
POLITECNICO DI TORINO
&

EURECOM SOPHIA ANTIPOLIS
Double Master’s Degree in

Data Science and Engineering

Double Master’s Degree Thesis

Maximizing the Voice of the Customer
with NLP: A Tool to detect Insights with

Sentiment Analysis and Named Entity
Recognition

Supervisors

Prof. Paolo GARZA

Prof. Maria ZULUAGA

Eng. Nikos SYMEONIDIS

Candidate

Simone PAPICCHIO

December 2022

English abstract
The use of machine learning techniques to analyze customer feedback has the
potential to provide valuable insights for businesses. In this thesis, we present a
tool for extracting Voice of the Customer (VoC) data from tweets and analyzing it
using Natural Language Processing (NLP) techniques. The tool consists of four
macro steps that are flexible and can be run in parallel, allowing for efficient and
effective data extraction and analysis.

We propose two architectures: one for Sentiment Analysis and one for Named
Entity Recognition (NER), and demonstrate that our approach outperforms the
baselines reported in the literature in both tasks. In the case of Sentiment Analysis,
we use Human Level Performance to demonstrate Data & Conceptual shift. For
NER, we propose a method for processing the data to leverage different word
embeddings and a way to conduct ablation studies using TensorBoard.

The tool has been deployed and is being used by Toyota Motor Europe to
conduct real-time VoC analysis. The results of research show that the integration
between NLP and VoC analysis can provide valuable insights for businesses and
contribute to the NLP literature.

ii

French abstract
L’utilisation de techniques d’apprentissage automatique pour analyser les com-
mentaires des clients a le potentiel de fournir des informations précieuses pour les
entreprises. Dans cette thèse, nous présentons un outil permettant d’extraire les
données de la voix du client (VoC) à partir de tweets et de les analyser à l’aide de
techniques de traitement du langage naturel (NLP). L’outil se compose de quatre
macro-étapes qui sont flexibles et peuvent être exécutées en parallèle, permettant
une extraction et une analyse des données efficaces et effectives.

Nous proposons deux architectures : l’une pour l’analyse des sentiments et
l’autre pour la reconnaissance des entités nommées (NER), et nous démontrons que
notre approche surpasse les lignes de base rapportées dans la littérature pour les
deux tâches. Dans le cas de l’analyse des sentiments, nous utilisons la performance
au niveau humain pour démontrer le changement de données et de concepts. Pour
le NER, nous proposons une méthode de traitement des données afin d’exploiter
différents encastrements de mots et un moyen de mener des études d’ablation à
l’aide de TensorBoard.

L’outil a été déployé et est utilisé par Toyota Motor Europe pour effectuer
une analyse de la VoC en temps réel. Les résultats de la recherche montrent que
l’intégration entre la PNL et l’analyse de la VoC peut fournir des informations
précieuses pour les entreprises et contribuer à la littérature PNL.

iii

Acknowledgements

I am deeply grateful to my family for their love and support throughout my aca-
demic journey. Without their constant encouragement and sacrifice, I would not
have been able to complete this thesis. Special thanks go to my parents, Marco
and Lucia, for their unwavering belief in me and for always being there to provide
guidance and advice.

I am also thankful to my partner, Eleonora, for being my rock during this long
and sometimes difficult journey. Her support, encouragement and understanding
have kept me going, even on the most difficult days. I am truly grateful for your
presence in my life and the impact you have on it. I could not have done it without
you and I will be forever grateful.

I am also deeply grateful to my friends, who provided me with endless love,
support, and motivation throughout this process. Especially, Riccardo Presti-
giacomo and Francesca for consuming several cans of oil during the lock down
and Martina for the litres of herbal tea drunk between promenades. I must also
mention both Riccardo Pastorino and Nour for making this journey unforgettable
and full of memories through the many trips to Liguria and beyond. I also have
to mention Alessio for always being helpful and supportive, the path would have
been very different without you; Andrea Torredimare for the numerous tech tips
and coffees shared between one study break and another; Federico Pes unfailing
travelling companion between numerous storms called projects and many others
for the endless amount of jokes, memes and puns that entertained me and helped
me stay focused and motivated. Thank you for being there for me and helping me
stay sane during the long hours spent in the study room.

I must also thank the Europe+ program for providing me with the funding and
support to participate in Double Degree program. The resources and opportunities
provided by Europe+ have been instrumental in my academic success, and I am
grateful for the impact that the program has had on my life.

iv

To my father, who ignited the spark of imagination in me.
To my mother, who showed me the power of determination and hard work.

To my sister, who taught me to never let adversity stand in my way.
To my brother, who showed me the beauty of being unique and standing out from

the crowd.

v

Table of Contents

English abstract . ii
French abstract . iii

List of Tables ix

List of Figures x

1 Background 1
1.1 Toyota Business Practice (TBP) . 1
1.2 Project Lifecyle: MLOps . 3

2 Project scope: Voice of Customer from Tweet 5
2.1 Step A: Tweet collection based on keyword 8
2.2 Step B: Sentiment Analysis . 11

2.2.1 Training Dataset: Sentiment140 13
2.2.2 Model Architecture: BERTweet and Classification Head . . . 15
2.2.3 Training Phase: Results on Sentiment140 19
2.2.4 Human Level Performance: Data and Conceptual Shift . . . 23
2.2.5 Countermeasure Analysis and Results 28

2.3 Step D: Named Entity Recognition 31
2.3.1 Training Dataset: Tweetbank and Tweetner7 33
2.3.2 Model Architecture: Word Embedding, Bi-LSTM, Attention

and CRF . 36
2.3.3 Step D.1: Pre-Processing of the data 38
2.3.4 Step D.2. & Step D.3: Extract and concatenate embeddings 40
2.3.5 Step D.3-D.7: Classification Head 43
2.3.6 Ablation Study: All the steps are really necessary? 45
2.3.7 Training Phase and Results 49

3 Use case and conclusion 54
3.1 Use case . 54
3.2 Conclusion . 57

vii

Bibliography 58

viii

List of Tables

2.1 Fine tuning results on Sentiment140, average of 3 experiments per
transformers. Training 1,582,416; Validation 16,000; Test 1,600 . . . 21

2.2 Comparison among the different models used for HLP analysis. . . . 24
2.3 Tweetbank statistic. Left table for IAA measure. Rigth table split

statistics. 33
2.4 Tweetner7 target count for train test and validation set 35
2.5 Tweetner7 baselines reported in literature 35
2.6 Ablation study best hyperparameter combination 48
2.7 NER model parameters: trained versus untrained 50

ix

List of Figures

1.1 Project Lifecycle used to deploy Sentiment Analysis and NER models 4

2.1 Proposed tool to extract Voice of Customer from tweet 6
2.2 Step A: step-by-step methodology 8
2.3 Step A: Trend analysis for CARBON NEUTRALITY from 15/Jul

to 10/Nov based in continent . 9
2.4 Step B: Sentiment Analysis examples 12
2.5 Tweet lengths for positive and negative tweets in Sentiment140 . . . 14
2.6 Word-Cloud for positive and negative tweets in Sentiment140 14
2.7 Sentiment analysis architecture . 15
2.8 BerTweet-Large fine-Tuning results for best run. 22
2.9 Confusion Matrix comparison between BerTweet-Large and BerTweet-

base . 22
2.10 Human Level Performance analysis step-by-step procedure 23
2.11 Count of miss-classified tweets over the HLP dataset. 25
2.12 Confusion Matrices of best models for HLP. In red is reported a

common error path among the models. 26
2.13 f1score for each model on HLP dataset 26
2.14 Root Cause Analysis for BerTweet HLP results 27
2.15 Process to create the training dataset to address data and conceptual

shifting . 27
2.16 Validation loss and f1score evaluated for different size of training

dataset. validation size 10%. F1score is calculated on the HLP dataset 28
2.17 Training and Validation loss for 1000 tweets, 10% validation size. At

each iteration (step), the model receive as input 64 tweets (batch size) 29
2.18 Differences in confusion matrices between countermeasure and best

state-of-art sentiment analysis model 29
2.19 Three random sample prediction for each label 30
2.20 Visual Example of possible application of NER on unstructured data 31
2.21 NER architecture step-by-step process 37
2.22 Step D.1: Pre-processing pipeline to prepare model input 38

x

2.23 Step D.1.3: software design pipeline to address tokenization 39
2.24 Step D.2.1: POS embedding feature extraction 40
2.25 Step D.2.3: Char embedding feature extraction 41
2.26 Step D.2.2: Word embedding feature extraction 41
2.27 Step D.4 & D.5: Bidirectional LSTM and Multi Head Attention . . 43
2.28 Step D.6 & D.7: Neural Network and CRF 44
2.29 TensorBoard plot of the 64 training combination. 46
2.30 TensorBoard plot with focus on whether to apply BerTweet for word

embedding or not. 47
2.31 NER model after ablation study . 48
2.32 Tweetbank NER model performance metrics: Training and validation

loss and F1 score. 1,639 tweets for training vs 710 for validation . . 51
2.33 Tweetner NER model performance metrics: Training and validation

loss and F1 score. 7,111 tweets for training vs 310 for validation . . 52
2.34 NER test results compared with baseline. Tweetbank with 1,201

tweets and Tweetner with 2,807 tweets as test set 53

3.1 Step A: Analyzing the trend of "Battery Electric Vehicle" mentions
on Twitter in December 2022, with data in the top six European
countries based tweet volume. 55

3.2 Step B: Performing sentiment analysis for "Battery Electric Vehicle"
mentions on Twitter in December 2022 with data in the top six
European countries based tweet volume. 56

3.3 Step D: Applying NER to negative tweets about "Battery Electric
Vehicle" tweeted from France in December 2023. The predicted
product is in bold on the left and the predicted person is in bold on
the right. 56

xi

Chapter 1

Background

1.1 Toyota Business Practice (TBP)
The Toyota Business Practice (TBP) is an important tool for Toyota associates
because it provides a standard approach to problem-solving that is based on the
principles of the Toyota Way. The Toyota Way is a set of guiding principles that
are used to shape the culture and practices of Toyota, and it includes two pillars:
continuous improvement and respect for people. TBP can be applied to all types
of problems across the company, and it helps to create a common language and
understanding among global Toyota associates.

The TBP approach to problem-solving is based on the "plan, do, check, act"
framework, which is a systematic way of identifying and addressing problems.
This approach emphasizes the importance of viewing problems as opportunities
for improvement, rather than as negative events. By using the TBP mindset,
Toyota associates can approach problems productively, systematically, and can
work together to identify and solve problems in a way that helps the company grow
and improve.

TBP is composed of the following steps

1. Clarify the problem: Identify the problem that needs to be addressed and
define it clearly.

2. Break down the problem: Analyze the problem and its underlying causes in
order to better understand it.

3. Set a target: Determine the ideal state that you want to achieve, and define
specific and measurable goals that will help you to reach that state.

1

Background

4. Analyze the root cause: Identify the underlying causes of the problem and
determine how they contribute to the problem.

5. Develop countermeasures: Develop a plan to address the problem, taking into
account the root causes and the desired target state.

6. See countermeasures through: Implement the plan and monitor its progress
to ensure that it is effective.

7. Evaluate both results and process: Evaluate the results of the plan to determine
its effectiveness, and assess the process used to implement it to identify any
areas for improvement.

8. Standardize successful processes: Once the problem has been effectively ad-
dressed, document the process used to solve it so that it can be used as a
model for addressing similar problems in the future.

By following these steps, Toyota associates can approach problem-solving in a
systematic and effective way, and can work together to identify and solve problems
in a way that helps the company grow and improve.

The TBP approach to problem solving was successfully implemented in this
industrial thesis. The process was thoroughly understood and applied to address
several problems that arose during the development of the project. As a result
of using the TBP approach, the project was completed successfully and met all
necessary objectives. This demonstrates the effectiveness of the TBP approach in
industrial settings and its utility for addressing complex problems.

2

Background

1.2 Project Lifecyle: MLOps
MLOps, or "Machine Learning Operations," is a practice that combines software en-
gineering and data engineering techniques to develop, deploy, and manage machine
learning models in production. Because MLOps is a relatively new field, there is no
one "best" project lifecycle for it. However, there are some general best practices
that can help ensure the success of an MLOps project.

One of the key principles of MLOps is collaboration and communication between
different teams, such as data scientists, software engineers, and IT operations. This
means that the project lifecycle should be designed to facilitate collaboration and
cross-functional communication.

Another important aspect of MLOps is the automation of certain processes,
such as model training, testing, and deployment. This can help improve the speed,
reliability, and reproducibility of machine learning models in production. As such,
the project lifecycle should include steps for automating these processes, as well as
for monitoring and maintaining the deployed models.

Here is a general outline of a project lifecycle for MLOps:

1. Define the business problem and objectives of the project, as well as the data
and algorithms that will be used to solve the problem. This is an important
first step, as it helps to ensure that the project is aligned with the organization’s
goals and objectives. It also helps to identify the data and algorithms that
will be used for the project.

2. Set up the MLOps infrastructure, including the tools and platforms that will
be used for model training, testing, and deployment. For example, the project
team might choose to use Git for version control, AWS SageMaker for model
training and deployment, and Datadog for monitoring the performance of the
deployed models.

3. Develop and train the machine learning model using the data and algorithms
defined in the previous step. This step involves the actual development and
training of the machine learning model. This might include steps such as data
preprocessing, feature engineering, model training, and performance evaluation.
It is important to perform these steps in a repeatable and reproducible manner,
so that the model can be trained and evaluated consistently over time.

4. Automate the testing and deployment of the machine learning model. This
step involves creating automated processes for testing and deploying the

3

Background

machine learning model. This might include steps such as creating test data
sets, running automated tests, and deploying the model to a production
environment. Automation can help to ensure that the model is tested and
deployed consistently and reliably, without the need for manual intervention.

5. Monitor and maintain the deployed model. This step involves monitoring the
performance of the deployed model in production, and performing regular
maintenance and updates as needed. This might include steps such as tracking
the model’s performance over time, detecting and addressing any issues that
arise, and updating the model with new data and algorithms as needed.
Regular monitoring and maintenance can help to ensure that the deployed
model continues to perform well and meet the organization’s needs.

Figure 1.1: Project Lifecycle used to deploy Sentiment Analysis and NER models

The project life cycle that we use in our work for the implementation of the Deep
Learning (DL) architecture comprises several phases, as illustrated in the figure 2.1.
Some of these phases require human interaction, while others are automated. The
initial stages of the process are based on human interaction. However, as the project
progresses, fine-tuning and error analysis involve automated components specific
to the library used. Once the model is implemented, the tool covers all stages,
from the raw data set to prediction. Monitoring and maintenance of the system
takes place manually to ensure that the system continues to function properly and
provide accurate forecasts. Overall, this project life cycle provides a structured
approach to the implementation of the DL architecture, incorporating both human
skills and automated processes.

In order to protect the confidentiality of the organizations involved in the research
presented in this thesis, we have omitted certain details used in the development
of our findings. This may include the names of specific software or tools, details
about Toyota’s infrastructure, or other potentially compromising information.

4

Chapter 2

Project scope: Voice of
Customer from Tweet

The automotive industry is highly competitive and constantly evolving, making
it essential for companies to stay attuned to the needs and wants of their cus-
tomers. One way for companies to do this is by detecting and analyzing the
Voice of Customer (VoC), which refers to the feedback and opinions of customers
about a company’s products, services, and overall brand. By detecting the VoC,
automotive companies can gain valuable insights into what customers like and
dislike about their products, as well as identify areas for improvement. This
information can be used to inform product development, design, and marketing
efforts, helping companies to stay ahead of the competition and increase customer
satisfaction. Additionally, detecting and responding to the VoC can improve a com-
pany’s reputation and build customer loyalty, leading to increased sales and revenue.

One way to extract this information is through social media, as many people use
social media platforms to share their thoughts and experiences with a company’s
products or services. Additionally, using social media to extract VoC can help
companies to track and monitor customer sentiment in real-time. This can be
particularly useful for identifying potential problems or issues before they escalate,
as well as for responding to customer inquiries and concerns quickly and effectively.

The tool reported in this thesis can be used on any kind of social media but the
project so far focus only on Twitter. Twitter is one of the most popular social media
platforms, with millions of users around the world. It is known for its real-time
nature, allowing users to quickly and easily share their thoughts and experiences
with a wide audience.

5

Project scope: Voice of Customer from Tweet

There are several reasons why companies might choose to focus on Twitter
when extracting Voice of the Customer (VoC). One reason is that Twitter is a
public platform, which means that anyone can see the tweets that are posted on it.
This can make it a valuable source of information for companies looking to gather
feedback from a wide range of customers.

Another reason why companies might focus on Twitter is that it is easy to
search for specific keywords or hashtags on the platform. This can make it easy for
companies to find and track customer feedback about their products or services.

Additionally, Twitter has a robust API (Application Programming Interface)
that allows developers to access and analyze the data on the platform. This can
make it easy for companies to extract and analyze customer feedback from Twitter
in order to gain insights into their customers’ experiences.

Figure 2.1: Proposed tool to extract Voice of Customer from tweet

The proposed tool for this thesis is illustrated in the figure 2.1. It is composed
of four macro steps that are flexible and can be executed in parallel. The decision-
making flow may differ from the one shown in the figure.

The first step, labeled as step A, is responsible for collecting tweets based on a
specified keyword in any language. This step allows users to tailor the tool to their
specific needs by providing a keyword that is relevant to their research.

Once the tweets have been collected, the sentiment analysis model in step B
takes over. This model is trained to label each tweet as positive, neutral, or negative
based on the language used in the tweet. This step is used to understand the
overall sentiment of the collected tweets.

In step C, the output of the sentiment analysis model is fed into the topic

6

Project scope: Voice of Customer from Tweet

modeling algorithm. This algorithm groups the tweets into clusters in an unsuper-
vised fashion, allowing users to quickly identify common themes and topics in the
collected data.

Finally, step D is used to extract the names of the organizations, people, and
places mentioned in each tweet. This step allows users to easily identify entities
mentioned in the tweets and potentially gain insights into the relationships between
these entities

Overall, the proposed tool is designed to provide users with valuable insights
into the content of tweets based on a target keyword. By using advanced natural
language processing techniques, the tool is able to extract entities, analyze senti-
ments, and identify common themes and topics in the collected data.

One of the key features of the tool is its flexibility. Users can use the tool to
analyze the collected data in a variety of ways, depending on their specific research
needs. For example, they can explore the entities mentioned in the positive tweets
related to a specific topic, or they can analyze the sentiment of tweets containing a
specific target keyword. The tool also allows users to analyze the collected data
either together or individually. This means that users can gain insights into the
relationships between different entities and how they are mentioned in relation to
a specific topic or target keyword.

This work does not explain Topic Modelling, as it has already been implemented
in Toyota for a different target. However, steps A, B, and D are analyzed in detail,
providing a reproducible approach for other researchers to follow. We have also
discussed the challenges and limitations we encountered during our analysis, with
the aim of helping other researchers avoid common pitfalls and quickly address
similar problems in the future.

7

Project scope: Voice of Customer from Tweet

2.1 Step A: Tweet collection based on keyword
Step A shown in figure 2.2 involves collecting tweets based on a specified keyword
in any language. This step enables users to customize the tool for their research by
providing a keyword that is relevant to their topic of interest.

Step A.1 involves translating the keyword specified by the users into any lan-
guage they choose. To perform the translation, we use DeepL1, a state-of-the-art
neural machine translation service developed by the German company DeepL
GmbH. DeepL uses deep learning algorithms to provide high-quality translations
between multiple languages, and it has been shown to produce more accurate
and fluent translations than other machine translation services. This is due to
its use of advanced neural network architectures and large amounts of training data.

Step A.2 involves using the Twitter API to search for tweets that match the
translated keywords. To do this, you first need to obtain a developer account with
Twitter and create a new application. Once you have done this, you can use the
API’s search endpoint to specify the keywords you want to search for, and the API
will return a response containing a list of matching tweets. The response will be
in JSON format, and you can use it to extract the relevant information from the
tweets, such as the text, the user who posted it, and the time it was posted. It is
important to note that the Twitter API has limitations on the number of search
queries that can be made within a certain time period, as well as on the amount of
data that can be retrieved in a single request. Therefore, it is crucial to carefully
plan and optimize your use of the API to avoid reaching these limits. This will
ensure that you can efficiently collect the tweets you need for your analysis.

Figure 2.2: Step A: step-by-step methodology

After extracting the continent from each tweet, the tweets that are detected as

1https://www.deepl.com/

8

Project scope: Voice of Customer from Tweet

bot are filtered out. One possible way to detect if a tweet is from a bot is to look
at the user’s account and activity. Bots often have a large number of followers, but
a low number of tweets and a low engagement rate (e.g. likes, retweets, replies).
They may also have a generic profile picture and a lack of personal information in
their bio. In addition, bots may have a high tweet frequency and a lack of variation
in their tweets. Another way to detect bots is to analyze the content of the tweet
itself. Bot-generated tweets often contain repetitive or generic language, and may
include hashtags, links, or other content that is unrelated to the main message of
the tweet. They may also include keywords or phrases that are commonly used by
bots, such as "follow me" or "retweet this". The overall pattern of tweets from the
user can be also a factor to determine if they are likely to be a bot. For example, if
a user consistently tweets the same content at regular intervals, or if they retweet a
large number of tweets from other users without adding their own comments, this
may indicate that they are a bot.

We filter out tweets from users with fewer than 250 followers, based on our man-
ual analysis of the collected tweets. This threshold is not set in stone, and it may
be adjusted in the future if necessary but, it has proven to be effective at removing
a significant number of bot-generated tweets from our dataset. It is important to
note that detecting bots is not an exact science, and some bots may be able to
evade our detection methods. However, we continue to store all the collected tweets
so that we can apply new detection methods and re-analyze our dataset if necessary.

Figure 2.3: Step A: Trend analysis for CARBON NEUTRALITY from 15/Jul to
10/Nov based in continent

In the final step of our process, we are focusing on creating a visualization of
the data that we have collected. This data contains a wealth of information, so
we have the ability to create a range of different types of plots. One example
that we could consider is a figure that illustrates the trend analysis of Carbon
Neutrality by continent Fig. 2.3. This type of information is essential for marketing
purposes. By looking at the trends in tweets about Carbon Neutrality by continent,
a company may identify areas where their marketing efforts could be improved in
order to increase awareness about the topic. For instance, if the number of tweets

9

Project scope: Voice of Customer from Tweet

about Carbon Neutrality is lower in certain countries, the company may decide to
increase their marketing efforts in those countries in order to raise awareness and
engagement on the topic.

10

Project scope: Voice of Customer from Tweet

2.2 Step B: Sentiment Analysis

Sentiment analysis is a technique used to determine the sentiment or emotion
expressed in a piece of text. There are several approaches to sentiment anal-
ysis, including dictionary-based methods and machine learning-based methods.
Dictionary-based methods involve comparing the words in a piece of text to a
pre-defined list of words with associated sentiment scores (e.g. positive, negative,
or neutral). Machine learning-based methods (the one that we use) involve training
a model on a large dataset of labeled text data and then using the model to classify
the sentiment of new text.

When applied to social media, it can help companies understand how people
feel about their brand, products, or services. This can be useful for a variety of
purposes, including:

1. Identifying trends and patterns in customer sentiment: By analyzing the
sentiment of social media posts, companies can identify common themes and
trends in how people feel about their brand. This can help them understand
what people like and dislike about their products or services, and identify
areas for improvement.

2. Improving customer satisfaction: By tracking and analyzing customer senti-
ment, companies can identify and address issues that may be causing dissatis-
faction. This can help improve customer satisfaction and loyalty.

3. Identifying potential Public Relations (PR) crises: By monitoring social media
sentiment for negative sentiment or issues that could damage the company’s
reputation. A PR crisis refers to a situation where an organization faces
negative public scrutiny or criticism that could harm its reputation. Examples
of PR crises include negative publicity, customer complaints, and product
recalls. By using sentiment analysis to identify potential issues early on,
companies can take proactive steps to address and mitigate the impact of a
PR crisis before it becomes a bigger problem.

4. Improving marketing and branding efforts: By analyzing the sentiment of
social media posts about their brand, companies can better understand how
their target audience feels about them and use this information to improve
their marketing and branding efforts. This can help them create messages and
campaigns that are more likely to resonate with their audience and be more
effective at reaching their marketing goals

11

Project scope: Voice of Customer from Tweet

Source: Source:https://monkeylearn.com/sentiment-analysis/

Figure 2.4: Step B: Sentiment Analysis examples

12

Source: https://monkeylearn.com/sentiment-analysis/

Project scope: Voice of Customer from Tweet

2.2.1 Training Dataset: Sentiment140
Since we are not using dictionary based methods, we need a training dataset to train
a machine learning model. The model is trained on these examples by adjusting the
values of its parameters based on the errors it makes when predicting their labels.
This allows the model to learn the patterns and relationships that are indicative of
different sentiments.

Once the model has been trained, it can be used to make predictions about the
sentiment of unseen text. The quality of the predictions made by the model will
depend on the quality of the training dataset and the effectiveness of the model at
learning from it.

It is important to choose a training dataset that is similar to the serving dataset
because the model’s performance on the serving dataset will depend on how well
it has learned to generalize from the training dataset. If the training and serving
datasets are significantly different, the model may not perform well on the serving
dataset because it has not seen enough examples of the types of inputs it will
encounter during serving.

For example, if the training dataset is primarily composed of product reviews
and the serving dataset is composed of tweets about politics, the model may not
perform well on the serving dataset because it has not been trained on sufficient
examples of political tweets. On the other hand, if the training and serving datasets
are similar, the model will have a better chance of performing well because it has
seen a range of examples that are similar to the inputs it will encounter during
serving

The sentiment1402 collection is comprised of 1,582,416 training tweets, 16,000
validating tweets, 1,600 testing tweets which have been fetched using the Twitter
API in the 2009. The tweets are annotated as negative and positive (0 and 4
respectively). It includes six fields listed below:

1. target: the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive)

2. ids: The id of the tweet (2087)

3. date: the date of the tweet (Sat May 16 23:58:44 UTC 2009)

4. flag: The query (lyx). If there is no query, then this value is NO_QUERY.

2https://huggingface.co/datasets/sentiment140

13

Project scope: Voice of Customer from Tweet

5. user : the user that tweeted (robotickilldozr)

6. text: the text of the tweet (Lyx is cool)

The figure 2.5 shows that the lengths of positive and negative tweets are similar
on average, which means that it is not necessary to "normalize" the sequences to
prevent the model from making predictions based on sentence length. The figure
also shows that more than 75% of tweets are less than 100 characters, which is
important to keep in mind in case we want to fine-tune a transformer model which
has been trained on text with specific maximum length.

Figure 2.5: Tweet lengths for positive and negative tweets in Sentiment140

Figure 2.6 shows the word clouds for positive and negative tweets. The word
cloud for positive tweets includes words such as "love," "thank," and "quot," which
may be indicative of positive sentiment. The word cloud for negative tweets includes
words such as "now," "work," and "today," which may be indicative of negative
sentiment. These word clouds can provide insights into the types of words and
phrases that are commonly associated with positive and negative sentiment in
tweets.

Figure 2.6: Word-Cloud for positive and negative tweets in Sentiment140

14

Project scope: Voice of Customer from Tweet

2.2.2 Model Architecture: BERTweet and Classification
Head

The figure 2.7 shows the steps of the model designed to deploy Sentiment Analysis.
The model consists of a transformer as the backbone and a simple head for classifica-
tion. In step B1, the input text is pre-processed into tokens that can be understood
by the transformer. In step B2, the transformer is used to extract features from the
entire sentence. These features represent the knowledge that the transformer has
learned during its training. The model uses only the feature associated with the
special token "CLS", which represents the entire input sentence. The size of this fea-
ture depends on the transformer being used as backbone. The "CLS" feature is then
fed into a simple two-layer neural network, which serves as the classification head.
This neural network makes the final prediction about the sentiment of the input text.

Figure 2.7: Sentiment analysis architecture

Transformers are a type of neural network architecture that have proven effective
for natural language processing tasks, including sentiment analysis. There are
several reasons why transformers may be a good choice for sentiment analysis. First,
they use an attention mechanism that allows the model to focus on specific parts
of the input when making predictions, which can be helpful for sentiment analysis
by allowing the model to weigh the importance of different words or phrases in the
input text. Second, many transformer models, such as BERT and GPT, have been
pre-trained on large datasets and fine-tuned for specific tasks, which can make
it easier to train a model for sentiment analysis because the model has already
learned a lot about language structure and meaning. Third, transformers have
been shown to outperform other types of neural networks on a variety of natural
language processing tasks, including sentiment analysis, which may make them
a good choice for tasks where high accuracy is desired. Fourth, transformers are
more efficient than some other types of neural networks because they can process
input in parallel rather than sequentially, which can make them faster to train and
more efficient to use for inference.

15

Project scope: Voice of Customer from Tweet

Since the attention mechanism of a transformer model operates on the full input
sentence, it is sensitive to the specific words and phrases present in the input text.
As a result, it may not be a good idea to use a typical preprocessing pipeline that
includes stop-word removal, lemmatization, or other forms of normalization, as
these steps could alter the input text in a way that would affect the attention
mechanism and potentially degrade the model’s performance. Instead, it may be
more effective to preserve the original form of the input text as much as possible,
to ensure that the attention mechanism has access to all of the information it needs
to make accurate predictions. For thess reason, the pre-processing phase (step B.1)
it is composed of:

1. Replacing Emojis and Emoticons: Icons made from punctuation marks, letters,
and numbers, typically depicting some sort of feeling or emotion. Using the
emoji3 library, we transform them into the textual equivalent of the emotion
they intend to convey. However, a more comprehensive and efficient parsing
required the addition of some missing entries to the original dictionary. These
entries are taken from the Wikipedia page.4

2. Replacing slang and informal language: Tweets often contain slang, abbrevia-
tions, and other forms of informal language that may not be understood by a
machine learning model. Replacing these terms with more standard language
can help improve the model’s performance. The conversion dictionary is
compiled by hand from a variety of resources.

3. Removing hashtags, mentions, and URLs: These elements of a tweet may not
be directly relevant to the sentiment being expressed, and they can often be
removed or replaced with a generic placeholder without affecting the meaning
of the tweet. we replace them into unique tokens, @USER and HTTPURL,
respectively as part of "soft" normalization.

4. Tokenization: Finally, the tweets will need to be tokenized, which involves
splitting the text into individual words or subwords and encoding them as
numerical values that can be processed by the machine learning model. We
tokenize the tweets using “TweetTokenizer” [1] from the NLTK toolkit.

After the pre-processing phase, step B.2 extract features from the entire tweet.
Tweets are not like other types of written content, such as encyclopedia articles or
news reports. This is because Tweets are often shorter and include more informal

3https://pypi.org/project/emoji/
4https://en.wikipedia.org/wiki/List_of_emoticons

16

Project scope: Voice of Customer from Tweet

syntax and terminology, such as abbreviations, typos, and hashtags. Since Tweets
lack the structure and uniform vocabulary of typical text corpora, it may be chal-
lenging to apply generic transformer models to this data.

For this reason, we decide to use the first large-scale language model for English
Tweets. BERTweet (BERT for Tweet) [2] has been trained on a 80GB dataset of
850M English Tweets. The model is pre-trained using the RoBERTa [3] method,
and it employs the BERTbase model setup. According to experimental results, this
model is superior to RoBERTabase and XLM-Rbase [4] on tasks—Part-of-speech
(POS) tagging, Named-entity recognition (NER), and text classification. The
advantage of BERTweet is that it has been pre-trained on a large dataset of tweets,
which means that it has already learned a lot about the structure and meaning of
Twitter language. This can make it easier to train a model for tasks like sentiment
analysis, because the model has already learned a lot of the information it needs to
make accurate predictions.

For this task, we do not use the transformer to extract features from each token,
but to analyze the entire tweet. The special token "CLS" (short for "classification")
is used to represent the entire input sequence. The representation for the "CLS"
token is typically used as the final output of the model, after it has been processed
by a classification head (step B.3). This representation is intended to capture the
meaning and context of the entire input sequence, and it is used to make the final
prediction about the label or category of the input text. The "CLS" token is an
important part of the transformer architecture, and it plays a central role in tasks
like sentiment analysis, where the goal is to predict the overall sentiment of a piece
of text. In order to make accurate predictions, the model needs to be able to
understand the context and meaning of the entire input text, and the "CLS" token
is used to represent this information.

Final step B.3 is the classification head. It is responsible for generating the
model’s final output and making the prediction that is used to evaluate the model’s
performance. In this case, it consists of a simple neural network with no hidden
layers (only input and output layer).

To train the model we use the categorical cross entropy loss which is a common
loss function used in classification tasks, where the goal is to predict a categor-
ical label or class for an input sample. It is used to measure the difference or
"error" between the predicted probability distribution over the classes and the true
probability distribution.

CategoricalCrossEntropyLoss = −
Ø

i

yi · log(ŷi) (2.1)

17

Project scope: Voice of Customer from Tweet

where yi is the target value of the ith and ŷi the respective model prediction. This
loss measure how different two probability distributions are. In this context, yi is
the probability that event i occurs and the sum of all yi is 1, meaning that exactly
one event may occur. A lower loss value indicates that the model’s predictions are
more accurate, while a higher loss value indicates that the model is making more
errors. The model is typically trained to minimize the categorical cross entropy loss
by adjusting the values of its parameters to reduce the error between the predicted
and true probability distributions.

18

Project scope: Voice of Customer from Tweet

2.2.3 Training Phase: Results on Sentiment140
The training phase is the process of fitting a machine learning model to a set of
training data. During training, the model is presented with a set of input data
and the corresponding desired output, and the model’s parameters are adjusted to
minimize the difference between the predicted output and the desired output.

The goal of the training phase is to find a set of model parameters that result in
good performance on the training data. This is typically done by minimizing a loss
function (Categorical Cross Entropy loss in our case), which measures the difference
between the predicted output and the desired output. The model’s performance is
then evaluated on a separate test set to ensure that it generalizes well to unseen data.

The training phase is an iterative process, and the model’s parameters are typi-
cally updated multiple times based on the training data. The process of adjusting
the model’s parameters based on the training data is known as training the model
or fitting the model. The trained model can then be used to make predictions on
new, unseen data.

However, since we are using BERTweet as backbone, we are fine-tunng the model.
Fine tuning is a process of adapting a pre-trained machine learning model to a new
task by updating the weights of the model based on additional training data. It
involves retraining the model on the new data, adjusting the hyperparameters, and
possibly adding or removing layers from the model.

The dataset used for generating the results is Sentiment140 and it contains more
than 1,5 millions of tweets. More details about the dataset in section 2.2.1. The
dataset is splitted in 1,582,416 tweets for training, 16,000 tweets for validating and
1,600 tweets for testing.

several hyperparameters are available for fine tuning the model, below are
reported the hyperparameters with the best performances:

1 from trans fo rmer s import TrainingArguments
2

3 t ra in ing_args = TrainingArguments (
4 num_train_epochs=1,
5 l e a rn ing_rate=2e −5,
6 weight_decay =0.01 , # smal l r e g u l a r i z a t i o n
7 per_device_train_batch_size =32,
8 per_device_eval_batch_size =32,
9 eva luat i on_st ra tegy=" s t ep s " , # rathe r than epoch

19

Project scope: Voice of Customer from Tweet

10 l ogg ing_steps =50, # each 50 batch v a l i d a t i o n
11 fp16=True , # work with f l o a t p r e c i s i o n 16 b i t r . t . 32 b i t
12 metric_for_best_model=" f1 " ,
13 gradient_accumulat ion_steps=3 # batch = 128
14)

The learning rate is set at a low number since we don’t want to alter entirely
the transformers’ properties. The performance improvements were greatly aided
by fp16 and gradient accumulation steps. The first modification reduced the 32-bit
floating point precision to 16-bit. This roughly cuts the training time for the model
in half. Even though there is a potential loss of performance, our results for both
precision are comparable. The gradient accumulation steps method specifies how
many forward steps must be taken before calling the backpropagation, i.e. the batch
size may be increased without using extra GPU RAM. To prevent overfitting, an
early stopping callback is added with a patience of 3. This means that the training
will be stopped after 3 validation cycles without an improvement in performance.
This helps to prevent the model from fitting too closely to the training data and
potentially performing poorly on new, unseen data.

The metrics used to assess the performances of the model are accuracy and
f1score

f1score = 2 · precision · recall

precision + recall
= TP

TP + 1
2 · (FP + FN) (2.2)

accuracy = TP + FP

TP + FP + TN + FN
(2.3)

Accuracy 2.3 is a common metric used to evaluate the performance of a machine
learning model. It is defined as the number of correct predictions made by the
model divided by the total number of predictions.

It is also easy to understand because it is a simple ratio. It is a single number
that can be easily compared to other models or to a baseline. For example, if
a model has an accuracy of 0.8, it means that it made 80% correct predictions.
This can be easily understood and interpreted by people with a wide range of
backgrounds, making it a widely used metric in machine learning.

However, it can be misleading when the classes are imbalanced (i.e. there are
significantly more examples of one class than the others). For example, if a model is
trained to classify email as spam or not spam, and 99% of the emails in the training
data are not spam, the model could achieve a high accuracy simply by always
predicting not spam. In addition, accuracy does not take into account the relative
importance of different types of errors. For example, in a medical diagnosis task, it

20

Project scope: Voice of Customer from Tweet

may be more important to avoid false negatives (i.e. incorrectly predicting that a
patient is healthy when they are actually sick) than false positives (i.e. incorrectly
predicting that a patient is sick when they are actually healthy). In this case, using
a metric like precision or recall, which specifically focus on false negatives or false
positives, may be more appropriate.

To overcome the problem of the Accuracy, we also use the f1−score 2.2 because
it is the harmonic mean of precision and recall, and is used to balance these two
metrics. It penalizes models that have poor precision or recall and rewards models
that have high precision and recall.

Transformers train loss validation loss accuracy f1score step
BerTweet-large 0.3031 0.2855 0.8834 0.8834 1200
BerTweet-base 0.3107 0.2994 0.8762 0.8762 1000
Roberta-Large 0.3830 0.352 0.8560 0.8570 1100
Roberta-base 0.3900 0.3650 0.8460 0.8550 900

Table 2.1: Fine tuning results on Sentiment140, average of 3 experiments per
transformers. Training 1,582,416; Validation 16,000; Test 1,600

In table 2.1 are reported the results for the fine-tuning phase. Accuracy and
f1score are calculated over the test set.

The main differences among the transformers are the number of parameters
(large vs base) and whether it was trained on a twitter corpora or on a plain
English corpora (BerTweet vs Roberta). The columns step represents the number
of steps required by the model to achieve the best results and to not overfit the data.

The results clearly reveal that transformers trained on twitter corpora out-
perform the others in all criteria. However, we cannot say the same about the
transformer size because there is only a minor variation between large and base
models.

For the sake of brevity, only the best model’s results are shown in Fig.2.8. The
model was validated each 50 steps. The figure shows that the model was able
to generalize well, as indicated by the nearly overlapping loss functions and high
accuracy and f1score. It is worth noting that the training stopped after using only
4% of the dataset, which suggests that the dataset may not be diverse enough.
This can lead to the model learning patterns and relationships that are specific to
the training data and may not perform well on new data.

21

Project scope: Voice of Customer from Tweet

Figure 2.8: BerTweet-Large fine-Tuning results for best run.

Figure 2.9: Confusion Matrix comparison between BerTweet-Large and BerTweet-
base

It’s also interesting to look more closely at the error of the two top models.
The main difference is that BerTweet-Base has a larger value for False Negative
(predicted Negative but positive). However, when compared to the huge model, it is
faster during inference phase (more or less half of the time required). Depending on
the model’s application, one can pick between a faster model with some inaccuracies
for the tweet classified as negative and a more exact but slower model.

22

Project scope: Voice of Customer from Tweet

2.2.4 Human Level Performance: Data and Conceptual
Shift

Before deploying the model to production, we decide to conduct a thorough analysis
to ensure that the model’s performance is comparable to that of a human. One
way to assess this is by comparing the model’s error rate to what is known as
Human Level Performance (HLP). HLP is calculated by averaging the error rates of
different individuals who manually label the dataset. The ultimate goal is to create
a proxy for Bayesian error, which is also known as irreducible error. This is the
lowest potential prediction error that can be achieved, even if we have a complete
understanding of the process that generated the data. This is because errors will
still occur if the process includes random elements. Therefore, in practice, we strive
to minimize the gap between the performance of our model and the HLP. The
procedure for doing so is outlined in the figure 2.10.

Figure 2.10: Human Level Performance analysis step-by-step procedure

We manually label 120 tweets collected from the twitter API platform according
to two simple but clear rules:

1. Each tweet has to be labelled thinking about the writer’s sentiment and not
about the content

2. If a tweet only states fact, it is neutral

It is important to have clear rules for manually labeling data because these rules
help ensure that the labeling process is consistent and accurate. Without clear
rules, the labeling process may be prone to errors or biases, which can negatively
impact the quality and reliability of the labeled dataset.

Since our model does not consider neutral tweet, we introduce the second rule
to understand what is the impact of this relaxation. The first rule is more subtle
but crucial. Having in mind that the model is only an approximation function, this
rule specifies which function we want to focus on. Indeed, we want to approximate

23

Project scope: Voice of Customer from Tweet

the function which associates the tweet to the sentiment of the writer and not the
tweet with a positive/negative impact. For instance considering the tweet:

"in Turin the stop continues from 8am to 7pm for euro 1 petrol vehicles, I do not
give a *** about the pollution, I just wanna go to work!"

This tweet may be either positive, if you believe that Turin is correctly address-
ing the pollution in the city or negative if you focus on the writer sentiment. We
decide to be strict with the second option.

Name transformer train dataset fine-tuned dataset

twitter-roberta-base-sentiment RoBERTa-base 58M tweets
05/2018 to 08/2019

SemEval 2017

twitter-roberta-base-sentiment-latest RoBERTa-base 124M tweets
01/2018 to 12/2021

SemEval 2017

twitter-xlm-roberta-base-sentiment RoBERTa-base
with adapters
train. Multi lang

198M tweets
05/2018 to 03/2020

60M tweets 8 lang.

Bertweet-Large RoBERTa-large 850M tweets
01/2012 to 08/2019

Sentiment140

Bertweet-base RoBERTa-base 850M tweets
01/2012 to 08/2019

Sentiment140

Table 2.2: Comparison among the different models used for HLP analysis.

We decide to compare our fully fine-tuned models (BerTweet) with the three
most downloaded sentiment-analysis models for tweets on Hugging Face5. The
differences among the models are reported in Table 2.2. Almost all the models
share the same architecture RoBERTA [3]. The only difference is the twitter-xlm-
roberta-base-sentiment model which is based on RoBERTa-base but trained on a
cross-lingual classification (XLM-R)[5]. In addition, the model is not full fine-tuned
but it exploits the adapter technique [6] and the adapter configuration is the same
proposed in Pfeiffer et al. [7]. The datasets used for fine-tuning the models contain
more recent tweets (up to 2017) than Sentiment140 (2009) as well as Neutral tweets.

In Fig. are reported the count of miss-classified tweets over the manually labelled
dataset. Since, our model classify all the tweets as positive, the miss-classified

5https://huggingface.co/

24

Project scope: Voice of Customer from Tweet

Figure 2.11: Count of miss-classified tweets over the HLP dataset.

tweets are either neutral or negative. Even if this results seems destructive, we need
to remember that our models does not expect to classify neutral tweets. However,
we cannot overlook the negative errors. Interesting, it is to analyze the errors
reported by the other models. We can notice how changing the transformer’s
training dataset (refer to Table for more details), can improve the performances.
The most miss-classified sentiment is the Positive one. In Fig.2.12 we can see that
the Neutral tweets have an huge impact over the results since the positive and the
negative tweets are mostly miss-classified as neutral.

The number of miss-classified tweets over the manually labeled dataset is shown
in figure 2.11. Because our approach classifies almost all tweets as positive, the
incorrectly classified tweets are mostly either neutral or negative. Even if this
finding seems harmful, we have to remember that our methods are not designed to
classify neutral tweets. We cannot, however, ignore the negative errors.

Analyzing the errors that the other models have reported, we can see how
modifying the transformer’s training dataset (see table 2.2 for additional infor-
mation) might increase performance. Positive sentiment is the most commonly
miss-classified but it is also the most present class (50% of the tweets are positive).
In Fig.2.12, we can observe that Neutral tweets have a significant impact on the
outcomes since both positive and negative tweets are frequently miss-classified as
neutral.

In figure 2.13 is reported the f1score for each model. We define a safely threshold
over which we can safely use the model in production. the Threshold is set to 0.8.
The gap between our model (BerTweet) and the threshold is almost 0.4%. The
next design choices will be dedicated in reducing this gap. The f1score has been
selected among the other metrics since the HLP dataset is imbalanced. (60 positive,
29 neutral, 31 Negative)

25

Project scope: Voice of Customer from Tweet

Figure 2.12: Confusion Matrices of best models for HLP. In red is reported a
common error path among the models.

Figure 2.13: f1score for each model on HLP dataset

The root cause analysis is performed to determine why our models are performing
so poorly and what are the possible countermeasures (Fig.2.14). The function that
the model has learnt to label the tweet is not representative. This can be caused
by two problems: the model is not able to capture the relation; the distribution of
the dataset used for fine-tuning the model is different from the inference dataset.

The first possibility is discarded, since our model achieve almost 90% of f1score
over the Sentiment140 test dataset.

The second possibility is decomposed in several reasons: the dataset is too old
(Data shift); the dataset does not contain neutral tweets; the label procedure is
different (Conceptual Shift). The first two options may improve performance but,
other models, that have integrated them, are still unable to successfully close the
gap.

26

Project scope: Voice of Customer from Tweet

The final root cause is the most promising. The labeling technique for HLP
differs from that of sentiment140. The most effective countermeasure is to build
our training dataset using tweets obtained via the Twitter-API.

Figure 2.14: Root Cause Analysis for BerTweet HLP results

In figure 2.15 is reported the process for generating the training dataset. First
step is to apply the same pre-process technique explained in 2.2.2. Then we use
an ensemble composed of the state-of-the-art sentiment analysis models where the
final output is the most frequent predicted class. Since this models are not perfect
the last step is human based i.e. a labeller checks whether the label is correct or
not (step 4). The last step is performed only in case the state-of-the-art models
have different output. The rules used to check the labels are the same expressed
for generating the HLP dataset.

Figure 2.15: Process to create the training dataset to address data and conceptual
shifting

27

Project scope: Voice of Customer from Tweet

2.2.5 Countermeasure Analysis and Results

According to the root cause analysis, the labeling approach for HLP varies from
that of sentiment140. The effect of the countermeasure on the gap is examined in
this section.

The production of training dataset takes time because the labeling process is
not totally automated. As a result, we gradually increase the amount of tweets in
the training dataset to find the point where time complexity and performance meet.
In Fig. 2.16 are shown the result for the validation6 loss and f1score calculated
over the HLP dataset and we successfully close the gap with 1000 tweets. We
stop creating training datasets since a substantial increase in f1score can be seen
between 100 and 500 tweets but not between 500 and 1000 tweets. As a result, we
expect a plateau for f1score expanding the dataset. Given that the datasets are
more expensive than useful, we safely stop at 1000 tweets.

Figure 2.16: Validation loss and f1score evaluated for different size of training
dataset. validation size 10%. F1score is calculated on the HLP dataset

In Fig. 2.17 are reported the training and validation loss for the dataset with
1000 tweets. We can clearly notice that the model overfits the data after step 120.
However, the best validation loss is achieved at step 160, At this step, the model
has performed 12 epochs, i.e. each tweet has been used for training 12 times.

6size validation dataset10% i.e. 1000 tweets, 900 train, 100 validation

28

Project scope: Voice of Customer from Tweet

Figure 2.17: Training and Validation loss for 1000 tweets, 10% validation size.
At each iteration (step), the model receive as input 64 tweets (batch size)

In Fig. 2.18 are reported the confusion matrices calculated over the HLP
datasets. On the left the results of the countermeasure model. On the right the
best state-of-art model. The countermeasure significantly reduces the percentage
of mistakes in all three patterns. The neutral being labeled as negative has the
greatest decline, a decrease of 0.22%.

Figure 2.18: Differences in confusion matrices between countermeasure and best
state-of-art sentiment analysis model

We successfully close the gap and for this reason the model is deployed in
production. In Fig. 2.19 are reported three random tweet with the predicted label.
Given the analysis so far and after a manual inspection of the predicted label, Can
we trust the results? The Negative label with high confident instead the neutral
and positive labels with medium confident. The error that our model can have
are between positive miss-classified as neutral (and vice-versa) but almost never
miss-classified with negative. This is also confirmed in Fig 2.19 where the negative
tweet has a complete different structure from the others.

29

Project scope: Voice of Customer from Tweet

Figure 2.19: Three random sample prediction for each label

30

Project scope: Voice of Customer from Tweet

2.3 Step D: Named Entity Recognition
Named entity recognition (NER) is a subfield of natural language processing (NLP)
that involves identifying and classifying named entities in text into predefined
categories such as person names, organizations, locations, medical codes, time
expressions, quantities, monetary values, percentages, etc. In Fig.2.20 is present an
example of NER application over unstructured data.

There are many different approaches to performing NER, including rule-based
systems, dictionary-based systems, and machine learning-based systems. Machine
learning-based approaches, such as conditional random fields and transformers,
have achieved state-of-the-art results on various NER benchmarks.

Source: https://monkeylearn.com/blog/named-entity-recognition/

Figure 2.20: Visual Example of possible application of NER on unstructured
data

By identifying and extracting named entities from social media posts, an auto-
motive company can gain insights into how its brand is perceived, what products
are being discussed, and who is talking about them. Here are some examples of
how an automotive company might use NER in social media:

1. Brand monitoring: An automotive company can use NER to identify mentions
of its brand in social media posts, including hashtags and mentions of the
company’s name. This can help the company track the overall sentiment of
these posts and identify any potential issues that need to be addressed.

2. Product tracking: NER can be used to identify mentions of specific products
in social media posts, allowing the company to track the popularity of its
products and identify any potential problems or issues with them.

3. Influencer identification: By identifying named entities that correspond to
people in social media posts, an automotive company can identify influencers
and key opinion leaders who are talking about its products. This can be useful
for identifying potential partnerships or collaborations.

The NER is usually the first and most important step for Information Extraction
Pipelines. However, NER can be challenging on Twitter due to the nature of the

31

https://monkeylearn.com/blog/named-entity-recognition/

Project scope: Voice of Customer from Tweet

platform. Twitter has a 280-character limit for posts, which means that tweets are
typically shorter and more concise than other types of text, such as news articles
or blog posts. This can make it difficult for NER systems to extract named en-
tities, as they may not have enough context to accurately identify and classify them.

Additionally, Twitter has its own language and conventions, such as hashtags,
emojis, and shortened words, which can make it difficult for NER systems to
accurately process and understand the text.

Another difficulty is that there are many new named entities and unusual surface
shapes within the user-generated content. For instance, "black mamba," the name of
a poisonous snake, is a morph coined by Kobe Bryant for his ferocity in basketball
games. Such morphs and tokens are extremely difficult to identify and categorize.

32

Project scope: Voice of Customer from Tweet

2.3.1 Training Dataset: Tweetbank and Tweetner7
For this task, we focus on two different datasets: Tweetner7 [8] and Tweetbank [9].
Both datasets contains only tweet collected in the last decade.

Tweetbank contains 3,550 labeled anonymous English tweets annotated in
Universal Dependencies. The guidelines used to label the dataset are the CoNLL
2003 guidelines7. The targets present are the standard four-class CoNLL 2003 both
to help annotator and to have more instances per class to improve the learning of
NER models. The named entities are:

• PER: persons (e.g., Joe Biden, joe biden, Ben, 50 Cent, Jesus)

• ORG: organizations (e.g., Stanford University, stanford, IBM, Black Lives
Matter, WHO, Boston Red Sox, Science Magazine, NYT)

• LOC: locations (e.g., United States, usa, China, Boston, Bay Area, CA, MT
Washington)

• MISC: named entities which do not belong to the previous three. (e.g.,
Chinese, chinese, World Cup 2002, Democrat, Just Do It, Top 10, Titanic,
The Shining, All You Need Is Love)

In the paper [9] it is also reported the inter-annotator agreement (IAA) measure
between three annotators. It is useful to set a maximum f1-score achievable from
the model. The IAA is the token-level pairwise F1 score calculated without the O
label.

Label Quantity F1
PER 777 84.6
LOC 317 74.4
ORG 541 71.9
MISC 519 50.9
Overall 2,154 70.7

Dataset Train Dev Test
Tweets 1,639 710 1,201
Tokens 24,753 11,742 19112
tokens per tweet 15.1 16.6 15.9
BerTweet-baseline f1score 73.71

Table 2.3: Tweetbank statistic. Left table for IAA measure. Rigth table split
statistics.

7https://www.clips.uantwerpen.be/conll2003/ner/

33

Project scope: Voice of Customer from Tweet

In Table 2.3 is clear that PER, LOC, and ORG have higher F1 agreement than
MISC. Therefore, we expect MISC to have worse results than the other classes. On
the right it is also displayed the split performed over Tweetbank. In the table, the
BerTweet baseline is reported from the Tweetbank paper [2]8.

Tweetner7 [8] has been developed to analyzed the short-term degradation of
NER models over time. Indeed, The collected tweets (from September 2019 to
August 2021) are filtered to get weekly trending topics. The dataset contains
annotations labeled by three annotator where the annotation with an agreement of
1/3 were discarded. The annotation with 2/3 manually were validate (roughly half
of the instances). The named entities are:

• PERSON: persons (e.g., Joe Biden, joe biden, Ben, 50 Cent, Jesus)

• LOCATION: locations (e.g., United States)

• GROUP: names of groups (e.g. Nirvana, San Diego, Padres)

• EVENT: names of events (e.g. Christmas, Super Bowl)

• PRODUCT: names of products (e.g. Iphone).

• CREATIVE WORK: names of creative works (e.g. Bohemian Rapsody.
The work should be created by a human

• CORPORATION: names of corporation (e.g. Google)

In Table 2.4 are reported the training, validation and test datasets statistics.
The tag that it is most present in the dataset is "person" with 7028 tokens. Instead,
the other tags contain roughly half of the tokens.

The baseline results reported in the paper for Tweetner7 [8] are shown in the
table 2.5. The best performing model is the one composed of Bertweet-Large with
66.7 and 62.2 for micro and macro f1score respectively.

8It is the second highest reported but the first is trained on another dataset

34

Project scope: Voice of Customer from Tweet

Label Train all 2020 + 2021 Valid 2021 Test 2021
person 7,028 283 2,712
group 3,555 227 1,516
event 3,210 131 1,097
product 2,776 111 972
corporation 2,602 102 900
creative work 2,351 74 731
location 1,956 72 716
all 24,484 1,000 8,644
Number of Tweets 7,111 310 2,807

Table 2.4: Tweetner7 target count for train test and validation set

Model Micro F1 Macro F1
BerTweet-large 66.7 62.2
BerTweet-base 65.5 61
RoBERTa-large 66 61.8
RoBERTa-base 65.2 61
Bert-large 63 59
Bert-base 62.2 57.6

Table 2.5: Tweetner7 baselines reported in literature

35

Project scope: Voice of Customer from Tweet

2.3.2 Model Architecture: Word Embedding, Bi-LSTM,
Attention and CRF

The NER is a classic sequence labelling problem where you get as input a sequence
of tokens w = (w1, w2, . . . , wk) and the output requested is a sequence of tokens
labels y = y1, y2, . . . , yk. Figure 2.21 shows the overall structure of the implemented
model.

In Step D.1, the input text is preprocessed and tokenized in order to be processed
by the model. In Step 2, multiple embeddings are obtained for each token. These
embeddings include character-level sub-word information, pretrained transformer
word embeddings (BerTweet [2])), and Part of Speech (POS) embeddings. Each
embedding layer converts the token into a dense feature vector, where the vector
represents the projection of the word into a continuous vector space [10]. These
feature vectors are used to represent the words in a more comprehensive manner.

In Step 3, the final dense vector for each token is obtained by concatenating
the character, word, and POS embeddings. Specifically, given character embedding
ec

i ∈ Rdc , word embedding ew
i ∈ Rdw , and POS embedding ep

i ∈ Rdp , the final
vector is formulated as Xi = ep

i

m
ew

i

m
ec

i , where i ∈ 1,2, . . . , k and m represents
the concatenation operation.

In Step 4, the information extracted from each token is analyzed using a bidi-
rectional LSTM (Long Short-Term Memory). This type of network consists of a
forward LSTM that extracts past information and a backward LSTM that captures
future information in the sequence. The final output for each token is the con-
catenation of the hidden states, i.e. yi = [h⃗i, ⃗hi]. This structure allows the hidden
states to capture both historical and future context information. Another option
that was considered was to use a stacked Bi-LSTM [11].

In Step 5, a Multi Head Attention layer is added on top of the Bi-LSTM. This
layer focuses on relevant hidden states to extract as much information as possible
from the text. In Step 6, this extracted information is pre-processed by a neural
network that performs dimensionality reduction. Finally, a Conditional Random
Field (CRF) is used to label each token based on the correlation between the
current label and the neighboring labels, effectively imposing a structure on the
predictions. This process helps to ensure that the labels are coherent and meaningful

36

Project scope: Voice of Customer from Tweet

Figure 2.21: NER architecture step-by-step process

In summary:

• Step 1 - Prepare the data: Process the sentence and then tokenize it.

• Step 2 - Extract Embeddings: Extract several information from the token.

• Step 3 - Concatenate: Concatenate the 3 embeddings to get one dense
vector for each token.

• Step 4 - Bi-LSTM: Extract the historical and future relations between
tokens.

• Step 5 - Multi head attention: Focus attention on the most important
relationships.

• Step 6 - Neural Network: Process all the information encoded so far

• Step 7 - Conditional Random Field: label each token considering also
the immediate neighbors

37

Project scope: Voice of Customer from Tweet

2.3.3 Step D.1: Pre-Processing of the data

This step is crucial to generate the correct input to the model. Since the model
exploits different embeddings, we need to design the pre-processing phase to contain
all the input without loss of information. Fig. 2.22 is the step-by-step procedure
to transform raw text as input to be processed by the model.

Figure 2.22: Step D.1: Pre-processing pipeline to prepare model input

The first step (step D.1.1) is the same of Sentiment Analysis, deeply explained
in Section 2.2.2.

The second step can be run in parallel and it is used to extract unique Id useful
to define the embeddings i.e. simply lookup-table. For the char id, we exploit the
UTF-8 encoding from 0 to 255. We manually add three more ids to define the
start, the ending of the word and the padding: 257, 258, 256 respectively. For the
POS ids we use the hugging face model9 based on the paper [12]. Also in this case,
we add two more ids to the already present tags10: 17 and 18 for the start and end
of the sentence.

9https://huggingface.co/TweebankNLP/bertweet-tb2_ewt-pos-tagging
10TweebankNLP/bertweet-tb2_ewt-pos-tagging/blob/main/config.json

38

Project scope: Voice of Customer from Tweet

Figure 2.23: Step D.1.3: software design pipeline to address tokenization

To obtain the best results when using BerTweet to extract word embeddings,
it is necessary to use the same tokenizer for both training and prediction. This
is because the tokenizer will split rare words into smaller sub-words, which helps
to better capture their meaning. For instance, the word "annoyingly" might be
decomposed into "annoying" and "ly". Sub-word tokenization allows the model to
have a reasonable vocabulary size while being able to learn meaningful context-
independent representations.

Using a tokenizer that decomposes rare words into smaller sub-words can cause
problems when working with other types of information in the dataset. To address
this issue, a software pipeline (as shown in Fig. 2.23) can be used to first wrap
the word with all the desired information, and then copy this information onto the
split words. This helps to ensure that all relevant information is preserved and
properly associated with the decomposed words.

39

Project scope: Voice of Customer from Tweet

2.3.4 Step D.2. & Step D.3: Extract and concatenate
embeddings

After the preparation of the input, the following step is dedicated to the extraction
of the feature. From each word the model extracts three different embeddings:

1. POS embedding: Feed the model the grammatical structure. The parameters
learn which structure contains the specific target.

2. BerTweet embedding: Extract context word representation. The parame-
ters are not trained.

3. Char embedding: Detect knowledge from pair, triple, etc. . . of characters.
The parameters learn how to deal with misspelled words.

Figure 2.24: Step D.2.1: POS embedding feature extraction

The process of extracting features from the Part of Speech (POS) tag is shown
in Fig. 2.24. After extracting the POS tag from the input, a lookup table is used
to obtain the POS embedding vectors based on their unique ID. These vectors
are randomly initialized and contain the model’s knowledge of each POS tag after
training. The goal of using POS embeddings is to provide the model with infor-
mation about the grammatical structure of the input, so that it does not have to
learn this information from scratch. This can help the model to better understand
the meaning and context of the input text.

40

Project scope: Voice of Customer from Tweet

Figure 2.25: Step D.2.3: Char embedding feature extraction

Similarly to the process for extracting POS embeddings, character embeddings
(Fig.2.25)are also obtained by using a lookup table based on the unique ID of each
character. However, an additional step of 1D convolution11 is applied as a final
step. This allows the model to handle misspelled words by learning how to combine
different characters in order to obtain the correct label. The parameters within the
kernel try to learn how to "adjust" misspelled words in order to produce the desired
output. This can be especially useful when dealing with noisy or unstructured
input text.

Figure 2.26: Step D.2.2: Word embedding feature extraction

The word embedding is based on BerTweet [2]. This is the only feature extrac-
tion context based. Indeed, the transformer is able to extract the word embeddings
based on its sentence. This is possible thanks to the attention mechanism. The

11One dimension because it slides only to the right (the kernel size is the width)

41

Project scope: Voice of Customer from Tweet

process to extract word embeddings (Fig. 2.26) takes as input the entire sentence
(difference from previous embeddings). The last four layers of the transformers
are averaged together. It has been found that this is the best option for Named
Entity Recognition (NER). The transformer’s parameters are not trained to prevent
overfitting to the dataset, as the goal is to keep the model general and able to
perform well on a different dataset.

42

Project scope: Voice of Customer from Tweet

2.3.5 Step D.3-D.7: Classification Head

So far in the model, we have extracted word-level features that are context-aware,
but we have not yet encoded the relationships between these features. Steps D.4 and
D.5 (as shown in Fig. 2.27) are used to address this by encoding their relationships.

To avoid overfitting, a dropout layer is applied before the input is passed to the
bidirectional LSTM. This layer analyzes the feature embeddings (the words) and
tries to learn how they are connected. The output of the LSTM is a matrix with
shape [number of words, 515x2], where the number of columns is the concatenation
of the two LSTM hidden states (each with a size of 512). The multi-head attention
layer focuses the model on the most important parts of the sentence for the labeling
process. For example, if most of the tags follow a specific grammatical structure,
the attention layer can detect this pattern. Another dropout layer is applied at the
end to avoid overfitting the dataset by reducing the number of learned connections.

Figure 2.27: Step D.4 & D.5: Bidirectional LSTM and Multi Head Attention

The word-level features are converted to numbers using the different word em-
beddings. The relationships between these features are encoded by the bidirectional
LSTM and attention layers. At this point, the model’s output needs to be analyzed
and converted back to labels (as shown in Fig. 2.28). The input to this process is
the output of the attention layer, which is a matrix of size [number of words, 1024].
This matrix is first transposed, and then the dimension is reduced from 1024 to
the current number of tags using a neural network (step D.6). The output of this
step is then analyzed by a linear Conditional Random Field (CRF), which labels
each word based not only on the output of step D.6 but also on the previous and
next predictions. This helps to ensure that the labels are coherent and meaningful

43

Project scope: Voice of Customer from Tweet

Figure 2.28: Step D.6 & D.7: Neural Network and CRF

44

Project scope: Voice of Customer from Tweet

2.3.6 Ablation Study: All the steps are really necessary?
Before training a model, it is common to conduct ablation studies to understand
the contribution of each component of the model to its overall performance. In
an ablation study, a specific component of the model is removed or "ablated" to
see how the model’s performance changes without that component. This can help
identify which components are important for the model’s performance and which
may be unnecessary or redundant. It is important to conduct ablation studies
before training the model, as the results can inform the final model architecture and
hyperparameter selection. After the model is trained, it is not useful to conduct
ablation studies, as any changes to the model architecture or hyperparameters
would require retraining the model. The NER model contains 11 structural
hyperparameters:

1. apply_pos: Whether to apply the POS embedding or not.

2. pos_embedding_dim: Dimension assigned to learn the POS attribute.

3. apply_char: Whether to apply CHAR embedding or not.

4. char_embedding_dim: Dimension assigned to learn the CHAR attribute.

5. char_output_channel: Number of filter for each kernel. More filters means
more possible pattern learnt.

6. char_kernel_sizes: Filter size. Bigger sizes means learning connection with
more letters.

7. apply_transformer: Whether to apply Transformer embedding or not.

8. lstm_hidden_size: Dimension assigned to learn the connection between words.

9. lstm_num_layers: Whether to stack 2 LSTM or not.

10. apply_attention: Whether to apply Attention or not.

11. apply_special_tag: Whether to apply START and END tag or not.

Considering two values for each of the numerical hyperparameters, we would
need to train 2048 models, one for each possible combination of the values. However,
since this is not practical, we have selected 6 specific hyperparameters that have
a significant impact on the model structure and will only consider these in our
ablation studies, reducing the number of combinations to 64.

We are faced with the challenge of analyzing 64 different trainings in order to
select a general model with high performance and low memory size. This can be a

45

Project scope: Voice of Customer from Tweet

daunting task, as there are many potential combinations of hyperparameters to
consider. One solution to this problem is to use TensorBoard logs to help us analyze
the data. TensorBoard is a visualization tool that allows us to view and analyze
training data in order to identify trends and patterns. By using TensorBoard
logs, we can approximately analyze the entire hyperparameter analysis, focusing
specifically on structural hyperparameters.

Figure 2.29: TensorBoard plot of the 64 training combination.

The figure 2.29 displays the results of the 64 trainings on the TensorBoard plot.
The plot shows the hyperparameters used in each training in green columns and
the metric used to evaluate the trainings, which is the validation loss and the
average F1-score on the validation dataset, in an orange column. The plot can
be read from left to right, with each line representing one training combination
and the corresponding hyperparameters and metrics. The hyperparameters used
are categorical and are represented by a 1 if they were used in the training or a 0
if they were not. The model was trained for a maximum of 3 epochs in order to
reduce the training time.

46

Project scope: Voice of Customer from Tweet

Figure 2.30: TensorBoard plot with focus on whether to apply BerTweet for word
embedding or not.

The analysis was not fully reported, but in the figure 2.30 the initial step is
shown. This visualization is slightly different because it focuses on the use of
BerTweet. The red lines represent combinations where the transformer is used,
while the blue lines represent combinations where the transformer is not used.
It is clear from the plot that when the transformer is used, the macro F1-score
increases by about 0.2 points, indicating that the transformer is crucial for the
model. The next steps of the analysis were conducted only on the 32 combinations
where the transformer is used. The final set of hyperparameters is chosen based on
low validation loss, high F1-score, and, if multiple options met these criteria, the
combination with the lower memory footprint is selected.

The best combination of hyperparameters is reported in the table 2.6. We can
notice how the POS embedding resulted to be not beneficial to the task. There
are several potential reasons for this. One possibility is that the POS embeddings
are not providing enough useful information to the NER model, and are therefore
adding unnecessary noise or confusion. A Another possibility is that the POS
embeddings are conflicting with the other features being used by the NER model,
leading to redundancy which negatively affect the model’s performance. The multi-
head attention is also removed from the model. One reason could be because the
Bi-LSTM layer is already sufficiently capturing the context and dependencies in the
input data, making the attention layer unnecessary. Alternatively, the attention
layer may not be training effectively due to insufficient data or insufficient training
time, resulting in its inability to focus on the most relevant parts of the input data.
The final architecture is reported in Fig. 2.31.

47

Project scope: Voice of Customer from Tweet

hyperparameter purpose result
apply_pos Whether to apply the POS embedding or not NOT
apply_char Whether to apply CHAR embedding or not YES
apply_transformer Whether to apply Transformer embedding or not YES
lstm_num_layers Whether to stack 2 LSTM or not NO
apply_attention Whether to apply Attention or not NO
apply_special_tag Whether to apply START and END tag or not YES

Table 2.6: Ablation study best hyperparameter combination

Figure 2.31: NER model after ablation study

48

Project scope: Voice of Customer from Tweet

2.3.7 Training Phase and Results
To evaluate the effectiveness of our sentiment analysis model, we compared its
performance to that of a human benchmark, using the Human Level Performance
analysis method on a set of collected tweets. However, this approach is not practical
for named entity recognition (NER) because creating a comprehensive dataset
would be too costly. As a result, we trained the NER model on two distinct datasets,
which are described in more detail in Section 2.3.1. The final NER predictions are
a combination of the output from both of these models.

The code section below specifies the hyperparameters for training a model.
These hyperparameters can be grouped into several categories: Training, POS
embedding, Char Embedding, BerTweet embedding, Bi-LSTM, and multi-head
attention. The "apply_special_tag" parameter in the first section is used to mark
the start and end of a sentence, and the "char_max_word_len" parameter specifies
the maximum length of a word that will not be truncated. This is useful in the
Char Embedding section because it allows for padding to be applied to a batch
of words to ensure that they all have the same length. If a word is too long, the
resulting matrix will contain mostly padding IDs, which can negatively affect the
model’s performance. In the Char Embedding section, the "char_kernel_size"
parameters define the number of filters to be learned for convolutions over three
and six characters. The BerTweet hyperparameters are taken from its paper [2],
and the POS embedding and multi-head attention layers are not used.

1 # Training hyperparameters
2 batch_size_tra in =32,
3 batch_size_val =32,
4 l r =1e −3,
5 apply_specia l_tag=True ,
6 # POS EMBEDDING
7 apply_pos=False ,
8 pos_vocab_size =19,
9 pos_embedding_dim=128 ,

10 # CHAR EMBEDDING
11 apply_char=True ,
12 char_vocab_size =259 ,
13 char_embedding_dim=128 ,
14 char_padding_idx =256 ,
15 char_max_word_len=50,
16 char_output_channel =30,
17 char_kerne l_s izes =[3 , 6] ,
18 # BERTWEET EMBEDDING
19 apply_transformer=True ,

49

Project scope: Voice of Customer from Tweet

20 transformer_embedding_dim =1024 ,
21 transformer_embedding_max_sentence =512 ,
22 # Bi−LSTM
23 lstm_hidden_size =512 ,
24 lstm_num_layers=1,
25 # APPLY ATTENTION
26 apply_attent ion=False

In this model, there are 361 million (see table 2.7 for more details) total param-
eters, with 355 million of those parameters belonging to the BerTweet component
and the rest associated with the rest of the model. However, only 6.6 million of
these parameters are trained, as the transformer component is not being trained.
This is done in order to allow the system to take advantage of the knowledge
and abilities of the pre-trained transformer model, which has learned from a large
amount of general-purpose text data, rather than starting from scratch on the
NER task. Additionally, not specializing the pre-trained transformer on the NER
datasets, allows all of the models in the Voice of Customer (VoC) tool to share
the same backbone, avoiding any potential shifts in data or concepts between the
collected tweets and the dataset used for training.

Name Params Trained
char_embedding 33.2 K YES
charCNN 34.6 K YES
bertweet_embeddings 355 M NO
bi-LSTM 6.5 M YES
Linear 8.2 K YES
CRF 80 YES
Trainable params 6.6 M
Non-Trainable params 355 M
Total Params 361 M
Total estimated model params size 1.4 K MB

Table 2.7: NER model parameters: trained versus untrained

To assess the performances we use the F1-score. The F1 score is a measure of a
model’s performance that combines precision and recall, see section 2.2.3 for more
details. There are three main variations: micro F1, macro F1, and weighted F1.
Micro F1 calculates overall performance across all classes. Macro F1 calculates the
average performance for each individual class. Weighted F1 assigns weights to each
class and calculates the weighted average performance. Since the number of tokens
per class can vary a lot, as shown in the datasets section 2.3.1, the macro F1 score

50

Project scope: Voice of Customer from Tweet

is used as evaluation metric. This because it can provide a balanced evaluation of
the model’s performance across all entity classes. In NER tasks, it is important
to not only identify the named entities correctly, but also to do so consistently
across all classes. The macro F1 score takes into account the performance of each
individual class and averages these scores, allowing the model’s overall performance
to be evaluated in a balanced way. In contrast, the micro F1 score can be useful
for tasks with a large number of classes, but it may not provide as balanced an
evaluation of the model’s performance, as the overall scores may be influenced
more by the performance on the more frequently occurring classes. The weighted
F1 score, on the other hand, may not provide as balanced an evaluation as the
macro F1 score, as the performance of the less important or easier classes may be
given less weight.

Figure 2.32: Tweetbank NER model performance metrics: Training and validation
loss and F1 score. 1,639 tweets for training vs 710 for validation

In figures 2.33 and 2.32, the training results for the two different models. The
model trained on Tweetbank appears to converge more quickly and has a lower
validation loss compared to the model trained on Tweetner. This could be due
to a number of factors. One possibility is that Tweetbank is a simpler dataset
with fewer labels, making it easier for the model to learn from. On the other
hand, Tweetner has more labels, which may make it a more challenging dataset
for the model to learn from. Both models also have some fluctuations in their

51

Project scope: Voice of Customer from Tweet

training loss, which could potentially be reduced by increasing the batch size during
training. By increasing the batch size, the model is able to see more examples
at once, which can help it get a more accurate estimate of the loss. This can in
turn help stabilize the training process and reduce the fluctuations. In addition,
it’s worth noting that the models also have different macro F1 scores. For the
Tweetbank model, the F1 score increases significantly from the beginning to the
end of training, starting from a low value of 0.2 and ending around 0.88. On the
other hand, the F1 score for the Tweetner model remains relatively stable, with
values between 0.55 and 0.8. This suggests that the model trained on Tweetbank
is able to improve its performance more significantly over the course of training,
while the model trained on Tweetner may have reached a plateau in its performance.

Figure 2.33: Tweetner NER model performance metrics: Training and validation
loss and F1 score. 7,111 tweets for training vs 310 for validation

After the training procedure, the trained model are tested to assess the perfor-
mances on unseen data. It’s important to note that the test phase should only
be performed once, after the model has been fully trained and tuned. This is
because evaluating the model on the test set gives you an unbiased estimate of its
performance on unseen data. If you evaluate the model on the test set multiple
times, or if you use the test set to tune the model, you may end up with a overly
optimistic estimate of the model’s performance. In both cases, the trained models

52

Project scope: Voice of Customer from Tweet

not only closed the gap with the baseline but they also surpassed them as shown
in figure 2.34. We can safely put them in production.

Figure 2.34: NER test results compared with baseline. Tweetbank with 1,201
tweets and Tweetner with 2,807 tweets as test set

The final version of the Voice of Customer (VoC) tool will be a combination of
the predictions made by two different models. Ideally, the best solution would be to
create a custom dataset with entities that are specific and relevant to the company.
However, this can be a time-consuming and expensive process, so the decision has
been made to use a combination of the predictions made by the two models instead.
When the models make predictions for the same entity, the final prediction will
be a combination of the two. For example, if one model predicts that the entity
"organization" from a tweet is "Toyota Motor" and the other model predicts only
"Toyota", the final prediction will be the shorter of the two, in this case "Toyota".
This approach will help ensure that the final prediction is as accurate and relevant
as possible. It’s worth noting that this approach may not work in all cases, and it
may be necessary to use additional methods to combine the predictions of the two
models. However, for many entities, this simple approach should be sufficient to
produce reliable and useful predictions.

53

Chapter 3

Use case and conclusion

3.1 Use case

The following paragraph describes a hypothetical scenario in which the implemented
tool for Voice of the Customer (VoC) is used. Please note that the data and the
analysis are obtained with the tool but the main target is fictitious. This use case
is provided to help readers better understand the capabilities and potential uses of
the VoC tool.

Imagine that the sales team has noticed a 5% drop in sales of Battery Electric
Vehicles (BEVs) in Europe in December 2022. In order to identify the cause of this
decrease and where it is occurring, the team is conducting a thorough analysis,
considering all possible explanations. There is currently no clear reason for the
decline in sales, so the team is not ruling out any potential causes and is actively
trying to determine what might be contributing to the decrease. For this reason
they ask to use the VoC tool.

We are using the Toyota Business Practice (TBP) procedure to analyze the
decline in sales in Europe along with the VoC tool. We collect over 10,000 tweets
about Battery Electric Vehicles (BEVs) in Europe with the first step, but this
data alone is not sufficient to fully understand the situation. In Figure 3.1, we
are performing a trend analysis for each individual country. From the data, we
can see that Spain, Belgium, Germany, and Italy have not shown much interest in
this trend in December 222. While this information, along with marketing data,
may help us understanding the reason for the decline in sales, it is not enough on
its own. For example, we don’t know if people are discussing BEVs positively or
negatively, or what specific topics they are discussing. Therefore, our analysis is
not yet complete.

54

Use case and conclusion

Figure 3.1: Step A: Analyzing the trend of "Battery Electric Vehicle" mentions
on Twitter in December 2022, with data in the top six European countries based
tweet volume.

As part of step B of the Voice of the Customer (VoC) tool, we are conducting
sentiment analysis on the collected tweets to gain further insight into the situation.
Upon analyzing the data shown in figure 3.2, we have discovered that a significant
number of the negative tweets are coming from France. This information is im-
portant because it helps us to identify a potential source of the decrease in sales.
By understanding what is driving negative sentiment towards Battery Electric
Vehicles (BEVs) in France, we can work to address any issues and improve our
sales in the region. There could be a variety of factors that are contributing to the
negative sentiment towards Battery Electric Vehicles (BEVs) in France, such as the
availability and accessibility of charging infrastructure or consumer concerns about
the performance and range of BEVs. It would be necessary to conduct further
analysis and research in order to identify the specific causes of the behavior in France.

In the previous step, we identified negative tweets about Battery Electric Vehicles
(BEVs) coming from France, but we are not yet sure where to focus our attention.
As a result, the next step in the Toyota Business Practice (TBP) procedure is to
identify and prioritize the problem based on its level of importance, level of urgency,
and level of expansion. To do this, we are using Named Entity Recognition (NER)
on the negative tweets about BEVs tweeted from France. Figure 3.3 shows some of
the tweets about BEVs tweeted from France in December 2023, with the predicted
product in bold on the left and the predicted person in bold on the right. From
the analysis, we can see that the model is detecting LITHIUM as a product in the
tweets, and upon manual analysis, we see that people are complaining about the

55

Use case and conclusion

Figure 3.2: Step B: Performing sentiment analysis for "Battery Electric Vehicle"
mentions on Twitter in December 2022 with data in the top six European countries
based tweet volume.

weight of the battery, a water reaction, and the battery’s autonomy. In addition,
one person worth noting is Siwinskis. This family in Florida is having a difficult
time after receiving a large quote to replace the batteries in their second-hand
electric vehicle. The quote was more than they paid for their used 2014 Ford Focus
Electric. This tweet became a trend in France.

Figure 3.3: Step D: Applying NER to negative tweets about "Battery Electric
Vehicle" tweeted from France in December 2023. The predicted product is in bold
on the left and the predicted person is in bold on the right.

To summarize, we began our analysis with a small detail about a decrease in
sales of Battery Electric Vehicles (BEVs) in Europe in December 2022. However,
using the implemented Voice of the Customer (VoC) tool, we were able to conduct
various analyses and identify potential root causes of the problem, such as the
trend tweet of Siwinskis and customer complaints about an explosion caused by a

56

Use case and conclusion

reaction between water and lithium. It’s worth noting that we were able to collect
and analyze tweets in less than 10 minutes, with about 7 minutes spent scraping
the data from the Twitter API and less than 3 minutes for sentiment analysis and
Named Entity Recognition (NER) performed on about 10,000 tweets exploiting
GPU computation.

3.2 Conclusion
This thesis presents the VoC tool which has been developed and deployed for
conducting analysis in real time. The tool consists of four macro steps that can
be run in parallel and are flexible. The decision-making flow may differ from the
one presented, depending on the specific needs and goals of the organization. Two
architectures have been proposed and developed one for Sentiment Analysis and
one for Named Entity Recognition (NER). In the case of Sentiment Analysis, we
use Human Level Performance to demonstrate Data & Conceptual shift and we
propose one possible process to create manually label dataset. For NER, we propose
a method for processing the data to leverage different word embeddings and a way
to conduct ablation studies using TensorBoard. The tool has been recognized for
its contributions to the field and it will be a valuable resource for conducting VoC
analysis in the future.

In this thesis, we explored also the intersection of Machine Learning Operations
(MLOps) and Toyota Business Practice (TBP). Through our research, we identified
several key areas where MLOps principles can be applied to TBP, including data
management, model deployment, and system monitoring. The developed tool
demonstrates how these principles can be applied in a real-world scenario.

Our research shows that by incorporating MLOps principles into TBP, orga-
nizations can improve the efficiency and effectiveness of their machine learning
initiatives. By automating and streamlining processes, organizations can reduce
the time and resources required for model development and deployment, and ensure
that models are performing at their best. Additionally, the use of MLOps principles
can help organizations to better understand the performance of their models and
identify areas for improvement.

57

Bibliography

[1] Nianwen Xue. «Steven Bird, Evan Klein and Edward Loper. Natural Language
Processing with Python. O’Reilly Media, Inc.2009. ISBN: 978-0-596-51649-9.»
In: Natural Language Engineering 17.3 (2011), pp. 419–424. doi: 10.1017/
S1351324910000306 (cit. on p. 16).

[2] Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen. «BERTweet: A pre-
trained language model for English Tweets». In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System
Demonstrations. Online: Association for Computational Linguistics, Oct.
2020, pp. 9–14. doi: 10.18653/v1/2020.emnlp- demos.2. url: https:
//aclanthology.org/2020.emnlp-demos.2 (cit. on pp. 17, 34, 36, 41, 49).

[3] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Ap-
proach. 2019. doi: 10.48550/ARXIV.1907.11692. url: https://arxiv.
org/abs/1907.11692 (cit. on pp. 17, 24).

[4] Alexis Conneau et al. «Unsupervised Cross-lingual Representation Learning
at Scale». In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational Linguistics,
July 2020, pp. 8440–8451. doi: 10.18653/v1/2020.acl-main.747. url:
https://aclanthology.org/2020.acl-main.747 (cit. on p. 17).

[5] Alexis Conneau et al. Unsupervised Cross-lingual Representation Learning at
Scale. 2019. doi: 10.48550/ARXIV.1911.02116. url: https://arxiv.org/
abs/1911.02116 (cit. on p. 24).

[6] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin
de Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly.
Parameter-Efficient Transfer Learning for NLP. 2019. doi: 10.48550/ARXIV.
1902.00751. url: https://arxiv.org/abs/1902.00751 (cit. on p. 24).

[7] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé, Kyunghyun Cho, and
Iryna Gurevych. «AdapterFusion: Non-Destructive Task Composition for
Transfer Learning». In: (2020). doi: 10.48550/ARXIV.2005.00247. url:
https://arxiv.org/abs/2005.00247 (cit. on p. 24).

58

https://doi.org/10.1017/S1351324910000306
https://doi.org/10.1017/S1351324910000306
https://doi.org/10.18653/v1/2020.emnlp-demos.2
https://aclanthology.org/2020.emnlp-demos.2
https://aclanthology.org/2020.emnlp-demos.2
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://doi.org/10.48550/ARXIV.1911.02116
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
https://doi.org/10.48550/ARXIV.1902.00751
https://doi.org/10.48550/ARXIV.1902.00751
https://arxiv.org/abs/1902.00751
https://doi.org/10.48550/ARXIV.2005.00247
https://arxiv.org/abs/2005.00247

BIBLIOGRAPHY

[8] Asahi Ushio, Leonardo Neves, Vitor Silva, Francesco Barbieri, and Jose
Camacho-Collados. Named Entity Recognition in Twitter: A Dataset and
Analysis on Short-Term Temporal Shifts. 2022. doi: 10.48550/ARXIV.2210.
03797. url: https://arxiv.org/abs/2210.03797 (cit. on pp. 33, 34).

[9] Hang Jiang, Yining Hua, Doug Beeferman, and Deb Roy. Annotating the
Tweebank Corpus on Named Entity Recognition and Building NLP Models
for Social Media Analysis. 2022. doi: 10.48550/ARXIV.2201.07281. url:
https://arxiv.org/abs/2201.07281 (cit. on p. 33).

[10] Fan Zhang. «A hybrid structured deep neural network with Word2Vec for
construction accident causes classification». In: International Journal of
Construction Management 22.6 (2022), pp. 1120–1140. doi: 10.1080/1562
3599.2019.1683692. eprint: https://doi.org/10.1080/15623599.2019.
1683692. url: https://doi.org/10.1080/15623599.2019.1683692 (cit.
on p. 36).

[11] Muzamil Hussain Syed and Sun-Tae Chung. «MenuNER: Domain-adapted
BERT based NER approach for a domain with limited dataset and its ap-
plication to food menu domain». In: Applied Sciences 11.13 (2021), p. 6007
(cit. on p. 36).

[12] Hang Jiang, Yining Hua, Doug Beeferman, and Deb Roy. «Annotating the
Tweebank Corpus on Named Entity Recognition and Building NLP Models
for Social Media Analysis». In: In Proceedings of the 13th Language Resources
and Evaluation Conference (LREC) (2022) (cit. on p. 38).

59

https://doi.org/10.48550/ARXIV.2210.03797
https://doi.org/10.48550/ARXIV.2210.03797
https://arxiv.org/abs/2210.03797
https://doi.org/10.48550/ARXIV.2201.07281
https://arxiv.org/abs/2201.07281
https://doi.org/10.1080/15623599.2019.1683692
https://doi.org/10.1080/15623599.2019.1683692
https://doi.org/10.1080/15623599.2019.1683692
https://doi.org/10.1080/15623599.2019.1683692
https://doi.org/10.1080/15623599.2019.1683692

	English abstract
	French abstract
	List of Tables
	List of Figures
	Background
	Toyota Business Practice (TBP)
	Project Lifecyle: MLOps

	Project scope: Voice of Customer from Tweet
	Step A: Tweet collection based on keyword
	Step B: Sentiment Analysis
	Training Dataset: Sentiment140
	Model Architecture: BERTweet and Classification Head
	Training Phase: Results on Sentiment140
	Human Level Performance: Data and Conceptual Shift
	Countermeasure Analysis and Results

	Step D: Named Entity Recognition
	Training Dataset: Tweetbank and Tweetner7
	Model Architecture: Word Embedding, Bi-LSTM, Attention and CRF
	Step D.1: Pre-Processing of the data
	Step D.2. & Step D.3: Extract and concatenate embeddings
	Step D.3-D.7: Classification Head
	Ablation Study: All the steps are really necessary?
	Training Phase and Results

	Use case and conclusion
	Use case
	Conclusion

	Bibliography

