des dé-
cisions de politique publique et la conception de systèmes de recommandation
pour les plateformes en ligne. L’objectif principal de cette thèse est de proposer
et d’évaluer de nouvelles approches de la modélisation des choix qui tirent parti
de l’expressivité des modèles d’apprentissage automatique profond. La première
approche que nous étudions est une application de l’apprentissage profond en con-
jonction avec la théorie de la décision quantique, un cadre développé par des
psychologues cognitifs qui propose une façon de modéliser des phénomènes tels
que l’incertitude et les interactions entre les alternatives inspirée de la mécanique
quantique. La seconde est basée sur le mécanisme d’attention, notoirement utilisé
en apprentissage profond pour modéliser les relations à longue distance entre les
entrées. Nous visons à explorer les capacités de ces nouveaux modèles et à fournir
une manière générale de les appliquer à de nouveaux problèmes de choix. Nous
évaluons l’efficacité de ces nouvelles méthodes sur trois ensembles différents de
données de modélisation de choix de complexité croissante. En outre, nous com-
parons nos méthodes à des modèles de référence issus de la théorie de la décision
classique et quantique. Enfin, nous discutons des pistes de recherche potentielles
pour l’avenir.

ii

Contents

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Company overview and business sector 1

1.1.1 Team presentation . 1
1.2 Thesis objective . 3

2 Background 5
2.1 Decision Theory . 5

2.1.1 A theory of choice . 5
2.1.2 Context Effects . 7
2.1.3 PCMC-Net . 7
2.1.4 Recommender Systems and Choice Modeling 11

2.2 Quantum Probability . 12
2.2.1 Bra-ket Notation . 12
2.2.2 Quantum Systems . 12
2.2.3 Measurement . 13
2.2.4 Differences with classical probability 14
2.2.5 Hamiltonian Evolution . 15
2.2.6 Quantum Decision Theory 17

2.3 Deep Models . 17
2.3.1 Transformers . 18
2.3.2 Pointer Networks . 20

3 Architectures 23
3.1 H-Net: A Quantum-inspired Discrete Choice Model 23

3.1.1 Motivation . 23
3.1.2 Overview . 24
3.1.3 Embedding . 26

iii

3.1.4 Comparison . 27
3.1.5 Hamiltonian dynamics . 28
3.1.6 SimpleH . 29

3.2 Pointer Transformer: An Attention-based Discrete Choice Model . . 30
3.2.1 Motivation . 30
3.2.2 Overview . 31
3.2.3 Comparison . 33

4 Applications 35
4.1 Methodology . 35

4.1.1 Optimizer . 36
4.1.2 Hyperparameter tuning . 36
4.1.3 Hardware . 37

4.2 Synthetic Stated Preferences . 37
4.2.1 Dataset Description . 37
4.2.2 Results . 37

4.3 Airline Itinerary . 38
4.3.1 Dataset Description . 38
4.3.2 Results . 40

4.4 RecSys Challenge 2019 . 41
4.4.1 RecSys Challenge . 41
4.4.2 Dataset Description . 42
4.4.3 Feature Engineering . 43
4.4.4 Results . 46

5 Discussion 49
5.1 Comments on results . 49
5.2 The search for a QDT-inspired RNN 50
5.3 Limits of Quantum Decision Theory 50

6 Conclusion and Future Work 53

A RSC Features 57

Bibliography 61

iv

List of Figures

1.1 Amadeus world presence as the leading company in the travel industry 2
1.2 Amadeus business model . 2
1.3 Amadeus Applied Research and Technology team activity 3

2.1 Full architecture diagram of PCMC-Net 9
2.2 Conjunction of two events more likely than the single one 15
2.3 Hamiltonian evolution for a 4-dimensional quantum state 16
2.4 Attention scores for "I love you" translated to French 20

3.1 Overview of H-Net’s full architecture. Embedding layer is denoted
in green, comparison layer in blue, and Hamiltonian dynamics layer
in yellow . 26

3.2 Detailed view of H-Net’s embedding layer 27
3.3 Detailed view of H-Net’s comparison function 28
3.4 Detailed view of the Hamiltonian dynamics layer 29
3.5 Pointer Transformer architecture. Embedding layer is denoted in

green, comparison layer in blue, and aggregation layer in yellow . . 32
3.6 Detailed view of a multi-headed Attention block Ai 33

4.1 SP Top N Accuracy comparison . 38
4.2 AI Top N Accuracy comparison. PCMC-Net (green) and H-Net

(red) almost always overlap . 42
4.3 RSC task setting . 44
4.4 Aggregate problems in the RSC dataset. Data leakage is shown in

orange, anticausal relationships in yellow, and the corrected lines in
green . 45

4.5 Loss difference explained. While both figures predict the same al-
ternative, 4.5b is less certain about the true answer and therefore
has a higher loss . 46

4.6 RSC Top N Accuracy comparison 48

v

List of Tables

4.1 Results on SP dataset . 38
4.2 Hyperparameters evaluated on SP dataset 39
4.3 Results on AI dataset . 40
4.4 Hyperparameters evaluated on AI dataset 41
4.5 Results on RSC dataset . 47
4.6 Hyperparameters evaluated on RSC dataset 47
4.7 Summary of model sizes across all datasets 48

A.1 Feature description for the final RSC dataset 59

vii

Chapter 1

Introduction

1.1 Company overview and business sector
One of the top software firms in the world, Amadeus IT Group is the industry-
leading Global Distribution System (GDS) provider for the travel and tourism
sectors. It has more than 16,000 employees globally and was founded in 1987 as
an alliance between Air France, Lufthansa, Iberia, and Scandinavian Airline Sys-
tem. While the corporate headquarters are located in Madrid, Spain, the primary
location for product development is Sophia Antipolis, France. Amadeus supports
client operations at the market level via 173 local Amadeus Commercial Organi-
zations (ACOs) in over 190 countries, as shown in Figure 1.1.
More in detail, Amadeus provides two main services to the airline industry:

• through its central reservation system, as a GDS platform, provides the
foundation for searching, pricing, booking, ticketing, and a number of other
processing services to various travel suppliers and travel agencies (CRS)

• as an Information Technology (IT) company, provides solutions to auto-
mate many logistics processes, such as revenue management, data analysis,
inventory management, and travel intelligence services to a wide range of
customers, such as airlines, tour operators, hotels, etc.

The company currently provides services to 770 airlines, 132 airport operators, 53
cruises, 43 car rental companies, 1M+ hotel properties, 90 rail operators, and 128
ground handlers as well as many other businesses.

1.1.1 Team presentation

This project was developed as part of the Applied Research and Technology (ART)
team, whose mission is to conduct exploratory and applied research in the fields

1

Introduction

Figure 1.1: Amadeus world presence as the leading company in the travel industry

Figure 1.2: Amadeus business model

of Artificial Intelligence, Data Science, and Emerging Technologies. The team’s
primary objective is to facilitate the development of new applications and enhance
existing products throughout Amadeus. The research work carried out by the team
is usually results in publications in renowned journals and conferences, and much
of it is eventually incorporated into the company’s services pipeline or submitted
as patents. The applied research branch is typically driven by specific use-cases,
with the aim of addressing company or customer needs, while the exploratory
branch strives to keep the company up-to-date on technological advances. This

2

1.2 – Thesis objective

thesis work belongs to the exploratory branch, focusing on long-term objectives.

Figure 1.3: Amadeus Applied Research and Technology team activity

In addition, the team’s research efforts are strengthened through collaborations
with academic institutions such as the Massachusetts Institute of Technology
(MIT), EURECOM, the University of Côte d’Azur, and Inria. These partnerships
involve various forms of collaboration including internships, industrial PhDs, and
joint research projects.

1.2 Thesis objective
The main objective of this thesis is to investigate new paradigms of choice mod-
eling. In particular, we build upon two different paradigms that have received
significant attention in recent years: Quantum Decision Theory (QDT), a novel
framework that is shown capable of resolving paradoxes and model various psy-
chological anomalies observed in human decision makers, and the Attention Mech-
anism, a well-established technique from deep learning not commonly applied in
choice modeling despite its potential. We evaluate our proposed methods on prob-
lems related to the travel industry. The thesis has therefore both a theoretical and
applied flavor, first proposing new methods and then assessing their performance.

3

Chapter 2

Background

This chapter aims at providing the reader with a comprehensive understanding of
the theoretical concepts that underpin this thesis. We start by introducing the field
of decision theory and its relevance to this work. This will be followed by a brief
overview of the methods that will serve as reference points for our comparisons.
Next, we delve into quantum probability and quantum decision theory, explaining
their key principles and how they relate to decision-making. Finally, we examine
some deep learning models that have inspired our work, highlighting their key
features and contributions to the field.

2.1 Decision Theory

Decision Theory is a branch of mathematics and economics that studies the pro-
cess of decision-making under uncertainty. It provides a framework for analyzing
the choices made by individuals or organizations, taking into account their pref-
erences, goals, and the information they have available. Decision Theory focuses
on how to make the best decisions possible given the limited information and re-
sources available, and it has a wide range of applications in fields such as finance,
engineering, and health care.

2.1.1 A theory of choice

Choice modeling is a branch of Decision Theory that aims to measure and com-
prehend how individuals or groups make decisions when presented with a range
of options or alternatives. It is commonly applied to analyze the decision-making
process related to products, services, or policies, by constructing a model that
shows the connection between the attributes of those options and the likelihood
of a person selecting one option over another. The main contributions and most

5

Background

widespread models in this discipline derive from Utility Theory, an economic frame-
work that assumes that individuals make rational choices in order to maximize
some hidden parameter called utility [Neumann and Morgenstern, 1944]. Utility
is a function of alternative and individual and is unknown. The objective thus
becomes to estimate this function and quantify utility for a given choice.

An important class of choice models is the Multinomial Logit (MNL), a classifi-
cation method that generalizes Logistic Regression to multiple alternatives. MNL
defines the probability of choosing an item i from a set S as proportional to the
latent value of the item, represented as PS(i) = wi∑

j∈S wj
, where wi is the latent

value of item i. MNL models satisfy Luce’s axiom, also known as independence
of irrelevant alternatives. This principle states that the probability of selecting
one alternative over another is not affected by the presence of other alternatives
in the set. In other words, an individual’s choice between two alternatives is only
dependent on the relative preference for each alternative, and not influenced by
other alternatives that may be available. Any model satisfying Luce’s axiom can
be expressed as an MNL [Luce, 1977]. More formally, Luce’s axiom introduces the
concept of dominance: if alternatives a and b are compared and a is always cho-
sen, we say that a dominates b and express it as a ⪰ b. Luce’s axiom also implies
stochastic transitivity for dominance (if P (a ⪰ b) ≥ 1/2 and P (b ⪰ c) ≥ 1/2, then
P (a ⪰ c) ≥ 1/2 for all a, b, c ∈ S), which requires a total order of all elements and
prevents the expression of cyclic preference situations [Luce, 1977].

However, actual human choices have been shown to be far from rational and
often violate the assumptions of Utility Theory. For example, Allais’ paradox
[Allais, 1953] presents some evidence that individuals prefer a certain outcome
over a risky one even if it defies the expected utility principle (e.g. winning
$1M for sure or $5M with a 20% chance). Ellsberg’s paradox [Ellsberg, 1961]
shows that individuals tend to avoid uncertainty and prefer alternatives with
known distributions, again defying the expected utility principle. In classical lit-
erature, two types of responses have been provided to explain those paradoxes.
First, non-expected utility theories, the best-known one being the Cumulative
Prospect Theory [Tversky and Kahneman, 1992] that takes into account biases in
the perception of probabilities and outcomes. Second, non-deterministic utility
approaches, the most commonly used framework being the Random Utility Model
RUM [Block and Marschak, 1960, Manski, 1977] where the utility has a random
component accounting for unobserved features and population heterogeneity.

6

2.1 – Decision Theory

2.1.2 Context Effects

Although these alternative theories are able to explain the aforementioned para-
doxes, they still fall short in explaining the so-called context effects that oc-
cur when the preference for a given alternative no longer depends on its char-
acteristics only but also on the other alternatives presented in the choice set
[Huber et al., 1982, Tversky, 1972, Simonson, 1989], the order in how they are
presented and even previous questions or choices that can condition preferences
[Shanteau, 1970, Hogarth and Einhorn, 1992]. Luce’s axiom itself is a simplifying
assumption that often does not hold for empirical choice data. Satisfying Luce’s
axiom and stochastic transitivity are strong limitations, and a way to build models
that account for real phenomena is to abandon these assumptions entirely.

To account for these context effects, one approach is to use more comprehensive
and flexible models that can incorporate information from all the alternatives in a
choice set to calculate the context-sensitive utility of each option. In this approach,
utility is no longer a function of an individual and a single alternative but rather is
a function of the whole problem. For example, in [Lhéritier et al., 2019], the utility
is derived from the features of each alternative and some information about the
context is injected by using relative values (with respect to the other alternatives
of the choice set). In [Peterson et al., 2021], where two alternatives are considered,
each one with a distribution of the outcomes that is fully known by the decision-
maker, a large class of functions represented by neural network taking as input all
the known information has been proposed, and shown to be better at explaining
the choices than utility based theories. Although this generality can be appealing,
it can be difficult to train such models when the number of alternatives is variable
and large.

2.1.3 PCMC-Net

PCMC-Net is an extension of a wider and more flexible class of methods called
Pairwise Choice Markov Chains first proposed in [Ragain and Ugander, 2016].
This class of models includes the popular Multinomial Logit (MNL) model, but
also other models that do not adhere to Luce’s axiom, stochastic transitivity, or
regularity. Pairwise Choice Markov Chains define the choice distribution as the
stationary distribution of a continuous-time Markov chain, which is determined
by a transition rate matrix. Despite not adhering to Luce’s axiom in its full form,
these models still satisfy a weakened version called uniform expansion. This prin-
ciple states that if additional "copies" of an option are added (without preference
between them), the probability of choosing one element from the copies remains
constant regardless of the number of copies.

A Pairwise Choice Markov Chain defines the choice probability PS(i) as the

7

Background

probability mass on the alternative i ∈ S of the stationary distribution of a
continuous-time Markov chain (CTMC) whose set of states corresponds to S ⊆ U .
U is identified as the universe of possible alternatives, of which S is a subset (i.e.
there are many possible alternatives, but an individual can choose between only
a few of them at a time). The rate matrix of the subset of states in the Markov
model is computed by restricting the rate matrix Q of the whole universe U to only
rows and columns corresponding to alternatives in S. This resulting matrix, QS

is thus constructed from pairwise transition rates between every two alternatives
in the current choice. These rates are obtained by estimation from data: the off-
diagonal elements qij ≥ 0 directly, and the diagonal elements as qii = −

∑
j∈S/i qij

for each i ∈ S. Thus, the total number of parameters for the model is |S|(|S|− 1).
A constraint is imposed in order for the stationary distribution to exist:

qij + qji > 0 (2.1)

The stationary distribution πS is obtained by solving:

{
πSQS = 0
πS1T = 1

which [Norris, 1997] shows to be equivalent to:

πSQ
′
S =

[
0 | 1

]
.

with Q′
S =

[
((QS)ij)1≤i≤|S|,1≤j<|S| | 1T

]
.

Parameters of QS are estimated from a dataset D by means of log likelihood
maximization of:

logL(Q;D) =
∑
S⊆U

∑
i∈S

CiS(D) logPQ
S (i)

. where PQ
S (i) is the probability of selecting i from S as a function of Q, and

CiS(D) represents the number of times in the data that i was chosen out of S.
The authors encounter several problems during training, such as numerical

instabilities leading to violations of constraints [Ragain and Ugander, 2016], as
well as severe overfitting in cases where the number of examples of each alternative
are scarce [Lhéritier, 2019]. The second limitation in particular is what motivates
PCMC-Net.

PCMC-Net is an amortized deep learning approach for which the architecture
is invariant to the number of alternatives in a single choice (|S|) and even of the

8

2.1 – Decision Theory

whole universe of alternatives (|U |). Another difference from PCMC is that the
former only learns relationships between alternatives, but there is no observation
of the attributes of each choice in order to estimate parameters qij. PCMC-Net,
on the other hand, identifies each alternative by its features and those of the
decision maker. Therefore, qij is a function of the features of the i-th and j-
th alternatives and those of the decision maker. It represents this function by
means of several fully connected neural layers whose parameters are estimated
via gradient descent. While the original PCMC paper used scipy ’s SLSQP opti-
mizer [Virtanen et al., 2020], PCMC-Net is based on PyTorch [Paszke et al., 2019]
and make use of its automatic differentiation engine to perform gradient descent,
specifically using an Adam optimizer.

Figure 2.1: Full architecture diagram of PCMC-Net

The architecture is composed of the following layers:

• Input layer: Initial layer fed with an alternative set S for a specific choice
belonging to a given feature space Fa, as well as context features C belonging
to a given feature space Fc. The term context is an umbrella term that refers
to both the attributes of a particular individual making the decision and the
environment around it. More generally, it contains all information that is
common to all alternatives.

• Representation layer: comprised of representation function to map alter-
natives’ features

ρwa : Fa → Rda

as well as context features

ρwc : Fc → Rdc

where da, dc ∈ N are the representation size of alternative and context, and
are defined as a hyperparameter of the architecture, and wa and wc are
weights of the representation layer to be estimated during training.

9

Background

• Cartesian product layer: Builds all possible pairs of alternatives and
concatenates them with the context to produce an |S| × |S| matrix R. This
layer allows PCMC-Net to be invariant to the number of alternatives |S|.

{ρwa(S1), . . . , ρwa(S|S|)} × {ρwa(S1), . . . , ρwa(S|S|)}

Rij = ρwc(C)⊕ ρwa(Si)⊕ ρwa(Sj)

where ⊕ denotes vector concatenation.

• Transition rate layer: The core component modeling the transition rate
starting from the features

q̂ij = max(0, fwq(Rij)) + ϵ

where fwq consists of multiple fully connected layers parameterized by a set of
weights wq and ϵ > 0 is a hyperparameter. Notice that taking the maximum
with 0 and adding ϵ guarantees non-negativity and the condition of Eq. 2.1.
The rates q̂ij, computed across all possible pairs of alternatives, are combined
to form the transition rate matrix Q̂ as follows:

Q̂ij =

{
q̂ij if i /= j

−
∑

j /=i q̂ij otherwise

• Stationary distribution layer: uses PyTorch’s linear solvers to find the
solution to the system

π̂

[(
Q̂ij

)
1≤i≤|S|,1≤j<|S|

∣∣∣∣ 1T

]
=

[
0

∣∣ 1
]

where π̂ is the probability distribution over S given C.

The model is fitted using gradient descent to minimize the average log likelihood
loss against the index of the actual choice YS.

loss(w, C, S, YS) = log π̂YS

with w = (wa, wc, wq). The original paper uses stochastic gradient descent and
dropout to avoid overfitting and obtains stable results on data that PCMC, on the
contrary, finds problematic.

PCMC-Net exhibits non-regularity, uniform expansion, and is proven able to
approximate any PCMC model arbitrarily well given a function fwq of sufficient
complexity as well as appropriate weights wa, wc and wq. We take major inspiration

10

2.1 – Decision Theory

from [Lhéritier, 2019] in terms of architecture and applications. The reasons for
this are many. Firstly, the codebase for PCMC-Net is readily available1. Secondly,
there are striking similarities between Hamiltonian evolution in Quantum Decision
Theory and Markov Chains that allow us to draw a connection between these two
approaches. More details are given in the following chapters where we propose
H-Net, a possible feature based application of Hamiltonian evolution to decision
making (Section 3.1). Many elements are common, but the core difference is a
different quantum-inspired method for computing the final probabilities.

2.1.4 Recommender Systems and Choice Modeling

Recommender Systems are a key area of research in artificial intelligence, aimed
at providing personalized recommendations to users based on their preferences
and behavior. Recommender systems have become ubiquitous in various domains
such as e-commerce, entertainment, and news, playing a crucial role in decision-
making processes. They can be thought of as an evolution of Choice Modeling,
appropriately adapted to the large volumes they need to handle. At their core,
they are machine learning algorithms capable of analyzing large amounts of data
on users and items, such as purchase histories, ratings, and interactions, to identify
patterns and make predictions about which items a user is likely to be interested
in. The RecSys conference, which stands for the Conference on Recommender
Systems, is the cornerstone conference for this discipline2.

Recommender systems are based on collaborative filtering algorithms and have
evolved over time, with the introduction of new techniques such as matrix factoriza-
tion [Jannach et al., 2010], deep and reinforcement learning [Zhang et al., 2017],
to name a few. Additionally, with the increasing amount of data being generated,
recommender systems are also becoming more personal and dynamic, adapting to
the changing needs and preferences of users in real-time [Zhao et al., 2018]. De-
spite these advancements, there are still several open research challenges in the
field of recommender systems, such as the cold-start problem (how to handle new
users for whom no information is available in the system) [Gaspar et al., 2019], the
scalability issue, and the integration of auxiliary information [Zhao et al., 2018],
which continue to inspire new research and drive innovation in the field.

While this thesis is mainly concerned with comparing different possibilities in
the domain of Decision Theory, we also try constructing a bridge with recom-
mender systems, drawing upon concepts and techniques from the former discipline
to enhance the latter. Our solution is robust to the cold-start issue by means of

1Source code repository: https://github.com/alherit/PCMC-Net
2More information available at https://recsys.acm.org/

11

Background

embeddings of the input features to represent each user. This allows us to leverage
the information available in the entire dataset to generate a robust representation
for new users, even when their preferences are unknown. By doing so, we are never
limited by the absence of known preferences for a new user.

2.2 Quantum Probability
Quantum Mechanics is a branch of physics that studies the behavior of matter
and energy on the smallest scale, including atoms, subatomic particles, and their
interactions. Unlike classical mechanics, which is based on classical concepts of
motion, energy, and force, quantum mechanics describes the physical world in
terms of wave functions and probability. It provides a mathematical framework to
explain and predict the behavior of particles and their interactions, which is crucial
for our understanding of the structure and behavior of the atomic and subatomic
world. The principles of quantum mechanics have far-reaching implications, from
explaining the stability of atoms and the behavior of chemical reactions to shaping
our understanding of the fundamental nature of matter and energy. At the founda-
tions of quantum mechanics lies quantum probability (QP), a formalism defining
events and probabilities in a different way than its classical counterpart, enabling
different operations and phenomena to come in play, such as entanglement and
interference. QP is shown to be an extension of classical probability, making it
possible to model classical phenomena with the added benefit of a wider scope.

2.2.1 Bra-ket Notation

In quantum mechanics, bra–ket notation (or Dirac notation) is used ubiquitously
to denote quantum states. Bra–ket notation is an elegant way of defining vectors
and allows defining operations such as inner and outer products. The following is
a brief handbook of the notation:

• Row vector (bra): ⟨ψ| = [ψ1, ψ2, . . .]

• Column vector (ket): |ψ⟩ = [ψ1, ψ2, . . .]
T

• Inner product (bra-ket): ⟨ψ|ϕ⟩ = ψ · ϕ

• Outer product (ket-bra): |ψ⟩ ⟨ϕ| = ψ ⊗ ϕ

2.2.2 Quantum Systems

The quantum-probabilistic formalism, as developed by von Neumann [von Neumann, 2018],
describes events not in terms of sets, but in terms of vectors and projections.

12

2.2 – Quantum Probability

To describe events in QP we first need to postulate a Hilbert space H of fi-
nite dimension n. This space is spanned by an orthonormal set of basis vectors
V = {|Vi⟩ , i = 1, · · · , n}. An event s is a subspace spanned by a subset Vs ⊆ V of
basis vectors. We can define a projector for subspace as Pa =

∑
Vi∈a |Vi⟩ ⟨Vi|.

If b is a subspace spanned by a subset Vb ⊆ V , we can define a meet of events
a∧b (Note: not an intersection) as Va∩Vb. In the same way, we can define the join
as Va ∪ Vb. If two events don’t share the same orthonormal basis, then Va ∩ Vb = ∅
and we cannot correctly define their meet or their join.

We can use the intrinsic randomness assumed by quantum postulates to build
objects such as random variables. A random variable is such that observing its
value yields one of many possible outcomes with a certain probability. Quan-
tum systems are probability distributions and as such, we can use them to model
randomness. We define a quantum system |s⟩ as a vector spanning H. Mathe-
matically, |s⟩ is a linear combination of many elementary events (also called pure
states) s1, . . . , sm that form an orthogonal basis of H.

|s⟩ = α1 |s1⟩+ . . .+ αm |sm⟩

With α1, . . . , αm complex numbers (their meaning is described in the following
section). In quantum jargon, |s⟩ is a superposition of its elementary events.

2.2.3 Measurement

Quantum systems are probability distributions, and the way we extract an outcome
from them is through a process called measurement. Measurement is the act
of interacting with a quantum system |s⟩, making the vector space partially or
entirely collapse into a subspace of its original spanned space. |s⟩ collapses into a
subset of its basis states and the probability of this event is given by applying the
corresponding projector on the state vector, and then by taking the squared norm
of the result

P (a) = ∥Pa |s⟩∥2 = ⟨s|Pa |s⟩

This type of measurement is called projective measurement. This formula tells us
that the probability of an event a given a certain |s⟩ is related to the length of
the projection of |s⟩ on the subspace Va. For multiple events, we represent their
conditional probability as:

P (a, b) = P (b|a)P (a) = ∥PbPa |s⟩∥2 = ⟨s|PaPbPa |s⟩

When an event a is observed, the state vector |s⟩ needs to be revised by re-
normalizing it to conserve its unitary length:

|sa⟩ =
Pa |s⟩

||Pa |s⟩ ||

13

Background

In the next sections, we use specifically elementary events which correspond to one-
dimensional subspaces represented by the computational basis. In other words,
given an n-dimensional Hilbert space H where all events and states lie, event i
maps nicely to an n-dimensional vector |si⟩ where all elements are 0 except for a
1 in position i. For example |s2⟩ = [0, 1, 0, . . .]T . As a consequence, all projection
matrices are expressed as:

Pi = |si⟩ ⟨si| =

{
1 in row i, column i
0 elsewhere

As a consequence, we can easily compute the probability of base events in a su-
perposition |s⟩ = α1 |s1⟩+ . . .+ αm |sn⟩ as:

P (i) = ||Pi |s⟩ ||2 = |αi|2

We can also compute the probability of complex events made by a combination
of elementary ones by adding together projectors. For example, for a three-state
quantum system:

P1+2 = P1 + P2 =

1 0 0
0 0 0
0 0 0

+

0 0 0
0 1 0
0 0 0

 =

1 0 0
0 1 0
0 0 0

Note how there is a subtle difference between a projector obtained as a sum of
projectors and a projector obtained from the sum of pure states, like |s′⟩ = |s1⟩+
|s2⟩ = [1, 1, 0]T . The corresponding projector P ′ = |s′⟩ ⟨s′| would project vectors
onto the one-dimensional [1,1,0]T subspace, while the aforementioned P1+2 would
project onto a two-dimensional subspace spanned by [1,0,0]T and [0,1,0]T and the
resulting probability would be equal to |α1|2 + |α2|2.

As a final remark, we note that the measurement process has many implications
when dealing with real quantum objects. For example, the fact that measurement
inherently disrupts the system making it unable to recover most of the information
contained within before the measurement took place. Our approach, not relying
on any such physical constraint, allows us to play with numbers in ways that would
not be physically possible on real quantum hardware.

2.2.4 Differences with classical probability

Quantum probability is of particular interest for our work as an extension of classi-
cal probability, in the sense that it allows phenomena such as entanglement and in-
terference, that are not explainable with classical probability alone. Using vectors
and projections also relaxes many assumptions of classical probability, resulting in

14

2.2 – Quantum Probability

a more flexible model [Yukalov and Sornette, 2015][Busemeyer and Bruza, 2012a].
A visual example of a possible anomaly explained by QP is shown in Figure 2.2,
where a conjunction of two events can be more likely than either one singularly.

Figure 2.2: Conjunction of two events more likely than the single one

2.2.5 Hamiltonian Evolution

In quantum mechanics, the evolution of a quantum state is described by the
Schrödinger equation, which governs the time evolution of a state vector.

iℏ
∂

∂t
Ψ(t) = HΨ(t) (2.2)

The Hamiltonian matrix H is the central object in this equation, as it represents
the energy of the system. In particular, we are interested in a time-independent
solution, which means that the Hamiltonian does not change with time. A solution
to this system is the following Hamiltonian operator:

U(t) = e−itH (2.3)

15

Background

Where e(·) represents the matrix exponential function. The solution describes the
time evolution of the state vector as a unitary operator U acting on the initial
state. This time evolution preserves the norm of the state vector, ensuring that
the probabilities of observing the system in any of its states remain constant over
time. Also, the unitary property implies that the transition matrix T generated
from U is doubly stochastic; that is, both the rows and columns of T sum to one:

Tij = |Uij|2
∑
i′

Ti′j =
∑
j′

Tij′ = 1 ∀i, j (2.4)

The only condition for this property to hold true is Hermiticity of the Hamiltonian
matrix H (H†H = HH† = I) [Busemeyer and Bruza, 2012b]. Notice also that we
incorporate the constant ℏ into the matrix H as the use we make of this formalism
is not related to any specific physical quantities.

This operator serves the purpose of describing the flow of probabilities between
states of the system and produces sinusoidal behaviors as t increases. An example
of evolution for a Hamiltonian operator applied on a four-dimensional state, for
different values of time is given in Figure 2.3. Observe how the outcome states
begin from a configuration of uniform probability |st=0⟩ = [1,1,1,1]T/2 and then
evolve with a periodic pattern.

Figure 2.3: Hamiltonian evolution for a 4-dimensional quantum state

Any possible unitary matrix U can be constructed from the matrix exponential
of a Hermitian matrix H. This property of the matrix exponential gives a great
deal of flexibility to our model as it allows for transforming any unitary vector into
any other unitary vector [Busemeyer and Bruza, 2012b]. In the following sections,

16

2.3 – Deep Models

we describe how this can be used in conjunction with a neural network to estimate
a generic distribution.

2.2.6 Quantum Decision Theory

Quantum Decision Theory (QDT) is a growing field that explores the application
of quantum mechanics to the decision-making process. One of the main objec-
tives of this framework is to understand how quantum mechanics can explain
aspects of human decision-making and cognition that are not captured by clas-
sical models [Yearsley and Busemeyer, 2016a] [Broekaert and Busemeyer, 2017]
[Busemeyer et al., 2015]. The fundamental idea behind quantum decision theory
is that decisions can be modeled as quantum systems in superposition. A deci-
sion existing in many states at once mimics uncertainty, while the act of asking a
question and receiving an answer can be seen as a measurement that causes the
decision to "collapse" into a definite choice state. This theory has been shown to
effectively explain various context effects such as order effects, attraction effects,
and conjunction effects.

The focus of Quantum Decision Theory (QDT) is to model certain aspects
of human cognition, but is far from making any claims about the existence of
quantum phenomena in the mechanisms of the brain, the so-called quantum brain
hypothesis [Jedlicka, 2017] [Penrose, 1990]. This hypothesis posits that the hu-
man brain operates through quantum processes at a neuronal level and that these
phenomena may be the source of consciousness, a long-standing philosophical de-
bate. QDT simply claims that certain cognitive processes, particularly related
to decision-making and memory recall, resemble the behavior of quantum objects.
Moreover, we’d like to note that the objective of this work is not to weigh in on the
ongoing debate about the quantum brain hypothesis, but rather to demonstrate
the effectiveness of QDT in addressing decision problems. This controversial topic
is better left for cognitive psychologists and physicists to discuss.

QDT has only been applied to simple problems with limited alternatives and a
small number of parameters on which to base decisions. The goal of this research
is to extend its capabilities to larger, more complex problems that have not yet
been addressed.

2.3 Deep Models

Deep machine learning models are a type of artificial intelligence algorithm that
has revolutionized the field of computer science. These models are designed to
learn and make predictions based on large amounts of data, using a structure
composed of many consecutive layers of artificial neurons that allow for increased

17

Background

representation power. Each layer performs a computation and outputs a represen-
tation that can be fed into the next layer. The final layer outputs a prediction
or decision [Goodfellow et al., 2016]. The learning process involves adjusting the
parameters of each layer so as to minimize the difference between the predicted
output and the actual target output, a value called loss. This optimization pro-
cess is performed by calculating the gradient of the loss function with respect
to the model parameters, and then using this gradient to update the parame-
ters in an iterative process known as backpropagation [Rumelhart et al., 1986].
Backpropagation is performed using an automatic differentiation library such as
PyTorch, TensorFlow, or JAX [Paszke et al., 2019] [Abadi et al., 2016] . The use
of automatic differentiation engines and backpropagation has greatly increased the
efficiency and effectiveness of deep machine learning models, making them more
widely applicable to a wide range of problems.

Deep machine learning models have been applied to a variety of tasks, includ-
ing image recognition, speech recognition, natural language processing, and game
playing, with remarkable results . These models have shown the ability to learn
and make predictions with great accuracy, often surpassing human-level perfor-
mance on certain tasks. With the rapid advances in hardware technology and the
availability of large amounts of data, deep machine learning models are becoming
an increasingly important tool for solving complex problems in various domains. In
this thesis, we take the foundation laid by existing deep machine learning models
and apply them to the task of decision theory.

2.3.1 Transformers

Transformer models are a type of deep neural network architecture that have be-
come increasingly popular in recent years for natural language processing (NLP)
tasks. At the core of Transformer models is their use of Attention: a mechanism
reminiscent of cognitive science that allows them to effectively weigh the impor-
tance of each element in the sequence when making predictions. This has proven
especially useful in language-related tasks such as machine translation, text clas-
sification, and language modeling [Vaswani et al., 2017]. The Transformer archi-
tecture has achieved state-of-the-art results on many benchmarks and has become
the de-facto standard for solving NLP problems [Lin et al., 2022]. Its popularity
is largely due to its flexibility and simplicity, allowing for easy implementation and
training even on large datasets.

The model consists of an encoder and (optionally) a decoder block, both of
which are comprised of a series of identical layers. Each layer contains an Attention
mechanism that computes similarity scores between each element in the sequence
and all others, allowing the model to attend to different parts of the input at the
same time. Every Attention layer is followed by a feedforward neural network that

18

2.3 – Deep Models

processes the attended inputs and generates an output.
The Attention mechanism is fed tokens that represent embeddings of some

part of the whole input, and outputs tokens that likewise represent parts of
the processed output. For instance, in a translation Transformer, input tokens
may represent single words in the original language, while the output tokens are
translated words. Vision Transformers use as tokens small patches of the im-
age n × n pixels large and output processed embeddings of the same patches
[Dosovitskiy et al., 2020]. Internally, the Attention mechanism works in the fol-
lowing steps:

• First, three different representations for each token ti are computed: a query
qi, a key ki, and a value vi. They are obtained through simple linear op-
erations on the tokens with a common set of weights Q,K, V to reduce
complexity:

qi = Q · ti ki = K · ti vi = V · ti

• Then, query and key of each pair of words are multiplied together to obtain
an Attention score sij. These scores represent the similarities between each
input token:

sij = qi · kj si = [si1, si2, . . .]

• Next, a softmax is performed on all scores of a certain token to obtain weights
wi (note that this is a vector). This is done to normalize any possible vari-
ation between the scale of scores, which can get very large:

wi = softmax(si)

• Finally, the output oi of a corresponding input token ti is computed by
multiplying all the weights wij computed with the input’s key with all the
token values vj and summing the result.

oi =
∑
j

vj · wij

The original implementation passes the outputs of each Attention layer through a
final fully connected layer. By construction, every input token ti has a correspond-
ing output oi. Note however that this correspondence doesn’t force the model to
process inputs token by token. Instead, Attention makes it so that outputs are
constructed by combining representations of other words in the sentence and not
necessarily the corresponding input alone. For instance, the English sentence "I

19

Background

love you" translates in French as "Je t’aime" but the order of words between
the two languages changes. Attention is able to account for this by constructing
"aime" mostly from "love" instead of "you", which is the corresponding input. If
we plot scores for this simple example they would look like figure 2.4. The main
concept is that Attention is able to model long-distance relationships easily.

Figure 2.4: Attention scores for "I love you" translated to French

More complex architectures have multiple "heads" in parallel performing dif-
ferent Attention operations at the same time to extract alternative forms of rela-
tionships between words, for example one head may capture adjective-noun rela-
tionships while another may capture verb-subject ones. Concretely, this amounts
to having multiple sets of weights Q,K, V , one for each head.

We find Transformers an inspiration for our search for a new choice model. In
particular, cognitive scientists have explored how attention in the human brain
can enhance various tasks. Attention’s ability to dynamically select information is
crucial for memory encoding and retrieval as it ensures that the limited capacity
of memory is utilized efficiently [Lindsay, 2020]. Attention also plays an important
role in speech recognition, a famous example of which is the "cocktail party prob-
lem", where selective attention is used to focus on a particular speaker’s speech
amidst multiple noises [Bronkhorst, 2015]. Finally, in experiments on visual pro-
cessing where subjects are cued to attend to a particular visual feature, attention
is also shown to enhance performance as it directs resources toward specific aspects
of cognition, such as detecting a specific color or shape [Rossi and Paradiso, 1995].
We use these insights to build a Transformer choice model in Section 3.2.

2.3.2 Pointer Networks

Pointer networks are a type of recurrent neural network (RNN) architecture used in
natural language processing and reinforcement learning tasks [Vinyals et al., 2015].

20

2.3 – Deep Models

The key idea behind pointer networks is to allow the network to "point" to a
specific position in the input sequence, effectively choosing which elements of the
input to use in generating the output. This mechanism is useful in tasks such as
sequence-to-sequence learning, where the output is a different sequence of elements,
and the network needs to choose which elements of the input to use in constructing
the output. The pointer mechanism is achieved by training the network to predict
the probability distribution over the elements of the input sequence, which are
then used as soft-attention weights to weigh the contribution of each element to
the final output.

Pointer networks are designed to tackle a specific class of problems where the
number of target classes in each step of the output is dependent on the length of
the input, which can vary. These problems include sorting variable-sized sequences
and various combinatorial optimization problems. Pointer networks address the
issue of a variable-sized output dictionary by employing the mechanism of neural
Attention explained before. This approach differs from previous Attention methods
in literature in that it uses Attention as a pointer to select a member of the input
sequence as the output, rather than utilizing Attention to blend hidden units of
an encoder into a context vector at each decoder step.

Pointer networks have been shown to perform well in tasks such as code com-
pletion [Li et al., 2018] and text summarization [Chen and Bansal, 2018], where
the input sequence is long and complex, and the network needs to selectively at-
tend to parts of the input to generate the output. Pointer Networks have also
been successfully applied to choice modeling for airline itinerary prediction as a
way of ranking different alternatives [Mottini and Acuna-Agost, 2017]. This last
work inspires us to try a pointer-based approach again in Section 3.2 in an attempt
to improve these results.

21

Chapter 3

Architectures

3.1 H-Net: A Quantum-inspired Discrete Choice
Model

3.1.1 Motivation

Our first proposed model, the H-Net architecture, is based on the QDT framework.
The goal of this work is to incorporate the flexibility of Hamiltonian evolution into
a deep model, creating a method for modeling the flow of probability between
alternatives in a choice problem. Previous research uses this approach to model
choices on a small scale but the applicability of this method to complex problems
is yet to be proven [Hancock et al., 2020] [Busemeyer and Bruza, 2012c]. More-
over, this approach is interesting as the matrix exponentiation operation shown in
Equation 2.1 allows for simulating the dynamics of the system through pairwise
comparisons between alternatives. This can simplify the modeling process, as it
only requires fitting the model for a single pairwise comparison, as then the same
model can be reapplied to problems of any length. Another motivation for our
work is to enhance the previous methods used in estimating the parameters of the
Hamiltonian. The previous methods utilize simple functions with limited param-
eters or construct the Hamiltonian matrix ad hoc for the given problem. While
this approach certainly has benefits in terms of explainability, it falls short when
applied to complex problems where more intricate relationships between features
may arise and where the flow of probabilities is not so straightforward to decode.
By incorporating deep learning, we aim to improve both the expressiveness of the
model and its versatility in various applications, firstly because we apply far more
powerful functions and secondly because we delegate the design of Hamiltonian pa-
rameters to the network optimization process. While the prior studies are limited
to using simple numerical features, our architecture has the potential to process

23

Architectures

any type of input, be it text or even images. Additionally, our H-Net architecture
considers context in its computation, a factor that is not addressed in previous
works based on the same approach.

Finally, we note that the Hamiltonian model shares strong similarities with
continuous-time Markov chains, validating its comparison with models such as
PCMC-Net [Busemeyer et al., 2006] [Lhéritier, 2019]. Firstly, the Kolmogorov for-
ward equation can be used to describe the time evolution of the probability dis-
tribution of the system, as the system transitions from one state to another.

∂

∂t
Φ(t) = QΦ(t) (3.1)

The solution to the Kolmogorov forward equation gives the probability of being
in a particular state at any given time, given the initial state and the transition
rates between states.

T (t) = etK

Note how it is equivalent in shape to the Schrödinger equation (2.2) and has a
similar solution (2.3). The differences are the use of complex numbers and the
constraints imposed on the two matrices Q and H. The off-diagonal elements
of the rate matrix Q are positive and the diagonal elements of Q are negative
so that the sum of the columns is zero, which then guarantees that the columns
of T sum to one, which finally guarantees that Φ(t) always sums to unity. The
Hamiltonian matrix H is a Hermitian matrix (H† = H) so that U is a unitary
matrix (U †U = I), which finally guarantees that Ψ(t) always has unit length. Also,
while the transition matrix in the classical case is left stochastic, in the quantum
case (Eq. 2.4) it’s doubly stochastic; that is, both the rows and columns of T
sum to one. These differences cause two different dynamics in the two models.
Previous literature described a Markov model probability evolution to look like
a "pile of sand swept by the wind", with density slowly accumulating in specific
states. A quantum Hamiltonian dynamics, on the other hand, was compared to
a "wave sloshing back and forth", with density never settling for a specific state
[Busemeyer and Bruza, 2012d] [Lhéritier, 2019] [Busemeyer et al., 2006].

3.1.2 Overview

The resulting H-Net architecture too shares most of the structure with PCMC-Net.
The substantial differences are the use of complex values and the final computation
to obtain the probability distribution of the result. This section gives an overview
of the overall architecture, while the following describes in more detail each layer:

24

3.1 – H-Net: A Quantum-inspired Discrete Choice Model

• Input layer: Initial layer fed with two alternatives ai, aj belonging to an
alternative set S of n alternatives for a specific choice. Alternatives belong
to a given feature space Fa. The additional input is a set of context features
C belonging to a given feature space Fc.

• Embedding layer: comprised of embedding functions to map alternatives’
features

ρwa : Fa → Rda

as well as context features

ρwc : Fc → Rdc

where da, dc ∈ N are the representation size of alternative and context and are
defined as a hyperparameter of the architecture, and wa and wc are weights
of the representation layer to be fitted during training.

• Comparison layer: The core component modeling the Hamiltonian param-
eters starting from the embeddings ρwa(ai), ρwa(aj), ρwc(C) composed of a
neural network function fwh

parameterized by a set of weights wh.

hij = fwh

(
ρwa(ai), ρwa(aj), ρwc(C)

)
(3.2)

• Hamiltonian dynamics layer: Parameters hij of the Hamiltonian are com-
puted across all pairs of alternatives using a cross-product and concatenation
operation as in Section 2.1.3 and are then combined to form H. The cor-
responding unitary U is computed using a matrix exponential and applied
to an initial state |s⟩ to obtain the final state |sf⟩ representing the proba-
bility distribution over all S given C. In particular, probability P (i|S,C) is
obtained by taking the squared norm of the i-th element of |sf⟩.

Hij = hij U = e−itH

P (i|S,C) = | ⟨i|sf⟩ |2

Parameters wc, wa and wh are all trained using dropout. Dropout is a regular-
ization technique used to prevent overfitting. During training, dropout randomly
deactivates (or "drops out") some parameters in the network, meaning they are
effectively ignored for that gradient descent iteration. This random deactivation
encourages each weight to learn more robust features by preventing its reliance on

25

Architectures

specific other parameters. Negative Loglikelihood (NLL) is used as the loss func-
tion throughout all experiments as in previous literature [Lhéritier, 2019]. NLL is
computed as:

NLL = − 1

|T |
∑

(S,C)∈T

logP (YS|S,C)

with T either training or test set, S and C respectively the aforementioned alter-
native set and context for a given choice, and YS the index of the actual choice.

ρwc

ρwa

ρwa

C

ai

aj

fwh H =

h11 · · · h1n
...
hn1 · · · hnn

 U = e−itH

|s⟩ : U |sf⟩ :

Figure 3.1: Overview of H-Net’s full architecture. Embedding layer is denoted in green,
comparison layer in blue, and Hamiltonian dynamics layer in yellow

3.1.3 Embedding

The role of embedding functions is to map an input of possibly variable length to a
finite-dimensional space of fixed length. This process performs an initial bottleneck
and acts as a feature selector during training. In H-Net, we implement two distinct
embedding functions: one for single alternatives and one for context. ρwa maps a
single alternatives ai from a feature space Fa to a latent space Rda , while ρwc takes
the full contextual information of the choice from space Fc to Rdc .

In our implementation, ρwa and ρwc have much the same structure: the input
vector x (be it an alternative or the full context) is split into its numerical and

26

3.1 – H-Net: A Quantum-inspired Discrete Choice Model

categorical features xn and xc. Numerical features are standardized (a function we
denote s), while categorical features are converted in numerical ones via PyTorch’s
embedding layer (denoted e). After this step, the two numerical representations are
concatenated (denoted ⊕). Note that e internally builds a dictionary with weights
for every observed configuration of xc, therefore, a potentially high number of
weights is required to create the mapping.

ρw(x) = s(xn)⊕ e(xc)

While this is our solution, many more are available that process numerical and
categorical features in different ways.

ρw

x ·

xn

xc

s

e

⊕ ρw(x)

Figure 3.2: Detailed view of H-Net’s embedding layer

3.1.4 Comparison

This layer uses the embedded features to estimate a component of the Hamiltonian
needed to construct the U operator. Comparisons are done in a pairwise manner
between every couple of alternatives i and j. Previous works in QDT compute the
hij value with functions that do not consider contextual information and instead
simply rely on a difference between the features, transformed by some non-linear
yet simple comparison functions [Hancock et al., 2020]. The behavior is similar to
the comparison layer PCMC-Net already detailed in section 2.1.3, however, the
key difference lies in the fact that the returned value is a complex number. fwh

is
composed, in our implementation, of a fully connected network nwh

that returns
two values ℜ(hij) and ℑ(hij), and of a step that combines them to form hij. The
number of layers and the activation function of nwh

are application-specific. A way
of finding an optimal choice for both is discussed in Chapter 4.

27

Architectures

ρwa(ai)

ρwc(C)

ρwa(aj)

nwh

fwh

ℜ(hij)

ℑ(hij)
+ hij

Figure 3.3: Detailed view of H-Net’s comparison function

3.1.5 Hamiltonian dynamics

This layer gathers the results of repeated calls of fwh
on all pairs of alternatives

(obtained with a cross product as in Section 2.1) and uses them to compose the
H matrix. An advantage of parametrizing any comparison with an operation
dependent on a single set of weights wh is that H-Net can tackle problems of any
number |S| of alternatives. Since H is Hermitian, one only needs to estimate the
upper |S|(|S|−1)

2
elements in the upper triangular part, computing the remaining

ones from those. Concretely, it means that function fwh
(Eq. 3.2) is called only

O
(

|S|
2

)
times. Hermitianity is hard to enforce with optimization constraints. It

can, however, be enforced by construction. Using the definition of Hermitian
matrix, we compute only the upper triangular part of H (i < j) and compute the
lower portion directly from there:

hij :=

fwh

(ai, aj) if i < j

fwh
(aj, ai) if i > j

ℜ
(
fwh

(ai, aj)
)

if i = j

Matrix H is then used to construct the unitary operator U through a matrix
exponential operation as in Equation 2.3. In literature, the time parameter t is
set equal to π

2
. We decide instead to also optimize this parameter during training.

Finally, the unitary U is applied on a state vector |s⟩ to obtain the informed state
|sf⟩, and the values of this state are squared to obtain probability distribution on
the alternatives:

|sf⟩ = U |s⟩ = e−itH |s⟩ P (i|S,C) = | ⟨i|sf⟩ |2

In QDT, |s⟩ is a unitary vector representing the initial state of the decision maker,
this encompasses both individual (e.g. age, gender, income, ...) and contextual

28

3.1 – H-Net: A Quantum-inspired Discrete Choice Model

information (e.g. date, weather, ...). A first possibility is to estimate it directly
using contextual information C using another nonlinear function fws :

|s⟩ = fws(C)

However, we choose another approach, which is to set |s⟩ to a uniform distribution
leaving U to enact the complete transition from uniform to final distribution.

|s⟩ = 1

|S|
[1,1, . . .]T

The reason is twofold: firstly, the matrix exponential of a Hermitian matrix is
a universal generator for unitary matrices, U can transform a generic unitary
vector into any other unitary vector; secondly, the information contained in C can
already be injected into the state by fwh

. We therefore integrate all the complexity
of modeling the contextual stage into fwh

, and the Hamiltonian generated from it
can take the state directly from an uninformed state to a final one. This is also
more expressive because the information from C can be combined with information
from ai and aj in a non-linear way. By using a single transformation that takes
the state from an uninformed state to a context and alternative-informed one, we
increase expressivity, avoid the need for separate functions and reduce the number
of parameters of the overall architecture. Our way of constructing |s⟩ is not the
only one. A more evolved approach that takes into consideration multiple choices
by the same user could update |s⟩ for a specific user after every choice. We discuss
the feasibility and expressiveness of a similar solution in Section 5.2.

H U

t |s⟩

|sf⟩

Figure 3.4: Detailed view of the Hamiltonian dynamics layer

3.1.6 SimpleH

Previous approaches either estimate H directly as a parameter in the optimization
process [Broekaert and Busemeyer, 2018] [Broekaert and Busemeyer, 2017]
[Yearsley and Busemeyer, 2016b], or compute it starting from features

29

Architectures

[Hancock et al., 2020]. Since our approach acts on the assumption that
more complex functions can better capture comparisons between alternatives
and thus produce Hamiltonians that can closely model the decision process, we
consider an established and non-neural network-based function as a reference.
The choice lands on the approach described in [Hancock et al., 2020], which uses
a linear difference function. This model uses the same architectural choice as
in H-Net, the only differences being the time t, which is fixed at π

2
, and the

comparison function fwh
, which is no longer a stack of non-linear fully connected

layers but is instead a simple linear function:

fwh

(
xi, xj

)
= δ + wT

h (xi − xj)

where δ is a constant parameter optimized with the network and wh ∈ Rda is a
vector of weights. As in the original paper, all information regarding context C is
not taken into consideration.

3.2 Pointer Transformer: An Attention-based Dis-
crete Choice Model

3.2.1 Motivation

The use of Recurrent Neural Networks (RNNs) for processing sequential data re-
mains a common approach in deep learning. However, the standard RNN architec-
ture has limitations when it comes to capturing long-term dependencies in sequen-
tial data. To overcome this, researchers have introduced the Attention mechanism
into RNNs, which helps alleviate the vanishing gradient problem and effectively
handles longer sequences [Bahdanau et al., 2015]. Recently, the focus has shifted
towards removing the recurrency aspect altogether and relying solely on the At-
tention mechanism. This has led to the development of the Transformer architec-
ture, which is specifically designed to handle sequential data in a more effective
manner. The Transformer architecture has been highly successful and surpasses
the performance of traditional RNNs in a variety of natural language process-
ing tasks [Vaswani et al., 2017] [Hernández and Amigó, 2021]. Prior research in
choice modeling uses Transformers for determining the parameters of an MNL
model [Phan et al., 2022]. However, as far as we know, there have not been any
efforts to use Transformers to estimate the utilities of alternatives directly. In
the upcoming sections, we present an implementation of a Pointer Transformer.
Our aim is to examine whether utilizing only the Attention mechanism through a
Transformer can outperform its recurrent alternative, the Pointer Network.

30

3.2 – Pointer Transformer: An Attention-based Discrete Choice Model

3.2.2 Overview

In order to have a fair comparison, Pointer Transformer shares many implemen-
tation choices with other methods we describe. Since Transformers employ fully
connected layers that need to be of fixed length, we lose the capability of applying
the same model to problems of any size |S|. The maximum number of tokens pro-
cessed by the model is an architectural choice, and is set equal to the maximum
|S| found in the training set. A major difference of this approach from the previ-
ous ones we examined is that, while PCMC-Net and H-Net act first in a pairwise
manner and then combine these intermediate results (Sections 2.1.3, 3.1), Pointer
Transformer performs it as a comparison of all alternatives together. The Atten-
tion mechanism mediates this comparison by modeling long distance relationships
between all alternatives, multiplying query, key and value representations with the
ones from all other alternatives. Pointer Transformers don’t suffer from vanishing
gradients as Pointer Networks do since there is no recursion involved, but lose the
size invariance other models have.

• Input layer: Initial layer fed with all n alternatives a1, a2, . . . , an belonging
to an alternative set S for a specific choice. As before, alternatives belong
to a given feature space Fa and are accompanied by contextual information
C belonging to space Fc.

• Embedding layer: As in section 3.1.2, this layer is comprised of embedding
functions to map alternatives’ features

ρwa : Fa → Rda

as well as context features

ρwc : Fc → Rdc

where da, dc ∈ N are the representation size of alternative and context, and
wa and wc are weights of the representation layer. The difference here is
that context embedding ρwc(C) is concatenated to each alternative to form
a token ti of size da + dc.

ti = ρwc(C)⊕ ρwa(ai)

The redundancy on the context is introduced in order to have the resulting
key, query and value representations include also the contextual information
for each token. All tokens are then concatenated together to form the input
of the Attention layer. In case of alternative sets of size smaller than n, the
missing alternatives are represented with a token of only zeros (padding).

31

Architectures

In either case, a value identifying the position of the token in the choice
set is summed to the embedding. This is called positional embedding and
is done to give the model contextual information about the position of the
alternative; this is relevant in contexts where the order may affect the final
result, or where the choice set is fixed and alternatives in position i always
have some property.

• Comparison layer: Several multi-headed Attention layers perform a many-
to-many comparison of all alternatives. Inputs and outputs represent input
tokens and contextualized representations respectively, and they both have
length n(da + dc).

• Aggregation layer: Values of each token are first averaged through layer
µ to provide a single summary value for each token. Then all the means
are passed through a final fully connected layer nnagg with a softmax acti-
vation. This is done to normalize the values into the [0,1] range. Each value
constitutes the final probability P (i|S,C) of the corresponding alternative.

Every weight is trained with dropout, similar to the approach taken in H-Net.
Loss, too, is computed in the same way as H-Net.

ρwc

ρwa

C

a1
t1

ρwc

ρwa

C

a2
t2

· · ·

ρwc

ρwa

C

an
tn

A1 A2 · · · Anl

µ

µ

· · ·

µ

nnagg

P (1|S,C)

P (2|S,C)

P (n|S,C)

Figure 3.5: Pointer Transformer architecture. Embedding layer is denoted in green,
comparison layer in blue, and aggregation layer in yellow

32

3.2 – Pointer Transformer: An Attention-based Discrete Choice Model

3.2.3 Comparison

This layer is composed by nl consecutive Attentions A1, . . . , Anl
that perform a

many-to-many comparison between all alternatives. Each layer Ai is composed
in turn by a multi-headed Attention with nh heads (denoted as h), and a fully
connected layer (denoted as nn). The set of weights parametrizing the layer as
a whole is wt, omitted for the sake of readability. The inputs are n vectors of
da + dc elements each, comprised of the embedded context concatenated with an
embedded alternative. The outputs are likewise contextualized tokens that contain
information about the comparison. The fully connected layer nn serves the purpose
of both reshaping and introducing a data bottleneck after the Attention layer: since
the Attention heads collectively return an output of size nh×n(da+dc) some form
of aggregation is needed to get outputs of the same shape as the inputs, this also
selects the useful information from each head. A schematic view of an Attention
block Ai is shown in Figure 3.6

t1

t2

· · ·

tn

Ai

h nn

o1

o2

· · ·

on

Figure 3.6: Detailed view of a multi-headed Attention block Ai

33

Chapter 4

Applications

4.1 Methodology

This section describes our approach to training models on all three datasets. We
compare performance for an MNL model, a SimpleH model as detailed in Section
3.1.6, a PCMC-Net as described in Section 2.1.3, and for our novel approaches
H-Net and Pointer Transformer. Note that, for the MNL model, we decide to
use the same embedding technique we used in other implementations. While the
training procedure remains the same for all models, the hyperparameters used
differ between applications and models and are listed in the respective section.
We first perform a train-validation-test split, the details of which vary depending
on the dataset structure. They are described in Sections 4.2.1, 4.3.1, and 4.4.2.
After partitioning the data, we conduct a hyperparameter tuning phase, assessing
numerous architectural and optimization choices. During this phase, the model is
trained on the training set and evaluated on the development set. Once we discover
an appropriate set of optimal hyperparameters, we commence final training on
both the training and development sets, saving the weights of the architecture.
We train MNL and SimpleH models for 50 epochs, PCMC-Net and H-Net for 100
and Pointer Transformer for 200. These values are found by observing the average
training time over many experiments and should be considered as a rule of thumb.
Lastly, we compute various metrics on the test set we left unseen until now. The
metrics are:

• Negative Loglikelihood: already used as a loss during training, as de-
scribed in Section 3.1.2. The closer to 0, the better the model.

• Top N: proportion of choice sessions where the actual choice was one of the
top N rated options. The choice of N varies between applications as they
all have a different alternative set size.

35

Applications

• Mean Reciprocal Rank (MRR): Used as the evaluation metric during
the RecSys 2019 Challenge, it provides a "softer" indicator of performance
compared to Top N. It is defined as

MRR =
1

|T |
∑

(S,C)∈T

1

rank(YS|S,C)

where rank(YS|S,C) is the rank position of alternative YS as computed using
the given model with S and C as inputs. MRR is a value between 0 and 1,
the higher it is, the better recommendations the model is providing

4.1.1 Optimizer

The optimizer we choose for performing gradient descent is Adam. Adam (ADAp-
tive Moment estimation) is an extension of stochastic gradient descent that has
recently seen broader adoption for deep learning. It has a small computational
and memory footprint, and is shown to work well in problems with very noisy gra-
dients, a common occurrence in deep learning [Kingma and Ba, 2015]. The only
optimization parameters we tune are the learning rate and the number of epochs.
Other optimizers such as RMSProp and AdaGrad have been tested initially, but
Adam has proven to be superior for our applications.

4.1.2 Hyperparameter tuning

In deep learning, finding the optimal configuration of hyperparameters for a given
problem is not a straightforward task. The search space of possible hyperparam-
eters is exponentially large, and the models can take a prohibitively long time to
learn. In our applications, too, we encountered these problems. Pointer Trans-
former, for instance, has as many as eight different hyperparameters that must
be tuned. Given the complexity of this task, a Bayesian optimization approach is
often necessary to find the best hyperparameter configuration. While describing
the approach in detail is beyond the scope of this thesis, we can say that Bayesian
optimization involves creating a probabilistic model of the objective function and
iteratively updating this model to find the best hyperparameters. This approach
is particularly suitable when evaluating the objective function is computationally
expensive, as it allows us to make informed decisions about where to evaluate
the function next based on the model. We use the GPyOpt library in our imple-
mentation as it provides a plug-and-play way of performing Bayesian optimization
[authors, 2016].

36

4.2 – Synthetic Stated Preferences

4.1.3 Hardware

All experiments are either run locally or remotely on a Docker container in a more
powerful machine. The local device is a Dell Precision 3570 with 32 GB RAM and
a 12th Gen Intel i7-1280P processor. Remote runs make use of a Linux machine
with two Intel Xeon E5-2643 v4 CPUs, 251 GB of RAM, and are accelerated by
four Tesla K40c GPUs with 12 GB of VRAM.

4.2 Synthetic Stated Preferences

4.2.1 Dataset Description

We first apply our methods on a synthetic dataset containing travel mode choices
for 500 travellers. It’s a small dataset of total size 560KB and provides us with
an initial starting point and sanity check for newly implemented models. For
each individual, the data contains 14 stated preference (SP) inter-city trips, where
the possible alternatives are car, bus, airplane and train, of which at least two
are available. The journey options are described by numerical features such as
access time, travel time (in minutes), and cost (in £). The data contains an
additional categorical quality of service attribute for airplane and train trips. It
can take three levels: no frills, wifi available, or food available. The data then also
contains two revealed preference tasks per person, using the same alternatives as
those available on the SP journey for that person, but containing no categorical
information on the quality of service. We choose to remove the revealed preference
tasks from the dataset in order to have more uniform data. For each individual, the
dataset also contains information on gender, whether the journey was a business
trip or not, and the individual’s income. Individuals are identified by a code we
choose to remove in order to avoid data leakage and because it does not add any
meaningful information about the choice. This helps the model focus solely on the
individual’s attributes. We perform a 72-8-20 train-development-test split based
on the individual’s ID.

The data is taken from examples of the Apollo Choice Modelling1 R package
[Hess and Palma, 2019].

4.2.2 Results

In our first experiment, we notice all methods have similar performance with the
sole exception of SimpleH. H-Net performs slightly better, while MNL shows lower

1Apollo website: http://www.apollochoicemodelling.com/index.html

37

Applications

performance compared to its deep counterparts. MNL performs fairly well and
doesn’t make use of contextual information, this can be evidence of the context
not being particularly informative for this method. Table 4.7 shows how Pointer
Transformer has a large number of parameters compared to other methods, this
is surprising since the larger size doesn’t show any particular advantage. This is
possibly caused by the small size of the dataset that doesn’t allow the Pointer
Transformer to train adequately.

(a) Full plot (b) Closeup
Figure 4.1: SP Top N Accuracy comparison

Model NLL Top 1 MRR

MNL 0.547 0.759 0.872
SimpleH 0.925 0.333 0.643
PCMC-Net 0.510 0.779 0.886

H-Net 0.474 0.798 0.896
Ptr Transf 0.484 0.790 0.892

Table 4.1: Results on SP dataset

4.3 Airline Itinerary

4.3.1 Dataset Description

The Airline Itinerary (AI) dataset is composed of anonymized booking data from
different airlines collected by the Global Distribution System (GDS) Amadeus,

38

4.3 – Airline Itinerary

Hyperparameter Range Best value
MNL
Learning rate {10−i}i=1...6 10−3

Batch size {2i}i=0...4 2
SimpleH
Learning rate {10−i}i=1...6 10−2

Batch size {2i}i=0...4 2
PCMC-Net
Learning rate {10−i}i=1...6 10−2

Batch size {2i}i=0...4 8
Nodes per layer {2i}i=1...5 16
Hidden layers {1,2,3} 2
Activation {ReLU, Sigmoid, Tanh, LeakyReLU} LeakyReLU
H-Net
Learning rate {10−i}i=1...6 10−2

Batch size {2i}i=0...4 4
Nodes per layer {2i}i=1...5 32
Hidden layers {1,2,3} 1
Activation {ReLU, Sigmoid, Tanh, LeakyReLU} LeakyReLU
Ptr Transf
Learning rate {10−i}i=1...6 10−3

Batch size {2i}i=0...4 1
Depth (nl) {1,2,3} 2
Heads (nh) {1,2,3} 2
Nodes (intermediate layers) {2i}i=0...4 8
Nodes (final layer) {2i}i=0...4 8
Dropout (NN) {i/10}i=0...5 0.4
Nodes (Embedding) {i/10}i=0...5 0.3

Table 4.2: Hyperparameters evaluated on SP dataset

cross-referenced with a large number of search logs from Amadeus’ partners. A
GDS is a network system used by travel agencies and other travel-related busi-
nesses to access real-time information, availability and pricing for airlines, hotels,
car rentals, and other travel-related services, as well as book and sell tickets for
multiple airlines. Booking data alone, containing information such as origin, des-
tination, and dates is insufficient to fully understand choice behavior. Search logs
complement this information by providing information about the market context.
In other words, AI contains the travel alternatives that the customer was provided
with at the time of booking, which includes information such as different airlines,

39

Applications

flight numbers, time of flights, and prices.
Every user session (set of alternatives) contains a variable number of alter-

natives ranging from 1 to 50, of which exactly one is a booking. User sessions
are sorted by increasing price. Since this is the way most search engines present
results to customers, we assume this ordering also reflect which alternatives were
viewed first and wich last. We have, however, no way of telling which alterna-
tives are actually seen by the user. Since the original data was of exceptionally
high volume (100s of GB), the dataset is limited to a set of European origins and
destinations, and only contains requests concerning round trips. The final size
of the dataset is 187MB. For legal reasons, no personal features (e.g. gender or
age) are present in the dataset. Moreover, the only feature engineering carried out
is the conversion of the departure and arrival time from a timestamp to a time
of day [Mottini and Acuna-Agost, 2017]. We finally note that most of the flight
options are observed only once in the whole dataset [Lhéritier, 2019]. The train-
development-test split is the same used in previous works using the same data and
consists of a 72-8-20 split on the choice sessions.

4.3.2 Results

On the Airline Itinerary dataset, we observe a clear separation between deep and
shallow methods (Figure 4.2). PCMC-Net and H-Net perform comparably well and
outperform the Transformer-based model, despite their well-known performance.
SimpleH underperforms again, showing how limiting a linear comparison is with
respect to the non-linear one performed in H-Net. For H-Net and PCMC-Net,
remarkably small models are chosen by Bayesian optimization as can be seen in
Table 4.4, hinting that these techniques can generalize well. Pointer Transformer
slightly underperforms despite its large number of parameters (Table 4.7), while
PCMC-Net and H-Net are comparable in both size and performance.

Model NLL Top 1 Top 5 MRR

MNL 2.516 0.205 0.588 0.380
SimpleH 3.040 0.152 0.444 0.297
PCMC-Net 2.216 0.289 0.692 0.468

H-Net 2.265 0.281 0.695 0.464
Ptr Transf 2.468 0.259 0.667 0.439

Table 4.3: Results on AI dataset

40

4.4 – RecSys Challenge 2019

Hyperparameter Range Best value
MNL
Learning rate {10−i}i=1...6 10−5

Batch size {2i}i=0...4 8
SimpleH
Learning rate {10−i}i=1...6 10−2

Batch size {2i}i=0...4 4
PCMC-Net
Learning rate {10−i}i=1...6 10−3

Batch size {2i}i=0...4 1
Nodes per layer {2i}i=5...9 64
Hidden layers {1,2,3} 2
Activation {ReLU, Sigmoid, Tanh, LeakyReLU} ReLu
H-Net
Learning rate {10−i}i=1...6 10−3

Batch size {2i}i=0...4 2
Nodes per layer {2i}i=5...9 64
Hidden layers {1,2,3} 2
Activation {ReLU, Sigmoid, Tanh, LeakyReLU} Sigmoid
Ptr Transf
Learning rate {10−i}i=1...6 10−3

Batch size {2i}i=0...4 16
Depth (nl) {1, . . . ,9} 2
Heads (nh) {1, . . . ,4} 1
Nodes (intermediate layers) {2i}i=3...9 8
Nodes (final layer) {2i}i=3...9 64
Dropout (NN) {i/10}i=0...5 0.5
Nodes (Embedding) {i/10}i=0...5 0.2

Table 4.4: Hyperparameters evaluated on AI dataset

4.4 RecSys Challenge 2019

4.4.1 RecSys Challenge

The RecSys Challenge is an annual event proposed during the RecSys conference.
It aims to foster research in the field of recommender systems by providing a
platform for researchers and practitioners to showcase their models and compete
against others. The data provided for the challenge is usually obtained from a real-
world application, and the participants are required to develop a model that can
accurately predict the user’s preference. The 2019 challenge consists of developing

41

Applications

Figure 4.2: AI Top N Accuracy comparison. PCMC-Net (green) and H-Net (red) almost
always overlap

a session-based and context-aware recommender system to predict the preferences
in a list of accommodations based on the actions of the user. A total of 575 teams
participated in the challenge. We do not participate directly in the challenge but
use the same data to validate our models and observe how they compare against
those developed by the participating teams. The dataset used in the challenge
is the largest we tackle in our research, and its analysis gives us an indication of
how well our models would fare for a large recommender system in a production
environment.

4.4.2 Dataset Description

The RecSys Challenge data (RSC) provided consists of interaction logs on the
trivago platform recorded during search sessions. The logs cover a period of 8
days, from 1st to 8th of November 2018 UTC, and record the actions of almost
950k unique users across 55 different countries. Bookings are for accommodations
worldwide, with no particular restriction of market or type of accommodation.

42

4.4 – RecSys Challenge 2019

This results in more than 1.2 million sessions overall. Most users only perform one
search session. Moreover, we are provided with metadata concerning 930k unique
accommodations, to be used as alternative-specific information. Recorded actions
are:

• clickout item: user makes a click-out on the item and gets forwarded to
a partner website. Other items that were displayed to the user and their
associated prices are also listed.

• interaction item rating: user interacts with a rating or review of an item.

• interaction item info: user interacts with item information.

• interaction item image: user interacts with an image of an item.

• interaction item deals: user clicks on the view more deals button.

• change of sort order: user changes the sort order.

• filter selection: user selects a filter.

• search for item: user searches for an accommodation.

• search for destination: user searches for a destination.

• search for poi: user searches for a point of interest (POI).

Each log has additional data such as destination, active filters, and type of device
of the user. The task is to predict which item was selected in a specific clickout
action among a set of exactly 25 alternatives the user was presented with (n = 25).
The training set, as it was provided during the challenge, contains user actions up
to a specified timestamp, called split date, corresponding to 23:59 on the 7th
of November. The remaining actions are considered our test set and are used
during the evaluation of the models. A schematic of the problem setting and the
separation of the data is shown in Figure 4.3.

4.4.3 Feature Engineering

The RSC dataset is in a raw format containing data as logs. A winning approach
for other competitors is to use several aggregate features rather than modeling the
actions with sequence-based learning. We take inspiration from these insights and
perform a complex feature engineering step to convert the logs to a multilinear
tabular format (one row per alternative, each session identified by an ID). Some
examples of aggregates we compute are the number of interactions per type, user,

43

Applications

Figure 4.3: RSC task setting

and session, the number of clicks per alternative, the time difference with the
previous click, and the relative price of an article in a choice set. A complete list
is available in Appendix A.

The first obstacle we face is the sheer amount of temporary data created during
processing: many aggregates require expanding each clickout item action into its 25
alternatives and merging large tables over it. A task our hardware, however good,
cannot accomplish. We resort to uniformly selecting 150k users out of the 950k,
the maximum our hardware can handle. The users are equally distributed among
the total set of train and test combined. This is a reasonable assumption and does
not cause data leakage, as many recommender systems do use prior information
about known users. Solutions based on swapping and lazy evaluation that could
mitigate the memory problem, such as the use of the Dask framework, have been
implemented for small and expensive parts of the feature engineering process but
not for the whole pipeline due to complexity and time constraints.

A second hurdle is the high cardinality of the destination cities. One-hot en-
coding creates a prohibitively high number of features. Instead, we provide the
model with coordinates for every city in order for it to learn some notion of space.
City coordinates are gathered from the GeoNames database2, the airport-codes

2GeoNames website: https://www.geonames.org/

44

4.4 – RecSys Challenge 2019

repository3, the simplemaps database4, as well as internal Amadeus databases,
and merged with the original data.

A third and critical problem is how to avoid data leakage while still constructing
meaningful aggregate features. Aggregates need to be computed also for the test
set, this means that at some point in the process, train and test sets need to be
processed together. This carries the risk of using information from the test set in
the training phase if one performs aggregations in a naive way. Another subtle
mistake is to use "future" data in computing the aggregates: since data is ordered
by timestamp, aggregating features on some moment in time using data from a
further moment in time is equivalent to reading into the future. This gives a
distorted perception of what the real capabilities of the model would be, once put
in a production environment. To tackle this, we perform all our aggregation in a
cumulative and time-aware way, so that no data ever propagates back in time. An
illustration of this problem and its solution can be found in Figure 4.4

Figure 4.4: Aggregate problems in the RSC dataset. Data leakage is shown in orange,
anticausal relationships in yellow, and the corrected lines in green

A last tricky problem is how to handle categorical data pertaining to active
filters and alternative specific characteristics. Both sets of features encompass
qualities pertaining to infrastructure and qualities of accommodations, such as the
number of stars, accessibility, WiFi, presence of car parking, etc. These features
have high cardinalities (hundreds of different filters and characteristics available)
and would result in very large models if converted to one-hot encoded features.
We perform dimensionality reduction by means of sklearn’s FeatureAgglomeration
class, which builds new features by performing hierarchical clustering. We apply
this process on filters and accommodation characteristics separately and go from
hundreds to just 40 features.

3airport-codes repository: https://github.com/datasets/airport-codes
4simplemaps website: https://simplemaps.com/

45

Applications

The final size of the parsed dataset is 1.6 GB for the training part, 199 MB
for the development part and 603 MB for the test part. In this case, we define
the test set based on the split date, and split the remaining data into train and
development sets using a timestamp. Specifically, we assign the first 90% of the
timestamps to the train set and the last 10% to the development set.

4.4.4 Results

Methods applied to RSC show a similar behavior to the AI case, with the PCMC-
Net and H-Net having the best performance without a clear winner, Pointer Trans-
former being slightly behind, and MNL and SimpleH in the last positions. Here we
see a peculiar phenomenon: the model with the lowest loss is not necessarily the
best-performing one. This can be explained by the more lossy model being more
"undecided" but giving the right answer nonetheless. A visual explanation can
be seen in Figure 4.5. Regarding model sizes (Table 4.7), we notice this time the
Pointer Transformer is of comparable size to the other deep models, mainly thanks
to a smaller final layer. While the best MRR of our models is far from the top
score obtained via gradient boosting methods (0.686), we nonetheless significantly
beat the baseline which is based on the frequency of alternatives chosen by other
users (0.288).

(a) Sure (b) Unsure
Figure 4.5: Loss difference explained. While both figures predict the same alternative,
4.5b is less certain about the true answer and therefore has a higher loss

46

4.4 – RecSys Challenge 2019

Model NLL Top 1 Top 5 MRR

MNL 2.686 0.238 0.606 0.409
SimpleH 3.005 0.116 0.394 0.263
PCMC-Net 2.447 0.311 0.632 0.462

H-Net 2.451 0.312 0.642 0.464
Ptr Transf 2.605 0.297 0.623 0.450

Table 4.5: Results on RSC dataset

Hyperparameter Range Best value
MNL
Learning rate {10−i}i=1...6 10−2

Batch size {2i}i=6...10 128
SimpleH
Learning rate {10−i}i=1...6 10−1

Batch size {2i}i=6...10 256
PCMC-Net
Learning rate {10−i}i=1...6 10−3

Batch size {2i}i=6...10 64
Nodes per layer {2i}i=5...9 32
Hidden layers {1,2,3} 1
Activation {ReLU, Sigmoid, Tanh, LeakyReLU} LeakyReLU
H-Net
Learning rate {10−i}i=1...6 10−3

Batch size {2i}i=6...10 64
Nodes per layer {2i}i=5...9 64
Hidden layers {1,2,3} 2
Activation {ReLU, Sigmoid, Tanh, LeakyReLU} Sigmoid
Ptr Transf
Learning rate {10−i}i=1...6 10−3

Batch size {2i}i=6...10 128
Depth (nl) {1, . . . ,4} 2
Heads (nh) {1, . . . ,3} 2
Nodes (intermediate layers) {2i}i=1...4 8
Nodes (final layer) {2i}i=1...4 4
Dropout (NN) {i/10}i=0...5 0.3
Nodes (Embedding) {i/10}i=0...5 0.4

Table 4.6: Hyperparameters evaluated on RSC dataset

47

Applications

Figure 4.6: RSC Top N Accuracy comparison

Model SP AI RSC

MNL 57 1961 45
SimpleH 58 1962 46
PCMC-Net 795 19790 552046

H-Net 1020 19855 564783
Ptr Transf 5475 42110 581446

Table 4.7: Summary of model sizes across all datasets

48

Chapter 5

Discussion

5.1 Comments on results

What we gathered from our experiments is that deep learning approaches on simple
problems show little advantage over non deep counterparts. For large problems,
where contextual information starts to become relevant and anomalies are more
likely to occur, deep learning models show instead good accuracy, significantly
outperforming non deep counterparts. We expect a sharper separation in problems
that are notoriously hard for shallow methods, such as ones involving text or
images.

Pairwise comparison models fare better than holistic models that use the full
alternative set to compute probabilities, such as Pointer Transformer. This is
interesting, as it means that single one-vs-one comparisons can be combined to
describe much more complex dynamics in a more accurate way than many-vs-many
models, which instead need training to be able to model the same dynamics. It’s
also possible that Pointer Transformers simply need larger datasets, longer training
times or a different architecture altogether to become competitive. For example,
one could use a different embedding. Another observation is that it’s difficult,
in PCMC-Net and H-Net, to disentangle the final probability computation from
the neural network. It’s unclear whether the results we observe are because the
theoretical model behind the architecture can actually describe these processes
well, or because the neural network can capture these comparisons by sheer power
of approximation. Further testing is necessary to shed light on this aspect.

Some considerations about parameter scaling can be done from the few exper-
iments we run. For instance, Table 4.7 shows how Pointer Transformer starts off
using 5 times the amount of parameters of its pairwise counterparts. However,
this difference shrinks to 2 times in the AI dataset and is almost absent in the

49

Discussion

RSC case, suggesting that Pointer Transformers may have some good scaling prop-
erties. It may be worth comparing these models using larger datasets to assess if
this holds true.

Looking more closely at simpler methods, MNL still proves to be a superior
and easy-to-implement solution compared to its QDT alternative SimpleH, casting
doubts on the capabilities of QDT at large.

5.2 The search for a QDT-inspired RNN

A common task recommender systems are faced with is predicting choices for
reoccurring users. They may look for specific items, and previous choices could give
useful hints about what the following ones would be. Since QDT describes rules
for updating a state based on its observed outcomes, it seems a viable candidate
for developing a model capable of handling consecutive decisions. We conceive
a possible approach that can handle multiple consecutive choices S1, S2, . . . , Sm

by constructing and updating a state |s⟩ using several unitary transformations
U1, U2, . . . , Um. The final state would be computed as:

|sf⟩ = Um . . . U1 |s⟩ (5.1)

The core concept is to stack many comparison layers (as the one described in Sec-
tion 3.1.4), one for every consecutive choice the user is faced with, in a recurrent
fashion. A similar quantum-inspired RNN has never been proposed in literature.
However, the approximating power of this architecture is ultimately limited by
the linear and unitary nature of quantum operators, likely resulting in inferior
performance compared to a classical non-linear RNN. This a recurring issue with
a quantum theory of decision used as it is: while relying on the quantum formal-
ism loosens many constraints of classical probability, it bounds the evolution of
the state to linear transformations, significantly impacting the expressivity of the
resulting model. For these reasons, the idea was discarded.

5.3 Limits of Quantum Decision Theory

Despite its promising results when applied to large problems, QDT is still a dis-
cipline at its infancy. Presently, developing new QDT models clashes with some
difficulties of practical and theoretical nature. First of all, most applications of
QDT are limited to small controlled experiments, and there is a lack of studies
describing how QDT-based approaches fare in real-life settings. As a consequence,
adapting the theory to new applications takes significant effort. Secondly, not much

50

5.3 – Limits of Quantum Decision Theory

is clear about other factors different from prediction accuracy, such as explainabil-
ity and interpretability. Another setback we encounter during our research is the
scarcity of implementations using this theory. We denote, in particular, an absence
of deep models leveraging QDT. On a technical note, we empirically observe our
implementation based on a matrix exponentiation is noticeably slower to train and
run than its very similar classical counterpart PCMC-Net, an aspect one should
account when choosing which approach to use. Better implementations of the ma-
trix exponential function could tackle this limit. Finally, some skepticism arises as
to whether it’s really possible to model human decision making using a formalism,
the quantum one, not designed for computational psychology. This thesis simply
shows that a particular approach, specifically one based on a combination of QDT
with deep learning, is successful at modeling human behavior more than other
models. We prefer to leave the QDT hypothesis to physicists and psychologists to
prove or disprove.

51

Chapter 6

Conclusion and Future Work

We propose two novel approaches for decision theory based on deep learning and
Quantum Decision Theory (QDT), assessing their performance on similar classi-
cal and quantum-based models from literature. The first one takes advantage of
the Hamiltonian evolution of quantum systems as a way of using pairwise com-
parison to compute the final probabilities of alternatives. The second one uses
the well-established Attention mechanism to compute a holistic comparison of all
alternatives to determine the probability of each option. Our experiments show
that pairwise methods are slightly better at modeling decisions than holistic ones.
QDT proves to be a powerful tool when applied in conjunction with deep learning
methods, while it falls short of modeling decision dynamics when combined with
a shallower logic. Multinomial Logit Models (MNL) consistently perform bet-
ter than quantum-inspired methods of similar complexity. Regarding the Pointer
Transformer architecture, further testing is necessary to evaluate its performance.
A possible avenue of research for improving this method is using larger datasets
and different embeddings. Another promising application for deep choice models is
in domains where decisions are based on images or text, where shallow models are
known to perform poorly. Finally, we do not find definitive evidence that QDT-
inspired approaches can improve performance. Further experiments are necessary
to clarify the extent of QDT’s explanatory power.

53

Acknowledgments

This thesis, despite carrying my name, is the work of many people that supported
me through the years and made me the person I am now. For their invaluable
contribution they deserve to be thanked.

Firstly, I would like to thank my supervisor, Alix Lhéritier, whose attentive
eye and skillful direction steered this thesis toward a fruitful and interesting real-
ization. I would also like to thank all my colleagues that contributed by helping
me solve problems I, alone, could not have handled, or simply by listening to my
crazy conjectures about quantum states and human minds: Rodrigo Acuna Agost,
Nicolas Bondoux, Eoin Thomas, Hongliu Cao, Apostolos Avranas, as well as the
rest of the ART team. Thanks to you all, I learned what it means to do research.

I would also like to express my gratitude to Professor Marios Kountouris and
Professor Bartolomeo Montrucchio for accepting me as their master thesis student
and for supporting my project. Their help, suggestions, and expertise throughout
this process have been invaluable.

Without the encouragement, inspiration, and humor of many others who ac-
companied me, this adventure would not have become a reality. I’ll do my best
to thank them one by one. My lifelong friends: Lorenzo, Federico, Michela and
Edoardo, for always being a harbor I could return to in times of need. The friends I
grew up with in Torino: Gianluca, Riccardo, Stefano, Daniele and Vito, for always
welcoming me back with open arms. My university classmates: Martino, Matteo,
Marco (both of you), Gilberto, Paolo, Luca, and Davide, for accompanying me
through the highs and lows of an engineering degree. My friends here in France:
Alessandro, Demetrio, Dario, Prateek, Simone and Massimiliano, who supported
me in a place far from home, making it feel like home.

I want to reserve a special thank you to Yashu: the girl who unexpectedly
appeared into my life, made these demanding months a little brighter, and changed
so many things in so little time.

And lastly, my deepest thanks and appreciation go to my family. To my grand-
parents, who taught me kindness and always looked after me. To my mom Nadia
and my dad Renato, whose constant love made me the person I am today, who
never stopped encouraging my curiosity, who taught me determination, and who
always supported me through good and bad times, however far I was. I thank you
all, for making this adventure possible.

55

Appendix A

RSC Features

57

RSC Features

Feature name Description Type Source Class

unique_id Unique identifier for a choice ses-
sion, obtained by combining ses-
sion_id and adj_step

ID Engineered ID

city Name of the destination city Categorical Original Context
country Name of the destination country Categorical Original Context
device Device that was used for the search Categorical Original Context
platform Country platform that was used

for the search, e.g. trivago.de (DE)
or trivago.com (US)

Categorical Original Context

step Step in the sequence of actions
within the session

Numerical Original Context

timestamp UNIX timestamp for the time of
the interaction

Numerical Original Context

adj_step Adjusted step when session is di-
vided in two

Numerical Engineered Context

alt_[item]_click_count_sess Number of clicks on [item] related
to the current alternative in the
current session

Numerical Engineered Alternative

alt_[item]_click_count_usr Number of clicks on [item] related
to the current alternative by the
user

Numerical Engineered Alternative

alt_agg_[i] i-th aggregated feature from the
metadata alternative characteris-
tics

Numerical Engineered Alternative

alt_is_last_int Whether the current alternative is
the last interacted with

Categorical Engineered Alternative

cum_click_ratio Cumulative proportion of sessions
resulting in clickout

Numerical Engineered Context

cum_n_cities Cumulative number of cities
searched in the current session

Numerical Engineered Context

cum_n_click_item_sess Cumulative number of items
clicked in the current session

Numerical Engineered Context

cum_n_click_item_usr Cumulative number of items
clicked by the user

Numerical Engineered Context

cum_n_sess Cumulative number of sessions for
the user

Numerical Engineered Context

cum_n_sess_click Cumulative number of sessions re-
sulting in clickout

Numerical Engineered Context

cum_price_sess Cumulative price of clicked alterna-
tives

Numerical Engineered Context

cum_sess_[action] Cumulative number of times [ac-
tion] was taken in the current ses-
sion

Numerical Engineered Context

cum_usr_[action] Cumulative number of times [ac-
tion] was taken by the user

Numerical Engineered Context

day Day of the month, obtained from
timestamp

Numerical Engineered Context

filter_agg_[i] i-th aggregated feature from the ac-
tive filters features

Numerical Engineered Context

impression_pos Position of the current alternative
in the list of viewed options

Numerical Engineered Alternative

latitude, longitude Coordinates of city Numerical Engineered Context
price_max, price_min Maximum and minimum prices in

this choice session
Numerical Engineered Context

price_rel_max, price_rel_min Price of the current alternative rel-
ative to the maximum and minu-
mum price in this choice session

Numerical Engineered Alternative

prices Price of the current alternative Numerical Engineered Alternative
Stars Number of stars of the accommo-

dation
Numerical Engineered Alternative

58

RSC Features

Feature name Description Type Source Class
time_sess_curr Current length of the session in sec-

onds
Numerical Engineered Context

time_sess_start UNIX timestamp for the starting
time of the current session

Numerical Engineered Context

timediff_last_click Time since the last clickout action
in seconds

Numerical Engineered Context

Table A.1: Feature description for the final RSC dataset

59

Bibliography

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J.,
Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V.,
Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2016). Tensorflow: A system
for large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283.

[Allais, 1953] Allais, M. (1953). Le comportement de l’homme rationnel devant le
risque: critique des postulats et axiomes de l’école américaine. Econometrica:
Journal of the Econometric Society, pages 503–546.

[authors, 2016] authors, T. G. (2016). Gpyopt: A bayesian optimization frame-
work in python. http://github.com/SheffieldML/GPyOpt.

[Bahdanau et al., 2015] Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural
machine translation by jointly learning to align and translate. In Bengio, Y.
and LeCun, Y., editors, 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings.

[Block and Marschak, 1960] Block, H. D. and Marschak, J. (1960). Random or-
derings and stochastic theories of response. Contributions to Probability and
Statistics, 2:97–132.

[Broekaert and Busemeyer, 2018] Broekaert, J. and Busemeyer, J. (2018).
Episodic source memory over distribution by quantum-like dynamics – a model
exploration.

[Broekaert and Busemeyer, 2017] Broekaert, J. B. and Busemeyer, J. R. (2017). A
hamiltonian driven quantum-like model for overdistribution in episodic memory
recollection. Frontiers in Physics, 5:23.

[Bronkhorst, 2015] Bronkhorst, A. W. (2015). The cocktail-party problem revis-
ited: early processing and selection of multi-talker speech. Attention, Percep-
tion, & Psychophysics, 77(5):1465–1487.

[Busemeyer and Bruza, 2012a] Busemeyer, J. R. and Bruza, P. D. (2012a). What
is quantum theory? An elementary introduction, page 1–98. Cambridge Univer-
sity Press.

61

http://github.com/SheffieldML/GPyOpt

Bibliography

[Busemeyer and Bruza, 2012b] Busemeyer, J. R. and Bruza, P. D. (2012b). What
is quantum theory? An elementary introduction, pages 73–74. Cambridge Uni-
versity Press.

[Busemeyer and Bruza, 2012c] Busemeyer, J. R. and Bruza, P. D. (2012c). What
is quantum theory? An elementary introduction, pages 221–227. Cambridge
University Press.

[Busemeyer and Bruza, 2012d] Busemeyer, J. R. and Bruza, P. D. (2012d). What
is quantum theory? An elementary introduction, pages 267–280. Cambridge
University Press.

[Busemeyer et al., 2006] Busemeyer, J. R., Wang, Z., and Townsend, J. T. (2006).
Quantum dynamics of human decision-making. Journal of Mathematical Psy-
chology, 50(3):220–241. Special Issue: Jean-Claude Falmagne: Part II.

[Busemeyer et al., 2015] Busemeyer, J. R., Wang, Z., Townsend, J. T., and Eidels,
A. (2015). The Oxford handbook of computational and mathematical psychology.
Oxford University Press.

[Chen and Bansal, 2018] Chen, Y. and Bansal, M. (2018). Fast abstractive sum-
marization with reinforce-selected sentence rewriting. CoRR, abs/1805.11080.

[Dosovitskiy et al., 2020] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly,
S., Uszkoreit, J., and Houlsby, N. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. CoRR, abs/2010.11929.

[Ellsberg, 1961] Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The
quarterly journal of economics, pages 643–669.

[Gaspar et al., 2019] Gaspar, P., Kompan, M., Koncal, M., and Bielikova, M.
(2019). Improving the personalized recommendation in the cold-start scenar-
ios. In 2019 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pages 606–607.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016).
Deep Learning. MIT Press. http://www.deeplearningbook.org.

[Hancock et al., 2020] Hancock, T. O., Broekaert, J., Hess, S., and Choudhury,
C. F. (2020). Quantum probability: A new method for modelling travel be-
haviour. Transportation Research Part B: Methodological, 139:165–198.

[Hernández and Amigó, 2021] Hernández, A. and Amigó, J. M. (2021). Attention
mechanisms and their applications to complex systems. Entropy, 23(3):283.

[Hess and Palma, 2019] Hess, S. and Palma, D. (2019). Apollo: a flexible, power-
ful and customisable freeware package for choice model estimation and applica-
tion. Journal of Choice Modelling, 32.

[Hogarth and Einhorn, 1992] Hogarth, R. M. and Einhorn, H. J. (1992). Order
effects in belief updating: The belief-adjustment model. Cognitive psychology,
24(1):1–55.

62

http://www.deeplearningbook.org

Bibliography

[Huber et al., 1982] Huber, J., Payne, J. W., and Puto, C. (1982). Adding asym-
metrically dominated alternatives: Violations of regularity and the similarity
hypothesis. Journal of consumer research, 9(1):90–98.

[Jannach et al., 2010] Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G.
(2010). Recommender Systems: An Introduction. Cambridge University Press.

[Jedlicka, 2017] Jedlicka, P. (2017). Revisiting the quantum brain hypothesis: To-
ward quantum (neuro)biology? Frontiers in Molecular Neuroscience, 10.

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings.

[Lhéritier, 2019] Lhéritier, A. (2019). Pcmc-net: Feature-based pairwise choice
markov chains. In International Conference on Learning Representations.

[Lhéritier et al., 2019] Lhéritier, A., Bocamazo, M., Delahaye, T., and Acuna-
Agost, R. (2019). Airline itinerary choice modeling using machine learning.
Journal of Choice Modelling, 31:198–209.

[Li et al., 2018] Li, J., Wang, Y., Lyu, M. R., and King, I. (2018). Code comple-
tion with neural attention and pointer networks. In Proceedings of the 27th In-
ternational Joint Conference on Artificial Intelligence, IJCAI’18, page 4159–25.
AAAI Press.

[Lin et al., 2022] Lin, T., Wang, Y., Liu, X., and Qiu, X. (2022). A survey of
transformers. AI Open, 3:111–132.

[Lindsay, 2020] Lindsay, G. W. (2020). Attention in psychology, neuroscience, and
machine learning. Frontiers in computational neuroscience, 14:29.

[Luce, 1977] Luce, R. D. (1977). The choice axiom after twenty years. Journal of
mathematical psychology, 15(3):215–233.

[Manski, 1977] Manski, C. F. (1977). The structure of random utility models.
Theory and decision, 8(3):229–254.

[Mottini and Acuna-Agost, 2017] Mottini, A. and Acuna-Agost, R. (2017). Deep
choice model using pointer networks for airline itinerary prediction. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1575–1583. ACM.

[Neumann and Morgenstern, 1944] Neumann, J. V. and Morgenstern, O. (1944).
Theory of Games and Economic Behavior. Princeton, NJ, USA: Princeton Uni-
versity Press.

[Norris, 1997] Norris, J. R. (1997). Markov Chains. Cambridge Series in Statisti-
cal and Probabilistic Mathematics. Cambridge University Press.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A.,
Köpf, A., Yang, E. Z., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,

63

Bibliography

Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch: An imperative
style, high-performance deep learning library. CoRR, abs/1912.01703.

[Penrose, 1990] Penrose, R. (1990). The Emperor’s New Mind: Concerning Com-
puters, Minds, and the Laws of Physics. Viking Penguin.

[Peterson et al., 2021] Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman,
D., and Griffiths, T. L. (2021). Using large-scale experiments and machine learn-
ing to discover theories of human decision-making. Science, 372(6547):1209–
1214.

[Phan et al., 2022] Phan, D., Vu, H., and Currie, G. (2022). Attentionchoice:
Discrete choice modelling supported by a deep learning attention mechanism.
SSRN Electronic Journal.

[Ragain and Ugander, 2016] Ragain, S. and Ugander, J. (2016). Pairwise choice
markov chains. In Advances in Neural Information Processing Systems, pages
3198–3206.

[Rossi and Paradiso, 1995] Rossi, A. F. and Paradiso, M. A. (1995). Feature-
specific effects of selective visual attention. Vision Research, 35(5):621–634.

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.
(1986). Learning Representations by Back-propagating Errors. Nature,
323(6088):533–536.

[Shanteau, 1970] Shanteau, J. C. (1970). An additive model for sequential decision
making. Journal of Experimental Psychology, 85(2):181.

[Simonson, 1989] Simonson, I. (1989). Choice based on reasons: The case of at-
traction and compromise effects. Journal of consumer research, 16(2):158–174.

[Tversky, 1972] Tversky, A. (1972). Elimination by aspects: A theory of choice.
Psychological review, 79(4):281.

[Tversky and Kahneman, 1992] Tversky, A. and Kahneman, D. (1992). Advances
in prospect theory: Cumulative representation of uncertainty. Journal of Risk
and uncertainty, 5(4):297–323.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you
need. Advances in neural information processing systems, 30.

[Vinyals et al., 2015] Vinyals, O., Fortunato, M., and Jaitly, N. (2015). Pointer
networks. Advances in neural information processing systems, 28.

[Virtanen et al., 2020] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland,
M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,
Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H.,
Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors (2020). SciPy 1.0:

64

Bibliography

Fundamental Algorithms for Scientific Computing in Python. Nature Methods,
17:261–272.

[von Neumann, 2018] von Neumann, J. (2018). Mathematical Foundations of
Quantum Mechanics. Princeton University Press, Princeton.

[Yearsley and Busemeyer, 2016a] Yearsley, J. M. and Busemeyer, J. R. (2016a).
Quantum cognition and decision theories: A tutorial. Journal of Mathematical
Psychology, 74:99–116. Foundations of Probability Theory in Psychology and
Beyond.

[Yearsley and Busemeyer, 2016b] Yearsley, J. M. and Busemeyer, J. R. (2016b).
Quantum cognition and decision theories: A tutorial. Journal of Mathematical
Psychology, 74:99–116. Foundations of Probability Theory in Psychology and
Beyond.

[Yukalov and Sornette, 2015] Yukalov, V. I. and Sornette, D. (2015). Preference
reversal in quantum decision theory.

[Zhang et al., 2017] Zhang, S., Yao, L., and Sun, A. (2017). Deep learning based
recommender system: A survey and new perspectives. CoRR, abs/1707.07435.

[Zhao et al., 2018] Zhao, X., Xia, L., Zhang, L., Ding, Z., Yin, D., and Tang, J.
(2018). Deep reinforcement learning for page-wise recommendations. CoRR,
abs/1805.02343.

65

	Dedication
	List of Figures
	List of Tables
	Introduction
	Company overview and business sector
	Team presentation

	Thesis objective

	Background
	Decision Theory
	A theory of choice
	Context Effects
	PCMC-Net
	Recommender Systems and Choice Modeling

	Quantum Probability
	Bra-ket Notation
	Quantum Systems
	Measurement
	Differences with classical probability
	Hamiltonian Evolution
	Quantum Decision Theory

	Deep Models
	Transformers
	Pointer Networks

	Architectures
	H-Net: A Quantum-inspired Discrete Choice Model
	Motivation
	Overview
	Embedding
	Comparison
	Hamiltonian dynamics
	SimpleH

	Pointer Transformer: An Attention-based Discrete Choice Model
	Motivation
	Overview
	Comparison

	Applications
	Methodology
	Optimizer
	Hyperparameter tuning
	Hardware

	Synthetic Stated Preferences
	Dataset Description
	Results

	Airline Itinerary
	Dataset Description
	Results

	RecSys Challenge 2019
	RecSys Challenge
	Dataset Description
	Feature Engineering
	Results

	Discussion
	Comments on results
	The search for a QDT-inspired RNN
	Limits of Quantum Decision Theory

	Conclusion and Future Work
	RSC Features
	Bibliography

