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Summary

Today in many applications the edge devices are used from cloud computing,
internet of things (IoT) to manufacturing sectors to monitor, analyze processes
through applying machine learning and other algorithms. The edge devices usually
run light softwares like quantized and small machine learning algorithms due to
their limited performance, energy consumption and memory. In the algorithms
containing the matrix to vector multiplication, especially, in the quantized fully
connected stage of Neural Networks, the weighted matrices are usually consists high
percentage of zero elements. For the sake of reduction of resource usage, energy
consumption and increasing the performance, the only non-zero elements can be
used in this operation. Therefore, the sparse storage formats are helpful in avoiding
multiplication operations involving zero elements.

In this thesis work the dataflow of sparse matrix to vector multiplication(SpMV) is
analyzed where sparse matrices having different size and different sparsity are stored
in different sparse storage formats. The sparse matrices are randomly generated
with different sizes and different sparsity using probability algorithms and Mersenne
Twister 19937 generator. The sparsity of matrices are chosen between 50% and 80%.
And the sizes of the matrices were 30 by 30, 60 by 60 and 120 by 120. The C++ and
Xilinx Vitis HLS are used to convert sparse matrices into ELL, CSC (compressed
sparse column), CSR (compressed sparse row), COO (coordinate) sparse storage
formats . Furthermore, Xilinx Vitis HLS is used also used to create the IP, estimate
the resource utilization and establish the input output ports. The generated IP
then utilized by Xilinx Vivado Design Suite to simulate the hardware design and
obtain the bitsream of the corresponding storage format. The obtained bitstream
is used to configure the PL of the PYNQ-Z2 board. The sparse storage formats
obtained from C++ are used to program the PYNQ-Z2 board. The performance
estimation is done on the PYNQ-Z2 board.
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Chapter 1

Introduction

1.1 Overview

The matrix by vector multiplication operations are the essential part of many
algorithms, such as least squares, eigenvalue problems, linear system of equation
problems , and especially they are the heart of the neural network algorithms.
And also a lot of researches are done to implement optimized hardware solution in
order to accelerate the computation on FPGA and ASICS. Most of the algorithms
running on CPU, GPU or implemented on hardware on FPGA are considered
to work with non sparse matrix or with non sparse vectors. In general there are
many sparse operations such as sparse matrix by vector or sparse matrix to sparse
matrix multiplications and etc. And sometimes the sparsity of the object which is
involved in operation can reach up to 80%. It means to obtain the results, only
20% of that object is used during the computation and significant part of the
sparse matrix do not contributed anything to the result. Obviously, the hardware
resources are wasted and to prevent this kind of issues the different kind of solutions
are proposed.. In this thesis the sparse matrix by vector matrix multiplication
analysed, where sparse matrix is represented in sparse matrix storage format.

This section also covers the FPGA and its internal structure together with short
discussion on high level synthesis and HLS tools, furthermore, the target device
on which the thesis experiments held. In Chapter 2 the discussion done on sparse
operations, in chapter 3 the sparse storage formats are described, in chapter 4 the
results of experiments are represented and chapter 5 described the conclusion.
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Introduction

1.2 FPGA internal structure

The FPGA is traditionally applied where the low latency is very important in
computation and is now becoming more applicable in Machine Learning and Ar-
tificial Intelligence fields due to low energy consumption, low latency. It consists
CLB(Configurable Logic Block), DPS(digital signal processor), Interconnect Re-
sources, I/O-blocks, , Switch Blocks and different types of memories such as BRAM,
URAM. LUT(Look-Up-Table) and flip-flop are the main parts of CLB. Basically,
LUTs are consists of many multiplexers, when they are interconnected together
they represent the part of the circuit’s logic, the flip-flop helps to take snap shoot
of that logical state of the circuit. By interconnecting CLBs together through
interconnection resources and switch blocks the desired circuit can be implemented.
Meanwhile the DSP blocks are consists of registers and MAC units and their
purpose is to increase the performance of the computation operations. BRAM and
URAM have finite size and they are used to store data on the FPGA. The Figure
1.3 represents the short description of the internal structure of FPGA.

Figure 1.1: Diagram of the basic FPGA structure and internal components
https://digitaltagebuch.wordpress.com/2012/11/26/fpga-design-flow/
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1.3 PYNQ-Z2 Development board.
1.3.1 Hardware overview
The thesis experiments were done on the PYNQ-Z2 development board. The brief de-
scription can found in the https://www.tulembedded.com/FPGA/ProductsPYNQ-
Z2.html website. We will shortly describe the PYNQ-Z2" board. The abbreviation
of PYNQ is Python Productivity for Zynq. Therefore, it is framework for developing
embedded projects. It has ZYNQ XC7Z020-1CLG400C which has PS(650MHz
dual-core Cortex-A9 processor) and PL(Programmable logic equivalent to Artix-7
FPGA) on the SoC(System on chip).

Figure 1.2: PYNQ board image from https://www.tulembedded.com/FPGA/ProductsPYNQ-
Z2.html

1.3.2 Programming the board
The board is programmed using python language in Jupyter notebook. The brief
information about PL and PS connection is taken from pynq website in the section
of Overlay Design Methodology. The Zynq has 9 AXI interfaces between the PS
and the PL. On the PL side, there are 4x AXI Master HP (High Performance)
ports, 2x AXI GP (General Purpose) ports, 2x AXI Slave GP ports and 1x AXI
Master ACP port. There are also GPIO controllers in the PS that are connected
to the PL.

3
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There are four pynq classes that are used to manage data movement between
the Zynq PS (including the PS DRAM) and PL interfaces.

pynq.gpio.GPIO - General Purpose Input/Output
pynq.mmio.MMIO - Memory Mapped IO
pynq.buffer.allocate() - Memory allocation
pynq.lib.dma.DMA - Direct Memory Access The class used depends on the Zynq

PS interface the IP is connected to, and the interface of the IP.
Python code running on PYNQ can access IP connected to an AXI Slave

connected to a GP port. MMIO can be used to do this.
IP connected to an AXI Master port is not under direct control of the PS. The

AXI Master port allows the IP to access DRAM directly. Before doing this, memory
should be allocated for the IP to use. The allocate function can be used to do this.
For higher performance data transfer between PS DRAM and an IP, DMAs can be
used. PYNQ provides a DMA class.

When designing your own overlay, you need to consider the type of IP you need,
and how it will connect to the PS. You should then be able to determine which
classes you need to use the IP.

PS GPIO

There are 64 GPIO (wires) from the Zynq PS to PL.
PS GPIO wires from the PS can be used as a very simple way to communicate

between PS and PL. For example, GPIO can be used as control signals for resets,
or interrupts.

IP does not have to be mapped into the system memory map to be connected
to GPIO.

MMIO

Any IP connected to the AXI Slave GP port will be mapped into the system
memory map. MMIO can be used read/write a memory mapped location. A
MMIO read or write command is a single transaction to transfer 32 bits of data
to or from a memory location. As burst instructions are not supported, MMIO is
most appropriate for reading and writing small amounts of data to/from IP connect
to the AXI Slave GP ports.

allocate

Memory must be allocated before it can be accessed by the IP. allocate allows
memory buffers to be allocated. The pynq.buffer.allocate() function allocates a
contiguous memory buffer which allows efficient transfers of data between PS and

4
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PL. Python or other code running in Linux on the PS can access the memory buffer
directly.

As PYNQ is running Linux, the buffer will exist in the Linux virtual memory.
The Zynq AXI Slave ports allow an AXI-master IP in an overlay to access physical
memory. The numpy array returned can also provide the physical memory pointer
to the buffer which can be sent to an IP in the overlay. The physical address is
stored in the device_address property of the allocated memory buffer instance. An
IP in an overlay can then access the same buffer using the physical address.

More information about using allocate can be found in the Allocate section.

1.4 High level synthesis

1.4.1 Overview of high level synthesis
As mentioned in the xilinx homepage https://docs.xilinx.com/r/en-US/ug1399-vitis-
hls/Benefits-of-High-Level-Synthesis, the High-Level Synthesis is an automated
design process that takes an abstract behavioral specification of a digital system
and generates a register-transfer level structure that realizes the given behavior.

The design process consists of the following steps
1.Writing the desired behaviour (what will compute the PL)algorithm in the

C/C++ language 2.Verify the functionality of that algorithm
3.Use the HLS tool to generate the RTL for a given clock speed, input constraints
4.Verify the functionality of the generated RTL
5.Explore different architectures using the same input source code HLS can

enable the path of creating high-quality RTL, rather quickly than manually writing
error-free RTL.

In short words the engineer needs to write the behaviour algorithm in C/C++,
insert it into HLS tool together with constraint, target device, target throughput,
etc. The HLS tool generates and verifies the desired bitstream file. The pragmas
are used to optimize the circuit, by changing the resource utilization, latency,
throughput, etc. Consideration about state machine and pipe-lining are done
autmatically by HLS tool. The Vitis HLS and Vivado are HLS tools which are
used in this thesis work.

1.4.2 HLS tools
Vitis HLS

Vitis HLS is the tool to generate the desired IP and the IP is generated from the
C/C++ top level function. The user should do the following steps in order to
generate the IP.

5
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1. The functional behaviour of the algorithm must be written in C/C++
language in the top level function and should be validated in the test bench
algorithm.

2. The top level function must be synthesized with target frequency. In the
synthesis report Timing estimate, uncertainty interval, the resource utilization,
Input output ports together with their addresses and etc are shown.

3. Then the Cosimution should be done.
4. The last step is impoerting the IP into desired folder. The detailed information

can be found in the Xilinx home page https://docs.xilinx.com/r/en-US/ug1399-
vitis-hls/Introduction. Overall the Vitis HLS is used to configure the PL part of
the PYNQ Z-2 board.

Vivado

This tool is used to obtain the bitstream file from the IP. The following steps are
done in vivado to generate bitstream file.

1. Importing the IP from the folder.
2. Creating Block Design, in this step the communication between PS and PL

are established, by determining the type communication and which kind of pins
are involved in this communication.

3. Synthesizing the Block Design
4. Implementation and generating Bitstream file.

6



Chapter 2

Background

The sparsity is very common feature of vectors, matrices and kernels. And the
mathematical objects with sparsity feature are involved also in many computation
operations in different algorithms. For instance, operations like matrix vector
multiplication, matrix matrix multiplication or the convolutional stage of neural
networks and so on. The mathematical objects with sparsity we define a matrix or
a vector having some entries zero values. The zero elements of sparse objects (such
as vector, matrix, kernel or etc.) waste hardware resources and energy execution of
operation. Such kind of operations differ from each other drastically. And even to
find a unique solution for each type is difficult. Because the vectors, matrices or
kernels have different percentage of sparsity, and non zero elements of them are
differently spread inside of them as shown in figures below.

Figure 2.1: Sparse matrix

In this thesis , the main focus is devoted to matrix vector multiplication operation,

7
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Figure 2.2: Sparse matrix

where the matrix is considered as sparse matrix with finite size and finite percentage
of sparsity. The non zero values of sparse matrices are stored in sparse storage
formats. Then the computation of matrix vector multiplication is done without
involving the zero elements of sparse matrix. In general, the dataflow of sparse
matrix storage formats which are ELL, COO, CSC and CSR are analyzed in this
thesis work. We decided not to apply this computation algorithm directly to sparse
matrix, but we decided to transfer the sparse matrix into sparse matrix storage
formats, then analyze the dataflow of them without pipelining in order to compare
the sparse matrix storage formats with each other. The simple matrix by vector
multiplication and the ELL sparse matrix storage format multiplication by matrix
were not synthesised in Vitis HLS due to software issues. Therefore the results on
simple matrix with vector and the matrix stored in ELL format with vector are
different from other formats.

8



Chapter 3

Discussion on sparse storage
formats

Apparently the sparse matrices can differ in their structure in terms of location
of non zero elements. For instance the non zero elements of sparse matrix can
be located equally from each other like in figure 3.3 or located densely in one
column or in one row, even more there can be very few non zero elements inside
sparse matrix like the sparsity of matrix can be higher than 95 percent. From
the fact that they are different, the different sparse matrix storage formats can
be created by considering this property. Certainly all of the sparse store formats
can be used to different sparse matrices . But the main issue is reduction of non
essential computation in sparse matrix by vector multiplication. And the sparse
matrix storage formats handle it by removing the computations which involve zero
elements of sparse matrix from matrix by vector multiplications. Nevertheless not
all sparse matrix storage formats handle it efficiently. As already mentioned the
four type of sparse matrix storage formats ELL, CSR, CSC and COO are analysed
in this thesis work. And all of these formats can handle efficiently the computation
only with particular type of sparse matrix. For example with the ELL format the
computation of sparse matrix vector multiplication is done efficiently when sparse
matrix has equally distributed non zero elements like in figure 3.2. While the CSR
and CSC formats show relatively computation speed increase when the non zero
elements of sparse matrix concentrated mostly in rows or in columns. And the
COO format shows good performance when the sparsity percentage of matrix is
very high.

9
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Figure 3.1: Concentration of non zeros elements in one row

Figure 3.2: Spreadded location of non zero elements

3.1 ELL sparse matrix storage format by vector
multiplication

3.1.1 Overview
The ELL format is one of the sparse storage formats which stores the sparse matrix
in compact way by creating two matrix from original sparse matrix. That created
matrices most of the time are smaller in size then original sparse matrix. One
matrix is called as value matrix which stores the values of the non zero elements
of sparse matrix. The other one is called Column index matrix which stores the
column indices of the sparse matrix. The both matrices of the ELL sparse storage
format have the same row number of original sparse matrix, but different column
number than original sparse matrix. The number of columns are defined by the
row which contains the maximum number of non zero elements and it is called as
maximum row. Therefore, the rows which has fewer values than maximum row has
empty spaces, that empty spaces are filled with zeros.

10
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Figure 3.3: Ell format representation

3.1.2 Implementation ELL format
The multiplication between the ELL sparse matrix storage format and vector
is done on PL of PYNQ-Z2 board. The logic for the PL is created using C++
language in Vitis HLS program. In the test bench file the ELL sparse matrix storage
format is created from the sparse matrix. Meanwhile in the top level function
file the multiplication by vector with ELL format is done by considering the fact
that it creates the logic for the PL part of FPGA. The m_axi protocol is used
between PS(processing system) and PL(programmable logic) communication and
established by pragmas which is shown C++ code below. As we can see from the
figure below the top level function has 4 arguments and and this input outputs are
established by master axi protocol in slave mode. The slave mode uses additional
control signal in order to start the communication. The programmable logic PL is
considered as slave and the processing system PS is considered as master which
controls the communication between PL and PS.

In order to run this computation on the PYNQ Z2 board, the interface of that
board must be programmed. The python code below shows the multiplication
between the ELL sparse matrix storage format and vector where the sparse matrix
is 30 by 30. First the sparse matrix is transformed into ELL format in C++ and
then uploaded into PYNQ-Z2 interface. Then the buffers for the ELL format
matrix with exact size are allocated and filled with the given values of sparse
matrix. And the allocated memory buffers in PS should be synchronized with PL.

11
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The buffers should be written into IP’s address inside overlay in order to perform
the computation. To start the computation a bit must be written into address of
start address.

Figure 3.4: Ell format block design

1 # include <iostream >
2 # include " Hf4StF .h"
3 # include <ap_axi_sdata .h>
4 # include <hls_stream .h>
5

6 void ELL_t( d_in ELL_clm_indx [ROW_A ][ ELL_COL ], d_in ELL_val [ROW_A
][ ELL_COL ], d_in B[COL_A], d_out C_H[ROW_A] )

7

8 {
9 # pragma HLS PIPELINE off

10 # pragma HLS INTERFACE mode=m_axi port= ELL_clm_indx offset =slave
11 # pragma HLS INTERFACE mode=m_axi port= ELL_val offset =slave
12 # pragma HLS INTERFACE mode=m_axi port=B offset =slave
13 # pragma HLS INTERFACE mode=m_axi port=C_H offset =slave
14

15 # pragma HLS INTERFACE mode= s_axilite port= return bundle = control
16

17 for(int i=0; i<ROW_A; i++)
18

19 {
20 # pragma HLS PIPELINE II=1
21 for(int j=0; j< ELL_COL ; j++)
22 {
23 int k= ELL_clm_indx [i][j];
24 int val= ELL_val [i][j];
25 C_H[i]= C_H[i]+ val*B[k];
26

12
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27 }
28 }
29

30 }

content/ELL top level.cpp

1 import time
2 import numpy as np
3 import os , warnings
4 from pynq import PL
5 import pynq
6 from pynq. overlay import Overlay
7

8 ol = Overlay ("./ ELL_30x30 .bit")
9 print("Done")

10 ol?
11

12 for i in ol. ip_dict :
13 print(i)
14

15 from pynq import allocate
16 import numpy as np
17 from numpy import loadtxt
18

19

20 ELL_col_indx = pynq. buffer . allocate (shape =(30 ,12) , dtype=np. uint32
)

21 ELL_val = pynq. buffer . allocate (shape =(30 ,12) , dtype=np. uint32
)

22 B = pynq. buffer . allocate (shape =(30 ,) , dtype=np. uint32 )
23 C = pynq. buffer . allocate (shape =(30 ,) , dtype=np. uint32 )
24

25 ELL_v = loadtxt (’./ ELL_val_30x30 .txt ’, dtype=’int ’)
26 ELL_c = loadtxt (’./ ELL_col_30x30 .txt ’, dtype=’int ’)
27

28 for i in range (30):
29 for j in range (12):
30 ELL_col_indx [i][j]= ELL_c[i][j]
31

32 for i in range (30):
33 for j in range (12):
34 ELL_val [i][j]= ELL_v[i][j]
35

36 B[:]=1
37 C[:]=0
38

39 ELL_col_indx1 = ELL_col_indx . device_address
40 ELL_val1 = ELL_val . device_address

13
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41 B1=B. device_address
42 C1=C. device_address
43

44 ELL_col_indx . sync_to_device ()
45 ELL_val . sync_to_device
46 B. sync_to_device ()
47 C. sync_to_device ()
48

49 print(time. time_ns ())
50 ol. ELL_t_0 . s_axi_control .write (0x10 , ELL_col_indx1 )
51 ol. ELL_t_0 . s_axi_control_r .write (0x18 , ELL_val1 )
52 ol. ELL_t_0 . s_axi_control_r .write (0x20 ,B1)
53 ol. ELL_t_0 . s_axi_control_r .write (0x28 ,C1)
54 print(time. time_ns ())
55 ol. ELL_t_0 . s_axi_control .write (0x00 ,1)
56 print(time. time_ns ())
57 print(C)

content/ELL.py

3.2 COO Format

3.2.1 Overview
The second sparse matrix storage format is COO coordinate format which consists
of 3 arrays. Primary sparse matrix is transformed into three arrays which are the
row index array, column index array and value array. The row index array contains
the row indices of the non zero elements of the sparse matrix. The column index
array contains the column indices of the non zero elements of the sparse matrix and
the value array contains the values of the non zero elements of the sparse matrix.
This sparse matrix storage format is preferred to apply when the sparse matrix has
very high sparsity in order to reduce the computation.

3.2.2 Implementation of COO(coordinate) format
The computation of sparse matrix and vector is done on PL of PYNQ-Z2 board.
Consequently the IP for PL is created in Vitis HLS. The top level function in Vitis
HLS is responsible for creation IP. The IP has four inputs and one output. The
communication between PS and PL is established in slave mode using Master AXI
protocol. Four inputs are for row array, column array, value array and for vector
respectively, the fourth input is the vector which multiplied to sparse matrix. One
output is responsible for resulted output vector from multiplication. This sparse
matrix storage format is created by using the C++ in Vitis HLS tool and processed
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in Vivado design suite to establish block design then further converted to the logic
of the FPGA by creating the bitstream file.

Figure 3.5: COO format representation

To run the multiplication on the PYNQ -Z2, the device’s interface must be
programmed. The sparse matrix transformed into COO format with three arrays
using C++ language, then this COO format is uploaded on the device. The buffers
for the data are created with 32 bit integer data type and filled with values of COO
format arrays. And this buffers in PS are synchronized with PL. Then the address
of this buffers are mapped with address of IP in PL by command write in order
to give data to correct address. Since we use Master AXI in slave mode, to start
computation one bit must be set in start stop address of control register inside IP.

1 # include <iostream >
2 # include " Hf4StF .h"
3 # include <vector >
4 # include <ap_axi_sdata .h>
5 # include <hls_stream .h>
6

7 void COO_t(
8 d_in COO_row [N],
9 d_in COO_col [N],

10 d_in COO_val [N],
11 d_in B[COL_A],
12 d_in C_H[ROW_A ])
13 {
14

15

16 # pragma HLS INTERFACE mode=m_axi port= COO_row offset =slave
17 # pragma HLS INTERFACE mode=m_axi port= COO_col offset =slave
18 # pragma HLS INTERFACE mode=m_axi port= COO_val offset =slave
19 # pragma HLS INTERFACE mode=m_axi port=B offset =slave
20 # pragma HLS INTERFACE mode=m_axi port=C_H offset =slave
21

22 # pragma HLS INTERFACE mode= s_axilite port= return bundle =
control_signals

23

24 //# pragma HLS PIPELINE off
25
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26 int r=0, c=0, val =0;
27 for(int i=0; i< nz_val_A_COO ; i++)
28 {
29 r= COO_row [i];
30 c= COO_col [i];
31 val= COO_val [i];
32 C_H[r]= C_H[r]+ val*B[c];
33 }
34 }

content/COO top level.cpp

Figure 3.6: COO sparse matrix storage format’s block design

1 import time
2 from pynq import PL
3 import pynq
4 from pynq. overlay import Overlay
5

6 ol = Overlay ("./ COO_30x30 .bit")
7 print("Done")
8 ol. is_loaded ()
9

10 for i in ol. ip_dict :
11 print(i)
12

13 from pynq import allocate
14 import numpy as np
15 from numpy import loadtxt
16

17 row_COO = allocate (shape =(2904 ,) , dtype=np. uint32 )
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18 col_COO = allocate (shape =(2904 ,) , dtype=np. uint32 )
19 val_COO = allocate (shape =(2904 ,) , dtype=np. uint32 )
20 B = allocate (shape =(120 , ), dtype=np. uint32 )
21 C = allocate (shape =(120 , ), dtype=np. uint32 )
22

23 r = loadtxt (’./ COO_row_indx_120x120 .txt ’, dtype=’int ’)
24 c = loadtxt (’./ COO_col_indx_120x120 .txt ’, dtype=’int ’)
25 v = loadtxt (’./ COO_val_120x120 .txt ’, dtype=’int ’)
26

27 for i in range (2904) :
28 row_COO [i]=r[i]
29 col_COO [i]=c[i]
30 val_COO [i]=v[i]
31

32 B[:]=1
33 C[:]=0
34 print( row_COO )
35 print(B)
36 print( col_COO )
37

38 row_COO . sync_to_device ()
39 col_COO . sync_to_device ()
40 val_COO . sync_to_device ()
41 B. sync_to_device ()
42 C. sync_to_device ()
43

44 row_COO1 = row_COO . device_address
45 col_COO1 = col_COO . device_address
46 val_COO1 = val_COO . device_address
47 B1 = B. device_address
48

49 C1 = C. device_address
50

51 print(time. time_ns ())
52 ol. COO_t_0 . s_axi_control .write (0x10 , row_COO1 )
53 ol. COO_t_0 . s_axi_control .write (0x18 , col_COO1 )
54 ol. COO_t_0 . s_axi_control .write (0x20 , val_COO1 )
55 ol. COO_t_0 . s_axi_control .write (0x28 ,B1)
56 ol. COO_t_0 . s_axi_control .write (0x30 ,C1)
57 print(time.time ())
58 ol. COO_t_0 . s_axi_control_signals .write (0x00 ,1)
59 print(time. time_ns ())
60 print(C)

content/COO.py
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3.3 CSC Format

3.3.1 Overview
The CSC Compressed sparse column format is consists of 3 arrays which are column
pointer array, row index array and value array. The row index array contains the
row indices and value array contains the values of the non zero elements of sparse
matrix. In order to define the values of pointer array, the concept ordering of non
zero values of sparse matrix should be introduced. The sparse matrix contains
certain number of non zero elements. Also every column inside sparse matrix
contains different number of non zero entries. And they can be ordered in different
way. In this format the ordering of the non zero elements are started from top
to down through column and left to right when passing to the new column. The
ordering number also starts from zero. And the order number of the first non zero
entry of every column is taken as pointer. Therefore the column pointer array
contains the non zero entry’s order number which appeared as first element of
column of spare matrix. If we compare the length of the column pointer array to
the other arrays, it is length is much more shorter. Consequently this sparse matrix
storage format requires less memory than the other formats which are discussed
earlier.

Figure 3.7: CSC format representation

3.3.2 Implementation CSC format
The multiplication between the sparse matrix and the vector is done on PL part
PYNQ-Z2 board. The logic for PL part is created in Vitis HLS software in the
top level function. The following code is used to create the logic for this format.
The IP has 4 inputs and one output. The Master AXI protocol in slave mode
is established between PS and PL of the PYNQ-Z2 board. The block design is
created and bitstream file is extracted from IP in Vivado design suite. To estimate
the execution time the PYNQ-Z2 board must be programmed. First the sparse
matrix is transformed into CSC format with text file format using C++ language
and uploaded into PYNQ-Z2 interface together with bit stream file. The required
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buffers for CSC format is created in the device’s interface and filled with sparse
matrix values from text file version of CSC format. The buffers are synchronized
with PL part of the device. To start the computation the addresses of buffers and
addresses of arrays in IP are overlapped with write command, then the one bit set
in the control register of IP.

1 # include <iostream >
2 # include " Hf4StF .h"
3

4

5 void CSC_t( d_in CSC_ar_nz [N],d_in ar_row_idx [M], d_in ar_col_ptr
[L], d_in B[COL_A], d_out C_H[ROW_A ])

6 {
7

8

9 # pragma HLS INTERFACE mode=m_axi offset =slave port=ar_nz
10 # pragma HLS INTERFACE mode=m_axi offset =slave port= ar_row_idx
11 # pragma HLS INTERFACE mode=m_axi offset =slave port= ar_col_ptr
12 # pragma HLS INTERFACE mode=m_axi offset =slave port=B
13 # pragma HLS INTERFACE mode=m_axi offset =slave port=C_H
14

15 # pragma HLS INTERFACE mode= s_axilite port= return bundle =
control_signals

16 int clp =31;
17 int col_start =0, col_end =0;
18 for(int i = 0; i < n_clp; ++i)
19 {
20 col_start = ar_col_ptr [i] ;
21 col_end = ar_col_ptr [i+1];
22

23 for(int nz_id = col_start ; nz_id < col_end ; ++ nz_id)
24 {
25

26 int j=0;
27 int val =0;
28

29 j = ar_row_idx [nz_id ];
30 val = CSC_ar_nz [nz_id ];
31

32 C_H[j] = C_H[j]+ val*B[i];
33

34 }
35

36 }
37

38 }

content/CSC top level.cpp
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Figure 3.8: CSC sparse matrix storage format’s block design

1 import time
2 from pynq import PL
3 import pynq
4 from pynq. overlay import Overlay
5

6 CSC_F= Overlay ("./ CSC_top_without_pipeline .bit")
7 print("Done")
8

9 for i in CSC_F. ip_dict :
10 print(i)
11

12 from pynq import allocate
13 import numpy as np
14 from numpy import loadtxt
15

16 col_ptr = pynq. buffer . allocate (shape =(31 ,) , dtype=np. uint32 )
17 row_id = pynq. buffer . allocate (shape =(186 ,) , dtype=np. uint32 )
18 val = pynq. buffer . allocate (shape =(186 ,) , dtype=np. uint32 )
19 B = pynq. buffer . allocate (shape =(30 ,) , dtype=np. uint32 )
20 C = pynq. buffer . allocate (shape =(30 ,) , dtype=np. uint32 )
21

22 c_ptr = loadtxt (’./ ar_col_ptr_CSC .txt ’, dtype=’int ’)
23 r = loadtxt (’./ ar_row_idx_CSC .txt ’, dtype=’int ’)
24 v = loadtxt (’./ ar_nz_CSC .txt ’, dtype=’int ’)
25

26 for i in range (31):
27 col_ptr [i]= c_ptr[i]
28

29 for i in range (186):
30 row_id [i] = r[i]
31 val[i] = v[i]
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32

33 B[:]=1
34 C[:]=0
35

36 print(B)
37 print( col_ptr )
38

39 col_ptr . sync_to_device ()
40 row_id . sync_to_device ()
41 val. sync_to_device ()
42 B. sync_to_device ()
43 C. sync_to_device ()
44

45 col_ptr1 = col_ptr . device_address
46 row_id1 = row_id . device_address
47 val1 = val. device_address
48 B1 = B. device_address
49 C1 = C. device_address
50

51 print(time. time_ns ())
52

53

54 CSC_F. CSC_t_0 . s_axi_control .write (0x10 ,val1)
55 CSC_F. CSC_t_0 . s_axi_control .write (0x18 , row_id1 )
56 CSC_F. CSC_t_0 . s_axi_control .write (0x20 , col_ptr1 )
57 CSC_F. CSC_t_0 . s_axi_control .write (0x28 ,B1)
58 CSC_F. CSC_t_0 . s_axi_control .write (0x30 ,C1)
59 CSC_F. CSC_t_0 . s_axi_control_signals .write (0x00 ,1)
60

61 print(time. time_ns ())
62 print(C)

content/CSC_pynq_interface.py

3.4 CSR Format
3.4.1 Overview
The last format which we considered is CSR Compressed sparse row format. This
format also consists of 3 arrays which are row pointer array, column array and
value array. The column array and value array consists of column index and values
of the non zero entries of sparse matrix respectively. The row pointer array consists
of pointers to the rows which contains non zero entries of sparse matrix. This
format is similar to CSC sparse matrix storage format, but the difference are in the
ordering of non zero elements of sparse matrix and in compression with respect to
rows. And the row pointer array contains the pointers to row, and their values is
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equal to the order value of first non-zero element in the each row of sparse matrix.
The ordering of sparse matrix’s non zero elements is done from left to right within
row and top to down between rows and starting the order number from zero. This
format is also occupies less memory than COO format since row pointer array
contains less elements than other arrays. This format shows good performance
when non zero entries are concentrated in one array.

Figure 3.9: CSR format representation

3.4.2 Implementation CSR format
The computation of multiplication between sparse matrix stored in CSR format and
vector is done on PL part of PYNQ-Z2 board. As usual the logic for PL is created by
using Vitis HLS. The resource utilization also estimated in Vitis HLS. The following
code demonstrates the top level function of CSR format in Vitis HLS. Overall, four
inputs and one output is used in this computation. The communication between
PL and PS is established as master AXI protocol in slave mode with the help of
pragmas in Vitis HLS. In order to implement the multiplication two nested for
loops are needed. The outer loop is responsible for shifting between rows which
contains the non zero entries of sparse matrix and it uses the values of row pointer
array. While the inner loop is needed to shift between non zero entries within
rows and fetch column index and values of non zero entries of sparse matrix from
column array and value array respectively and perform the computation. After
the generation of IP in Vitis HLS, the block design and bitstream file is created in
Vivado Design Suite. The execution time is estimated on PYNQ-Z2 board, and
following code written on python shows the implementation of computation on
PYNQ-Z2 board. As usual, the sparse matrix transformed into CSR format by
C++ language and stored in text format. Then, the sparse matrix in CSR format
together with bitstream file are uploaded into the device. The required buffers for
the CSR format arrays are allocated with exact size and exact data type. These
buffers are filled with CSR format values and synchronized with PL part of device.
The values in the buffers are passed to correct address of IP with the help of write
command. And the computation is started when one bit is set in control register
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of IP.
1 # include <iostream >
2 # include " header_csr .h"
3 using namespace std;
4

5 void CSR_t( d_in CSR_ar_nz [M], d_in ar_col_idx [N], d_in ar_row_ptr
[L], d_in B[COL_A], d_out C_H[ROW_A ]){

6

7 # pragma HLS INTERFACE mode=m_axi offset =slave port = CSR_ar_nz
8 # pragma HLS INTERFACE mode=m_axi offset =slave port = ar_col_idx
9 # pragma HLS INTERFACE mode=m_axi offset =slave port = ar_row_ptr

10 # pragma HLS INTERFACE mode=m_axi offset =slave port = B
11 # pragma HLS INTERFACE mode=m_axi offset =slave port = C_H
12

13 # pragma HLS INTERFACE mode= s_axilite port= return bundle =
control_signals

14 int rwp = 31;
15 for(int i = 0; i < n_rwp; i++)
16 {
17 int row_start =0, row_end =0;
18 row_start = ar_row_ptr [i];
19 row_end = ar_row_ptr [i+1];
20 for(int k= row_start ; k < row_end ; k++)
21 {
22 int j = 0;
23 int val = 0;
24 j = ar_col_idx [k];
25 val = CSR_ar_nz [k];
26

27 C_H[i]= C_H[i]+B[j]* val;
28 }
29 }
30

31 }

content/CSR top level.cpp

1 import time
2 from pynq import PL
3 import pynq
4 from pynq. overlay import Overlay
5

6 CSR_F= Overlay ("./ CSR_30x30_without_pipeline .bit")# without pipeline
7 print("Done")
8

9 for i in CSR_F. ip_dict :
10 print(i)
11

12 from pynq import allocate
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Figure 3.10: CSR sparse matrix storage format’s block design

13 import numpy as np
14 from numpy import loadtxt
15

16 row_ptr = pynq. buffer . allocate (shape =(31 ,) , dtype=np. uint32 )
17 col_id = pynq. buffer . allocate (shape =(186 ,) , dtype=np. uint32 )
18 val = pynq. buffer . allocate (shape =(186 ,) , dtype=np. uint32 )
19 B = pynq. buffer . allocate (shape =(30 ,) , dtype=np. uint32 )
20 C = pynq. buffer . allocate (shape =(30 ,) , dtype=np. uint32 )
21

22 r_ptr = loadtxt (’./ ar_row_ptr_CSR .txt ’, dtype=’int ’)
23 c = loadtxt (’./ ar_col_idx_CSR .txt ’, dtype=’int ’)
24 v = loadtxt (’./ ar_nz_CSR .txt ’, dtype=’int ’)
25

26 for i in range (31):
27 row_ptr [i]= r_ptr[i]
28

29 for i in range (186):
30 col_id [i] = c[i]
31 val[i] = v[i]
32

33 B[:]=1
34 C[:]=0
35

36 print(B)
37 print( row_ptr )
38

39 row_ptr . sync_to_device ()
40 col_id . sync_to_device ()
41 val. sync_to_device ()
42 B. sync_to_device ()

24



Discussion on sparse storage formats

43 C. sync_to_device ()
44

45 row_ptr1 = row_ptr . device_address
46 col_id1 = col_id . device_address
47 val1 = val. device_address
48 B1 = B. device_address
49 C1 = C. device_address
50

51 print(time. time_ns ())
52 CSR_F. CSR_t_0 . s_axi_control .write (0x10 ,val1)
53 CSR_F. CSR_t_0 . s_axi_control .write (0x18 , col_id1 )
54 CSR_F. CSR_t_0 . s_axi_control .write (0x20 , row_ptr1 )
55 CSR_F. CSR_t_0 . s_axi_control .write (0x28 , B1)
56 CSR_F. CSR_t_0 . s_axi_control .write (0x30 , C1)
57

58 print(time. time_ns ())
59 CSR_F. CSR_t_0 . s_axi_control_signals .write (0x00 ,1)
60 print(time. time_ns ())
61

62 print(C)

content/CSR.py
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Experimental results

4.1 Random sparse matrix generation
The sparse matrices for our experiment are generated randomly for each required
size and for each required sparsity. Overall the 12 sparse matrices are generated.
The sparsity of matrices are 50, 60, 70 and 80 percents. The sizes of sparse
matrices are 30 by 30, 60 by 60 and 120 by 120. The sparse matrices are generated
using probability algorithm in C++. The desired sparsity of the sparse matrix is
obtained using comparison condition between desired sparsity value and probability
of random number in uniform distribution algorithm, where the random number
is generated using Mersenne Twister 19937 generator. The uniform distribution
algorithm has 2 parameters, which are n=0.0 and m=0.1. These values are chosen
for simplicity in order to have the same scale with value of sparsity percentage .

The non zero values of the sparse matrix are obtained by binomial distribution
algorithm. In the following code the binomial distribution algorithm has parameters
k=20 and p=0.5, where the k represents the least upper bound and other values
are distributed by parameter p. That’s why most of the values of the non zero
elements of sparse matrix is close to 10. All the non zero values of These sparse
matrices are used both in Vitis HLS in bin format to generate IP and in PYNQ-Z2
in text format to estimate the execution time.

1

2 # include <stdio.h>
3 # include <random >
4 # include <iostream >
5 # include <fstream >
6 # define ROW_A 30
7 # define COL_A 30
8

9 # include <strstream >
10 using namespace std;

26



Experimental results

11 int main ()
12 {
13

14

15 int A[ROW_A ][ COL_A ];
16 float zero_prob_A = 0.5;
17

18 std :: random_device rd;
19 std :: mt19937 gen(rd());
20 std :: binomial_distribution <int > binomial_distributed_values_A

(20, 0.5);
21

22

23 std :: mt19937 sparse_gen (rd());
24 std :: uniform_real_distribution <float > sparse_dist (0.0 , 1.0);
25

26 for (int i = 0; i < ROW_A; i++)
27 {
28 for (int j = 0; j < COL_A; j++)
29 {
30 if ( sparse_dist ( sparse_gen ) > zero_prob_A )
31 {
32 A[i][j] = binomial_distributed_values_A (gen);
33 }
34 else
35 {
36 A[i][j] = 0;
37 }
38 }
39 }
40

41 for (int i = 0; i < ROW_A; i++)
42 {
43 for (int j = 0; j < COL_A; j++)
44 {
45 std :: cout << A[i][j];
46 std :: cout << " ";
47 }
48 std :: cout << std :: endl;
49 }
50

51 fstream sparse (" S_30x30_sparsity_50_percent .TXT");
52

53 for ( size_t i = 0; i < ROW_A; i++)
54 {
55 for ( size_t j = 0; j < COL_A; j++)
56 {
57 sparse << A[i][j] << " ";
58 if (j == COL_A - 1)
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59 {
60 sparse << "\n";
61 }
62

63 }
64

65 }
66 int nz_A = 0;
67 for ( size_t i = 0; i < ROW_A; i++)
68 {
69 for ( size_t j = 0; j < COL_A; j++)
70 {
71 if (A[i][j] != 0) {
72 nz_A ++;
73 }
74 }
75 }
76

77 cout << nz_A <<endl;
78 int mval = 0;
79 for ( size_t i = 0; i < ROW_A; i++)
80 {
81 int E=0;
82 for ( size_t j = 0; j < COL_A; j++)
83 {
84 if ( A[i][j] != 0)
85 {
86 E++;
87 }
88 }
89 if( mval <E )
90 {
91 mval = E;
92 }
93 }
94 cout << mval;
95

96 }

content/Random matrix generation.cpp

4.2 Evaluations

4.2.1 Estimation of resource utilization
As we mentioned above the IP is generated using Xilinx Vitis HLS software. After
the completion synthesis process the report of the synthesis appears. All the
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resource utilization are reported as chart in the following figures. We can observe
from following figures that the Ordinary matrix by vector multiplication and ELL
sparse matrix storage format multiplication by vector consumes more resources than
the other sparse storage formats due to using the pipelining technique. Meanwhile
the COO, CSC and CSR sparse storage formats utilize almost the same amount
of resources for every size of matrix and for every percentage of sparsity in our
experiment. From the execution time bars, we can observe that the latency of
COO format decreases when the sparsity of matrix increases, and the CSC and the
CSR formats both have execution time which depend on structure of sparse matrix
and on sparsity of matrix. When the sparsity matrix increases, the ELL format
and ordinary matrix by vector multiplication with pipelining shows decrease in
their execution time.

Figure 4.1: 120 by 120 matrix with 80 percent sparsity multiplied by vector

4.2.2 Estimation of execution time
The execution time is taken from the PYNQ-Z2 board by implementing the
bitstream file. As mentioned in the chapter 1.
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Figure 4.2: 120 by 120 matrix with 70 percent sparsity multiplied by vector

Figure 4.3: 120 by 120 matrix with 60 percent sparsity multiplied by vector
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Figure 4.4: 120 by 120 matrix with 50 percent sparsity multiplied by vector

Figure 4.5: 60 by 60 matrix with 80 percent sparsity multiplied by vector
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Figure 4.6: 60 by 60 matrix with 70 percent sparsity multiplied by vector

Figure 4.7: 60 by 60 matrix with 60 percent sparsity multiplied by vector
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Figure 4.8: 60 by 60 matrix with 50 percent sparsity multiplied by vector

Figure 4.9: 30 by 30 matrix with 80 percent sparsity multiplied by vector
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Figure 4.10: 30 by 30 matrix with 70 percent sparsity multiplied by vector

Figure 4.11: 30 by 30 matrix with 60 percent sparsity multiplied by vector
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Figure 4.12: 30 by 30 matrix with 50 percent sparsity multiplied by vector

Figure 4.13: 120 by 120 matrix with 80 percent sparsity multiplied by vector
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Figure 4.14: 120 by 120 matrix with 70 percent sparsity multiplied by vector

Figure 4.15: 120 by 120 matrix with 60 percent sparsity multiplied by vector
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Figure 4.16: 120 by 120 matrix with 50 percent sparsity multiplied by vector

Figure 4.17: 60 by 60 matrix with 80 percent sparsity multiplied by vector
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Figure 4.18: 60 by 60 matrix with 70 percent sparsity multiplied by vector

Figure 4.19: 60 by 60 matrix with 60 percent sparsity multiplied by vector
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Figure 4.20: 60 by 60 matrix with 50 percent sparsity multiplied by vector

Figure 4.21: 30 by 30 matrix with 80 percent sparsity multiplied by vector
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Figure 4.22: 30 by 30 matrix with 70 percent sparsity multiplied by vector

Figure 4.23: 30 by 30 matrix with 60 percent sparsity multiplied by vector
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Figure 4.24: 30 by 30 matrix with 50 percent sparsity multiplied by vector
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Conclusion

5.1 Discussion

5.2 Future work

42



Appendix A

Codes

A.1 Test bench code

1 int main ()
2 { // defining the sparse matrix , vector and output vector
3 d_in A[ROW_A ][ COL_A], B[COL_A],C[ROW_A],C_H[ROW_A ];
4 d_in error_counter =0; // to check the results from test bench

and hardware
5

6 for(int i = 0; i < ROW_A; i++)
7 {
8 for(int j = 0; j < COL_A; j++)
9 {

10 A[i][j] = 0;
11 }
12 }
13

14 fstream sparse_file (" S_30x30_50 %. bin");
15

16 for(int i = 0; i < ROW_A; i++)
17 {
18 for(int j = 0; j < COL_A; j++)
19 {
20 sparse_file >>A[i][j];
21 }
22 }
23

24 for(int i = 0; i < COL_A; i++)
25 {
26 B[i] = 1;
27 }
28

29
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30 for(int i = 0; i < ROW_A; i++)
31 {
32 C[i] = 0;
33 C_H[i] = 0;
34 }
35

36 // COO format
37

38 int nz_val_A =0;
39 std :: vector <int > row_indx ;;
40 std :: vector <int > col_indx ;
41 std :: vector <int > val_vec ;
42

43 d_in COO_row [N];
44 d_in COO_col [N];
45 d_in COO_val [N];
46

47 for(int i = 0; i < N; i++)
48 {
49 COO_row [i]=0;
50 COO_col [i]=0;
51 COO_val [i]=0;
52 }
53

54 for(int i = 0; i < ROW_A; ++i)
55 {
56 for(int j = 0; j < COL_A; ++j)
57 {
58 if( A[i][j]!=0 )
59 {
60 row_indx . push_back (i);
61 col_indx . push_back (j);
62 val_vec . push_back (A[i][j]);
63 nz_val_A ++;
64

65 }
66 }
67

68 }
69

70 std :: copy( row_indx .begin (), row_indx .end (), COO_row );
71 std :: copy( col_indx .begin (), col_indx .end (), COO_col );
72 std :: copy( val_vec .begin (), val_vec .end (), COO_val );
73

74 // CSC_format
75

76 std :: vector <int > nz_vector ;
77 std :: vector <int > row_idx_vector ;
78 std :: vector <int > col_ptr_vector ;
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79 int ar_nz[N], ar_row_idx [M], ar_col_ptr [L], k=0;
80 int n_nz_A =0;
81 int clp =0;
82

83

84 for(int i = 0; i < N; i++)
85 {
86 ar_nz[i]=0;
87 ar_row_idx [i]=0;
88 }
89

90 for(int i = 0; i < L; i++)
91 {
92 ar_col_ptr [i]=0;
93 }
94

95 // computation of vector containing column start pointers .
96

97 col_ptr_vector . push_back (0);
98 for(int j = 0; j< COL_A; j++)
99 {

100 if( j==0 )
101 {
102 k++;
103 }
104

105 for(int i = 0; i < ROW_A; i++)
106 {
107 if( A[i][j]!=0 )
108 {
109

110 if(k!=j && j!=0)
111 {
112 col_ptr_vector . push_back ( n_nz_A );
113 clp ++;
114 k--;
115 if((k-j) >1)
116 {
117 k=j;
118 }
119

120 }
121 n_nz_A ++;
122 }
123

124 }
125 k++;
126 if( k-j<2 )
127 {
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128 k = j+2;
129 }
130 }
131

132 col_ptr_vector . push_back ( n_nz_A );
133

134 for(int j = 0; j < COL_A; j++)
135 {
136 for(int i = 0; i < ROW_A; i++)
137 {
138 if( A[i][j]!=0 )
139 {
140 nz_vector . push_back (A[i][j]);
141 row_idx_vector . push_back (i);
142

143 }
144 }
145

146 }
147

148

149 std :: copy( nz_vector .begin (), nz_vector .end (), ar_nz);
150 std :: copy( row_idx_vector .begin (), row_idx_vector .end (),

ar_row_idx );
151 std :: copy( col_ptr_vector .begin (), col_ptr_vector .end (),

ar_col_ptr );
152

153 // CSR_format
154

155

156 std :: vector <int > nz_vector ;
157 std :: vector <int > col_idx_vector ;
158 std :: vector <int > row_ptr_vector ;
159 int ar_nz[N], ar_col_idx [M], ar_row_ptr [L], k=0;
160 int n_nz_A =0;
161 int rwp =0;
162

163 for(int i = 0; i < M; i++)
164 {
165 ar_nz[i]=0;
166 ar_col_idx [i]=0;
167 }
168 for(int i = 0; i < L; i++)
169 {
170 ar_row_ptr [i]=0;
171 }
172

173 // computation of vector containing the row start pointers .
174
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175

176 row_ptr_vector . push_back (0);
177 for(int i = 0; i < ROW_A; i++)
178 {
179 if( i==0 )
180 {
181 k++;
182 }
183

184 for(int j = 0; j < COL_A; j++)
185 {
186 if( A[i][j]!=0 )
187 {
188

189 if(k!=i && i!=0)
190 {
191 row_ptr_vector . push_back ( n_nz_A );
192 rwp ++;
193 k = i;
194

195

196 }
197 n_nz_A ++;
198 }
199

200 }
201

202 k++;
203

204 if(k-i <2)
205 {
206 k=i+2;
207 }
208 }
209 rwp ++;
210 n_nz_A ++;
211 row_ptr_vector . push_back ( n_nz_A );
212

213 for(int i = 0; i < COL_A; i++)
214 {
215 for(int j = 0; j < ROW_A; j++)
216 {
217 if( A[i][j]!=0 )
218 {
219 nz_vector . push_back (A[i][j]);
220 col_idx_vector . push_back (j);
221 }
222 }
223 }
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224

225 std :: copy( nz_vector .begin (), nz_vector .end (), ar_nz)
;

226 std :: copy( col_idx_vector .begin (), col_idx_vector .end (),
ar_col_idx );

227 std :: copy( row_ptr_vector .begin (), row_ptr_vector .end (),
ar_row_ptr );

228

229 // ELL_format
230

231 int ELL_clm_indx [ROW_A ][ ELL_COL ], ELL_val [ROW_A ][ ELL_COL ];
232 for(int i = 0; i < ROW_A; i++)
233 {
234 for(int j = 0; j < ELL_COL ; j++)
235 {
236 ELL_clm_indx [i][j] = 0;
237 ELL_val [i][j]=0;
238 }
239 }
240

241 for(int i=0; i < ROW_A; i++)
242 {
243 int E=0;
244 for(int j=0; j < COL_A; j++)
245 {
246 if( A[i][j]!=0 )
247 {
248 ELL_val [i][E]=A[i][j];
249 ELL_clm_indx [i][E]=j;
250 E++;
251 }
252 }
253

254

255 }
256

257 // TEST BENCH COMPUTATION
258

259 for(int i = 0; i < ROW_A; i++)
260 {
261 for(int j = 0; j < COL_A; j++)
262 {
263 C[i] += A[i][j]*B[j];
264 }
265 }
266 // calling the top level function
267

268 COO_t( COO_row ,COO_col ,COO_val ,B,C_H);
269 CSC_t( clp ,ar_nz ,ar_row_idx ,ar_col_ptr ,B,C_H);
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270 CSR_t( CSR_nz_val , CSR_col_idx , CSR_row_ptr ,B,C_H);
271 ELL_t( ELL_clm_indx ,ELL_val ,B,C_H);
272

273 // checking the results
274

275 for(int i = 0; i < ROW_A; i++)
276 {
277 if(C[i] != C_H[i])
278 {
279 error_counter ++;
280 }
281 }
282

283 std ::cout << " " << std :: endl;
284 std ::cout <<"The error counter : "<<error_counter <<std :: endl;
285 std ::cout << " " << std :: endl;
286

287 if( error_counter == 0 )
288 {
289 std :: cout << "The test is passed correctly "<<std :: endl;
290

291 }else{
292

293 std :: cout << "There is an error in the code " <<std :: endl;
294 }

content/Test_bench_new1.cpp

A.2 Header file

1 # ifndef __Hf4StF__
2 # define __Hf4StF__
3 # include <iostream >
4 # include <time.h>
5 # include <random >
6 # include <vector >
7

8

9 # define ROW_A 30
10 # define COL_A 30
11 # define L 31
12 # define M 442
13 # define N 442
14

15 typedef int d_in , d_out;
16

17 # define ELL_COL 20// the number of columns in ELL format
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18

19

20 void ELL_t ( d_in ELL_clm_indx [ROW_A ][ ELL_COL ], d_in ELL_val [
ROW_A ][ ELL_COL ], d_in B[COL_A], d_out C_H[ROW_A] );

21

22 void COO_t (d_in COO_row [N], d_in COO_col [N], d_in COO_val [N],
d_in B[COL_A], d_in C_H[ROW_A ]);

23

24 void CSR_t (d_in CSR_ar_nz [M], d_in ar_col_idx [N], d_in
ar_row_ptr [L], d_in B[COL_A], d_in C_H[ROW_A ]);

25

26 void CSC_t (d_in CSC_ar_nz [N],d_in ar_row_idx [M], d_in ar_col_ptr
[L], d_in B[COL_A], d_in C_H[ROW_A ]);

27

28 void full_MVM_t (d_in A[ROW_A ][ COL_A], d_in B[COL_A] ,d_in C_H[
ROW_A ]);

29

30 #endif

content/Header file.cpp
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