
POLITECNICO DI TORINO

Master’s Degree course in Electronic Engineering

Master’s Degree Thesis

Mixed-Precision Quantization and
Inference of MLPerf Tiny DNNs
on Precision-Scalable Hardware

Accelerators

Advisors:
prof. Mario Roberto Casu
dott. Luca Urbinati

Candidate:
Marco Alessio Terlizzi

Academic Year 2022-2023

2

Abstract

Over the past ten years, Deep Learning has made great strides with significant
advancements in a variety of Artificial Intelligence (AI) applications that range
from image classification to speech recognition. Nevertheless, the unprecedented
performance attained by Deep Neural Networks (DNNs) comes at the cost of high
computational complexity and power consumption, making them unsuitable for de-
ployment on resource-constrained devices such as embedded hardware. As a result,
a field known as TinyML has emerged, aiming to develop efficient and accurate mod-
els for the ever-growing market of Internet-of-Things (IoT) devices. Moving both
training and inference to the edge offers several advantages, including enhanced data
privacy, lower latency, and improved energy efficiency. This is achieved by tackling
these issues from multiple angles, such as designing networks that execute fewer
operations and reducing the precision of network parameters through quantization.
To this regard, this thesis analyzes how mixed-precision quantization can help im-
prove the computational footprint and latency of deep neural networks running on
hardware accelerators. First, QKeras, an open-source quantization library, is used
to quantize and determine an optimal mixed-precision configuration for four neu-
ral network architectures from the MLPerfTiny Benchmark, namely MobilenetV1,
Resnet, FC-AutoEncoder, and DS-CNN. Our findings show that this technique is
on average able to reduce the number of bits by 59.64% with respect to conven-
tional 16-bit flat quantization techniques while keeping the test accuracy within
a range of 2% of their floating-point counterparts. Second, the networks are exe-
cuted in software on precision-scalable hardware accelerators for DNN algorithms
such as 2DConv, DWConv, and FC. In particular, they consist of reconfigurable
Sum-Together (ST) multipliers placed inside the MAC units, which make them
able to compute N=1,2,4 multiplications in parallel with 16/N bit operands, thus
reducing latency when using low precision inputs and weights. These accelerators
are designed in C to take advantage of high-level synthesis (HLS) tools. Finally,
we also investigate the effects of reducing the bit-width of the accelerator’s internal
variables, such as the quantization scaling factors, to reduce the accelerators’ hard-
ware resources (e.g. multipliers’ bitwidths) without degrading the accuracies of the
four networks by more than 0.5%. In the process we measure the ideal speedup
obtained using the reconfigurable ST multipliers instead of standard ones, finding
an average speedup of 2.23x.

Acknowledgements

I would like to express my deepest gratitude to the people who contributed to this
thesis.

First and foremost I would like to express my sincere thanks to Prof. Casu, for
giving me the opportunity to work on this thesis.

A special thanks goes to Dott. Urbinati, for his patience, motivation and for
providing instrumental insight at every stage of this research project.

I extend my heartfelt thanks to my family. Thank you for always supporting
me, your constant encouragement has been a driving force behind my academic
achievements.

Finally, I am deeply grateful to all the friends who have been by my side through-
out this academic journey and made this achievement possible.

2

Contents

1 Background 5
1.1 Artificial Neural Networks and Deep Learning 5
1.2 Convolutional Neural Networks . 10

1.2.1 Introduction . 10
1.2.2 Convolutional layers . 11
1.2.3 Pooling Layers . 13
1.2.4 Fully Connected layers . 14

1.3 Notable ANN architectures . 15
1.3.1 Mobilenet . 15
1.3.2 Residual Neural Networks 16
1.3.3 Auto-encoders . 17

1.4 Neural Network Quantization . 18
1.4.1 Affine quantization schemes 18
1.4.2 PTQ . 20
1.4.3 QAT . 20

2 Neural Network Quantization with AutoQKeras 21
2.1 QKeras . 21
2.2 Keras Tuner and AutoQKeras . 24
2.3 AutoQKeras . 25
2.4 Preliminary experiments with AutoQKeras 27
2.5 Extending AutoQKeras features . 31
2.6 Mobilenet quantization . 32

3 MLPerf Tiny Benchmark 35
3.1 Introduction . 35
3.2 Project Outline . 36
3.3 Modifications to the Keras model to implement affine quantization

mapping . 37
3.4 General structure of the quantization scripts 38
3.5 Visual Wake Words . 39
3.6 Image Classification . 47

3

3.7 Keyword spotting . 53
3.8 Anomaly Detection . 58

4 Reconfigurable Hardware Accelerators 65
4.1 MLPerfTiny Cxx models . 66
4.2 Hardware parameter exploration . 67
4.3 Accelerator speedup . 72

5 Conclusion and Future Work 75

Bibliography 77

4

Chapter 1

Background

1.1 Neural Networks and Deep Learning

Figure 1.1: Artificial Neural Network [19]

An Artificial Neural Network (ANN) is a system of densely interconnected pro-
cessing elements loosely inspired by the neural structure of the brain. Unlike tra-
ditional computing techniques, ANNs seek patterns in data without the need to
be explicitly programmed and have been proven to be very successful at tackling
various tasks, ranging from image classification to voice recognition. An ANN is
formed by stacking up multiple layers, in which each artificial neuron is fully in-
terconnected with the neurons in the following one, forming a fully connected or
dense network. By increasing the number of dense layers, as to create a Deep
Neural Network (DNN), the network is able to learn increasingly complex patterns
from the input data. A neural network goes through two phases called training and
inference. During the first phase the network learns to recognize a specific pattern
in a portion of data called training set, while in the second phase the trained neural
network generates output predictions from previously unseen input data.

5

Background

Figure 1.2: Inside a neuron

Taking a closer look at the structure of an artificial neuron (Fig. 1.2), we can see
that it is a computational unit that executes a weighted sum, adds a bias, applies
a non-linear function and sends the result to neighboring connected neurons. Its
parameters are:

• input vector x

• weight vector W

• bias b

• activation function A

Weights and biases are parameters that are "learned" by the network during the
training phase and simulate the strengthening of a synaptic pathway. On the other
hand, the activation function determines the output of a neuron by introducing a
non-linearity, that allows the network to learn complex functions. In classification
ANN models a typical activation function for hidden layers is the Rectified Linear
Unit, or ReLU (Fig. 1.3), whereas for output layers a common activation is the
Softmax function.

Figure 1.3: ReLU function [34]

6

1.1 – Artificial Neural Networks and Deep Learning

Machine learning techniques fall into two basic categories: supervised and un-
supervised learning, depending on whether or not the training dataset is labeled, a
process that consists in tagging each element in the dataset with the correct pre-
diction value. The network is expected to learn a function that maps the inputs
to correct outputs. As the network produces a prediction, this is compared to the
expected output. The DNN subsequently uses this information to calculate the
loss function, such as "mean squared error" (MSE) as reported in Eq. 1.1, which
measures how much the prediction deviates from the ground truth, and to update
its weights. The objective of training is to find an optimal configuration of weights
and biases that lead to a minimum average loss function, called cost function (J)
(Eq. 1.2).

L = (yi − ŷi)2 (1.1)

J = 1
N

NØ
i=1

L(yi, ŷi) (1.2)

The weight update operation can be achieved by applying an optimization algo-
rithm known as gradient descent. As the name suggests, this involves computing
the loss function’s gradients with respect to the network’s parameters W and b.
As shown in Eq. 1.3, by exploiting the graph structure of a neural network, we
can use a back-propagation algorithm to calculate the gradients starting from the
network’s output and recursively applying the chain rule for derivatives up to the
input. Gradients are then used to update the parameter’s values, after being scaled
by the learning rate alpha. Each gradient update is known as a step. A large
learning rate helps the network learn faster because of the larger steps, but can
lead the cost function to jump to a global minimum or to move away from an op-
timal minimum. On the other hand, a small value makes the training phase slower
and restricts the model to a local minimum, but does not guarantee to find the
global minimum because the model may be unable to escape a local one. So it is
one of the most important hyperparameters (non-learned parameters) that require
fine-tuning to achieve the best training results.

w = w − α ∗ ∂J(w, b)
∂w

b = b − α ∗ ∂J(w, b)
∂b

(1.3)

To determine whether the training phase is performing well, typically, part of
the training data is set aside to define a validation set. The algorithm described
so far, also known as Batch Gradient Descent, takes one step after the model has
done one pass over the entire dataset, which is defined as an epoch. This can
be impractical for large datasets and thus the dataset is typically divided into

7

Background

Figure 1.4: Gradient Descent [4]

mini batches, requiring the network to iterate over many of them to complete
one epoch. While with Batch Gradient Descent steps are somewhat smooth and
converge directly to an optimum solution, with Mini Batch Gradient Descent the
overall trend typically fluctuates but converges faster and is less computationally
expensive. Once training is complete, the network can be used for inference on a
test set to measure how well it does on unseen data.

Although a model might be very accurate on the training set, it is possible that
that the network is not able to generalize its knowledge on unseen data. This is
a phenomenon commonly known as overfitting (Fig. 1.5) and often comes up in
models with many parameters, complex architectures and few training data. In
view of this, it is possible to normalize the features of the batch of the input data
to set mean 0 and variance 1, in order to stabilize and speed up the learning process.
Taking this a step further, it is also possible to normalize the output batch that
is generated by hidden neurons with a technique that goes by the name of Batch
Normalization (Eq. 1.4). During training, for each batch, we take the mean µb

and variance σb of the features in the batch and we use these two parameters to
normalize the features themselves. Instead during inference we use long term mean
µ and variance σ values computed as moving averages of batch statistics [24][32].
Batch normalization parameters γ and β are learnable parameters, that are used to
scale and shift the normalized activations so that the network is able to use more
complex normalization functions that better adapt to the input data.

xbn,train = γ(x − µbñ
σ2

b + ϵ
) + β

xbn,inference = γ(x − µ√
σ2 + ϵ

) + β

(1.4)

We can exploit the fact that batch normalization parameters µ, σ, γ, β are con-
stants during inference by folding them into the weights and biases of the previous
layer (Eqs.1.5) [32]. This is a standard procedure, especially when dealing with
inference in embedded devices.

8

1.1 – Artificial Neural Networks and Deep Learning

Wfolded = γ
W√

σ2 + ϵ

bfolded = β − γ
µ√

σ2 + ϵ

(1.5)

Besides batch normalization, another important technique to limit overfitting is
dropout. During training dropout will randomly zero-out the output of selected
neurons, forcing the network to learn multiple representations of the input data
and thus making it more robust and less likely to overfit.
An additional problem, often encountered during training, is underfitting, a case
in which the model is not able to accurately learn the relation between input and
output neither during training nor after, thus generating high error rates and poor
performance. It is a common issue that arises when the model is too simple, or
when there’s too little data to train on. The first plot in Fig. 1.5 shows an example
of an underfit model, where the fit line is not able to capture the underlying pattern
in the data. In contrast, the following plot shows an overfit model whose line fits
perfectly the training data but will be unable to generalize to unseen data like the
ideal balanced case in the last plot.

Figure 1.5: Comparison between different fit lines [28]

9

Background

1.2 Convolutional Neural Networks
1.2.1 Introduction

Figure 1.6: CNN architecture example [3]

A common task in machine learning is image classification, i.e. the ability to
recognize what is depicted in an image. An image is a multi-dimensional matrix
of pixels, also called tensor. When dealing with images having a fully-connected
DNN can be rather impractical, if not prohibitive, due to the enormous amount of
parameters involved. To illustrate this issue, we can consider an RGB image with
a resolution of 1280*720 pixels. This means that a single neuron in the first hidden
layer would have 1280*720*3=2764800 weights and, considering that we most likely
need more than just one neuron, it easy to see why this approach is not ideal. An
additional problem is that we would like our network to recognize objects regardless
of their position in the image, a property known as translation invariance. However
a fully-connected DNN requires a vector as input, which means that images must
be flattened. This effectively destroys the spatial relationship between neighboring
pixels and makes it difficult to detect the same feature in different regions of the
image. Convolutional Neural Networks (CNNs) solve these issues introducing the
concept of locally connected layers and weight sharing. Each output neuron only
receives input from a small local portion of the image (Fig. 1.7) called receptive field
and learns to extract a feature thanks to a set of weights. We can then reuse these
weights to extract the same features in other regions around the image, sliding the
weights on the image to create other receptive fields and so other output neurons.

10

1.2 – Convolutional Neural Networks

Figure 1.7: Example of a receptive field which generates five output neurons thanks to
five filters [43]

The CNN approach not only lets the network learn translation invariant features,
but also leads to fewer connections and thus fewer network parameters.

CNNs mainly consist of three types of layers:

• Convolutional layers

• Pooling layers

• Fully-Connected (or Dense) layers

1.2.2 Convolutional layers
In a CNN weights are arranged in 2D structures called kernels, whose width and
height determine the receptive field dimensions. A number of kernels equal to the
number of input channels is stacked to create a filter. The network uses multiple
filters to extract different features from the input tensor. In turn, the number of
filters determines the number of channels in the output tensor.
The convolutional layer executes the core operation of CNNs which is a MAC
operation: slide a filter across the input, take the element-wise product between
the receptive field and each kernel and compute the sum of these products (fig.
1.8). The sum is then fed into an activation function to provide the final output
called feature map. For each filter we obtain a different feature map, meaning that
for each convolution layer, the input tensor dimensions are modified.
This operation is characterized by the following hyper-parameters:

• filter dimension Dk (e.g. 1x1, 3x3, 5x5, ...)

• number of filters Nf

• stride (S), i-e-the step size

• padding (P), i.e. additional pixels added to the border of each spatial dimen-
sion of the input tensor, before convolution is computed

11

Background

Figure 1.8: 2D convolution between an input tensor with three channels and one filter
[15]

Figure 1.9: Zero padding on one channel of a tensor [37]

Applying these concepts to a generic input tensor i with (Hi × Wi × Ci) di-
mensions, the output tensor has (Ho × Wo × Co) dimensions given by the following
formulas:

Co = Nf

Ho = (Hi − Dk + 2P)
S

+ 1

Wo = (Wi − Dk + 2P)
S

+ 1

(1.6)

Where Hi and Wi are the input tensor’s height and width, Ho and Wo are the
output tensor’s height and width and Co is the number of channels in the output
tensor.

12

1.2 – Convolutional Neural Networks

The total computational cost of this operation in terms of MAC operations [17]
is:

Dk × Dk × Ci × Ho × Wo × Co (1.7)

1.2.3 Pooling Layers
Pooling layers are used to reduce the dimensions of the input tensor. Downsampling
the input tensor is important because, not only it reduces the number of parameters
to learn but also makes the model more robust to variations in the position of the
input tensor’s features.

There are two types of pooling layers:

• Max Pooling: outputs the max value of the input region covered by the pooling
filter

• Average Pooling: outputs the average value of the input region covered by the
pooling filter

Both these layers have stride, padding and dimension as hyperparameters.

Figure 1.10: Max pool operation [21] Figure 1.11: Average pool operation [21]

13

Background

1.2.4 Fully Connected layers
At the end of the network the resulting tensor is finally flattened, creating a vector.
A fully connected layer (Fig. 1.12) performs the final classification as described
previously in Sec. 1.1.

Figure 1.12: Fully-connected layer [18]

This layer implements the following equation:

Y = WX + b (1.8)

where W ∈ Rp×n is the weight matrix, X ∈ Rm×p is the input array and b ∈ Rn the
bias vector. The result is Y ∈ Rm×n, which can also be expressed through Eq. 1.9:

Yi,j = bj +
pØ

k=1
Xi,kWk,j (1.9)

14

1.3 – Notable ANN architectures

1.3 Notable ANN architectures
In this section we give an overview of the network architectures that will be used
in this thesis.

1.3.1 Mobilenet
Mobilenet [17] is a CNN architecture that carries out operations in a way that
reduces the overall number of parameters while maintaining good accuracy lev-
els. The main idea behind this architecture is the depthwise separable convolution,
which is a depthwise convolution followed by a pointwise convolution. Unlike stan-
dard convolution, the depthwise convolution does not combine channels, but keeps
them separate (Fig. 1.13). This means that the total number of MAC operations
is Dk × Dk × Ci × Ho × Wo, using the same notation as in paragraph 1.2.2, because
Ci = Co in the depthwise convolution.

Figure 1.13: Depthwise Convolution [15]

The output channels from the depthwise convolution are then merged through
a pointwise convolution, which is a standard convolution with a 1*1 kernel (Fig.
1.14). The number of MACs involved in this operation is Ci × Co × Ho × Wo. The
output tensor has the same shape as a standard convolution, but with a drastic
reduction in computional cost and just a slight accuracy drop.
The ratio of the depthwise separable convolution MAC cost to the standard con-
volution is:

K = 1
Co

+ 1
D2

k

(1.10)

15

Background

Figure 1.14: Pointhwise Convolution

As a testament to the perfomance of this architecture, if compared to other
popular models such as VGG 16, on the ImageNet dataset Mobilenet not only is
almost as accurate (71.5% vs 70.6% accuracy,respectively) but also manages to
reduce the number of parameters by a factor 32 [17].

1.3.2 Residual Neural Networks
As previously stated, there is a correlation between a network’s depth, in terms
of layers, and its ability to discern complex patters. Very deep neural networks,
however, are rather difficult to train due to the vanishing gradient problem and
so suffer from accuracy degradation. Residual Neural Networks (e.g. ResNet) [14]
address this problem by introducing skip connections, which in essence are bypass
connections (identity mappings) between groups of layers (Fig. 1.15).

Figure 1.15: An example of a residual/skip connection present in ResNet [14]

16

1.3 – Notable ANN architectures

The reason why this technique is effective is that the identity function is a way of
allowing the network to learn the difference, or residual, between the input and the
desired output rather than the output itself. This makes the training process more
stable and allows for deeper networks to be trained more effectively, as shown in the
original paper [14], which compares the performance of ResNet against a standard
convolutional network on the ImageNet dataset when varying the network’s depth.
It is demonstrated that Resnet improves on the Top-1 error when incrementing the
number of layers, while the other network suffers from accuracy degradation.

1.3.3 Auto-encoders
We mentioned unsupervised learning in Sec. 1.1 as a method of training neural
networks without the need of labeled datasets, which is often the case in applications
such as anomaly detection or fraud detection in which we want to detect rare events
and thus lack data. Auto-encoders are a type of neural network that implement this
type of learning. An auto-encoder consists of two blocks: an encoder and a decoder
(Fig. ??) . The first block constructs an internal representation of the input, while
the second block tries to reconstruct the original representation starting from its
internal one (Fig. 1.16). We can then measure the error between the generated
representation and the original data, to train the network as usual Sec.1.1. The idea
is to try to teach the network to recognize the known and most common events, so
that when an outlier event occurs, the network is able to recognize it as anomalous.

Figure 1.16: Auto-encoder operation [8]

17

Background

1.4 Neural Network Quantization
Neural network quantization is a technique used to reduce the memory and com-
putation requirements of a network by converting its high-precision floating-point
parameters to a lower bitwidth representation. In particular, in this work we will
deal with the fixed-point representation. The cost of this operation is the addition
of the quantization noise due to rounding and clipping errors, which can lead to a
drop in accuracy. There are two approaches to neural network quantization: Post-
training quantization (PTQ) and Quantization-aware training (QAT), which will
be discussed in Secs. 1.4.2 and 1.4.3.

1.4.1 Affine quantization schemes
To map a floating point number to an integer representation, we can define the
following parameters [24][32]:

• bitwidth b

• scale factor s

• zeropoint z

The bitwidth defines the integer grid size (the bits needed to represent a num-
ber after quantization), the scale factor defines the quantizer’s step-size and the
zeropoint makes sure the value zero is quantized with no error, which is paramount
for operations such as zero-padding. These parameters can be defined per-tensor
or per-channel. Usually the latter is used when the tensor that is being quantized
has values that vary greatly between its channels.

Figure 1.17: Quantization mapping

From a mathematical standpoint, mapping the floating point range [α, β] to the
quantized range [αq, βq] requires solving a linear system which leads to the following
definitions for scale and zeropoint [31]:

s = scale = β − α

βq − αq

z = zeropoint = αβq − βαq

β − α

(1.11)

18

1.4 – Neural Network Quantization

The quantization (Eq. 1.12) and de-quantization (Eq. 1.13) operations are
defined by the following equations [32]:

xq = clamp(round(xfloat/s) + z,0,2b − 1) (1.12)

xdq ≈ s(xq − z) (1.13)
This quantization scheme is also known as "asymmetric uniform affine", while

if we restrict the zeropoint to the value 0, we get the "symmetric uniform affine"
quantization. This type of quantization is well-suited for a weight distribution which
is roughly symmetrical around zero. On the other hand, if it is skewed towards
positive or negative values, the best option would be the asymmetric quantization
scheme.
The choice of quantization scheme has an impact on the computational overhead.
This can be seen by applying Eq. 1.12 to Eq. 1.9, which leads to Eq. 1.14 [31]:

Yq,i,j = zY + sb

sY

(bq,j − zb)

+ sXsW

sY

A pØ
k=1

Xq,i,kWq,k,j

B
−
A

zW

pØ
k=1

Xq,i,k

B
−
A

zX

pØ
k=1

Wq,k,j

B
+ pzXzW


(1.14)

where zw, zb, zX , zY and sw, sb, sX , sY are the zero points and scales of the weights,
biases, inputs and outputs, respectively. The formula can be simplified by forcing
the zero points of the weights and biases to zero, during training, which is the case
when both the quantized range and floating-point range of weights and biases are
symmetric. This simplification allows for a more hardware friendly implementation
of the quantization operation [20]. Determining an accurate quantization range is
a fundamental step to ensure that no unnecessary noise is added. For weights (and
also for biases) this is a relatively simple task [20]. Since they are known constants
at inference time, we can set:

α := min(W)
β := max(W)

(1.15)

Activations, on the other hand, depend on the input, which is not known a priori
during inference time. So typically a calibration dataset is used to estimate a good
set of parameters via exponential moving averages [20] or other techniques such as
Mean Squared Error (MSE) [32].

Another important step is choosing an appropriate quantization granularity.
Typically weights and biases are quantized per-channel, while activations are quan-
tized per-layer as it is not possible to factor the scale out of the summation which
complicates the hardware implementation [24][32].

19

Background

1.4.2 PTQ
Post-training quantization is the fastest approach to quantize a neural network
and consists in applying quantization to the pre-trained FP32 network parameters.
This approach is simple and works adequately for large models, where it is possible
to achieve near floating-point accuracy using 8 bit quantization schemes and per-
channel quantization [24]. The most critical aspect of this method is finding good
quantization parameters. This technique however falls short of expectations when
applying lower bit quantization schemes, and when applying per-layer quantization.
For this reason QAT proves to be a more effective solution.

1.4.3 QAT
Post-training techniques may not be enough to mitigate the large quantization
error incurred by low-bit quantization and low-granularity quantization. QAT is
a method that usually allows the quantized network to reach FP accuracy also in
these conditions [24]. This method adds a simulated quantization noise during the
training phase, so that the network learns to counteract it. Starting with a pre-
trained floating point network, the effect of quantization noise can be modeled in
the forward pass by applying simulated quantization operations on the network’s
weights, biases and activations. The backward pass is also modified because the
quantized layers are not differentiable. To overcome this issue, a straight through
estimator [32] is used to pass on the incoming gradient as if the function were an
identity function inside the clipping range [31] (1.18).

Figure 1.18: Straight through estimator [31]

20

Chapter 2

Neural Network
Quantization with
AutoQKeras

In this chapter we introduce QKeras [7], a quantization library designed as an ex-
tension of the Keras API [1], and the AutoQKeras Python class, that enables a
smart selection of the layers’ bitwidths using Bayesian Optimization [10]. Further-
more, in order to learn the different features of these tools and establish a starting
point for the work presented in the following chapters, we conduct a preliminary
study by quantizing a simple neural network in mixed-precision using [?].

2.1 QKeras
QKeras is an open source quantization library developed by Google that introduces
replacement layers for Keras allowing for a straightforward and fast deployment of
quantized models. QKeras layers inherit characteristics from their floating-point
Keras counterparts and expand upon them introducing new functionalities that
enable QAT. Generally, layers can be categorized into two classes, depending on
whether they do data manipulation or just data transport. The former category
refers to layers, such as QConv2D, QDepthwiseConv2D and QDense, that apply
some arithmetic operation, and thus require the user to specify a quantization policy
(called quantizer in QKeras) for weight and bias. Likewise, activation layers require
a quantizer, and are implemented as a QActivation layer that merges quantization
and activation functions. In contrast, data transport layers like Flatten, Input
or Output do not require quantizers as they just modify the shape of the input
tensor and pass it down the data stream. Another layer that does not require
quantizers is MaxPooling since the output feature map values will always fall into

21

Neural Network Quantization with AutoQKeras

the quantization grid determined by the bit precision of the network.
QKeras also implements Batch Norm folding by automatically scanning for QConv2D/
QDepthwiseConv2D, Batch Normalization pairs and folding them into one layer
called QConv2DBatchnorm/QDepthwiseConv2DBatchnorm. By default these will
be implemented following the Exponential Moving Average (EMA) discussed in
[20]. The function first computes folded weights and biases, then quantizes them
and finally computes a standard Keras convolution (Conv2D/DepthwiseConv2D).

QKeras provides several quantizer options, that range from binary quantization
functions for weights to quantized implementations of relu and sigmoid activation
functions [6]. A quantizer that is of particular interest is quantized_bits, a class that
executes a uniform affine quantization mapping equal to that of Eqs. 1.12-1.13. It
takes the following arguments:

• bits: total number of bits on which to map the FP representation

• integer : the number of bits in the integer part, according to a fixed-point
representation. Must be lower or equal to bits

• symmetric: sets symmetric clipping ranges (i.e. alphaq = −betaq

• keep_negative: if true the quantized range spans both positive and negative
ranges

• alpha: mode of operation ("1", "auto" or "auto-po2", explained later)

• scale_axis: which axis of the FP tensor to calculate the scale from. Scale_axis
= 0 applies per-layer quantization

When the mode of operation, alpha, is an integer (typically "1"), the function
computes the following:

xq = k × mi

m

× clip(round(x × m

mi

), keep_negative × (−m + symmetric), m − 1)
(2.1)

where mi = 2integer, m = 2(bits−keep_negative), x is the floating point value, and k 1

is equal to the integer value of the class attribute alpha. This mode of operation
can be used to train the network using a fixed-point quantization. However there
is no scaling factor that compensates variations of integer. On the other hand, by

1It should be noted that QKeras refers to the parameter k as "alpha", same as the class attribute
alpha. To avoid ambiguity we refer to this parameter as k.

22

2.1 – QKeras

setting alpha to auto, quantized_bits will compute the uniform affine quantization
mapping as Eq. 1.12. No matter what integer value is passed as argument to the
class, the scale (Eq. 2.2) will adjust accordingly, ensuring that the output will be
the same, regardless of integer.

k = scale = 2max(|x|)
βq − αq

(2.2)

Finally when alpha is "auto_po2" QKeras approximates the scale from Eq. 2.2
to the nearest power of 2 number, resulting in some accuracy loss but a simpler
hardware implementation.

It is important to note that when alpha is auto, quantized_bits only implements
symmetric uniform affine quantization, i.e. a symmetric quantized range, by au-
tomatically forcing symmetric and keep_negative to 1 internally, which in turn
results in the loss of one bit in the positive range. Moreover, by implementing the
scale as in Eq. 2.2 instead of the more general Eq. 1.11, QKeras eliminates the
contributions zw and zb from Eq. 1.14.

In conclusion, QKeras implements QAT applying the "fake quantization" technique
shown in Sec. 1.4.3 by means of quantize-dequantize operations and STE for back-
propagation. Layers such as QDense, QConv2D and QDepthwiseConv2D contain
floating-point weights from Keras, whose weights are constrained to use quantized
values obtained with a quantization-dequantization operation. However, it is im-
portant to note that their input feature map tensors are not quantized and so
remain in FP format. One solution already included in QKeras is to replace the
standard ReLU layers from Keras with QActivations layers from QKeras with quan-
tized_relu as quantizer, in order to quantize-dequantize the feature maps between
two layers. However, this way QKeras does not use the affine quantization method
described previously. A possible workaround is to use a custom quantizer for affine
quantization and pass it to the QActivation layer. Thus in this thesis we developed
quantized_bits_featuremap, a class inspired by quantized_bits, which implements
the zeropoint which was missing in the original QKeras implementation. Now QK-
eras completely supports affine quantization, both for weights (using the original
quantized_bits class) and activations (using the quantized_bits_featuremap class
instead of quantized_relu)

23

Neural Network Quantization with AutoQKeras

2.2 Keras Tuner and AutoQKeras
Finding the best tradeoff between bit reduction and network performance is a hyper-
parameter search problem that QKeras addresses with AutoQKeras. This Python
class enables the automatic exploration of the search space by treating this prob-
lem as a Keras Tuner [33] hyperparameter optimization problem. Keras Tuner is
another Python library that requires the user to define a hyperparameter search
space and will try to find a hyperparameter configuration, known as a hypermodel,
that maximizes a certain metric, such as validation accuracy. The elements in the
search space are sampled according to a search algorithm which, in AutoQKeras,
can be either Random Search, Hyperband [27] or Bayesian Optimization [10]. All
these algorithms perform iterations, known as trials, in which elements from the
hyperparameter search space are sampled and used to train a model. A metric
called score is associated to each trial to measure its performance relative to other
trials.

Random search, as the name suggests, will randomly sample a set of hyperparam-
eters, typically choosing from a uniform distribution. Due to the random nature
of this algorithm, there is no way of knowing if an optimal solution was found.
Nevertheless it offers a simple way to explore the hypermodel space as it is easy to
implement and makes no assumptions about the structure of the space.

Hyperband, expands upon random search by integrating ideas from the successive
halving algorithm. The core idea of the successive halving algorithm is to start
training n hypermodels with a fixed resource budget B (such as the number of
epochs), and progressively discard the worst performing ones. One of the challenges
is to find the best tradeoff between B and n, or, in other words, determining for a
fixed budget if it’s better to consider many models (large n) with a small training
time or a few models with a longer training time. Hyperband addresses this issue
allocating a fixed budget B for several values of n in what is called a bracket, which
is essentially a successive halving round. For each round the algorithm will discard
the worst performing ones and increasingly allocate more budget to the next one,
until it finds the best solution. In spite of the fact that it was shown to perform
better than Random Search [27], it still comes with the shortcomings related to the
initial random hyperparameter sampling.

Finally, Bayesian Optimization is performed by building a probabilistic model of
the objective function, typically the model’s accuracy, called surrogate which is
then used to guide the search for the optimal set of hyperparameters. While com-
putationally intensive, given enough trials this technique will eventually converge to
an optimum hypermodel, since it iteratively evaluates new hyperparameters based
on past performance.

24

2.3 – AutoQKeras

2.3 AutoQKeras
Given a DNN with a fixed architecture, in AutoQKeras the hyper-parameter search
space is defined by the quantizers that are chosen for each layer and their number
of bits. Since quantization degrades accuracy, it is not possible to directly optimize
the search for this metric, as the algorithm would most likely choose from quantizers
having many bits. The objective, however, is to find a tradeoff between performance
and resource utilization. To avoid this, AutoQKeras defines a metric called forgiving
factor (FF) [7], defined as:

FF = 1 + ∆ ∗ lograte(stress ∗ reference_cost

trial_cost
) (2.3)

where rate and stress are arbitrary constants, while ∆ is a function of the reference
and trial cost, which can be either equal to delta_p or delta_n (two user defined
constant parameters). In particular ∆ = delta_p if the trial cost is lower than
the reference cost (defined later), while ∆ = delta_n in the opposite case. The
network’s cost is determined by the optimization goal, which can be either "energy"
or "bit". So it is a measure of the number of bits or energy consumption of the
network. In particular, the energy cost is an estimate based on [16]. However,
it’s not a quantitative measure, as energy cost depends on many factors including
technology. Due to this specific reason, from now on we will only consider bit
optimization, because it is a more technology independent metric. AutoQKeras
defines two costs: the trial cost refers to the cost of the particular model chosen
during a specific iteration, in other words, the total number of bits of the quantized
model. The reference cost is the cost of a model with a fixed number of bits for each
layer, that is used by AutoQKeras as a reference to compare to different models.

The tool is configured through a goal dictionary where the user can set the
following parameters:

• type: "bits" (or energy)

• delta_p: constant that sets ∆

• delta_n: same as above

• rate: constant used for tuning

• stress: same as above

• input_bits: constant that sets the number of bits for the Input layer, used to
compute the trial and reference cost

• output_bits: constant that sets the number of bits for the output layer (i.e.
Softmax), used to compute the trial and reference cost

25

Neural Network Quantization with AutoQKeras

• ref_bits: constant that sets the number of bits to assign to all layers (except
input and output) in the reference model

• config: specifies whether to take into account both the activation and param-
eter bits or just one of the two

Internally, the bit cost is computed as:

tot_bits = num_parameters × p_bits + num_activations × a_bits (2.4)

where p_bits and a_bits are the number of bits chosen for the parameters and
activations, respectively.
To sum up, the FF (Eq. 2.3) is used to boost the model’s accuracy so that Keras
Tuner is able to select a smaller network. AutoQKeras achieves this by taking the
the ratio of the reference cost to the trial cost and uses this value, save for multi-
plicative and additive constants, as a boosting factor for the accuracy, resulting in
the final score function which is the metric maximized by the AutoQKeras research.

score = accuracy ∗ FF (2.5)

In order to counteract accuracy degradation in quantized models, AutoQKeras also
provides optional filter-tuning capabilities that will increment the number of filters
when deeply quantizing to low bit-widths. Furthermore the user can specify which
specific layers to quantize and also the maximum number of bits to use each layer.
In this work filter tuning will always be disabled.

26

2.4 – Preliminary experiments with AutoQKeras

2.4 Preliminary experiments with AutoQKeras
In this section we explore and apply AutQKeras’ functionalities to a simple neu-
ral network (Tab. 2.1) that can be found in the AutoQKeras notebook Auto-
QKeras.ipynb [12] The goal is to determine a good set of parameters to use in
subsequent experiments. The notebook was executed on the free version of Google
Colab.

Model: model
Layer (type) Output Shape Param #
input (InputLayer) [(None, 28, 28, 1)] 0
conv2d_0 (Conv2D) (None, 14, 14, 16) 144
bn_0 (BatchNormalization) (None, 14, 14, 16) 64
act_0 (Activation) (None, 14, 14, 16) 0
drop_0 (Dropout) (None, 14, 14, 16) 0
conv2d_1 (Conv2D) (None, 7, 7, 32) 4608
bn_1 (BatchNormalization) (None, 7, 7, 32) 128
act_1 (Activation) (None, 7, 7, 32) 0
drop_1 (Dropout) (None, 7, 7, 32) 0
conv2d_2 (Conv2D) (None, 4, 4, 48) 13824
bn_2 (BatchNormalization) (None, 4, 4, 48) 192
act_2 (Activation) (None, 4, 4, 48) 0
drop_2 (Dropout) (None, 4, 4, 48) 0
conv2d_3 (Conv2D) (None, 2, 2, 64) 27648
bn_3 (BatchNormalization) (None, 2, 2, 64) 256
act_3 (Activation) (None, 2, 2, 64) 0
drop_3 (Dropout) (None, 2, 2, 64) 0
conv2d_4 (Conv2D) (None, 1, 1, 128) 73728
bn_4 (BatchNormalization) (None, 1, 1, 128) 512
act_4 (Activation) (None, 1, 1, 128) 0
drop_4 (Dropout) (None, 1, 1, 128) 0
flatten (Flatten) (None, 128) 0
dense (Dense) (None, 10) 1290
softmax (Activation) (None,10) 0
Total params: 122,394
Trainable params: 121,818
Non-trainable params: 576

Table 2.1: Reference floating point model ??

27

Neural Network Quantization with AutoQKeras

The model is trained on the MNIST dataset [9], a collection of 28x28 greyscale
images of handwritten digits split into 60000 train samples and 10000 validation
samples. The reference floating-point model is able to reach 99.37% accuracy on
the validation set, after training for 200 epochs with a batch size of 4096 samples
and using the Adam Optimizer with constant learning rate equal to 0.02 . The
quality of the results of three different AutoQKeras configurations were tested, one
for each of the Keras Tuner search optimizations available: Random, Bayesian and
Hyperband.
The weights and biases search space was defined in this way, meaning that each
weight/bias tensor of each layer of the network could be quantized with one of these
quantizers at each search iteration (trial) The search space for weight and bias was
defined as: quantized_bits(X,Y,1,alpha=1), where X is 16, 8 or 4, while Y is in
the range 0 to 15 The activation search space was defined in a similar fashion,
using quantized_relu, a quantized implementation of the ReLU function, instead of
quantized_bits
Each search optimization tuner was executed three times for 20 trials, each time
limiting the maximum number of bits to 16, 8 and 4, resulting in the three search
spaces called LIMIT16, LIMIT8 and LIMIT4. The best hypermodels were then
re-trained from scratch for 200 epochs and a batch size of 4096.

The AutoQKeras configuration dictionary is reported in Tab. 2.2:
The goal_bits parameter is a Python dictionary that specifies bit as the opti-

mization goal and sets the FF parameters:

• delta_p: 5.0

• delta_n: 5.0

• rate: 2.0

• stress: 1.0

• input_bits: 8

• output_bits: 8

• ref_bits: 16

• config: ["parameters","activations"]

Table 2.3 summarizes the results and shows the bit configuration of each layer
in the form < W.I >, where W is the total number of bits and I is the integer
part. Several observations can be made by analyzing these results: considering that
the model at issue is very simple, all tuners are able to achieve good accuracies.
Nevertheless, there are significant differences in the total time required for searching
the quantization space and the results obtained by the tuners.

28

2.4 – Preliminary experiments with AutoQKeras

Random Bayesian Hyperband
output_directory random bayesian hyperband

goal goal_bits goal_bits goal_bits

learning_rate_optimizer False False False

transfer_weights False False False

mode random bayesian hyperband

seed 42 42 42

limit 16 16 16
8 8 8
4 4 4

tune_filters None None None

distribution_strategy cur_strategy cur_strategy cur_strategy

layer_indexes range range range
(1,len(model.layers)-
1)

(1,len(model.layers)-
1)

(1,len(model.layers)-
1)

max_trials 20 20 20

factor - - 3

hyperband_iterations - - 1

Table 2.2: AutoQKeras configuration specs for the experiment on the network in Tab.
2.1

As expected Bayesian Optimization, being the most computationally intensive
of the three, is the slowest, followed by Hyperband and then Random Search. The
best hypermodels in terms of bits were found by the Bayesian tuner, which in both
16 and 8 bit limit cases tends to choose 4 bits for each layer, without degrading
accuracy by more than 1%. Conversely, Random Search and Hyperband produce
comparable outcomes, not performing as well as Bayesian Optimization in the 16 bit
limit case, though noticeably faster. It should be noted that the 4 bit limit category
is a particular case in which all quantizers are set to 4 bit, for this reason the total
bits are the same for all tuners. Nevertheless, the integer part of the quantizer
varies, and it shows how Bayesian Optimization is able to tune the integer part to
obtain better results in terms of validation accuracy with respect to the other two
tuners.

All in all, this preliminary study shows that the Bayesian tuner, as expected,
outperforms Random and Hyperband tuners in terms of result quality. For these
reasons Bayesian Optimization will be adopted as the standard tuner for all subse-
quent AutoQKeras experiments in this thesis

29

Neural Network Quantization with AutoQKeras

LI
M

IT
16

LI
M

IT
8

LI
M

IT
4

ra
nd

om
ba

ye
sia

n
hy

pe
rb

an
d

ra
nd

om
ba

ye
sia

n
hy

pe
rb

an
d

ra
nd

om
ba

ye
sia

n
hy

pe
rb

an
d

tr
ai

ni
ng

ac
cu

ra
cy

[%
]

99
.3

7
99

.0
5

98
.7

8
99

.0
9

99
.0

8
97

.9
8

99
.1

4
99

.0
5

96
.7

6
va

lid
at

io
n

ac
cu

ra
cy

[%
]

99
.3

9
99

.1
5

99
.0

8
99

.2
7

99
.0

8
98

.8
7

99
.1

5
99

.3
6

98
.6

va
la

cc
de

gr
ad

at
io

n
[%

]
+

0.
02

-0
.2

2
-0

.2
9

-0
.1

0
-0

.2
9

-0
.5

0
-0

.2
2

-0
.0

1
-0

.7
7

se
ar

ch
tim

e
[s]

73
1.

67
92

8.
40

66
9.

55
73

8.
73

93
6.

38
64

7.
88

74
1.

93
95

8.
01

64
1.

71
to

ta
lb

its
(w

ei
gh

ts
on

ly
)

83
38

32
48

49
68

84
03

36
50

34
40

48
55

84
60

12
56

48
49

68
48

49
68

48
49

68
B

ES
T

M
IX

ED
PR

EC
IS

IO
N

C
O

N
FI

G
U

R
AT

IO
N

co
nv

2d
_

0
16

.3
4.

0
4.

1
4.

0
8.

8
8.

6
4.

2
4.

1
4.

1
bn

_
0

ac
t_

0
8.

6
4.

0
16

.9
8.

6
4.

4
8.

5
4.

4
4.

3
4.

4
co

nv
2d

_
1

16
.1

4.
0

16
.2

8.
3

4.
0

4.
2

4.
2

4.
2

4.
1

bn
_

1
ac

t_
1

16
.4

16
.1

6
8.

2
4.

4
4.

0
4.

2
4.

4
4.

4
4.

3
co

nv
2d

_
2

16
.1

4.
0

4.
2

4.
1

4
4.

3
4.

2
4.

4
4.

3
bn

_
2

ac
t_

2
16

.1
5

4.
0

4.
0

8.
7

4.
0

8.
6

4.
2

4.
4

4.
1

co
nv

2d
_

3
8.

1
4.

0
4.

0
4.

0
4.

0
8.

2
4.

4
4.

4
4.

3
bn

_
3

ac
t_

3
8.

8
4.

0
16

.1
8.

7
8.

4
4.

2
4.

4
4.

4
4.

4
co

nv
2d

_
4

4.
4

4.
0

8.
0

4.
2

4.
0

4.
2

4.
2

4.
4

4.
3

bn
_

4
ac

t_
4

8.
4

4.
0

8.
5

8.
0

4.
0

8.
0

4.
3

4.
0

4.
4

de
ns

e
a

k
=

16
.1

0
b

=
4.

0
k

=
4.

0
b

=
4.

0
k

=
8.

2
b

=
8.

5
k

=
4.

3
b

=
8.

0
k

=
4.

0
b

=
8.

8
k

=
8.

1
b

=
4.

1
k

=
4.

0
b

=
4.

4
k

=
4.

0
b

=
4.

4
k

=
4.

0
b

=
4.

0

T
ab

le
2.

3:
R

es
ul

ts
ob

ta
in

ed
fr

om
th

e
pr

el
im

in
ar

y
ex

pe
rim

en
t

a T
hi

s
m

od
el

’s
D

en
se

la
ye

r
ha

s
bo

th
ke

rn
el

k
an

d
bi

as
b.

T
he

ot
he

r
la

ye
rs

do
no

t
ha

ve
bi

as
ve

ct
or

s

30

2.5 – Extending AutoQKeras features

2.5 Extending AutoQKeras features
Despite being implemented in QKeras, batch normalization folding was not in-
tegrated in AutoQKeras’ source code. In particular, the AutoQKeras class init
function was missing the enable_bn_folding parameter that enables batch nor-
malization folding when calling the model_quantize function. This means that in
AutoQKeras this parameter is fixed to its default value, which is False. A first triv-
ial step consists in making this parameter visible in the AutoQKeras class interface.
While this effectively enables folding, it does not consider that folded layers, namely
QConv2dBatchnorm and QDepthwiseConv2dBatchnorm, are ignored by the forgiv-
ing_bits class, which is responsible for computing the bit size of the reference and
trial models [11]. Thus, to avoid underestimating the total size of the trial model
when enable_bn_folding = True, the class was updated so that it could correctly
compute the size of these layers.
Another matter to consider was the transfer_weights parameter in the model_quantize
function, which facilitates the transfer of pre-trained weights from a Keras model
to the quantized QKeras model. In the original source code, transfer_weights and
enable_bn_folding cannot be enabled at the same time. The reason for this is
that Keras layers with weights (e.g. Conv2D) have only two parameters inside the
weight tensor, weights and biases. On the other hand folded layers also include
the four batch normalization parameters µ, σ, γ, β, plus a parameter called iter-
ation. AutoQKeras will attempt to convert the FP Keras model to a quantized
QKeras model with folded layers, but will fail to transfer weights as these layers
expect seven parameters instead of just two. To address this issue, during weight
transfer the folded layer receives weights and biases from the Keras model, while
maintaining its own batch normalization parameters.

31

Neural Network Quantization with AutoQKeras

2.6 Mobilenet quantization
An additional experiment was conducted using Bayesian Optimization on the ver-
sion of MobileNetV1 provided by MLPerfTiny [36] using the Visual Wake Words
dataset [5]. This network and dataset will be discussed in detail in the following
chapter. Pre-trained weights from the MLPerfTiny Benchmark [36] repository on
GitHub were used as a starting point for training, meaning that only a few epochs
of fine tuning were necessary to recover the accuracy, which is 86% on the test
set for the floating-point Keras model. The test set was selected using 1000 image
indexes provided by MLPerfTiny in the evaluation directory of the official GitHub
repository [2]. 2

The AutoQKeras search space is the same as the previous experiment, but it
was reduced by skipping odd bit numbers, an arbitrary choice justified by the
need to halve the enormous amounts of combinations to be tried by the tuner.
The experiment was executed on Politecnico di Torino’s Nvidia GTX 1070 GPU,
and lasted approximately 48 hours, and executed a total of 219 trials. Each trial
consisted in training a specific hypermodel for 10 epochs, discarding the worst-
performing ones as soon as possible using early stopping with patience = 3 and
min_delta = 0.01 (i.e training is stopped whenever validation accuracy does not
improve by 0.01 in three consecutive epochs). AutoQKeras’ results, summarized
in Fig. 2.3, show that the best model of the BO search (trial 167) reduces the
memory footprint by 33.71% with respect to a flat 16-bit quantized model (4866150
vs 7340702) bits 3). The quantization configuration is shown in Fig. 2.1.

The model was then re-trained, starting from the weights of the best epoch of the
best trial, using the same training configurations as the script provided by MLPerf
Tiny (see Sec. 3.5 for an in-depth explanation). This model, evaluated on the 1000
test images, achieves 85.79 % accuracy (best model from epoch 49 in 2.2), that is
a 0.21% loss in accuracy with respect to the FP pre-trained model.

2The actual test set that MLPerf uses to evaluate the model is not publicly available [40].
More on this in Sec. 3.5.

3AutoQKeras computes the total number of bits using Eq. 2.4 while the validation score comes
from Eq. 2.5

32

2.6 – Mobilenet quantization

Figure 2.1: Best mixed-precision MobileNet configuration found by AutoQKeras with
alpha=1 (Trial 167 in Fig. 2.3)

(a) Loss (b) Accuracy

Figure 2.2: Training results of the best model (trial 167) of MobileNet V1 obtained
from AutoQKeras with alpha=1. Orange training curves, blue validation curves.

33

Neural Network Quantization with AutoQKeras

F
ig

ur
e

2.
3:

A
ut

oQ
K

er
as

se
ar

ch
re

su
lts

fo
r

M
ob

ile
N

et
on

th
e

V
isu

al
W

ak
e

W
or

ds
da

ta
se

t
us

in
g

al
ph

a
=

1.
T

he
po

in
ts

w
ith

in
1%

of
th

e
m

ax
va

ls
co

re
(a

nd
th

e
co

rr
es

po
nd

in
g

po
in

ts
in

th
e

va
lid

at
io

n
ac

cu
ra

cy
an

d
to

ta
lb

its
gr

ap
hs

)
ar

e
sh

ow
n

in
re

d,
w

hi
le

th
e

bl
ue

ho
riz

on
ta

ll
in

es
sh

ow
th

e
to

ta
lr

ef
er

en
ce

bi
ts

of
th

e
fla

t
16

,8
an

d
4-

bi
t

qu
an

tiz
ed

m
od

el
s

34

Chapter 3

MLPerf Tiny Benchmark

3.1 Introduction
Tiny Machine Learning, also known as Tiny ML, is an emerging field that seeks to
bring machine learning models to low-power electronic devices which are character-
ized by limited processing power and memory, such as embedded micro-controllers.
In order to develop deep learning algorithms capable of running them, Tiny ML
studies how techniques, like DNN quantization (Sec. 1.4), could be applied to meet
these stringent constraints. Fueled by the growing market of IoT solutions, Tiny
ML is the enabling technology behind the "smart" devices that can be found in
many households, such as Amazon Alexa. But this technology isn’t only limited
to consumer electronics like voice assistants, for instance it is also used in the au-
tomotive industry for autonomous driving and in the medical field for diagnosing
illnesses.
Overall, the transition from cloud-based machine learning to data processing on
the edge offers several advantages:

• devices no longer require a constant connection to the internet, which leads to
lower power consumption and increased responsiveness

• improved privacy and security, as data is processed on-device

As Tiny ML devices become increasingly widespread, being able to evaluate their
performance becomes paramount. Therefore benchmarks were specifically designed
for this purpose, facilitating developers in assessing the model and finding areas for
improvement.
In view of this, we show how AutoQKeras (Sec. 2.3) can be used to quantize the four
networks from the MLPerf Tiny Benchmark Suite [36], an open-source benchmark
developed for Tiny ML applications. The suite consists of four benchmarks, tailored
for a specific application scenario. Each benchmark consists in a dataset, a reference

35

MLPerf Tiny Benchmark

model and a quality target, which are shown in Tab. 3.1 and will be described
thoroughly in the next sections. The quality target is the minimum performance
required to participate to the MLPerf Tiny divisions [36]. Moreover, the official
benchmark repository on GitHub [2], provides training and testing scripts, pre-
trained models and TFLite models.

Use Case Dataset Model Quality Target
Visual Wake Words VWW Dataset MobileNetV1 80% (Top-1)
Image Classification CIFAR10 ResNet 85%(Top-1)
Keyword Spotting Speech Commands DS-CNN 90% (Top-1)
Anomaly Detection ToyADMOS FC-AutoEncoder 0.85 (AUC)

Table 3.1: MLPerf Tiny Benchmark summary as in [36]

3.2 Project Outline
We will use AutoQKeras, customized as shown in Sec. 2.5, to find an optimal mixed-
precision configuration for the four networks from the MLPerf Tiny Benchmark
applying Bayesian Optimization. Additionally, in order to compare the quality of
the mixed-precision solutions, QKeras is used to perform a flat 16, 8 and 4 bit
quantization on all networks, i.e. all weight and activation layers are quantized
with the same number of bits. The exploration of the quantization search space
was carried out on Politecnico di Torino’s Nvidia GTX 1070 GPU.

The main software libraries employed in this project are listed below:

• tensorflow 2.4.0

• keras 2.11

• qkeras 0.9.0 custom

• tensorboard 2.10.1 (visualization tool implemented as a callback for keras)

• keras-tuner 1.3.0 (hyperparameter optimization library)

• python 3.8.13

• librosa 0.9.2 (audio processing library)

• ffprobe 0.5 (multimedia stream analyzer)

• PyDub 0.25.1 (audio processing library)

• jupyter 1.0.0

36

3.3 – Modifications to the Keras model to implement affine quantization mapping

The project is structured as follows:

• scripts: contains all the Python scripts that are used for the AutoQKeras
search, flat quantization and inference of the MLPerf Tiny models;

• Py: general-use python scripts (e.g. split datasets, or extract test data);

• dataset: includes the full datasets for each benchmark and additional reduced
datasets used for the quantization space exploration phase;

• ref_model: directory that consists of pre-trained model weight files which are
provided by the official MLPerf Tiny repository on GitHub;

• flat_quantization: where flat quantization results are stored;

• results: where the AutoQKeras and re-trained best model results are stored;

• accelerators: contains the C++ implementation of the reconfigurable Conv2D
[39], DepthwiseConv2D [38] and FC accelerators that are used in Sec. 4.

3.3 Modifications to the Keras model to imple-
ment affine quantization mapping

As discussed in Sec. 2.1 QKeras does not implement quantization on feature maps,
but only on weights and biases. So each model from the MLPerf Tiny Bench-
mark, namely MobileNet, ResNet, DS-CNN, FC-AutoEncoder, has been modified
to take this into account and correctly apply a uniform affine quantization mapping
with the custom quantized_bits_featuremap class. To create the quantized QKeras
models starting from the Keras models of the four networks, we use the method
model_quantize which is automatically called by AutoQKeras on its input Keras
model. The procedure is the following:

1. Apply a fake activation layer before each 2DConv, DWConv and FC layer.
This Activation can be of any kind 1 as long as the user defines it in the Keras
form Activation("name") and specifies in AutoQKeras’ configuration dictionary
that it should be replaced with a quantized_bits_featuremap quantization
layer.

1If "name"="sigmoid" in Activation("name"), when AutoQKeras calculates the total number
of bits, it will assign a constant number of bits determined by the output_bits parameter to
all Activation("sigmoid") layers, regardless of the chosen quantizer. To correctly calculate the
number of bits of the input model, ForgivingBits.py [11] has been modified. An alternative would
be to avoid using Activation("sigmoid") and instead use Activation("relu"), but this could create
confusion when reading the architecture of the Keras model

37

MLPerf Tiny Benchmark

2. The last 2DConv, DWConv or FC layer must be followed by a fake Activation
layer as described in point 1.

3. The model’s original activation functions must be defined in the "direct" Keras
form (i.e. ReLU() instead of Activation("relu")) to avoid being substituted
with quantized_bits_featuremap by AutoQKeras.

4. Every Batch Normalization layer that can be folded with previous 2DConv,
DWConv must be fused by enabling folding in the AutoQKeras class as de-
scribed in Sec. 2.5

5. Every Average Pooling and Add layer must be enclosed by fake Activation
layers

More details about this procedure can be found in the notebook called QK-
eras_Unveiled_Final.ipynb.

3.4 General structure of the quantization scripts
This section will go over a high level overview of the structure of the quantization
scripts available in the script directory. Each script follows the same pattern:

1. Import the pre-trained MLPerf Tiny modified model, ensuring that the quan-
tized model is able to recover most of its original accuracy after just a few
epochs.

2. Define the parameters for the AutoQKeras Bayesian search: the quantization
configuration, limit and goal dictionaries, which set the search space, maximum
number of bits for quantization per layer and optimization goal (i.e. "energy"
or "bits"), respectively. In this case we are interested in integer-only arithmetic,
so we define the quantization search space as follows:

• kernel: quantized_bits(x,x,1,1,alpha="auto")
• bias: quantized_bits(y,y,1,1,alpha="auto")
• activation: quantized_bits_featuremap(x,x,1,1,alpha="auto",scale_axis=0)

where x can be 16, 8 or 4 and y can be 31 or 16. The limit Python dictio-
nary is set as to ensure the whole quantization space can be explored, that is
weights (kernels) and biases are quantized per-channel, while activations per-
layer (scale_axis = 0), according to the theory in 2.1. The number of bits for
input and weights has been chosen according to the supported precisions of
the hardware accelerators (see Sec. 4), while the number of bits for the biases
are kept higher because it has been proven that low bitwidths hurt accuracy
substantially [24]. The goal is "bits" and its Python dictionary is the same as
the preliminary research of Sec. 2.4.

38

3.5 – Visual Wake Words

3. Launch AutoQKeras passing the pre-trained and modified Keras model of
point 1) and the dictionaries of point 2).

4. At the end of the AutoQKeras exploration, the best model for each benchmark
is chosen according to its validation score (Eq. 2.5) and re-trained following
the same settings defined in its own training script provided in the MLPerf
Tiny repo [2], after importing the weights from the best epoch of the best trial.

5. This model is finally evaluated on the test set.

Additionally, each script is improved by adding the following Keras callbacks:

• early stop: to stop training of poor performing models in the AutoQKeras
search

• csv logger: to store a csv log of the autoqkeras trials and best model re-training
metrics

• model checkpoint: to save the weights of the best model for each epoch of
re-training

• tensorboard: to generate TensorBoard [13] plots

Finally the script provides a section for training models with flat quantization
(with 16, 8, and 4 bits for all layers) starting from the FP pre-trained weights,
whose results are used for comparison against the best mixed-precision model. It
is also possible to execute only a subset of the the previous steps by setting the
appropriate flags at the top of the script.

3.5 Visual Wake Words
The first benchmark in the MLPerf Tiny Benchmark suite is the Visual Wake Words
challenge and it is one of the two benchmarks, the other being Image Classification,
that focuses on Tiny vision models. In particular, this use-case scenario targets
person detection, a common vision task for low-cost imaging sensor applications
that trigger signals when an individual is spotted. This has diverse applications
that range from smart door bells to security cameras that can identify when a
person is present and forward the image to the cloud for further processing.

The Visual Wake Words Dataset [5] is a collection of 109619 96×96 RGB images
split into 53140 person images and 56479 non-person images. The dataset is directly
obtained from the MSCOCO2014 dataset [29], pre-processed by assigning a label
1 to images containing a person with a minimal bounding box equal 2.5% and

39

MLPerf Tiny Benchmark

label 0 otherwise. The preprocessing script, buildPersonDetectionDatabase.py can
be found in the GitHub repository from Silicon Labs [26].

According to [36] for this application MobileNet reaches an accuracy of 86% across
the preprocessed test set. However, it is not clear how or where this test set was
obtained [40]. Moreover, the evaluate directory of the repository contains a file
showing a list of 1000 images, presumably used for testing. These images are a
subset of the ones found in the training/validation set, thus some of these have
most likely been used to train the weights of the model that is provided by the
repository, probably boosting the test set results. To verify if we could use those
1000 images as test set we run inference obtaining 85.1% accuracy that is close
to what is declared in [36]. It is possible to obtain 86% accuracy by training this
model for 10 more epochs with respect to the 50 epochs of the MLPerf Tiny training
script. Admittedly, this is not a standard ML procedure, as by definition data from
the test set should never be used during training.

Another solution that was attempted was to retrain the model on the full train-
ing/validation set by removing, a priori, the 1000 image subset. This approach
however provides inconsistent results with what is declared by the paper, since in-
ference on this new model returns an 82% test accuracy. The results of these two
experiments led us to choose the first approach, i.e. using those 1000 images as test
set for VWW.

The model used for this scenario is MobileNetV1 [17], which was already men-
tioned in Sec. 1.3.1 and was modified according to the principles illustrated in
Sec. 3.3. MLPerf Tiny trains the model on the full VWW dataset, using data

Figure 3.1: Four sample images, two person and two non-person, from the VWW
Dataset [5]

40

3.5 – Visual Wake Words

augmentation and the following settings:

• optimizer: Adam

• loss: categorical crossentropy

• metrics: accuracy

• epochs: 50

• batch size: 32

• variable learning rate: 0.001 for the first 20 epochs, 0.0005 for the next 10
epochs, and 0.00025 until the end

• train/val split: 0.1

The resulting weights can be found in the official MLPerf Tiny repository as
vww_96.h5 and are used in the next phase: the AutoQKeras quantization space
exploration. During this phase, the dataset is reduced by 75% choosing random
images from both classes to speedup the training of each trial and so the entire Au-
toQKeras research time. Moreover, the research started from the pre-trained FP
weights to help the model recover faster from the loss in accuracy due to quantiza-
tion. Since a pre-trained model is being used, the learning rate is fixed at 0.00025,
the value used for the last epochs of the original training procedure. In addition,
data augmentation is disabled to provide comparable score values among trials. A
total of 210 trials, 8 epochs maximum each (if not stopped by early-stopping), were
run for this network. The results are shown in Fig. 3.2, that presents the valida-
tion score (Eq. 2.5), validation accuracy and total bit (Eq. 2.4) values for each
trial. The flat quantization reference sizes were obtained by quantizing weights and
activations to 16, 8 and 4 bits while maintaining a constant 31 bit quantization for
biases.

41

MLPerf Tiny Benchmark

F
ig

ur
e

3.
2:

A
ut

oQ
K

er
as

se
ar

ch
re

su
lts

fo
r

M
ob

ile
N

et
on

th
e

V
W

W
da

ta
se

t.
T

he
po

in
ts

w
ith

in
1%

of
th

e
m

ax
va

ls
co

re
(a

nd
th

e
co

rr
es

po
nd

in
g

po
in

ts
in

th
e

va
lid

at
io

n
ac

cu
ra

cy
an

d
to

ta
lb

its
gr

ap
hs

)
ar

e
sh

ow
n

in
re

d,
w

hi
le

th
e

bl
ue

ho
riz

on
ta

ll
in

es
sh

ow
th

e
to

ta
lr

ef
er

en
ce

bi
ts

of
fla

t
16

,8
an

d
4

qu
an

tiz
ed

m
od

el
s

42

3.5 – Visual Wake Words

By looking at the graph (Fig. 3.2) the model appears to be particularly difficult
to quantize as there are multiple jumps between validation score points around 0.5
and 0.8 and there is no improving trend with the passing of trials but only a random
one. In this case it is very likely that Bayesian Optimization has not converged to
an optimal value and definitely requires more trials to find better models. The best
model obtained by the research is at trial 105, with a validation score equal to 0.84
and a validation accuracy equal to 0.81, while the bit size is reduced by 52.25% and
8.10% with respect to the 16 bit flat model (7787182 to 3718680) and the 8 bit flat
model (4046622 to 3718680).

This model was then re-trained, this time on the full dataset with augmentation,
and the following training/validation curves are obtained(Fig. 3.3).

(a) Loss (b) Accuracy

Figure 3.3: Best mixed-precision MobileNet training (orange) and validation (blue) plot

Comparing this result to the model implemented in Sec. 2.6 it is clear that using
an affine quantization with scale and zeropoint provides better results in terms of bit
reduction being 23.58% smaller (3718684 vs 4866150) with a negligible degradation
in accuracy of only 0.8% (85.00% vs 85.79%). Moreover, the model loses just 1%
accuracy with respect to the FP model. Considering that the training curves of Fig.
3.3 show a good training (no overfitting, no underfitting) and monotonic trends for
both loss (a) and accuracy (b), the training could have also been continued for
some more epochs, which could have probably closed the gap in accuracy. However
we stopped training at 50 epochs to have a fair comparison with the results of Sec.
2.6 Fig. 2.1.

43

MLPerf Tiny Benchmark

(a) Loss (b) Accuracy

Figure 3.4: Training (orange) and validation (blue) plots of MobileNet quantized with
16-bit flat

(a) Loss (b) Accuracy

Figure 3.5: Training (orange) and validation (blue) plots of MobileNet quantized with
8-bit flat

(a) Loss (b) Accuracy

Figure 3.6: Training (orange) and validation (blue) plots of MobileNet quantized with
4-bit flat

44

3.5 – Visual Wake Words

A recap of the results for the best quantized models for VWW is shown in Tab.
3.2

Quantization
Policy

Accuracy
[%]

Error
[%]

Total
Bits

Tot. Bit
Reduction
[%]

Best
Epoch

FP 86.00

Flat 16 87.30 -1.30 7787182 47
Flat 8 87.19 -1.19 4046622 48.03 47
Flat 4 50.00 17.51 2176342 72.05 33

MP 85.79 0.21 4866150 37.51 49

MP
Affine 85.00 1.00 3718680 52.25 39

Table 3.2: Comparison between the best mixed-precision and flat quantized MobileNet
models on the VWW 1000 image test set. Error w.r.t. FP values and Bit Reduction
w.r.t. Flat 16. Minimum acceptable accuracy for submission to MLPerf Tiny contest:
0.80

For what concerns the flat quantized models, as expected, after re-training the
16-bit and 8-bit flat models are able to recover the accuracy of the FP model,
while the 4-bit model cannot be trained successfully. The models were evaluated
on the test set obtaining 87.30%, 87.19%, 50.00% accuracy, respectively. Finally,
the bitwidth configuration of the best mixed-precision model is shown in Fig. 3.7

45

MLPerf Tiny Benchmark

Figure 3.7: Best mixed-precision MobileNet configuration found by AutoQKeras (Trial
105 in Fig. 3.2)

46

3.6 – Image Classification

3.6 Image Classification
Image Classification is the second MLPerf Tiny benchmark that involves a computer
vision application. This task consists in training a machine to extract features from
various images and to classify them in predetermined categories, which is common
in applications such as self-driving cars that need to recognize objects in the envi-
ronment such as other vehicles, pedestrians and road signs. The benchmark uses
the CIFAR-10 dataset [25], which consists of 60000 32×32 RGB images belonging
to 10 mutually-exclusive classes, 6000 each (Fig. 3.8).

Figure 3.8: 10 random images from each category in the CIFAR-10 dataset [25]

The dataset is provided as a "pickled" binary dataset that consists of 5 batches
containing 10000 images each, with a training/validation split of 0.2. The remaining
10000 images are set aside for the test set. MLPerf Tiny further reduces this test
set to a performance evaluation dataset (or perf 2) of 200 images, which can be
obtained by enabling the appropriate flags inside the test script from the benchmark
repository.

2the perf tests are the ones specified by MLPerf Tiny in the evaluation section of their repo

47

MLPerf Tiny Benchmark

The original training script uses a custom ResNet model (see Sec. 1.3.2) trained
with the following parameters:

• optimizer: Adam

• loss: categorical crossentropy

• metrics: accuracy

• epochs: 500

• batch size: 32

• decaying learning rate given by 0.001 × 0.99epoch

The floating point model is trained using augmented data and reaches 87 %
accuracy on the performance set.

To run the AutoQKeras exploration phase, the dataset was reduced by 40% taking
the first 3 batches of pickled training/validation data. Again, each trial consisted
in a maximum of 8 epochs where the data generator was disabled and the learning
rate set was set to lr = 0.00002967, an intermediate value with respect to the range
spanned by the lr across the 500 training epochs, to avoid choosing extremely small
values (e.g. when epoch=500 then lr = 6.57e-6). As shown in Fig. 3.9 the Bayesian
Optimization shows an improving trend that stabilizes after trial 170.

48

3.6 – Image Classification

F
ig

ur
e

3.
9:

A
ut

oQ
K

er
as

se
ar

ch
re

su
lts

fo
r

R
es

N
et

on
th

e
C

IF
A

R
-1

0
da

ta
se

t.
T

he
po

in
ts

w
ith

in
1%

of
th

e
m

ax
va

ls
co

re
(a

nd
th

e
co

rr
es

po
nd

in
g

po
in

ts
in

th
e

va
lid

at
io

n
ac

cu
ra

cy
an

d
to

ta
lb

its
gr

ap
hs

)
ar

e
sh

ow
n

in
re

d,
w

hi
le

th
e

bl
ue

ho
riz

on
ta

ll
in

es
sh

ow
th

e
to

ta
lr

ef
er

en
ce

bi
ts

of
fla

t
16

,8
an

d
4

qu
an

tiz
ed

m
od

el
s

49

MLPerf Tiny Benchmark

The best model is found at trial 395 and reaches 87.50% accuracy on the
MLPerfTiny performance set after re-training 3 (Fig. 3.11), recovering (and even
surpassing) the accuracy of the FP model (87.00%). This phenomenon could be
explained with the small size and simplicity of the perf set and, possibly, the fact
that MLPerf Tiny uses a different validation split from ours. In fact, when using
the full CIFAR-10 test set, the FP performs better than the MP model (87.19%
vs 84.07%). Also, MLPerf Tiny uses data augmentation to train the FP model,
but does not provide a seed: after re-training the FP model without importing the
pre-trained weights we obtain 88.49% accuracy on the perf test set. The model’s
quantization configuration is shown in Fig. 3.10.

Figure 3.10: Best mixed-precision ResNet configuration found by AutoQKeras (Trial
395 in Fig. 3.9)

As the MP model, the 16- and 8-bit flat models, evaluated on the MLPerf
Tiny perf set, recover and surpass the FP accuracy reaching 89.49% and 88.99%,
respectively. Instead, when evaluated on the full CIFAR-10 test set, these models
both lose some accuracy, with the 16-bit flat model reaching 84.05% and the 8-bit
model reaching 84.18%. As usual, the 4-bit flat model is not able to recover the
original FP accuracy, degrading it by 9.01% on the perf set and by 13.68% on the
full test set.

3The best MP model was re-trained from scratch, following the same training configuration
specified by the train script provided by MLPerf Tiny. In all other cases, the models were re-
trained starting from the AutoQKeras checkpoint.

50

3.6 – Image Classification

(a) Loss (b) Accuracy

Figure 3.11: Best mixed-precision ResNet training (orange) and validation(blue) plot

While the flat 16- and 8-bit models provide a slightly better accuracy with
respect to the best mixed model (+1.99% and +1.49%), the latter provides a 52.91%
(1641510 vs 3486086) and a 6.77% (1641510 vs 1760694) reduction in terms of total
bits, respectively.

(a) Loss (b) Accuracy

Figure 3.12: Training (orange) and validation (blue) plots of ResNet quantized with
16-bit flat

(a) Loss (b) Accuracy

Figure 3.13: Training (orange) and validation (blue) plots of ResNet quantized with
8-bit flat

51

MLPerf Tiny Benchmark

(a) Loss (b) Accuracy

Figure 3.14: Training (orange) and validation (blue) plots of ResNet quantized with
4-bit flat

Quantization
Policy

Accuracy
[%]

Error
[%]

Total
Bits

Tot. Bit
Reduction
[%]

Best
Epoch

FP 87.00*
Flat 16 89.49 -2.49 3486086 500
Flat 8 88.99 -1.99 1760694 49.49 500
Flat 4 77.99 9.01 897998 74.24 250
MP 87.50 -0.50 1641510 52.91 500

Table 3.3: Comparison between the best mixed-precision and flat quantized ResNet
models on the CIFAR-10 perf set (200 samples). Error w.r.t. FP values and Bit Reduction
w.r.t. Flat 16. Minimum acceptable accuracy for submission to MLPerf Tiny contest:
0.85. (*We obtain 88.49 (epoch 495) re-training the FP model, instead of importing
MLPerf Tiny’s pre-trained weights)

Quantization
Policy

Accuracy
[%]

Error
[%]

Total
Bits

Tot. Bit
Reduction
[%]

Best
Epoch

FP 85.92*
Flat 16 84.05 1.87 3486086 500
Flat 8 84.18 1.74 1760694 49.49 500
Flat 4 76.27 9.65 897998 74.24 250
MP 84.07 1.85 1641510 52.91 500

Table 3.4: Comparison between the best mixed-precision and flat quantized ResNet
models on the full CIFAR-10 test set (10000 samples). Error w.r.t. FP values and Bit
Reduction w.r.t. Flat 16. Minimum acceptable accuracy for submission to MLPerf Tiny
contest: 0.85. (*FP model re-trained from random weights instead of importing MLPerf
Tiny’s pre-trained weights)

52

3.7 – Keyword spotting

3.7 Keyword spotting
The Keyword Spotting benchmark is used to evaluate the performance of a specific
category of speech processing ML applications that try to detect a predetermined
set of keywords from audio samples. This is the technology behind very popular
virtual assistants like Google Assistant or Amazon Alexa. This benchmark uses
the Speech Commands V2 dataset [42], a collection of 105,829 utterances collected
from 2,618 speakers with a variety of accents. This dataset, which contains 30
words and a set of background noises, is divided into standard training, validation
and test splits, ensuring that any particular speaker only appears in one subset.
The dataset is further preprocessed for this benchmark by splitting the 30 words
into a set of 10 words plus two classes called "silence" and "unknown". The latter
is obtained by combining the background noises with the remaining 20 words. To
sum up, the final dataset used by MLPerf Tiny is made of the following 10 words
and 2 classes: down, go, left, no, off, on, right, stop, up, yes, and the classes silence
and unknown. By default the audio feature representation used in this benchmark
is Mel-Frequency Cepstral Coefficients (MFCC), a technique that converts audio
signals to the frequency domain (Mel Spectrogram) using the Mel scale, which is
a non-linear frequency perceptual scale of pitches judged by listeners to be equal
in distance from one another. The Mel spectrogram is then transformed using
a Discrete Cosine Transform (DCT) to obtain the MFCCs which can be used to
train the neural network. The dataset is provided as a Tensorflow dataset which
is automatically downloaded and split by the tfds.load method and imported as
a tf.data.Dataset object. The benchmark’s target network is a Depthwise Separa-
ble Convolutional Neural Network (DS-CNN) which, as the name suggests, uses
depthwise separable convolutions. The floating-point model is able to reach 92.3%
accuracy on the test set, after being trained with the following parameters:

• optimizer: Adam

• loss: Sparse Categorical Crossentropy

• metrics: accuracy

• epochs: 36

• batch size: 100

• step learning rate: 0.0005 for the first 12 epochs, 0.0001 for the next 12 and
finally 0.00002

• shuffle input

• train/val split = 0.1

53

MLPerf Tiny Benchmark

The AutoQKeras exploration phase follows the same logic as the previous bench-
marks. In particular the dataset is reduced by 75% and the model trained for 8
epochs maximum per trial (depending on early-stopping) with a fixed learning rate
of 0.001 to speed up learning. The best model was found at trial 50, and the search
plot (Fig. 3.16) shows that this is an easy network to quantize as most of the
models show a values above 0.90 for both validation score and validation accuracy
while maintaining the total bit count below the flat 8-bit line. The configuration
for this model is shown in Fig. 3.15.

Figure 3.15: Best mixed-precision DS-CNN configuration found by AutoQKeras (Trial
50 in Fig. 3.9)

54

3.7 – Keyword spotting

F
ig

ur
e

3.
16

:
A

ut
oQ

K
er

as
se

ar
ch

re
su

lts
fo

r
D

S-
C

N
N

on
th

e
Sp

ee
ch

C
om

m
an

ds
da

ta
se

t.
T

he
po

in
ts

w
ith

in
1%

of
th

e
m

ax
va

l
sc

or
e

(a
nd

th
e

co
rr

es
po

nd
in

g
po

in
ts

in
th

e
va

lid
at

io
n

ac
cu

ra
cy

an
d

to
ta

lb
its

gr
ap

hs
)a

re
sh

ow
n

in
re

d,
w

hi
le

th
e

bl
ue

ho
riz

on
ta

l
lin

es
sh

ow
th

e
to

ta
lr

ef
er

en
ce

bi
ts

of
fla

t
16

,8
an

d
4

qu
an

tiz
ed

m
od

el
s

55

MLPerf Tiny Benchmark

After re-training (Fig. 3.17), the best mixed-precision model is able to reach
90.47% accuracy on the test set, a 1.83% drop with respect to the floating point
model.

(a) Loss (b) Accuracy

Figure 3.17: Best mixed-precision DS-CNN training (orange) and validation(blue) plot

The inference results for the best mixed and flat quantized models on the Speech
Commands test set are shown in Tab. 3.5. As before, the mixed precision model
shows a slight performance drop with respect 16- and 8-bit flat quantizations (-
1.02% and -1.06%), however, it has a noticeably lower memory footprint (-62.56%
and -26.2%).

(a) Loss (b) Accuracy

Figure 3.18: Flat 16 bit quantized DS-CNN training (orange) and validation(blue) plot

56

3.7 – Keyword spotting

(a) Loss (b) Accuracy

Figure 3.19: Flat 8 bit quantized DS-CNN training (orange) and validation(blue) plot

(a) Loss (b) Accuracy

Figure 3.20: Flat 4 bit quantized DS-CNN training (orange) and validation(blue) plot

Quantization
Policy

Accuracy
[%]

Error
[%]

Total
Bits

Tot. Bit
Reduction
[%]

Best
Epoch

FP 92.30
Flat 16 91.49 0.81 1535460 35
Flat 8 91.53 0.77 778804 49.27 35
Flat 4 73.82 18.48 400476 73.91 36
MP 90.47 1.83 574820 62.56 30

Table 3.5: Comparison between the best mixed-precision and flat quantized DS-CNN
models on the Speech Commands V2 test set. Error w.r.t. FP values and Bit Reduction
w.r.t. Flat 16. Minimum acceptable accuracy for submission to MLPerf Tiny contest:
0.90

57

MLPerf Tiny Benchmark

3.8 Anomaly Detection
The last benchmark in the MLPerf Tiny suite is Anomaly Detection, a technique
that was mentioned in Sec. 1.3.3 where the principles of the FC-AutoEncoder
network were illustrated. This unsupervised learning task aims to detect machine
failures at an early stage, which is a typical use case. These can be detected in
various ways, for example monitoring temperature and/or vibrations but also by
analyzing audio samples captured by microphones, which is the technique used to
build the training/test dataset for this use-case. The dataset is taken from the
DCASE2020 competition [22], which contains data from the ToyADMOS [23], and
the MIMII dataset [35]. The dataset contains single-channel 10 second length audio
samples from 6 different machine types mixed with environmental noise: slide rail,
fan, pump, valve, toy-car, toy-conveyor. Each type in turn is made of 4 machine
IDs. There are approximately 1000 samples per machine ID, for a total of 4000
samples per type. Due to this complexity, MLPerf Tiny benchmark considers only
the ToyCar machine.
The dataset consists of a development dataset, an additional training dataset, and
an evaluation dataset:

• development: training data belonging to the normal class only, divided among
4 machine IDs (4000 samples), plus a labeled test set containing data from
both the normal and anomaly class (2459 samples)

• additional training dataset: training data belonging to the normal class only,
for 3 new machine IDs (3000 samples)

• evaluation dataset: unlabeled data used by the DCASE2020 organizers for
testing. We will not use this data since MLPerf Tiny evaluates the model
using the performance set which will be explained later on.

As this is an audio dataset, it preprocessed in a similar fashion to the Speech
Commands dataset using the MFCC technique. The features are then used to train
the FC-AutoEncoder using these training configurations:

• optimizer: Adam

• loss: mean squared error

• metrics: Area Under the Curve (AUC) and Partial Area Under the Curve
(pAUC)

• epochs: 100

• batch size: 512

58

3.8 – Anomaly Detection

• shuffle data

• train/val split: 0.9/0.1

Bearing in mind that this is an unsupervised learning problem, training consists
in using only the normal data from the 7 machine IDs of the development dataset
(i.e. the main development dataset plus the additional training dataset). After
training, the FC-AutoEncoder should be able to reconstruct the input tensor with
a minimum error as discussed Sec. 1.3.3. In contrast, testing uses both anomaly and
normal data of 4 machine IDs to evaluate the FC-AutoEncoder. Each machine ID is
treated as a separate entity: for each file of each ID an "anomaly score" is computed
and used to calculate the AUC and pAUC metrics as shown in Eqs. 3.1. These
metrics are used to evaluate binary classifier systems such as this one, measuring
the area under the Receiver Operating Characteristic (ROC) curve, which is a plot
of the True Positive Rate (TPR) against the False Positive Rate (FPR) for different
classifier thresholds. An AUC equal to 1 defines a perfect classifier, that is able
to completely distinguish the inputs. The pAUC is a metric which is computed
restricting the range of FPR (or TPR) to regions which are deemed more critical,
in this case the max FPR is 0.1.

error = MSE(input − prediction)
anomaly_score = mean(error)
AUC = f(y_true, anomaly_score)

(3.1)

The floating point model evaluated on the perf test set achieves:

• average AUC = 88.70%

• average pAUC = 77.28%

Integrating an unsupervised learning problem in AutoQKeras cannot be done di-
rectly. The reason is that AutoQKeras needs a metric which is bounded between
0 and 1 (usually the validation accuracy) to compute the Forgiving Factor which
is in turn needed for the validation score. However, since we train the model using
samples from the normal class only, we do not have the validation accuracy metric.
In this case the only significant metric that we have is the MSE loss calculated
between input and prediction (Eqs. 3.1). Thus we define a new custom metric
inversely proportional to the loss, which is bounded between 0 and 1, as reported
in Eq. 3.2:

custom_metric = 1
1 + loss

10
(3.2)

59

MLPerf Tiny Benchmark

At this point AutoQKeras is able to use this metric to compute a meaningful
reward (Forgiving Factor) for the Bayesian Optimization oracle.

During an AutoQKeras trial the FC-AutoEncoder is trained for 8 epochs on
the full training dataset using the training configuration provided in the original
training script. It should be noted that in this specific case the Batch Normal-
ization layers are not folded into the Dense layers as this feature is not currently
implemented in QKeras. The hyperparameter exploration reported in Fig. 3.24
finds a mixed precision model at trial 167 that reduces the total memory footprint
by 70.85% and 42.46% with respect to the flat 16- and 8-bit quantized models
respectively4.

The best mixed-precision configuration for FC-AutoEncoder is reported in Fig.
3.21. After re-training both flat (Figs. 3.23a,b,c)) and mixed-precision models (Fig.
3.22) (NOTE: The plots have different Y-axis ranges) following the same training
procedure as MLPerf Tiny, we run inference on the ToyCar ToyADMOS and MIMII
248 sample perf dataset obtaining the results shown in Tab. 3.6.

Figure 3.21: Best mixed-precision FC-AutoEncoder configuration found by AutoQKeras
(Trial 50 in Fig. 3.24)

4The total bit count does not consider batch normalization parameters, which for the other
models were folded

60

3.8 – Anomaly Detection

(a) Loss (b) Custom Metric 3.2

Figure 3.22: Best mixed-precision FC-AutoEncoder training (orange) and valida-
tion(blue) plot. Notice how the custom metric is inversely proportional to the loss metric

(a) 16 bit flat Loss (b) 8 bit flat Loss

(c) 4 bit flat Loss

Figure 3.23: Flat 16 (a), 8 (b) and 4-bit (c) quantized FC-AutoEncoder training (or-
ange) and validation(blue) Loss plot

Quant.
Policy

AUC
[%]

Error
[%]

pAUC
[%]

Error
[%]

Total
Bits

Tot. Bit
Red.
[%]

Best
Epoch

FP 88.70 77.28
Flat 16 86.73 1.97 75.1 2.18 4321016 80
Flat 8 88.58 0.12 77.05 0.23 2188984 49.34 85
Flat 4 76.72 11.98 65.14 12.14 1122968 74.01 81
MP 87.50 1.20 76.57 0.71 1259512 70.85 97

Table 3.6: Comparison between the best mixed-precision and flat quantized FC-
AutoEncoder models on ToyCar ToyADMOS and MIMII 248 sample perf dataset. Error
w.r.t. FP values and Bit Reduction w.r.t. Flat 16. Minimum acceptable AUC for sub-
mission to MLPerf Tiny contest: 0.85

61

MLPerf Tiny Benchmark

F
ig

ur
e

3.
24

:
A

ut
oQ

K
er

as
se

ar
ch

re
su

lts
fo

r
FC

-A
ut

oE
nc

od
er

on
th

e
To

yC
ar

To
yA

D
M

O
S

an
d

M
M

II
24

8
sa

m
pl

e
pe

rf
da

ta
se

t.
T

he
po

in
ts

w
ith

in
1%

of
th

e
m

ax
va

ls
co

re
(a

nd
th

e
co

rr
es

po
nd

in
g

po
in

ts
in

th
e

va
lid

at
io

n
ac

cu
ra

cy
an

d
to

ta
lb

its
gr

ap
hs

)
ar

e
sh

ow
n

in
re

d,
w

hi
le

th
e

bl
ue

ho
riz

on
ta

ll
in

es
sh

ow
th

e
to

ta
lr

ef
er

en
ce

bi
ts

of
fla

t
16

,8
an

d
4

qu
an

tiz
ed

m
od

el
s

62

3.8 – Anomaly Detection

N
et

w
or

k
P

ap
er

te
st

se
t

F
P

32
[%

]
O

ur
te

st
se

t

F
P

32
O

ur
s

[%
]

A
cc

ep
t.

fo
r

su
b.

to
co

nt
es

t
[%

]

M
P

[%
]

16
b

fla
t

[%
]

8b
fla

t
[%

]
4b

fla
t

[%
]

M
ob

ile
N

et
V

W
W

pr
ep

ro
ce

ss
ed

M
SC

O
C

O
20

14
te

st
se

t
86

.0
0

pr
ep

ro
ce

ss
ed

M
SC

O
C

O
20

14
te

st
se

t
86

.0
0

80
.0

0
85

.0
0

87
.3

0
87

.1
9

50
.0

0

R
es

N
et

IC
C

IF
A

R
-1

0
pe

rf
se

t
86

.5
0

C
IF

A
R

-1
0

pe
rf

se
t

88
.4

9*
85

.0
0

87
.5

0
89

.4
9

88
.9

9
77

.9
9

R
es

N
et

IC
N

.D
.

N
.D

.
C

IF
A

R
-1

0
fu

ll
te

st
se

t
85

.9
2*

N
.D

.
84

.0
7

84
.0

5
84

.1
8

76
.2

7

D
S-

C
N

N
K

W
S

Fu
ll

Sp
ee

ch
C

om
m

an
ds

te
st

se
t

92
.2

0
Fu

ll
Sp

ee
ch

C
om

m
an

ds
te

st
se

t
92

.3
0

90
.0

0
90

.4
7

91
.4

9
91

.5
3

73
.8

2

A
ut

oE
nc

od
er

A
D

-A
U

C
To

yC
ar

pe
rf

se
t

88
.0

0
To

yC
ar

pe
rf

se
t

88
.7

0
88

.0
0

87
.5

0
86

.7
3

88
.5

8
76

.7
2

A
ut

oE
nc

od
er

A
D

-p
A

U
C

To
yC

ar
pe

rf
se

t
N

.D
.

To
yC

ar
pe

rf
se

t
77

.2
8

N
.D

.
76

.5
7

75
.1

0
77

.0
5

65
.1

4

T
ab

le
3.

7:
Su

m
m

ar
y

of
M

LP
er

fT
in

y
A

ffi
ne

Q
ua

nt
iz

at
io

n
re

su
lts

.
(*

W
e

re
-t

ra
in

ed
th

e
FP

m
od

el
in

st
ea

d
of

im
po

rt
in

g
M

LP
er

f
T

in
y’

s
w

ei
gh

ts
)

63

64

Chapter 4

Reconfigurable Hardware
Accelerators

In the context of embedded devices with limited processing power, tiny memory size
and small energy budgets, running DNNs with relatively high accuracy is challeng-
ing. So far we have seen how mixed-precision quantization helps reduce the overall
memory footprint and consequently the required power needed to run DNNs on
these devices. Another current trend in modern System-on-Chips (SoCs) is to of-
fload resource intensive DNN computations from the main processor to hardware
accelerators in order to speedup the execution.

The mixed-precision networks we obtained in Ch. 3 require hardware support
for variable bitwidths. In literature, several mixed-precision accelerators have been
proposed for this application [41]. In this chapter we will use the ones based on
Sum-Together Precision-Scalable MAC multipliers (ST PSMAC) developed with
HLS techniques [38] [39]. An overview of these accelerators is shown in Fig 4.4.

(a) ST based reconfigurable
multiplier (b) Accuracy

Figure 4.1: Configurations for mixed-precision

This component is able to compute N = 1, 2, 4 multiplications/dot-products in
parallel with operands at 16/N bits, depending on the configuration shown in Fig.

65

Reconfigurable Hardware Accelerators

4.4(b). Correspondingly, the bitwidths of the input operands can be 16, 8 or 4 bits.
The main objective of this chapter is to minimize the bitwidths of the accelera-

tor’s [38] [39] internal C variables that store the DNN algorithm accumulation and
affine quantization contributions, while retaining most of the test accuracy/AUC.
We set 0.5% as maximum acceptable test error with respect to the original mixed-
precision accuracy, across all models. Reducing these bitwidths allows the use of
smaller adders and multipliers, resulting in an overall area reduction when synthe-
sizing the three accelerators.

4.1 MLPerfTiny Cxx models
To verify if the variation of the internal C variables of the accelerators affect the test
accuracy/AUC, we integrate the accelerators into Keras, defining a Python class for
each accelerator, 2DConv, DWConv and FC. This class inherits the properties of the
corresponding Keras layers and expands upon them by replacing the call method
with a numpy function that in turn calls the C executable. The class attributes set
the necessary parameters for the C accelerator such as input and output shapes,
padding, configurations and more. Some of these require some clarification:

• config1: specifies which of the 5 computing configurations to use (Fig. 4.4 (b))
inside the accelerator

• config2: indicates which is the bitwidth of the quantized output of the accel-
erator, which can be 16, 8 or 4 bits

• en_relu: whether to apply the ReLU function inside the accelerator or not

• first_layer: 1 if the layer should expect dequantized (fake floating point) values
at inputs

• last_layer: 1 if the layer should output a dequantized value

The new class is used to build four custom Keras models that we named Cxx
models, where 2DConv, DWConv and FC layers are replaced by the new Cxx layers.
We verified that our four Cxx models matched the equivalent QKeras models found
by AutoQKeras.

Recalling that all QKeras models (with the exception of FC-AutoEncoder) have
folded Batch Normalization layers, we can define the following procedure to write
the equivalent Cxx model:

• for each layer set config1 and config2 using the bit configurations determined
by AutoQKeras;

• whenever a 2DConv, DWConv, FC layer is followed by a ReLU activation,
fold it using en_relu=1;

66

4.2 – Hardware parameter exploration

• if the Cxx layer is the first layer of the network, or it is preceded by a Keras
layer, that works with FP numbers, enable the first_layer parameter;

• if the Cxx layer is the last one, or it is followed by a Keras layers, that works
with FP numbers, enable the last_layer.

Once defined, the Cxx model can be used for inference just like a Keras model,
with the only limitation being the batch size which must be 1. This is due to the
fact that the C executable is currently able to process one input data at a time. In
a first preliminary stage, we validated that the Cxx models gave the same results as
their equivalent QKeras counterparts, making sure the predictions were the same
for every test data sample. In this testing phase, the C accelerators import a header
file, calleddefs_quant_max_prec.h, which sets the precision of some of the internal
parameters of the accelerators to maximum precision (details in 4.2). The test data
used for each model is the same as the one described in the previous chapter, except
for the FC-AutoEncoder, whose inference time was deemed excessive due to the size
of the dataset (248 audio wav files, where each file is made of 196 batches of 640
samples). The dataset was reduced to 84 wav files (21 randomly chosen files for
each machine ID), so 4116 features per machine ID. This choice is justified by the
fact that we are only interested in comparing the accuracy of the Cxx model relative
to the one of QKeras.

Before running the test, to make a fair comparison between Cxx and QKeras,
the latter requires that the keras backend run on float_64 precision which slightly
changes the inference results from the previous chapter. Consequently, the test ac-
curacy and AUC were re-calculated doing inference on the test sets of each QKeras
model. The results are summarized in Tab. 4.1.

MobileNet ResNet DS-CNN FC-AutoEncoder
85.00 % 87.50% 90.55% AUC 91.75, pAUC=81.59

Table 4.1: New accuracy and AUC/pAUC values obtained doing inference on the test
sets with the new tf.keras.backend

The test uses the Python Multiprocess library which enables parallel inference.
In particular, seven processes are spawned: one for MobileNet, ResNet and DS-
CNN, and four for FC-AutoEncoder, whose dataset is split among machine IDs.
The test confirms the equivalence of these models.

4.2 Hardware parameter exploration
So far the accelerator’s hardware parameters (which are C variables) were set to
maximum precision to verify the correct implementation of the Cxx models. The

67

Reconfigurable Hardware Accelerators

name of these C variables are reported in Tab. 4.2 which is equal to the content
of defs_quant_max_prec.h, common to all accelerators. These parameters refer
to the various contributions of Eq. 1.14, lumped together as shown in the table.
The variables that have both total (TOT) and integer (INT) part are fixed-point
variables and are defined using ac_fixed datatpye; while those that have only one
value are integer variables and are defined using ac_int datatype.

Variable name in C code Factor Max. Precision
ACC_BITWIDTH accumulator bitwidth 128
W_CROSS_BITWIDTH zX

qp
k=1 Wq,k,j 128

SF_IN_W_TOT_BITWIDTH sXsW 128
SF_IN_W_INT_BITWIDTH 32
BIASQ_SCALED_TOT_BITWIDTH sbbq,j 128
BIASQ_SCALED_INT_BITWIDTH 32
SF_OUT_INV_TOT_BITWIDTH 1

sY
256

SF_OUT_INV_INT_BITWIDTH 32
Z_BITWIDTH zY (zX) 128

Table 4.2: C variable names used inside the C/C++ accelerators, their corresponding
terms from Eq. 1.14, and the maximum bit precision used for each one.

Clearly, synthesizing the accelerators with maximum precision for all of these
parameters is not a viable solution as the resulting hardware components would be
too large (e.g. multipliers with more than 100 bits), causing high area consumption,
or even unsynthesizability, because the equivalent components could not be present
in standard technological libraries. This is why we need to reduce the number of
bits of these variables.

Thus, we divide the space exploration of the bitwidth of the hardware parameters
in two phases:

1. we determine the minimum accumulator bitwidth that ensures no error by
progressively reducing it while keeping the other terms at maximum precision
(Fig. 4.2).

2. we use the test sets from Sec. 4.1 as a calibration set to determine the max-
imum swing of each parameter per-model and per-layer. Then combine the
results and determine a unique maximum and minimum value used to deter-
mine useful tests for the total and fractional bitwidths (Fig. 4.3) .

To implement this procedure, a Python script was designed to:
1. execute a TCL script that uses awk to replace the bitwdith of the hardware pa-

rameters in the accelerator’s header file, sampling one combination of bitwidth
(one column) from the search space of Figs. 4.2-4 at an iteration;

68

4.2 – Hardware parameter exploration

2. compile the C/C++ codes of the accelerators to apply the changes;

3. run the multiprocessing script from Sec. 4.1, collect the results and append
them to a csv file.

The experiments for the accumulator bitwidth are shown in Fig. 4.2, while the
experiments for the other bitwidth variations are shown in Fig. 4.3. Each column
refers to a test iteration (combination of bitwidths) that was used with the Python
script we just mentioned. A summary of the results obtained in the two tests is
shown in Tabs. 4.3-4.4.

Figure 4.2: Initial accumulator bitwidth tests defined in the TCL script

Figure 4.3: Final tests defined in the TCL script

69

Reconfigurable Hardware Accelerators

It
er

at
io

n
V

W
W

A
cc

E
rr

IC
A

cc
E

rr
K

W
S

A
cc

E
rr

A
D

A
U

C
E

rr
A

D
pA

U
C

E
rr

0
85

.0
0

0.
00

87
.5

0
0.

00
90

.5
5

0.
00

91
.7

5
0.

00
81

.5
9

0.
00

1
85

.0
0

0.
00

87
.5

0
0.

00
90

.5
5

0.
00

91
.7

5
0.

00
81

.5
9

0.
00

1
85

.0
0

0.
00

87
.5

0
0.

00
90

.5
5

0.
00

91
.7

5
0.

00
81

.5
9

0.
00

3
85

.0
0

0.
00

0.
05

87
.4

5
8.

34
82

.2
1

42
.1

0
49

.6
5

50
.3

9
31

.2
0

T
ab

le
4.

3:
Te

st
0,

th
e

ite
ra

tio
ns

re
fe

r
to

th
e

bi
tw

id
th

s
de

fin
ed

in
Fi

g.
4.

2
(c

ol
um

ns
).

T
he

er
ro

r
is

de
fin

ed
w

ith
re

sp
ec

t
to

th
e

Q
K

er
as

ba
se

lin
e

ac
cu

ra
cy

/A
U

C

70

4.2 – Hardware parameter exploration

It
er

at
io

n
V

W
W

A
cc

E
rr

IC
A

cc
E

rr
K

W
S

A
cc

E
rr

A
D

A
U

C
E

rr
A

D
pA

U
C

E
rr

0
85

.0
0

0.
00

87
.5

0
0.

00
90

.5
5

0.
00

91
.7

5
0.

00
81

.5
9

0.
00

1
85

.0
0

0.
00

87
.5

0
0.

00
90

.5
5

0.
00

91
.7

5
0.

00
81

.5
9

0.
00

2
85

.0
0

0.
00

87
.5

0
0.

00
90

.5
5

0.
00

91
.7

5
0.

00
81

.5
9

0.
00

3
85

.0
0

0.
00

87
.5

0
0.

00
90

.5
5

0.
00

91
.7

5
0.

00
81

.5
9

0.
00

4
85

.0
0

0.
00

87
.5

0
0.

00
90

.6
1

-0
.0

6
91

.7
5

0.
00

81
.5

9
0.

00
5

85
.0

0
0.

00
0.

23
87

.2
7

8.
40

82
.1

4
82

.3
6

9.
40

65
.3

9
16

.1
9

6
85

.0
0

0.
00

87
.5

0
0.

00
90

.5
5

0.
00

91
.7

5
0.

00
81

.5
9

0.
00

7
85

.0
0

0.
00

88
.0

0
-0

.5
0

90
.4

3
0.

12
40

.5
8

51
.1

8
50

.3
9

31
.2

0

T
ab

le
4.

4:
Te

st
1,

th
e

ite
ra

tio
ns

re
fe

r
to

th
e

bi
tw

id
th

s
de

fin
ed

in
Fi

g.
4.

3
(c

ol
um

ns
).

T
he

er
ro

r
is

de
fin

ed
w

ith
re

sp
ec

t
to

th
e

Q
K

er
as

ba
se

lin
e

ac
cu

ra
cy

/A
U

C

71

Reconfigurable Hardware Accelerators

4.3 Accelerator speedup
In this final section we analyze how running the four networks on the ST-based
reconfigurable accelerators (RECONF) could provide a latency reduction with re-
spect to non ST-based accelerators (STANDARD), i.e. accelerators based on stan-
dard 16-bit multipliers that use sign extension whenever required for low-precision
operands. Given the large data tensors involved in DNNs and the limited mem-
ory available inside these accelerators, to store input, weights and outputs, the
accelerators need to divide the input tensors in chunks (called “tiles”) and process
them one-by-one in a sequential way. Usually in the context of a SoC, this tiling
operation is performed by a processor or a Direct Memory Access (DMA) unit.

Figure 4.4: High-level overview of the accelerator in a SoC

To compute the latency we assume:

• ideal latency reduction for each reconfigurable accelerator, normalized to the
one of the standard and 16-bit case:

– STANDARD: 1 for all configurations
– RECONF: 1 for 16x16 and 16x8, 0.5 for 8x8 and 8x4, 0.25 for 4x4

• all data transfers from external memory are transparent due to double buffer-
ing

• no overlapping between tiles

72

4.3 – Accelerator speedup

When this is true, it possible to compute the latency of a network by taking into
account the total number of layers (N-1), the number of tiles required for a specific
layer (T) and the configuration associated to it (L(Cn)) (Eq. 4.1).

Ltot,RDM =
NØ

n=1
Lacc,RECONF (Cn) × Tn

Ltot,SDM = Lacc,ST ANDARD

NØ
n=1

Tn

(4.1)

The speedup can then be computed as the ratio of the latency of the non-ST
standard accelerators over the latency of the ST-based reconfigurable ones:

Speedup = Ltot,ST ANDARD

Ltot,RECONF
(4.2)

The speedup for the four networks is shown in Tab. 4.5. To compute the number
of memory tiles required by each layer, we assume that each accelerator has the
following shapes for its internal input, weight and output memories:

• 2DConv:

– input/output memory shape = 18 × 18 × 16
– weight memory shape = 7 × 7 × 16 × 16

• DWConv:

– input/output memory shape = 22 × 22 × 16
– weight memory shape = 5 × 5 × 16

• FC:

– input memory shape = 256
– output memory shape = 16
– weight memory shape = 256 × 16

MLPerf Tiny
Network Latency Standard Latency Reconf. Speedup

theoretical

MobileNet 1155.00 505.75 2.28
ResNet 481.00 304.25 1.58
DS-CNN 2273.00 980.25 2.32
FC-AutoEncoder 121.00 44.25 2.73

Table 4.5: Speedup table

73

74

Chapter 5

Conclusion and Future Work

In this thesis we have shown how AutoQKeras can be used to find optimal mixed-
precision quantized configurations for the four networks of the MLPerf Tiny Bench-
mark using Bayesian Optimization. These configurations provide a substantial re-
duction in memory footprint with respect to conventional flat 16- and 8- bit configu-
rations, while keeping the test accuracy within a range of 2% of their floating-point
counterparts. Moreover, we investigate the use of reconfigurable hardware accelera-
tors to implement these networks and compare the results to solutions that employ
standard multipliers, finding that it is possible to achieve an ideal average speedup
of 2.23x with respect to standard multiplier solutions.

On a final note, we leave some hints for possible future development of this work:

• synthesize the DNN hardware accelerators [38] [39] with the optimized internal
precisions found in Ch.4 using HLS techniques

• integrate those accelerators in a SoC with a RISC-V processor using ESP [30]

• run the inference of the best mixed-precision quantized MLPerf Tiny DNNs
of Ch. 3 and estimate the latency reduction in different scenarios, such as
either running all layers using only the processor, or only ST-based (or non-
ST-based) DNN accelerators, or using a mixed approach in which some layers
are mapped on the processor and others on the accelerators

• quantize in mixed-precision the same MLPerf Tiny networks with other tech-
niques that do not use scaling factors and zero-points, such as using power-of-2
scaling or no scaling at all, to evaluate the trade-off between accuracy degrada-
tion and hardware resources utilization, using the automatic scripts developed
in Ch. 2.

75

Bibliography

[1] Keras API.
[2] Mlperf tiny github repository. https://github.com/mlcommons/tiny.
[3] Saleh Albelwi and Ausif Mahmood. A framework for designing the architec-

tures of deep convolutional neural networks. Entropy, 19(6), 2017.
[4] Saugat Bhattarai. Gradient descent. https://saugatbhattarai.com.np/

what-is-gradient-descent-in-machine-learning/.
[5] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and

Rocky Rhodes. Visual wake words dataset, 2019.
[6] Claudionor N. Coelho, Aki Kuusela, Shan Li, Hao Zhuang, Thea Aarrestad,

Vladimir Loncar, Jennifer Ngadiuba, Maurizio Pierini, Adrian Alan Pol, and
Sioni Summers. Ultra low-latency, low-area inference accelerators using het-
erogeneous deep quantization with qkeras and hls4ml. 2020.

[7] Claudionor N. Coelho, Aki Kuusela, Shan Li, Hao Zhuang, Jennifer Ngadiuba,
Thea Klaeboe Aarrestad, Vladimir Loncar, Maurizio Pierini, Adrian Alan Pol,
and Sioni Summers. Automatic heterogeneous quantization of deep neural
networks for low-latency inference on the edge for particle detectors. Nature
Machine Intelligence, 3(8):675–686, jun 2021.

[8] Arden Dertat. Applied deep learning - part 3:
Autoencoders. https://towardsdatascience.com/
applied-deep-learning-part-3-autoencoders-1c083af4d798.

[9] Yann LeCun et al. The mnist database of handwritten digits. http://yann.
lecun.com/exdb/mnist/.

[10] Peter I. Frazier. A tutorial on bayesian optimization, 2018.
[11] Google. Autoqkeras forgiving_bits.py. https://github.com/google/

qkeras/blob/3a1fb06ba40bed3b490a0942851c31405faaf007/qkeras/
autoqkeras/forgiving_metrics/forgiving_bits.py#L53.

[12] Google. Autoqkeras notebook. https://github.com/google/qkeras/blob/
master/notebook/AutoQKeras.ipynb.

[13] Google. Tensorboard.dev. https://tensorboard.dev/.
[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition, 2015.
[15] Matthijs Hollemans. Google’s mobilenets on

77

https://github.com/mlcommons/tiny
https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
https://saugatbhattarai.com.np/what-is-gradient-descent-in-machine-learning/
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/google/qkeras/blob/3a1fb06ba40bed3b490a0942851c31405faaf007/qkeras/autoqkeras/forgiving_metrics/forgiving_bits.py#L53
https://github.com/google/qkeras/blob/3a1fb06ba40bed3b490a0942851c31405faaf007/qkeras/autoqkeras/forgiving_metrics/forgiving_bits.py#L53
https://github.com/google/qkeras/blob/3a1fb06ba40bed3b490a0942851c31405faaf007/qkeras/autoqkeras/forgiving_metrics/forgiving_bits.py#L53
https://github.com/google/qkeras/blob/master/notebook/AutoQKeras.ipynb
https://github.com/google/qkeras/blob/master/notebook/AutoQKeras.ipynb
https://tensorboard.dev/

Bibliography

the iphone. https://machinethink.net/blog/
googles-mobile-net-architecture-on-iphone/.

[16] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about
it). In 2014 IEEE International Solid-State Circuits Conference Digest of Tech-
nical Papers (ISSCC), pages 10–14, 2014.

[17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets:
Efficient convolutional neural networks for mobile vision applications, 2017.

[18] Martin Isaksson. Four common types of neu-
ral network layers. https://towardsdatascience.com/
four-common-types-of-neural-network-layers-c0d3bb2a966c.

[19] Or Izchak. How does a neural network work? implemen-
tation and 5 examples. https://www.hotelmize.com/blog/
how-does-a-neural-network-work-implementation-and-5-examples/.

[20] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization
and training of neural networks for efficient integer-arithmetic-only inference,
2017.

[21] Savya Khosla. Cnn | introduction to pooling layer. https://www.
geeksforgeeks.org/cnn-introduction-to-pooling-layer/.

[22] Yuma Koizumi, Yohei Kawaguchi, Keisuke Imoto, Toshiki Nakamura, Yuki
Nikaido, Ryo Tanabe, Harsh Purohit, Kaori Suefusa, Takashi Endo, Masahiro
Yasuda, and Noboru Harada. Description and discussion on dcase2020 chal-
lenge task2: Unsupervised anomalous sound detection for machine condition
monitoring. In Proceedings of the Detection and Classification of Acoustic
Scenes and Events 2020 Workshop (DCASE2020), pages 81–85, Tokyo, Japan,
November 2020.

[23] Yuma Koizumi, Shoichiro Saito, Hisashi Uematsu, Noboru Harada, and
Keisuke Imoto. Toyadmos: A dataset of miniature-machine operating sounds
for anomalous sound detection. In 2019 IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA), pages 313–317, 2019.

[24] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for ef-
ficient inference: A whitepaper, 2018.

[25] Alex Krizhevsky. Learning multiple layers of features from tiny images. https:
//www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.

[26] Silicon Labs. Person detection. https://github.com/SiliconLabs/
platform_ml_models/tree/master/eembc/Person_detection.

[27] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter
optimization. 2016.

[28] David Chuan-En Lin. 8 simple techniques to pre-
vent overfitting. https://towardsdatascience.com/

78

https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/
https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/
https://towardsdatascience.com/four-common-types-of-neural-network-layers-c0d3bb2a966c
https://towardsdatascience.com/four-common-types-of-neural-network-layers-c0d3bb2a966c
https://www.hotelmize.com/blog/how-does-a-neural-network-work-implementation-and-5-examples/
https://www.hotelmize.com/blog/how-does-a-neural-network-work-implementation-and-5-examples/
https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
https://www.geeksforgeeks.org/cnn-introduction-to-pooling-layer/
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://github.com/SiliconLabs/platform_ml_models/tree/master/eembc/Person_detection
https://github.com/SiliconLabs/platform_ml_models/tree/master/eembc/Person_detection
https://towardsdatascience.com/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d
https://towardsdatascience.com/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d

Bibliography

8-simple-techniques-to-prevent-overfitting-4d443da2ef7d.
[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Gir-

shick, James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and
Piotr Dollár. Microsoft coco: Common objects in context, 2014.

[30] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni,
Joseph Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato, and
Luca P. Carloni. Agile SoC development with open ESP. In Proceedings of the
39th International Conference on Computer-Aided Design. ACM, nov 2020.

[31] Lei Mao. Quantization for neural networks. https://leimao.github.io/
article/Neural-Networks-Quantization/.

[32] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko,
Mart van Baalen, and Tijmen Blankevoort. A white paper on neural network
quantization, 2021.

[33] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin,
Luca Invernizzi, et al. Kerastuner. https://github.com/keras-team/
keras-tuner, 2019.

[34] Leo Pauly, Harriet Peel, Shan Luo, David Hogg, and Raul Fuentes. Deeper
networks for pavement crack detection. 07 2017.

[35] Harsh Purohit, Ryo Tanabe, Kenji Ichige, Takashi Endo, Yuki Nikaido, Kaori
Suefusa, and Yohei Kawaguchi. Mimii dataset: Sound dataset for malfunc-
tioning industrial machine investigation and inspection, 2019.

[36] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark
Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara,
Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kan-
war, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng
Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun
Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin
Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Ya-
mada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou.
Mlperf inference benchmark, 2019.

[37] Abhineet Saxena. Convolutional neural networks (cnns): An il-
lustrated explanation. https://blog.xrds.acm.org/2016/06/
convolutional-neural-networks-cnns-illustrated-explanation/.

[38] L. Urbinati and M. R. Casu. A reconfigurable 2d-convolution accelerator for
dnns quantized with mixed-precision. In Proceedings of International Con-
ference on Applications in Electronics Pervading Industry, Environment and
Society (ApplePies), Genova, Italia, 2022.

[39] L. Urbinati and M. R. Casu. A reconfigurable depth-wise convolution module
for heterogeneously quantized dnns. pages 128–132, 2022.

[40] Luca Urbinati and Marco Terlizzi. Visual wake words test set github issue.

79

https://towardsdatascience.com/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d
https://towardsdatascience.com/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d
https://leimao.github.io/article/Neural-Networks-Quantization/
https://leimao.github.io/article/Neural-Networks-Quantization/
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://blog.xrds.acm.org/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/
https://blog.xrds.acm.org/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/

Bibliography

https://github.com/mlcommons/tiny/issues/135.
[41] C. Enz V. Camus, L. Mei and M. Verhelst. Review and benchmark-

ing of precision-scalable multiply-accumulate unit architectures for em-
bedded neural-network processing. https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

[42] Pete Warden. Speech commands: A dataset for limited-vocabulary speech
recognition, 2018.

[43] Lisa Zhang. Convolutional neural networks. https://www.cs.toronto.edu/
~lczhang/360/lec/w04/convnet.html.

80

https://github.com/mlcommons/tiny/issues/135
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~lczhang/360/lec/w04/convnet.html
https://www.cs.toronto.edu/~lczhang/360/lec/w04/convnet.html

	Background
	Artificial Neural Networks and Deep Learning
	Convolutional Neural Networks
	Introduction
	Convolutional layers
	Pooling Layers
	Fully Connected layers

	Notable ANN architectures
	Mobilenet
	Residual Neural Networks
	Auto-encoders

	Neural Network Quantization
	Affine quantization schemes
	PTQ
	QAT

	Neural Network Quantization with AutoQKeras
	QKeras
	Keras Tuner and AutoQKeras
	AutoQKeras
	Preliminary experiments with AutoQKeras
	Extending AutoQKeras features
	Mobilenet quantization

	MLPerf Tiny Benchmark
	Introduction
	Project Outline
	Modifications to the Keras model to implement affine quantization mapping
	General structure of the quantization scripts
	Visual Wake Words
	Image Classification
	Keyword spotting
	Anomaly Detection

	Reconfigurable Hardware Accelerators
	MLPerfTiny Cxx models
	Hardware parameter exploration
	Accelerator speedup

	Conclusion and Future Work
	Bibliography

