
POLITECNICO DI TORINO

Master’s degree course
in Data Science

College of Computer Engineering, Mechatronics, and of Cinema

Master's degree thesis

AWS Cloud: Infrastructure, DevOps techniques,
State of Art.

Supervisors: Candidate:
Prof. Ing. Luciano LAVAGNO Simone BOSCAIN

Co-supervisors:
Stefano AMEDEO (company tutor)

Academic Year 2022/2023

1

Summary

Summary ..1

Image Index ..3

Acronym...7

Abstract ..10

Thesis goal ..12

1 Cloud development history ..14

1.1 Cloud advantages .. 16

1.2 Amazon Web Services ... 18

1.3 Microsoft Azure ... 19

1.4 AWS vs Azure ...20

2 Amazon Web Services ..21

2.1 AWS list of services ..22

2.2 Serverless architecture ..27

2.3 Monolithic architecture and microservices architecture29

2.4 Microservices advantages and disadvantages .. 30

2.5 Building microservices architecture .. 33

3 DevOps .. 37

3.1 Visibility, focused team, util job .. 38

3.2 Learning culture and company transformation process39

3.3 Different types of business organization .. 40

3.4 Continuous delivery, testing, secure deployment .. 42

3.5 Microservices architectures .. 44

3.6 The error as value and starting point ..45

3.7 Logging systems and control metrics .. 46

2

3.8 Cloud security ..47

3.8.1 Shared security model: ...51

3.8.2 AWS shared responsibility security model: .. 53

4 Development of the project ...55

4.1 Virtualization and containers .. 60

4.2 Amazon elastic container registry (ECR) ... 61

4.3 Kubernetes .. 62

4.4 Docker ..64

4.5 Amazon Elastic Kubernetes Services ... 65

4.6 Lambda review.. 66

4.7 AWS container app development vs AWS function as a service 66

4.8 Architecture ...68

4.9 Base architecture ...68

4.10 Secret Manager ... 71

4.11 Test with API Gateway ...71

4.12 CloudWatch ... 73

4.13 Relational Database Service (RDS) .. 74

4.13.1 AWS RDS MySQL: ... 77

4.13.2 AWS Aurora: ...78

4.14 Adding the RDS Proxy: ...79

4.14.1 Performance improvement of using and RDS Proxy with serverless

applications: .. 80

4.15 Cloud security: ...80

4.15.1 Authentication and Cognito configuration: ... 81

4.15.2 Cognito from theory to practice solutions: .. 82

4.16.3 Adding Cognito to the rest of the architecture: ...87

4.16 S3 ... 88

3

4.17 Infrastructure as Code ...89

4.17.1 CloudFormation ..90

4.17.2 Terraform... 92

4.17.3 Working principle of Terraform... 92

4.18 Swagger vs API Gateway documentation ..93

5 Agile development ...96

5.1 Trunk-based development .. 97

5.2 Deployment strategy ...98

5.3 CodeBuild ...99

5.4 CodeDeploy ... 100

5.5 CodePipeline ..101

5.6 Scrum...102

5.6.1 Scrum planning ...104

5.6.2 Scrum execution... 104

5.7 End of the sprint .. 105

Conclusions and future development ..106

Bibliography and sitography ... 107

Thanksgiving ...108

4

Image Index

Image 1:1 : Data flows from the cloud directly into the devices we keep in

our hands. ... 14

Image 1.2 : AWS Cloud logo. ...18

Image 1.3 : Microsoft Azure Cloud Logo. ..19

Image 2.1 : AWS is like a toolbox for Cloud. ... 21

Image 2.2 : AWS has a wide list of services (in this image we see only a part

of them). ..22

Image 3.1 :DevOps techniques improves the process of software

development. .. 37

Image 3.2 : The growth of a company is enfatized by the growth of his

employees. .. 39

Image 3.3 : Using DevOps techniques we can improve delivery, testing and

deployment of the application. ...42

Image 3.4 : Splitting the application into smaller service is the way to go to

avoid difficulties in deployment, testing and teamwork on an app.44

Image 3.5 : Analyzing the application in the correct way is really important. 46

Image 3.6 : Security in cloud is a bit particular and imply a shared

management between provider and developer. ..47

Image 3.7 : In the image above we can see who has the responsibility for

security in each type of architecture. ... 53

Image 4.1 : This is the final architecture of the project ..55

5

Image 4.2 : In the image we can see how ECR works in a complete

application ...61

Image 4.3 : In the image we can see the working principle of EKS 65

Image 4.4 : This is the basic architecture of our application 68

Image 4.5 : This is an example of how an API rest is visualized in the API

Gateway .. 69

Image 4.6 : Visualization of a lambda and its API Gateway trigger in AWS

lambda panel. ..69

Image 4.7 : In the image we added to the basic infrastructure the secret

manager component ...71

Image 4.8 : CloudWatch is the AWS monitor service ... 73

Image 4.9 : Amazon Relational Database Service let you manage the most

used database engines ..74

Image 4.10 : MySQL is the most famous database engine77

Image 4.11 : Aurora is a really fast and scalable relational database engine78

Image 4.12 : We added the RDS Proxy to better manage the connection to

the database ..79

Image 4.13 : Cognito has everything you need to manage the authentication

flow ..81

Image 4.14 : A sample of registered users in Amazon Cognito panel 82

Image 4.15 : Cognito access method panel .. 84

Image 4.16 : Continuation of the preceding panel ... 84

Image 4.17 : Multi-factor authentication panel ..85

6

Image 4.18 : In this panel you personalize the verification code 86

Image 4.19 : Adding Cognito to the architecture ... 87

Image 4.20 : Amazon S3 is a really elastic data container service88

Image 4.21 : Terraform let you implement infrastructure as code for most of

the cloud providers ... 92

Image 4.22 : Swagger let you describe the structure of your API 93

Image 4.23 : API Gateway documentation panel ... 94

7

Acronym

AWS: Amazon Web Services

IaaS: Infrastructure as a Service

PaaS: Platform as a Service

SaaS: Software as a Service

FaaS: Function as a Service

AZ: Availability Zones

EC2: Elastic Compute Cloud

S3: Simple Storage Service

RDS: Relational Database Service

VPC: Virtual Private Cloud

VPN: Virtual Private Network

DNS: Domain Name System

IAM: Identity and Access Management

SNS: Simple notification service

API: Application Programming Interface

HTTP: Hypertext Transfer Protocol

REST: Representational State Transfer

DevOps: Development Operations

ECR: Elastic Container Registry

8

EKS: Elastic Kubernetes Service

JSON: JavaScript Object Notation

YAML: Ain’t Markup Language

TBD: Trunk-based development

9

10

Abstract

This thesis consists in an analysis of a project developed in collaboration

with Akka Technologies Company. The implemented software is a backend

service built with the support of Amazon Web Services technology, which is

the leading cloud provider service. The purpose of this work is to review the

best strategies and technologies used during the development of the project.

However, the thesis can’t enter either the specifics code details or its future

applications due to the customer required secrecy. During the

implementation of the project, the first decision taken is to employ the cloud

to host the architecture in order to lower the cost, improve the scalability and

reliability. Therefore, the second decision is related to the choice of the best

cloud provider. Amazon Web Services (AWS) is a slightly better option than

the competitors. The development paradigm used is called serverless, that

means the developer does not need to build his own server infrastructure but

he can exploit the one furnished by the cloud provider. This is a big advantage

in terms of deployment rapidity, cost and easiness of making the software

scale because it does not require further investments in hardware or time. In

fact, to change the service options, only few actions are needed. AWS offers a

long lists of services that can be used to realize cloud projects. After the

analysis of the most important ones, the basic services for realizing the

project are EKS and Lambda. Lambda is the best choice because its pricing is

based on usage and its running time must not overcome 15 minutes which is

more than enough to run an API REST that save and retrieve data on the

database. The others main architectural components used are the API

Gateway that exposes the endpoints necessary to reach the lambda

functions, the Secret Manager which keep stored environmental variables,

Cognito that is the authentication service and RDS which is the database one.

The process of development is realized using the best practices proposed

from DevOps. Therefore the app is a microservices one, in fact each lambda

works independently from the others. The job is organized using Scrum to try

11

to keep the a good visibility of the tasks and following an idea of learning

culture and improvement of the team members. The strategy of continuous

delivery, testing, logging systems and cloud security are realized at state of

art. Also the Infrastructure as Code paradigm is implemented with Terraform

service that let you create a cloud infrastructure only using code.

12

Thesis goal

This thesis was carried out in collaboration with the company AKKA

Technologies mainly operating in smart working under the guidance of the

enterprise tutor Stefano Amedeo and with the help of supervisor Luciano

Lavagno. The company, which has offices throughout Italy and Europe, is

interested in various sectors of technology and deals both with the realization of

projects and with providing assistance to other industries through its experts.

The main purpose of this thesis is the resolution of a problem raised by the

company itself, which needs to develop software that is able to receive data from

a Bluetooth device installed on a wearable accessory, visualize and manage all

these data on an app and store them in cloud. If we want to analyze the project,

we can say it needs a large gamma of competences to be built to its fullest. At the

start the company offered me different options to work with:

 The creation of the communication protocols between the app

and the firmware;

 The creation of the app;

 The creation of the backend service using cloud technologies;

 Machine Learning and/or Deep Learning on the data gathered by

the app to improve the service or analyze some key information

about the devices;

 Keeping account of the optimal cloud architecture, develop

following the best-practice DevOps principles and the study of

laws concerning data backup in various countries of world.

13

All the options were very interesting but at the end i opted for the last

three points excluding the laws study about the data in the world. Unluckily

the development level of the project at the start was only at its initials stages,

so only after some time we discovered that the time required to acquire app

data to make a Machine Learning or Deep Learning job would be too long for

my thesis deadline. So at the end the main focus of this thesis is around cloud

technologies, their best architecture setup and all what concerns state of art

practices of developing in a team following the DevOps principles.

14

Chapter 1

1 Cloud development history

Image 1:1: Data flows from the cloud directly into the devices we keep in our hands.

Initially, companies and businesses with the need to store data had their own

servers located in their respective offices. Later, to achieve their protection and

to make management easier, the servers were moved to places suitable for their

storage called datacenter. It was then decided to install only one application per

server due to the difficulty of isolating the services provided by different software.

Due to this rule, analyzing a data center, it was observed that many servers were

inactive most of the time. To overcome the rule of one application per server,

three problems had to be solved:

1. Isolation of shared configurations: two different applications

may require different versions of the same library to cite an

example;

15

2. Performance isolation: if an application consumes a lot of CPU it

could cause slowdowns in the use of the others;

3. Isolation for security and reliability: breaching an application

could compromise the entire server and therefore also the

security of the other applications it contains.

Thanks to virtualization it has been possible to overcome these limits by allowing

the simulation of many completely isolated servers on the same physical machine,

also simplifying their management. The annexation of large quantities of servers

in data centers combined with the ease of management provided by virtual

machines has led to the birth of cloud computing. The cloud is a technology that

allows remote access to software and hardware resources, the use of which is

offered as a service by a provider. So in the cloud the user does not buy the

product, hardware or software, but pays to use it. Cloud computing is becoming

more and more successful, and this has favored the born of various types of cloud

services with different levels of control, adaptability, and management:

1. Software as a Service (SaaS): The product that is furnished with

it is fully administered by the service provider. In the case of

SaaS, the user's only concern is learning how to use the software

offered by the provider without worrying about the

management of the underlying infrastructure or service.

2. Platform as a service (PaaS): The provider offers to the user a

basic set of services that can be used to create new software.

The user doesn't have to worry about hardware management

but only about application development. Developers can then

focus on deploying and managing applications and don’t have to

manage infrastructure (hardware and operating systems). There

may be some development limitations regarding the types of

programming languages accepted by the platform.

16

3. Infrastructure as a service (IaaS): This type of service

encompasses the basic elements of cloud-based IT and usually

guarantees access to network functions, servers (virtual or on

dedicated hardware) and data storage space. Through the IaaS

you get the highest level of elasticity and monitoring of IT assets.

So in this type of service the provider offers the infrastructure,

while the user creates the virtual machines and loads the service

he wants to provide onto them.

4. Function as a service (FaaS): is a type of cloud computing service

that allows developers to construct, compute, operate, and

manage application packages as functions without having to

maintain their own infrastructure. FaaS is an event-driven

execution paradigm that operates in stateless containers, and

those functions handle server-side logic and state by utilizing

services from a FaaS provider. FaaS provides developers with an

abstraction for executing web applications in response to events,

while avoiding the need to manage servers. FaaS infrastructure

is often metered on-demand by the service provider, largely via

an event-driven execution approach, so it is available when

needed, but does not necessitate any server processes running

continuously in the background, as platform-as-a-service (PaaS)

would.

1.1 Cloud advantages

The reasons to use the cloud services are various:

1. Variable costs based on consumption indeed of fixed investments.

The Cloud generally has lower prices than the ones required by

the management of a local server (thanks to its aggregate

administration).

17

2. Resolves the need to guess the size of the service prior to its

creation and allows you to access exactly the required quantity by

scaling it up or down as needed.

3. The distribution of the service is fast and agile because you need

only few clicks to send online a new service without being worried

about the server management. You can rapidly distribute a

service in different parts of the world in an easy and fast way

reducing the latency problems.

4. Releases the developer from server management and server

expenses allowing to shift the focus to user needs.

The main reason that cloud computing has been so successful remains the ability

to lower initial investments for IT infrastructure by replacing it with modest

variable costs, which change according to the needs of the business. Thanks to

the cloud, enterprises no longer have to plan the purchase of servers and other IT

devices in advance. Now they can create all the assets they need in minutes,

significantly reducing deployment time. The global Covid pandemic that has

damaged many markets has instead shown, in the case of cloud computing, the

importance of being able to quickly access IT resources with affordable prices.

The cloud services are provided by various suppliers. The following data have

been extracted from the Ref “Statista website”. The AWS supplier in 2022 has a

32% market share in the field of cloud computing, confirming itself as the leader

in the sector. Microsoft Azure is still the second giant on the market with a share

of 23%. Far behind the other big players in the sector are Alibaba and GPC with

about 9% each. We will analyze below the two main competitors in the cloud

computing sector.

18

1.2 Amazon Web Services

Image 1.2: AWS Cloud logo.

Amazon Web Services (AWS): Amazon provides its cloud-based services through

this platform. Amazon is the current global market leader in the sector and

continues to invest in the improvement of the services offered by AWS. One of

the main benefits of the platform is the customer’s friendly pricing based on the

amount of usage of the AWS services. AWS cloud is also the supplier that has

servers in the most high number of various geographical areas of the world and

this allows to decrease the latency of its services. The availability of the service is

also another positive point for AWS and, in fact, it is around 100%. This is the

reason many companies including Spotify, Netflix and Airbnb host their data on

AWS.

19

1.3 Microsoft Azure

Image 1.3: Microsoft Azure Cloud Logo.

Microsoft Azure: formerly known as Windows Azure, it’s Microsoft's cloud

computing platform. It offers several cloud services, including computing, analytic,

storage, and networking. Organizations can leverage these services to build new

applications or launch existing software in the cloud. Azure seeks to support all

industries and is compatible with open source technologies. With Azure you can

start servers, balance them, scale them, launch serverless functions, generate

virtual networks and store large amounts of data. The main disadvantage of

Azure is the cost of its services which are relatively higher than the competitors.

However, it is currently the main competitor of AWS and has an almost equally

efficient geographical coverage with more than 40 datacenters scattered all over

the world.

20

1.4 AWS vs Azure

If we want to compare these two service providers, the first point to analyze

concerns the virtual machines (VMs) which constitute the backbone of the cloud

environment for the virtualization of IT systems. We can say that in this case the

technologies put in place are different, but similar in terms of capabilities and

functionality, even if AWS seems to have slightly better performance. As for the

network difference characteristics, both AWS and Azure provides very similar

services but AWS, having more datacenters, is able to lower the latency of the

service a little more than Azure (If we consider an average of the latency of the

two service providers). AWS and Azure also have parallel and cutting-edge

characteristics in data storage and cybersecurity. In terms of costs, AWS seems to

be a little cheaper than Azure. Even if the differences are not so marked and both

rivals are valid choices, it was decided in agreement with the company to deepen

the study of AWS which seems to be a generically better option than the

competitor.

21

Chapter 2

2 Amazon Web Services

Image 2.1: AWS is like a toolbox for Cloud.

Starting in 2006, Amazon Web Services (AWS) began providing businesses with

cloud computing web services through its IT infrastructure. AWS despite already

being an industry sector leader continues to extend the global infrastructure to

provide its users with low latency and high throughput services and allow data

storage in the desired regions. The AWS infrastructure is based on Regions and

“Availability Zones” (AZ). In a region there are many AZs in which there are data

centers in variable numbers, each arranged in a different structure. The goal of

this widespread arrangement is to obtain high performance, scalability and

resistance to failures. Each AZ is located in areas with low risk of environmental

catastrophes and is powered by networks that are different from the others in

order to limit the possibility of the collapse of several AZs at the same time.

Thanks to these characteristics, AWS has an extremely stable, adaptable and

economical cloud infrastructure chosen by more than one hundred thousand

companies worldwide. AWS provides all different types of services: Infrastructure

as a Service, Platform as a Service, Software as a Service, Function as a Service.

One of the main reasons because AWS is chosen is the pricing which is very clear.

22

Each AWS instance has a cost based on its usage time or its disk usage amount in

case of a data storage service. There is also a payment window which shows the

customer's costs for each individual service. The registration process is also

designed to be very accessible and does not require signing any agreements. It is

sufficient to enter the email and credit card and you can work immediately.

2.1 AWS list of services

AWS offers a multitude of services designed for every customer need:

Image 2.2: AWS has a wide list of services (in this image we see only a part of them).

The amount of services provided by AWS is so large and out of our scope that we

will only analyze the ones seen during the development of our project:

23

 Amazon Elastic Compute Cloud (Amazon EC2) is a web service

that provides secure and adaptable computing power within the

AWS Cloud. It is designed to make large-scale computing

resources more accessible to users. Thanks to the EC2 graphical

interface, we can easily select the required configuration of the

virtual machine we will run into the Amazon environment. You

can choose from many instances with different operating

systems and software packages, as well as select the best

amount of memory, storage space, CPU for your application.

Through Amazon EC2 we are able to change the amount of

resources available quickly and easily allowing our projects to

scale without difficulty, and it is also possible to have the service

automatically scale as needed thanks to auto-scaling which can

change the number of available EC2 instances based on the load.

Through Elastic Load Balancing you can automatically distribute

traffic among multiple EC2 instances, and this provides higher

resistance to errors and allows you to distribute traffic evenly.

EC2 can integrate with most other AWS services and is very

reliable, in fact AWS guarantees higher than 99% availability in

each region. In addition to being reliable, the EC2 service is also

secure and works in conjunction with Amazon VPC to provide

robust network features for users. It is also possible to choose

between different payment plans which are more or less

expensive depending on the performance and availability

required by the user.

 AWS Lambda is a service that allows you to launch your own

programs without having to provision or manage servers.

Payments are structured so that charges reflect usage time, and

non-executed code is free. Thanks to Lambda, you just need to

upload the code, and the service itself will take care of the

execution with high availability. You can have Lambda functions

24

called from any app or from other AWS services thanks to the

trigger functionality.

 Amazon Simple Storage Service (Amazon S3) allows you to store

and retrieve data with a simple and intuitive service thanks to

the graphical interface. The availability and durability of the

data contained in the service is almost 100%. In fact, the data is

saved so that there are multiple copies of it in different

availability zones and in multiple devices within the different

structures. S3 has different offers depending on how often the

saved data is retrieved, and allows us to scale the data storage

space easily, and thanks to this we pay only for the space we

need without having to allocate resources for future needs. S3 is

secure in fact the data transfer takes place using SSL and

subsequently the archived data is automatically encrypted,

moreover you can decide which IAM users can access the data.

 Amazon Relational Database Service (Amazon RDS) permits the

developer to use relational databases within the cloud by

choosing from Oracle, Microsoft SQL Server, MariaDB, MySQL,

Aurora and PostgreSQL. The service is easily configurable and

scalable at an economical price. With its simplicity of

management, Amazon RDS allows you to get to distribution

faster. As with the other AWS services, RDS is also secure in fact

the database always has at least one replica in another

Availability Zone (AZ) and you can configure access using a VPC.

If this is not enough all data are encrypted. RDS prices are low

and calculated according to usage.

 Amazon Virtual Private Cloud (Amazon VPC) allows you to

logically isolate a cloud network from which you can launch

certain AWS resources. The user can completely manage the

virtual network thus created, choosing which is the gateway,

designing the routing tables and any subnet, and choosing a

25

range of IP addresses to assign and whether to use IPv4 or IPv6.

Customizing the network configuration of VPC is very simple. You

can also generate hardware Virtual Private Network (VPN)

connections by merging the corporate datacenter with the VPC

then using AWS as an extension of the corporate network.

 Amazon Route 53 is a highly available and scalable Domain

Name System (DNS) web service. It is designed to give users the

ability to route clients to applications by switching literal

addresses to IP addresses (and is also IPv6 compatible). Amazon

Route 53 allows you to easily communicate user requests to

infrastructure inside or outside AWS and to set controls on DNS

traffic and on the endpoints of your applications. Amazon Route

53 allows you to choose from various routing types to lower

latency and decrease errors. Amazon Route 53 also allows you to

purchase domain names, after which Route 53 sets up the DNS

configurations of the registered domain.

 AWS CodeCommit allows you to manage enterprise hosting of

Git repositories in a scalable, private and secure way. With AWS

CodeCommit you can archive both source, code and binaries,

and it works perfectly with existing Git tools.

 AWS CodeBuild is a source code building, testing, and

distribution-ready software package service. Through CodeBuild

we can speed up code compilation times as the service

continuously recalibrates resources and processes and reworks

different versions simultaneously.

 AWS CodeDeploy is a service that automatically deploys code to

instances, both for EC2 instances and locally running instances.

AWS CodeDeploy accelerates the deployment of new features

and performs necessary application update tasks. AWS

26

CodeDeploy automates software deployment, which helps avoid

the errors that manual operations are prone to.

 AWS CodePipeline is a continuous integration and continuous

delivery service that is used to update software and

infrastructure in an automated way. Every time the code is

edited CodePipeline builds, tests and deploys it following the

path created by the developer. This makes development

processes faster.

 Amazon CloudWatch is a monitoring service for AWS cloud

resources and software running on AWS. Amazon CloudWatch is

used for the purpose of collecting and managing log files and for

setting alarms and responding automatically to changes in AWS

resources. The instances that CloudWatch can monitor are RDS,

DynamoDB, EC2, Lambda, and log files created by applications.

It can also be used to analyze application performance. With the

data collected in this way you can improve your own software.

 AWS CloudFormation provides developers with a quick service to

generate an AWS architecture, that can be deployed rapidly and

repeatedly. To program AWS resources and their parameters we

can use the example models provided by AWS or generate

models from scratch. After the AWS resources are generated,

you can edit them normally as with those created manually.

CloudFormation also provides a graphical interface through

which we can immediately view our architecture and possibly

add new elements that will then be editable in the code editor in

case we need to add new parameters or dependencies.

 AWS Identity and Access Management (IAM) allows you to

securely manage access to AWS resources and services for your

users. Through IAM, you can administer user and user group

permissions by providing or denying access to AWS resources.

27

The entities that IAM works with are users and roles. Users have

credentials for accessing AWS services while roles allow AWS

resources to interact with other services.

 Amazon Cognito is the service that allows users of our

applications to carry out the process of registering, logging and

accessing the application depending on the permissions they

have. Authentication can be set up to use social providers like

Facebook or Amazon. Cognito also allows you to keep the data

locally in order to be able to start the application even offline.

The synchronization function between multiple devices of the

same user is also included. With the services offered by Amazon

Cognito, you can devote yourself to the development of your

application, leaving synchronization, registration and access

control in the hands of the Amazon service.

 Amazon API Gateway allows you to create API that can be easily

monitored, secured, modified, and published. With a few simple

steps you can generate an API that acts as an entrance to our

applications, data access and AWS services.

 Amazon Simple Notification Service (Amazon SNS) is capable of

sending push notifications in the form of single or multiple

messages (even SMS) to a large number of devices. It is fast and

adaptable and can send to any device. In addition to other SNS

devices, it can also send to various Amazon services and HTTP

endpoints.

2.2 Serverless architecture

Serverless computing is a cloud development model in which the developer can

build and launch applications without the need to manage servers. The literal

28

meaning of the word serverless is in fact "without server" because it exempts the

developer from coming into contact with the latter during the performance of his

duties. The servers in a serverless architecture are in fact managed by cloud

service providers who take care of all scalability, management and procurement

operations. Hereafter we will see the advantages and disadvantages of the

serverless architecture:

1. The developer's work is accelerated because he no longer has to

deal with the server infrastructure. Since resources are allocated

dynamically, it is no longer necessary to invest in advance on any

additional resources for future use, nor to organize plans and

costs regarding scalability. Serverless is inherently a model that

aims to free the programmer from all aspects other than writing

code.

2. Development price and infrastructure costs are low compared to

other cloud development paradigms. In fact, the developer does

not have to deal with the infrastructure and the time needed to

create the app is reduced, consequently the production costs are

lowered. Furthermore, thanks to the fact that the serverless

architecture dynamically recalls the necessary resources, they will

be paid only during use. This differs from other cloud

architectures in which resources are allocated statically, and

further reduces costs and simplifies the management of work

peaks for which we will not be forced to allocate other fixed

resources. After the distribution of the application, the developers

will only have to correct any bugs in the application and no

personnel will be needed to control the servers, further reducing

costs.

3. Resource optimization and auto-scaling are another huge

advantage of serverless architecture. In fact, processing and

storage resources are dynamically assigned at the time of need

29

and this makes it possible to easily adapt a service based on the

user base.

4. Eventual latency problems are instead a disadvantage that can

occur if the stretch of code to be executed is requested

infrequently, this because it is necessary to allocate new resource

each time a request is made.

5. The main problem of serverless architecture is being able to

integrate the software into cloud structures. Because of this, if

you decide to change supplier it will probably be necessary to

redevelop everything adapting it to its platform and its limits.

2.3 Monolithic architecture and microservices

architecture

The architectural structure of modern applications is divided into two large

families, monolithic and microservices. The monolithic structure implements the

application through a single component in which the entire software code is

written. The microservices architecture, on the other hand, organizes the

application as a set of multiple components, each of them is called a service,

capable of speaking with each other through communication protocols. The

monolithic structure was the first to be conceived and is still used today if the

applications to be developed are of modest complexity. Its advantages are:

 Ease of development, in fact the development environment and

programmers are focused on creating a single application.

 Simplicity of modification, any element of the application can be

altered without having to deal with other development teams

because it is not necessary to put the application in contact with

30

other components that could cause interaction problem in case

of latter modifications.

 Simple to test, you don't need to make the application

communicate with other components but simply launch and test

it individually.

 Simple to distribute because you only need to upload a single

application to the server.

 Simple to scale because you just run multiple instances of the

same application behind a load-balancer.

Unfortunately, more the application grows in size, more the monolithic

architecture complicates and slows down the development process, so agile

development and application distribution become impossible. The bigger the

software gets, the less developers understand it. As a result, finding bugs and

fixing them becomes difficult and time consuming. Furthermore, with the advent

of new technologies, the libraries used in the development of the product could

become obsolete and make the application vulnerable. Testing the application and

deploying it also become a complicated process because an error in a single

module can cause the entire software to malfunction. Even scaling the application

could become difficult because it is possible that different modules have different

resource requests (it may be that one module requires a lot of storage space while

another needs to process and therefore requires intensive utilization of the CPU).

Consequently, when we are developing applications that are excessively growing,

it would be ideal to migrate to a microservices architecture.

2.4 Microservices advantages and disadvantages

When we decide to structure the application with a microservices architecture, the

keyword is modularity. In fact we will decompose the software into many

independent modules that are developed and understood by different teams of

31

developers. In order to isolate the different modules each of these must have its

own database. Microservices architecture has several advantages:

 The most important is that it allows you to implement

continuous delivery and distribution of large and complex

applications. The continuous delivery practice is part of DevOps,

which is a set of techniques aimed at making software delivery

fast, frequent and reliable. There are many reasons it allows you

to implement continuous software delivery. First of all, since the

application modules are modest in size and independent from

each other, they can be analyzed with automated tests that are

easy to write and quick to execute, as a result the application

will contain fewer errors. Since each service can be deployed

independently, this saves developers on a team from having to

deal with other teams to make changes to the module, making it

easier to push frequent changes into production. Furthermore,

the fact that each module is isolated allows the organization to

structure development teams as small units made up of a few

elements that manage one or more modules. Each team can

therefore scale, develop and deploy their services independently

from other teams, resulting in much faster development speed.

 Services are small in size and are easy to manage because they

don't slow down the development environment, start up quickly,

and are simple to understand and modify.

 Each service can be resized as desired and therefore the

scalability of a module is independent from that of the others.

Furthermore, each service can be deployed on the hardware with

the best specifications for it.

 There is greater error isolation, in fact, in case of a failure of one

service the others will still continue to function normally.

32

 It is easier to experiment and adopt new technologies, even

rewriting a service from scratch is not excessively expensive if

the need arises, while in the case of a monolith structure the

entire application would have to be rewritten.

Unfortunately, the microservices architecture, although practically mandatory in

the case of developing complex applications, still has some disadvantages:

 Decomposing the system into microservices is not simple, and

there is no well-defined algorithm to do it. If the system is

decomposed incorrectly, there is a risk that the various

components became dependent on each other, creating a

"distributed monolith" in which all the advantages of

microservices architecture are lost.

 Distributed systems are complex and the developer has to put

more effort into the development also because each module has

to communicate with the others through communication

mechanisms between services. Furthermore, each service must

be designed to be able to handle errors of other services whether

they are unavailable or have high latency. Writing automated

tests that span many services is also tricky. As a result, the

developers in the organization must have software development

and delivery skills to use the microservices architecture correctly.

 Deploying features that span multiple services requires careful

coordination between the teams working on those services.

 Another difficulty lies in deciding when to adopt the

microservices architecture. This is a problem of newborn

applications where it is not known how quickly the software will

evolve. In fact, initially it could be more demanding to structure

the application with a microservices architecture and therefore

you could opt for a monolithic one. Later, when the problem

33

becomes complexity, however, it will necessarily be required to

think about how to decompose the application into

microservices.

 To correctly exploit all the advantages of the microservices

architecture it is essential that the organization applies DevOps

practices or the advantages will be very limited.

In the past, the goal of software architectures was scalability, reliability and

security. In modern architectures, however, it is essential to have fast and secure

software delivery. The microservices architecture provides this quality along with

excellent testability and maintainability.

2.5 Building microservices architecture

Every application has two categories of requirements, the functional ones that

define what the application must do and those for quality of service such as

scalability, reliability, maintainability, testability and deliverability. The choice of

architecture decides the quality of the service. To define the microservices

architecture of an application we must proceed in steps:

1. We write the requirements in the form of user stories identifying

the operations to be carried out (therefore the functional

requirements). After defining the functional requirements, we

derive the base classes and from these the operations performed

by the application. The operations performed by the application

can be of two types: commands or requests, the commands

create, update or delete data while the requests are read

functions. Each operation must then be described through the

required input fields, the returned value, the preconditions and

the post-conditions. The requests also provide information on the

composition of the graphical interface.

34

2. From the functional requirements we identify the services.

Unfortunately there is no mechanical process to perform this step

but there are several decomposition techniques that try to solve

the problem from different perspectives. The main technique is

the decomposition by business capability in which each operation

is divided by category (for example all logistics operations will be

grouped together), after which the functions that are closely

related can be in one service, otherwise they have to be managed

by one service aside. The advantage of this decomposition

strategy is that the architecture should remain virtually

unchanged even if some aspects of the business change. There

are two fundamental principles to follow when decomposing the

application into services: the single responsibility principle and the

common closure principle. The principle of single responsibility

requires that each service has only one responsibility so that it has

maximum stability. The common closure principle says that in the

hypothesis of making any single change to the application, this

must only alter the code of a single service. Consequently,

elements that change for the same reasons or factors must be

brought together in the same service. Doing this will reduce the

number of services to modify when changes need to be made.

Ideally a change will affect only one team and a single service.

This rule should avoid the birth of distributed monolithic

architectures (for example microservices architectures with the

same problems as monolithic structures). Other problems in the

decomposition of services that need to be taken into account are:

 Service latency, if multiple services have to

communicate too frequently slowdowns could occur,

the solution could be to combine these services into

one.

35

 Synchronous communications between processes

reduce the availability of services, the ideal is to

implement asynchronous communications.

 Some operations update the data of multiple

services, this update must be done using a "saga",

that is a sequence of local transactions coordinated

using messages.

 Obtaining a consistent view of data across different

databases is generally not feasible in a microservices

architecture, fortunately this need is very rare.

 Most applications have a central class that is used in

any operation, in this case it is necessary that each

service has only the elements of that class necessary

for its operations so that the central class (belonging

to the central service) is not invoked each time a

single operation takes place.

3. Now we have a list of system operations and a list of

potential services, at this point we need to decide what the

APIs are and how the services interact with each other. First

we need to figure out which service each system operation

belongs to. In general, it is convenient to assign the system

operation to the service that has the information to satisfy it.

Next you need to figure out which operations need to invoke

multiple services. To interact with a client, services can use

synchronous or asynchronous communications. In

synchronous communications, the person making the request

stops waiting for a response, in asynchronous ones, instead,

he continues to work and expects a response in the future.

Today, APIs are developed with the REST style, a

communication style between processes that uses HTTP. A

36

key concept in REST are resources, which typically represent a

single object or a collection. REST uses HTTP to manipulate

resources that we refer to with a URL. For communication

between processes instead we can use an asynchronous

communication strategy. You can adopt a strategy that uses

a broker and who acts as an intermediary or one in which the

services communicate directly with each other. One way to

asynchronously handle communication between services is to

make a service that receives a synchronous request, responds

with data from its local database and then asynchronously

sends the requested information to the other services to

check if the data matches and if necessary, update your

database.

The major problem of distributed systems such as microservices ones is the

complexity of the interaction between the various components. In fact, a single

request from the client may require the response of several different services,

each with its own database which must be consistent with respect to the others.

Sagas are a mechanism for maintaining consistency between data in distributed

transactions. You need to define a "saga" for each command that needs to update

data in multiple services. In reality, a "saga" is nothing more than a sequence of

local transactions. Each local transition updates the data in a single service using

ACID transactions. Terminating a local transaction in a saga starts the next local

transaction. The coordination logic of a "saga" can be of the "choreography" or

"orchestrated" type. The first typology distributes the decisions among the

participants of the "saga", in fact they communicate by exchanging events. The

second typology centralizes the coordination logic of the "saga" in a single class

that sends command messages to the participants of the "saga" telling them which

operations to undertake. Unfortunately the "saga" mechanisms are not isolated

from each other and in case of use it is necessary to write countermeasures to

remedy this problem.

37

Chapter 3

3 DevOps

Image 3.1:DevOps techniques improves the process of software development.

DevOps is the set of techniques adopted to speed up the processes that transform

an idea (in our case in the software field) into a product delivered to the user and

ready for use. In the ideal DevOps system, the developer receives rapid and

constant feedback that let him implement and validate his code quickly in the

development environment. We achieve this by continuously checking every small

code change through automated testing, and this gives us the confidence that the

changes we make will work properly in the production environment, and that any

problems will be found and fixed quickly. The described situation is more easily

achievable when the application architecture is modular, well encapsulated, and

loosely coupled so that small teams of developers can work on it autonomously

with easily contained small errors that should not cause global malfunctions.

38

3.1 Visibility, focused team, util job

One of the first steps necessary to implement DevOps is to make the work visible

by dividing it into short tasks (by creating long tasks the number of errors in the

code increases and also the time to find and fix them, furthermore the testability

of the code also decreases) and possibly parallel ones so that each developer can

choose which one to carry out and move all those already completed in a common

place in order to make the work carried out tangible as if it were the construction

of a house in which everyone can see at a glance what stage the work reached.

Also, the team of developers working on the project is ideally small and focused.

Small to reduce the number of project handovers (which implies update times for

each element of the team with each task performed). Focused because every time

a developer is assigned to multiple projects, he wastes time (even just to

contextualize) when he switches from one to another. It is also necessary to

understand where are the bottlenecks in our organization that can slow down the

development (they can be both hardware and software or lack of personnel). It is

important to eliminate unsolicited work such as the development of features not

requested by the user and solve problems as soon as they are discovered without

ever postponing to later dates in which it becomes more difficult to trace the

source of the problem.

39

3.2 Learning culture and company transformation

process

Image 3.2: The growth of a company is enfatized by the growth of his employees.

To reach a stage where DevOps is truly effective, it is necessary to spread a

culture of updating and safety throughout the company. It is necessary that the

company does not adopt a punitive philosophy towards those who make

mistakes so that the error is found more quickly and those who committed it can

understand the problem without being denigrated, and a culture of sharing is

generated through the organization. The process should start from the leaders

who aim to guide employees. To test the resistance of the team to errors, some

bug can be injected in a controlled way into the application to train the resilience

of the developer group. You can also create more automated checks and tests to

increase resilience to failure and look for the root of the problem, then

disseminate the acquired knowledge within the organization through appropriate

mechanisms. By changing the culture of terror into one of societal improvement

the result is continuous staff development and a higher rate of problem solving.

When you start the process of transforming a company in order to modernize it

and make it follow DevOps processes, you have to proceed step by step. Initially

we need to apply the change efforts on small groups of developers willing to

change, ideally they should be people respected in the society and who have a

strong influence on the organization in order to make our initiative more credible.

40

Secondly, it is necessary to expand the change to a large part of the groups of the

organization so that the improvements of the DevOps process become visible to

all. The third phase is to convince groups that still want to keep the old approach.

We need to start the third phase only when the DevOps results are excellent and

most of the groups are already putting it into practice and can show the benefits

of the change. At this point we need to understand how to assign tasks and how

to improve workflow. In general, at the end of the process, we would like all team

members to implement DevOps practices in their daily routine. One of the best

ways to stimulate the improvement of the company is to establish a growth goal

to be achieved within a preferably short time limit through DevOps techniques. It

also pays to reserve 20% of iterative cycles for solving non-functional requests

(maintenance, manageability, scalability, reliability, testability, deployment and

security) and for reducing technical debt so that it does not reduce the ability to

develop and resolve errors quickly. In this phase it is also necessary to gather

information on the development process in general to lay the foundations for the

next steps.

3.3 Different types of business organization

After having collected the information necessary to modernize the company we

must start organizing the enterprise to improve the workflow. There are 3 types of

organization that can be given to your company based on the improvement we

want to make:

 Functionally oriented organizations that tend to optimize

workflow to have specialized staff, tend to practice the division

of labor and cost reduction. They aim to help employees grow

and have generally vertical structures. Their main problem is

that, by dividing the departments by specialization, the efforts to

coordinate the groups are complex and there are multiple

hands-offs of the work, which slows down the workflow. Even if

41

these are not the most suitable companies for DevOps they can

still adapt to it but each sector must have a policy of high trust in

each other and develop mechanisms to ensure that priority jobs

are developed immediately by all. A key step when using this

type of organization is to work on projects with loosely coupled

components so that a single error does not create a ripple effect

causing malfunctions in the entire project.

 Matrix oriented organizations would like to optimize both the

functional and have a good response to the market. However,

this type of organization is usually composed of complex

structures often leading to controversial outcomes in which

sometimes neither functional results nor an excellent response

to the market are obtained.

 Market-oriented organizations tend to optimize the response to

customer needs. They usually have a flat structure, composed of

departments that deal with cross-functional disciplines which,

however, sometimes lead to redundancies in the organization.

However, this is the structure most adopted by organizations

that practice DevOps. In fact, these organizations should have

many small teams able to work independently and quickly on

projects, even if this way costs are slightly increased (as opposed

to the functional model which tries to cut costs).The goal is to

reduce the times requested to generate value for the customer.

To make the idea of DevOps work, every developer group should

also be capable of testing, securing, deploying, and supporting

the service they provide. It would also be ideal that every

member of the team knows how to carry out, or at least has

knowledge of, every part of the development process, so that

they are able to complete any activity in that area, in order to

avoid changes of hands during development or when you are

maintaining the application.

42

In general, a necessary step to modernize the company, whatever the type of

organization of the enterprise, is the inclusion of operational engineers in the

development teams in order to integrate DevOps practices with daily work and

improve development planning.

3.4 Continuous delivery, testing, secure deployment

Image 3.3: Using DevOps techniques we can improve delivery, testing and deployment of the application.

After placing functional engineers in the various developer groups, we need to

automate the transition from development to production as much as possible in

order to avoid errors during deployment by implementing a "continuous delivery"

strategy that is realized through a pipeline that tests and releases new low-risk

versions. Implementing this strategy shortens delivery times, provides immediate

results on code functionality, and makes code deployment a part of daily routine.

To implement this pipeline, the first step is to create different environments: one

for development, one for testing and one for production, linked together with a

43

compilation mechanism that allows everyone to update the application without

asking permission from third parties. It is also necessary to use a common project

repository so that each developer can refer to the updated code and be able to

make changes including rolling back to previous versions of the application if

required. To verify the proper functioning of the application in all its parts there

are different types of automated tests that can be written:

1. Utility tests are needed to control single methods;

2. Acceptance tests controls that the application works correctly in

its fullness;

3. Integration test are used to verify that the application works well

with other applications or services.

The idea is to find errors with the most specific tests possible, as the unit tests are

faster while the slower ones (acceptance and integration) are launched before

performing the manual ones. So most of the problems should be solved with unit

tests while the more complex ones should be used only at the end for

confirmation, also because they require the commitment of more resources and

time, and cannot be used in parallel by multiple groups. The primary method of

automating application release is to implement feature enable/disable which

allows us to activate or deactivate them without needing to deploy to production.

In practice, this strategy is applied by inserting the code to enable/disable within a

controlled conditional block in the application configurations. The reason why it is

implemented is that it allows you to return the application to a functional state

only by disabling the new blocks. It also allows the improvement of high-

performance features by disabling extra services that are not essential for the

application to function. It also increases our resiliency through a service oriented

architecture as we can perform the release of incomplete services by simply hiding

them inside a conditional block. We can also release complete features of the

application in an "obscure" way by simply making them invisible via conditional

blocks.

44

3.5 Microservices architectures

Image 3.4: Splitting the application into smaller service is the way to go to avoid difficulties in deployment,
testing and teamwork on an app.

From the point of view of software architecture, a necessary practice to increase

productivity, testability and security is to create applications in which the different

components are loosely coupled so that each single component can be made

separately distributable changes, allowing to divide the work between different

groups. Initially the applications had a monolithic structure in which the various

components were closely linked together. In reality this type of architecture is not

intrinsically wrong and is optimal when the application is small. However, when

the software provides more functionality it is better to structure it as a set of

separate services that work together. This type of architecture is defined as

microservices. If we are adopting a monolithic architecture and we realize that our

application is expanding too much we can convert some features into APIs to

correct the project error.

45

3.6 The error as value and starting point

An organization that knows how to solve problems, maintaining a policy of no

denigration for those who make the mistake, and spreading knowledge within the

company will certainly achieve better results. In general, whenever a problem is

found, a check should be conducted without judgment against the culprits and

then explain the problem in a document accessible to all. We must consider each

work that takes place as a new source of information also oriented to improve the

development process, standardizing a process is fine but we must continually

decrease the tolerance for error in order to detect any defects in the strategy we

use and consequently improve it. Organization leaders should put employees at

ease about making mistakes and learning from them. It is also important to enter

errors into the system sometimes to test the resilience of our recovery processes.

This is so important that in some companies "game" days are set up. In these

occasions a catastrophic event is hypothesized and its recovery is planned, after

which, at a specific moment, the event is actually carried out and the company’s

employees should respond to it as it was decided. By executing these events, you

can create even more resilient services and improve staff performance in case that

problem actually occur. In general, a culture of learning should be encouraged by

putting everyone in the position to talk about their mistakes. You can use public

and automated chats (whose purpose is to create documentation) within the

company to spread knowledge among developers. Furthermore, it is advisable to

move all the company's documentation to a central repository which makes it

accessible to everyone quickly and simply, otherwise there is a risk that at each

new job, the developers will have to redesign all the architecture and the code

from scratch, even if they are working on a similar projects.

46

3.7 Logging systems and control metrics

Image 3.5: Analyzing the application in the correct way is really important.

To have total control over the application it is essential to develop systems for

monitoring the architecture in order to quickly detect any problem. The elements

of monitoring systems are component for collecting data in the form of logs

regarding the business logic, the application and the host environment, and a

storage point to contain these events. Every developer should, during day-to-day

development, create auditing metrics (for both semantic and performance errors).

To detect problems, we can use statistical techniques such as mean and standard

deviation that allow us to understand when a metric is different from usual. One

methodology to improve controls that detect problems is to choose a range of

recently detected errors and design dedicated controls that would allow them to

be discovered more readily. When the analyzed data does not have a Gaussian

distribution we can use anomaly detection techniques with strategies other than

standard deviation to detect errors.

47

3.8 Cloud security

Image 3.6: Security in cloud is a bit particular and imply a shared management between provider and
developer.

One of the major issues in DevOps with cloud computing is security management.

Security management difficulties are various and can be divided into several

categories:

 Restriction imposed by industry standards on the use of cloud for

certain applications.

 Where they are and where they are archived, who has access to

them and backups, how they are monitored and managed,

including resilience.

 Controls required for managing firewalls and security

configurations for cloud-based applications and environments.

 Concerns about high reliability and service loss in the event of an

interruption.

48

As with the majority of new technology paradigms, the security issues surrounding

cloud computing have become the most debated impediments to widespread

adoption. To ensure the trust of businesses, cloud services must provide levels of

security and privacy that equal or exceed what is available in traditional IT

environments. In a cloud environment, access expands, responsibilities and

controls shift, and the speed of delivering resources and applications increases

with implications for all aspects of IT security. The approach is to develop security

in accordance with each stage of a project or cloud initiative. The security

measures implemented in Cloud Security, in addition to requiring specific actions

to protect data privacy, are embodied in a set of rules aimed at limiting access to

company accounts and regulating the use of external devices, both in cases in

which they are the property of employees and used for professional purposes, and

in the event of devices of the company used outside the corporation. In particular,

Cloud Security policies, must include, among other things, the following elements:

 Authentication of accesses, both internal and external to the

system, for which the option of registering has been provided.

 Filtering traffic: Because of the presence of appropriate control

mechanisms, it is possible to filter traffic from and to the

enterprise Cloud system, allowing for the identification and

neutralization of any type of information security breach.

The manner in which the cloud security service is made available in a specific

business depends, in large part, on the cloud provider chosen individually, or on

the security solutions implemented. The cloud Security plays a key role in internal

strategies, as well as providing a number of benefits, the most important of which

are the following:

 The cloud's security is centralized: because Cloud computing is

based on the centralization of data and applications, the Cloud's

security is also centralized, ensuring greater process reliability

and a lower resource expenditure.

49

 IT costs are significantly reduced: current Cloud security systems

do not require the purchase of expensive hardware, but rather of

software dedicated to and managed by specialized providers,

who base their primary business on the implementation,

updating, and functionality of such systems. As a result of the

significantly reduced costs born by the businesses that use Cloud

security, the services are of high quality, ongoing, and constantly

updated.

 Management and administration reduced to the bare necessities

and without compromises: by selecting a provider with a solid

track record in the industry, administrators and those in charge

of internal security can entrust complete Cloud protection to

someone who has been doing so for years and has achieved the

best results possible. It will also be the time to say goodbye to

manual configurations, and at that point, all action related to

software, application, and process updates will be managed at

the central level, in fully automated mode.

 Reliability: the Cloud Computing security services provide

excellent reliability, provided that appropriate measures are

implemented to meet the needs of the business. Because cloud

computing is a highly scalable and replicable product, the

benefits derived from its use are linked to the reduction of

technological costs and the use of smart systems, which provide

a significant competitive advantage.

To ensure cloud security, it is necessary to adopt the following measures:

 The first rule in determining the suitability of an organization's

internal infrastructure, which consists of hardware and software,

is to ensure that the combination of these structures is reliable,

appropriate for the purpose, and provided by certified providers.

At this point, technicians that specialize in the deployment of

50

such systems must understand the whole architecture of the

platform, as well as the combination of services and tools

available, to ensure that an equitable division of responsibilities

exists between the company and the supplier. Simultaneously,

when testing the development of new applications, it is critical

to follow the provider's instructions. If migrations of existing

systems or applications are carried out, it is recommended that

the necessary modifications be carried out to ensure optimal

distribution.

 Management of the access, to analyze this component, it is

critical to have a holistic view of the Cloud, with a focus on the

data stored in the system. The Cloud Server API connection is

used by service managers to verify the consistency and integrity

of data stored in the Cloud. It will also be possible to see which

users accede to the data, what are the flows, and what

processes are used to save, post, send, and share the data. In

this sense, the concept of access via strong authentication is a

key, given that multi-factor authentication is now the best

system available for ensuring a high level of security when

accessing cloud-based applications.

 Other security-related actions like the concern the blocking of IP

addresses and/or the control of unauthorized access to the

company's network.

 Data protection is a topic that deserves its own treatment, but to

achieve data protection in the context of cloud security, it is

necessary to pay special attention to the flow of information

that passes through the cloud. To provide adequate data

protection, it is not possible to use very restrictive filters or, in

the worst-case scenario, blockages, because daily, routine, and

extraordinary operations must always be guaranteed. In this

perspective, data protection is one of the most difficult

51

challenges in the context of cloud security, as it will be necessary

to strike the proper balance between data protection and

continuous access to data. Similarly, providers must ensure

maximum protection in the event of unintentional disclosures,

including the provision of special safeguards in this regard.

 Monitoring and defense are crucial tasks, in fact the IT

infrastructure as well as all business devices, must be subject to

continuous and costly monitoring, depending on the size of the

company, its core business, or specific characteristics that make

it unique in its category and worthy of special attention in terms

of cloud security. In fact, not all the data that is processed has

the same reliability, and the risks may vary depending on the

circumstances. Here's why it's critical to revert to a commercial

reality that understands how to identify errors in the printing

process while avoiding unnecessary duplications and/or systemic

flaws.

To operate a complete monitoring of the Cloud system, for example, testing

activities on the reliability of applications are very effective, even before their

actual distribution and placement on the market.

3.8.1 Shared security model:

Although security in the cloud model is mainly delegated to the cloud service

provider, have been developed different kind of cloud services for users, each one

with different responsibilities for the owner of the infrastructure and the user. This

kind of management of the cloud is called Shared Responsibility Model. The

Shared Responsibility Model states that the cloud provider, such as Amazon Web

Service (AWS) or Microsoft Azure, must monitor and respond to security risks

connected to the cloud and its underlying infrastructure. Meanwhile, end users,

including individuals and companies are charged with protecting data and other

52

assets stored in any cloud environment. Unfortunately, this concept of shared

responsibility is often misinterpreted, leading to the mistaken belief that cloud

workloads, as well as any related apps, data, or activities, are totally safeguarded

by the cloud provider. As a result, users may unknowingly run workloads in a

public cloud that are not fully secured, leaving them open to assaults on the

operating system, data, or apps. Because zero-day vulnerabilities are susceptible,

even safely setup workloads can become a target during runtime. Shared

responsibility rules are different depending on the kind of cloud delivery model we

are using:

 Software as a service (SaaS): is a software delivery paradigm in

which a vendor centrally hosts an application in the cloud that a

subscriber can utilize. The supplier oversees application security,

as well as its maintenance and administration, in this paradigm.

 Platform as a service (PaaS): is a platform delivery mechanism

that may be purchased and used to build, run, and manage

applications. The vendor offers both the hardware and software

often utilized by application developers in the cloud platform

model; the service provider is also responsible for the platform's

and its infrastructure's security.

 Infrastructure as a service (IaaS): is a paradigm for delivering

infrastructure in which a vendor delivers a variety of computing

resources such as virtualized servers, storage, and network

equipment over the internet. The company is responsible for the

security of anything they own or install on the cloud

infrastructure, such as the operating system, apps, middleware,

containers, workloads, data, and code, in this paradigm.

53

Image 3.7: In the image above we can see who has the responsibility for security in each type of architecture.

While the Shared Responsibility Model assumes that two or more parties share

responsibility for guaranteeing the security of discrete parts inside the public

cloud environment, it is vital to emphasize that the customer and CSP do not

share responsibility for the same asset. Rather, regardless of the service model

type, the CSP or client has full and complete responsibility for the security of any

assets under their direct control.

3.8.2 AWS shared responsibility security model:

Because of every cloud provider has different rules regarding security and we

choose AWS as our, we need to analyze how security is handled. Security and

compliance are shared responsibilities between AWS and the customer. This

shared approach may help to alleviate the client's operational burden since AWS

operates, manages, and controls the components of the host operating system

and the level of virtualization up to the physical security of the structures in

which the service operates. The client is responsible for the operation and

management of the guest operating system (including updates and security

patches), other application software, and the configuration of the AWS security

group's firewall. Clients should carefully consider the services they choose since

their responsibilities will vary depending on the services used, the integration of

those services into their IT environment, and the applicable laws and regulations.

54

The nature of this shared responsibility provides flexibility and customer control,

making distribution possible. AWS is responsible for safeguarding the worldwide

infrastructure on which all AWS services are delivered. The infrastructure is made

up of hardware and software components, as well as networks and structures

that provide AWS cloud services. The customer's responsibility will be determined

by the Cloud AWS services chosen by the client. This determines the entity of the

configuration work that the client is responsible for as part of his or her security

responsibilities. Services such as Amazon Elastic Compute Cloud (Amazon EC2),

for example, are classified as Infrastructure as a Service (IaaS) and, as such,

require the client to do all necessary configuration and security management

tasks. Clients who distribute an Amazon EC2 instance are responsible for the

management of the guest operating system (including updates and security

patches), any application or utility installed by the client on the instances, and the

configuration of the AWS-provided firewall (known as a security group) in each

instance. AWS manages infrastructure, operating systems, and platforms for

services such as Amazon S3 and Amazon DynamoDB. Clients access the endpoints

to archive and recover data. Clients are responsible for data management

(including encryption options), asset classification, and using IAM tools to apply

relevant authorizations.

55

Chapter 4

4 Development of the project

Image 4.1: This is the final architecture of the project

The architecture in the image is the final architecture of the project and makes

use of Amazon cloud infrastructure. Here we will summarize the reasons for

56

choosing cloud computing (and hence building a serverless architecture) that

have already been discussed in previous chapters:

 The company is not required to host the service on its own

servers, nor it is required to spend in their acquisition.

 The service may easily scale to the cloud, with a few clicks, or by

changing a single setting without the need for further

investments in business servers, or by calculating the final size

of the service in advance.

 Instead of devoting part of the organization to server

management, it is possible to focus attention on the needs of

the user.

 Costs should be reduced since cloud services are only paid for

when they are used (and are optimized with hardware

dedicated to the needs).

After having recognized the importance of using Cloud computing we need to

choose a Cloud service provider to use. As we can see in the image the service

provider that has been chosen is Amazon Web Services (AWS).

The main competitor of AWS is Azure that provide similar performance but in

terms of latency AWS is a better option. Also, as AWS is the largest provider of

cloud services and has been providing them for a longer period of time than the

competitor, it has more experience in the field and generally offers better

performance. Another confrontation between AWS lambda and Azure function

has brought the following results:

 Lambda are easier to manage than Azure functions, because

they require less configurations to work.

 Lambda receive JSON formatted input and return a JSON

formatted output so it’s easy to interact with them while Azure

57

functions can receive different input and return multiple and

different output adding some complexity.

 Every lambda has a dedicated resource association that

guarantee good performance while Azure functions can share

resources each other so there is no guarantee that performance

are always optimal.

 If we had to integrate with Microsoft technologies, which is not

the case in our project, probably Azure Functions would be the

better option than Lambda.

Another key point in the development of the project is to follow an agile

development strategy. That’s why we have followed the best DevOps practices. A

key point in agile development is to use a microservices architecture indeed of a

monolithic one. In small projects a monolithic structure can have its advantages

(simple to develop, modify, test, distribute and scale) but if the application grows

all these positive traits disappear proportionally. That’s why when you develop

big applications you need to use a microservices architecture that split a whole

application into many components. In this way we can apply continuous delivery

and deployment practices also for big applications. Services become easy to

manage and to maintain. Moreover the scalability of a component and the

hardware on which it is deployed can be varied for every specific need and in case

of failure of one of the services that compose the app the others still continue to

work. Another point in favor of microservices architectures is that is easy to

experiment new technologies and rewrite a single service from scratch in case of

need. A concealed benefit of microservices is that they may be reused in other

projects if they are written in a generic manner. Microservices architecture bring

also some disadvantages like the difficult of decompose the app into various

component and make them speak each other, this require higher effort than

developing a single monolith application. Another target of DevOps is to make

code deployment a part of daily routine by implementing a “continuous delivery”

system and build automated tests so that when the deployment occur the tests

check immediately the correctness of the results. Therefore we have developed

58

unit tests, acceptance tests, and integration tests to validate the code to follow

the principle of DevOps. To help testing the Lambda functions during the

development we used a program called Postman that let you send API calls using

a simple programming interface. Then we realized continuous integration and

continuous delivery (CI/CD) using a set of tools: Gitflow, GitHub, CodeBuild,

CodeDeploy and CodePipeline. We will analyze these services in the next chapter,

here we will describe only their use:

1. Gitflow to upload the task on Git Repository considering the

need of managing a team of developers which work on the

project at the same time.

2. CodePipeline let you model the whole release procedure,

including the creation of your code, deployment to

test environments, testing of your application, and release

to production. Every time there is a code change, Amazon

CodePipeline then builds, tests, and deploys your

application in accordance with the specified process. The

creation of this workflow is possible thanks to the fact that

CodePipeline can manage the other AWS services.

3. As our version control system, GitHub pulls the most recent

modification and transmits the revised code version to

CodeBuild whenever there is a change to the code in the

GitHub repository.

4. CodeBuild executes the tests and installs the required

dependencies. It will push the build artifacts to the S3

bucket once the testing and installation have been

completed successfully. To be able to work CodeBuild need

that the Lambda has inside its package a buildspec.yml file

with all the commands that CodeBuild need to launch.

59

5. The most recent Build Artifacts are retrieved and

transferred to a separate S3 Bucket by CodeDeploy. The

newest Build file from the S3 bucket is used by another

CodeBuild run to update the relevant Lambda function once

the CodeDeploy deploys the code to the S3 bucket.

The tool to add the automated testing in our pipeline is CodeBuild. At point 4 of

the preceding bulleted list we can use CodeBuild to run some tests. To setup the

tests in our pipeline we need to correctly udpate the package of the Lambda we

want to upload to GitHub. In fact after CodePipeline Invoke CodeBuild, to install

the dependencies and run the tests, the Lambda package need to have a

“buildspec.yml”. Then we have to create a folder which contains all the tests we

want to run (there are many node.js libraries to create tests that we can use at

this purpose, you can choose the one you prefer based on your necessities). After

this we add to the “buildspec.yml” a command line that execute these tests.

As we can see in the first image of this chapter the component of the architecture

are:

 The API Gateway manages the flow of data that interacts

with a backend service, and implements policies,

authentication, and general access control for API calls to

protect sensitive data. API Gateway let you create, publish,

manage, monitor, and protect REST, HTTP, and WebSocket

APIs at any level. It has been chosen because the request

the backend receive are API REST and because it can trigger

Lambda functions which are the core of our architecture.

 Cognito provides user authentication, authorization, and

management for web apps and mobile devices. It also

stores all users data.

 Lambda is the core service in this project, everything

revolves around them. Each lambda is triggered by an API

60

Gateway call, and interact with S3 and RDS to store and

retrieve data to return to the user.

 S3 is a storage service in which we store the images and

firmware data.

 RDS is the relational database service in which we store the

data we receive from the client app.

We will see more in detail each service in the rest of the chapter. We will start

analyzing the first decision needed to implement a serverless architecture.

Although Amazon has various services to achieve our goal, the most significant

ones for our purpose are the "Lambda" service and the "Amazon Elastic

Container Registry (ECR)". We will start evaluating the ECR service first.

4.1 Virtualization and containers

The advent of virtualization in the IT world has allowed for the creation of virtual

machines, followed by direct virtualization at the operating system level. Thanks

to this possibility, technologies like Linux containers have emerged. These

technologies are entirely free of the need to virtualize the bulky hardware

component and instead focus just on the functions required to run the

microservices that compose cloud-based DevOps applications. These runtime

environments are lighter and more agile to manage than virtual machines, and

they may be executed directly as applications on the host operating system.

These containers can be created and run locally but also managed, created, and

launched by online services like Amazon ECR and Amazon EKS.

61

4.2 Amazon elastic container registry (ECR)

Image 4.2: In the image we can see how ECR works in a complete application

Amazon ECR is a fully managed container registry that provides higher-level

hosting services, allowing you to easily implement images and artefacts from any

application. Amazon ECR can send container images to Amazon ECR without

installing or scaling the infrastructure, and then upload the images using any

management tool and let you publish containerized applications with a single

command and easily integrate your self-managed environments and also keeps

the most recent images and deletes those that are no longer useful. Use the rules

and tag assignment to get to the images quickly. It is also used to share and

download images in a secure manner using Hypertext Transfer Protocol Secure

(HTTPS) with automated cryptography and access controls. One of the main

advantages of Amazon ECR is that it accepts and distribute your images more

quickly, reduce download times, and improve availability with scalable and

durable architecture. ECR is also safety conscious and fulfill your requirements for

image security by using Amazon Inspector's integrated vulnerability management

service, which automates vulnerability assessment and ticket routing. Amazon

ECR let you easily create containers but their orchestration need to be managed

by another Amazon service like Amazon Elastic Kubernetes Services (Amazon EKS).

But to speak about Amazon EKS we need to introduce Kubernetes technology.

62

4.3 Kubernetes

When developers begin to create hundreds, if not millions, of containers that are

distributed across various cloud services due to their inherent portability we need

to find a way to maintain control over this incredible variety while maintaining

visibility over everything that happens in our applications. Kubernetes is an

orchestration and open-source technology. It is used for deploying, scaling, and

managing containerized applications. With the development of cloud these

kinds of products are destined to become a more widely used standard in

businesses. Kubernates can orchestrate containers in private, public and hybrid

cloud environment as well as to manage microservices architectures. Containers

and Kubernetes are now considered industry standards for developing cloud

native applications, and their technologies are available in the offerings of all

Cloud Service Providers. Containers are implemented at the operational system

level, with all of the benefits it entails in terms of lightweight and scalability.

However, they remain isolated, necessitating the use of orchestration software

like Kubernates to have visibility of all active containers across the various cloud

services. In Kubernates architecture containers are run at the system level on

various host machines (nodes) for various cloud services. The containers executed

on each machine constitute a pod. Kubernetes oversees identifying all available

pods and distributing them across various host machines, while also ensuring that

the necessary computational resources are available through an agent called

Kublet. Each pod is assigned a unique IP address, which Kubernetes uses to assign

the node of choice for container execution. It is possible to automate container

management or manually manage them using the Kubernetes API via a wide

range of functions. Summing up, Kubernetes is made up of clusters, which are

made up of various nodes (host machines) that are tasked with managing the

pods that contain the containers to be executed. This type of architecture is

associated with perfection in microservices because it allows for the rapid

deployment of all clusters required to automate the management of a large

number of containers distributed virtually anywhere in the cloud. This visibility is

communicated to the end user via a single dashboard, allowing them to monitor

63

the proper operation of the containers and plan all of the operations required to

develop and maintain the applications. Kubernetes' operational logic provides a

number of critical benefits for the ability to automate the following processes:

 Deployment: the ability to create new container locations, as

well as manage container migration from other environments

and the elimination of those that are no longer required.

 Monitoring is a key function of Kubernetes-based orchestration,

ensuring real-time visibility of the processes running on the

many private, public, and hybrid cloud services on which the

development team relies to build the software components. The

automation allows you to evaluate whether or not the

containers are working well in real-time, to reroute those who

have been arrested for whatever reason, and to remove those

who, based on various criteria, are no longer required in the

various work assignments.

 Load Balancing: a very useful function for optimizing cloud

network resources, thanks to the ability to distribute traffic

based on the needs of individual containers, which comprise the

workload to be managed.

 Storage: management of operations necessary for container

archive in hybrid and cloud environments, in order to meet all

requirements in an automated manner.

 Optimization: the deployment analysis allows you to optimize

your computing resources based on the needs of each container,

assigning them to the node whose availability is closest to their

satisfaction.

 Security: automated management of all required authentication

data such as passwords, tokens, SSH, and so on.

64

As expected, the primary Kubernetes element is represented by the cluster that is

obtained each time a deploy is performed. The cluster is made up of nodes that

execute the users' containers. Every cluster, to exist, must have at least one

Worker Node, which is managed by a Control Plane. The clusters generally are

implemented to reach the desired high availability. A high availability to ensure

the best possible business continuity. To avoid a cluster failover causing a

disruption in the operation of the containers that run the applications, more

Control Plane are being used at the moment.

4.4 Docker

Kubernetes is frequently associated with Docker in the container world. Docker is

now available on nearly all of the major cloud service providers, beginning with

AWS and Microsoft Azure. Unlike Kubernetes, Docker's main application does not

focus on orchestration. Rather, Kubernetes and Docker complement each other

well. Docker allows you to run, create, and manage containers on a single

operating system, whereas Kubernetes allows you to automate provisioning,

networking, load balancing, security, and scalability of work containers on

available nodes. Everything is possible thanks to a single dashboard. In more

recent times the Docker company has released Docker Swarm, a standalone

application for managing Docker containers, which can obviously also be

managed using Kubernetes. Swarm was created to provide a simpler alternative

to Kubernetes, with fewer commands and the added benefit of being designed to

manage a technologically inferior variety. Docker Swarm is obviously not the only

alternative to Kubernetes, which has competitors such as Apache Mesos and

Jenkins. Apache Mesos is an open-source cluster management known for its

integration with machine learning tools such as Cassandra, Kafka, and Spark.

Jenkins is an open-source platform focused on continuous integration and

continuous delivery, which is typical of cloud native applications built using

DevOps methodology. Among these technologies, Kubernetes is unquestionably

65

the most popular and widely distributed, both in open source and commercial

distributions.

4.5 Amazon Elastic Kubernetes Services

Image 4.3: In the image we can see the working principle of EKS

Amazon Elastic Kubernetes Services (EKS) is the most focused way to advance,

execute, and scale Kubernetes on AWS cloud. Amazon EKS automatically

manages the availability and scalability of the Kubernetes control plane nodes in

charge of container scalability, application availability management, cluster data

archiving, and other key processes. With Amazon EKS, you can take advantage of

AWS's performance, scalability, dependability, and availability, in addition to

integrations with AWS's network and security services. On-premises, EKS provides

a fully supported Kubernetes solution with integrated tools and a simple

implementation in AWS Outposts, virtual machines, or bare metal servers. EKS

can be used for different purpose. It manages your Kubernetes cluster and tasks

in hybrid environments and run Kubernetes in your data center. It can be used for

machine learning by executing distributed training processes efficiently using the

latest GPU-powered Amazon Elastic Compute Cloud (EC2) instances. It can be

used to create web applications that automatically size themselves and execute

66

highly available configurations across various availability zones (AZ) with ready-

to-use networks and security integrations.

4.6 Lambda review

Lambda is a service that lets you run your own programs without the need to

provision or manage the servers. Payments are designed in such a way that

charges correspond to use time, and non-executed code is free. You only need to

upload the code to Lambda, and the service will handle the execution with high

availability. Because of the trigger feature, Lambda functions may be invoked

from any app or from other Amazon services. Assigning Lambda the due

permissions they can interact with all other AWS services to completely handle

them programmatically.

4.7 AWS container app development vs AWS

function as a service

So, having analyzed the technologies, the first confrontation in development

technologies is between AWS function as a service and containers. After some

researches we got the best situation in which you should use one or the other

technology. You should use lambda if:

 You have a modest application that runs in 15 minutes or less

on demand. Lambda functions have a timeout value that may be

set anywhere in 15 minutes. Lambda terminates functions that

are running for longer than their time-out value.

 You are unconcerned about or require sophisticated EC2 instance

setup. Lambda maintains, provisions, and protects your EC2

instances, as well as offering target groups, load balancing, and

67

auto-scaling. It removes the complication of maintaining EC2

instances.

 You want to pay only for the capacity that is utilized. Lambda

costs are calculated based on the number of milliseconds

consumed and the number of times your code is executed. Costs

are proportional to consumption. Lambda also offers a free tier

of service.

And you should use EKS in the following situations:

 You are running Docker containers. While Lambda now has

Container Image Support, EKS is a better choice for a Docker

ecosystem, especially if you are already creating Docker

containers.

 You want flexibility to run in a managed EC2 environment or in

a serverless environment. You can provision your own EC2

instances or Amazon can provision them for you. You have

several options.

 You have tasks or batch jobs running longer than 15

minutes. Choose EKS when dealing with longer-running jobs, as

it avoids the Lambda timeout limit above.

 You need to schedule jobs: EKS provides a service scheduler for

long running tasks and applications, along with the ability to run

tasks manually.

Because of our app has only the need to call for API REST that save and retrieve

data from the database they doesn’t need to last more than 15 minutes.

Moreover being our Lambda really fast it should be better to pay for their usage

only when they are running and this is another point in favor of Lambda, in fact

EKS need to reserve space in a cluster that costs a fixed price based on the

amount. EKS require a lot more configurations than Lambda so if don’t want to

https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support/
https://aws.amazon.com/blogs/aws/new-for-aws-lambda-container-image-support/

68

add further complexity to the management of the project Lambda is a better

option. With Lambda it is harder to make misconfiguration errors and they have a

really high reliability. So at the end our architectural choice is to use the Lambda

functions as base of the project.

4.8 Architecture

Following the most modern development strategy we decided to adopt a

Function as a Service serverless architecture. The "function as a service" or

"FaaS" is a type of cloud service that allows you to manage the application as a

set of functions. In practice, we implement this architecture by exploiting the

versatility of Amazon AWS services and in particular of the Lambda service. In

Amazon AWS services, the central development tools of a generic Function as a

service serverless architecture are certainly the API Gateway, the Lambdas, and

the RDS database.

Image 4.4: This is the basic architecture of our application

4.9 Base architecture

In the architecture described, the client sends requests to the API Gateway which

executes the Lambda function requested by the user and returns a response.

Depending on whether it is necessary to communicate with the database, the

69

Lambda may have to connect to the Aurora RDS service. Starting from the API

Gateway we will analyze this infrastructure and its capabilities more in detail:

Image 4.5: This is an example of how an API rest is visualized in the API Gateway

Here we have an average stage of API Gateway service. We can see that

authentication and some products and events resources are managed by API

Gateway calls. Each of these API is associated with a lambda developed

specifically to realize the task requested by the user. API Gateway methods can

require different types of header to correctly answer the user. In particular the

authenticated requests, usually the ones used after authentication, need the user

to send back the authentication access token to verify that the user is authorized

to access the services he requests.

Image 4.6: Visualization of a lambda and its API Gateway trigger in AWS lambda panel.

70

In the upper part of Lambda panel we can see the Lambda function name and the

number of layers that the Lambda can use and the trigger, which is the element

that makes the Lambda launch. In our case the Lambda are started by an API

Gateway call initiated by a user. Then in the code panel, we can see the code that

compose the Lambda. The code can be written directly on the Lambda or

uploaded from zip file or using other injection techniques that exploit other

services. The Lambda can also be tested on place using the testing functionalities

and its logs can be seen directly on Lambda service console or in CloudWatch

service. In the lower part of the Lambda panel we can find the runtime

configurations and the code properties but most important we can manage the

layers, which works like libraries for the Lambda function, adding new layers give

the ability to the Lambda to use the code inside the layer itself. The Lambda

configuration panel can further assign other options to the Lambda. The ones we

used are the authorization, the environment variables, the VPC and the Server

Proxy ones. The authorization panel let you assign the Lambda a role that grant it

the permissions necessary to access the AWS resources needed by the function.

The environment variable panel let you declare some key-value variable that

could be necessary for the Lambda to work, in general is better to declare these

variables inside the Secret Manager which is a centralized resource pool in which

the variable can be written once and read from all the Lambda, differently than

environment variable which can be reached only by the Lambda that declares

them. The VPC can be used to move the Lambda in a specific subnet for

infrastructure compatibility reasons. The Server proxy panel let you add a proxy

to the database, it will be automatically linked to the Lambda and the chosen

database, if created in this panel. Other two important Lambda panels are the

versioning and aliasing usable for version control. In the version panel we can

create new versions of the Lambda, so the code inside the Lambda will be saved

and kept secure as that version of the Lambda, we won’t be able to edit that

Lambda code but we will be able to edit the actual Lambda code until we feel

enough sure to deploy another Lambda version. The alias panel can associate any

version of the Lambda to a named pointer that indicate the important versions of

the Lambda, like the actual in deployment or the one that is being tested.

71

4.10 Secret Manager

Image 4.7: In the image we added to the basic infrastructure the secret manager component

The next piece of the architecture to add is the Secret Manager. This service let

you store “key-value” pairs and full access credentials to database making easy

for developers to avoid the necessity to write in clear these values on the

functions they create. Another advantage of Secret Manager is the automatic

secrets rotation every 30 days for database access credentials, this is an optional

service and can be selected during secret creation, and will automatically update

the database password every a fixed amount of days, actually this is not

implemented in the project but probably it will for security reasons.

4.11 Test with API Gateway

To manage efficiently the versions of microservices we need a way to handle the

new updates. In our situation each Lambda is a microservice. Our develop chain

starts locally using Visual Studio Code, that edit a local repository of our functions.

Then to share the work with other developers we use Gitflow to upload on

Bitbucket the new updates. Thanks to Gitflow each developer can work on

72

different tasks by creating new feature branches. After this process we can

upload the updated Lambda also on AWS. Here the work does not end. In fact,

each time we successfully add new features to a Lambda we can publish a new

version of the Lambda. Then we can create new alias to which we can assign a

specific lambda version. Generally, in a project the two most important alias

used are “development” and “production”. The version to which we will

associate production is usually the one fully working and exposed to the users.

The “development” alias is generally associated to the “LATEST” version (so the

one we are editing now) and is used to apply new modifications to the

microservice. In the future when the “development” alias will be stable and

perfectly working we will produce a new version of the lambda and we will

associate it with the alias “production” exposing it to the public. But this process

is not completely automatic. In fact, here we will need to interact with the API

Gateway. At the actual state of art illustrated on AWS documentation we will

need to deploy two stages of the API gateway, one called “development” and one

called “production”. To each of these versions will be given a stage variable that

will let to call the correct alias of the Lambda selected. This way of working is

really important to follow the DevOps principles, in fact we will have at

disposition two environments, one that is the stable version for the user and one

we can work to create new updates without damaging the production

environment.

73

4.12 CloudWatch

Image 4.8: CloudWatch is the AWS monitor service

Amazon CloudWatch is a cloud AWS resources monitoring service. With Amazon

CloudWatch you can collect, monitor and keep trace of parameters and logs and

also set alarms. Setting an alarm is needed when you want CloudWatch notify

you if some event happens. In the metrics panel of CloudWatch you can trace the

parameters of the application and also draw graphs by choosing some of them.

The trace of logging is the resource we used more in our project, in fact to test

results of a Lambda after it has been launched by a service the only way is to

search the Lambda on CloudWatch log panel.

74

4.13 Relational Database Service (RDS)

Image 4.9: Amazon Relational Database Service let you manage the most used database engines

Amazon Relational Database is a relational database service that let you choose

between six of the most used database engines: Amazon Aurora, MySQL,

MariaDB, PostgreSQL, Oracle and Microsoft SQL Server. Amazon RDS manages all

the standard database activities like provisioning, backup, application of patches,

recovery, error detection and restoration. Thanks to RDS is possible to use

replication to improve availability and reliability for high workloads. There are

two possible implementations:

1. Use an RDS read replica instance which is an asynchronous read-

only replica, it can be used by your application for any query that

does not require a change in the data. In this way we are

reducing the load from our master database.

2. Use a Multi-AZ means that the database has a standby spare

server in another availability zone of the same region. This is a

synchronous replica but it cannot be directly accessed until the

active server fails, if it happens the spare server takes over and

start handling traffic quicker than it would be possible without

the spare one. Multi-AZ improve the deployment reliability since

version upgrades, backup snapshots and creation of replica can

be done using the computational power of the spare server. The

major problem of Multi-AZ is that it doubles the costs of the

75

service to reserve the spare server resources. The main use of

Multi-AZ is therefore the fast recovery generally reserving a

Multi-AZ spare server only for the master server.

3. Actually, there is the option to mix the use of Multi-AZ and

replicas. This will give the server the ability to recover faster

from failures thanks to Multi-AZ properties and the ability to

easily scale when read-heavy workloads happens thanks to

replicas. In this implementation the replica are update

asynchronously like always but a replica can be also converted

into a standalone database instance implementing the Multi-AZ

architecture.

The advantages of RDS are various:

 Easy to use: to interact with the database you can use the

command line interface of Amazon RDS or API calls or even the

AWS management console. Databases are optimally pre-

configured basing on the input you chose when creating the

database. So in minutes you are ready to start using your fully

working database. With Amazon RDS the software of the

relational database is always updated to the last version.

 Better performance: It is possible to regulate the performance of

our database during the creation of it. We can choose the speed

of input/output operation that we prefer. Read and write

operations on RDS database perform better than a normal

database instance, this happens thanks to the technologies put

in place by Amazon, this service has no extraordinary costs.

 Scalability: It is possible to modify the computational power and

the memory that sustain the database in few minutes. The

dimensions of database storage are automatically augmented

by AWS RDS if needed until limits imposed by the service or set

76

by the user are reached. Moreover, the storage recalibration

happens in real time without inactivity moments.

 Availability and Durability: AWS RDS dispose of an automatic

backup function that let you recover the database in its

preceding state until 35 days earlier. It is also possible to make

snapshots of the database on user requests, these are full

backup that stay in memory until user decide so (cost increase

depends on the storage occupied by snapshots). In case of

hardware problems Amazon RDS automatically change the

computational instance that sustains the distribution.

 Security: all Amazon RDS database data can be encrypted using

the keys managed with AWS Key Management Service (KMS). If

the user decide to encrypt the data all database storage, replicas,

multy-AZ, snapshots and backups are encrypted. Amazon RDS

also support SSL protection of data in transition. RDS let you

execute database instances on Amazon VPC, that let you isolate

each database instance and connect them through a virtual

infrastructure using VPN IPsec using state of art encryption

methods. It is also possible to decide the kind of traffic that can

reach the database editing the firewall configurations. Amazon

RDS let the access to its resources only to those which have the

correct IAM roles configurations, it is also possible to assign tags

to database instances that let only certain roles to edit them.

 Manageability: using Amazon Cloudwatch it’s easy to control

RDS database parameters, like computation capability, memory

and storage, I/O activities and connections to the instance. RDS

can also send you notification about database events using

Amazon SNS.

 Costs reduction: costs are computed exclusively on resource

usage. Amazon RDS let the user to reserve instances till 3 years

77

in exchange of discounts. It also stops the database instances for

7 days, after that time the resource is automatically restarted,

and you pay again the price to keep it online. This is done to

encounter the need of developers which can enable databases

only when developing and disable them when they stop working.

4.13.1 AWS RDS MySQL:

Image 4.10: MySQL is the most famous database engine

When we create a database service with AWS RDS we can choose between many

database engines. MySQL is one of the most important. It is coded in C and C++

and is the most famous and used relational database. It is really quick and user

friendly, open source and freely available, moreover is fast and reliable. During

the first tests, we started using MySQL mainly for its simplicity. Amazon RDS

makes configuration, administration, working and scalability of the cloud MySQL

database easier so that in minutes you can start developing with a fully functional

database. The MySQL database was only a test one in our project, in fact to

satisfy the requests of the customer we require high reliability and scalability

capacity. Therefore we have to move to Amazon Aurora.

78

4.13.2 AWS Aurora:

Image 4.11: Aurora is a really fast and scalable relational database engine

For database administrators and software developers, the current database

landscape is a frustrating one. You are forced to choose between open source

databases that are challenging to scale and old guard databases that offer

enterprise features but are expensive. With Amazon Aurora, a relational database

developed for the cloud, you can get the speed and availability of commercial

databases with the cheap cost and flexibility of open source databases. Aurora is

MySQL and PostgreSQL compatible, making it an ideal choice for your new or

current applications. It's up to five times quicker than MySQL and three times

faster than PostgreSQL. It also scales automatically to keep up with your

applications. Aurora produces six copies of your data that are scattered across

several places and continually backup them to Amazon S3 so that your data are

safe and internationally distributed. Aurora can duplicate your data across

different regions for improved local performance and catastrophe recovery. You

may use Aurora's serverless to autonomously start, scale, and shut down a

database to match application demand or to easily manage unexpected

workloads. Aurora provides enterprise-grade performance, scalability, availability,

79

and security with the ease and cost-effectiveness of an open source database

migration to the cloud.

4.14 Adding the RDS Proxy:

Image 4.12: We added the RDS Proxy to better manage the connection to the database

The use of Amazon Aurora database cause the next update in our architecture. In

fact to fully exploit the capabilities of Aurora we need to connect it to Lambda

functions via the Amazon RDS proxy. Amazon RDS Proxy is a fully managed, highly

available database Proxy for Amazon Relational Database Service (RDS) that

improves the scalability, resilience to database failures, and security of

applications. Many applications, especially those based on contemporary

serverless architectures, might have a large number of active connections to the

database server and may initiate and drop database connections at a rapid pace,

draining database memory and computation resources. Amazon RDS Proxy

enables applications to pool and share connections created with the database,

boosting database efficiency and application scalability. RDS Proxy reduces

failover times for Aurora and RDS databases by up to 66%, and database

credentials, authentication, and access are controlled via interaction with AWS

Secrets Manager and AWS Identity and Access Management (IAM). Most apps

can be enabled to use Amazon RDS Proxy with no coding modifications. To begin

80

using RDS Proxy, you don't need to provision or manage any extra infrastructure.

The pricing is straightforward and depends on the capacity of the underlying

database instances. Amazon RDS Proxy support all Amazon RDS database engines.

4.14.1 Performance improvement of using and RDS Proxy

with serverless applications:

With Amazon RDS proxy, you can create serverless apps that are more scalable

and available because they make better use of your relational databases. Modern

serverless apps handle highly changing workloads and may seek to initiate a burst

of new database connections or maintain a large number of open but idle

connections. A spike in connections or a large number of open connections may

put a load on your database server, resulting in slower queries and limited

application scalability. RDS Proxy enables you to effectively grow to many more

connections for your serverless application by pooling and sharing already

existing database connections. RDS Proxy also allows you to restrict the total

number of database connections that are established, allowing you to maintain

predictable database performance. Finally, RDS Proxy protects the availability of

your serverless application by blocking unserviceable application connections

that may affect database performance.

4.15 Cloud security:

The services that implement the security of the cloud architecture that we

are going to exploit are Cognito, the Virtual Private Clouds (VPC) and the Secret

Manager. Another key element for the development of cloud architectures

provided by Amazon is AWS CloudFormation which allows you to implement the

"Architecture as code" development paradigm. Through this tool you can

configure and launch entire cloud architectures only through code without having

to manually design every single element of the architecture. For reasons of

81

versatility, however, we have decided to exploit a tool similar to CloudFormation

but external to Amazon called Terraform which is able, starting from an already

built architecture, to obtain the corresponding code ready to be redistributed.

4.15.1 Authentication and Cognito configuration:

Image 4.13: Cognito has everything you need to manage the authentication flow

Cognito is the AWS service designed to enable the creation of services with

authentication, authorization and secure user management. After completing the

authentication process Cognito provides the user with a token. This token will be

necessary for the user to interact with Cognito, that, once received the token

back, will provide access credentials to the requested AWS services. This process

takes place thanks to the presence of two data pools saved in Cognito: the first is

called "user pool", the second is called "federated identity". Amazon Cognito User

Pools allow you to quickly create the directory for managing user registration,

access, and retention. The "user pool" provides a default interface for registration

but also allows you to use a custom one external to the service with the

necessary development adjustments. Through the "user pools" we will also be

able to easily integrate our application with social intent providers such as Google,

Amazon and Facebook or with corporate identity providers such as Microsoft

Active Directory via SAML. You will also be able to choose from various security

mechanisms such as multi-factor authentication (MFA) which allows for checking

82

for compromised credentials, account theft protection, and email and phone

number verification. You can also set up custom authentication flows and

manage user migration taking advantage of the AWS lambda triggers provided

within Cognito service. Cognito's “Federated Identities” allow you to manage

access control to resources. Thanks to this Cognito feature, we will be able to

ensure that registered users of the service can only access the AWS resources and

APIs specified by limiting users' access to the services assigned to them. The

accesses provided to different users can be differentiated by assigning different

roles and authorizations (even only temporary).

4.15.2 Cognito from theory to practice solutions:

Now that we have clear the options provided by Cognito we will analyze them

from the practical side. The image below shows a pool containing 3 users.

Image 4.14: A sample of registered users in Amazon Cognito panel

As we can see the default fields of Cognito are the “username”, the “enabled”

field, the “account status”, the “email” field, the “verified phone number”, the

“updated ” and the “created” one. We will analyze their meaning below:

 The "username" is an alphanumeric field used by the Cognito

functions to identify the user during his requests to the

83

authentication service, it can be said that together with the

"email" is the main field.

 The enabled field shows, how the word says, if the user has

the permission of the Cognito administrators to access AWS

resources, at any time an administrator can decide to disable

a user and even later to delete him.

 The "Account status" field shows if the user has confirmed

the registration. Confirmation of registration can be done by

email or telephone number. In our case we decided to

proceed via email, in fact the “Verified Email” field shows

"true" as a result while the "Verified phone number" field

shows "false" to indicate that the phone number is not

necessarily correct since it has not been used in the process

of verification of the account.

 The "email" field contains the user's email and the

"Updated" and "Created" fields are self-explanatory and

indicate the respective dates of update and creation of the

user.

 The second interface of the "user pool" that we are going to

analyze is called "Attributes", and here we will be able to

select which fields our user can register with, in our case we

have chosen email and password. In fact, the only

mandatory field (excluding the password) is the email as

shown in the image. In this same interface but not present in

the photo, it is also possible to introduce customized fields

not set up by Cognito to complete the registration.

84

Image 4.15: Cognito access method panel

After that, the password settings can be set in the Policy screen. The main

element of this interface is the password security level.

Image 4.16: Continuation of the preceding panel

85

The MFA and verification interface allows you to set up multi-factor

authentication, currently disabled in our case, and the password recovery

method (we chose via email).

Image 4.17: Multi-factor authentication panel

86

On the "Message Customizations" page we have chosen to verify the user's

account via a verification code. The message can also be customized according to

your choice.

Image 4.18: In this panel you personalize the verification code

In the "App Customers" interface, through a code, we will be able to provide

access to the pool of users, only to those who provide the same code in their

requests. In the "Trigger" interface, you can customize Cognito workflows by

associating Lambda functions that execute custom code to certain Cognito events.

Through the "App Integration" interface it will be possible to choose the settings

to generate a web page provided by Cognito to perform authentication. In our

case we do not use the one provided by Cognito because we prefer to create the

authentication web page separately from the Cognito service. The last useful

page is the "Federated identities" which allows authentication to the service

through the use of accounts federated with AWS such as Facebook, Google and

others (but also in this case at the moment our architecture does not use them).

87

4.16.3 Adding Cognito to the rest of the

architecture:

Image 4.19: Adding Cognito to the architecture

As with the procedure explained for the RDS Proxy, Cognito also makes use of

Lambdas in our architecture. In fact, to access the Cognito service there are 2

previous steps that the data flow arriving from the client must overcome to reach

its destination. Starting from the user's app, the data flow sends a request to the

API Gateway via a series of REST-type Endpoints. Depending on the Endpoint to

which the app makes the request, the API Gateway associates a Lambda function

especially created to perform a specific function. The Lambda functions available

for authentication are currently seven and include registration, confirmation of

registration via email, login, sending email messages for account confirmation or

password recovery. Most of the Lambdas in question have permissions (in AWS

called roles) to access the Secret Manager, the proxy (and the MySQL database)

and Cognito. Lambda must access the Secret Manager to obtain the database

access credentials, the proxy to save some data on the database and Cognito for

88

everything related to authentication and user access. The current code is written

completely in node.js, but Lambda functions are a very flexible service and allow

to be written in many different languages. This is a huge advantage because,

since we work in a microservices architecture (each lambda can be modified in a

completely separate way from the rest of the resources) if a new development

team takes over and want to add new features to the service, they can leave the

old microservices in their own language and write new lambda functions in other

languages. Another benefit is the testing of assets and their modification. Since

each lambda is built to be independent from the others, each element of the

development team can concentrate on an element without having to wait for the

conclusion of the work of the other developers (obviously by previously agreeing

on the methodologies in case the Lambdas in question need to access common

resources or communicate with each other).

4.16 S3

Image 4.20: Amazon S3 is a really elastic data container service

Another important component to our architecture is Amazon S3. Amazon S3 is

able to simplify the management of large amounts of data in a scalable and cost-

89

effective manner in comparison to any other traditional storage solution. Amazon

S3 is a cloud computing service that provides scalable object storage with no

quantity limits and 99% data durability. This astonishing percentage is respected

due to the separation of data centers into several "availability zones" inside

various "regions" of the AWS service. Our files are defined as objects in Amazon

S3 and are saved within containers named buckets (they are like folders inside

our Amazon S3 account). Because bucket can be reached through web there

aren’t two buckets with the same name. On Amazon S3, an object is a collection

of data and metadata that is uniquely identified by a name and, if the "multiple

version" feature is enabled by a name and a version id. A key in Amazon S3 is a

string that uniquely identifies an object within a bucket and corresponds to the

object's name or path. Amazon S3 is a really versatile service and let you replicate

your data over different availability zones and regions (for safety and latency

reasons). The multi-region feature happens only if the user requests it. This is due

to different state legislation about data contained into servers. Another feature

of Amazon S3 is letting the user keep different versions of a file (only if the option

is enabled). This is done to be able to recover an old version of the data. There

are also different Amazon S3 class of storage, characterized mainly by their trade-

off cost and data access rapidity.

4.17 Infrastructure as Code

With the development of the cloud the development of the infrastructure of a

project moved for the developer from the physical necessity to buy and configure

a real server to the creation of a virtual environment in cloud. Over the time more

complex virtual structures have born to let the developers follow new

philosophies like DevOps or to build complex systems. With the increasing

complexity of structures the ability to code them became a necessity. The main

advantage of working with paradigm infrastructure as code is the ability to

provide faster, repeatable and automatic provisioning. More in detail the

advantages that could be implemented using Infrastructure as code are:

90

 It improves the speed of the work: automation is faster than

manually editing the interface when you need to implement

and connect resources.

 It increase the reliability: if your infrastructure is big, it is

easy to wrongly write the configuration of a resource or to

execute the provisioning of the services in an incorrect order,

with infrastructure as code provisioning and configuration of

resources is always exactly as declared.

 It prevents differences in the configuration: a difference in

the configuration can be caused by a mutable structure of

the project due to new updates, if you create a different

version of each updated function and, in this way you make

“immutable” configuration of each update, letting it be

recovered if some errors come with the new update.

 It helps supporting experimentation, test execution and

optimization: because of infrastructure as code is simpler

and faster then the manual creation of the single resources

you recover time to make new experimentation with the

infrastructure, testing it and rapidly expands the project for

the production.

Actually Infrastructure as code is considered a fundamental part of Agile

development and DevOps practices.

4.17.1 CloudFormation

CloudFormation is a service provided by AWS that allows you to build your AWS

infrastructure using code. CloudFormation was released in 2011 and has become

indispensable for many AWS customers as it allows you to define reusable

templates to generate AWS resources. Using CloudFormation you save time in

building the infrastructure and you can focus more on other operations such as

development. CloudFormation allows you to generate AWS infrastructures simply

91

by using a JSON or YAML file in which you write the code of the resources to be

created. To modify a CloudFormation model we can use the designer provided by

the service itself which has a rich graphical interface and has nine main fields:

1. Version identifies the capabilities of the model and if not

specified CloudFormation assumes it is the latest version

available.

2. The description which helps us include any comments

regarding the model.

3. The metadata field which includes the details and resources

used by the model.

4. The parameters that we can enter to customize the model

for example by altering the input values.

5. The mapping that helps us match a key with the

corresponding set of values.

6. The conditions, in which we can insert indications that

indicate when a resource is created or when a property is

defined.

7. The field is called transformation and specifies one or more

transformations that we can use in our model.

8. Resources stating which AWS resources you want to include.

9. A field that helps sort the CloudFormation console output.

92

4.17.2 Terraform

Image 4.21: Terraform let you implement infrastructure as code for most of the cloud providers

Terraform is an open source tool developed to realize the Infrastructure as Code

(IaC). It is a declarative codification instrument that let you build the

infrastructure of a cloud environment using the HCL language that is able to

describe the infrastructure and provision it. Its main advantage is that is an

independent platform service. This means that once learned it can be used for

every provider of cloud services while the major part of Infrastructure as Code

service usually works with only once. Another advantage is that Terraform is open

source so it is supported by a large community that create plugins for the

platform and as a result Terraform expands rapidly.

4.17.3 Working principle of Terraform

The base element of a Terraform infrastructure as code configuration is the

“module”. A module can contain one or more components of the infrastructure.

Each module can be called independently, recalled, and can call other modules, in

this case called “secondary modules” to make the development process more

granular. As we said earlier Terraform uses plugins that implement different

resource types of a specific provider. The plugins contain all the necessary code

to authenticate and connect to a service, the most part of cloud services are

included, and AWS is surely one of them. Terraform can automatize the

93

management of Infrastructure as a Service, Platform as a Service, Software as a

Service and Function as a Service cloud providers infrastructures.

4.18 Swagger vs API Gateway documentation

Image 4.22: Swagger let you describe the structure of your API

The process of creating documentation for an application is long and tiring, but

particularly necessary when the development team is replaced and new

developers come into contact with the application. In this situation clear and

complete documentation is essential whether you need to complete the project

or just want to make changes or maintenance. APIs (Application Programming

Interfaces) represent the contact point between applications. All applications

connected to the Internet rely on APIs that call specific application functions and

return a useful result to the requester. As with the other components of the

application, the APIs must also be documented and a standard called OpenAPI

Swagger has been designed to achieve this purpose. In this way we can

standardize the documentation process even for those who have not participated

in the development process from the beginning. Before the OpenAPI standard,

due to the different methodologies, technologies and programming languages,

there was no standard for creating APIs. REST was later chosen as the standard

for developing RESTful APIs. At the release of OpenAPI Swagger, the main REST

API description competitor was WSDL 2.0 which, however, was considered rather

complex, and for this reason quickly surpassed in popularity by the new

94

competitor. The documentation created with Swagger consists of a single text file

in JSON or YAML format. With the Swagger interface you can view the

documentation in both textual and graphical form and you can also send requests

to the API, which is why it has achieved great success. Swagger has several tools

bundled and available online under the name SwaggerHub that facilitate

documentation development. The first tool analyzed is Swagger Inspector which

only by calling the server is able to generate part of the documentation which can

then be edited with Swagger UI. Once completed, the documentation can finally

be hosted on SwaggerHub, which however in the free version does not allow

sharing projects with other users or even integrating with AWS for the automatic

generation of documentation in case of editing of the API Gateway calls,

moreover allows you to host up to 3 sheets of documentation.

Image 4.23: API Gateway documentation panel

Taking into account the importance of documenting the APIs, AWS has provided

the API Gateway service with a panel called "documentation" in which we can

analyze or create the documentation related to each API call. For simplicity

reasons we can also choose to write the documentation during the creation of

the API Gateway and its APIs by clicking on the transparent gray book-shaped

icons. The benefit of documenting with API Gateway is that you can leave notes

for other developers and your work is instantly visible to everyone. After

95

deploying the API Gateway you will be able to publish the documentation. In this

case, publishing means generating a document in OpenAPI 2.0 or 3.0 format and

exporting it in JSON or YAML format. It will contain all the documentation related

to the API Gateway that respects the chosen format, in fact any comments that

do not follow the OpenAPI rules will not be exported. In conclusion, the

documentation task can be done with both API Gateway and SwaggerHub, the

choice is whether you prefer the sharing allowed by API Gateway or the simplicity

provided by SwaggerHub. After that the hosting can take place both on an S3

bucket or using the free SwaggerHub service.

96

Chapter 5

5 Agile development

During the development of an application, good management of the group is

essential to optimize times and results. To accompany the different strategies, at

the base, there must be technologies that are adequate for the job we want to do.

One of the technologies used in many group projects is Git, a system that allows

version control and the collaboration of multiple developers on the same project.

There are various platforms online such as GitHub, GitLab and Bitbucket that

allow you to use the Git system to manage your projects. Git allows you to

maintain multiple active versions of your project, each of which is called a

“branch”. Each “branch” can be modified separately and then also reunited with

the main “branch” at a later time through a “merge” operation. Every time,

before changes are applied to a “branch”, a “commit” containing the changes is

made. The conflicts between the new and the old version are resolved, after

which the upload of the data to the repository is confirmed with a “push”

operation. The “fetch” operation instead allows you to check if changes have

been made to the “branch” (generally to check if other elements of your team

have modified the repository), if so, before continuing to work on the project it

will be necessary to download the new version with a “pull” operation, resolve

any conflicts with our local work and then reload everything with a "push"

operation. This is the basic principle of Git. Over time Git has gained more and

more fame and new usage philosophies supported by libraries have been added.

One of these is Gitflow, initially a Git usage model, after adapted to the state of

the art of modern DevOps strategies. Then it was supported by an installable

toolset that simplifies the set of Git commands to perform the actions required

by Gitflow (it includes those which would be a series of git commands in

individual functions). Currently Gitflow is no longer considered the state of the art

according to DevOps strategies, it has in fact been supplanted by trunk-based

97

workflows, however for small development teams that do not need continuous

merges it is still considered an optimal technology. So let's analyze how Gitflow

works: Gitflow uses two branches, the first called “main” is the one in which

there is the version of the software in distribution, the second called “develop” is

the one in which tests and changes to the application are performed before being

merged with the “main” branch (only if they are fully functional). Every time you

want to make a change to the code, a new branch cloned from the “develop”

branch is opened. In this branch we will make all the necessary changes (many

new “feature branches can be opened in parallel”), at the end of which, the

“feature branch” is merged with the “develop branch”. When we have made

enough changes and we are satisfied with the result we can create a “release”

branch, during the period in which the “release” branch is active, no new features

can be added to the software and we only deal with testing and bug fixing, once

satisfied with the result, you can also merge the “develop” branch with the

“main” branch by putting the new changes into distribution. If an error is found in

the “main” branch, an “hotfix” branch must be opened, used for a bug resolution

sprint, at the end of which the “branch” is closed both on the “main” branch and

on the “develop” branch and “main” must be tagged with a new version number.

5.1 Trunk-based development

Another alternative to Gitflow strategy, considered actually the state of art, as

well as used by Google developers, is Trunk-based development. Actually Trunk-

based development is being treated as the most advanced teamwork developer

enforcement strategy. Trunk-based development (TBD) is a branching technique

in which all developers integrate their changes every day directly to a shared

trunk, which is always in a releasable form. Whatever a developer does on their

local repository, they must integrate their code at least once every day. This

method requires each developer to observe and react to changes made by their

coworkers in version control on a regular basis, making collaboration on the

quality and status of the codebase a near-constant activity. TBD permits the

98

usage of additional branches, such as a short-lived release branch off the trunk

for executing a release and local-only feature branches, although neither is

necessary for TBD practice. TBD is the most closely aligned with current delivery

methodologies like as Continuous Delivery and DevOps, which have becoming

more important and even required for many software development teams. Surely,

Trunk-based development is required for CI/CD. TBD prioritizes continuous

integration in a developer's workflow. You simply must incorporate your

modifications every day; comprehending this immediately causes you to

reconsider how you approach your work and collaborate with your team

members. You must approach your task as a succession of modest moves ahead,

with each step potentially being launched to production. Smaller adjustments

reduce the blast radius of any changes that cause a problem in production. As you

gain experience using branch by abstraction, you'll learn that you occasionally

want your code modifications to be deployed. For example, you may want your

modifications to be verified in a non-production environment but not yet visible

in production. Using feature flags, you may connect your branch to an externally

controlled mechanism, such as an application configuration file or an external

database or service. This provides you more control over releasing changes

outside of the codebase. Using feature flags, developers may release incomplete

work to production while keeping it hidden from end users. Since our team was

modest in number we actually don’t need to operate using trunk-based

development in fact Gitflow, with little sized teams, perform as well as Trunk-

based Development.

5.2 Deployment strategy

To create a full agile development environment we have just moved the first

steps. Using Gitflow we were able to coordinate the work of the developers of

the team. Now we need a deployment strategy that mechanically get the

updates uploaded on Git and deploy them to AWS. This is important to avoid

deployment errors, in fact when a project has a large dimension and the

99

development process is complex and require many deployment, it is easy that

during the deployment process some errors are made. So the developers will

need to lose time fixing also deployment errors, and this is the part we can avoid

using a good deployment strategy and the correct technologies. The three

Amazon AWS services we will analyze for this purpose are Codebuild, Codedeploy,

CodePipeline.

5.3 CodeBuild

Amazon CodeBuild is a fully managed continuous integration service that allows

you to compile source code, run tests, and generate ready-to-implement

software packages. CodeBuild eliminates the need to manage, scale and

provision your development servers. It is necessary to specify the code's flow and

build settings. CodeBuild will then run the build script to compile and test the

code as well as create packages. CodeBuild automates continuous integration and

delivery pipelines (CI/CD), resulting in a fully automated software release process

that propagates changes to the code to many implementation environments.

CodeBuild reduce the complexity of managing development servers, in fact it

execute the Jenkins compilation tasks already present on CodeBuild to remove

the need to configure and manage the Jenkins compilation nodes. CodeBuild

automatically executes software builds using an existing GitHub repository and

publishes the new results on GitHub. CodeBuild can also conduct unit tests on

source code. Java, Ruby, Python, Go, Node.js, Android, and Docker are among the

programming languages and frameworks supported by CodeBuild. AWS

CodeBuild fixes and maintains server builds automatically, and it scales as volume

grows. To offer a new isolated environment for each task, the service constructs

temporary compute containers for server builds. It also runs many builds at the

same time. When the build is complete, AWS CodeBuild discards containers and

uploads build artifacts to S3 buckets or other storage sites. AWS CodeBuild

interfaces with other AWS code services, such as AWS CodePipeline. A developer

can use the AWS Key Management Service to encrypt build artifacts. AWS

100

CodeBuild works with the AWS Management Console, AWS CLI, software

development kits, and application programming interfaces to provide specific

information about each build, such as start and end times, status, commit ID, and

branch.

5.4 CodeDeploy

The third element we need to create a continuous deployment environment is

CodeDeploy. AWS CodeDeploy is a service that deploys application code from

AWS S3, GitHub, or BitBucket to EC2 or on-premises instances. With hybrid

infrastructure becoming the standard for many big projects, this is a capability

that a cloud deployment tool must have. Continuous Integration (CI) and

continuous delivery are two fundamental procedures in DevOps. Continuous

builds and tests are insufficient to complete your DevOps shift, you must also

deploy continually. The practice of delivering an app in short cycles, up to

numerous times per day, is known as continuous delivery. This necessitates the

development and testing of code such that it is release-ready from the outset.

CodeDeploy allows you to deploy your code in two ways:

 Deployment in-place: CodeDeploy delivers your code to the

same set of EC2 instances by pulling the instances offline,

executing the scripts that deploy your code, and then

bringing the instances back online. This approach requires

downtime and should be scheduled but, however, employs

less EC2 instances than the other technique.

 Blue-green deployment: it entails developing two similar

production setups that can manage equal production loads.

While one environment in the blue environment is running

the live application, the release is pushed to the other green

environment to be setup and tested. Once the green

environment is stable, a switch in the elastic load-balancer is

101

all that is required to route traffic from blue to green. This

approach consumes more EC2 resources, but it reduces

downtime. This is the recommended technique for mission-

critical applications. When the deployment on the green

environment is complete, you can destroy the blue

environment until your next release is ready. CodeDeploy

can automate the entire procedure.

Before you can begin the deployment, you must create an IAM user and

guarantee that all of the components like repositories, EC2 instances, and

CodeDeploy, can communicate with each other. You can deploy your app using

CodeDeploy in two ways: through the CodeDeploy interface or using the AWS CLI.

5.5 CodePipeline

CodePipeline is a fully managed continuous delivery solution that aids in the

automation of release pipelines for quick and dependable application and

infrastructure updates. CodePipeline automates the build, test, and deploy parts

of the release process whenever there is a code change. This allows for the quick

and consistent release of features and upgrades. AWS CodePipeline integrates

easily with third-party services like GitHub or any other custom plugin.

CodePipeline works good also with other AWS tools like the three discussed

before. In fact CodePipeline is like a junction that can connect all services

together creating the real continuous deployment system. Continuous

deployment is a software engineering technique that uses automated

deployment to offer product functionality. It assists testers in determining

whether or not the codebase modifications are proper and stable. By depending

on infrastructure that automates several testing procedures, the team may

accomplish continuous deployment. The program is updated with a new code

after each integration satisfies the release requirements.

102

5.6 Scrum

Scrum is a management methodology that teams use to self-organize and work

toward a common goal. We tried to apply Scrum strategies to our team

management. Here we will explain how it works. Scrum is also built on empiricism,

or the idea that knowledge comes from experience and that decisions must be

made around our knowledge. Transparency, examination, and adaptability are

the three pillars that support empiricism. The framework's structure is quite

simple, consisting of:

1. Responsability: there are three distinct roles within Scrum.

Product Owner, Scrum Master, and Developers. All of them

come together to form the Scrum Team, which has the

characteristic of being self-managing and cross-functional,

which means that it has all of the competencies necessary to

deliver a software increment without relying on outside

teams or individuals.

2. Artifacts refers to the methods through which Scrum

visualizes work and value. The artifacts are Product Backlog,

Sprint Backlog, and Increment. Every artwork includes a

"promise" with the goal of improving transparency and

allowing the team's progress to be measured. These are the

commitments:

 Product Goal, which is part of the Product

Backlog and describes the product's future state.

The Product Goal serves as a long-term goal.

 Sprint Goal, which is part of the Sprint Backlog;

describes a shorter-term goal and the reason

why an iteration adds value to the product.

103

 Definition of Done, which describes when an

Increment (or software increment) meets an

acceptable quality level, allowing the final

release to the user.

3. Event and Ceremonies: Scrum's events or ceremonies are as

follows:

 Sprint Planning occurs at the start of the Sprint

(or iterate). It is, as the term suggests, a planning

event.

 Daily Scrum is a weekly 15-minute session in

which developers update their plans for

achieving the Sprint Goal.

 Sprint Review, which closes a Sprint and allows

you to reflect on your work.

 Sprint Retrospective, the final meeting inside a

Sprint with the purpose of evaluating processes,

practices, and other aspects related to

collaboration.

In the Scrum framework, like in other agile methods, the entire team is self-

organized, and the development team is cross-functional. According to agile and

Scrum methodologies, if you have a team of prepared people, it makes sense to

use everyone's full potential by sharing responsibilities and leading this group

from the outside. The advantage is significant if you believe that this approach is

effective in removing the potential bottleneck of having a single person tasked

with visioning and making decisions on all aspects of the project. But the most

essential result of this way of working is increased involvement and participation

from all team members, which leads to an increase in productivity and well-being

for all. As a result, in a Scrum team, there is shared leadership, and being a leader

entails locating the problem and bringing the appropriate people together to

104

solve it. Anyone on the team who is capable of anticipating an issue has the

opportunity to serve as a leader in its resolution. Scrum is organized into Sprint

cycles that last from one to four weeks. At the end of each iteration, the team

releases one or more increments that include potentially releasable functionality.

The cycles are time-boxed, which means they have a fixed duration, cannot be

interrupted, and must end even if the work is not completed.

5.6.1 Scrum planning

At the start of each Sprint, at a session called Sprint Planning, the team selects its

own tasks from a prioritized list of activities (Product Backlog) and commits to

completing all activities that contribute to the achievement of the Sprint Goal by

the end of the Sprint. The ultimate goal is not to complete as many activities as

possible, but to produce increments of fully functional and usable software

through the achievement of the Sprint Goal that is, the short-term goal that is

desired throughout the iteration. This goal was agreed upon by the whole Scrum

Team and was not predetermined by the Product Owner. It is critical to accept

that everything that is planned at the start of the iteration can be changed as the

team learns new skills during the development phase. The only conditions are

that changes do not have a negative impact on product quality or the Sprint Goal

which is fixed for the duration of the cycle.

5.6.2 Scrum execution

The team meets on a daily basis through the Daily Scrum Meeting (also known as

the Daily Stand-up). It is common knowledge that during the daily stand-up ideas,

problems, and potential dependencies on other teams emerge. This ceremony

lasts a maximum of fifteen minutes if carried out correctly. All discussions,

including the resolution of any problems or impediments discovered, are

relegated to other sessions. At the end of the Sprint, the team releases an

increment, which must always be complete and potentially releasable to the

105

ultimate user. For example, in the case of a typical software application, a fully

integrated, functional, and tested functionality. It is vital to note that under

Scrum, there might be more than one increment every sprint. To put it another

way, you don't have to wait until the end of the Sprint to celebrate.

5.7 End of the sprint

The Sprint concludes with two key ceremonies: the Sprint Review and the

Retrospective Meeting. The Sprint Review is an informal meeting in which the

team discusses the work done in collaboration with the Product Owner and any

key stakeholders. The Retrospective Meeting, which is usually held at the end of

the Review, allows the team to reflect on the just completed Sprint and serves for

everyone to express their views. It’s important to execute this phase of the sprint

to analyze what worked during the previous iteration and what needs to be

improved.

106

Conclusions and future development

The project done in collaboration with the company is still being developed,

but the most important tasks are already completed. The next updates are some

networking architectural components and some Lambda functions to be written

to complete the range of service needed to realize all the customer’s requests.

The state of art development principles should be the one described in the thesis,

but it is possible that the techniques used here are not the best one for every

kind of project. In conclusion this thesis could be an introduction to the ones that

try entering the cloud serverless world, both in matter of technologies and

techniques used during the development.

107

Bibliography and sitography

[1] Gene Kim, Jez Humble, Patrick Debois, & Jhon Willis, The DevOps

Handbook - How to Create World-Class Agility, Reliability, and Security in

Technology Organizations.

[2] Chris Richardson, Microservices Patterns.

[3] https://docs.aws.amazon.com/ AWS Documentation.

[4] https://www.bmc.com/blogs/aws-ecs-vs-aws-lambda/ Confrontation

between Lambda and ECS

[5] https://www.ionos.it/digitalguide/siti-web/programmazione-del-sito-

web/che-cose-swagger/ Swagger

[6] https://www.atlassian.com/git/tutorials/comparing-

workflows/gitflow-workflowm Gitflow Atalassian

[7] https://launchdarkly.com/blog/git-branching-strategies-vs-trunk-

based-development/ Trunk-Based development

[8] https://www.ibm.com/it-it/cloud/learn/terraform Terraform

[9] https://www.statista.com/statistics/967365/worldwide-cloud-

infrastructure-services-market-share-vendor/ Statista

[10] https://iamondemand.com/blog/aws-lambda-vs-azure-functions-ten-

major-differences/ Lambda vs Azure Functions

https://docs.aws.amazon.com/
https://www.bmc.com/blogs/aws-ecs-vs-aws-lambda/
https://www.ionos.it/digitalguide/siti-web/programmazione-del-sito-web/che-cose-swagger/
https://www.ionos.it/digitalguide/siti-web/programmazione-del-sito-web/che-cose-swagger/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflowm
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflowm
https://launchdarkly.com/blog/git-branching-strategies-vs-trunk-based-development/
https://launchdarkly.com/blog/git-branching-strategies-vs-trunk-based-development/
https://www.ibm.com/it-it/cloud/learn/terraform
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/
https://www.statista.com/statistics/967365/worldwide-cloud-infrastructure-services-market-share-vendor/
https://iamondemand.com/blog/aws-lambda-vs-azure-functions-ten-major-differences/
https://iamondemand.com/blog/aws-lambda-vs-azure-functions-ten-major-differences/

108

Thanksgiving

On this page, I'd want to thank everyone who helped me with my thesis

work and, in general, during my academic career.

In particular, I'd like to thank my supervisor, Luciano Lavagno for always

being there to help me in times of difficulty and providing very useful

suggestions for the completion of this project.

A heartfelt thank you also to the company Akka Technologies and to

project managers Stefano Amedeo, Ippolita Jarenko, Rocco Affinito, and my

coworker, Edoardo Vignati, who has always been available to assist me.

I want to thank my family for being there for me at all times, for assisting

me at difficult times, and for asking me to do things that i would not have

done otherwise; i want to thank them for accepting and supporting all of my

decisions and projects.

Finally, I'd want to thank everyone who has played a role in this journey

and in my life. Among them, a special thanks to Mattia and Edo for always be

present, to my historical roommates Carlo, Simone, Riccardo with whom I

shared almost my whole university career. I want to thank Sere and Matteo

for the many coffee breaks, and my Turin adventure's comapanions Cristiano,

Marco and Marco.

	POLITECNICO DI TORINO
	Summary
	Acronym
	Abstract
	Thesis goal
	1Cloud development history
	1.1Cloud advantages
	1.2Amazon Web Services
	1.3Microsoft Azure
	1.4AWS vs Azure

	2Amazon Web Services
	2.1AWS list of services
	2.2Serverless architecture
	2.3Monolithic architecture and microservices architec
	2.4Microservices advantages and disadvantages
	2.5Building microservices architecture

	3DevOps
	3.1Visibility, focused team, util job
	3.2Learning culture and company transformation proces
	3.3Different types of business organization
	3.4Continuous delivery, testing, secure deployment
	3.5Microservices architectures
	3.6The error as value and starting point
	3.7Logging systems and control metrics
	3.8Cloud security
	3.8.1 Shared security model:
	3.8.2 AWS shared responsibility security model:

	4Development of the project
	4.1Virtualization and containers
	4.2Amazon elastic container registry (ECR)
	4.3Kubernetes
	4.4Docker
	4.5Amazon Elastic Kubernetes Services
	4.6Lambda review
	4.7AWS container app development vs AWS function as a
	4.8Architecture
	4.9Base architecture
	4.10Secret Manager
	4.11Test with API Gateway
	4.12CloudWatch
	4.13Relational Database Service (RDS)
	4.13.1AWS RDS MySQL:
	4.13.2AWS Aurora:

	4.14Adding the RDS Proxy:
	4.14.1Performance improvement of using and RDS Proxy wit

	4.15Cloud security:
	4.15.1Authentication and Cognito configuration:
	4.15.2Cognito from theory to practice solutions:

	4.16.3 Adding Cognito to the rest of the architect
	4.16S3
	4.17Infrastructure as Code
	4.17.1CloudFormation
	4.17.2Terraform
	4.17.3Working principle of Terraform

	4.18Swagger vs API Gateway documentation

	5Agile development
	5.1Trunk-based development
	5.2Deployment strategy
	5.3CodeBuild
	5.4CodeDeploy
	5.5CodePipeline
	5.6Scrum
	5.6.1Scrum planning
	5.6.2Scrum execution

	5.7End of the sprint

	Conclusions and future development
	Bibliography and sitography
	Thanksgiving

