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Summary

This Master’s Thesis was carried out at Bitron S.p.a, in the R&D Charging
department. The purpose of this work is to write a Linux driver and corresponding
rmware for the ESP32-WROVER-E Wi-Fi module in order to use this device
on an electric vehicle charging station as a Wi-Fi Station Point or Wi-Fi Access
Point. Moreover, is necessary to understand if this microcontroller can be adopted
in industrial environment. The adoption of this module allows the user and the
company providing the service to monitor the functioning of the charging station,
to have a wide range of data available, and to set a suitable charging prole for
the user. Being a microcontroller, it implements MAC layer functionality of the
802.11 protocol within its rmware, making it a ’HardMAC’ (also called ’FullMAC’)
device. Therefore, the mac80211 layer does not need to be implemented within the
Linux driver, as will be explained in greater detail in the following sections.

Specically, this Linux driver is used for recognition and proper communication
by the SoM (which consists of an STM chip on which the Linux kernel 5.10.61 is
implemented) with the Espressif module. In addition, an SPI protocol is used for
packet and information exchange between the SoM and ESP. The SoM acts as a
Master in the communication while the ESP32 acts as a slave.

The overall code (on the Linux side) consists of a module that implements SPI
communication, network interface conguration, and transmission of 802.11 packets
from the SoM to the ESP32, while the rmware implemented on the ESP32 side
consists of the SPI protocol and the ability to function as a station (STA) or as a
hotspot (AP).

Overall, the work carried out covers various aspects that will be addressed in the
following pages, such as the 802.11 protocol and packet analysis through Wireshark,
the use of SPI and a logic analyzer, APIs provided by Espressif using FreeRTOS,
and the use and examination of Linux device drivers associated with the networking
layers of Linux.
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Chapter 1

Analysis of the proposed

project and related protocols

As stated in the introduction, the purpose of this Thesis is the implementation of a
Linux module and rmware for the ESP32-WROVER-E Wi-Fi module to provide
connectivity to an electric vehicle charging stations. Currently, the company uses
the ATWILC1000 controller module for this purpose.

1.1 OCCP

The electric vehicle charging stations require an internet connection to comply with
the Open Charge Point Protocol (OCPP), which is the industry-supported de facto
standard for communication between a Charging Station1 and a CSMS2 (Charging
Station Management System) and is designed to accomodate any type of charging
tecnique.

Therefore, the purpose of this protocol is to ensure that each EV (Electric
Vehicle) Charger works properly with any charger management software using
JSON over Websockets supporting Compression. Among the main features oered
by this protocol is Device Management, which eectively manages a network
of (complex) charging stations (from dierent vendors). It provides inventory
reporting, improved error, state reporting, and conguration, and customizable
monitoring. Finally, it allows user authentication, enabling charging via RFID
(Radio-Frequency Identication) technology. Additionally, it allows users to engage

1A Charging Station is the physical system where an EV can be charged
2A CSMS manages Charging stations and has the information for authorizing Users for using

it
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Analysis of the proposed project and related protocols

in Smart Charging: the amount of energy used can vary based on the number of
people using electricity at that time, so as not to burden the network too much.
Smart charging also prevents the building’s maximum load capacity from being
exceeded, which is normally dened by the local network capacity and the energy
power provided by one’s tari.

Furthermore, smart charging allows public utility companies to set certain limits
on energy consumption, thereby preventing network overload due to energy usage
that exceeds what is produced.

Thanks to this system, time, money, and especially energy are saved, contributing
to the protection of the planet’s resources. Therefore, it can be asserted that it is
necessary to provide the charging station with internet connectivity as it allows for
a smarter use of the charging station.

1.2 The proposed project analysis

As previously stated, the project proposed to me consists of writing a Linux
networking driver and its corresponding rmware to implement internet connectivity
to a charging station. The Wi-Fi is regulated by the IEEE 802.11 protocol.Among
other features, IEEE 802.11 protocol denes a set of transmission standards for
WLAN networks developed by the IEEE 802 group 11, in various releases, with
particular emphasis on the physical and MAC layers of the ISO OSI model. These
versions vary in characteristics such as bandwidth, transmission speed, modulation
standards, collision avoidance protocols, and many others, which will be explained
in more detail in the upcoming sections. As previously mentioned, the SoM and
ESP32-WROVER-E communicate through the SPI protocol3: the SoM acts as the
master and the ESP32-WROVER-E as the slave during communication. Through
this protocol, the SoM sends the 802.11 packets it needs to transmit on the network
and the ESP32 receives and forwards them to Linux, as well as initial conguration
messages that the SoM sends to the ESP32 for proper microcontroller setup. Of
course, this protocol will be analyzed in more detail in the following sections. The
following gure shows the macro structure of the overall project architecture.

3SPI (Serial Peripheral Interface) is a serial communication protocol between microcontrollers
and other integrated circuits, or between multiple microcontrollers.
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Analysis of the proposed project and related protocols

Figure 1.1: Architecture of the project

Especially, in the case at hand, the driver is to be implemented on a System
on Module (SoM) that will be mounted on a charging column. In our company’s
projects, the SoM generally serves as the intelligence where the software side (i.e.
the Linux operating system) and, among other functionalities, the OCPP protocol
are implemented. Meanwhile, other boards located within the column serve for
low-level implementation, namely data acquisition, inverter driving, and other
functions. In the case at hand, the mounted Linux kernel is a custom-built project
built using Yocto4 of the version 5.10.61. To correctly compile a Linux module,
it is necessary to build it against the Linux libraries of the specic kernel version
adopted, to avoid discrepancies between expected and actual functionality. In fact,
being an Open Source world, the entire community is constantly making changes
to the Kernel source code to make it more reliable, reduce the number of possible
bugs, and implement new functionalities. Therefore, it is essential to analyze the
source code of the Kernel version to have a clear idea of its functioning. In the
specic case, I focused on the Linux Cfg80211 layers5, netdev6, SPI. Therefore, I
built a module using the functions oered by these layers to compile a single binary
that is built, transferred to the SoM, and then loaded against the currently Kernel
on the SoM.

As for the rmware, the foundation is FreeRTOS7. It is a popular operating
system kernel used in embedded devices, compact and easy to use. It is used

4Yocto is an open-source set of tools that allows you to obtain custom operating systems for
embedded systems based on Linux.

5Cfg80211 is the conguration API for 802.11 devices in Linux. It bridges userspace and
drivers, and oers some utility functionality associated with 802.11. cfg80211 must, directly or
indirectly via mac80211, be used by all modern wireless drivers in Linux, so that they oer a
consistent API through nl80211.

6netdev is used to describe and register correctly to the Linux Kernel the feature of the device
connected to the hardware where is load Linux.

7Real-time operating system for microcontrollers.
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for creating threads or multiple instructions, mutexes, semaphores, and software
timers, supporting priorities between tasks. Typically, it is used for industrial
applications and does not need to be fast: the important thing is not the interval
of time in which the operating system must react, but that it responds within a
predetermined maximum time. In other words, the system must be predictable or
rather deterministic, meaning that the real timing (in best or worst-case scenarios,
terms that come from English) of a specic process or computation can be known
in the system.

In practice, a real-time system must guarantee that a computation (or task)
ends within a given temporal constraint or deadline. To ensure this, it is required
that the scheduling of operations is feasible. The concept of scheduling feasibility
is at the basis of real-time systems theory, and it is what allows us to determine
whether a set of tasks is executable or not based on given temporal constraints.

On this kernel generated through FreeRTOS, the Networking APIs are used8

provided by Espressif. In particular, I focused on the implementation of Wi-Fi
driver that can be considered a black box that knows nothing about high-layer
code, such as the TCP/IP stack, application task, and event task. The application
task (code) generally calls Wi-Fi driver APIs to initialize Wi-Fi and handles Wi-Fi
events when necessary. Wi-Fi driver receives API calls, handles them, and posts
events to the application. As will be explained later, an application should not be
written in the User Space but rather in the underlying layers.

1.3 Protocols analysis

In order to better understand the project and make appropriate considerations, it
is necessary to examine the SPI and 802.11 protocols.

1.3.1 SPI

The SPI protocol or more precisely the SPI interface was originally developed by
Motorola (now Freescale) to support their microprocessors and microcontrollers.
The SPI interface describes a single Master single Slave communication, and is
synchronous and full-duplex. The clock is transmitted on a dedicated line (not
necessarily a synchronous transmission has a dedicated clock line) and it is possible
to transmit and receive data simultaneously. The interface also has 4 connection
lines (excluding the necessary ground), hence the SPI standard is also known as a
4 Wire Interface. It is the Master’s responsibility to initiate communication and
provide the clock to the Slave.

8Application programming interface

4



Analysis of the proposed project and related protocols

Figure 1.2: Basic connection diagram between devices using the SPI interface

As seen in 1.2, the 4 connecting lines so called:

1. MISO: Master Input Slave Output

2. MOSI: Master Output Slave Input

3. SCLK: Serial Clock (generato dal Master)

4. SS: Slave Select

Note that SPI communication requires the presence of an SS (Slave Select), so even
if communication occurs between a single Master and a single Slave, the Master
can select the Slave with which to communicate, both for writing and reading data.
If there are multiple Slaves present, their connection is generally made as shown in
Figure 2. As you can see, there is still a single Master, which this time has the task
of selecting the Slave with which to initiate communication; in fact, only one Slave
at a time must be active. This connection is only possible if the Slave peripheral
supports the option of having the MISO line of the three-state or oating type
(high impedance). Let’s now analyze how the transmission of a byte takes place.
Before starting communication, the Master activates the SS line relative to the
Slave with which it wants to communicate and subsequently provides the clock at
the frequency at which the transmission will occur. After the Slave is activated,
the bits inside the Master’s shift register are shifted out (MOSI line) starting from
the most signicant bit (MSB). The shifted bit enters the Slave’s register, which in
turn begins to empty its own register by sending the most signicant bit through
the MISO line. The communication ends when the eighth bit is transmitted.

From what has been said, it can be understood that if the Master wants to read
from the Slave, it must still send fake data to the Slave. Similarly, if the Master
only wants to set the Slave or send only Data, it will still receive fake data from
the Slave, unless the MISO line is ignored and not connected.

The SPI interface can be set to transmit or receive in four dierent modes. The
selected mode must be the same for both the Master and the Slave. The SPI

5
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interface can be set to transmit or receive in four dierent modes. The selected
mode must be the same for both the Master and the Slave.

The four modes are usually set by means of two parameters (often implemented
with two bits), named CPOL (Clock Polarity) and CPHA (Clock Phase). The
polarity simply consists of having or not having a NOT gate on the Clock line,
i.e., when CPOL = 0, the clock is "normal", while when CPOL = 1, the clock is
inverted. This means that all operations that occur on the rising edge, if CPOL is
set to 1, will occur on the falling edge. Similarly, operations that normally occur
on the falling edge, setting CPOL = 1, will occur on the rising edge.

The CPHA parameter allows setting the sampling phase, i.e., when the data
must be read (sampled).

Figure 1.3: Correspondence between modes and CPOL, CPHA parameters.

As for the transmission frequency, there is no xed value set by the protocol.
SPI interface applications use communications with frequencies ranging from a few
tens of KHz up to tens of MHz (80MHz-100MHz). The maximum limit depends on
the peripherals being used. For example, many microcontrollers support maximum
frequencies up to 10MHz. This speed is more than sucient for the case at hand.

1.3.2 802.11

In computer networking and telecommunications, IEEE 802.11 denes a set of
transmission standards for WLAN networks, developed by the IEEE 802 group 11
in various releases, with a particular focus on the physical and MAC layers of the
ISO/OSI model, which are the rst two layers in the following gure.

6



Analysis of the proposed project and related protocols

Figure 1.4: ISO/OSI model

By specifying both the interface between the client and the base station (or
access point) and the specications between wireless clients, the term "802.11
legacy" should be preferred to dene the rst series of 802.11 equipment. The
802.11 family consists of four protocols dedicated to information transmission (a,
b, g, n), with security included in a separate standard, 802.11i. Other standards in
the family (c, d, e, f, h, ...) concern extensions of basic services and improvements
to services already available. The rst widely spread protocol was b, followed by
the a protocol, and especially the g protocol.

802.11b and 802.11g use the frequency spectrum of 2.4 GHz (ISM band). This is
a frequency band regularly assigned by the national (and international) distribution
plan to other services, and left free for use only for applications that require EIRP
(Equivalent Isotropic Radiated Power, i.e. the maximum power radiated by an
isotropic antenna) levels of no more than 20 dBm and used within private property
(no crossing public ground). Working in frequency bands where other devices are
already operating, b and g devices can be aected by cordless phones, audio/video
repeaters for distributing satellite TV programs or other devices in an apartment
that use that frequency band.

802.11a uses the 5.4 GHz ISM band. However, it does not comply with the
European ETSI EN 301 893[2] standard, which requires DFS (Dynamic Frequency
Selection), TPC (Transmit Power Control), and meteorological radars; this Eu-
ropean harmonization standard is valid in Italy at the request of the Ministry of
Communications with the ministerial decree of January 10, 2005.

To overcome the problem in Europe, the 802.11h protocol was introduced in

7
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2004, which meets the required standards. Therefore, a WiFi device transmitting
on public ground in Italy at 5.4 GHz must use this standard.

Some useful denitions to understand the technical documentation:

1. BSS (basic service set): a set of nodes that use the same channel access
function (for example, a group of computers connected wirelessly to an access
point).

2. ESS (extended service set): multiple BSSs interconnected at the MAC layer,
for example the set of wireless networks in a public building such as a faculty.

Figure 1.5: IEEE 802.11n channels in the 2.4 GHz band

For channels and bandwidth, they are dened by the standard itself. 802.11
networks at 2.4 GHz divide the spectrum into 14 sub-channels with a width of
20 MHz or 40 MHz (only for the n protocol) each, while for the 802.11 legacy
and 802.11b protocols. On the other hand, 802.11 networks at 5 GHz divide the
spectrum into 30 subchannels, each with a width of 20 MHz up to a maximum
of 160 MHz. For the 802.11n protocol, the maximum bandwidth is 40 MHz. The
bandwidth used allows for dening two limits, the transfer speed, and compatibility
with nearby devices. While transmission occurs in a specic frequency range, it
also has a range above and below it where the signal is transmitted, although with
a signicantly lower power, it can reduce the eectiveness of other repeaters.

The channels of the 2.4 GHz band partially overlap each other in frequency,
so there is strong interference between two consecutive channels. To check which
channel has less trac and, therefore, less interference, there are applications
available for Wi-Fi communication spectrum analysis.

The 3 groups of channels, 1, 6, 11 and 2, 7, 12, and 3, 8, 13, are combinations
of channels that do not overlap with each other in case of 22 MHz bands and are
used in environments with other wireless networks. After this introduction, an
examination of the frame format of the Wi-Fi packet will be conducted. First of
all, there are three types of frames:

1. Data frame, used for data transmission;

8



Analysis of the proposed project and related protocols

2. Control frame, used to control access to the vehicle (RTS/CTS, ACK);

3. Management frames, which are sent as data plots, but serve to exchange
management information and are not passed to higher levels;

Each frame at the physical level consists of 4 basic elements:

1. Preamble;

2. PLCP Header;

3. MAC data;

4. CRC;

The preamble contains two elds: the rst is the synchronization eld, consisting
of 80 bits, which is used to adapt the receiver to the exact transmission frequency,
and the second is the Start Frame Delimiter used to synchronize the frame.

The PLCP header consists of three separate elds: the PSDU Length Word
(PLW), the PLCP Signaling Field (PSF), and the PLCP Header Error Check Field
(HEC). The PLW represents the number of octets present in the packet and serves
at the physical layer to determine the end of the transmission correctly. The PSF
contains information about the bit-rate used, while the HEC is a eld that serves
to check for the absence of errors within the header itself and is realized using a
cyclic code.

The CRC allows the detection of errors in the entire packet itself. MAC data
is nothing but the MAC frame passed to the higher layer in the architecture. Its
maximum length is 2304 bytes and is formed by three main components:

1. MAC header;

2. Data;

3. Frame Check Sequence (FCS), contiene un CRC (Cycle Redundancy Check)
di 32 bit per controllare la presenza di errori;

As described in the next picture:

Figure 1.6: MAC data format

9
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In the frame control, as shown in the following photo, there are various control
elds.

Figure 1.7: Frame control format

In the protocol version eld, the protocol used is specied. It is mainly for
compatibility with future evolutions and for now, both bits are set to zero. In the
type and subtype elds, the type of frame (management, control, or data) and
its specic function are specied. The To Ds eld is set to one when the frame
needs to be addressed to the AP, which will redistribute it through the Distribution
System, while the From DS bit indicates that the frame comes from the DS. The
more fragments bit will be set to 1 if the frame is part of a set of fragments and
is not the last in the sequence. The Power Management eld is used by stations
that use power save mode, as is the More Data eld, which tells the station that
there are packets stored in the AP. Finally, the WEP eld indicates the use of the
encryption algorithm, while the Order eld species whether the frame uses the
StrictlyOrdered service.

The duration eld has a dual function depending on the type of frame: it is used
in the Virtual Carrier Sensing mechanism to specify the duration of subsequent
transmission operations and thus update the NAV, or in Poll operations of individual
stations.

Each MAC data format can contain up to four Address elds, and their meaning
is dependent on the values of the To and From DS elds seen earlier. The addresses
used are 48 bits and comply with the IEEE 802 standard. The rst two are always
respectively the address of the recipient and the source of the message within the
same BSS. Then there is the Frame Body, which would be the payload of the
packet. Typically, it starts with the upper layer ISO/OSI frame format, namely
TCP/IP and subsequent encapsulations up to the application layer.

This is a brief overview of the protocol, as this thesis work has analyzed it in
much more detail. However, it is not described here as it would be too long and
would go beyond the description of the thesis work. It is a very long and complex
protocol with many variations compared to dierent versions.

10
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1.4 Hardware Analysis

In this section, the hardware on which the previously described modules will be
executed will be analyzed.

1.4.1 ESP32-WROVER-E

ESP32-WROVER-E is a generic Wi-Fi + Bluetooth + Bluetooth LE MCU modules
that target a wide variety of applications, ranging from low-power sensor networks
to the most demanding tasks, such as voice encoding, music streaming and MP3
decoding. ESP32-WROVER-E comes with a PCB antenna. In the case at hand,
the available ash memory is 8 MB. Moreover, there is also a PSRAM9 of 8
MB. Such memory, during the design phase, was considered more than sucient
for the rmware that needs to be ashed inside the module. For what concern
computational power, there are two CPU cores that can be individually controlled,
and the CPU clock frequency is adjustable from 80 MHz to 240 MHz. In detail,
the chip integrated (ESP32-D0WD-V3) contains two ESP32-D0WD-V3 (ESP32-
D0WDR2-V3) contains two low-power Xtensa® 32-bit LX6 microprocessors. The
internal memory includes:

1. 448 KB of ROM for booting and core functions;

2. 520 KB of on-chip SRAM for data and instructions;

3. 8 KB of SRAM in RTC, which is called RTC FAST Memory and can be used
for data storage; it is accessed by the main CPU during RTC Boot from the
Deep-sleep mode;

4. 8 KB of SRAM in RTC, which is called RTC SLOW Memory and can be
accessed by the co-processor during the Deep-sleep mode;

5. 1 Kbit of eFuse: 256 bits are used for the system (MAC address and chip con-
guration) and the remaining 768 bits are reserved for customer applications,
including ash-encryption and chip-ID;

The modules uses a 40-MHz crystal oscillator and the operating Vdd is 3.3V.
Moreover ESP32 integrates a rich set of peripherals, ranging from capacitive touch
sensors, Hall sensors, SD card interface, Ethernet, high-speed SPI, UART, I2S and
I2C. In the following image, the main features of the hardware are summarized.

9Psuedostatic DRAM
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Figure 1.8: Project specications

In particular, the peripherals that will be examined and used by this project
are the Wi-Fi and SPI peripherals. in Fig.1.8 First of all, this module support
802.11 b/g/n Wi-Fi MAC Protocol10, con 802.11 n that supports up to 150 Mbps.
Additionally, it supports the sending and receiving of A-MPDU frames and the
receiving of A-MSDU11, Immediate Block ACK, defragmentation, Automatic Bea-
con monitoring. Mainly, the Wi-Fi peripheral consists of a Radio Module which in
turn is composed of:

10Every letter represents a dierent throughput and network frequency.
11The 802.11n amendment addresses new enhancements to the MAC sublayer of the Data-Link

layer to increase throughput and improve power management. Frame aggregation is a method of
combining multiple frames into a single frame transmission.
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1. 2.4 GHz receiver;

2. 2.4 GHz transmitter;

3. bias and regulators;

4. balun and transmit-receive switch;

5. clock generator;

The 2.4 GHz receiver demodulates the 2.4 GHz RF signal to quadrature baseband
signals and converts them to the digital domain with two high-resolution, high-speed
ADCs. To adapt to varying signal channel conditions, RF lters, Automatic Gain
Control (AGC), DC oset cancelation circuits and baseband lters are integrated in
the chip. The 2.4 GHz transmitter modulates the quadrature baseband signals to
the 2.4 GHz RF signal, and drives the antenna with a high-powered Complementary
Metal Oxide Semiconductor (CMOS) power amplier. The use of digital calibration
further improves the linearity of the power amplier, enabling state-of-the-art
performance in delivering up to +20.5 dBm of power for an 802.11b transmission
and +18 dBm for an 802.11n transmission. The clock generator produces quadrature
clock signals of 2.4 GHz for both the receiver and the transmitter. All components
of the clock generator are integrated into the chip, including all inductors, varactors,
lters, regulators and dividers. This conguration results as the following;

Figure 1.10: Architettura periferica SPI

12As for SPI, however, as can be seen in the photo1.10ESP32 integrates four
SPI controllers which can be used to communicate with external devices that
use the SPI protocol. Controller SPI0 is used as a buer for accessing external
memory. Controller SPI1 can be used as a master. Controllers SPI2 and SPI3

12Note that all terms related to SPI will be covered in the dedicated chapter
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Figure 1.9: Caratteristiche Wi-Fi

can be congured as either a master or a slave. When used as a master, each SPI
controller can drive multiple CS signals (CS0 CS2) to activate multiple slaves.
Controllers SPI1 SPI3 share two DMA channels. The I/O lines included in the
abovementioned signal buses can be mapped to pins via either the IO-MUX module
or the GPIO matrix.The SPI controller supports four-line full-duplex/half-duplex
communication (MOSI, MISO, CS, and CLK lines) and three-line half-duplex-only
communication (DATA, CS, and CLK lines) in GP-SPI mode. Le seguenti sono le
caratteristiche più importanti

1. Programmable data transfer length, in multiples of 1 byte;

2. Four-line full-duplex/half-duplex communication and three-line half-duplex
communication support;

3. Master mode and slave mode;

4. Programmable CPOL and CPHA;

5. Programmable clock;

When not using DMA, the maximum length of data received/sent in one
burst is 64 bytes. The data length is in multiples of one byte. ESP32 SPI
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generates two types of interrupts. One is the SPI interrupt and the other is
the SPI DMA interrupt. ESP32 SPI reckons the completion of send- and/or
receive-operations as the completion of one operation from the controller and
generates one interrupt. When ESP32 SPI is congured to slave mode, the slave
will generate read/write status registers and read/write buer data interrupts
according to dierent operations. Then, after the interrupt is generated, the
processor understands that the transaction has taken place and can proceed to
copy in a proper manner the data received saving them in appropriate structures.

In conclusion, it can be asserted that this hardware is more than sucient for
our purpose. Although there is no possibility of sending data at 5 GHz frequency
over Wi-Fi network, it can be safely said that the 802.11 b/g/n conguration is
optimal for our functionalities. In fact, the packets it has to send are small in
size as it has to exclusively send data and information, high transfer speed is not
required which could require streaming of videos or downloading of very heavy
applications.

As far as the computational power oered is concerned, it is more than sucient
as the system clock is high (80 - 240 MHz).

However, in the chapter relating to data reception, it will be shown how this
module does not receive all packets when monitor mode is set. It does not have
any consequences that make its use impossible, but it slows it down a bit. This
issue will be discussed in detail later.

1.4.2 SoM

For what concern the SoM board, this is a custom board developed by Bitron itself,
so is not possible to provide lots of details. The processor is an High-Performance
Arm Cortex-A7 32 bit RISC core operating system operating at up to 800 MHz.
Has a Ram of 512 MB providing USB, USART, I2C, SPI, CAN and Ethernet
connection.
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Chapter 2

Explanation of softawre

environment

In this chapter, we will explain in more detail the architecture of the project itself
and then analyze in the next chapter the results obtained. This process was carried
out entirely in a VMware virtual machine on which the image of the Ubuntu
operating system was loaded. The IDE used was Visual Studio on which the plugin
provided by Espressif was installed, so that the IDE is properly congured to build
correctly. In fact, this plugin correctly sets the dependencies of libraries. However,
the APIs oered(HAL1) from Espressif are "opaque", so you can’t see what the
available functions actually do because you don’t have access to source code. This
aspect has been a problem in the development of the project itself as sometimes
the description of the APIs on the Espressif website can be misunderstood, and in
such low-level work on individual bits it is necessary to have greater knowledge
of the functioning of certain functions. In particular, on the actions of receiving
and sending packages. This will be discussed in more detail in the next sections.
Instead, the functions of FreeRTOS, being a Free project, you have free access to
the source code and so you can understand in detail how it behaves. As for the
Linux side, the IDE Visual Studio is always used and setting the dependencies of
the libraries to properly builldare that driver. I was provided by the company the
SDK of Yocto’s custom project which was generated by a Bitron employee. As
mentioned above, it is the Linux version 5.10.61.

1Hardware Abstraction Layer
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2.1 Espressif

As for the APIs provided by Espressif, I focused mainly on analyzing the libraries
related to those of the Wi-Fi driver. The Wi-Fi libraries provide support for cong-
uring and monitoring the ESP32 Wi-Fi networking functionality. The structure is
quite simple for this part. It’s explained very well by the documentation provided
by the Espressif on its web page where it explains the dierent functionalities that
this microcontroller can have and the general architecture. The only drawback, as
previously analyzed, is that the APIs are not open source and therefore you can
not analyze the APIs operation in detail to understand exactly how it behaves on
individual registers.

This includes conguration for:

1. Station Mode;

2. AP mode;

3. STA/AP mode;

4. Various security modes for the above;

5. Scanning for access point;

6. Promiscous mode for monitoring of IEEE802.11 Wi-Fi packets;

This section provides an overview of the architecture and management of the
rmware, without the actual description of the APIs to avoid redundancy with the
following sections where they will be explained in greater detail.

2.1.1 Wi-Fi driver

The ESP32 Wi-Fi programming model is depicted as follows:
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Figure 2.1: Wi-Fi programming model

This is the guideline provided by Espressif for a correct setting of the microcon-
troller according to the APIs provided by the manufacturer. In fact, the Wi-Fi
driver is seen as a kind of black box from the upper layers that know nothing about
what’s going on. In particular, in our case, ideally, the TCP stack is implemented
by the upper layers of Linux networking, while I have no application tasks in
this case because the task of such a thesis is to send packages from the charging
column to a remote center. These applications are always implemented on the
Linux side, so all the management of the OCPP protocol, log etc. are managed by
sommenter the only task of this microcontroller is to receive and send individual
802.11 packages. So, you have to implement the Wi-Fi driver with some Event
Task. You want to specify how at the beginning of the project, despite careful
documentation, it was not clear the focal point as I was quite unaware of the whole
802.11 world and the features. Then, in a rst phase of the project, to become
familiar with the Espressif environment, as later analyzed in more detail, tests were
made with the APIs oered.

2.1.2 Event-Handling

Special attention should be given to the automatic generation of events. As de-
scribed in a series of Events (similar to interrupts) are oered to inform the code
that some event has happened. An event in this area tends to indicate that some-
thing has happened. That is, events such as WIFI_EVENT_SCAN_DONE (which
indicates that the network scan is nished), WIFI_EVENT_STA_SCONNECTED
(that is, that the station has connected to an AP statio). Such events are very
useful as they allow to make a structured rmware to events within tasks. In
addition, events for TCP_IP protocol management are also oered. As previously
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stated, this ISO_OSI level must be managed by the Linux kernel, so it should
not be used by the microcontroller as it is not its task. In addition, we want to
emphasize that events are divided into those for AP and STA, as each conguration
has its own events.

2.1.3 Wi-Fi APIs Error Code

All APIs oered by Espressif have default values of return value. They can be
divided into 4 categories:

1. No error, the APIs worked correctly;

2. Remedial errors;

3. Mistakes not remediable but not critical;

4. Non remediable and critical errors;

As a good general line, to write a robust structure, it is always good to check
the return value of the APIs oered, as it allows the management of unexpected
things that, however, must be taken into account to ensure that the rmware is
able to manage. As an extreme case, you may need to reboot the micro after an
error that is not remediable and critical. If this aspect is not handled, the micro
could be cracked at a certain execution point within the task and not proceed with
the execution.

2.2 Linux Networking and Device Drivers

As mentioned above, the purpose is to write this Linux Device Networking Driver
and in this section we will analyze in more detail the structure of this part. In
the analysis of the documentation it was noted that most of the books refer to
versions much more dated than the Linux kernel used. For example, Linux Device
Drivers, Third Edition, is a great starting point for an analysis of the operation of
the Linux Kernel but is still based on Kernel 2.6.10. The problem, as mentioned
above, results in the fact that the source code of the Kernel evolves very quickly
and then you may lose some nuances of its operation. That said, to have an initial
understanding of the operation of the Linux operating system is more than enough.
In particular, I focused on the operation of the Device Drivers at rst and then
in detail of the Network Drivers. Moreover, being an Open Source world, on the
main line of the Kernel there are several Drivers proposed by dierent companies.
In particular, the company has given me the code developed for the WILC6000
of Microchip. The problem arises in the fact that there are about 30000 lines of
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code and also is a WNIC, so not implementing the MAC layer is dierent than the
micro that I’m looking at. In fact, basically a special network card is used, while
in this case a microcontroller is driven that in turn drives (through the rmware)
the data sent and received by the antenna itself. In addition, the main dierence is
that with a SoftMAC network card the driver goes directly to the network card
registers and manages the reception if using linked list, interrupt or polling etc.
While the driver now drives another microcontroller: then the driver must manage
incoming and incoming trac by piloting a microcontroller which in turn drives
an antenna. This thing can be a waste of time as there is an extra paper trail in
between than doing a direct read on the network card logs when a packet arrives
or leaves. But specic considerations will be made in the relevant part.

2.2.1 Linux Device Driver

Initially, as mentioned above, I focused on the analysis of the Linux Device drivers.

Figure 2.2: Device Linux Driver

The gure 2.2 is a simple but at the same time good representation of the
Driver Architecture. As you can see, the Driver resides in the Kernel Space and
not in the User Space: therefore, Any applications (that are written in the User
Space) use what is in the Kernel Space. Thus, such a Driver would be the interface
between the Kernel and the Hardware. The kernel searches the hardware based
on what the application requires. The hardware and the kernel are distinct “black
boxes” that make a particular piece of hardware respond to a well-dened internal
programming interface. This interface completely hides the details of how the
device works. User activities are carried out through a set of standardized calls
independent of the specic driver. Mapping calls to device-specic operations that
act on real hardware is therefore the role of the device driver. This programming
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interface is such that drivers can be built separately from the rest of the kernel and
“connected” to runtime when needed. This modularity makes Linux drivers easy to
write, to the point that there are now hundreds available. The driver should take
care of making the hardware available, leaving all the problems on how to use the
hardware for the applications. A driver is exible if it oers access to hardware
features without adding constraints. Sometimes, however, some political decisions
have to be taken. For example, a digital I/O driver can only oer byte-level
hardware access to avoid the additional code needed to manage individual bits.
One of the good features of Linux is its ability to extend at runtime the set of
features oered by the kernel. This means that you can add functionality to the
kernel (and remove functionality as well) while the system is up and running. Each
piece of code that can be added to the kernel at runtime is called a module. The
Linux kernel oers support for quite a few dierent types (or classes) of modules,
including, but not limited to, device drivers. Each module is made up of object
code (not linked into a complete executable) that can be dynamically linked to the
running kernel by the insmod program and can be unlinked by the rmmod program.

Figure 2.3: Split view of the Kernel

The Linux way of looking at devices distinguishes between three fundamental
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device types:

1. Character devices: a character device is one that can be accessed as a stream of
bytes (like a le), and a char driver is in charge of implementing this behavior.
Such a driver usually implements at least the open, close, read, and write
system calls. The text console (/dev/console) and the serial ports (/dev/ttyS0
and friends) are examples of char devices, as they are well represented by
the stream abstraction. Char devices are accessed by means of lesystem
nodes, such as /dev/tty1 and /dev/lp0. The only relevant dierence between
a char device and a regular le is that you can always move back and forth
in the regular le, whereas most char devices are just data channels, which
you can only access sequentially. Nonetheless, there exist char devices that
look like data areas, and you can move back and forth in them; for instance,
this usually applies to frame grabbers, where the applications can access the
whole acquired image using mmap or lseek.

2. Block devices: A block device is a device (e.g., a disk) that can host a lesystem.
In most Unix systems, a block device can only handle I/O operations that
transfer one or more whole blocks, which are usually 512 bytes (or a larger
power of two) bytes in length. Linux, instead, allows the application to read
and write a block device like a char device—it permits the transfer of any
number of bytes at a time. As a result, block and char devices dier only in
the way data is managed internally by the kernel, and thus in the kernel/driver
software interface. Like a char device, each block device is accessed through a
lesystem node, and the dierence between them is transparent to the user.
Block drivers have a completely dierent interface to the kernel than char
drivers.

3. Network interfaces: Any network transaction is made through an interface,
that is, a device that is able to exchange data with other hosts. Usually, an
interface is a hardware device, but it might also be a pure software device, like
the loopback interface. A network interface is in charge of sending and receiving
data packets, driven by the network subsystem of the kernel, without knowing
how individual transactions map to the actual packets being transmitted.
Many network connections (especially those using TCP) are stream-oriented,
but network devices are usually designed around the transmission and receipt
of packets. A network driver knows nothing about individual connections; it
only handles packets. Not being a stream-oriented device, a network interface
isn’t easily mapped to a node in the lesystem, as /dev/tty1 is. The Unix way
to provide access to interfaces is still by assigning a unique name to them (such
as eth0), but that name doesn’t have a corresponding entry in the lesystem.
Communication between the kernel and a network device driver is completely
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dierent from that used with char and block drivers. Instead of read and
write, the kernel calls functions related to packet transmission.

So, my task is to write a network interfaces, to allow dierent applications to
send a package over Wi-Fi to run it to the kernel and the kernel ’directs’ it to my
driver. It takes care of the dierent packages it receives from the Kernel and adopts
an optimal policy to manage these packages and run them to the ESP32, which
will take charge of those packages and in turn through a package management will
run them over Wi-Fi to the device in charge. Mirror, once the ESP32 receives a
package, manages it, runs it via SPI to my driver, which in turn processes it and
informs the kernel of the received package and runs it ’at higher ISOsystem levels’
so that the applicative requesting it gets what it requested. Additionally, Network
drivers also have to be prepared to support a number of administrative tasks, such
as setting addresses, modifying transmission parameters, and maintaining trac
and error statistics. The APIs for network drivers reects this need and, therefore,
looks somewhat dierent from the interfaces we have seen so far. The APIs oered
by Linux for management will be analyzed directly during the explanation of the
code, this is because they are multiple and extremely customizable.

2.3 FreeRTOS

FreeRTOS is ideally suited to deeply embedded real-time applications that use
microcontrollers or small microprocessors. This type of application normally
includes a mix of both hard and soft real-time requirements. Soft real-time
requirements are those that state a time deadline—but breaching the deadline
would not render the system useless. For example, responding to keystrokes too
slowly might make a system seem annoyingly unresponsive without actually making
it unusable. Hard real-time requirements are those that state a time deadline—and
breaching the deadline would result in absolute failure of the system. For example, a
driver’s airbag has the potential to do more harm than good if it responded to crash
sensor inputs too slowly. FreeRTOS is a real-time kernel (or real-time scheduler)
on top of which embedded applications can be built to meet their hard real-time
requirements. It allows applications to be organized as a collection of independent
threads of execution. On a processor that has only one core, only a single thread
can be executing at any one time. The kernel decides which thread should be
executing by examining the priority assigned to each thread by the application
designer. In the simplest case, the application designer could assign higher priorities
to threads that implement hard real-time requirements, and lower priorities to
threads that implement soft real-time requirements. This would ensure that hard
real-time threads are always executed ahead of soft real-time threads, but priority
assignment decisions are not always that simplistic. Why Use a Real-time Kernel?
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There are many well established techniques for writing good embedded software
without the use of a kernel, and, if the system being developed is simple, then these
techniques might provide the most appropriate solution. In more complex cases,
it is likely that using a kernel would be preferable, but where the crossover point
occurs will always be subjective. As already described, task prioritization can help
ensure an application meets its processing deadlines, but a kernel can bring other
less obvious benets, too. Some of these are listed very briey below.

1. Abstracting away timing information: The kernel is responsible for execution
timing and provides a time-related APIs to the application. This allows the
structure of the application code to be simpler, and the overall code size to be
smaller.

2. Maintainability/Extensibility: Abstracting away timing details results in fewer
interdependencies between modules, and allows the software to evolve in a
controlled and predictable way. Also, the kernel is responsible for timing,
so application performance is less susceptible to changes in the underlying
hardware.

3. Modularity: Tasks are independent modules, each of which should have a
well-dened purpose.

4. Improved eciency: Using a kernel allows software to be completely event-
driven, so no processing time is wasted by polling for events that have not
occurred. Code executes only when there is something that must be done.
Counter to the eciency saving is the need to process the RTOS tick interrupt,
and to switch execution from one task to another. However, applications that
don’t make use of an RTOS normally include some form of tick interrupt
anyway.

5. Idle time: The Idle task is created automatically when the scheduler is started.
It executes whenever there are no application tasks wishing to execute. The idle
task can be used to measure spare processing capacity, to perform background
checks, or simply to place the processor into a low-power mode.

6. Power Management: The eciency gains that are obtained by using an
RTOS allow the processor to spend more time in a low power mode. Power
consumption can be decreased signicantly by placing the processor into a
low power state each time the Idle task runs. FreeRTOS also has a special
tick-less mode. Using the tick-less mode allows the processor to enter a lower
power mode than would otherwise be possible, and remain in the low power
mode for longer.
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The ones listed above are the main reasons to use a FreeRTOS, and it ts
perfectly for our application under consideration, especially as I already have
previous experience in writing using this methodology. In addition, the main
features are the following:

1. Pre-emptive or co-operative operation;

2. Very exible task priority assignment;

3. Flexible, fast and light weight task notication mechanism;

4. Queues;

5. Binary semaphores;

6. Counting semaphores;

7. Mutexes;

8. Stack overow checking;

9. Software timers;

10. Event groups;
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Chapter 3

Code Implementation

In this chapter there is the description of the project itself. The rst thing I did,
after documenting several protocols, I started to test the project’s foundation,
namely how to properly build the LKM to be loaded on the linux kernel and
rmware.

3.1 Software Architecture

Before see a detailed explanation of the code, is important to give an overview and
how this environment is thought. Firstly, the ESP32 has just the role to congure
itself as the SoM tell it to do. Secondly, it has to manage the packet received
from the net and the one to send from SoM to the net. Through the lecture of
online documentation, i see that a network interface can work with two dierent
behaviour:

1. interrupt mode;

2. polling mode;

This choice is the most important one for the design of both rmware and driver
because it is determinant in the overall behaviour. The rst, and most simple
design, is simply handled by interrupt. Each time that a packet has to be send
between SoM and ESP32, who has to send raise an interrupt in order to tell the
other board that a stream of data is ready. While the second one is handled by
Linux from the newer version of the Kernel itself and is quite dierent from the
interrupt mode. Indeed, the here the packet are not send immediately but are
accumulated and a transaction between the board are made in periodic time. So, a
linked list is needed and a FIFO hardware in order to store the data to be send or
start a long transaction. Despite the fact that the polling mode is more ecient
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how is developed in the newer version of Linux Kernel, I used the interrupt mode
for the following reasons:

1. In the SoM that I use, are already present driver that use SPI interface and
the employer of Bitron suggest me to not focus too much in the speed and
eciency of the entire work but try too understand which are the main aspect
of Linux driver and ESP32 rmware;

2. Usually, the fundamental usage of the ESP32 is to exchange data and take
data from the OCPP in an aperiodic way and for light package. Moreover, seen
the fact that the Linux version built for this SoM must be the lightly possible,
make something that weighs more on the processor is not the correct idea.
Please, take in account that this SoM is responsible to handle dierent process
and service and collegue told me that the main idea is to make something that
does not weigh too much in terms of speed of execution and optimization;

So, after this choice was made I started to think how can be a suitable solution
to handle this problem. In the next subsection are explained from an higher point
of view how I thought to implement in the most suitable manner the task.

3.1.1 ESP32

For what concern the rmware, the ESP32 provide the initial conguration of
the project (such as the Makele and so on) while, of course, the source les are
provided by me:

1. main.c: contains just the map partition table, function that initialise the
pin conguration, creation of a global queue in order to handle the exchange
of data between task in a more safe and better way than just the usage of
global variable and creation of the two main freeRTOS task that handle the
transmission of packet;

2. spi.c: contain the pin conguration of what concern the communication
between SoM and ESP32 and the function that are necessary to a correct
exchange of data;

3. connect.c: there is dened the function to handle the exchange of data with
the net, the handle of Wi-Fi event and interrupt;

4. include.h: it is the header le that contains the declarations of function and
extern variable;

5. CMakeLists.txt: it tells which are the source le to build togheter;
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In the following are only reported the key part of the code. Is superuous to
explained in detail every single aspect, some things are of course routine stu.

As seen from the above considerations, is necessary to work with interrupt in
reception of packet from SoM and from the net. In the above sections is described
how is implemented this feature.

3.1.2 Linux Driver

For what concern the Linux driver, the two source code are the following one:

1. cfg80211esp.c: this is the ’main’ source code, where the driver is initialized, are
initialized the GPIO and more over are created the struct work_struct. This
are created to let the Linux scheduler to create workqueue where are scheduled
the function associated which the corresponding work_struct.Moreover, there
is the initial conguration of the network interface, as explained in major
detail later;

2. espspi.c: here there are the initialization of the spi peripheral and moreover
the function to handle the packet to send and receive;

3. espspi.h: this is the header le, where there are the declaration of function
and variable;

3.2 How to build

In order to make a complete description of the project done, in this section are
examined how to build and compile the source code.

3.2.1 Linux Driver

For what concern the Linux build of the module, other then the .c e .h source code,
are necessary the Kbuild e Makele.

The following is the content of the Kbuild le:

1 obj−m := esp32_bb . o
2 esp32_bb−ob j s := c fg80211esp . o e sp sp i . o ne tdev i c e . o

This tells the compiler to compile the three source code cfg80211esp.c, espspi.c
and netdevice.c into the object le esp32_bb.o. Moreover, is necessary to create a
Makele, which the following is the content:
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1 # Path to the d i r e c t o r y that conta in s the Linux k e rne l source code
2 # and the c on f i gu r a t i on f i l e ( . c on f i g )
3 KERNEL_DIR ?= $ (KERNEL_SRC_PATH)
4

5 # Path to the d i r e c t o r y that conta in s the generated ob j e c t s
6 DESTDIR ?= $ (KERNEL_DIR) / i n s t a l l _ a r t i f a c t
7

8 # Path to the d i r e c t o r y that conta in s the source f i l e ( s ) to compile
9 PWD := $ ( s h e l l pwd)

10

11 de f au l t :
12 $ (MAKE) −C $ (KERNEL_DIR) M=$ (PWD) modules
13

14 i n s t a l l :
15 $ (MAKE) −C $ (KERNEL_DIR) M=$ (PWD) INSTALL_MOD_PATH=$ (DESTDIR)

module s_ins ta l l
16

17 c l ean :
18 $ (MAKE) −C $ (KERNEL_DIR) M=$ (PWD) c l ean

So, to compile correctly, is necessary to write in the command line of linux make
clean, make and then make install. Then, is possible to copy the .ko obtained by
the compilation with the command scp, that copy the le into the SoM. Then,
with the command modprobe the .ko is build against the Kernel. Please, take in
account the fact that the enter point of the module when is loaded is the part of
the source code that start with the function

1 s t a t i c i n t __init v i r t u a l_w i f i_ i n i t ( void ) {
2

3 // code
4

5 }
6

To remove the module, is necessary to write on the command line of the SoM
rmmod, that unitilizza and remove the gpio, controller and everything that is
initilized. Its looks like that:

1 s t a t i c void __exit v i r tua l_w i f i_ex i t ( void ) {
2

3 // code
4

5 }
6
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3.2.2 ESP32

While for what concern the rmware, the project the environment to build is
created by the plug-in provided by Espressif and the main le is the sdkcong and
the CMakeLists.txt that provide a list of information to let the compiler compiles
correctly the source code created by me.

3.3 SPI

As already said before, the Linux driver act as Master while the ESP32 acts as
slave. To congure it properly, we have to check which pin can be used by ESP32
and SoM to use it as CS, MISO, MOSI and SCLK. For what concern the ESP32,
I have choosen the pin 12 for the MOSI, 13 for the MISO, 15 for the SCLK
while for the CS can be used every avaible GPIO I-O, because for the slave it
is just important that when CS is low it activates the sending/receiving of the
data packet. I have set all this four pin in a pull-up conguration. Moreover, I
have adopted the MODE 1 for the SPI, as suggested in the previous chapters.
Moreover, I have choose to use the controller SPI3 of the Espressif, because how
you can see in the image 1.10 the SPI3 controller can have access to DMA. So,
how you can see in the next lines of code, I have to populate the two struct
spi_bus_cong_t and spi_slave_interface_cong_t and then register them using
the API spi_slave_initialize.

1 void sp i_con f i gu ra t i on ( )
2 {
3 spi_bus_config_t busc fg={
4 . mosi_io_num = GPIO_MOSI,
5 . miso_io_num = GPIO_MISO,
6 . sclk_io_num = GPIO_SCLK,
7 . quadwp_io_num = −1,
8 . quadhd_io_num = −1,
9 } ;

10

11 sp i_s lave_inte r face_con f ig_t s l v c f g={
12 . mode=1,
13 . spics_io_num=GPIO_CS,
14 . queue_size=1,
15 . f l a g s =0,
16 } ;
17

18 gpio_set_pull_mode (GPIO_MOSI, GPIO_PULLUP_ONLY) ;
19 gpio_set_pull_mode (GPIO_SCLK, GPIO_PULLUP_ONLY) ;
20 gpio_set_pull_mode (GPIO_CS, GPIO_PULLUP_ONLY) ;
21
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22 ESP_ERROR_CHECK( s p i_ s l a v e_ i n i t i a l i z e (RCV_HOST, &buscfg , &s l v c f g ,
SPI_DMA_CH_AUTO) ) ;

23 }

Moreover, I have added one line, called GPIO-HANDSHAKE (added to the
GPIO number 2) in order to inform the SoM that the ESP32 is ready to accept
packet and command. So, the logic implemented is the following one: when the
ESP is ready to accept data and command from the SoM, it set the value of that
pin to 1, otherwise it is set to 0.

1 gp io_set_di rec t ion (GPIO_HANDSHAKE, GPIO_MODE_OUTPUT) ;
2 gpio_set_pull_mode (GPIO_HANDSHAKE, GPIO_PULLUP_ONLY) ;
3 gp io_set_leve l (GPIO_HANDSHAKE, 0) ;

For what concerns the Linux implementation, looking at the APIs provided I see
that I have to populate the struct spi_board_info where I provide the conguration
adopted (MODE 0, max speed of the SPI) and the information of the slave device.

1 s t a t i c s t r u c t spi_board_info etx_spi_device_info =
2 {
3 . modal ias = " esp32_driver " ,
4 . max_speed_hz = 40000000 ,
5 . bus_num = SPI_BUS_NUM,
6 . ch ip_se l e c t = 0 ,
7 . mode = SPI_MODE_1
8 } ;

Then, I have to associate the above struct to the controller of the SPI, the
pointer to the struct spi_master and in order to do this is used the function
spi_busnum_to_master. Then, after that, I have to create this device given the
master and device info using the API spi_new_device. After all, I have to setup
the SPI conguration, using the function spi_setup it tells that I have 8 as bits
per word. Moreover, I have to set the HANDSHAKE pin as an Input pin.

1 i n t e tx_sp i_in i t ( void )
2 {
3 i n t r e t ;
4 s t r u c t spi_master ∗master ;
5

6 handshake (HANDSHAKE_NUM) ;
7

8 master = spi_busnum_to_master ( etx_spi_device_info . bus_num ) ;
9 i f ( master == NULL )

31



Code Implementation

10 {
11 pr_err ( " SPI Master not found . \ n " ) ;
12 re turn −ENODEV;
13 }
14

15 // c r ea t e a new s l av e device , g iven the master and dev i c e i n f o
16 etx_spi_device = spi_new_device ( master , &etx_spi_device_info ) ;
17 i f ( etx_spi_device == NULL )
18 {
19 pr_err ( "FAILED to c r e a t e s l av e . \ n " ) ;
20 re turn −ENODEV;
21 }
22

23 // 8−b i t s in a word
24 // etx_spi_device−>bits_per_word = 8 ;
25 // setup the SPI s l av e dev i c e
26 r e t = spi_setup ( etx_spi_device ) ;
27 i f ( r e t )
28 {
29 pr_err ( "FAILED to setup s l av e . \ n " ) ;
30 sp i_unreg i s t e r_dev i ce ( etx_spi_device ) ;
31 re turn −ENODEV;
32 }
33

34 pr_info ( " SPI d r i v e r Reg i s t e r ed \n" ) ;
35 re turn 0 ;
36 }

Please take into account the fact that the number of the PIN to associate to the
CS, MISO, MOSI and CLOCK are already set by the layout design of the SoM.
My only role is to wire the correct PIN to the one already set.

In order to test this implementation, I have created (on the rmware) this simple
function that return the value received by the SoM.

1 sp i_s lave_transact ion_t t ;
2

3 char my_receive_cmd ( void ) {
4 char cmdd ;
5 char ∗ r i c evu to ;
6 r i c evu to = ( char ∗) mal loc (4 ) ;
7 t . rx_buf fer=r i c evu to ;
8 t . tx_buf fer=NULL;
9 t . l ength=8∗ s i z e o f ( r i c evu to ) ;

10 gp io_set_leve l (GPIO_HANDSHAKE, 1) ;
11 ESP_ERROR_CHECK( spi_s lave_transmit (RCV_HOST, &t , portMAX_DELAY) ) ;
12 gp io_set_leve l (GPIO_HANDSHAKE, 0) ;
13 cmdd = ∗ r i c evu to ;
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14 re turn cmdd ;
15 }

The core of this function is the API spi_slave_transmit, that using the struct t
(that represent the single transaction) send the buer associated to rx_buer and
send the one to tx_buer. Both rx_buer and tx_buer are the pointer to the
data to be sent. While, on the Linux side, I have implemented this simple function
that send the comand that is passed to the function itself.

1 i n t etx_spi_write_cmd ( cmd_spi cmd_) {
2

3 char tx [ 4 ] = {( char )cmd_, 0 , 0 , 0 } ;
4 s t r u c t sp i_t r an s f e r t r =
5 {
6 . tx_buf = tx ,
7 . rx_buf = NULL,
8 . l en = s i z e o f ( tx ) ,
9 . bits_per_word = 8 ,

10 } ;
11

12 whi le ( ! gpio_get_value (HANDSHAKE_NUM) ) ;
13 sp i_sync_trans fer ( etx_spi_device , &tr , 1 ) ;
14 re turn 0 ;
15 }

So, this function is pretty similar to the one implemented on ESP but the fact
that here Liunx check the value of the HANDSHAKE and if it is dierent from 0
it can start the transaction.

Moreover, the HANDSHAKE is set to one by the ESP32 and when the SoM
has something to send it can send it only when the line is high. So, this is the
basic implementation of the SPI on both device. Now, on the ESP32 side there is
just the main function that initialize the ash partition by default, the pin and
SPI conguration and just a task that call the function to read the data incoming.
While, on the Linux side, there is the sending of a command (that is just an
integer) in order to see if everything work properly. So, I load and unload the
Linux module and every time the transaction work properly. After that, it’s time
to create something of more robust.

In order to congure properly the ESP32 according to the necessity of the EV
charger, is necessary that the SoM communicate to ESP32 how to works. For
example, if it has to be a STA, AP or both. Moreover, the SoM can ask information
about the MAC layer to the ESP, as for example the MAC address, at which
network is connected, and so. In parallel, there are the packet that Kernel has
to send over the Wi-Fi that the SoM send over SPI to the ESP32. So, here two
ways can be adopted to achieve this behaviour. Firstly, I can adopt other two
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wire between SoM and ESP32 in order to inform the ESP32 that the SoM has to
send something when the HANDSHAKE provided by ESP is equal to one. One
line is to inform that SoM has to send a command and another one to tells that a
pachet has to be sent. So, just rising to one the signal the ESP32 handles it as
an hardware interrupt on the rising edge. After that, the SoM can send its packet
over the SPI if the HANDSHAKE is equal to one. This implementation can be
optimal because according to which interrupt is generated, the ESP32 will handle
the packet received with two dierents callbacks.

Figure 3.1: Block diagram of the above implementation

As you can see it the Figure 3.1, the line of the interrupt to inform the ESP32
that a 802.11 packet is ready to be sent is called IRQ_NO, while th one for the
command IRQ_NO_CMD. This implementation can be achieved with the following
code implementation (ESP32 side).

1 gp i o_ in s t a l l_ i s r_ s e r v i c e (5 ) ;
2 gp io_set_di rec t ion (GPIO_IRQ_INPUT, GPIO_MODE_INPUT) ;
3 gpio_set_intr_type (GPIO_IRQ_INPUT,GPIO_INTR_POSEDGE) ;
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4 gpio_isr_handler_add (GPIO_IRQ_INPUT, isr_handler_packet_coming ,
NULL) ;

5

6 gp io_set_di rec t ion (GPIO_IRQ_INPUT_CMD, GPIO_MODE_INPUT) ;
7 gpio_set_intr_type (GPIO_IRQ_INPUT_CMD,GPIO_INTR_POSEDGE) ;
8 gpio_isr_handler_add (GPIO_IRQ_INPUT_CMD, isr_handler_cmd_coming ,

NULL) ;

First of all, is necessary to register the interrupt and the respective callback on
the rising edge for the two dierent lines.

1 void isr_handler_cmd_coming ( void ∗ arg ) {
2 xEventGroupSetBits ( evtGrp , cmd_to_receive ) ;
3 }
4

5 void isr_handler_packet_coming ( void ∗ arg ) {
6 xEventGroupSetBits ( evtGrp , packet_to_send ) ;
7 }

The callback, that for denition has to be light function, just set a bit (cmd_to_receive
or packet_to_send) into a mask (evtGrp). Then, I have created a task with the
following code.

1 void spiTask_pkt_sender ( void ∗params ) {
2

3 // i n i z i a l i z a t i o n o f v a r i a b l e
4

5 whi le (1 ) {
6

7 uxBits = xEventGroupWaitBits ( evtGrp , packet_to_send |
cmd_to_receive | // other s t u f f , f a l s e , f a l s e , portMAX_DELAY) ;

8

9 i f ( uxBits & cmd_to_receive ) {
10

11 cmd = my_receive_cmd ( ) ;
12 p r i n t f ( "COMANDO RICEVUTO: %d\n" , cmd) ;
13

14 switch (cmd) {
15

16 case READ_MAC:
17 send_mac ( ) ;
18 break ;
19

20 case MAKE_SCAN:
21 wif i_connect_sta ( ) ;
22 break ;
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23

24 // other ca s e s
25

26 }
27

28 xEventGroupClearBits ( evtGrp , cmd_to_receive ) ;
29

30 } e l s e i f ( uxBits & packet_to_send ) {
31

32 rx_packet ( ) ; // func t i on that send the packet over Wi−Fi
33 xEventGroupClearBits ( evtGrp , packet_to_send ) ;
34

35 }
36

37 // other s t u f f
38

39 }
40 }

The logic is the following: this task is blocked on the function xEventGroup-
WaitBits thanks to the portMAX_DELAY (this is a freeRTOS function) until one
of the bits of the evtGrp is set. Once is set, the code can go on and then based
on which bit is set is activate the reception of the command with the function
my_receive_cmd() that return an ENUM that activate other acctions thanks to
the switch case. Instead if is set to one the bit for the reception, the function
rx_packet() is called that send the packet over Wi-Fi. The implementation of this
function is explained later.

While on the Linux side, this implementation is adopted.

1 gpio_set_value (IRQ_NO_CMD, 1) ;
2 etx_spi_write_cmd (READ_MAC) ;
3 etx_spi_read32 (my_mac_address ) ;
4 gpio_set_value (IRQ_NO_CMD, 0) ;

This is an example to read the MAC address of the ESP32. It just raise
the IRQ_NO_CMD and then it send the command (the implementation of that
function is explained above). While in order to read the packet is send by the
ESP32 to the SoM, and so, even if the ESP32 is the slave it informs the SoM that
it has to send a packet.

For this purpose, in the following gure is explained the policy to send packet
from ESP32 to SoM.
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Figure 3.2: Block diagram of the policy to send packet from ESP to SoM

In the Figure 3.2 is described the logic of the implementation. Here, are adopted
two more lines: the HANSHAKE_OUT is used to inform the ESP32 that the SoM
is ready to accept a packet and moreover is used in order to sincronyze the sending
and receiving of packet. This because can happen that a both SoM and ESP32
has to send a packet, and thanks to this HANDSHAKE_OUT the SoM inform the
ESP32 if the wires are empty. As you can see, if the packet is not a 802.11 one, it
means that is a packet send by ESP32 in response of a command sent by SoM to
ESP32. So, for the implementation the SoM is of course ready to accept it.

1 void spiTask_pkt_received ( void ∗params ) {
2
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3 // v a r i a b l e s i n i z i a l i z a t i o n
4

5 whi le (1 ) {
6

7 xQueueReceive ( queue , &pacchetto , portMAX_DELAY) ;
8 ESP_ERROR_CHECK( gpio_set_leve l (GPIO_HANDSHAKE, 0) ) ;
9

10 whi le ( gpio_get_leve l (HANDSHAKE_OUTPUT) == 0) ;
11 ESP_ERROR_CHECK( gpio_set_leve l (GPIO_IRQ_OUTPUT, 1) ) ;
12 send_packet_received_over_wif i ( pacchetto . payload , pacchetto .

rx_ctr l . s ig_len ) ;
13

14 gp io_set_leve l (GPIO_IRQ_OUTPUT, 0) ;
15 gp io_set_leve l (GPIO_HANDSHAKE, 1) ;
16 xEventGroupClearBits ( send_grp , packet_receive_by_esp ) ;
17 }
18 }

The above describtion describe the manner to send the packet over SPI received
by ESP to SoM. So, is created another task that wait that a packet is received
by the ESP32 (this logic is explained in more detail in later section). When the
packet is received, the code can go on and rst of all it put the HANDSHAKE to
0 in order to does not receive any packet by SoM. Then, it waits that the SoM
can accept any packet. When HANDSHAKE_OUTPUT is set to one by SoM, the
ESP32 send the interrupt rising the line GPIO_IRQ_OUTPUT and the SoM is
ready to receive the packet: then the packet is eectively sent.

Overall, the implementation of this logic to send packet over SPI from SoM to
ESP32 seems working well but probably is not the most ecient one. Infact, as
you can see in the following gure there is a delay between the readiness of the
packet to be sent and the eective end of reception. Infact, the SoM raise the line,
the ESP32 has to handle the callback, set the bit and the SoM has to wait that
the ESP32 raise the HANDSHAKE and then it can send the packet. Moreover, 5
additional wires are necessary and the resepctively 5 GPIO other than the 4 for
the SPI. But this implementation is quite safe, because there are check for the
avaibility of the resource.

For sake of simplicity, I have adopted the above implementation for the rest of
my thesis because I have to focus more on the eectively Networking part, that is
lot more dicult. Or, another possibility is to use just one wire (HANDSHAKE)
This solution of course can be upgradable. The rst and big problem is the fact
that every transaction just one packet is eectively sent over the SPI in just one
direction. One better implementation can done by ’accumulating’ the packet in
a sort of linked list and then send at the same time packet from ESP32 to SoM
until all the buer is empty. To do that, to the packet can be put an header to
inform the receiver which type of packet is the one just received. And, for this
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implementation, is just necessary one wire (HANDSHAKE) instead of ve more.
For waht concern how and when the packet are send by the SoM, is described in
the next section because is strictly related with the implementation of the cfg80211
protocol.

3.4 Networking conguration
3.4.1 Firmware ESP32

In this section I will describe the network conguration of the ESP32 microchip
microcontroller. As explained in the above sections, the network interface must act
as a STA or AP in order to implement the MAC level of the ISO_OSI protocol.
So, the main.c rstly i initialize la GPIO_conguration and the inizialization of
the vector table. In prima istanza, utilizzando le APIs oerte dall’Espressif, viene
inizializzata l’interfaccia Wi-Fi e si registrano gli handler devi eventi. Inoltre, si
setta il salvatto dei dati wi nella RAM.

1 void w i f i_ i n i t ( void )
2 {
3

4 ESP_ERROR_CHECK( e sp_ne t i f_ in i t ( ) ) ;
5 esp_event_loop_create_default ( ) ;
6 wi f i_ in i t_con f i g_t w i f i_ in i t_con f i g = WIFI_INIT_CONFIG_DEFAULT() ;
7 ESP_ERROR_CHECK( esp_wi f i_ in i t (&w i f i_ in i t_con f i g ) ) ;
8 ESP_ERROR_CHECK( esp_event_handler_register (WIFI_EVENT,

ESP_EVENT_ANY_ID, event_handler , NULL) ) ;
9 ESP_ERROR_CHECK( esp_event_handler_register (IP_EVENT,

IP_EVENT_STA_GOT_IP, event_handler ,NULL) ) ;
10 ESP_ERROR_CHECK( esp_wif i_set_storage (WIFI_STORAGE_RAM) ) ;
11 }
12

Inoltre, non creo task appositi for the initial conguration of the network but I
just initialize the perifery with very basical conguration, and then add more details
along the way. In order to do this, I have implemented STA and AP conguration
in base to the cmd send by the SoM to the ESP32. So, in base at the comand
receive through the switch case I can for example set the STA conguration and
then try to connect to a known wi networking by comparison of the SSID and
password of the AP nd. As you can see, in the STA implementation there is the
setting of a base STA, settato il numero di canale su cui lavora tale network, e the
structure wi_cong are in the later sections in order to make the infermace as
the SoM prefer.
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1 esp_err_t wif i_connect_sta ( )
2 {
3 // i n i t i a l c on f i g u r a t i on and i n i z i a l i z a t i o n o f v a r i a b l e s and

bu f f e r
4

5 e sp_net i f = esp_net i f_create_de fau l t_wi f i_sta ( ) ;
6 ESP_ERROR_CHECK( esp_wifi_set_mode (WIFI_MODE_STA) ) ;
7

8 wi f i_con f i g . s ta . channel = 1 ;
9 ESP_ERROR_CHECK( esp_wif i_set_conf ig (ESP_IF_WIFI_STA, &wi f i_con f i g

) ) ;
10 ESP_ERROR_CHECK( esp_wi f i_start ( ) ) ;
11 ESP_ERROR_CHECK( esp_wif i_scan_start (NULL, t rue ) ) ;
12 ESP_ERROR_CHECK( esp_wifi_scan_get_ap_records(&number_max , ap_info

) ) ;
13 ESP_ERROR_CHECK( esp_wifi_scan_get_ap_num(&ap_count ) ) ;
14 make_scan (NUMBER_MAX_NETWORK) ;
15 }
16

Infact, are stored into the struct ap_info the networks info of the networks
scanned. And then, every time that the info of a struct is printed on the consolle
screen, the strcut ap_nd is lled with the info of the network nd and is send to
the SoM. The function used in the Linux side is described in the above sections.

1 i n t make_scan ( i n t NUMBER_MAX_NETWORK)
2 {
3 f o r ( i n t i = 0 ; i < NUMBER_MAX_NETWORK; i++)
4 {
5 ESP_LOGI(TAG_SCAN, "MAC ADDRESS \ t%x:%x:%x:%x:%x:%x " , ∗

ap_info [ i ] . bss id , ∗(1 + ap_info [ i ] . b s s i d ) , ∗(2 + ap_info [ i ] . b s s i d )
, ∗(3 + ap_info [ i ] . b s s i d ) , ∗(4 + ap_info [ i ] . b s s i d ) , ∗(5 + ap_info [
i ] . b s s i d ) ) ;

6

7 memcpy( apf ind . bss id , ap_info [ i ] . bss id , 6 ∗ s i z e o f ( uint8_t ) ) ;
8 memcpy( apf ind . s s id , ap_info [ i ] . s s id , 33 ∗ s i z e o f ( uint8_t ) ) ;
9 apf ind . r s s i = ap_info [ i ] . r s s i ;

10 apf ind . primary = ap_info [ i ] . primary ;
11

12 ESP_LOGI(TAG_SCAN, "SSID \ t \ t%s " , ap_info [ i ] . s s i d ) ;
13 ESP_LOGI(TAG_SCAN, "RSSI \ t \ t%d" , ap_info [ i ] . r s s i ) ;
14 ESP_LOGI(TAG_SCAN, "CHANNEL \ t%d\n" , ap_info [ i ] . primary ) ;
15

16 send_buffer ( apf ind , s i z e o f ( wifi_ap_record_t_send ) ) ;
17 memset(&apfind , 0 , s i z e o f ( wifi_ap_record_t_send ) ) ;
18 }
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19

20 // other s t u f f not r e l e van t
21

22 }
23

So, after that the AP networks are nd, them are sent to the SoM that if it
wants to connect to a certain network send another command to the ESP that
activate the following function, that let to conect the microcontroller to connect to
a networking providing the right information of the network.

1 esp_err_t connect ion ( )
2 {
3 bool connected = f a l s e ;
4 i n t i = 0 ;
5 whi le ( ( ! connected ) && ( i < NUMBER_MAX_NETWORK) )
6 {
7 i f (memcmp(STA_SSID, ap_info [ i ] . s s id , s t r l e n (STA_SSID) ) )
8 {
9 s trncpy ( ( char ∗) w i f i_con f i g . s ta . s s id , STA_SSID, s i z e o f (

w i f i_con f i g . s ta . s s i d ) − 1) ;
10 s trncpy ( ( char ∗) w i f i_con f i g . s ta . password , STA_PASS,

s i z e o f ( w i f i_con f i g . s ta . password ) − 1) ;
11 ESP_ERROR_CHECK( esp_wif i_set_conf ig (ESP_IF_WIFI_STA, &

wi f i_con f i g ) ) ;
12 ESP_LOGI(TAG_SCAN, "SSID E PASS GIUSTE, TENTATIVO CON %s "

, STA_SSID) ;
13 ESP_ERROR_CHECK( esp_wif i_connect ( ) ) ;
14 connected = ESP_ERROR_CHECK( esp_wif i_connect ( ) ) ;
15 }
16 i++;
17 }
18 re turn 0 ;
19 }
20

As already discussed before, the Espressif environment develop a list of event
(sort of software interrupt) that are called when there are certain circumstances.
Two examples are exposed: the event ’WIFI_EVENT_STA_CONNECTED’ and
’IP_EVENT_STA_GOT_IP’. The rst is called when the STA is eectively
connected to the desired AP, the second is called when the ESP32 got the IP by
DHCP protocol.

1 s t a t i c void event_handler ( void ∗ event_handler_arg , esp_event_base_t
event_base , int32_t event_id , void ∗ event_data )

41



Code Implementation

2 {
3 switch ( event_id )
4 {
5

6 case WIFI_EVENT_STA_CONNECTED:
7 wifi_event_sta_connected_t∗ event_mac = (

wifi_event_sta_connected_t ∗) event_data ;
8 memcpy( pacchetto_p+4, event_mac−>bss id , 6) ;
9 memcpy( pacchetto_p+16, event_mac−>bss id , 6) ;

10 ESP_LOGI(TAG_STA, " connected \n" ) ;
11 break ;
12

13 case IP_EVENT_STA_GOT_IP:
14 ip_event_got_ip_t∗ event = ( ip_event_got_ip_t ∗) event_data ;
15 i n t ip_to_send [ 4 ] ;
16 ip_to_send [ 0 ] = esp_ip4_addr1_16(&event−>ip_info . ip ) ;
17 ip_to_send [ 1 ] = esp_ip4_addr2_16(&event−>ip_info . ip ) ;
18 ip_to_send [ 2 ] = esp_ip4_addr3_16(&event−>ip_info . ip ) ;
19 ip_to_send [ 3 ] = esp_ip4_addr4_16(&event−>ip_info . ip ) ;
20 p r i n t f ( " to ap : %x%x\n" ,∗(4+pacchetto_p ) , ∗(5+pacchetto_p+1) ) ;
21 send_ip ( ip_to_send ) ;
22 ESP_LOGI(TAG_STA, " got ip : "IPSTR , IP2STR(&event−>ip_info . ip ) )

;
23 xEventGroupSetBits ( evtGrp , a c t i va t e_rec ep t i on ) ;
24 break ;
25

26 // r e s t o f event
27 }
28 }
29

Firstly, when the STA is connected it fulll the packet that is send to the SoM
in order to inform that is eectively connected to the desired Wi-Fi network.

Secondly, when the ESP32 got the IP, the array ip_to_send[4] is fulllled with
the actual value of the IP obtained and then is send over SPI to the SoM with
the function send_ip. Moreover, as you can see, with the FreeRTOS function
xEventGroupSetBits(evtGrp, activate_reception); that bit is set and start the
promiscous mode of the ESP32.

On the other hand, is possible to congure the ESP32 as AP. During this project
I focused more on the STA side: here, i just created a basic conguration in order
to test it’s capabilities. In the following piece of code, is described the creation
of an AP station with the desired SSID, password. With this conguration, is
possible to a max of 4 devices to connect to it, the beacon interval is of 500 ms
and just for the chanel 1.

1 void wifi_connect_ap ( void )
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2 {
3 wi f i_conf ig_t w i f i_con f i g ;
4 memset(&wi f i_con f i g , 0 , s i z e o f ( wi f i_conf ig_t ) ) ;
5 s trncpy ( ( char ∗) w i f i_con f i g . ap . s s id , AP_SSID, s i z e o f ( w i f i_con f i g .

s ta . s s i d ) − 1) ;
6 s trncpy ( ( char ∗) w i f i_con f i g . ap . password , AP_PASS, s i z e o f (

w i f i_con f i g . s ta . password ) − 1) ;
7 wi f i_con f i g . ap . authmode = WIFI_AUTH_WPA2_PSK;
8 wi f i_con f i g . ap . max_connection = 4 ;
9 wi f i_con f i g . ap . beacon_interva l = 500 ;

10 wi f i_con f i g . ap . channel = 1 ;
11

12 // esp_net i f = esp_net i f_create_default_wif i_ap ( ) ;
13 ESP_ERROR_CHECK( esp_wifi_set_mode (WIFI_MODE_AP) ) ;
14 ESP_ERROR_CHECK( esp_wif i_set_conf ig (ESP_IF_WIFI_AP, &wi f i_con f i g )

) ;
15 ESP_ERROR_CHECK( esp_wifi_set_ps (WIFI_PS_MAX_MODEM) ) ;
16 ESP_ERROR_CHECK( esp_wi f i_start ( ) ) ;
17 }

The last function described is when is tell to the ESP32 to disconnect from the
AP associated.

1 void wi f i_d i s connec t ( char ∗TAG)
2 {
3 ESP_LOGI(TAG, " ∗∗∗∗∗∗∗∗∗∗DISCONNECTING∗∗∗∗∗∗∗∗∗ " ) ;
4 esp_wif i_disconnect ( ) ;
5 esp_wif i_stop ( ) ;
6 esp_net i f_destroy ( e sp_net i f ) ;
7 ESP_LOGI(TAG, " ∗∗∗∗∗∗∗∗∗∗∗DISCONNECTING COMPLETE∗∗∗∗∗∗∗∗∗ " ) ;
8 xEventGroupSetBits ( evtGrp , endDisconnect ion ) ;
9 }

These are the basic network conguration for the ESP32, in the next section
will be described the function that eectively handle the packed send and received
after that the STA is connected to the desired network.

3.4.2 Linux Driver

For what concern the Linux driver environment, the setup of a network interface
is an interesting and quite challenging task. First of all, is necessary to full the
wiphy struct (that describe the wireless hardware) and the net_device struct that
describe the device structure. The problem with this struct is (as suggested by the
header le that describes it) as a ’BIG MISTAKE’ because it mixes I/O fata with
strictly "high-level" data and it has to know about almost every data structure used
in the INET module. So, one of the rst function in the loading of the linux driver
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is the creation of a pointer to the ’navigy_struct’, called g_ctx. This pointer than
is used to handle the callback from the kernel space when the user space tells to do
something etc. So, in this code, this point ’g_ctx’ represent the overall behaviour
of my network interface. In better details, this are the component of the struct:

1 s t r u c t esp_context {
2 s t r u c t wiphy ∗wiphy ;
3 s t r u c t net_device ∗ndev ;
4

5 s t r u c t semaphore sem ;
6 s t r u c t work_struct ws_scan ;
7 s t r u c t work_struct ws_connect ;
8 s t r u c t work_struct send_packet ;
9 s t r u c t work_struct rece ived_packet_over_wif i ;

10 s t r u c t work_struct ws_disconnect ;
11 char connect ing_ss id [ 3 3 ] ;
12 char connect ing_bss id [ 6 ] ;
13 uint8_t rea l_connect ing_bss id [ 6 ] ;
14 uint8_t rea l_connect ing_ss id [ 3 3 ] ;
15

16 u16 disconnect_reason_code ;
17 s t r u c t cfg80211_scan_request ∗ scan_request ;
18

19 s t r u c t net_device_stats s t a t s ;
20 s t r u c t napi_struct napi ;
21 i n t s t a tu s ;
22 s t r u c t esp_packet ∗ppool ;
23 s t r u c t esp_packet ∗rx_queue ;
24 u8 data [ETH_DATA_LEN] ;
25 i n t rx_int_enabled ;
26 i n t tx_packetlen ;
27 u8 ∗ tx_packetdata ;
28 s t r u c t sk_buff ∗ skb ;
29 sp in lock_t lock ;
30 } ;

A part from the rst two struct that are briey explained before, a semaphore
sem is initalized. This is used to preserve the dierent callback to handle the same
data interrupting themself. So, at the beginning of every callback a semaphore is
taken and then release at the end in order to preserve error. Moreover, In Linux
kernel development, work_struct is a data structure used to represent a task that
can be executed in the kernel’s context. It provides a simple and ecient way
to queue work to be performed later, either immediately or at a later time. The
work_struct is typically used for deferred processing, for example, for tasks that
cannot be performed immediately because they sleep, but need to be done later,
when the system is not busy with other tasks. Once the work is queued, it can be
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scheduled for execution by calling the schedule_work function. The actual work
is performed by the function pointed to by the work_struct’s work member. So,
associating it with a function, let the scheduler itself to executed the associated
function without error. Then, the following bssid and ssid are used to store the
name of the bssid and ssid associated with this interface. Then, are declared the
disconnect_reason_code and the struct ’cfg80211_scan_request *scan_request’ to
handle the scan request made by the kernel itself. It describe the main behaviour
that a scan must have, such as the number of SSIDs, channels to scan on, how
long to listen on each channel, in TUs and moreover. Net device stats refer to
the statistics or performance metrics related to network devices such as routers,
switches, and network adapters. These statistics can include information such
as the number of bytes transmitted, number of packets sent, errors, and other
details that help to measure the performance and health of a network device. The
following ’esp_packet’ are not used.

Moreover, is declared the struct ’sk_bu *skb’. sk_bu (socket buer) is a
data structure in the Linux kernel that is used to store network data packets. It
contains information about the packet, such as its source and destination addresses,
the protocol it uses, and the payload data. The sk_bu structure is used by the
networking stack to manage and process network packets. It provides a convenient
way for various components of the networking stack, such as the network drivers and
network protocols, to access and manipulate network data. The sk_bu structure
is a key part of the Linux kernel’s networking infrastructure and is used extensively
in the processing of network packets. The last stu is the ’spinlock_t lock’. A
spinlock is a synchronization mechanism used to protect shared resources from bei
ng simultaneously accessed and modied by multiple processes. So, it is similar to
the semaphore already discussed above, but with the dierence that spinlocks are
best suited for performance-critical parts of the system where the lock is held for a
short period of time, whereas semaphores are more suitable for situations where
the lock might be held for an extended period of time, or for controlling access to
multiple resources.

So, the function that create the pointer is the following one:

1 s t a t i c s t r u c t esp_context ∗ esp_create_context ( void ) {
2 s t r u c t esp_context ∗ r e t = NULL;
3 s t r u c t esp_wiphy_priv_context ∗wiphy_data = NULL;
4 s t r u c t esp_ndev_priv_context ∗ndev_data = NULL;
5

6 r e t = kmalloc ( s i z e o f (∗ r e t ) , GFP_KERNEL) ;
7 i f ( ! r e t ) {
8 goto l_er ro r ;
9 }

10
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11 ret−>wiphy = wiphy_new_nm(&nvf_cfg_ops , s i z e o f ( s t r u c t
esp_wiphy_priv_context ) , WIPHY_NAME) ;

12 i f ( ret−>wiphy == NULL) {
13 goto l_error_wiphy ;
14 }
15

16 wiphy_data = wiphy_get_navi_context ( ret−>wiphy ) ;
17 wiphy_data−>navi = r e t ;
18

19 ret−>wiphy−>interface_modes = BIT(NL80211_IFTYPE_STATION) ;
20

21 ret−>wiphy−>bands [NL80211_BAND_2GHZ] = &nf_band_2ghz ;
22

23 ret−>wiphy−>max_scan_ssids = 10 ;
24

25 i f ( wiphy_reg i s ter ( ret−>wiphy ) < 0) {
26 goto l_error_wiphy_reg ister ;
27 }
28

29 /∗ a l l o c a t e network dev i c e context . ∗/
30 ret−>ndev = al loc_netdev ( s i z e o f (∗ndev_data ) , NDEV_NAME,

NET_NAME_ENUM, ether_setup ) ;
31 i f ( ret−>ndev == NULL) {
32 goto l_error_al loc_ndev ;
33 }
34 ndev_data = ndev_get_navi_context ( ret−>ndev ) ;
35 ndev_data−>navi = r e t ;
36

37 ndev_data−>wdev . wiphy = ret−>wiphy ;
38 ndev_data−>wdev . netdev = ret−>ndev ;
39 ndev_data−>wdev . i f t y p e = NL80211_IFTYPE_STATION;
40 ret−>ndev−>ieee80211_ptr = &ndev_data−>wdev ;
41

42 ret−>ndev−>netdev_ops = &nvf_ndev_ops ;
43 memset(&ret−>sta t s , 0 , 23∗ s i z e o f ( unsigned long ) ) ;
44

45

46 sp in_lock_in i t (&ret−>lock ) ;
47 esp_rx_ints ( ret−>ndev , 1 ) ;
48 net i f_start_queue ( ret−>ndev ) ;
49

50 i f ( r eg i s t e r_netdev ( ret−>ndev ) ) {
51 goto l_error_ndev_reg i s ter ;
52 }
53

54 re turn r e t ;
55 l_error_ndev_reg i s ter :
56 f ree_netdev ( ret−>ndev ) ;
57 l_error_al loc_ndev :
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58 wiphy_unregister ( ret−>wiphy ) ;
59 l_error_wiphy_reg ister :
60 wiphy_free ( ret−>wiphy ) ;
61 l_error_wiphy :
62 k f r e e ( r e t ) ;
63 l_e r ro r :
64 re turn NULL;
65 }

As you can see, at the beginning of the function, are declared three pointer to
dierent struct:

1. struct esp_context *ret = NULL;

2. struct esp_wiphy_priv_context *wiphy_data = NULL;

3. struct esp_ndev_priv_context *ndev_data = NULL;

The rst is the same as discussed above, while the latter ones are used to store
particular data from the root one struct, esp_context.

So, rst of all is dinamically allocated the space for the struct esp_context.
Then, is allocated the wiphy context associated with the root struct by the

function ’wiphy_new_nm()’. The function is used in Linux kernel programming
to create a new wireless device (wiphy) and register it with the kernel’s wireless
subsystem. The key factor is the parameter nvf_cfg_ops: This parameter is a
pointer to the conguration operations structure for the new wireless device. This
structure contains the set of functions that will be used to congure the device.
Then, ’WIPHY_NAME’ is the dene used to set a name name of the new wireless
device.

After the storing of data and get the private data of the wiphy, are set the
type of the station and the channel 802.11 associated. Then, is allocated the
network device context through The function is used in Linux kernel programming
to allocate and initialize a new network device (net_device) structure and provide
basic conguration.

Then, are set the network device hook by set the he "netdev_ops" eld is a
pointer to a "net_device_ops" structure that denes the operations that can be
performed on the network device. "net_device_ops" is a structure in Linux kernel
programming that denes the operations that can be performed on a network
device. It is a structure that is associated with a network device (struct net_device)
and denes the functions that can be called to perform network-related tasks, such
as transmitting packets, changing the device’s conguration, etc. This is explained
in a better way later on.

Then after basic stu is started the The function "netif_start_queue" is part of
the Linux network subsystem and is used to start the transmission queue for a net-
work device in the Linux kernel. The function takes as an argument a pointer to the
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network device structure (ret->ndev). The network device structure is represented
by a "struct net_device" in the Linux kernel. The function "netif_start_queue"
starts the transmission queue for the network device pointed to by "ret->ndev".

The last function is to register a network device with the kernel. When a
network device is registered with the kernel, the kernel is made aware of the
device’s existence and the device becomes usable. The "register_netdev" function
registers the network device pointed to by "ret->ndev" with the kernel, making the
device usable for network-related tasks.

So, as already said, there are two hooks, the ’cgf80211_ops’ and the ’net_device_ops’.
The rst is implemented in this way:

1 s t a t i c s t r u c t cfg80211_ops nvf_cfg_ops = {
2 . scan = nvf_scan ,
3 . connect = nvf_connect ,
4 . d i s connec t = nvf_disconnect ,
5 } ;

So, when the user want to make a scan of the Wi-Fi net, connect to a network or
disconnect from a net this are the callback. So, basically, this three callback when
are called schedule the work associated with it. So, when the work is scheduled the
function associated to it is called. The function called, basically, send command
to ESP32 and then receive an answer from the ESP32. Then, the function has to
inform the kernel for the result obtained and tell it to the user itself. The same
reasoning he be done for the latter function:

1 s t a t i c s t r u c t net_device_ops nvf_ndev_ops = {
2 . ndo_start_xmit = nvf_ndo_start_xmit ,
3 . ndo_init = esp_init ,
4 . ndo_get_stats = esp_stats
5 } ;

The rst callback is the key part: infact, every time that a packet must be send
from the kernel to the net, this function is called. The .ndo_init is called when is
initialised the dev and .ndo_get_stats is called when is necessary to provide to the
user the main stats of the network.

For what concern the struct ’cfg80211_ops’, is superuous to describe detailled
their implementation but they can be seen in the Appendix. Infact, as already said
before, this three functione just send a command to the ESP32 that respond to
the driver. The results are described into the next chapter.

For what concern the struct ’net_device_ops’, the key function is the one
associated with the ’nvf_ndo_start_xmit’. Before the explanation of this, is
important to describe the key struct used by the kernel itseld to exchange buer
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packet, called ’sk_bu’. sk_bu (short for "socket buer") is a data structure used
in the Linux kernel networking stack to represent network packets. It contains
information about the packet’s header, payload, and metadata, such as its source
and destination addresses, protocol type, and network interface. sk_bu is used
extensively throughout the kernel’s network stack, including in the network device
drivers, network protocols, and socket implementation.

The sk_bu data structure is designed to be exible and ecient, with a variable-
length data area that can be expanded or trimmed as needed to accommodate
network packets of dierent sizes. The sk_bu also provides support for ecient
packet handling, such as fast data copying and ecient memory management.

sk_bu is an important part of the Linux networking infrastructure, as it
provides a unied and ecient way to represent network packets throughout
the system. It is used by many networking components, including the TCP/IP
stack, network device drivers, and the socket interface, to provide a seamless and
high-performance networking experience on Linux.

Infact, the function has as parameter the pointer to the sk_bu and the
net_device associated with the following prototype:
’static netdev_tx_t nvf_ndo_start_xmit(struct sk_bu *skb, struct net_device
*dev)’. This code denes the nvf_ndo_start_xmit function which is a callback
function that is called when a network device driver needs to transmit a packet. The
function takes two arguments: a pointer to a sk_bu structure that represents the
packet to be transmitted, and a pointer to a net_device structure that represents
the network device that will transmit the packet.

The function rst gets a pointer to a esp_ndev_priv_context structure from the
network device using the ndev_get_navi_context function. It then performs some
error checks on the sk_bu structure, including checking its length and comparing
its device with the given net_device. If any errors are found, the function frees the
sk_bu and returns NETDEV_TX_OK (indicating success).

If the sk_bu is valid, the function calculates the length of the packet and adds
a padding length of sizeof(struct esp_payload_header) to it. It then checks if
there is enough headroom in the sk_bu for the padding, and if not, it linearizes
the sk_bu and reallocates a new one with enough headroom. If there is enough
headroom, it simply pushes the padding length to the start of the sk_bu.

The function then populates the padding data with the necessary information
such as the packet length, oset, and checksum. It then schedules a work queue to
send the packet using priv->navi->send_packet.

Finally, the original sk_bu is freed, and the function returns NETDEV_TX_OK
indicating that the packet transmission was successful.

Moreover, when is scheduled the function it is called the function ’esp_send_packet’.
This code denes the function esp_send_packet which is a callback function for

a workqueue and is responsible for sending the packet over the network interface.
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The function rst obtains a pointer to the esp_context structure by using
the container_of macro. This structure contains all the information required for
sending the packet.

Next, it acquires a semaphore to prevent concurrent access to the data structure.
If it fails to acquire the semaphore, the function returns without doing anything.

The network interface is temporarily disabled to ensure that no other packets
are sent while this packet is being transmitted.

The IRQ line is then set to 1, which is used to signal the ESP32 that the packet
is being sent.

The send_rx_packet function is called to actually send the packet. This function
is likely part of the lower-level driver code that is specic to the ESP32 hardware.

After the packet is sent, the function updates the statistics of the network
interface and wakes up the queue for the interface so that it can transmit more
packets.

Finally, the semaphore is released to allow other threads to access the data
structure.

So, the packet is sent to the ESP32 that acquire it and sent over the net.
Instead, for what concern the reception of a packet, rst of all is necessary to

activate an input interrupt that schedule a work, this work is associated with a
function that must be scheduled by the shceduler of Linux itself. When the function
is scheduled, it call another function that handle the majority of the stu and start
the reception itself of the packet and then inform the kernel.
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Results obtained

In the following chapter, the results obtained will be analyzed, providing an
examination of what happens from the moment the Linux driver is loaded and the
rmware is started on the ESP32-WROVER-E microcontroller.

In the next Figure is shown the board on which this project is developed. The
SoM is used through a SoM tester, a custom board that provide PIN to connect
with the SoM itself. In order to communicate with the SoM and load the driver,
Putty is used via an SSH connection using an Ethernet cable. For this protocol,
you connect using the SoM’s IP address. Additionally, a logic analyzer is used for
initial debugging of the SPI protocol and packet management. The driver is copied
from the virtual machine to the SoM using the Linux ’scp’ command, which also
utilizes the SSH protocol.

For what concern the loading of the rmware, a serial protocol is used. So,
through a Mirco-USB cable is possible to both ash and monitor the log of ESP32
itself.

The supply of the SoM is about 5V and the ESP32’s one is 3.3V.
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Figure 4.1: SoM and ESP32

The driver is copied from the virtual machine to the SoM using the Linux ’scp’
command, which also utilizes the SSH protocol.

Once is logged, in order to update the dependencies, the command ’/sbin/dep-
mod -a’ and ’sync’ are used. In order to eectively load the driver the command
’modprobe nameofdriver’ is used. Using the command ’lsmod’ it is possible to see
all the modules that are currently loaded into the kernel.
As you can see in the next image, after the command modprobe is utilized, the
esp32_bb (name of the driver) is correctly load and recognized by the kernel itself
as shown in the next image.
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Figure 4.2: Loading of esp32_bb module

Then, using the command ’dmesg’ is possible to see if the driver has communicate
something. As you can see from the next image, the SPI conguration was initially
recorded, including the controller, etc., and the network interface conguration
was also recorded. During recording, I made sure that a command was sent to the
ESP32, and it responded with a message containing the MAC address.
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Figure 4.3: ESP32-WROVER-E’s mac address on SoM terminal.

Figure 4.4: ESP32-WROVER-E’s mac address ESP32 terminal.

Furthermore, as you can see from the following image, by typing the ’ifcong’
command it’s possible to see that the network interface called ’Enrico0’ has been
properly generated with the corresponding MAC address received from the ESP32.

Figure 4.5: enrico0 network interface

Moreover, using the command "iw list" that is typically used in Linux-based
systems to display information about available wireless interfaces and their capa-
bilities. In the following image are shown some of the capatibilities of the wi-
interface Enrico.
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Figure 4.6: Wiphy enrico capabilities

So, overall, the Linux driver is correctly recognized.

In the following, the ability to scan the present wireless networks will be tested.
With the command ’iw dev enrico0 scan’ is tell to the SoM to make a scan of the
wireless network.

As you can see in the next images, three WI-FIs are nd and the ESP32-
WROVER-E informs the SoM that print it on the ’dmesg’.
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Figure 4.7: Read of the information provided by ESP32 on SoM terminal.

Figure 4.8: Wi-Fis nd by ESP32
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So, how you can see, the Wi-Fi network with the name Enrico is nd. This net
is created with the Hotspot of my cellphone.

Next step, is to send command to ESP32-WROVER-E to connect to a wireless
network, the same network Enrico.

Figure 4.9: Connection of ESP32 to network Enrico

Thanks to the DHCP, the ESP32 itself obtain the IP 192.168.130.109 with a
gateway 192.168.130.252 and more over.

So, now Linux see the fact that its network interface, Enrico0, is connected to
the Wi-Fi net, Enrico. Moreover, in order to store the packet arriving to the ESP32
from the net, is necessary to put the microcontroller in ’promiscous mode’.

As you can see, the IP address is correctly added to the enrico0 interface. As
you can see, if i try to ping some ip that can be achieved by the enrico0 interface,
linux driver try to send packet through it but it does not receive a correct answer
by no one.

As you can see from the images above, is shown as the metrics of the network
are uploaded correctly by the interface itself:

Figure 4.10: enrico0 network capabilities.
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Figure 4.11: Packet sent by SoM to ESP32, seen on SoM terminal.

Figure 4.12: Packet sent by SoM to ESP32, seen on ESP32 terminal.

As you can see in the next gure, the driver itself also reckon correctly the
packet that the ESP32 send to the SoM.

Figure 4.13: Update metrics of the enrico0 interface.

So, stu works properly but the ping seems to not works properly. There is an
exchange of packet but the Linux Kernel does not reckon correctly the packet. It
is necessary further debugging to understand at what level the error happens.

I tried to using Wireshark in order to understand at bit level what happens to
the packet send by the ESP32 on the net. At rst glance, the packet snied and
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shown by the software include correctly the MAC address of the ESP32, but further
analyses has to be performed in order to understand at which level of incapsulation
happens the error.
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Conclusion

Overall, the ESP32 seems to be a quite good microcontroller with an high potentials,
providing good hardware capabilities, Wi-Fi and Bluetooth for a low price. But,
for what concern the topic of this Thesis, this microcontroller is not what Bitron
S.p.A. is looking for. The major downside of this microcontroller are the APIs
oered by the Espressif. Infact, they are quite opaque:

1. In debug mode, the IDE can not shown you what happens during an execution
of a function provided by the Espressif. This puts the programmer in trouble
because does not have clear at hand what happens inside the microcontroller;

2. Dierently from the HAL provided by ST for their microcontroller, you can
not see how the function interact with the low layer;

3. Espressif does not currently provide detailed documentation of its APIs, but
it does oer a summary description of what the functions oered do at a high
level;

So, in order to avoid the usage of their APIs, is necessary to write starting from
the User Manual of the microcontroller in order to have a detailed idea of how the
peripheral are congured, how data is exchanged between the peripheral and mi-
cro, etc. But this will takes an enormous amount of time in order to achieve the goal.

Moreover, during the period of my internship, Espressif does not provide any
Linux driver on the main line of the Kernel as their competitors do. My work could
be a good starting point in order to develop it but much work is still needed to
achieve the stability required by the industrial world. Infact, from a enterprise
prospective, is not sustainable write an entire Linux driver for an object of another
industrial reality. It is therefore more attractive to use another network interface,
already used and tested in the industrial world and let Bitron S.p.A. to focus on
the developing of thier products, since its business is not the IoT world.
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In conclusion, I can say that the microcontroller itself and the APIs oered are
good enough to build some application, such as Web Server and so on. Its great
in order to approach the IoT world and in some way it remembers the Arduino
approach. It has of course great potentials that can express in the future: the
hardware behaviour is already quite good but what lack is a detailed documentation
for their software environment that oer.
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Driver Code

A.0.1 cfg80211esp.c

1 #inc lude <l inux /module . h>
2 #inc lude <net / c fg80211 . h> /∗ wiphy and probably everyth ing that would

r equ i r ed f o r FullMAC dr i v e r ∗/
3 #inc lude <l inux / skbu f f . h>
4 #inc lude <l inux / i n t e r rup t . h> /∗ mark_bh ∗/
5 #inc lude <l inux /workqueue . h> /∗ work_struct ∗/
6 #inc lude <l inux /semaphore . h>
7 #inc lude <l inux / netdev i c e . h>
8

9 #inc lude " e sp sp i . h "
10 #inc lude " c fg80211esp . h "
11 #inc lude " ne tdev i c e e . h "
12

13 /∗ he lpe r func t i on that w i l l r e t r i e v e main con text from " pr iv " data
o f the wiphy ∗/

14 s t a t i c s t r u c t esp_wiphy_priv_context ∗
15 wiphy_get_navi_context ( s t r u c t wiphy ∗wiphy ) { re turn ( s t r u c t

esp_wiphy_priv_context ∗) wiphy_priv (wiphy ) ; }
16

17 /∗ he lpe r func t i on that w i l l r e t r i e v e main con text from " pr iv " data
o f the network dev i c e ∗/

18 s t a t i c s t r u c t esp_ndev_priv_context ∗
19 ndev_get_navi_context ( s t r u c t net_device ∗ndev ) { return ( s t r u c t

esp_ndev_priv_context ∗) netdev_priv ( ndev ) ; }
20

21 /∗ Helper func t i on that w i l l prepare s t r u c tu r e with BSS in format ion
and " inform " the ke rne l about "new" BSS ∗/

22 s t a t i c void inform_dummy_bss ( s t r u c t esp_context ∗navi ) {
23 s t r u c t cfg80211_bss ∗bss = NULL;
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24 s t r u c t cfg80211_inform_bss data = {
25 . chan = &navi−>wiphy−>bands [NL80211_BAND_2GHZ]−>channe l s

[ 0 ] , /∗ the only channel ∗/
26 . scan_width = NL80211_BSS_CHAN_WIDTH_20,
27 /∗ s i g n a l " type " may be s p e c i f i e d be f o r e wiphy

r e g i s t r a t i o n by s e t t i n g wiphy−>signa l_type ∗/
28 . s i g n a l = 1337 ,
29 } ;
30

31

32 /∗ i e − array o f tags that u sua l l y r e t r i e v e d from beacon frame or
probe responce . ∗/

33 char i e [ ( s i z e o f ( navi−>connect ing_ss id )−1) + 2 ] = {WLAN_EID_SSID,
( s i z e o f ( navi−>connect ing_ss id )−1) } ;

34 memcpy( i e + 2 , navi−>connect ing_ss id , ( s i z e o f ( navi−>
connect ing_ss id )−1) ) ;

35

36 /∗ a l s o i t p o s i b l e to use cfg80211_inform_bss ( ) i n s t ead o f
cfg80211_inform_bss_data ( ) ∗/

37 bss = cfg80211_inform_bss_data ( navi−>wiphy , &data ,
CFG80211_BSS_FTYPE_UNKNOWN, navi−>connect ing_bss id , 0 ,
WLAN_CAPABILITY_ESS, 100 ,

38 i e , s i z e o f ( i e ) , GFP_KERNEL) ;
39

40 /∗ f r e e , cfg80211_inform_bss_data ( ) r e tu rn ing cfg80211_bss
s t r u c tu r e r e f c oun t e r o f which should be decremented i f i t s not
used . ∗/

41 cfg80211_put_bss ( navi−>wiphy , bss ) ;
42 }
43

44 /∗ " Scan " rou t ine . I t j u s t inform the ke rne l about BSS and f i n i s h e d
scan .

45 ∗ When scan i s done i t should c a l l cfg80211_scan_done ( ) to inform
the ke rne l that scan i s f i n i s h e d .

46 ∗ This rou t ine c a l l e d through workqueue , when the k e rne l asks about
scan through cfg80211_ops . ∗/

47 s t a t i c void esp_scan_routine ( s t r u c t work_struct ∗w) {
48 s t r u c t esp_context ∗navi = conta iner_of (w, s t r u c t esp_context ,

ws_scan ) ;
49 s t r u c t cfg80211_scan_info i n f o = {
50

51 . aborted = f a l s e ,
52 } ;
53 i n t i ;
54

55 gpio_set_value (IRQ_NO_CMD, 1) ;
56 etx_spi_write_cmd (MAKE_SCAN) ;
57 f o r ( i =0; i < 10 ; i++){
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58 wifi_ap_record_t_send ∗ apf ind = kmalloc ( s i z e o f (
wifi_ap_record_t_send ) ,GFP_KERNEL) ;

59

60 etx_spi_read_struct ( apf ind , s i z e o f ( wifi_ap_record_t_send ) ) ;
61 gpio_set_value (IRQ_NO_CMD, 0) ;
62 pr_info ( "MAC ADDRESS \ t%x:%x:%x:%x:%x:%x\n" , ∗ apf ind−>bss id , ∗(1+

apfind−>bss id ) ,∗(2+ apfind−>bss id ) ,∗(3+ apfind−>bss id ) ,∗(4+ apfind−>
bss id ) ,∗(5+ apfind−>bss id ) ) ;

63 pr_info ( " SSID : \ t \ t%s \n" , apf ind−>s s i d ) ;
64 pr_info ( "CANALE: \ t \ t%x\n" , apf ind−>primary ) ;
65 pr_info ( "RSSI : \ t \ t%d\n" , apf ind−>r s s i ) ;
66

67 memcpy( navi−>connect ing_ss id , apf ind−>ss id , s t r l e n ( apf ind−>s s i d ) )
;

68 memcpy( navi−>connect ing_bss id , apf ind−>bss id , s t r l e n ( apf ind−>
bss id ) ) ;

69 memset ( navi−>connect ing_ss id , 0 , 33) ;
70 memset ( navi−>connect ing_bss id , 0 , 6) ;
71 /∗ inform with BSS ∗/
72 inform_dummy_bss ( navi ) ;
73 k f r e e ( apf ind ) ;
74 }
75

76 i f ( down_interrupt ib le (&navi−>sem) ) {
77 re turn ;
78 }
79

80 /∗ f i n i s h scan ∗/
81 cfg80211_scan_done ( navi−>scan_request , &i n f o ) ;
82

83 navi−>scan_request = NULL;
84

85 up(&navi−>sem) ;
86 }
87

88 /∗ I t j u s t checks SSID o f the ESS to connect and informs the ke rne l
that connect i s f i n i s h e d .

89 ∗ I t should c a l l cfg80211_connect_bss ( ) when connect i s f i n i s h e d or
cfg80211_connect_timeout ( ) when connect i s f a i l e d .

90 ∗
91 ∗ This rou t ine c a l l e d through workqueue , when the k e rne l asks about

connect through cfg80211_ops . ∗/
92 s t a t i c void esp_connect_routine ( s t r u c t work_struct ∗w) {
93 s t r u c t esp_context ∗navi = conta iner_of (w, s t r u c t esp_context ,

ws_connect ) ;
94

95 i f ( down_interrupt ib le (&navi−>sem) ) {
96 re turn ;
97 }
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98

99 i f (memcmp( navi−>connect ing_ss id , SSID_DUMMY, s i z e o f (SSID_DUMMY) )
!= 0) {

100 cfg80211_connect_timeout ( navi−>ndev , NULL, NULL, 0 ,
GFP_KERNEL, NL80211_TIMEOUT_SCAN) ;

101 } e l s e {
102 /∗ we can connect to ESS that a l r eady know . I f e l s e ,

t e c hn i c a l l y ke rne l w i l l only warn . ∗/
103 /∗ so , l e t s send bss to the ke rne l be f o r e complete . ∗/
104 inform_dummy_bss ( navi ) ;
105

106 /∗ a l s o i t s p o s s i b l e to use c fg80211_connect_result ( ) or
cfg80211_connect_done ( ) ∗/

107 cfg80211_connect_bss ( navi−>ndev , NULL, NULL, NULL, 0 , NULL,
0 , WLAN_STATUS_SUCCESS, GFP_KERNEL,

108 NL80211_TIMEOUT_UNSPECIFIED) ;
109 }
110

111

112 up(&navi−>sem) ;
113 }
114

115 /∗ Just c a l l s c fg80211_disconnected ( ) that in forms the ke rne l that
d i s connec t i s complete .

116 ∗ Overa l l d i s connec t may c a l l cfg80211_connect_timeout ( ) i f
d i s connec t i n t e r r up t i n g connect ion rou t ine .

117 ∗ This rou t ine c a l l e d through workqueue , when the k e rne l asks about
d i s connec t through cfg80211_ops . ∗/

118 s t a t i c void esp_disconnect_rout ine ( s t r u c t work_struct ∗w) {
119

120 s t r u c t esp_context ∗navi = conta iner_of (w, s t r u c t esp_context ,
ws_disconnect ) ;

121

122 i f ( down_interrupt ib le (&navi−>sem) ) {
123 re turn ;
124 }
125

126 c fg80211_disconnected ( navi−>ndev , navi−>disconnect_reason_code ,
NULL, 0 , true , GFP_KERNEL) ;

127

128 navi−>disconnect_reason_code = 0 ;
129

130 up(&navi−>sem) ;
131 }
132

133 /∗ ca l l ba ck that c a l l e d by the ke rne l when user dec ided to scan .
134 ∗ This c a l l ba ck should i n i t i a t e scan rout ine ( through work_struct )

and ex i t with 0 i f everyth ing ok .
135 ∗ Scan rout ine should be f i n i s h e d with cfg80211_scan_done ( ) c a l l . ∗/
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136 s t a t i c i n t nvf_scan ( s t r u c t wiphy ∗wiphy , s t r u c t cfg80211_scan_request
∗ r eque s t ) {

137 s t r u c t esp_context ∗navi = wiphy_get_navi_context (wiphy )−>navi ;
138 s t a t i c i n t i = 0 ;
139

140 i f ( down_interrupt ib le (&navi−>sem) ) {
141 re turn −ERESTARTSYS;
142 }
143

144 i f ( navi−>scan_request != NULL) {
145 up(&navi−>sem) ;
146 re turn −EBUSY;
147 }
148

149 navi−>scan_request = reques t ;
150

151 up(&navi−>sem) ;
152

153 i f ( ! schedule_work(&navi−>ws_scan ) ) {
154 re turn −EBUSY;
155 }
156

157 re turn 0 ; /∗ OK ∗/
158 }
159

160 /∗ ca l l ba ck that c a l l e d by the ke rne l when ther e i s need to " connect "
to some network .

161 ∗ I t i n i t s connect ion rout ine through work_struct and e x i t s with 0
i f everyth ing ok .

162 ∗ connect rou t ine should be f i n i s h e d with cfg80211_connect_bss ( ) /
c fg80211_connect_result ( ) / cfg80211_connect_done ( ) or
cfg80211_connect_timeout ( ) . ∗/

163 s t a t i c i n t nvf_connect ( s t r u c t wiphy ∗wiphy , s t r u c t net_device ∗dev ,
164 s t r u c t cfg80211_connect_params ∗sme) {
165 s t r u c t esp_context ∗navi = wiphy_get_navi_context (wiphy )−>navi ;
166 s i z e_t s s id_len = sme−>ss id_len > 15 ? 15 : sme−>ss id_len ;
167

168 i f ( down_interrupt ib le (&navi−>sem) ) {
169 re turn −ERESTARTSYS;
170 }
171 pr_err ( "%s \n " , sme−>s s i d ) ;
172 memcpy( navi−>connect ing_ss id , sme−>ss id , s s id_len ) ;
173

174 up(&navi−>sem) ;
175

176 i f ( ! schedule_work(&navi−>ws_connect ) ) {
177 re turn −EBUSY;
178 }
179
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180 re turn 0 ;
181 }
182 /∗ ca l l ba ck that c a l l e d by the ke rne l when ther e i s need to "

d iconnect " from cu r r en t l y connected network .
183 ∗ I t i n i t s d i s connec t rou t ine through work_struct and e x i t s with 0

i f everyth ing ok .
184 ∗ d i s connec t rou t ine should c a l l c fg80211_disconnected ( ) to inform

the ke rne l that d i s connec t i on i s complete . ∗/
185 s t a t i c i n t nvf_disconnect ( s t r u c t wiphy ∗wiphy , s t r u c t net_device ∗dev

,
186 u16 reason_code ) {
187 s t r u c t esp_context ∗navi = wiphy_get_navi_context (wiphy )−>navi ;
188

189 i f ( down_interrupt ib le (&navi−>sem) ) {
190 re turn −ERESTARTSYS;
191 }
192

193 navi−>disconnect_reason_code = reason_code ;
194

195 up(&navi−>sem) ;
196

197 i f ( ! schedule_work(&navi−>ws_disconnect ) ) {
198 re turn −EBUSY;
199 }
200 re turn 0 ;
201 }
202

203 /∗ Struc ture o f f unc t i on s f o r FullMAC 80211 d r i v e r s .
204 ∗ Functions that implemented along with f i e l d s / f l a g s in wiphy

s t ru c tu r e would r ep r e s en t d r i v e r s f e a t u r e s .
205 ∗ ∗/
206 s t a t i c s t r u c t cfg80211_ops nvf_cfg_ops = {
207 . scan = nvf_scan ,
208 . connect = nvf_connect ,
209 . d i s connec t = nvf_disconnect ,
210 } ;
211

212 s t a t i c i n t e sp_in i t ( s t r u c t net_device ∗dev ) {
213 uint8_t ∗ my_mac_address ;
214 my_mac_address = kmalloc (6 , GFP_KERNEL) ;
215 gpio_set_value (IRQ_NO_CMD, 1) ;
216 etx_spi_write_cmd (READ_MAC) ;
217 etx_spi_read32 (my_mac_address ) ;
218 gpio_set_value (IRQ_NO_CMD, 0) ;
219 pr_info ( "%x:%x:%x:%x:%x:%x , MAC ADDRESS\n" , ∗my_mac_address , ∗ (

my_mac_address+1) ,∗ (my_mac_address+2) ,∗ (my_mac_address+3) , ∗(
my_mac_address+4) , ∗(my_mac_address+5) ) ;

220 memcpy( dev−>dev_addr , my_mac_address , ETH_ALEN) ;
221 k f r e e (my_mac_address ) ;
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222

223 re turn 0 ;
224 }
225

226 void send_packet_to_esp ( char ∗data , i n t len , s t r u c t net_device ∗dev ) {
227 gpio_set_value (IRQ_NO, 1) ;
228 send_rx_packet ( len , data ) ;
229 gpio_set_value (IRQ_NO, 0 ) ;
230

231 }
232

233 s t a t i c void esp_send_packet ( s t r u c t work_struct ∗w) {
234

235 s t r u c t esp_context ∗navi = conta iner_of (w, s t r u c t esp_context ,
send_packet ) ;

236

237 i f ( down_interrupt ib le (&navi−>sem) ) {
238 re turn ;
239 }
240 net i f_tx_di sab l e ( navi−>ndev ) ;
241 gpio_set_value (IRQ_NO, 1) ;
242 send_rx_packet ( navi−>tx_packetlen , navi−>data ) ;
243

244 gpio_set_value (IRQ_NO, 0) ;
245 pr_err ( "RETURN DA ESP_SEND_PACKET\n" ) ;
246 netif_wake_queue ( navi−>ndev ) ;
247

248 up(&navi−>sem) ;
249 }
250

251 /∗ Network packet transmit .
252 ∗ Callback that c a l l e d by the ke rne l when packet o f data should be

sent . ∗/
253 s t a t i c netdev_tx_t nvf_ndo_start_xmit ( s t r u c t sk_buff ∗skb ,
254 s t r u c t net_device ∗dev ) {
255

256 s t r u c t esp_ndev_priv_context ∗ pr iv =ndev_get_navi_context ( dev ) ;
257 char ∗data , shortpkt [ETH_ZLEN] ;
258 i n t l en ;
259 s t a t i c i n t counter = 0 ;
260 counter++;
261

262 i f ( skb−>dev!=dev ) {
263 pr_err ( " ho d i s p o s i t i v i d i v e r s i \n " ) ;
264 }
265

266 l en = skb−>len ;
267 pr_err ( "LUNGHEZZA PACCHETTO N %d DA INVIARE: %d\n" , counter , l en )

;
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268

269 priv−>navi−>s t a t s . tx_packets++;
270 priv−>navi−>s t a t s . tx_bytes += len ;
271 priv−>navi−>tx_packetlen = len ;
272

273 memset ( priv−>navi−>data , 0 , 1500) ;
274 memcpy( priv−>navi−>data , skb−>data , l en ) ;
275 /∗ Dont f o r g e t to c leanup skb , as i t s ownership moved to xmit

ca l l b a ck . ∗/
276 schedule_work(&priv−>navi−>send_packet ) ;
277 neti f_stop_queue ( priv−>navi−>ndev ) ;
278 kfree_skb ( skb ) ;
279 pr_err ( "RETURN\n" ) ;
280 re turn NETDEV_TX_OK;
281 }
282

283 s t r u c t net_device_stats ∗ esp_stats ( s t r u c t net_device ∗dev )
284 {
285 // s t r u c t snu l l_pr iv ∗ pr iv = netdev_priv ( dev ) ;
286 s t r u c t esp_ndev_priv_context ∗ pr iv =ndev_get_navi_context ( dev ) ;
287 re turn &priv−>navi−>s t a t s ;
288 } ;
289

290 /∗ Struc ture o f f unc t i on s f o r network dev i c e s .
291 ∗/
292 s t a t i c s t r u c t net_device_ops nvf_ndev_ops = {
293 . ndo_start_xmit = nvf_ndo_start_xmit ,
294 . ndo_init = esp_init ,
295 . ndo_get_stats = esp_stats
296 } ;
297

298 /∗
299 ∗ Enable and d i s ab l e r e c e i v e i n t e r r up t s . da s n u l l
300 ∗/
301 s t a t i c void esp_rx_ints ( s t r u c t net_device ∗dev , i n t enable )
302 {
303 s t r u c t esp_ndev_priv_context ∗ pr iv =ndev_get_navi_context ( dev ) ;
304 priv−>navi−>rx_int_enabled = enable ;
305 }
306

307 /∗ Function that c r e a t e s wiphy context and net_device with
wire l e s s_dev .

308 ∗ wiphy/net_device /wire l e s s_dev i s ba s i c i n t e r f a c e s f o r the ke rne l
to i n t e r a c t with d r i v e r as w i r e l e s s one .

309 ∗ I t r e tu rn s d r i v e r ’ s main " esp " context . ∗/
310 s t a t i c s t r u c t esp_context ∗ esp_create_context ( void ) {
311 s t r u c t esp_context ∗ r e t = NULL;
312 s t r u c t esp_wiphy_priv_context ∗wiphy_data = NULL;
313 s t r u c t esp_ndev_priv_context ∗ndev_data = NULL;
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314

315 /∗ a l l o c a t e f o r esp context ∗/
316 r e t = kmalloc ( s i z e o f (∗ r e t ) , GFP_KERNEL) ;
317 i f ( ! r e t ) {
318 goto l_er ro r ;
319 }
320

321 /∗ a l l o c a t e wiphy context , a l s o i t p o s s i b l e j u s t to use wiphy_new
( ) func t i on .

322 ∗ wiphy should r ep r e s en t phy s i c a l FullMAC w i r e l e s s dev i c e .
323 ∗ One wiphy can have s e r v e r a l network i n t e r f a c e s − f o r that u

need to implement add_virtua l_int f ( ) and co . from cfg80211_ops . ∗/
324 ret−>wiphy = wiphy_new_nm(&nvf_cfg_ops , s i z e o f ( s t r u c t

esp_wiphy_priv_context ) , WIPHY_NAME) ;
325 i f ( ret−>wiphy == NULL) {
326 goto l_error_wiphy ;
327 }
328

329 /∗ save esp context in wiphy pr i va t e data . ∗/
330 wiphy_data = wiphy_get_navi_context ( ret−>wiphy ) ;
331 wiphy_data−>navi = r e t ;
332

333 /∗ s e t dev i c e ob j e c t as wiphy " parent " , I dont have any dev i c e
yet . ∗/

334 /∗ set_wiphy_dev ( ret−>wiphy , dev ) ; ∗/
335

336 /∗ wiphy should determinate i t type ∗/
337 /∗ add other r equ i r ed types l i k e "BIT(NL80211_IFTYPE_STATION) |

BIT(NL80211_IFTYPE_AP) " e t c . ∗/
338 ret−>wiphy−>interface_modes = BIT(NL80211_IFTYPE_STATION) ;
339

340 /∗ wiphy should have at l e a s t 1 band . ∗/
341 /∗ f i l l a l s o NL80211_BAND_5GHZ i f r equ i r ed ∗/
342 ret−>wiphy−>bands [NL80211_BAND_2GHZ] = &nf_band_2ghz ;
343

344 /∗ scan − to d e f i n e max_scan_ssids ∗/
345 ret−>wiphy−>max_scan_ssids = 10 ;
346 // ret−>scan_request−>wiphy = ret−>wiphy ;
347

348 i f ( wiphy_reg i s ter ( ret−>wiphy ) < 0) {
349 goto l_error_wiphy_reg ister ;
350 }
351

352 /∗ a l l o c a t e network dev i c e context . ∗/
353 ret−>ndev = al loc_netdev ( s i z e o f (∗ndev_data ) , NDEV_NAME,

NET_NAME_ENUM, ether_setup ) ;
354 i f ( ret−>ndev == NULL) {
355 goto l_error_al loc_ndev ;
356 }
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357 /∗ f i l l p r i va t e data o f network context . ∗/
358 ndev_data = ndev_get_navi_context ( ret−>ndev ) ;
359 ndev_data−>navi = r e t ;
360

361 /∗ f i l l w i re l e s s_dev context .
362 ∗ wire le s s_dev with net_device can be repre s ented as i nh e r i t e d

c l a s s o f s i n g l e net_device . ∗/
363 ndev_data−>wdev . wiphy = ret−>wiphy ;
364 ndev_data−>wdev . netdev = ret−>ndev ;
365 ndev_data−>wdev . i f t y p e = NL80211_IFTYPE_STATION;
366 ret−>ndev−>ieee80211_ptr = &ndev_data−>wdev ;
367

368 /∗ s e t dev i c e ob j e c t f o r net_device ∗/
369 /∗ SET_NETDEV_DEV( ret−>ndev , wiphy_dev ( ret−>wiphy ) ) ; ∗/
370

371 /∗ s e t network dev i ce hooks . ∗/
372 ret−>ndev−>netdev_ops = &nvf_ndev_ops ;
373 memset(&ret−>sta t s , 0 , 23∗ s i z e o f ( unsigned long ) ) ;
374

375 // snul l_setup_pool ( ret−>ndev ) ;
376 sp in_lock_in i t (&ret−>lock ) ;
377 esp_rx_ints ( ret−>ndev , 1 ) ;
378 net i f_start_queue ( ret−>ndev ) ;
379

380 /∗ net_device i n i t i a l i z a t i o n . ∗/
381 i f ( r eg i s t e r_netdev ( ret−>ndev ) ) {
382 goto l_error_ndev_reg i s ter ;
383 }
384

385 re turn r e t ;
386 l_error_ndev_reg i s ter :
387 f ree_netdev ( ret−>ndev ) ;
388 l_error_al loc_ndev :
389 wiphy_unregister ( ret−>wiphy ) ;
390 l_error_wiphy_reg ister :
391 wiphy_free ( ret−>wiphy ) ;
392 l_error_wiphy :
393 k f r e e ( r e t ) ;
394 l_e r ro r :
395 re turn NULL;
396 }
397

398 s t a t i c void esp_free ( s t r u c t esp_context ∗ ctx ) {
399 i f ( ctx == NULL) {
400 re turn ;
401 }
402 unreg i s te r_netdev ( ctx−>ndev ) ;
403 f ree_netdev ( ctx−>ndev ) ;
404 wiphy_unregister ( ctx−>wiphy ) ;
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405 wiphy_free ( ctx−>wiphy ) ;
406 k f r e e ( ctx ) ;
407 neti f_stop_queue ( ctx−>ndev ) ;
408 }
409

410 s t a t i c s t r u c t esp_context ∗g_ctx = NULL;
411

412 s t a t i c i n t __init v i r t u a l_w i f i_ i n i t ( void ) {
413 etx_sp i_in i t ( ) ;
414 g_ctx = esp_create_context ( ) ;
415 i f ( g_ctx != NULL) {
416 sema_init(&g_ctx−>sem , 1) ;
417

418 INIT_WORK(&g_ctx−>ws_connect , esp_connect_routine ) ;
419 g_ctx−>connect ing_ss id [ 0 ] = 0 ;
420 INIT_WORK(&g_ctx−>ws_disconnect , esp_disconnect_rout ine ) ;
421 g_ctx−>disconnect_reason_code = 0 ;
422 INIT_WORK(&g_ctx−>ws_scan , esp_scan_routine ) ;
423 INIT_WORK(&g_ctx−>send_packet , esp_send_packet ) ;
424 g_ctx−>scan_request = NULL;
425 }
426 re turn g_ctx == NULL;
427 }
428 s t a t i c void __exit v i r tua l_w i f i_ex i t ( void ) {
429 etx_spi_exit ( ) ;
430 cancel_work_sync(&g_ctx−>ws_connect ) ;
431 cancel_work_sync(&g_ctx−>ws_disconnect ) ;
432 cancel_work_sync(&g_ctx−>ws_scan ) ;
433 cancel_work_sync(&g_ctx−>send_packet ) ;
434 esp_free ( g_ctx ) ;
435 }
436 module_init ( v i r t u a l_w i f i_ i n i t ) ;
437 module_exit ( v i r tua l_w i f i_ex i t ) ;
438 MODULE_LICENSE( "GPL v2 " ) ;

A.0.2 espspi.c

1 #inc lude " e sp sp i . h "
2 #inc lude " c fg80211esp . h "
3 #inc lude " ne tdev i c e e . h "
4 #inc lude <l inux / s l ab . h>
5 #inc lude <l inux / netdev i c e . h>
6

7 s t a t i c unsigned long f l a g s = 0 ;
8

9 s t a t i c s t r u c t sp i_device ∗ etx_spi_device ;
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10

11 s t a t i c s t r u c t spi_board_info etx_spi_device_info = // in fo rmat ion
about s l av e dev i c e

12 {
13 . modal ias = " esp32_driver " ,
14 . max_speed_hz = 40000000 , // speed your dev i c e ( s l av e )

can handle
15 . bus_num = SPI_BUS_NUM, // SPI 2 ( d e l l a som)
16 . ch ip_se l e c t = 0 , //
17 . mode = SPI_MODE_1 // SPI mode 1 , cause esp32

can work with DMA with t h i s mode
18 } ;
19

20 void etx_spi_read_struct ( void ∗ s t ruct_to_rece ive , uint8_t s i z e ) {
21

22 i f ( etx_spi_device )
23 {
24 s t r u c t sp i_t r an s f e r t r =
25 {
26 . tx_buf = NULL,
27 . rx_buf = struct_to_rece ive ,
28 . l en = s i z e ,
29 . bits_per_word = 8 ,
30 } ;
31 i n t va lue = 0 ;
32 i n t check = 1 ;
33 whi le ( check )
34 {
35 msleep (1 ) ;
36 value = gpio_get_value (HANDSHAKE_NUM) ;
37 i f ( va lue ) {
38 sp i_sync_trans fer ( etx_spi_device , &tr , 1 ) ;
39 check = 0 ;
40 break ;
41 }
42 }
43 }
44 //memcpy( buf f , rx , 6) ;
45 }
46

47 i n t etx_spi_read32 ( char ∗ bu f f )
48 {
49 i n t r e t = −1;
50 char rx [ 6 ] ;
51

52 i f ( etx_spi_device )
53 {
54 s t r u c t sp i_t r an s f e r t r =
55 {
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56 . tx_buf = NULL,
57 . rx_buf = rx ,
58 . l en = s i z e o f ( rx ) ,
59 . bits_per_word = 8 ,
60 } ;
61 i n t va lue = 0 ;
62 i n t check = 1 ;
63 whi le ( check )
64 {
65 msleep (1 ) ;
66 value = gpio_get_value (HANDSHAKE_NUM) ;
67 i f ( va lue ) {
68 sp i_sync_trans fer ( etx_spi_device , &tr , 1 ) ;
69 check = 0 ;
70 break ;
71 }
72 }
73 }
74 memcpy( buf f , rx , 6) ;
75 re turn 0 ;
76 }
77

78 i n t send_rx_packet ( i n t lunghezza , char ∗dati_da_inviare ) {
79

80 s t r u c t sp i_t r an s f e r t r =
81 {
82 . tx_buf = &lunghezza ,
83 . rx_buf = NULL,
84 . l en = 32 ,
85 . bits_per_word = 8 ,
86 } ;
87 i n t va lue = 0 ;
88 i n t check = 1 ;
89 whi le ( check )
90 {
91 msleep (1 ) ;
92 value = gpio_get_value (HANDSHAKE_NUM) ;
93 i f ( va lue ) {
94 sp i_sync_trans fer ( etx_spi_device , &tr , 1 ) ;
95 check = 0 ;
96 break ;
97 }
98 }
99

100

101 t r . tx_buf = dati_da_inviare ;
102 t r . rx_buf = NULL;
103 t r . l en = lunghezza ;
104
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105 value = 0 ;
106 check = 1 ;
107 whi le ( check )
108 {
109 msleep (1 ) ;
110 value = gpio_get_value (HANDSHAKE_NUM) ;
111 i f ( va lue ) {
112 sp i_sync_trans fer ( etx_spi_device , &tr , 1 ) ;
113 check = 0 ;
114 break ;
115 }
116 }
117 re turn 0 ;
118 }
119

120 i n t etx_spi_write_cmd ( cmd_spi cmd_) {
121 char tx [ 4 ] = {( char )cmd_, 0 , 0 , 0 } ;
122 s t r u c t sp i_t r an s f e r t r =
123 {
124 . tx_buf = tx ,
125 . rx_buf = NULL,
126 . l en = s i z e o f ( tx ) ,
127 . bits_per_word = 8 ,
128 // . delay_usecs = 10000
129 } ;
130 i n t va lue = 0 ;
131 i n t check = 1 ;
132 whi le ( check )
133 {
134 msleep (1 ) ;
135 value = gpio_get_value (HANDSHAKE_NUM) ;
136 i f ( va lue ) {
137 sp i_sync_trans fer ( etx_spi_device , &tr , 1 ) ;
138 check = 0 ;
139 break ;
140 }
141 }
142 re turn 0 ;
143 }
144

145 i n t etx_spi_write_size ( i n t l en ) {
146 char tx [ 4 ] = {( char ) len , 0 , 0 , 0 } ;
147 s t r u c t sp i_t r an s f e r t r =
148 {
149 . tx_buf = tx ,
150 . rx_buf = NULL,
151 . l en = s i z e o f ( tx ) ,
152 . bits_per_word = 8 ,
153 // . delay_usecs = 10000
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154 } ;
155 i n t va lue = 0 ;
156 i n t check = 1 ;
157 whi le ( check )
158 {
159 msleep (1 ) ;
160 value = gpio_get_value (HANDSHAKE_NUM) ;
161 i f ( va lue ) {
162 sp i_sync_trans fer ( etx_spi_device , &tr , 1 ) ;
163 check = 0 ;
164 break ;
165 }
166 }
167 re turn 0 ;
168 }
169

170 i n t handshake ( i n t gpio ) {
171

172 i f ( gpio_request ( gpio , " rp i−gpio " ) ) {
173 pr intk ( " Error ! \ nCan not a l l o c a t e GPIO %d\n" , gpio ) ;
174 re turn −1;
175 }
176

177 i f ( gp io_direct ion_input ( gpio ) ) {
178 pr intk ( " Error ! \ nCan not s e t GPIO %d to input ! \ n " , gpio ) ;
179 re turn −1;
180 }
181

182 re turn 0 ;
183 }
184

185 i n t e tx_sp i_in i t ( void )
186 {
187 i n t r e t ;
188 s t r u c t spi_master ∗master ;
189

190 handshake (HANDSHAKE_NUM) ;
191 // i rq_con f i gu ra t i on (IRQ_NO) ;
192

193 gpio_request (IRQ_NO, " aa " ) ;
194 gpio_direct ion_output (IRQ_NO, 0) ;
195 gpio_direct ion_output (IRQ_NO_CMD, 0) ;
196

197

198 master = spi_busnum_to_master ( etx_spi_device_info . bus_num ) ;
199 i f ( master == NULL )
200 {
201 pr_err ( " SPI Master not found . \ n " ) ;
202 re turn −ENODEV;
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203 }
204

205 // c r ea t e a new s l av e device , g iven the master and dev i c e i n f o
206 etx_spi_device = spi_new_device ( master , &etx_spi_device_info ) ;
207 i f ( etx_spi_device == NULL )
208 {
209 pr_err ( "FAILED to c r e a t e s l av e . \ n " ) ;
210 re turn −ENODEV;
211 }
212

213 // 8−b i t s in a word
214 // etx_spi_device−>bits_per_word = 8 ;
215 // setup the SPI s l av e dev i c e
216 r e t = spi_setup ( etx_spi_device ) ;
217 i f ( r e t )
218 {
219 pr_err ( "FAILED to setup s l av e . \ n " ) ;
220 sp i_unreg i s t e r_dev i ce ( etx_spi_device ) ;
221 re turn −ENODEV;
222 }
223

224 pr_info ( " SPI d r i v e r Reg i s t e r ed \n" ) ;
225 re turn 0 ;
226 }
227

228 void etx_spi_exit ( void )
229 {
230 i f ( etx_spi_device )
231 {
232 // Clear the d i sp l ay
233 sp i_unreg i s t e r_dev i ce ( etx_spi_device ) ; // Unreg i s t e r the SPI

s l av e
234 gp io_free (HANDSHAKE_NUM) ;
235 // f r e e_ i rq (IRQ_NO, NULL) ;
236 gp io_free (IRQ_NO) ;
237 gp io_free (IRQ_NO_CMD) ;
238 pr_info ( " SPI d r i v e r Unreg i s t e r ed \n" ) ;
239 }
240 }
241

242 s t a t i c i rq re turn_t i rqHandler ( i n t i rq , void ∗data ) {
243 l oca l_i rq_save ( f l a g s ) ;
244 pr_err ( "SONO NELL ’ HANDLER\n" ) ;
245 l o c a l_ i rq_re s t o r e ( f l a g s ) ;
246 re turn IRQ_HANDLED;
247 }
248 void i r q_con f i gu ra t i on ( i n t pin ) {
249 s t a t i c shor t i n t irqNumber = 0 ;
250 i n t r e s u l t ;
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251 handshake ( pin ) ;
252 irqNumber = gpio_to_irq ( pin ) ; // map GPIO to an IRQ
253 r e s u l t = reques t_irq ( irqNumber , // reques ted i n t e r r up t
254 i rqHandler , // po in t e r to handler

func t i on
255 IRQF_TRIGGER_RISING, // i n t e r r up t mode f l a g
256 " i rqHandler " , // used in /proc /

i n t e r r up t s
257 NULL) ; // the ∗dev_id shared

i n t e r r up t l i n e s , NULL i s okay
258 pr_err ( " IL NUMERO DI IRQ E ’ : %d\n" , irqNumber ) ;
259 }

A.0.3 netdevice.c

1 #inc lude " c fg80211esp . h "
2 #inc lude " ne tdev i c e e . h "
3 #inc lude " e sp sp i . h "
4

5 void esp_setup ( s t r u c t net_device ∗esp_devv ) {
6

7 ether_setup ( esp_devv ) ;
8

9 esp_devv−>f l a g s |=IFF_NOARP;
10 esp_devv−>f l a g s |=IFF_MULTICAST;
11 //esp_devv−>f l a g s &= ~IFF_MULTICAST;
12 esp_devv−>pr iv_ f l ag s |= IFF_LIVE_ADDR_CHANGE | IFF_NO_QUEUE;
13 esp_devv−>f e a t u r e s |= NETIF_F_SG | NETIF_F_FRAGLIST;
14 esp_devv−>f e a t u r e s |= NETIF_F_ALL_TSO;
15 esp_devv−>f e a t u r e s |= NETIF_F_HW_CSUM | NETIF_F_HIGHDMA |

NETIF_F_LLTX;
16 esp_devv−>f e a t u r e s |= NETIF_F_GSO_ENCAP_ALL;
17

18 esp_devv−>hw_features |= esp_devv−>f e a t u r e s ;
19 esp_devv−>hw_enc_features |= esp_devv−>f e a t u r e s ;
20

21 esp_devv−>min_mtu = 0 ;
22 esp_devv−>max_mtu = 0 ;
23 re turn ;
24 }

A.0.4 cfg80211esp.h
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1 #inc lude <net / c fg80211 . h> /∗ wiphy and probably everyth ing that would
r equ i r ed f o r FullMAC dr i v e r ∗/

2 #inc lude <l inux / skbu f f . h>
3

4 #inc lude <l inux /workqueue . h> /∗ work_struct ∗/
5 #inc lude <l inux /semaphore . h>
6

7 #inc lude <l inux /module . h>
8 #inc lude <l inux / ke rne l . h>
9 #inc lude <l inux / netdev i c e . h>

10 #inc lude <l inux / e the rdev i c e . h>
11 #inc lude <l inux / i n i t . h>
12 #inc lude <l inux /moduleparam . h>
13 #inc lude <l inux / r t n e t l i n k . h>
14 #inc lude <net / r t n e t l i n k . h>
15 #inc lude <l inux /u64_stats_sync . h>
16

17

18 #i f n d e f _cfg80211esp_h_
19 #de f i n e _cfg80211esp_h_
20

21

22 #de f i n e WIPHY_NAME " en r i c o "
23 #de f i n e NDEV_NAME " en r i c o%d"
24 #de f i n e SSID_DUMMY " BitronDevices "
25

26 //#de f i n e SSID_DUMMY_SIZE ( s i z e o f ( "NETGEAR17_EXT" ) − 1)
27

28 #de f i n e CHAN2G(_channel , _freq , _f lags ) { \
29 . band = NL80211_BAND_2GHZ, \
30 . c ente r_freq = ( _freq ) , \
31 . hw_value = (_channel ) , \
32 . f l a g s = ( _f lags ) , \
33 . max_antenna_gain = 0 , \
34 . max_power = 30 , \
35 }
36

37 s t a t i c s t r u c t ieee80211_channel nvf_supported_channels_2ghz [ ] = {
38 CHAN2G(1 , 2412 , 0) ,
39 CHAN2G(2 , 2417 , 0) ,
40 CHAN2G(3 , 2422 , 0) ,
41 CHAN2G(4 , 2427 , 0) ,
42 CHAN2G(5 , 2432 , 0) ,
43 CHAN2G(6 , 2437 , 0) ,
44 CHAN2G(7 , 2442 , 0) ,
45 CHAN2G(8 , 2447 , 0) ,
46 CHAN2G(9 , 2452 , 0) ,
47 CHAN2G(10 , 2457 , 0) ,
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48 CHAN2G(11 , 2462 , 0) ,
49 CHAN2G(12 , 2467 , 0) ,
50 CHAN2G(13 , 2472 , 0) ,
51 CHAN2G(14 , 2484 , 0)
52 } ;
53

54 #de f i n e RATETAB_ENT(_rate , _hw_value , _f lags ) { \
55 . b i t r a t e = ( _rate ) , \
56 . hw_value = (_hw_value ) , \
57 . f l a g s = ( _f lags ) , \
58 }
59

60 s t a t i c s t r u c t ieee80211_rate nvf_supported_rates_2ghz [ ] = {
61 RATETAB_ENT(10 , 0 , 0) ,
62 RATETAB_ENT(20 , 1 , 0) ,
63 RATETAB_ENT(55 , 2 , 0) ,
64 RATETAB_ENT(110 , 3 , 0) ,
65 RATETAB_ENT(60 , 9 , 0) ,
66 RATETAB_ENT(90 , 6 , 0) ,
67 RATETAB_ENT(120 , 7 , 0) ,
68 RATETAB_ENT(180 , 8 , 0) ,
69 RATETAB_ENT(240 , 9 , 0) ,
70 RATETAB_ENT(360 , 10 , 0) ,
71 RATETAB_ENT(480 , 11 , 0) ,
72 RATETAB_ENT(540 , 12 , 0)
73 } ;
74

75

76 /∗ Struc ture that d e s c r i b e s supported band o f 2ghz . ∗/
77 s t a t i c s t r u c t ieee80211_supported_band nf_band_2ghz = {
78 . ht_cap . cap = IEEE80211_HT_CAP_SGI_20 , /∗ add other band

c a p a b i l i t i e s i f needed , l i k e 40 width e tc . ∗/
79 . ht_cap . ht_supported = f a l s e ,
80

81 . channe l s = nvf_supported_channels_2ghz ,
82 . n_channels = ARRAY_SIZE( nvf_supported_channels_2ghz ) ,
83

84 . b i t r a t e s = nvf_supported_rates_2ghz ,
85 . n_bi t rates = ARRAY_SIZE( nvf_supported_rates_2ghz ) ,
86 } ;
87

88 s t r u c t esp_packet {
89 s t r u c t esp_packet ∗next ;
90 s t r u c t net_device ∗dev ;
91 i n t data len ;
92 u8 data [ETH_DATA_LEN] ;
93 } ;
94

95 s t r u c t esp_context {
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96 s t r u c t wiphy ∗wiphy ;
97 s t r u c t net_device ∗ndev ;
98

99 s t r u c t semaphore sem ;
100 s t r u c t work_struct ws_connect ;
101 s t r u c t work_struct send_packet ;
102 char connect ing_ss id [ 3 3 ] ;
103 char connect ing_bss id [ 6 ] ;
104 s t r u c t work_struct ws_disconnect ;
105 u16 disconnect_reason_code ;
106 s t r u c t work_struct ws_scan ;
107 s t r u c t cfg80211_scan_request ∗ scan_request ;
108 s t r u c t net_device_stats s t a t s ;
109 s t r u c t napi_struct napi ;
110 i n t s t a tu s ;
111 s t r u c t esp_packet ∗ppool ;
112 s t r u c t esp_packet ∗rx_queue ;
113 u8 data [ETH_DATA_LEN] ;
114 i n t rx_int_enabled ;
115 i n t tx_packetlen ;
116 u8 ∗ tx_packetdata ;
117 s t r u c t sk_buff ∗ skb ;
118 sp in lock_t lock ;
119 } ;
120

121 s t r u c t esp_wiphy_priv_context {
122 s t r u c t esp_context ∗navi ;
123 } ;
124

125 s t r u c t esp_ndev_priv_context {
126 s t r u c t esp_context ∗navi ;
127 s t r u c t wire l e s s_dev wdev ;
128 } ;
129

130 void send_packet_to_esp ( char ∗data , i n t len , s t r u c t net_device ∗dev ) ;
131

132 #end i f

A.0.5 espspi.h

1 #inc lude <l inux / i n i t . h>
2 #inc lude <l inux /module . h>
3 #inc lude <l inux / gpio . h>
4 #inc lude <l inux / sp i / sp i . h>
5 #inc lude <l inux / de lay . h>
6 #inc lude <l inux / i n t e r rup t . h>
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7

8 #i f n d e f _espspi_h_
9 #de f i n e _espspi_h_

10

11 typede f s t r u c t __attribute__ ( (__packed__) ) {
12 uint8_t bs s id [ 6 ] ; /∗∗< MAC address o f AP ∗/
13 uint8_t s s i d [ 3 3 ] ; /∗∗< SSID o f AP ∗/
14 uint8_t primary ; /∗∗< channel o f AP ∗/
15 int8_t r s s i ;
16 } wifi_ap_record_t_send ;
17

18 typede f enum {
19 READ_MAC,
20 MAKE_SCAN,
21 TX_PACKET_LINUX
22 } cmd_spi ;
23

24 #de f i n e HANDSHAKE_NUM 10
25 #de f i n e IRQ_NO 72
26 #de f i n e IRQ_NO_CMD 24
27 #de f i n e SPI_BUS_NUM 2
28

29 i n t e tx_sp i_in i t ( void ) ;
30 i n t etx_spi_write_size ( i n t l en ) ;
31 i n t etx_spi_write_cmd_irq ( cmd_spi cmd_) ;
32 i n t etx_spi_read32 ( char ∗ bu f f ) ;
33 i n t send_rx_packet ( i n t lunghezza , char ∗dati_da_inviare ) ;
34 void etx_spi_exit ( void ) ;
35 i n t etx_spi_write_cmd ( cmd_spi cmd_) ;
36 void etx_spi_read_struct ( void ∗ struct_to_read , uint8_t s i z e ) ;
37 s t a t i c i rq re turn_t i rqHandler ( i n t i rq , void ∗data ) ;
38 void i r q_con f i gu ra t i on ( i n t pin ) ;
39

40 #end i f
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