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Abstract

In recent years, the collaboration between humans and robots has be-
come essential, revealing to be crucial in space environment exploration.
The presence of robots allows to perform dangerous tasks and to op-
erate in extreme conditions. The interest in inflatable and deployable
systems for space missions represents a growing trend in recent years.
Soft robots offer higher dexterity, larger variability of movements, better
usability in otherwise inaccessible places and higher safety. In several
space applications, the use of inflatable structures could minimize bulk
and mass, reducing space mission costs.

The object of study of this thesis work is the POPUP robot, a manipu-
lator with inflatable links, developed for space application, whose first
functional prototype has been developed in the laboratories of Poly-
technic of Turin . It consists of two inflatable links, made of fibers with
high elastic module, electric motors and a gripper. By introducing soft
parts, the robot can adapt to various contexts by overcoming the limi-
tations related to the rigid structure of traditional ones.

The aim of this thesis is first to simulate the prototype of the POPUP
robot on a virtual environment. Gazebo is used as a 3D simulator and
ROS 1.0 as a robotic interface. Different plugins that the gazebo envi-
ronment offers are also used, including in particular one to simulate a
camera to be placed on the end-effector of the robotic arm, and another
to control the robot in the virtual environment. These two tools will
enable the implementation of a possible visual servoing control algo-
rithm in the virtual environment for future developments.

One of the main challenges in soft robotics is the control of the sys-
tem. It requires more adaptive and flexible control algorithms that
can adjust to the unpredictable nature of the robot’s deformable struc-
ture. For this reason, the second part of the thesis focuses to propose
a visual servoing control algorithm. It is based on the the information
received from the frames captured by a camera placed on the robot’s
end-effector. The integration of the vision system will enable precise



and accurate control even in the case of inflatable links. This control
technique can help to accurately position the soft manipulator’s end-
effector by using visual feedback to track the position of a target object
or feature. The soft manipulator’s deformations can be taken into ac-
count by the vision system to ensure that the end-effector is correctly
positioned
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Chapter 1

Introduction

Humans have always desired to explore and challenge the boundaries
of what is already known.

Space robots deeply marked the space exploring age’s beginning and
evolution and their use is now essential.

They replace humans in conducting scientific experiments, external ve-
hicular activities, space exploration, and other space activities [1].
One example is the Space Station Remote Manipulator System (SS-
RMS), better known as Canadarm?2.

Figure 1.1. Canadarm?2 robotic arm mounted on International Space Station

It is a robotic arm that lends a helping hand to: perform Station
7



Introduction

maintenance, move supplies, equipment and even astronauts, perform
"cosmic catches" by grappling visiting vehicles and berthing them to
the International Space Station (ISS) |2].

The development of space robots presents many challenges starting
from their design, as well as their fabrication and control, since these
devices will operate in space where the environment differs greatly from
Earth.

For example, the rigid structure of traditional robots is heavy and re-
quires a high payload capacity when embarked on spacecraft.

In order to overcome the problem of weight, and thus to have lighter
robots, soft manipulators (i.e. robots made of soft materials) have al-
ready been developed in the terrestrial field.

Their adaptability and low mass would allow being easier transported
from the Earth, safety, and storage in relatively small packages .

For these observations, soft robotics can meet and resolve aerospace
issues, developing inflatable deployable robotic manipulators, based on
soft materials bodies [3].

However, they may face important challenges in their performance due
to low structural stiffness. Accurate positioning of the end effector may
prove a difficult task due to limitations in gravity compensation, or due
to the occurrence of oscillations during motion, especially in the absence
of precise information about the payload that is being manipulated [4].
Due to all of these factors, the control of a robot with inflatable links
is a task not easy to perform.

Usually, the control algorithms for rigid body robot manipulators are
based on precise mathematical models [5].

These models describe the kinematics (i.e., the relationship between the
robot’s joint angles and its end effector position and orientation) and
dynamics (i.e., how forces and torques affect the motion of the robot)
of the robot.

In contrast, a soft robot manipulator, requires more adaptive and flex-
ible control algorithms that can adjust to the unpredictable nature of
the robot’s deformable structure.



Introduction

These control algorithms may not be as reliant on precise mathematical
models, but instead use sensory feedback to adjust the robot’s motion
in real-time |6].

Therefore, one approach is to use an on-board vision system to improve
the control strategy and increase accuracy.

Visual servoing is a well-known tecnique to guide robots using visual
information. Image processing, robotics and control theory are com-
bined in order to control the motion of a robot depending on the visual
information extracted from the images captures by one or several cam-
eras [7].

This control technique can help to accurately position the soft manip-
ulator’s end effector by using visual feedback to track the position of a
target object or feature. The soft manipulator’s deformations can be
taken into account by the vision system to ensure that the end effector
is correctly positioned, even as the soft manipulator undergoes large
deformations.

The object of study of this thesis work is the POPUP robot, a ma-
nipulator with inflatable links, developed for space applications, whose
first functional prototype has been developed in the laboratories of Poly-
technic of Turin .

It is a deployable robot with hybrid structure consisting of two in-
flatable links, three electric motors and rigid joints.
The first prototype presents inflatable links with cylindrical shape and
made out PVC fixed to a 3D printed support which connect the link to
the actuator. The links to be fixed through screws to the other joints,
allowing the possibility to add elements, e.g. sensors, inside the links
during development stage [8]. A pneumatic line is responsible to con-
trol the inflation and deflation stage. It allows the links to be inflated
and deflated, providing the necessary pressure which is in the range of
10-60 kPa.
For the implementation of the project, a camera will be added to the
robot’s end-effector.
For future applications, a wrist will also be integrated, extending the
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degrees of freedom from 3 to 6.

Inflatable Link 2

Inflatable Link 1

S Pneumatic
- ) o

X line “x,_‘{/ 7 . Motor2

| Joints

Motor 1

Figure 1.2. POPUP robot

The aim of the project is first to simulate the prototype on a virtual
environment. To obtain realistic simulations of the robotic scenario,

Gazebo is used as a 3D simulator and ROS 1.0 as a robotic interface.

Then, a control algorithm is developed using the information re-
ceived from the frames captured by a camera placed on the robot’s

end-effector. Also in this case, the use of ROS 1.0 allows communi-

cation between several software and hardware tools employed in this

robotics application.
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Chapter 2

Software Tools

2.1 ROS 1.0

ROS (Robot Operating System) is a dynamic and versatile framework
that offers a diverse set of tools and libraries for building robot soft-
ware. Its main goal is to create a unified approach to programming
robots, while also providing ready-to-use software components that can
be seamlessly integrated into custom robotic applications [9)].

i ™y i A
Communication [ Visualization } Perception
e y e A
i ™ i "y
Mation Planning Robot Control
L N
p. - ae e p. y
aee
i ™ "y
Robot Operating System
Computer Vision Hardware Drivers
b Iy b A

i ™y i !
Simulation [ Data Logging } Machine Learning

e A

Figure 2.1. ROS 1.0
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Software Tools

The advantages of using ROS as a programming framework are numer-
ous, and some of them include:

e variety of advanced capabilities that can be used to build complex
robot applications

e several tools for debugging, visualizing, and having a simulation

e support for a variety of high-end sensors and actuators commonly
used in robotics. This makes it easy to incorporate these critical
components into robot software without encountering any obstacles

e inter-platform operability: The ROS message-passing middleware
allows communication between different programs.

The ROS architecture has been designed and divided into three sec-
tions or levels of concepts:

e The Filesystem level
e The Computation Graph level

e The Community level

a more detailed analysis of all levels is presented below

12



2.1-ROS 1.0

2.1.1 ROS Filesystem level

The main goal of the ROS Filesystem is to centralize the build process of
a project, while at the same time provide enough flexibility and tooling
to decentralize its dependencies.

Similar to an operating system, an ROS program is divided into
folders, and these folders have files that describe their functionalities.In
fact, ROS files are structured on the hard disk in a specific way, similar
to how an operating system organizes files.

The following diagram illustrates this structure

ROS Filesystem Level

Metapackages

Packages

Packages
Manifest

Figure 2.2.  ROS filesystem level

e Metapackages: The term metapackage refers to one or more re-
lated packages which can be loosely grouped together. In principle,
metapackages are virtual packages that don’t contain any source
code or typical files usually found in packages.

e Packages: The ROS packages are the most basic unit of the ROS
software. They contain one or more ROS programs (nodes), li-
braries, configuration files, and so on, which are organized together
as a single unit. Packages are the atomic build item and release
item in the ROS software.

13
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e Package manifest: The package manifest file is inside a pack-
age that contains information about the package, author, license,
dependencies, compilation flags, and so on. The package.xml file
inside the ROS package is the manifest file of that package.

e Metapackages manifest: The metapackage manifest is similar
to the package manifest, the difference being that it might include
packages inside it as runtime dependencies and declare an export
tag.

e Messages: The ROS messages are a type of information that is
sent from one ROS process to the other. The extension of the
message file is .msg.

e Services (.srv): The ROS service is a kind of request /reply inter-
action between processes. The reply and request data types can be
defined inside the srv folder.

e Repositories: Most of the ROS packages are maintained using
a Version Control System (VCS), such as Git, Subversion (svn),
Mercurial (hg), and so on. The collection of packages that share
a common VCS can be called repositories. The package in the
repositories can be released using a catkin release automation tool
called bloom.

14



2.1 -ROS 1.0

The configuration of files and folders can be summarised by the fol-
lowing scheme :

ros_pkg
action
L— demo.action
CMakelLists.txt
include
L— ros_pkg
L— demo.h

msg

L — message.msg
sSrc

L— demo.cpp
Srv

L— service.srv

Figure 2.3. Organisation of files and folder

ROS Packages

ROS packages are the basic units of ROS programs.

The workspace is the folder containing all packages. In this project it
will be called "catkin _ws".

This environment allows several packages to be compiled simultaneously
and is a good way to centralise all developments . ROS packages tend
to follow a common structure. The directories and files found in this
work are as follows:

e config: all configuration files that are used in this ROS package
are kept in this folder. This folder is created by the user and it is
a common practice to name the folder config as this is where we
keep the configuration files

e include/package name: This directory includes the headers of
the libraries that you would need.

e launch: This folder keeps the launch files that are used to launch
one or more ROS nodes.
15



Software Tools

e scripts: These are executable scripts that can be in Bash, Python,
or any other scripting language.

e src: This is where the source files of your programs are present.
You can create a folder for nodes and nodelets or organize it as you
want.

2.1.2 ROS Computation Graph level

Computation in ROS is done using a network of ROS nodes. This com-
putation network is called the computation graph. The main concepts
in the computation graph are ROS nodes, master, parameter server,
messages, topics, services, and bags. Each concept in the graph is con-
tributed to this graph in different ways.

[S—

Sarvar Messages

ROS Computational Graph

Level

Figure 2.4. ROS Computation Graph level
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2.1 -ROS 1.0

e Nodes

In ROS, computation is carried out through small units called
nodes. Instead of writing a large and complex program, ROS di-
vides it into smaller units or nodes. This approach of breaking down
the program into smaller modules allows for better modularity and
flexibility, making it easier to develop and maintain complex robotic
systems. By dividing the program into smaller nodes, each node
can focus on a specific task or function, such as sensing, perception,
motion planning, or control. These nodes can then communicate
and exchange data with each other, allowing for a distributed sys-
tem that can work collaboratively to accomplish complex tasks.

e Master

The ROS master plays a crucial role in the coordination of the var-
ious nodes that make up the system. It provides name registration
and lookup processes for all other nodes, which means that with-
out a ROS master, nodes would not be able to find each other,
exchange messages, or invoke services. The ROS master is respon-
sible for keeping track of all the available nodes in the system, their
names, and the topics they publish and subscribe to.

e Parameter server
It allows to store data. These values are accessible and modifiable
by all nodes. The ROS master includes the parameter server

e Topic

A topic acts as a channel through which nodes can exchange mes-
sages with each other. When a node sends a message to another
node, it is said to be publishing to a topic. On the other hand, when
a node receives messages from a topic, it is said to be subscribing
to that topic. Each topic has a unique name that identifies it and
enables nodes to locate and communicate with it. Topics are an
essential component of the ROS system and are used extensively
to share information between nodes.

17
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e Logging
ROS provides a logging system for storing data, such as sensor data,
which can be difficult to collect but is necessary for developing and
testing robot algorithms.

18



2.1-ROS 1.0

Publisher /Subscriber

The Publisher Subscriber Interface is a fundamental feature of the ROS
library, and it provides a way for nodes to communicate with each other
by passing messages. In ROS, a node can act as both a subscriber and a
publisher, enabling it to both receive and send messages. When a node
publishes a message, it sends it to a particular topic that has a unique
name. On the other hand, a subscriber subscribes to a specific topic,
and whenever a message is posted to that topic, the subscriber gets no-
tified. A publisher can publish to multiple topics, and a subscriber can
receive messages from multiple topics. The ROS master is responsible
for keeping track of all the nodes’ IP addresses, which enables them to
communicate with each other effectively. The key objective of the Pub-
lisher Subscriber Interface is to separate the creation and consumption
of information, which enhances modularity and flexibility in the devel-
opment of robotic systems. Neither the publisher nor the subscriber
knows about each other’s existence, and the ROS master facilitates the
communication between them.

ROS Node
 Subscriber |

ROS Node

Topic: fexample
| Message Type: std_msgs/String

ROS Node
~ Subscriber

Figure 2.5. Publisher Subscriber ROS

2.1.3 Community level

The third level is the Community level, which comprises a set of tools

and concepts to share knowledge, algorithms, and code between de-

velopers. This level is of great importance; as with most open source

software projects, having a strong community not only improves the
19
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ability of newcomers to understand the intricacies of the software, as
well as solve the most common issues, it is also the main force driving
its growth.

2.2 Gazebo

Gazebo is a 3D simulation software that is widely used in the field of
robotics for modeling and testing robots in both indoor and outdoor
environments. It is characterized by its advanced physics simulation,
rendering engine, and sensor interfaces, which provide high accuracy
and a high level of detail.

The physics simulation in Gazebo provides a more detailed and real-
istic representation of the physical world compared to other simulators.
It is based on a physics engine that simulates a range of physical prop-
erties, such as gravity, friction, and collisions. This enables Gazebo
to accurately model the behavior of robots and their interactions with
their environments.

In addition to its simulation capabilities, Gazebo includes a collection
of sensors and interfaces that enable users to interact with their robots
and control their behavior. These sensors include cameras, lidars, and
sonars, and can be used to collect data from the environment and feed
it into the robot’s control system.

Gazebo’s flexibility and versatility are further enhanced by its inte-
gration with ROS thanks to a proper ROS interface, which exposes the
complete control of Gazebo in ROS. It is precisely because of all these
characteristics that it was chosen to simulate POP-UP control.

20



Chapter 3

Robot model in virtual environment

3.1 Robot description using URDF

ROS offers several useful packages for constructing 3D robot models,
which can be created using the URDF (Unified Robot Description For-
mat) file.

URDF is capable of representing both the kinematic and dynamic prop-
erties of a robot, as well as its visual and collision models.

To construct a URDF robot model, special XML tags are employed.
The following tags are some of the most commonly used components of
a URDF file [10]:

e Link:
The link tag represents a single link of a robot in a robot descrip-
tion file. This tag is used to model a robot link and its properties
including the size, shape, and color of the link. Furthermore, the
tag can also import a 3D mesh to accurately represent the robot
link in a virtual environment [10].
A mesh is a collection of vertices, edges, and faces that define the
shape and surface of an object in a three-dimensional space [11].
By importing a 3D mesh, it is possible to represent complex and
irregular shapes of robot links with a high degree of accuracy.
In addition to visual properties, the link tag can also define the
dynamic properties of the link, such as the inertial matrix and the
collision properties.

21



Robot model in virtual environment

The inertial matrix defines the link’s mass, center of mass, and mo-
ment of inertia. These properties are essential for calculating the
link’s motion and forces during a simulation.

Collision properties define the behavior of the link when it comes
into contact with other objects in the simulation environment. These
properties can include the shape of the collision volume and the ma-
terial properties of the link’s surface, such as friction and elasticity.
By defining collision properties for each link, a more accurate sim-
ulation of the robot’s behaviour in the real world can be created.
The syntax of the link tag is as follows:

<link name—"<name_of_the_link>">

<inertial >........... < /inertial >

<visual> ............ </ visual>

<collision >.......... </ collision >
</link >

Displayed below is an illustration of an individual link, consist-
ing of two sections: the Visual section, which depicts the physical
appearance of the robot’s link, and the Collision section, which en-
compasses the Visual section to detect potential collisions before
they occur.

Figure 3.1. A visualization of the URDF link

Joint
The joint tag represents a robot joint that connects two links of
a robot model. This tag provides information about the type of
joint, its axis of rotation or translation, and its position relative to
the links it connects [10].

22



3.1 — Robot description using URDF

The <joint> tag has several elements that can be used to describe
different aspects of the joint, as follows:

— name: The name of the joint.

— type: The type of joint. The possible values for this attribute
are revolute, continuous, prismatic, fixed, floating, or planar,
depending on the type of motion that the joint allows.

— parent: The name of the link that the joint connects to the
parent link of the joint.

— child: The name of the link that the joint connects to the child
link of the joint.

— origin: The position and orientation of the joint relative to
the parent link. This element includes the xyz attributes that
specify the position of the joint in meters, and the rpy attributes
that specify the rotation of the joint in radians.

— axis: The axis of rotation or translation of the joint. This
element includes the xyz attributes that specify the direction
of the axis in meters, and can only be used for revolute and
prismatic joints.

— limat: The limits of motion for the joint. This element includes
the lower and upper attributes that specity the lower and upper
limits of the joint motion in radians or meters, respectively. It
also includes the effort and velocity attributes that specify the
maximum effort and velocity that the joint can exert

The syntax is as follows:

<joint name="<name_of_the_joint>">
<parent link="link1"/>
<child link="link2"/>

<calibration .... />

<dynamics damping ..../ >

<limit effort .... />
</joint >

23
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i IO

- |r plifrme

pint axis g

m joint frar

L .'r
o

&
3
]

- |

Pare s me

Figure 3.2. A visualization of the URDF joint

e Gazebo
This tag can be used to include Gazebo-specific parameters that
are not included in the standard URDF format [10]. For example,
it can be used to include Gazebo plugins that provide additional
functionality, such as physics engines, sensors, or controllers.
In this work, the tag is used to add a camera sensor on the end-
effector of the manipulator robot. These plugins can be used to
simulate the behavior of the robot in a more accurate and realistic
way.
In addition, the <gazebo> tag can also be used to define Gazebo-
specific material properties for the robot model. This can include
the visual and collision properties of the links, such as the color,
texture, and friction of the materials.
An example of the syntax is as follows:

<gazebo reference="link 1">
<material >Gazebo/Black</material >
</gazebo>

e Robot:
This tag encapsulates the entire robot model that can be repre-
sented using URDF [10]. Inside the robot tag, we can define all the
other tags that identify name of the robot, links, joints etc..
24



3.1 — Robot description using URDF

The sintax is as follow:

<robot name—"<name_of_the_robot>"

<link> ..... </link >

<link> ...... </link >

<joint> ....... </joint >

<joint> ........ < /joint>
</robot>

25



Robot model in virtual environment

3.2 URDF Pop-up model

Pop-up robot virtual model is a six-degrees of freedom (DOF) serial
robot with a prismatic joint called "dummy joint" that fixs the base to
the world and three revolute joints.

The graphical structure of links and joints is depicted in the figure
below:

world

vz: 000
rpy: 0-00
r

dummy_joint

base

peyz: 00 0.0787
rpy: 0 -0 0

xyz: 0 00.074
py: 1.5708 -0 0

beyz: 0.73 0 -0.039254
rpy: 3.14159 0 0

link 2

Figure 3.3. Graph of joint and links in POPUP
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3.2 — URDF Pop-up model

In order to realise the URDF model of the Popup robot, the popup _3dof.xacro
file is create. First the XML version and encoding format used in the
file are specified. In this case is used the 1.0 xml version.
Then, the robot name is defined.
To ensure that the robot remains rigidly attached to the ground, a link,
that has no information about the geometry, mass, or inertial proper-
ties is created.

<?xml version="1.0" encoding="utf—-8"7>
<robot name="popup 3dof">

<link name="world">

</link >

Next, the links and joints forming the structure of the manipulator
robot are set up.
The links were previously modelled with Solidworks software and im-
ported into the URDF file using the mesh tags. The mesh tag is used
to define the visual and collision properties of a 3D object using a mesh
file format. The mesh file format is in STL format.

27



Robot model in virtual environment

The first link described is the base link. In this regard, it has been
connected to the world via a fixed-type joint.

<link name="base">

<visual >
<origin
xyz="0_0_0"
rpy="0_0_0" />
<geometry>
<mesh filename="package://popup 3dof/meshes/Base.STL" />
</geometry>
<material name="">
<color
rgba="0.752941176470588_0.752941176470588_0.752941176470588_1" />
</material >
</visual >

<collision >

<origin

xyz="0_0_0"

rpy="0_0_0" />

<geometry>

<mesh filename="package://popup 3dof/meshes/Base.STL" />
</geometry>

</collision >

<inertial >

<origin
xyz="-0.000211223053684081_—2.4904738873446E—-05_0.0418999516779425"
rpy="0_0_0" />

<mass value="10" />

<inertia
ixx="0.000932883813436538"
ixy="1.48232249872527E—06"
ixz="9.90380531170409E—-07"
iyy="0.000928773050905896"
iyz="2.22987138205791E—-06"
izz="0.00144668291013681" />

</inertial >

</link >

<joint name="dummy joint" type="fixed">
<parent link="world"/>
<child link="base"/>

</joint >

28



3.2 — URDF Pop-up model

In the same way, the other three links and joints that constitute the
robot arm are defined.
The three links are labelled: link 0, link_ 1 and link_ 2.
As it has been done previously, geometry, mass and inertias are also
specified for these links.
The three joints are labelled: joint 1, joint 2 and joint 3.
Joint 1 is a revolute joint with an axis of rotation along the z-axis
(perpendicular to the x-y plane). It connects the base of the robot to
the first link (link 0) and is located at a distance of 0.0787 meters from
the base.
Joint 2 is a revolute joint that connects link 0 to link 1. It has an
axis of rotation along the z-axis, located at a distance of 0.074 meters
from the joint 1 along the z-axis.
Joint 3 is a revolute joint that connects link 1 to link 2. It has an
axis of rotation along the z-axis, located at a distance of 0.73 meters
from joint 2 along the x-axis and -0.039254 meters along the z-axis.
physical limits within which each joint can rotate are also defined. An
analysis of the mechanical characteristics then also set limits on the
speed and effort they can support.
The table below shows all the characteristics of each individual joint:

name type | joint limit | velocity limit | effort limit
dummy _joint | fixed

joint 1 revolute | 0 to 27 bm/s 10 Nm

joint 2 revolute | -m to 5m/s 10 Nm

joint 3 revolute | 0 to 27 5m/s 10 Nm
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3.2.1 Visualising Popup model

After creating the URDF file defining the robot popup, a launch file to
visualise the model within the Gazebo environment is generated.

As can be seen from the code below, the file called popup 3dof.launch
opens a launch tag and includes another launch file: empty world.launch,
from the gazebo ros package, which is used to launch the Gazebo sim-
ulation environment with an empty world.

<?xml version="1.0" 7>

<include file="$(find_gazebo ros)/launch/empty world.launch">
<arg name="debug" value="$(arg_debug)" />
<arg name="gui" value="$(arg_gui)" />
<arg name="paused" value="$(arg_paused)"/>
<arg name="use sim_time" value="$(arg_use sim _ time)"/>
<arg name="headless" value="$(arg_headless)"/>

</include>

Then, it sets a parameter on the ROS parameter server called robot  description
using an xacro file located at popup_3dof/urdf/popup_3dof.xacro.

Xacro is an XML macro language that is often used to generate URDF

files for robots in ROS. The xacro command is used to convert the xacro

file to URDF format and put it on the parameter server. The result-

ing output of this command is a complete URDF model of the robot
described in the input file, which can be used by other ROS nodes and

tools to visualize, control, or interact with the robot.

<param name="robot description" command="$(find_xacro)/xacro
—inorder_'$(find _popup 3dof)/urdf/popup 3dof.xacro'" />

Subsequently, it launches a gazebo ros node called urdf spawner,
which spawns a URDF robot model in Gazebo using the spawn model
service. It specifies the name of the model as popup 3dof, and the
robot description parameter is used as the URDF description.

After all it launches a gazebo ros node called urdf spawner, which

spawns a URDF robot model in Gazebo using the spawn model ser-

vice. It specifies the name of the model as popup 3dof, and the
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robot _description parameter is used as the URDF description.

<node name="urdf spawner" pkg="gazebo ros"
type="spawn_ model" respawn="false" output="screen"
args="—urdf_—model_popup 3dof

-.—param_robot description"/>

The model is launched using the following command in the terminal:

roslaunch popup_3dof popup_ 3dof.launch

this will result in the model of the robot in the virtual gazebo environ-
ment, as shown in the figure 3.4:

Figure 3.4. Popup model on Gazebo environment

31



Robot model in virtual environment

3.3 Camera sensor

Once the robot model has been created, it was decided to place a cam-
era on the end-effector. The camera will indeed be useful for future
tests of the control algorithms. In gazebo, in addition to being able to
simulate the robot’s movements, it is possible to simulate a number of
sensors including different types of cameras [10].

In this case, the camera was represented as a white block, adding an-
other link and joind to the URDF representing the robot.

A new .xacro file is then created with the description of the camera.

In this file, the necessary camera links are defined: the ’camera_ link’
link representing the camera body, and the 'camera_link optical’ link
representing the optical part of the camera. Two joints are defined.
The first joint, "camera joint", defines the position of the camera with
respect to the robot, while the second joint, "camera optical joint",
defines the position of the camera’s optical element with respect to its
structure. the geometry of the link is defined as a parallelepiped with
dimensions of 0.008 m x 0.02 m x 0.07 m. The material used to display
the link is also specified, namely 'darkgray’, which is defined using the
<material > tag.

To control and simulate the behaviour of the camera within the vir-
tual environment, the plugin: "libgazebo ros camera.so".
The plugin receives data from the camera (such as the captured image)
and publishes it on two ROS topics ("image raw" and "camera_info")
for other ROS nodes to process.
The plugin also defines some camera-specific settings, such as:

e The camera name ("rrbot/cameral") and the camera reference
frame ("camera link")

e The <updateRate> tag which specifies the plugin’s update fre-
quency. In this case, it is set to 0.0, which means that the plugin
is updated at the same frequency as the camera (30Hz).
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3.3 — Camera sensor

e The tags <distortionK1>, <distortionK2>, <distortionK3>, <dis-
tortionT1> and <distortionT2> specify the distortion parameters
of the chamber, which are set to zero in this case, meaning that the
chamber is distortion-free.

The model of the POPUP with the camera placed on the end effector
is shown in the figure 3.5:

Gazebo

ow Help
4O -~ | @OB[%%Z|hEEO|E.

Il )1 Steps: 1 RealTime Factor:

Figure 3.5. POPUP robot with camera sensor
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To display the camera frame, a black sphere has been placed in front
of the robot.
In the figure 3.6 it can be observed the disposition of the robot and the
sphere in the virtual environment, while figure 3.7 shows the camera
frame.

Gazebo

v Help

*+OUN -~ OB« %Z | hER O

Figure 3.6. Placement of an object in front of the robot
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(=387, y=62) ~ R:179 G:179 B:179

Figure 3.7. Image view
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3.4 ROS control

Simulating a robot’s controllers in Gazebo involves the use of the ros_ control
package and a Gazebo plugin adapter, which is a software component
that enables communication between ros_ control and the Gazebo sim-
ulator. The ros_control package provides a hardware abstraction layer

for robot control, allowing the robot to be controlled through a set of
hardware interfaces such as position controllers, velocity controllers, or
effort controllers [12].

To use ros_ control for robot control, additional elements must be added

to the robot’s URDF file.

The <transmission> element is used to link actuators to joints:

<transmission name ="trans 1">
<type>transmission interface/SimpleTransmission </type>
<joint name="joint 1">
<hardwarelnterface>hardware interface/
EffortJointInterface </hardwareInterface>
</joint >
<actuator name="motor 1">
<hardwareInterface >hardware interface/
EffortJointInterface </hardwareInterface>
<mechanicalReduction >1</mechanicalReduction>
</actuator>
</transmission >

In this case, the <joint name=""> tag is used to link the actua-
tors to a joint, while the <type> tag specifies the type of transmis-
sion. Currently, the only transmission type supported is transmis-
sion_interface/SimpleTransmission. Finally, the <hardwarelnterface>
tag is utilized to define the controller interface to load the position,
velocity, or effort interfaces. Currently only effort interfaces are imple-
mented [10].
In addition to the transmission tags, a Gazebo plugin needs to be added
to thr URDF file.
Adding the block of code below to active the gazebo ros control plugin,
allow us to start a list o controller manager services, which can be used
to list, start,stop or switch controllers.
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<!—— ros_control plugin —>
<gazebo>
<plugin name="gazebo ros control" filename="libgazebo ros control.so">
<robotNamespace >/popup_3dof</robotNamespace>
</plugin>
</gazebo>

The joint states are reported from sensors through the following con-
troller [13]:

e joint state controller: This is a controller to publish joint
states. reads joint states and publishes it to the /joint state topic
of type sensor _msgs/JointState

To control the individual joint instead, there are three packages that
allow acting in different control spaces (position, speed and strain). The
main ROS controllers are grouped according to the commands that are
passed to the hardware/simulator:

o effort controller: used to send commands to an effort interface.
This means that the joints controlled accept an effort command.

— joint_effort controller: accepts effort set values as input
— joint position controller: accepts position set values as input
— joint _velocity controller: accepts velocity set values as input

e position controller: used to send commands to a position inter-
face. This means that the joints controlled accept an effort com-
mand.

— joint _position controller: this subclass accepts only position
set values as input

e velocity controller: used to send commands to a velocity inter-
face. This means that the joints controlled accept an effort com-
mand.

— joint velocity controller: this subclass accepts only position
set values as input
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Configuration file

The controller settings of Popup robot are saved in a YAML file that
is loaded via the roslaunch file.

The YAML file defines the controller type, which joint the controller
is controlling, and the specific values for the PID gains (proportional,
integral, and derivative).

Firstly it is defined a joint state controller for the popup S3dof robot
arm, using the JointStateController type from the joint_state controller
package. The publish _rate parameter sets the frequency at which joint
states will be published, in this case 50 Hz.

# Publish all joint states ——
joint state controller:
type: joint state controller/JointStateController
publish rate: 50

Subsequently, a position control is set up for each joint. It uses the
JointPositionController type from the effort controllers package, this
means that it receives a desired position for each joint as input and
computes the appropriate torques to achieve that position.

To choose the PID values, parameter tuning has been performed using
the ROS software framework : rqt_ guu.

# Position Controllers ——
jointl controller:
type: effort controllers/JointPositionController
joint: joint 1
pid: {p: 100, i: 0.01, d: 1}
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3.4 — ROS control

This type of control (Effort/Position) has been selected because it
performed more accurately and precisely than the others provided by
the package.

The two figures below show the robot model before in its initial config-
uration and after the position command has been launched.

Figure 3.8. Popup initial position
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Figure 3.9. Popup final position
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Chapter 4

Visual Servoing

Visual servoing is a control technique that uses visual information to
control the movement of a robot or a dynamic system.

Specifically, it involves using a camera to provide feedback to a control
system.

Visual servoing is divided into two main categories: position-based
visual servoing (PBVS) and image-based visual servoing (IBVS).

In PBVS, the motion control is based on position information, such
as the e current 3D pose (pose/orientation) of an object relative to the
robot system. In this case, the motion control is obtained by adjusting
the position of the system to reach the desired object position.

In IBVS, instead, the motion control is based on image informa-
tion, such the features extracted on the 2D image plane, without going
through a 3D reconstruction [7].

For the purpose of this work, it is chosen to implement a control
based on position information (PBVS) .
The system will use information obtained from an algorithm in the
OpenCV library that tracks the position and orientation of an ArUco
marker in an image captured by a camera.
For future applications the marker will be replaced by an object.
OpenCv was selected since it uses high-optimised algorithms to ensure
high image processing rate. The motion control is obtained by adjust-
ing the position of the system to reduce the distance between the tool
of the robot and the object to be reached.
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Different types of cameras can be used for visual servoing, includ-
ing 3D cameras, stereo cameras, and infrared cameras. The choice of
camera depends on the specific requirements of the application, such as
the required accuracy, lighting conditions, and operating environment.
The camera chosen is an Intel RealSense d435.

It presents high precision, small size and weight and a wide field of
view, features that make it suitable for this purpose

Intel RealSense d435

The D435 is a powerful and compact stereo camera that belongs to the
D400 family. It is capable of streaming both RGB color data and depth
information, thanks to its depth sensor. This low-cost and lightweight
camera is highly effective in enabling the development of applications
that can deal with their surroundings [14].

For this work, depth information is not required.

It is used as a normal 2D camera provided of a RGB module. It is
connected through the PC using a USB cable and posed on the end-
effector of the robot manipulator.

In order to estimate the pose of a marker, calibration parameters of the
camera must be known.

90 mm x 25 mm x 25 mm

Figure 4.1. Intel RealSense d435
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4.1 Camera Calibration

The process of camera calibration is the estimation of the characteris-
tics of a camera.

This involves obtaining all the necessary information about a camera,
such as parameters or coefficients, to establish a precise relationship be-
tween a 3D point in the real world and its corresponding 2D projection
in the image captured by that calibrated camera.

Two types of parameters are typically recovered during camera calibra-
tion.

The first type is intrinsic or internal parameters, which enable map-
ping between pixel coordinates and camera coordinates in the image
frame. This includes: the optical center (¢, ¢, ), focal length (fs, f,)
and radial distortion coefficients of the lens that are combined in the
‘camera matrix’:

f: 0 ¢
Camera matrix = [ 0 f, ¢,
0 0 1

and a vector of 5 or more elements that models the distortion pro-
duced by your camera.
The second type is extrinsic or external parameters, which describe the
camera’s orientation and location. This pertains to the rotation and
translation of the camera relative to some world coordinate system [15].

To obtain these parameters a Python script denoted calibration.py
is created. This code performs camera calibration using 100 images of
a chessboard pattern. The images are stored in a directory and loaded
one by one. An example of the images used for the calibration process
is presented on the following page.
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Table 4.1. Images for calibration process

The chessboard size is defined and object points are created for the
corners of the chessboard.
The code loops over the calibration images and finds the chessboard
corners in each image. If the corners are found, they are added to the
image and object points lists, and drawn on the image.
After all the images have been processed, the camera is calibrated us-
ing the cv2.calibrateCamera function, which takes the image points and
object points lists, as well as the shape of the images, as input.

# Loop over the calibration images
for i in range(l, 100):
# Load the calibration image
img = cv2.imread (f'/home/leonardo/catkin ws/src/URb/scripts/aruco data/{i}.jpg"')

# Find the chessboard corners in the image
ret, corners = cv2.findChessboardCorners(cv2.cvtColor (img,
cv2.COLOR_BGR2GRAY), chessboard size, None)

# If we found the corners, add them to our lists
if ret:

image points.append(corners)
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object points list.append(object points)

# Draw the corners on the image
punti = cv2.drawChessboardCorners (img,
chessboard size, corners, ret)

cv2.imshow ('punti', punti)

# Calibrate the camera

ret , camera matrix, distortion coefficients , rvecs, tvecs =
cv2.calibrateCamera(object points list, image points, img.shape[:2],
None, None)

The function returns the camera matrix and distortion coefficients,
which are printed to the console.
The values obtained are the following:

620.11 0 430.98
Camera matrix = 0 619.66 252.6263
0 0 1

Distortion coefficients = [0.1661 —0.5307 0.0051 —0.0007 0.506}
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4.2 OpenCv

To accurately detect the position of an ArUco marker, the implemen-
tation of advanced algorithms available in the OpenCV library is re-
quired.

OpenCV (Open Source Computer Vision Library) is an open source
computer vision and machine learning software library.

The library has more than 2500 optimized algorithms, which includes a
comprehensive set of both classic and state-of-the-art computer vision
and machine learning algorithms. These algorithms can be used to de-
tect and recognize faces, identify objects, track moving objects, extract
3D models of objects, produce 3D point clouds from stereo cameras
etc |16].

One of the algorithms provided by OpenCV is the "ArUco marker de-
tection algorithm", which allows the detection and tracking of ArUco
markers in real-time.

An ArUco marker is a marker used for augmented reality applications.
It is made up of a black border and an inner binary matrix that de-
termines its unique identifier or id. The black border is designed to
make the marker easily detectable in an image, while the binary matrix
allows for error detection and correction techniques to be applied.

Figure 4.2. Example of markers images
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The size of the marker determines the size of the internal matrix,
with a 4x4 marker being made up of 16 bits.
A dictionary of markers is a set of markers that are considered in a
specific application, represented by their binary codifications.
The main properties of a dictionary are the dictionary size and the
marker size. The dictionary size refers to the number of markers that
are included in the dictionary, while the marker size refers to the size
of each marker, which is determined by the number of bits used to rep-
resent it.
The ArUco module includes some predefined dictionaries that cover a
range of different dictionary sizes and marker sizes, making it easier for
developers to choose the appropriate dictionary for their specific appli-
cation [17]. The dictionary chosen for this application is the 6x6 250.
This dictionary consists of 250 unique markers, each of which is a 6x6
square.
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4.3 Detection and Pose estimation Algorithm
Detection

The marker detection process is a complex process that involves two
main steps.

The first step is the detection of marker candidates, where the image is
analyzed to identify square shapes that may be markers. This is done
through an adaptive thresholding process that segments the markers,
followed by the extraction of contours from the thresholded image. Any
contours that are not convex or do not approximate to a square shape
are discarded. Additional filtering is also applied to remove contours
that are too small or too big, or too close to each other.

Once the candidate markers have been identified, the second step in-
volves analyzing their inner codification to determine if they are indeed
markers. This process starts by extracting the marker bits of each
marker. To achieve this, a perspective transformation is first applied
to obtain the marker in its canonical form. Then, the canonical im-
age is thresholded, separating white and black bits. The image is then
divided into different cells based on the marker and border size. The
number of black or white pixels in each cell is counted to determine if
it is a white or black bit. Finally, the bits are analyzed to determine
if the marker belongs to the specific dictionary, with error correction
techniques employed when necessary.

In the ArUco module, the detection is performed in the detectMarkers()
function. This function is the most important in the module, since all
the rest of the functionality is based on the detected markers returned

by detectMarkers() [17].

Pose Estimation

After the ArUco marker is detected using the detectMarkers() function
in the OpenCV ArUco marker detection algorithm, the next step is to
estimate the pose of the marker.
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Estimated Pose - %
»

(x=581, y=196) ~ R:166 G:175 B:176

Figure 4.3.  Aruco frame

The estimatePoseSingleMarkers() function in OpenCV can be used
to estimate the pose of a single marker using the camera parameters
and the marker’s dimensions. The marker size is the physical size of
the marker, which is usually known in advance.

Once these inputs are provided, the estimatePoseSingleMarkers() func-
tion estimates the rotation and translation vectors of the marker relative
to the camera.

These vectors represent the pose of the marker in 3D space. The rota-
tion vector contains information about the marker’s orientation relative
to the camera, while the translation vector specifies the marker’s posi-
tion in the camera’s coordinate system [17].

Accurate position information is crucial for controlling the robot.
To facilitate this task Robot Operating System (ROS) is exploited.
Indeed, within the code, a ROS node known as ’aruco pose publisher’
is created, which acts as a central hub for publishing the ArUco marker
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pose information. By publishing this information in the ’/aruco pose’
topic, other nodes in the ROS network can easily access and use this
data.
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Chapter 5

Control implementation

Once the ArUco marker position information has been obtained, the
next step is to develop motion control.

It is achieved by calculating the desired velocity value and send it to the
robot. The speed will be calculated using information on the position
of the object to be reached.

o

Figure 5.1. Control scheme

Since the prototype of the Popup robot is not yet available to use, the
control codes are tested on the collaborative robot UR5 from Industrial

Robot, which is located in the DIMEAS (Department of Mechanical
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and Aerospace Engineering) laboratory.

URS

The URD is a versatile and flexible industrial robot manufactured by
Danish company Universal Robots. It has a reach of 850 mm (33.5 in)
and a payload capacity of 5 kg (11 lbs), making it suitable for a range
of applications such as pick-and-place operations, machine tending, as-
sembly, and testing. The URb has six joints. Each joint can rotate of
4+360° and can reach a maximum speed of £180°s.

The robot is almost completely made of steel besides the junctions be-
tween links which are covered with PP plastic [18|.

It can be programmed using a simple, intuitive graphical interface,
by manually moving the robot arm or, by sending commands using
a Python script, as it is done in this work.

Figure 5.2. URS5
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5.1 Communication protocols

A main python script is developed to implement the control.

This script receives the information of the position of the ArUco mark-
ers, the robot’s joint and tool and uses it to calculate the speed com-
mands to be sent to the URS.

The data of the position of the Aruco is obtained from the topic sub-
scribe " /aruco _pose".

\[o]n]H

‘aruco_pose_publisher’

Topic:
[aruco_pose

NODE:
‘aruco_pose_subscriber’

Figure 5.3. Publisher / Subscriber Communication
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The communication with the robot is performed through the use of
sockets.
Sockets are a mechanism for communication between processes running
on different computers over a network [19]. They allow programs to
send and receive data across a network.
The two main components for socket communication are: socket client
and socket server.
A socket server is a programme that listens for incoming connections
from other devices, known as clients. The server is usually run on a
specific IP address and port number and waits for clients to connect to
it.
A socket client, on the other hand, is a programme that connects to a
socket server to initiate communication. The client usually knows the
[P address and port number of the server it wants to connect to.

Client Server
/P Python Socket App\ /P Python Socket App\
Protocol: TCP Protocol: TCP
Internet: IP Internet: IP

\ Link - > Link /

Figure 5.4. Client Server socket communication

Once the connection is established, communication between server
and client is performed using send and receive operations.

The initialisation of the TCP/IP socket connection between a client
device (UR5 in this case) and a server device (PC used) is realised by
creating a Python function called ’initialisation()” which returns the
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values required to continue communication.

The function initialises the IP addresses of the client and server devices,
HOST and server respectively.

It also initialises the port number that the client will use to connect to
the server and the port number of the fncPort function used to receive
feedback on the execution of commands on the robot.

The function creates a new socket object using the socket module, a
standard Python library.

def initialization ():

HOST= '169.254.123.5"
server='169.254.123.1"

PORT=30003
fncPort = 2000
# Memory preallocation

# Flag initialization

exit=False

# TCP/IP connection
s = socket.socket (socket .AF _INET, socket.SOCK STREAM)
s.connect ((HOST, PORT))

return( exit , HOST, server, fncPort, s)

Finally, the function returns a tuple containing the initialised values:
the exit flag (initialised to False), the IP addresses of the HOST and
server, the port number of the fncPort function, and the socket object
"s". The communication is executed at 125 Hz.
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5.2 Control Algorithm

CONTROL _ONLINE.py is the main python script created to imple-
ment robot control. Several libraries and functions defined in advance
are used within it.

A block diagram showing the control’s operating scheme is shown below.

start

v

ros node and URE
parameters
initialization

D

Arlco marker
pose reading

¥

URS Tcp pose
and joint position
reading

Is
AruCo marker _
detected? computation

speed set o:
[0,0,0,0,0,0]

Figure 5.5. Control code block diagram
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As shown in the diagram above, the first step is to initialise the pa-
rameters.
A TCP/IP connection with the UR robot is initialised using the "UR.initialisation()"
function.
This function returns a number of variables including a socket ("soc")
which is used for communication with the robot.
A callback function called "pose callback" is then defined, which is
executed whenever a ROS message arrives on the topic " /aruco__pose".
This topic is used to receive the position and orientation of the AruCo
object with respect to the camera.

| exit, HOST, server, fncPort, soc| = UR.initialization ()

def pose callback (pose msg):
global position aruco

position = pose msg.pose.position
orientation = pose msg.pose.orientation

Once the AruCo object has been detected, the programme enters a
while loop that controls the robot’s movement based on the object’s
position.
The while loop is executed continuously until the programme is inter-
rupted.
Within the while loop, the programme checks whether the position of
the AruCo object is equal to [1000, 1000, 1000, 1000, 1000, 1000].
This value is used as a stop signal in the event that the AruCo object
is not detected by the camera.
If the position has not been detected (i.e. position aruco is equal to
[1000, 1000, 1000, 1000, 1000, 1000]) the end-effector robot is stopped
via the "speedl" function with a speed value of [0.0, 0.0, 0.0, 0.0, 0.0,
0.0]. In this way, the robot remains inactive until the position of the
AruCo object is detected.
This command requires two main arguments: the first is an array of
six elements representing the linear speed of the robot’s tool in terms
of metres per second for each axis (x, y, z, rx, ry, rz), while the second
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is a maximum acceleration value allowed by the robot.

if (position aruco = [1000,1000,1000,1000,1000,1000]):

print ("ARUCO_NO_DETECTED" )
messaggio = {'speedl ([0.0,0.0,0.0,0.0,0.0,0.0],_.0.00)\n'
soc.send (messaggio.encode ())

If the position of the AruCo object has been detected, the code pro-
ceeds to calculate the velocity vector.
In order to obtain the velocity vector, first, the position of the tool rela-
tive to the camera is calculated, with a safety margin of 20 centimeters
in the z-axis, to ensure that the tool does not come into contact with
the AruCo object during movement during the test phase, and and a
displacement of 17 mm on the x-axis, due to the misalignment of the
camera with the tool.

Next, the code calculates the maximum permissible speed for the
movement of the robot of the end-effector robot. This value is directly
proportional to the Euclidean distance between the robot tool and the
target to be reached, multiplied by a factor of 0.5. In other words, the
closer the tool is to the target, the lower the maximum speed.

This maximum speed value is then used to calculate the linear speed
of the end-effector robot in each axis (x, y, z), based on the direction
of the positional vector between the robot’s current position and the
desired position of the tool.

The maximum acceleration value is set at 0.05 m/s?, a rather low value,
which means that the robot’s movement will be very slow and con-
trolled, so as to ensure safety when handling objects.

else:
print ("Aruco_detection")
posiz_a = position aruco [:3]

#position with safety margin
posiz_tool = [posiz_a[0] — 0.0017 , posiz_a[l] , posiz_a[2] — 0.20]
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norma = math.sqrt (sum([x**2 for x in posiz_tool]))
velocita max = 0.5*norma
versore = [x/norma for x in posiz_tool]

#velocity wvector
velocita tool = [velocita max*x for x in versore]

Finally, the code converts the linear speed from the camera reference
system to the robot base reference system, using the 'rotation’ function.

The "rotation" function takes a vector of six joint values as input and
returns a rotation matrix R. The rotation matrix allows the velocity
vector to be transposed from the tool reference system to the base
reference system.

Figure 5.6. Tool reference frame and base reference frame

The calculation of these matrices is recursive and is obtained by sim-
ply multiplying the homogeneous matrices A:~'(g;) where each of which
is a function of a single joint variable. The Denavit-Hartenberg con-
vention has been adopted to select the reference systems of each link.
It is a method which defines four parameters associated to each link in
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order describe the position of the reference frames of each joint of the
robotic arm.
The four parameters defined for each link i are:

e Offset Distance a; : distance between z; and z;; measured along
L
e Translation distance d;: : distance between axes x; and x;;

measured along the positive direction of z;

e Twist angle o;: between axes z;; and z; . It is the angle required to
rotate the axis z;; into alignment with the axis z; in the right-hand
sense about axis x;

e Joint angle 6;: between axes x;_1 and z;. It is the angle required
to rotate the axis x;_1 into alignment with the axis z; in the right-
hand sense about axis z;.

joint axis i-1 joint axis 1 joint axis i+1

Figure 5.7. Standard Denavit Hartenberg convention representation

The table below, obtained from the Universal Robots website, out-
lines the DH parameters for each link of the UR5 robot.
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5.2 — Control Algorithm

The robot arm’s degrees of freedom are represented by the letter ¢, and
they differ based on the arm’s configuration during a particular moment
in its trajectory.

Joint | ¢;[°] | di[m] a;lm] | os[’]

Base ql |0.089159 0 90
Shoulder | g2 0 -0.425 0

Elbow | q3 0 -0.39225 | 0
Wrist 1 | g4 | 0.10915 0 90
Wrist 2 | g5 | 0.09465 0 -90
Wrist 3 | 6 | 0.0823 0 0

Using the Denavit Hartenberg parameters and taking the positions
of the joints as input, the function created, i.e. 'rotation.py’ calculates
the translation matrix from the tool to the base, by postmultiplication
of the single transformations as:

ch; —sb;co; sO;sa;  a;ch;

A;ﬁfl — |sl; cOica; —cb;so; a;sh; (5.1)
0 sqy; coy; d;
0 0 0 1

A three-element vector composed by three zeros is added to the ve-
locity vector.
This vector represents the rotation speeds around the three axes, which
for this study has been intentionally set to zero. The final velocity vec-
tor, composed by 6 elements, is then sent to the robot via the ’speedl’
command.
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R = rpy.rotazione (theta)

#direct kinematics
velocita base = R @ velocita tool

#velocity wvector
velocita = list (np.append(velocita base ,[0,0,0]))

messaggio = f'speedl({velocita},_0.05,_2)\n'
soc.send (messaggio.encode ())

Overall, the while loop is responsible for constantly checking the
position of the AruCo object relative to the camera and moving the end-
effector robot in a controlled and safe manner to the desired position.
The speed of the while loop and thus of commands transmitted by the
robot is 125 Hz.
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5.3 — Results

5.3 Results

5.3.1 Test with stationary target

The first test was carried out by holding the target stationary and ver-
ifying that the robot detected it and approached it correctly.

Below is a sequence of images showing the movements of the manip-
ulator robot, from the initial position, to the final position where it
reached the target

Initial pose

Final pose

Table 5.1. Trajectory to reach the target
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The graph below shows the evolution of distance and speed in relation
to time.

The graph proves to be consistent with what is set in the algorithm for
the maximum speed value. According to the relation:

speed = 0.5 * distance (5.2)

Indeed, the maximum speed value for the duration of the test is always
half of the distance value.
The robot reaches the target in approximately 10 s.

Target stead
0.16 9 T A 0.35
distance
L speed
0.14 145D
0.12
1 0.25
0.1F
102
= &
£ 0.08 =
1015 —
0.06 [
1 0.1
0.04
0.02 10.05
0 : sz 0
0 5 10 15 20

[s]

Figure 5.8.  Distance and Speed in relation to time
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5.3 — Results

The position of the ArUco target is then analysed in two different
reference systems: base reference system and tool reference system.
The position of the ArUco should remain unchanged with respect to
the base, but calculating the standard deviation for the position with
respect to each axis, we obtain:

o, = 0.0026m (5.3)
o, = 0.00997m (5.4)
o, = 0.0021m (5.5)

According to the figure 5.9, the major displacement occurs along the
y-axis. This was caused by the inaccuracy of the vision algorithm.

ArUco Position with respect the base frame

0.6 -
0.58

0.56

E ~
N 0.54 . 0.8

0.52 =r 0.75
<
05 // 0.7
: / trajectory
0 DE}X( 0.65 O last position
I x [m] 4 starting point
- -0.08 0.6
y|m

Figure 5.9. Aruco Position with respect the base frame
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The plot depicts the trajectory of the ArUco marker in the tool’s
reference system.
The final position, should coincide with the point: [0.0017, 0, 0. 20]. Tt
is the position of the target.
These values represent the offset that has been set to maintain a dis-
tance from the marker such that it always remains in the visible field.
The target point is represented by the black cross, whereas the actual
end point reached in the simulation is represented by the red circle.
As the graph shows, the final position is very close. In particular, it
coincides with [0.0171, 6.3770e-05, 0.1996] m.

ArUco Position with respect the tool frame

0.45 .
04
E 0.35
N
0.3
0.25 «,
0.2 trajectory
O last position
0'05'02 b ,('( 0 % starting point
0 —0.019‘02 ®  position target
y [m] x [m]

Figure 5.10. Aruco Position with respect the tool frame
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5.3 — Results

Finally, the last graph illustrates the trajectory of the tool with re-
spect to the robot’s base reference system.

TCP Trajectory

<~ 06

0.55
0.68
E 0.66
N 0.64

trajectol
-0 0.2 ' x[m] O Iath E)osririoln
y [m] ¢ starting point

Figure 5.11. TCP trajectory in base frame
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5.3.2 Test with moving target

The second test was carried out by holding the target stationary and
waiting for the tool to approach. Then the target was moved.

Initial pose

Target reached

Target following

Table 5.2. Trajectory to follow the target
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5.3 — Results

As can be seen from the graph below, the distance and speed decrease

when the robot is approaching the target, and then increase again when
the marker is moved.

Target movin
0.25 T T T g T g. T T 0.25
distance
——— speed
0.2 1 2
0.156 1045
— w
E E
0.1 1.9
0.05 1 0.05
0 : 0
35 40

[s]

Figure 5.12. Distance and Speed in relation to time
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The displacement of the target is more evident when analysed with
respect to the base reference system.
The green dot represents the start position, the red circle the end posi-
tion. In this case, the displacement occurs along the y-axis of the base
reference frame.

ArUco Position with respect the base frame

el

0.6

trajectory
O last position
0.4 x [m] 4 starting point

Figure 5.13. Caption

70



5.3 — Results

The graph shows the trajectory of the ArUco marker in the tool ref-
erence system.

It first approaches the target and then follow it.

As in the simulation discussed above, the robot in its final position
should reach the point [0.017, 0, 0.2] m.

The actual final position reached is: [0.017, 6.25¢-05, 0.199] m.

ArUco Position with respect the tool frame
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Figure 5.14. ArUco Pose in the tool frame
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Finally, the last graph illustrates the trajectory of the tool with re-
spect to the robot’s base reference system.

TCP Trajectory
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-04 y [m] trajectory
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Figure 5.15. TCP Trajectory in base frame
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Chapter 6

Conclusion

The principal goal of the thesis work was to propose a visual servoing
control strategy for the POPUP robot prototype.

The first phase of the work involved the study of the ROS 1.0 mid-
dleware, the Gazebo simulation environment and all its packages. ROS
1.0 proved to be a powerful tool for controlling the robot, either on the
virtual environment.

This phase was followed by the creation of the model of the POPUP

robot on the virtual environment. The dissertation describes the proce-
dure for obtaining a model of the robot that could describe its dynamic
behaviour.
The model of a virtual camera on the robot’s end-effector and a pack-
age to control the robot were included in the Gazebo world. These two
tools will allow the test of possible control algorithms on the virtual
model for future work

The next step was to develop a visual servoing control strategy and
test it on Industrial Robot’s URbH robot in the DIMEAS laboratories.
Before moving on to the development of the control algorithm, the dif-
ferent visual servoing techniques were analysed and the most suitable
was chosen according to the robot’s tasks. A careful analysis was also
performed regarding the different cameras to be used, searching for the
best compromise between precision, size and weight. Subsequently, the
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camera was calibrated and the Python code for control realised.

The main difficulty in this step was the synchronisation between the
data received by the ros node, by the UR5 and the commands sent to
the UR5. To avoid communication delays, the communication channel
between the control code and the robot (the socket) is left open. Data
is received by reading the buffer and the selected the most recent data.
Thanks to the power of the Python language, it was possible to achieve
real-time communication.

Finally, the control was tested in two different situations: firstly, by

holding the marker steady and waiting for the robot to approach it, and
secondly by moving the marker and checking that the robot followed it.
In both cases, accurate results were obtained and the market was fol-
lowed in real time.
The visual servoing strategy thus proved to be feasible and robust. Al-
though the test was carried out on a rigid robot, the independence of
the robot’s inverse kinematics, the optimal results obtained and the
good performance demonstrated its transversality in being adopted in
different applications and for controlling different types of robots.

Future developments will include the implementation of visual ser-
voing in the POPUP robot prototype.
It could also be considered to include also a control algorithm for the
orientation of the tool.
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