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Abstract

An HR (Human Resources) department in a large organization receives
inquiries/requests from employees on multiple topics, which are quite different
from one another. As an example, an employee can send requests dealing with
health conditions, compensation/taxation, events of life (marriage, death of
a relative. . . ).
These data can be used for many different queries, making them beneficial
for analysis purposes (Example: ‘How many people have had COVID during
2021‘). However, HR tickets typically contain personal data, which cannot be
processed without the consent of the data subject according to the European
privacy regulation (GDPR).
To be able to process documents with personal data, we can identify the
pieces of information that qualify as personal data in a communication and
subsequently anonymize such information using the appropriate techniques.
A significant part of this problem is represented by the complex nature of
personal data according to GDPR: personal data are defined as ‘any piece
of information that can be connected to an identified or identifiable natural
person‘. They comprise obvious identifiers like social security numbers, email
addresses, but also elements like ‘the Italian intern working for SAP in South
of France‘. To the best of our knowledge, it does not exist a public dataset
of HR tickets that can be used to train machine learning models, the main
reason being the difficult nature of these types of data. Synthetic data,
which are artificial data that are generated from original data using a model
that is trained to reproduce the characteristics and structure of the original
data, follow a data protection by design approach. To address the need for a
large dataset of HR tickets, we created a taxonomy of tickets, we found real
data that can be used as support to create synthetic tickets and developed
Ticket Generator : an application that can produce as many tickets as needed
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belonging to different categories, we released a dataset of previously created
tickets and we showcase some possible use cases of the dataset.
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Abstract French

Le service RH (Ressources Humaines) d’une grande entreprise reçoit des
demandes de renseignements de la part des employés sur de multiples sujets,
très différents les uns des autres. Par exemple, un employé peut envoyer
des demandes concernant l’état de santé, la rémunération/imposition, les
événements de la vie (mariage, décès d’un proche. . . ).
Ces données peuvent être utilisées pour de nombreuses requêtes différentes
qui peuvent être utiles à des fins d’analyse (Exemple : ‘Combien de personnes
ont eu un COVID au cours de l’année 2021‘). Cependant, les tickets RH
contiennent généralement des données personnelles, qui ne peuvent être
traitées sans le consentement de la personne concernée, conformément au
Règlement Général sur la Protection des Données (RGPD).
Pour pouvoir traiter les documents contenant des données à caractère per-
sonnel, nous pouvons identifier les éléments d’information qui sont qualifiés
de données à caractère personnel dans une communication et, par la suite,
rendre ces informations anonymes en utilisant les techniques appropriées.
Une partie importante de ce problème est représentée par la nature com-
plexe des données personnelles selon le RGPD: les données personnelles sont
définies comme ‘ toute information se rapportant à une personne physique
identifiée ou identifiable‘. Elles comprennent des identifiants évidents comme
les numéros de sécurité sociale, les adresses e-mail, mais aussi des éléments
comme “le stagiaire italien travaillant pour SAP dans le sud de la France“.
À notre connaissance, il n’existe pas de base de données publique des tickets
RH qui peuvent être utilisée pour entraîner des modèles d’apprentissage
automatique, principalement en raison de la nature difficile de ces types
des données. Les données synthétiques, qui sont des données artificielles
générées à partir de données originales et d’un modèle entraîné à reproduire
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les caractéristiques et la structure des données originales, suivent une ap-
proche de protection des données par conception. Pour répondre au besoin
d’un grand ensemble de données de tickets RH, nous avons créé une tax-
onomie de tickets, nous avons trouvé des données réelles qui peuvent être
utilisées comme support pour créer des tickets synthétiques et nous avons
développé Ticket Generator : une application qui peut produire autant de
tickets que nécessaire appartenant à différentes catégories, nous avons publié
un ensemble de tickets précédemment créés et nous présentons quelques cas
d’utilisation possibles de l’ensemble de données.
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About SAP

Founded in 1972, SAP has grown to become the world’s leading provider of
business software solutions. SAP is market leader in enterprise application
software. The company is also the fastest-growing major database company.
Globally, more than 77% of all business transactions worldwide touch an
SAP software system.

With more than 347.000 customers in more than 180 countries, SAP
includes subsidiaries in all major countries. SAP is the world’s largest
inter-enterprise software company and the world’s third-largest independent
software supplier, overall. SAP solutions help enterprises of all sizes around
the world to improve customer relationships, enhance partner collaboration
and create efficiencies across their supply chains and business operations.
SAP employs more than 98.600 people.

Security Research at SAP Labs France, Sophia
Antipolis

Based at SAP Labs France Mougins, Security Research Sophia-Antipolis[1]
addresses the upcoming security needs, focusing on increased automation of
the security life cycle and on providing innovative solutions for the security
challenges in networked businesses, including cloud, services and mobile. This
internship is based in the SAP Labs France Research Lab, in Sophia-Antipolis.
The work will be performed in the context of the Research Program "Security
& Trust".
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Chapter 1

Introduction

With the advent of deep learning, a lot of applications have been needing
more and more data. However, more often than not, these data contain
a large amount of sensitive and personal information that restricts its use
according to the legal framework in place in many countries.
Data is growing rapidly within companies, containing a great deal of sensitive
information that can’t be processed or shared without due consideration of
legal ramifications. If such data could reveal the identity of someone, their
personal rights would be threatened.
This is especially relevant in the context of HR tickets, which can contain
not only personal information but also special categories of personal data,
which require extra protection according to GDPR.

1.1 GDPR

The General Data Protection Regulation[2] is a privacy regulation that regu-
lates the processing of personal data "wholly or partly by automated means
and to the processing other than by automated means". The regulation applies
to all citizens of the EU and to all data subjects in the EU, whether the
processing is carried out inside or outside the EU.
Personal data are defined as "any information relating to an identified or
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identifiable natural person". The regulation states that "an identifiable natu-
ral person is one who can be identified, directly or indirectly, in particular by
reference to an identifier such as a name, an identification number, location
data, an online identifier or to one or more factors specific to the physical,
physiological, genetic, mental, economic, cultural or social identity of that
natural person". The natural person can be identified both by direct identi-
fiers and quasi-identifiers. The direct identifiers are information that directly
identify the person, such as the telephone number, social security number. . . ,
while the quasi-identifiers are information that alone cannot identify a person,
but if they are combined with other quasi-identifiers can affect a person’s
privacy. For example, the job title could be not enough to identify a person,
but combined with his/her company and his/her nationality it could be.
Moreover, the GDPR treats some categories of personal data more care-
fully. These categories are called ’special categories’ and include racial or
ethnic origin, political opinions, religious or philosophical beliefs, trade union
membership, genetic data, biometric data, data concerning health or data
concerning a natural person’s sex life or sexual orientation.
The special categories of personal data cannot be generally processed, with
some exceptions, including "the data subject has given explicit consent to the
processing of those personal data for one or more specified purposes".

1.2 Synthetic data

Synthetic data is artificial data that is generated from real data and has the
same statistical distribution as the original data . This means that synthetic
data and original data should deliver very similar results when undergoing
the same statistical analysis.
Synthetic data has many benefits over real data: if you create a model that
generates synthetic data you can generate how many data you need, you can
infer certain properties to your data ( for example it can be useful for bias
and fairness research ) and, above all, synthetic data can respect the right to
personal data protection. It is important to point out that it is not always
guaranteed that synthetic data is privacy-preserving: it has been shown that
synthetic data can leak personal information [3].
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1.3 Ticket Generation

We created a tool that can be used to create an unlimited amount of synthetic
HR tickets and we published a dataset of 16000 tickets. Each ticket, other
than the ticket’s text, is composed of a category, sub-category and the entities
of the ticket. The tickets are not created from scratch, but starting from
real-world’s datasets and some prompts that help the model generate the
text.
We did a survey internal to the company to gather some real data, and we
changed the ticket generation parameters in order to respect the real data
with respect to different text metrics.
Finally, we showed different possible use cases for the dataset:

• Ticket Anonymization

• Ticket Classification

• Named Entity Recognition on tickets’ entities

1.4 Structure of the thesis

The thesis is divided in two main parts: the dataset generation (chapter 3
and Figure 1.1) and the possible use cases of the dataset (chapter 4 and
Figure 1.2).

First, we built a taxonomy of the tickets (section 3.1), then we listed
all the datasets which we used as a starting point to get some initial data
and we explained how they were processed (section 3.2). After that, we
described the process of the generation of the tickets (section 3.3), where we
showed the templates (section 3.3), the generative model (section 3.5) and
the parameters we can tune during the generation process (subsection 3.5.1).
Then, we did some analysis on the generation outcomes, both on the model
(section 3.6) and on the tickets’ texts (section 3.8). In section 3.7 we illustrate
the survey we did to gather the test dataset.
Lastly, in section 3.9 we introduced some experiments we carried out but
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that were not included in the final version of the application.

In chapter 4 we listed the three different use cases for the dataset and
their results: the classification of the tickets’ categories (section 4.1), the
anonymization of the tickets with a different approach than the standard one
(section 4.2) and the named entity recognition on the entities of the tickets
(section 4.3), where we used both a classical approach (subsection 4.3.2) and
an innovative one (subsection 4.3.3).

Figure 1.1: Schema of the generation of the dataset
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Figure 1.2: Schema of the possible use cases of the dataset
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Chapter 2

Related Works

Due to the sensitive nature of the data and GDPR laws, a dataset of HR
tickets written by company employees has never been published as far as
we know. This is likely to be the case because the public release of these
data could be damaging for both the company and the employees, such as
an employee criticizing the working environment or revealing confidential
information about the company in a ticket.
However, some datasets can resemble what we are trying to build, with
similar language style and intents:

• HR Analytics: data about 1470 employees in a company: the features
of the dataset include job role, gender, education field, hourly rate. . .

• Consumer Complaint: Consumer Financial Protection Bureau’s online
database of customer complaints about different financial products. The
overall dataset contains over 600,000 complaints and each record has
the complaint’s text description, the product that is the cause of the
complaint, the company which issues the product, and the category of
the issue. In the dataset the personal information are masked.

• Enron Mail: The Enron Mail dataset contains about 0.5M emails of
150 senior management from the Enron corporation. This data was
originally made public, and posted to the web, by the Federal Energy
Regulatory Commission during its investigation for fraud. The corpus

6



Related Works

is one of the only few publicly available mass collections of real emails
easily available for study.

• TAB: the Text Anonymization Benchmark corpus[4] is a privacy-oriented
annotated text resource. The corpus comprises 1,268 English-language
court cases from the European Court of Human Rights (ECHR) en-
riched with comprehensive annotations about the personal information
appearing in each document, including their semantic category, identifier
type, confidential attributes, and co-reference relations.

7



Chapter 3

Method

3.1 Taxonomy

When building a dataset is important to decide the features that will be used.
Features should be chosen carefully to ensure that the dataset is relevant
and useful. In most HR ticketing systems, the tickets belong to a category,
which helps the HR department to classify the tickets and send them to the
right person to answer them.
Usually, HR tickets can belong to various categories, which can range from a
request for a shift change to a complaint about a colleague.
We built a taxonomy of tickets, which is structured into categories and
subcategories. The categories and subcategories let us define a finite set of
possible topics of the tickets and give a precise structure to the dataset.
Each subcategory has its own variables that are used as inputs for the tickets’
generation. The variables are sampled from real-world datasets.
For example, to create a request for sick leave, we pass as inputs to our
model the reason and the number of days of sick leave requested, which will
be acquired from an external dataset.
We have a selection of templates and prompts to kick-start the generation
process. Every category has its own distinct templates and prompts. The
taxonomy ( Shown in Figure 3.1 ) has been inspired by industrial approaches
on the categorization of most common HR requests, however, the final
taxonomy ( Shown in Figure 3.2 ) presented here is a subset of the original
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one due to the unavailability of public data on certain topics ( Ex. Work
benefits)
The final complete taxonomy and the complete list of all variables used for
each category/sub-category can be seen in the Table 3.1

Figure 3.1: Initial Taxonomy

Category Sub-category variables
Ask Information Accommodation location, duration
Complaint About coworker complaint, reason

About superior complaint, reason
Timetable change Shift change reason_of_change, old_date, new_date
Salary Salary raise old_salary, new_salary, increase,work_title

Gender pay gap wage_gap
Life Event Health issues disease, number_of_days_of_sick_leave

Personal issues issue, number_of_days
Refund Travel from, to, date_travel

Table 3.1: Table of all defined categories and sub-categories with their
respective variables
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Figure 3.2: Final taxonomy, reduced due to unavailability of data

3.2 Datasets

In order to generate tickets, we decided to use real data as a starting point
to make them as much realistic as possible. Another reason to use real data
is that it makes the dataset useful for use cases such as anonymization.
The datasets that we used are all public and available online. In some cases
where no datasets were available, we created them manually from personal
experience.
The datasets are:

• Absenteeism at work Data Set: contains records of work absences, with
the reason for the absence (almost always a disease) and the number
of hours of absence. It is used to create requests for days off for health
reasons. The data were gathered from July 2007 to July 2010 at a
courier company in Brazil.

• National Occupational Employment and Wage Estimates United States:
estimates of wages in the US calculated with data collected from employ-
ers in all industry sectors in metropolitan and nonmetropolitan areas in
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every state and the District of Columbia. It is used to create requests
for salary raises.

• List of events of life: list of major events in life. It is used to create
requests for time off due to personal reasons.

• Gender pay gap in the UK : dataset of employers with 250 or more
employees, comparing men’s and women’s average pay across the orga-
nizations in 2021. It is used to create the requests for explanations for
the wage gap between genders.

• OpenFlights database: datasets of airports and flights all over the world.
It is used for requests for refunds of travel. The data are updated up to
2017.

• Geonames all cities with a population over 1000 : datasets of all cities
of the world with a population over 1000 people. It is used for requests
for information about accommodation.

3.2.1 Datasets preprocessing

Absenteeism at work Data Set

The Absenteeism at work Data Set is distinct because it is the only dataset
that contains individual records of employees, not just a collective average.
These data include the personal details of the employee, the cause of their
absence, and the duration of the absence in hours. To ensure the privacy of
the subjects, we utilized a Bayesian Network.
A Bayesian network is a probabilistic graphical model that measures the
conditional dependence structure of a set of random variables based on the
Bayes theorem. The features that we have used to build the Bayesian network
are the reason for absence, the month of absence and the absenteeism time.
We added the dependency between month of absence and reason for absence,
since some illnesses are more common during some months of the year, and
between absenteeism time and reason for absence, since based on the type of
illness you can request more or less time off (Figure 3.3).
Using the Absenteeism at work Data Set we learn conditional probability

distributions from data, to which we add a Laplace noise for differential
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Figure 3.3: Bayesian network dependencies

privacy. Then we can sample new data that follow the original distributions,
but that are not equal to the original ones.
The absence reasons in the dataset are given as ICD (International Classifi-
cation of Diseases) codes. To make them more human-readable, we picked
for each ICD code the corresponding more frequent diseases.

National Occupational Employment and Wage Estimates United
States

In the National Occupational Employment and Wage Estimates United States
dataset, we sample employees based on the number of people employed in a
certain field. Therefore for example since ‘Retail Sales Workers‘ consists of
5.4% of the total occupations, then the sampled employee will have the 5.4%
of possibility to have as occupation ‘Retail Sales Worker‘.
The current salary of the employee is calculated by adding Gaussian noise to
the average salary of the employee’s occupation, and then the salary raise
requested is picked randomly between 5%-10%.

12
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Gender pay gap in the UK

The ranges of the wage gap, used in the tickets regarding the explanation for
the gender wage gap in the company, are sampled randomly from the dataset
Gender pay gap in the UK, adding a Gaussian noise for privacy reasons.

Geonames all cities with a population over 1000

To sample the cities for the requests of accommodation, we randomly sample
from all the cities with more than 100,000 inhabitants from the country
of residence of the synthetic employee. To calculate the duration of the
accommodation we pick a random number of months between 1 and 12.

OpenFlights database

To get data for the category type "refund travel", we sample randomly one
flight from all the flights leaving from the country of the synthetic employee.
The data are taken from the OpenFlights database.

Complaints - life events

The complaints about coworkers and superiors and the life events that can
affect the work life of a person were written by myself, using primarily
personal experience and some help from internet blogs.

3.2.2 Bayesian Networks

A Bayesian network is a machine learning method that combines a proba-
bilistic graphical model with Bayesian inference to infer the likelihood of
certain events or outcomes. It is used to find relationships between variables
and to identify which variables are most influential in predicting a certain
outcome or event.

13
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The bayesian network is based on the Bayesian theorem:

p(A| B) = p(B| A)p(A)
p(B)

Formally, the Bayesian network is a directed acyclic graph G = (V, E)
with

• A feature for each node i belonging to V

• A conditional probability distribution for each edge, so the edge from
feature i to j represents p(xj| xi)

The base version of a Bayesian network works with discrete variables, however,
some implementations consider also continuous variables [5].
To have privacy-preserving data, which is data that does not include any
personal information that could identify an individual, we inject some noise
into the Bayesian Network, exploiting a PrivBayes[6].
PrivBayes is a method for releasing high-dimensional data while ensuring
differential privacy. It begins by constructing a Bayesian network that
compresses the correlations between the attributes in the dataset D, allowing
us to approximate the distribution of data with a set P of low-dimensional
marginals. Noise is then injected into each marginal in P to uphold the
differentially private guarantee, and the Bayesian network and noisy marginals
are used to create an approximation of the data distribution in D. Tuples are
sampled from this approximate distribution to construct a synthetic dataset.
In practice implementing PrivBayes for our case is relatively easy: we build a
Bayesian network starting from the Absenteeism at work Data Set calculating
the likelihood distribution p(xi| xj) ∀xi, xj ∈ D, where D is the set of features.
As a prior, we used a Dirichlet distribution, mainly because it is the conjugate
prior of the categorical distribution.
We then added pseudo counts to the observed counts in the data used to
calculate p(xj| xi). This technique is used to diminish the overfitting of data.
The values we used for pseudocount is γ = 1.
Since we learn the conditional probability distribution from our data, the
structure of the network or the conditional probabilities may therefore leak
some information on an individual in the dataset. In order to provide strong
privacy guarantees and minimize the re-identification risk, we leverage the
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notion of differential privacy: we perturb the data adding a noise sampled
from a Laplace distribution

z ∼ Laplace

A
0,

2 · nfeatures

γ · ϵ

B

where ϵ is the privacy budget for differential privacy, which controls the
anonymization level.
Differential privacy is a rigorous mathematical definition of privacy. An
algorithm is said to be differentially private if by looking at the output of
an algorithm A performed on a dataset X, one cannot tell whether any
individual’s data was included in the dataset X or not. In other words, a
differentially private algorithm guarantees that its behavior hardly changes
when a single individual joins or leaves the dataset. The mathematical
definition of differential privacy is:

Pr[A(X) ∈ Z] ≤ eϵ · Pr[A(X ′) ∈ Z]

where A is an algorithm and X ′ is a neighbour dataset of X. A dataset is a
neighbor of another dataset if they differ by only one record.
Once the private Bayesian network is built, we can sample new values for
all the nodes in the graph. These generated values will have the same
distribution and preserve the consistency and statistical properties of the
original dataset up to the noise addition which acts as a de-identification
barrier.

3.3 Ticket Generation

For each HR ticket, we create a synthetic employee. Depending on the
category of the ticket we want to generate, the employee can have different
features. For all tickets’ categories, the employees have some common fea-
tures: name, first name, last name, nationality, country, email, company,
company’s email and ticket date.
All these information are created exploiting the Python library Faker [7]. The
nationality and the company’s country are selected from the extendible list
{ USA, Germany, Italy, Spain, France }. All other information are created
accordingly to the country picked. So for example, if the country of birth of
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the employee is Italy, then the generated name will be Italian.
Then, once the employees are generated, the information specific to the ticket
category, the ones created starting from the open datasets as mentioned
before, are concatenated to the general information of the employees.
For each ticket category, there are distinct templates. In each template
there is an initial part that contains the general information of the employee,
such as name, surname, company. . . , then some prompts correlated to the
category of the ticket and then the textual prompt.
Here are a couple of examples of templates:

Request for time off due to health reasons:

From: ${email}
To: ${company email}
First name: ${first name}
Last name: ${last name}
Company: ${company}
Date: ${ticket date}
Ticket category: ${category}
Ticket sub-category: ${sub category}
Date start absence: ${date start absence}
Reason absence: ${reason}
Subject: Request for sick leave for ${number of days}

Dear Sir/Madame, my name is ${name} and I work at ${company}. I
am requesting <generate>. I hope <generate>.

Request for refund of travel:

From: ${email}
To: ${company email}
First name: ${first name}
Last name: ${last name}
Company: ${company}
Date: ${ticket date}
Ticket category: ${category}
Ticket sub-category: ${sub category}
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Date Travel: ${date travel}
From: ${airport from}, ${from}
Destination: ${airport to}, ${to}
Subject: Request of refund for plane ticket from ${from} to ${to} at
${date travel}
Hello, my name is ${name}. I am writing this mail to ask for a refund
for the travel <generate>

The variables are replaced with the features of the employee, whereas the
<generate> are replaced with text generated by a generative model. The
parts generated by the generative model are created recursively. This means
that the first <generate> is replaced with text generated automatically using
as prompt everything that precedes it. Then the second <generate> will
have as a prompt the entire ticket, including the text generated previously by
the model. The model is forced to generate some text, if no text is generated
in an iteration, the process is repeated until the model gives a non-empty
output.
A general schema of the generation is shown in Figure 3.4

Templates

Generative Pre-trained Transformer (GPT) [8] models take in a prompt, or
context, and generate text from it. The prompts typically take the form of
a few sentences or a paragraph, and the models generate sentences that fit
the context of the prompt. By manipulating the prompt, users can generate
text of various tones, topics, and styles.
The GPT models are also capable of completing tasks such as question
answering, machine translation, and summarization in an unsupervised
manner[9]. By providing a prompt with the task and context, the models
can generate accurate results that address the specific context and task. For
example, summarization tasks require a prompt to provide the necessary
data so that the model can deliver a correct summary of the text.
Changing the prompt of GPT can change the tone, topics, and style of the
generated text. Depending on the prompt, GPT models can generate text
ranging from creative stories to technical summaries. The tone and style of
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Figure 3.4: Schema of Ticket Generation

the text can range from humorous to academic, depending on the prompt.
As the prompt changes, the model will also adjust to reflect the context of
the prompt.
This is why we took inspiration from the e-mail format, as HR tickets are
created in a working environment where formal language is used and often
they resemble emails in the tone and the topics.
The emails of the Enron dataset, one of the few datasets of emails public
available, have usually a well-structured prompt, here’s an example:

Message-ID: <16593073.1075858228177.JavaMail.evans@thyme>
Date: Wed, 12 Jan 2000 00:29:00 -0800 (PST)
From: carrie.hollomon@enron.com
To: phillip.love@enron.com
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Subject: Workhours
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit

Hello . . .

To mimic the format of the emails of the Enron dataset, we kept the From,
To, Date and Subject rows. Instead, we removed the Mime-Version, the
Content-type and Content-Transfer-Encoding, because after conducting some
experiments it was evident that they did not help to achieve better results,
on the contrary in some cases they were worse.
In addition to the standard information, we added some rows with additional
information specific to the category, rather than including them only in the
subject or in the initial prompt.

In order to generate tickets that were dissimilar and covered a wide range of
topics/tokens, we preferred giving GPT small text prompts and letting the
model generate most of the text getting the information from the email-like
prompt. This approach allowed us to improve the diversity of the dataset
and, consequently, its usefulness.

Small text prompt example of a request for shift change:

Dear Sir/Madame, my name is ${name}. I wanted to <generate>

Long text prompt example of a request for shift change:

Dear Sir/Madame, my name is ${name} and I work at ${company}. I
wanted to ask to change the shift from ${old_date} to ${new_date} in
order to be able to <generate >
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3.4 State of The Art auto-regressive language
model

Autoregressive transformer-based Large Language Models are sequence-to-
sequence deep learning models that are pre-trained on a large corpus of data.
They are designed to generate new tokens conditioning the model on some
input text. The output probability distribution for the next token that the
model generates is a probability distribution over all possible tokens in the
corpus.
Autoregressive transformer-based Large Language Models have shown ability
to solve many tasks[10], varying from more classical ones like translation and
question-answering to more peculiar ones, like common sense reasoning and
reading comprehension.
Mathematically, language models seek to maximize the likelihood of seeing
some sentence by considering the product of conditional probabilities up to
the point of generation

p(wT | θ) =
TÙ

i=1
p(wi| w1,..,i−1, θ) (3.1)

Here we list some of the most popular auto-regressive language models:

• GPT-3: GPT-3[11] is an unsupervised AI language model developed
by OpenAI. It is the successor to the previous iteration of GPT-2, and
when released was the largest language model ever created. GPT-3 first
showed that LLMs can be used for few-shot learning across different
domains and can achieve state of the art results without building a
task-specific model.

• PaLM: Pathways Language Model[12] is a 540-billion parameter LM
developed by Google. The model was trained through the use of Path-
ways, a new system that enables highly efficient training of very large
neural networks across thousands of TPUs. PaLM few-shot evaluation
can outperform or match the finetuned state of the art on a wide array
of reasoning tasks.

• Chinchilla: Chinchilla[13] is a LM released by DeepMind. The peculiar-
ity of Chinchilla is that it has ’only’ 70B parameters, but outperforms
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models such as GPT-3 (175B). The authors of the paper demonstrate
that for the same computing budget a smaller model trained on more
data will perform better.

• GPT-J: GPT-J[14] is an open-source alternative to OpenAI’s GPT-
3, the model was released by Eleuther AI, a group of independent
researchers and has 6B parameters

• BLOOM: BLOOM[15] is an open-source auto-regressive LM released by
HuggingFace. BLOOM has a stronger focus on languages, differentiating
itself from the majority of other LMs that mainly focus on the English
language. In total, BLOOM was trained in 46 different languages

Amongst all of these LMs, we picked GPT-J, mainly because it was open-
source, free and more lightweight, thus more convenient in case of productive
usage. The other main alternative we have tried was GPT-2[9], the predeces-
sor of GPT-3, which is now free to use. However, GPT-J’s generated text
was more coherent and more fluent.

3.5 GPT-J

The generative model used to create the tickets is GPT-J, an open source 6
billion parameter, autoregressive text generation model trained on The Pile
dataset released by EleutherAI.
The Pile dataset[16] is an 825 GiB English text corpus composed by 22
diverse subsets, which can be grouped in 5 categories:

• Academic ( ArXiv, PubMed Central, ... )

• Internet ( Wikipedia, StackExchange, ... )

• Prose ( Bibliotik, ... )

• Dialogue ( Subtitles, ... )

• Misc ( Github, ... )
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3.5.1 Parameters

The parameters used for the generation of the next token are:

• min_length: minimum number of words created by a round of gpt
generation

• max_length: maximum number of words created by a round of gpt
generation.

• top_k: the k most likely next words are filtered and the probability
mass is redistributed among only these k words. It helps the model not
to go off-topic.

• top_p: the next words are sampled from the smallest possible set of
words whose cumulative probability exceeds the probability p. Compared
to top_k, in this case the size of the set of possible next token is not
fixed. In practice, usually top_k and top_p are used together.

• temperature: the value T used to module the logits distribution. The
higher the value of T , the higher the entropy of the logits distribution
will be. In other words, tokens with an high probability will be less
probable and tokens with a low probability will be more probable.

pi = exp(xi/T )q
j exp(xj/T )

• repetition_penalty: the parameter θ for repetition penalty. 1.0 means
no penalty
Given a list of generated tokens G,

pi =
exp

3
xi

T ·I(i∈G)

4
q

j exp
3

xj

T ·I(j∈G)

4

I(c) = θ if c is True else 1

So the logits distribution of the token changes based on if the token has
already been generated before.
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• length_penalty: length_penalty > 0 promotes longer sequences, while
length_penalty < 0 encourages shorter sequences.

• no_repeat_ngram_size: If set to an integer > 0, all ngrams of that size
can only occur once
Ex: no_repeat_ngram_size = 2

• num_beams: Number of beams for beam search. They beams are the
number of ’paths’ that are considered when choosing the next token.
Even if a token is not the one with the highest probability, it can be
chosen as the next token if the complete sentence is considered as more
probable than the alternatives.

• do_sample: If set to ‘False‘ greedy decoding is used ( the most prob-
able token is always chosen). Otherwise, sampling is used ( the next
token is chosen sampling from the distribution of possible next tokens )
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• bad_words: List of words that are not allowed to be generated by the
model.

• force_words: List of words that must be generated in the generation.

The default values assigned to the parameters used are shown in Table 3.2,
however the application is set up in order to being able to apply different
parameters at each run.

3.5.2 Architecture

The GPT architecture is based on the original Transformers paper. The
original architecture introduced two types of transformers blocks: the encoder
block and the decoder block.
The encoder block converts an input sequence of tokens into a sequence of
embedding vectors, whereas the decoder takes the output of the encoder and
generate iteratively an output sequence of tokens.
GPT is pre-trained by predicting the next word based on the previous ones.
GPT is decoder-only, which means that is assembled only by a stack of
decoder blocks. Each decoder block is composed by:

• Normalization Layers: a normalization layer [17] normalize all inputs
of a neural network across their features. It has been shown that Layer
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Parameter Value
min length 0
max length 50
top k 50
top p 0.85
repetition penalty 1.2
temperature 1
length penalty 1
no repeat ngram size 0
num beams 1
do sample True
bad words [ ]
force words [ ]

Table 3.2: Parameters of GPT-J model

normalization enables smoother gradients, faster training, and better
generalization accuracy [18]
x: data sample
d: dimension of data sample
y: output of LayerNorm
ϵ: small number added for stability

u = 1
d

dØ
i=1

xi

σ2 = 1
d

dØ
i=1

(x−ui)2

x̂i = xi − u√
σ2 + ϵ

y = γx̂i + β

where γ and β are parameters that the model learns.

• Masked Self-Attention Layer: attention is a mechanism that allows
neural networks to assign a different amount of weight to each token in
a sequence and process each token as a weighted average of all other
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tokens.
In practice three matrixes are calculated:

– Q (Query): the representation of the current token
– K (Key): the representation of all the other tokens, which are

matched with the current token
– V (Value): the representation of all the words, used for the weighted-

average

The Q, K and V matrixes are initialized as:

– Q = WqX + bq

– K = WkX + bk

– V = WvX + bv

where X is the input matrix and the other matrixes are randomly
initialized and learned by the model. Finally, the attention score is
calculated with

Attention(Q, K, V ) = softmax

A
QKT

√
d

B
V

where d is a normalization factor equivalent to the embeddings’ dimension
The masked self-attention is a modified version of self-attention where all
the tokens that appear after the current one are set to 0, in order not to
let the model being influenced by any information regarding the tokens
at the next positions. This is fundemental when training generative
models such as GPT, whose scope is to predict the successive tokens.

Attention(Q, K, V ) = softmax

A
QKT + Mask√

d

B
V
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• Feed Forward Neural Network Layer: Used to add non-linearity to
the transformer block

Figure 3.5: GPT-3 and GPT-J architectures compared

GPT models use a Byte-Pair Encoding tokenization. The Byte-Pair
Encoding algorithm starts by building a vocabulary with all the single
characters of the corpus we are training on. Then, at each step of the
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Figure 3.6: Byte-Pair Encoding Tokenization Example

algorithm, the two tokens which appear consecutevily the most in the words
of the corpus are unified and create a new token. This process continue until
the desired vocabulary lenght is satisfied. An example taken from the site
[19] is shown in the Figure 3.6

Compared to GPT-3, GPT-J[14] has two minor architectural differences (
shown in Figure 3.5):

• Rotary Embedding

• The attention layer and the feedforward layer in parallel for decreased
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communication

Rotary Position Embedding

Position embeddings are used to infer the notion of position to the model,
which does not have any sense of position for each token. In other words,
using the attention mechanism each token "match" with the other tokens
in the same manner, not considering where if the other token is located
right after the current one or if it is at the end of the sentence. Position
embeddings are used to add to the model this sense of position.
Rotary position embedding has been introduced by Su et al.[20], it is a novel
method that unifies absolute and relative approaches to position embeddings.
The typical approach, which is also used by GPT-3, is to use a sinusoidal
embedding, which is defined asp1,2t = sin(k/100002t/d)

p1,2t+1 = cos(k/100002t/d)

where p1,2t is the 2th element of the d-dimensional vector pi RoPE instead
proposes to incorporate the relative position information by multiplying
the context representation with the sinusoidal functions instead of directly
adding them.
If we define

qm = fq(xm, m)
kn = fk(xn, n)

where fq and fk are functions that incorporate the mth and nth positions
respectively to the vector embeddings xm and xn to produce the query and
key vectors, we can require the inner product of the query qm and kn to be
formulated by a function g that depends only on the word embeddings xm,
xn and their relative position m − n

⟨fq(xm, m) , fk(xn, n)⟩ = g(xm, xn, m − n)

In the simplest case d = 2, f{q,k} are defined as

f({q,k},{m,n}) = (W{q,k}x{m,n})ei{m,n}θ
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and therefore we obtain

g(xm, xn, m − n) = Re[(Wqxm)(Wkxn)T ei(m−n)θ]

which preserves the relative positional information of the word embeddings.
This equation is used when calculating the self-attention, which will become

Attention(Q, K, V ) = softmax

A
g(xm, xn, m − n)√

d

B
V

This equation can be generalized for d > 2, as shown in the original paper.
In the end, incorporating the RoTE is pretty straightforward, you just have
to rotate the word embedding by a multiple of its position index.
According to the researchers that published GPT-J[21], using RoTE leads
to a faster convergence of training and validation losses and a lower overall
validation loss.

Figure 3.7: Implementation of RoPE, Image taken from original paper[20]

3.6 Architecture analysis

To understand better how the model was behaving and why it gave certain
types of outputs rather than others, we used the python library Ecco[22],
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which creates interactive visualizations that show at which layer of the
architecture the final token has been decided, which input tokens contribute
the most for a prediction, and many other insights on the model.
In particular, we used two different methods:

• Input Saliency: used to show how much did each input token contribute
to producing the output token

• Neuron Activation Analysis: used to examine underlying patterns
in neuron activations using non-negative matrix factorization

Input Saliency

To get a better grasp of the most useful information of the prompt, and
to understand how we could modify it to achieve better results, we used
the Gradient * input[23] method. This technique calculates the partial
derivatives of the output of the model and multiplies them with the input
itself. Then the inputs with the highest scores are considered the ones that
influenced the most the generation of the new tokens

score = xi ▽ f(xi)

where f is the architecture output.
The main problem with the Gradient * input method is that only one input is
considered. Integrated Gradients[24] solve this issue, computing the average
gradient while the input varies along a linear path.

score = (xi − x′
i)
Ú 1

α=0
▽f(x′ + α(x − x′)) dα

Nevertheless, we used the Gradient * input method for computational issues
( The Integrated Gradients took too much RAM of the GPUs ).
In the images under, we underline some of the considerations we have done
while defining the prompts.
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Figure 3.8: Input Saliency: First token
To create the first token, the model focus on the elements that resemble the content of an
email, in particular on the fact that it is indeed a ’Ticket’

Figure 3.9: Input Saliency: Subject
Clearly stating the subject of the ticket helps the model create tokens that are on the
right topic ( In this example ’days of absence’)

Neuron Activation Analysis

The Feed Forward Neural Network layer is one of the major components
inside a transformer’s block. To better understand how the neurons of differ-
ent layers were ’activated’ and how the neurons contributed towards each
generated token, we exploited the Factor Analysis provided by Ecco.
Firstly, Ecco calculates the activation scores of each neuron over all layers,
and then uses Non-negative Matrix Factorization (Figure 3.11) to do dimen-
sionality reduction on the matrix of activations, which will be reduced to a
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Figure 3.10: Input Saliency: HR
Clearly stating that we are writing to hr can help the model know the context, and
consecutively use a certain language, specific words. . .

matrix M×T , where M is a parameter we decide and T is the number of
tokens, starting from a matrix (n · N)×T , where n is the number of neurons
per layer and N is the number of layers. In GPT-J n = 16384 and N = 28.

Then, for each factor, which are the dimensionality-reduced layers, we

Figure 3.11: Non-negative Matrix Factorization on Activation Matrix

visualize their activated neurons. From the example in the Figure 3.12, we
can show for each factor what their main contributions are:
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1. Punctuation

2. Mail prompt ( From, To, First Name, Last Name, Company. . . )

3. New lines

4. Dates

5. First token, common across various GPT factors

6. Medical terms ( usually terms related to the tickets’ topic )

7. People’s names and contacts

8. Company’s name and contacts

9. Ticket’s subject ( Category, Sub-category and additional info )

10. Email presentation ( ’Dear Sir/Madame. . . ’ )

Figure 3.12: Neuron Activation Analysis
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3.7 Survey

In order to understand whether the tickets were similar to real tickets, we
conducted a survey internal to the company. We were not able to get real
data from the company’s HR due to the sensitive nature of the data. In
order to avoid any ethical implications, we decided to conduct our assessment
without involving any real personal data or situations.
We asked to some collegues to act as the automatic text generator, filling out
a form in an Excel file, where the users were given twenty random prompts,
similar to the ones that are given to the GPT model.
After giving a brief explanation of the project and what we were trying to
achieve, we recommended the users not to use their personal information
while writing the fake tickets, but to use the same style of text and the same
vocabulary they would use in a real situation.
For each ticket, there were several information attached that appeared over
all the tickets, which were: name of the person, category of the ticket, sub
category of the ticket and some information that were specific to the ticket’s
category, for example for the category-sub_category ’Salary - Salary Raise’
the additional information given was the new requested salary.
We asked the users not to use necessarly all the information that were present
in the prompts, but only the ones that felt natural to use, and to slightly
change them if it made sense to them ( Ex: Sick leave from Oct 20 2022 can
become ’from this Thursday, the 20’)
Each user was given twenty different prompts sampled randomly from a set
of 800 total prompts, belonging to the same categories-sub_categories of our
taxonomy. The prompts contained only the contextual information of the
ticket and no ticket’s text, so, unlike the prompts used for the GPT models,
there were no initial text such as ’Dear Sir/Madame, I would like to . . . ’
The respondents were also asked to tick the information that they used, and
these information were supposed to be used as testing in the NER use case.
However, many people either did not tick any information or they ticked
only partially what they used, therefore in the end we did not make use of
these data.
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Figure 3.13: Example of survey

3.8 Results

In this section we analyze the created dataset, comparing it to the tickets
we collected from the survey.
The final dataset of HR tickets automatically generated is composed by
exactly 16,000 tickets, 2000 for each category. On the other hand, we
collected 259 test tickets from 29 different respondents.
To evaluate the generation of the tickets, we have used a handful of traditional
unsupervised text evaluation techniques. We were not able to exploit more
complex classical metrics, such as BLEU and ROUGE, not having real data
as references for each prompt. The reported metrics are:

• avg ttr unigram: average TTR(type token ratio) for the unigrams of the
tickets

TTR = number_of_unique_unigrams

total_number_of_unigrams
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• avg ttr bigram: average TTR(type token ratio) for the bigram of the
tickets

TTR = number_of_unique_bigrams

total_number_of_bigrams

• avg ratios of nouns: average ratio of nouns in the tickets

noun_ratio = counter_noun_words

counter_all_words

• avg ratios of verbs: average ratio of verbs in the tickets

verb_ratio = counter_verb_words

counter_all_words

• avg_word_frequency: average frequency of words, using as frequency
estimates a dump of the English version of Wikipedia, considering only
words appearing at least 10 times

word_freq =
loge(word_freq_wiki), if word_freq_wiki ≥ 10

skip, otherwise

First, we reported the type-token-rations given that high-quality writing has
been associated with the presence of more diverse words and phrases[25]. We
computed them for each ticket and then we averaged the results.
Second, since lower frequency words indicate a more advanced output[26],
we compute the average word frequency of the generated words.
Then, we calculate nouns and verb ratios over sentence length, as indicators
of syntactic complexity, and therefore richer text[27]. To single out nouns
and verbs, we use the pre-trained Spacy POS model.

We report in Table 3.3 the results we obtained initially. The metrics have
been calculated not only on the tickets generated by the model and the
tickets of the surveys, but also on some baseline datasets (Amazon reviews,
Reddit comments and NIPS papers). The datasets have been chosen to be as
diversified as possible in terms of text longevity, type of language and terms
used.
The main takeaways from the metrics are:
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• The model tends to write more unique words and not to repeat itself,
since the average TTR of both unigrams and bigrams are higher in the
tickets of the survey

• The model tends to use more nouns than a real person

• The model tends the same number of verbs as a real person

• The average number of words ( word count ) varies a lot from category
to category, both in generated and survey tickets

We know that these analyses are not completely reliable due to the low
number of real data compared to the size of our dataset. However they are a
good indication of how to improve the generation.
For this reason, we changed the parameters of the ticket creation and recreated
the dataset from scratch, in order to be more akin to the survey tickets.
The final results are shown in Table 3.4.
Some of the surveys’ metrics change a bit compared to the first table, this
is due to some late respondents to the survey, which skewed a little bit the
final test metrics.

Topic analysis

Topic modeling is a type of statistical modeling technique used to discover the
hidden topics and patterns in a corpus of text. It is a type of unsupervised
machine learning method that automatically discovers topics from a collection
of documents by analyzing words and phrases in each document. Topics are
usually represented by word clusters or distributions that are related to each
other. Topic modeling can be used to generate meaningful summaries about
large collections of documents.
We used topic modeling to visualize in a summarized form the major topics
of our dataset and to verify that the topics created correspond to the ones
in the taxonomy.
The model of topic modeling we chose is BERTopic[28]. BERTopic generates
document embedding with pre-trained transformer-based language models,
clusters these embeddings, and finally, generates topic representations with
the class-based Term Frequency-Inverse Document Frequency (TF-IDF)
procedure
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BERTopic
1: Documents are embedded to create representations in vector space using

Sentence-BERT
2: The embeddings generated are reduced in dimensionality using UMAP
3: The reduced embeddings are clustering used HDBSCAN. HDBSCAN is

a variation of the hierarchical clustering algorithm DBSCAN that models
clusters using a soft-clustering approach, allowing noise to be modeled
as outliers

4: The most relevant terms for each topic are found using a class-based
version of TF-IDF. All documents in a cluster are treated as a single
document by simply concatenating them, so we measure how much
information a term provides to a class instead of a document.

5: If the user requests a number of topics smaller than the number of topics
generated, the least common topics are iteratively merged with their
most similar topic, until the number of topics requested is satisfied.
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Dataset
avg ttr

unigram
avg ttr
bigram

avg ratios
of nouns

avg ratios
of verbs

avg word
frequency

avg word
count

Amazon reviews 0.81 0.98 0.16 0.10 13.86, σ=0.47 73.73, σ=71.75

Reddit comments 0.91 0.99 0.15 0.11 13.33, σ=1.53 37.70, σ=84.96

NIPS papers 0.26 0.72 0.18 0.06 13.50, σ=0.25 5798.40, σ=737.17

Tickets survey 0.87 0.99 0.17 0.11 13.84 42.73, σ=28.83

Tickets generated by GPT 0.93 1.00 0.14 0.10 13.84, σ=0.35 57.87, σ=19.13
Survey
Salary_Salary raise 0.85 0.99 0.20 0.10 13.85, σ=0.56 55.65, σ=35.67
GPT
Salary_Salary raise 0.90 1.00 0.15 0.10 13.72, σ=0.33 70.73, σ=16.36
Survey
Complaint_Complaint 0.83 0.98 0.15 0.13 13.66, σ=0.91 63.64, σ=46.67
GPT
Complaint_Complaint 0.91 0.99 0.14 0.12 13.94, σ=0.32 72.81, σ=21.62
Survey
Life event_Personal issues 0.89 0.99 0.17 0.12 13.99, σ=0.56 33.54, σ=19.85
GPT
Life event_Personal issues 0.92 1.00 0.13 0.12 14.08, σ=0.25 63.88, σ=15.62
Survey
Refund_Refund travel 0.90 0.99 0.17 0.11 13.56, σ=0.56 34.76, σ=17.02
GPT
Refund_Refund travel 0.96 1.00 0.16 0.08 13.72, σ=0.38 38.91, σ=10.83
Survey
Timetable change_Shift change 0.83 0.99 0.16 0.10 14.16, σ=0.66 38.15, σ=15.30
GPT
Timetable change_Shift change 0.93 1.00 0.13 0.10 13.79, σ=0.37 47.95, σ=9.72
Survey
Ask information_Accommodation 0.88 0.99 0.17 0.11 13.80, σ=0.50 39.93, σ=23.89
GPT
Ask information_Accommodation 0.95 1.00 0.14 0.10 13.68, σ=0.36 47.10, σ=10.59
Survey
Life event_Health issues 0.90 0.99 0.17 0.13 13.88, σ=0.44 31.92, σ=14.70
GPT
Life event_Health issues 0.91 1.00 0.14 0.10 13.84, σ=0.33 59.07, σ=16.06
Survey
Salary_Gender pay gap 0.85 0.97 0.21 0.11 13.87, σ=0.43 53.94, σ=32.71
GPT
Salary_Gender pay gap 0.93 0.99 0.15 0.11 13.96, σ=0.28 62.52, σ=18.67

Table 3.3: Initial Results

The formula of the class-based TF-IDF is:

Wt,c = tft,c · log(1 + A

tft
)

where tft,c is the frequency of term t in class c, A is the average number of
words per class and tft is the frequency of term t across all classes.

40



Method

Dataset
avg ttr

unigram
avg ttr
bigram

avg ratios
of nouns

avg ratios
of verbs

avg word
frequency

avg word
count

Amazon reviews 0.81 0.98 0.16 0.10 13.86, σ=0.47 73.73, σ=71.75

Reddit comments 0.91 0.99 0.15 0.11 13.33, σ=1.53 37.70, σ=84.96

Tickets survey 0.86 0.99 0.17 0.11 13.89, σ=0.59 44.43, σ=27.46

Tickets generated by GPT 0.94 1.00 0.14 0.10 13.86, σ=0.39 49.22, σ=15.49
Survey
Salary_Salary raise 0.84 0.99 0.21 0.10 13.89, σ=0.52 55.10, σ=32.44
GPT
Salary_Salary raise 0.90 1.00 0.15 0.10 13.73, σ=0.35 62.87, σ=14.12
Survey
Complaint_Complaint 0.82 0.98 0.15 0.13 13.74, σ=0.84 62.74, σ=42.83
GPT
Complaint_Complaint 0.92 0.99 0.14 0.11 13.94, σ=0.33 59.46, σ=18.39
Survey
Life event_Personal issues 0.88 0.99 0.17 0.12 14.03, σ=0.55 38.15, σ=20.86
GPT
Life event_Personal issues 0.94 1.00 0.14 0.11 14.19, σ=0.30 45.49, σ=16.94
Survey
Refund_Refund travel 0.88 0.99 0.17 0.11 13.61, σ=0.53 37.50, σ=17.36
GPT
Refund_Refund travel 0.96 1.00 0.16 0.08 13.72, σ=0.38 39.52, σ=10.46
Survey
Timetable change_Shift change 0.83 0.99 0.16 0.10 14.17, σ=0.62 38.73, σ=14.71
GPT
Timetable change_Shift change 0.93 1.00 0.12 0.10 13.74, σ=0.40 42.80, σ=7.55
Survey
Ask information_Accommodation 0.87 0.99 0.16 0.11 13.90, σ=0.50 41.86, σ=23.79
GPT
Ask information_Accommodation 0.95 1.00 0.14 0.10 13.65, σ=0.38 46.79, σ=10.99
Survey
Life event_Health issues 0.87 0.99 0.17 0.13 13.94, σ=0.42 37.91, σ=21.80
GPT
Life event_Health issues 0.94 1.00 0.16 0.09 13.95, σ=0.37 43.36, σ=11.26
Survey
Salary_Gender pay gap 0.85 0.97 0.22 0.11 13.87, σ=0.41 53.14, σ=31.13
GPT
Salary_Gender pay gap 0.94 1.00 0.14 0.11 13.99, σ=0.29 53.49, σ=13.51

Table 3.4: Final Results

In Figure 3.14 we show all the topics that BERTopic outputs, and in
Figure 3.15 the grouped major 8 topics.
We are satisfied with the results, we can clearly recognize 7 of our 8 categories
in the topics created, the only one missing is the request of time off due to
personal reasons, that have been incorporated in Topic 3.
The topics generated by BERTopic are:
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• Topic 0: Request of shift change

• Topic 1: Request of explanation of wage gap between genders

• Topic 2: Official complaint about colleague/superior

• Topic 3: Request of time off due to health reasons

• Topic 4: Request of salary increase

• Topic 5: Request of refund for work travel

• Topic 6: Request of refund for work travel

• Topic 7: Request of information for new accommodation

Figure 3.14: Hierarchy of all topics generated by BERTopic

3.9 Additional Experiments

In this section, we are going to describe various methods we have tried for
the generation of tickets which have not been included in the final version of
the ticket generation for different reasons.
Some of these reasons are lack of computational power, not good enough
results and lack of time.
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Figure 3.15: Main 8 topics generated by BERTopic

3.9.1 Topical Generation

Zandie et al.[29] have presented topical language generation, which consists
of generating text conditioned on a specific chosen topic. The topic can
be chosen by the users from a predetermined list of topics. The topics are
represented as a distribution over a vocabulary, and they are extracted from
a corpus using algorithms of Topic Modeling.
The algorithm used is Latent Semantic Analysis, which gives us scores for
each token per topic. LSA is able to discover latent topics in a document-term
matrix by utilizing Singular Value Decomposition (SVD) to decompose the
matrix.
The topics are inferred to the text generation by adding the embedding of
the topic to the logits of the model before the last softmax layer, where the
parameter γ control the topic inference ( the higher the parameter γ is, the
more the text generated will be about the topic chosen)

P (tj| xi) : probability of topic j given word k
S(xi| x<i) : logits of token i

They used a threshold to increase the probability of only the tokens that
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already have a minimum probability to be sampled.

logprob(i) =
logP (tj| xi), if S(xi| x < i) ≥ threshold

0, otherwise

The final equation is:

P (xi| x< i, tj) = softmax(S(xi| x<i) + γ logprob(i))

We experimented this method to generate the tickets’ texts. The topic-word
matrix was calculated starting from 20 Newsgroups, a dataset of 18000 news
posts on 20 topics.

Topic used: football

[. . . ]
Ticket category: Life event
Ticket sub-category: Health issues
Date start absence: 24/08/2016
Reason absence: a physiotherapy visit
Subject: Request for sick leave for 1 day

Dear Sir/Madame, my name is Adriana Giulietti. I am requesting
football medical treatment on the following dates : - 28 nfl season 2016
(from 30th of August regular football game) professional training session
in Milan from 29 football football league match between FC Portcullis
football conference matches and other

Topic used: president, government

[. . . ]
Ticket category: Life event
Ticket sub-category: Health issues
Date start absence: 25/12/2012
Reason absence: Hordeolum
Subject: Request for sick leave for 2 days
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Dear Sir/Madame, my name is Cristian Manso. I am requesting sick
pay or vacation from you because state government has decided to
cancel the contract which was signed on 20 th of December 2012 with
head office called president and deputy leader states house republic
functions as a general administration department in charge common
services like public works system

The possible future implementations of the ticket generation could be
completely executed with a unique prompt, letting the user choose the topic
from a set of pre-trained topics. This would be more flexible than the current
method since to add new categories it would be sufficient to add a new row
to the topic-word matrix.
However, the current results were not satisfying: the created tickets were not
fluent and we did not find a corpus to create a topic-word matrix of topics
related to the HR ticketing environment.

3.9.2 Fine-tune GPT

GPT can be adapted to a particular task by fine-tuning, either by supplying
it with a dataset tailored to said task, or by manually adjusting the model’s
parameters. This process allows the model to be customized and to achieve
much better results on the desired task.
As mentioned before, we want to generate tickets with a language and style
similar to emails. Fine-tuning the model on the Enron dataset should improve
the performance of the model at generating new Enron-style emails compared
to the generic trained model.
We tried fine-tuning GPT-J on only the _sent_mail folders of the dataset.
However, the tickets generated were not much different than the ones created
by the base model. The evaluation was carried out only by looking at the
tickets generated one by one, without using any sort of metrics.
After various tests, we ascertained that with prompt tuning we could have
equal results as with the fine-tuning of the model, avoiding to spend time to
fine-tune the model.
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Use Cases

In order to assess the suitability of the HR ticket dataset for downstream
machine learning applications in HR, we exploit the obtained dataset using
as labels the categories of the tickets.
The goal of testing different downstream machine learning tasks on the
dataset is to show that our dataset is sufficiently rich to enable meaningful
learning.
All the experiments have been carried out using as training data the dataset
generated by the model, whereas the test data used was the tickets collected
with the survey.
One of the main motivations to acquire the survey tickets was to have data
that had no biases, or at least biases different from ours. Using a portion of
the HR tickets dataset as test data would be meaningless, since the model
would not necessarily be tested with data that was outside of the one it had
been trained with. On the contrary, achieving good results on a portion of
the HR ticket dataset would assert the performance of the models used and
not the usefulness of the dataset.
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4.1 Classification

Sentence classification is a natural language processing task that involves
assigning a predefined category or label to a given sentence. One way to
approach sentence classification is to use word embeddings, which are numer-
ical representations of words that capture their meaning and context within a
sentence. Word embeddings can be generated using various techniques, such
as training a neural network on a large dataset of text or using a pre-trained
language model.
Once the word embeddings have been generated, you can input them into a
classifier along with other features of the sentence, such as its grammatical
structure, to make predictions about the sentence’s category or label. The
classifier uses the word embeddings as input to make predictions about the
sentence’s category or label.
We used two different pre-trained language models: BERT and fastText. We
chose BERT because it is a widely used and well-studied model, and our
objective was not to find the absolute best classifier, but only to show that
the dataset could be used as training data.
Instead, we chose fastText to have an option that was CPU-friendly, and
that could be trained in a matter of a few minutes.
The training data used were the texts of the 16000 tickets that compose the
HR ticket dataset, whereas the test data were the survey tickets. The labels
were the combination of ticket category and ticket subcategory of each ticket
( Ex. "Life event_Health issues").

4.1.1 FastText Classifier

FastText is a library developed by Facebook AI Research that provides a set
of training algorithms for supervised learning of word embeddings from raw
text and also can be used to build and train supervised text classification
models.
FastText creates word embeddings using a combination of character n-grams
and word n-grams. To do this, fastText first breaks each word in the training
text into its constituent character n-grams. For example, the word "cat"
might be broken into the character n-grams "c", "ca", "cat", "a", "at", and
"t". These character n-grams are then used to generate vectors. The word
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embeddings are calculated as the sum of their n-gram vectors.
To learn the embeddings of these n-grams, fastText uses a skip-gram model,
which is a type of model that maximizes the probability of observing a
word given its context, or in other words its surrounding words. By using
this approach, fastText is able to learn high-quality word embeddings that
capture the syntactic and semantic information of words.
The fastText classification uses the fastText embeddings as input to the
model, and in particular:

fastText Classification
1: Words representation are averaged into a text representation
2: The text representation is fed to a linear classifier
3: The output of the linear classifier is given as input to a softmax function

to compute the probability distribution over a set of predefined classes

4.1.2 BERT classifier

BERT (Bidirectional Encoder Representation from Transformers) is a model
developed by Google AI based on the transformers architecture. BERT was
trained on a large corpus on two different tasks: Masked Language Modeling
and Next Sentence Prediction.
Through the use of MLM, in the training phase, 15% of the tokens in a
sentence are obscured and BERT can then be utilized to utilize the sur-
rounding words in both directions to predict the masked tokens, facilitating
bidirectional learning from the text.
On the other hand, NSP helps the model understand the relationships be-
tween sentences. Specifically, in the training phase, 50% of the examples
are actually successive sentences, while in the other 50% of the cases this
condition is not respected.
BERT is quite straightforward to fine-tune, we just need to plug in the
necessary layers at the top of the BERT architecture and fine-tune for a
sufficient number of epochs the model end-to-end.
The first token of a BERT embedding is the [CLS] token, which is a special
token that acts as an aggregate representation of the sentence. The final
embedding of the [CLS] token is used as input for the classification task.
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The most simple method, which is also the method used by the BERT-
ForSequenceClassification class by HuggingFace, is to take the embedding
of the [CLS] token at the last hidden layer and fed it to a single layer of
a feed-forward network. The layer of the feed-forward network will have n
input, where n is the dimension of the embedding of a token, and m output,
where m is the desired number of outputs.
The final model is shown in Figure 4.1

Figure 4.1: Schema of BERT classification

4.1.3 Results

In this section we show the results of the classification experiments. We
want to reiterate that the point of the experiments was not to get the best
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possible results, therefore the models were not trained for a large number of
epochs and we did not try an excessive number of possible hyperparameters.
The hyperparameters tried are shown in Table 4.1 and Table 4.2. If a
hyperparameter is not shown in the table it means we have used its default
value.
The technique used for finding the optimal hyperparameters is Grid Search,
which means we have trained and tested the models for each combination of all
the chosen values of the hyperparameters to determine the hyperparameters’
set which achieves the best results.

Size of context window (ws) 5
epochs 20
minimal number of word occurrences (minCount) 1
max length of word ngram (wordNgrams) 3
learning rate (lr) 0.5
learning update rate (lrUpdateRate) 100
sampling threshold (t) 0.0001

Table 4.1: Hyperparameters fastText

epochs [3, 5]
learning rate [1e-05, 5e-04, 1e-04, 5e-05, 5e-06]
weight decay [0.001, 0.01, 0.05]
train batch size [8, 16]
warmup steps 500

Table 4.2: Hyperparameters BERT

As we expected, fastText performs worse than BERT, achieving an f1
score of only 0.41.
On the other hand, the BERT classifier with hyperparameters

• epochs: 5

• learning rate: 5e-05

• weight decay: 0.001

• train batch size: 8
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• warmup steps: 500

achieved an f1 score of 0.78. We show also the confusion matrix( Figure 4.2
) to highlight how the majority of errors come from two sub-categories that
belong to the same category, in particular "Gender wage gap"-"Salary raise"
and "Personal issues"-"Health issues". In some way, this validates our initial
decision on the taxonomy of the tickets.

Figure 4.2: Confusion matrix of Ticket classification with BERT
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4.2 Anonymization

Anonymization of personal data refers to the process of removing person-
ally identifiable information (PII) from data sets so that the individuals
represented in the data cannot be identified. This is accomplished by either
completely removing or replacing identifiable data with generic values. The
purpose of anonymization is to protect the privacy of individuals while still
allowing the data to be used for legitimate purposes.
Most of the recent implementations of anonymization work by masking the
personal information of a person, such as names and surnames, telephone
numbers, addresses, credit card numbers and so on.
One of the most famous libraries for anonymization is Presidio, developed
by Microsoft. Presidio exploits pattern recognition with regex and Named
Entity Recognition to find all the personal information and mask them.
The main disadvantage of such techniques is that often the personal subject
can be identified through the so-called quasi-identifiers, that more often than
not are not masked.
Here reported some examples that are not masked by Presidio:

Original sentence

The new intern at my office, the one with red hair, caught covid last
week

Sentence redacted by Presidio

The new intern at my office, the one with red hair, caught covid
<DATE_TIME >

Original sentence

The boss of the HR department has made some weird comments about
how I dress

Sentence redacted by Presidio

The boss of the HR department has made some weird comments about
how I dress
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Our new approach exploits a Sequence to Sequence model called T5, which
stays for Text-To-Text Transfer Transformer. T5 is a model released by
Google in 2019, it is a standard encoder-decoder transformer that, unlike
BERT, always returns strings as outputs. This is why it is called a sequence-
to-sequence model.
T5 is a unified model that can be applied for many downstream tasks, such
as sentiment analysis, sentence completion, question answering. . .
In T5 architecture there are adapted layers after each feed-forward layer,
whose scope is to diminish the number of parameter updates for each fine-
tuned model. In fact, adapted layers are dense-ReLU-dense blocks that are
designed so that their input dimensionality and output dimensionality are
equal. This lets us insert them into the Transformer architecture without
other changes. When fine-tuning for each different task, only the adapted
layers and the normalization layers will be updated. This results in a consid-
erable reduction of parameter updates.
We followed a few-shot learning approach with T5. Rather than relying on a
large amount of training data to allow a pre-trained model to adjust to a
given task accurately, few-shot learning employs the use of a few examples
to direct the training of a machine learning model with very minimal data.
For each category of tickets, we wrote 10 examples of "anonymized" tickets,
where we removed all personal information and information that could be
retraced to the original writer, maintaining only information that could be
useful for analysis purposes. Here are a couple of examples:

Original sentence:

Dear Sir/Madame, I cannot stand anymore this discrimination and
prejudice against French people at work

Anonymization used for few-shot learning:

The employee is filling a complaint for discrimination based on nation-
ality

Original sentence:

Hello, my name is Zacaredas Pinilla and I work at Laguna-Franco Spain.
I am having trouble finding accommodation in the Algeciras area so if
you could help me with this matter it would be greatly appreciated
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Anonymization used for few-shot learning:

The employee is asking for help finding an accommodation

Figure 4.3: Schema of Ticket Anonymization

To evaluate the goodness of anonymization and how much of the information
has remained after the anonymization we have tested three different methods:

• QAGS: Questions Answering and Generation for summarization

• SUMMAQA: Unsupervised metric for reinforced summarization model

• Cosine Similarity: Cosine similarity of embeddings

These models were created originally to evaluate the goodness of a summa-
rization, we have adapted them to be used for evaluating our anonymization.
The first two methods follow the same philosophy: they generate questions
to ask both the original version and the anonymized version of the tickets,
looking if the answers are coherent. We call them Questions and Answers
models. However, they have a few key differences: SummaQA does not
create natural sentence questions but uses as questions the masked version
of the sentences. Instead, QAGS creates natural language questions using a
pre-trained model.
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4.2.1 QAGS

QAGS is an automatic evaluation protocol that is based on the assumption
that if we reply to questions considering as factual bases the summary and
the source, we can determine if the summary/anonymization is consistent
with its source by comparing the answers.
QAGS works like this:

QAGS
1: A BART[30] model is fine-tuned for question generation: the model

receives both the answers and the source article from the NewsQA
dataset and is trained to maximize the likelihood of the paired question

2: At test time, named entities and noun phrases are extracted from the
context using spaCy and are considered as answers candidates. The
summary is used as the context.

3: The BART model generates questions based on the summary and its
entities

4: A BERT model is fine-tuned for Question Answering on the SQuAD
dataset

5: We answer with the help of the fine-tuned BERT model the questions
generated beforehand using both the source article and the summary to
get two sets of answers.

6: We compare the corresponding answers using an answer similarity metric,
and we get a final score averaging the answer similarity metric (f1 score)
over all questions
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Figure 4.4: Schema of QAGS

4.2.2 SUMMAQA

SUMMAQA works similarly to QAGS, the main difference is that there is
not a generative model to create the questions, in particular:
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SUMMAQA
1: We find all the entities in the source text (the original ticket) with Spacy
2: Create one sentence (which will be our question) for each entity. We

keep only the sentence in which the entity is if there are more sentences.
The entity will be masked. Ex: "Yesterday I went to Paris" becomes
"Yesterday I went to [MASK]"

3: The MASKED entities will be the True labels when calculating the
metrics

4: We answer the questions generated before using a fine-tuned version of
BERT model, using both the source and the summarization/anonymiza-
tion as contexts

5: We compare the answers and calculate the f1 score for both contexts

4.2.3 Cosine Similarity

We measured the cosine similarity between sentence embeddings of original
text and summarization. The sentence embeddings used were calculated
using Sentence-BERT, a modified version of the pretrained BERT network
that uses siamese networks to obtain more meaningful embedding of the
sentence, compared to getting the embedding of the [CLS] token or to average
all the other embeddings.

Result

After testing all of the three methods described before, the one chosen
was QAGS. The main reason why is its flexibility. Right now it was not
implemented, but in future works it could be possible to add to the questions
automatically generated by BART some questions written by the users to
check whether a piece of information has been anonymized or not.
However, the numeric results are difficult to interpret, because sometimes
we want to retain some information from the original text and sometimes we
would prefer the information to be removed.
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Figure 4.5: Schema of SUMMAQA
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Figure 4.6: Schema of Cosine Similarity for
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4.3 Named Entity Recognition

Named entity recognition is the process of automatically identifying and
classifying named entities in a text. This can include identifying and catego-
rizing named entities such as people, organizations, locations, and so on.
NER systems might be used to automatically extract information from a
large collection of documents, such as identifying all mentions of specific
named entities or analyzing the relationships between different named entities.

4.3.1 Weak labeling

During the creation of the ticket, we tried to automatically save also the
entities of the ticket. With entities, we do not mean the classical entities used
for NER, but the original variables specific to a ticket’s category (complete
list in Table 3.1).
Finding the entities in the prompt is trivial, since the positions are fixed in
the template, and the filling operation is managed by us.
Example:

From: ${email}
To: ${company email}
First name: ${first name}
Last name: ${last name}
Company: ${company}
Date: ${ticket date} Date start absence: ${date_start_absence}
Reason absence: ${reason_absence}
Subject: Request for sick leave for ${days}

Though the template and prompt serve as our starting point to generate the
actual ticket text, it is only this latter part that would be present in a real
ticket. Identifying the locations of the entities is not straightforward since I
usually provide only the initial information and a limited template, with the
rest of the generation being done by GPT.
Once the ticket is generated, to find the entities in the generated text I use 2
different approaches:
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• Exact match

• Heuristics

The exact match is straight-forward, it just looks for the exact same words
in the generated text, and if the word/words are found, the entity is added
to the list of entities of the ticket However this method often does not work,
since GPT could use only part of the entity ( Ex: "A medical consultation"
is in the text as "a consultation") or slightly alter the entity ( ex: 01/10/1998
→ the first of October of 1998 )
This is the reason why we implemented manually a set of different rules to
find modified versions of the original entity in the text. These versions do not
cover every possible case, since they are hard-coded by us from experience
and by looking at how GPT behaves, this is why we called this approach
"Heuristics".
Some of these heuristics are:

• Check not only the full entity, but also subsets of it removing stopwords
Example:
reason_of_absence: "An Urinary Tract Infection" →

– "Urinary Tract Infection"
– "Urinary Tract"
– "Tract Infection"
– "Urinary"
– "Tract"
– "Infection"

• Check all the possible version of a percentage text
"5%", "5 %", "5.0%", "5 percent", . . .

• Check different formats of date
MM/DD/YYYY, DD/MM/YYYY, "First of October", "1st of October",
. . .

With this method, we were able to identify entities in only 6272 tickets out
of the total 16000 tickets. The complete list of all the entities found is shown
in Table 4.3.
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duration 1016 increase_in_percentage 539
location 1411 work_title 33
date 70 wage_gap 421
work_shift 70 number_of_days 982
reason_of_change 7 date_start_absence 3
to_who 1221 description_life_event 1214
reason 1119 date_travel 112
complaint 106 airport 28
salary 376

Table 4.3: Entities found with heuristics

4.3.2 Classical NER

Token classification is a common technique used in NER to identify and
classify named entities in a text. In token classification, the text is first
divided into individual tokens, which are typically words or phrases. The
model then predicts a label for each token, indicating the type of named
entity it represents.
To assign the labels to the tokens we used the BIO(Beginning, Inside, Outside)
format, where the B tag is used for the first token of an entity, the I tag for
the rest of the tokens of the entity and lastly the O tag is used for the tokens
that do not belong to any entities.
Example:

Alex B-PER
is O
going O
to O
Los B-LOC
Angeles I-LOC
in O
California B-LOC

The labels assigned to each token are then used for a token classification
task, using a RoBERTa model and the Spacy training pipeline.
We used the default Spacy parameters for the training.
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The survey tickets, used as always as our test set, were manually labeled by
ourselves.
The results were not satisfying, we achieved a f1 score of 0.34 on the exact
matching and a f1 score of 0.45 on the partial matching. When the model
finds the correct entity for all the tokens and only the tokens of an entity, it’s
considered an exact matching. Whereas, when the model finds the correct
entity for only a subset of the token of an entity, then is considered a partial
match
Example exact match:

to O
Los LOC
Angeles LOC
in O

Example partial match:

to O
Los LOC
Angeles O
in O

The main problem we encountered was that the NER model was not able to
recognize the different entities of the same type depending on the context.
For example, the model could not recognize the difference between a date
of start absence ( entity of request of time off due to health reasons) and a
date of travel ( entity of request of refund for travel).

4.3.3 Our approach to NER

To overcome the limits of the first approach, we developed a new approach
based on transfer learning and sentence classification.
The main intuition behind the new approach is to use the pre-trained spacy
NER model and exploit the entities found by the base model to extract our
entities.
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First of all, we build a dictionary of the matchings between entities of Spacy
and our entities. We decided to work on a subset of our entities and not
consider all the entities that did not have a clear matching with Spacy entities.
In Table 4.4 we show all the matchings. Then, we scan our dataset and look,

Category Entities matching

Ask information_Accommodation
{"location": "GPE",
"duration": "DATE"}

Life event_Health issues
{"date_start_absence": "DATE",
"number_of_days": "DATE"}

Refund_Refund travel
{"date_travel": "DATE",
"location": "GPE"}

Salary_Gender pay gap {"wage_gap": "PERCENT"}

Salary_Salary raise
{"increase_in_percentage": "PERCENT",
"salary": "MONEY"}

Timetable change_Shift change {"date": "DATE"}

Table 4.4: Matching of our entities with Spacy entities

for all categories, the entities shown in Table 4.4. If we find an entity not
present in the table, it is filtered out. For each entity, we will have an array
of the type [ ENTITY, START_CHAR, END_CHAR ] (Figure 4.7).
After that, we tokenize the text of all the tickets and we look up for each

ticket its entities’ tokens. Then for each entity, we save the indexes of the
corresponding tokens, so for example if the entity "twelve months" is split
into two tokens "twelve" and "month", which are the 22nd and 23rd tokens of
the text, then we will save ["twelve months", DATE, [22,23]].
We also had to manage the case in which a token is not present in the
tokenizer vocabulary, so is split into sub-tokens. We took advantage of the
fact that if a word is split into two or more words the new tokens will have
the prefix "##".
The number of tokens for each entity can vary, for practical reasons in the
training phase we set the maximum number of tokens to N = 50 (Figure 4.8).
Now we have all we need for the training. The base architecture is a bert-
base-cased model, which we modified on the last layer.
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Figure 4.7: Ticket NER preprocessing part 1

Figure 4.8: Ticket NER preprocessing part 2

In the training phase, we pass to the BERT model at each step the tickets’
texts and their entities with the indexes of the matching tokens. For each
entity of the ticket, there will be a training record. The ticket will be
unpacked into 512 tokens, and each token will be processed by the BERT
architecture (same architecture as the classifier Figure 4.1).
At the last layer, instead of passing the [CLS] token to a classifier, we
concatenate the [CLS] token with the average of all the embeddings of the
tokens of the current entity. This is the reason why we preprocessed the
dataset to find the indexes of the tokens’ indexes for the entities. In BERT
base each token has a dimension d = 768, so the input of the last feed forward
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neural network will be N = 1536. The output dimension will be M = 10
(Figure 4.9). The labels of the training are the combination of the ticket
category and the entity, since for each entity found in a ticket we generate a
record ( For example if there are 3 entities in a ticket, there will be 3 records
in the training set with the same ticket text, but that will have a different
token embedding for the classification in the last layer and they will have
different labels)
At test time, for each ticket in the test set, we analyze it with Spacy and

Figure 4.9: Ticket NER training

we find all the entities. Then we filter the entities: we cannot filter based
on the label, since at test time in theory we do not know the label of the
tickets. Therefore we filter the entities based on the list of all entities used
in all tickets’ categories.
Then, as in the training phase, for each entity we build a new record composed
of the output of the [CLS] token through the model architecture and of the
average of the tokens’ embeddings.
For each ticket in the test set we obtain a prediction of its category combined
with the entity currently analyzed.
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Results

We are able to achieve way better results with the new method that combines
a ticket classifier with a NER model. On the test set we achieve a f1 score
of 0.96.
In Figure 4.10 we show the confusion matrix of the classification.
We believe that we are able to achieve such good results because there are
few entities that are shared between more categories, and the union of the
information of the ticket ([CLS] token) and the information of the entity
makes it easy for the model to distinguish both the category and the entity.

Figure 4.10: Ticket NER confusion matrix
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Chapter 5

Ethical Considerations

Building a dataset to train machine learning models, it is important to
consider the possible ethical consequences because the data that a model is
trained on can influence the model’s behavior and decisions. If the data is
biased or unrepresentative, the model’s predictions and decisions may also
be biased or unrepresentative. This can lead to unfair or unjust outcomes
for individuals or groups of people.
We are aware that our personal biases could have influenced the topics and
the realities described by the tickets that compose the dataset. We have
tried to make the dataset as balanced as possible in terms of gender.
In some cases, we inferred prompts to create situations that talk about
discrimination at workplaces based on gender, race, disability, religion, or na-
tionality. In these cases, there are several tickets that contain toxic language.
Nevertheless, Language Models can create unfair discrimination by perpetu-
ating stereotypes and social biases [31][32]. Most of our work is based on
the use of one of these LMs, so we cannot guarantee that there are no biases
due to the original data on which the generative model was trained. Some
of these biases result in underrepresented groups, stereotypes, exclusionary
norms, unfair discrimination and lower performance by social group[33].
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Chapter 6

Conclusion

Firstly, we developed a taxonomy of HR tickets and created a series of tem-
plates for each category. We discussed the considerations behind constructing
the templates and then researched free-open datasets related to each category.
We employed privacy-preserving techniques such as Bayesian Networks to
process the datasets.
Then, we identified the state-of-the-art models for text generation, followed
by a discussion of their respective novelties. After that, we discussed the gen-
erative model chosen by us, GPT-J, and the reasonings behind the decision.
We explained in detail the theory behind Transformers and the novelties of
GPT-J with respect to the other generative models.
We examined the model’s ability to generate texts from two angles: we
looked how the inputs influence the inputs and how each neuron of the model
behaves scross different steps of the generation.
We conducted a survey in order to demonstrate that our dataset could re-
semble real tickets and that the tickets created by our application could be
used to train machine learning models which worked also in real scenarios.
Specifically we tested the usefulness of the dataset on three different use
cases: classification of tickets, anonymization of tickets and named entity
recognition.
For the classification of tickets we trained and tested two different models.
Whereas for the anonymization task, we used a novel approach that summer-
izes and rewrites the original text. Lastly, we experimented a classical named
entity recognition model on our dataset and, after achieving not satisfying

69



Conclusion

results, we developed a new technique that unifies a text classification task
with named entity recognition.

We achieved good results on all three different tasks, therefore we can
confidently state that the dataset we built could be used to train ML models
for real-world applications. We recognize that each company has a distinct
taxonomy for tickets, so we developed the Ticket Generator application to
facilitate the adaptation to different contexts.
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