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Abstract

Stress is an escalated psycho-physiological state of the human body emerging in
response to a challenging event or a demanding condition and since it is one of the
major issues in modern society, there is a growing interest in developing methods
that make automatic detection possible. To this end, the adoption of wearable
technology coupled with the implementation of machine learning (ML) techniques
are emerging as an interesting approach to develop non-invasive stress detection
systems.

The present work investigates the coupled use of ML and biosignals collected
from wearables in a controlled environment to study the feasibility of non-invasive
stress detection systems. This thesis uses a dataset that was obtained by acquiring
three different biosignals from subjects during a stress test by using the Biosig-
nalsPlux platform: Electrocardiogram (ECG), Electrodermal Activity (EDA) and
Respiration Signal.

The collected data was then pre-processed and prepared by applying a features
extraction and features selection algorithms in order to work with tabular data.
The selected features are prepared for use in multiple AI algorithms, including
Random Forest, XGBoost, Neural Network and Support Vector Machine.

The results of the thesis showed that machine learning algorithms were successful
in detecting stress from biosignals with high accuracy level and it also shows that
the use of multiple biosignals is more effective compared to single-signal-based
system. XGBoost was the best performing algorithm achieving an accuracy of
84% for the binary classification (stress vs. no stress) and 70% for three class
classification (no stress, medium stress and high stress).

The findings of this work may have important implications for the development
of non-invasive wearable devices for early stress detection and management.
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Chapter 1

Introduction

1.1 Review of the Presented Work
This thesis aims to assess the effectiveness of a stress detection algorithm by
analyzing biosignals obtained from wearable sensors.

The initial phase of the study was dedicated to acquiring and creating a
dataset to be utilized in the research. Data collection involved forty healthy
subjects who were instructed to complete a stress test customized for the study.
The stress test involved the acquisition of three distinct biosignals, namely
Electrocardiogram (ECG), Electrodermal Activity (EDA), and Respiration
Signal (RESP), which were all captured using the Biosignalsplux platform.

Following the acquisition of all signals and completion of the dataset, features
were extracted from the signals and employed to train a machine learning model.
The model was trained to classify the level of stress of a subject solely based on
the extracted features. The classification could be either binary, distinguishing
between "no stress" or "stress", or three-class, classifying stress as "no stress",
"medium stress", or "high stress".

1.2 Stress and Anxiety

1.2.1 General definition of stress and anxiety
Stress can be defined as any type of change that causes physical, emotional
or psychological strain. The framework of the stress system indicates that
stress includes two types: eustress (good stress) and distress (bad stress),
depending on the way stressful situations are handled. As the American
Psychology Association says the "Distress is the negative stress response, often
involving negative affect and physiological reactivity: a type of stress that
results from being overwhelmed by demands, losses, or perceived threats. It has
a detrimental effect by generating physical and psychological maladaptation
and posing serious health risks for individuals" and "Eustress is the positive
stress response, involving optimal levels of stimulation: a type of stress that
results from challenging but attainable and enjoyable or worthwhile tasks (e.g.,
participating in an athletic event, giving a speech). It has a beneficial effect
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by generating a sense of fulfillment or achievement and facilitating growth,
development, mastery, and high levels of performance" [1].

Figure 1.1: Stressor Types and Examples

Stress that has a positive impact is marked by an increase in pulse rate
but without any underlying feeling of threat or fear. Stress whit a negative
impact is also known as the "fight-or-flight" response, which is the reaction of
the body’s symphathetic nervous system that reacts to a stressor by producing
larger quantities of chemicals like cortisol, adrenaline, and nor adrenaline.
This increases the heartbeat, causes breathlessness, and sharpens the senses.
Stress can be either a triggering or aggravating factor for many diseases and
pathological conditions, it can cause structural changes in the brain with
long-term effects on the nervous system, it may increase the development of
cardiac arrhythmias and can also alter the functional physiology of the intestine.
Therefore, a greater appreciation to the significant role that stress may play in
various diseases is needed. To prevent stress-related issues, it may be helpful to
detect them in the burgeoning stages by using continuous monitoring through
wearable devices and machine learning techniques.

1.2.2 Ground Truth of Stress
Some studies establish stress ground truth using the person’s perceived stress as
expressed in self-report ratings or scores from questionnaires. In other studies,
stress ground truth is determined as a neutral or reference period and the
stress state is determined by the presentation of stressors or the exposure to
stressful situations. The baseline can be considered as the person’s relaxed
state achieved through relaxation videos or following relaxation instructions of
a psychologist [2]. Ground truth of stress can be established from biosignals
or biomarkers that are considered reliable for stress level identification. In
some studies, the salivary cortisol levels [3] and the SDNN cardiovascular
measure were employed to define stress groups or stressors. In general, stress
ground truth determination is not a straightforward procedure mainly in real
world conditions. The assessment through the use of self reports or ratings
may have wide inconsistencies and involve subjective bias. In addition, stress
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self-assessment may not illustrate unconscious or subconscious psychological
processes. Measurement of stress responses in different people requires the
formulation of an objective measure framework [2]. Valence and arousal are two
important parameters that are highly associated with an individual’s emotional
states. Arousal (or intensity) is the level of autonomic activation that an event
creates, and ranges from calm (or low) to excited (or high) [4]. Arousal refers
to a physiological activity dimension, ranging from quiet to active mood, is
linked to the excitement level of individuals. Valence, on the other hand, is the
level of pleasantness that an event generates and is defined along a continuum
from negative to positive [4]. Valence refers to another physiological activity
dimension orthogonal to arousal, ranging from misery to pleasant [3]. The
psychological evidence suggests that these two dimensions are intercorrelated.
Likewise, stress has both positive and negative interpretations based on its
origin. High arousal and negative valence are characteristics of emotional stress,
an affective state induced by threatening stimuli. High arousal and negative
valence are also characteristic of acute affective states: the specific emotions of
anger, disgust, and fear [5].

Figure 1.2: Correlation between valence, arousal and human stress [2].

Objective measures of stress include physiological and physical measures.
Physiological measures of stress need sensors to be connected to the human
body at some specified location e.g., EEG, ECG, and EDA, whereas, in the
case of physical sensors, the measurement can be done at a distance from
the subject without the need of any physical contact. Objective measures of
stress are free from human intervention and hence cannot be biased like a
subjective questionnaire, this being a major benefit of objective measures over
the subjective assessment of stress.

1.3 Biosignals related to stress
When individuals experience stressful conditions, the autonomic nervous system
is activated, thus causing an imbalance between the sympathetic and parasym-
pathetic systems. Therefore, signs of stress often include physiological and
physical reactions that stem from the nervous system. Physical biosignals are
measures of body deformation as the result of muscle activity. These include:

• Pupil size,

• Eye movements or blinks,
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• Respiration,

• Facial expressions

• Body and extremity semivoluntary position/movements.

Physiological signals are more directly related with body vital functions, such
as [2]:

• Electrocardiogram (ECG),

• Electroencephalogram (EEG),

• Electrodermal Activity (EDA),

• Respiration and Breath Rate (BR),

• Photoplethysmography (PPG).

In the following subsections, biosignals are categorized according to their source
on the body into those recorded from the head, the heart, and the remaining
body parts.

1.3.1 Heart Rate (HR)
The electrocardiogram (ECG) is a a medical test that records the electrical
activity of the heart. It is a non-invasive procedure that involves placing small
electrodes on the chest, arms and legs of a patient, the electrodes detect the
electrical signals that are generated by the heart’s cells as they contract and
relax, and transmit them to a machine that records the data. An ECG can be
described also as the time-series signal of the electrical activity of the heart,
where each heartbeat is displayed as a series of electrical waves. The changes in
electrical potential difference (voltage) during depolarization and repolarization
of the myocardial fibers are recorded by electrodes positioned on the surface
of the chest, this voltage is the amplitude of the ECG signal. The ECG, as it
is shown in Figure 1.3 , consists of three basic waves: P, QRS, and T. These
waves correspond to the far field induced by specific electrical phenomena
on the cardiac surface, namely, the atrial depolarization, P, the ventricular
depolarization, QRS complex, and the ventricular repolarization, T.

Differences in the speed of wavefront propagation through the cardiac cycle
are reflected by different frequencies content of ECG waves. The content of
T wave lays mostly within a range from zero (DC) to 10 Hz. The content of
P wave is characterized by 5-30 Hz frequencies. The content of QRS usually
contains within 8-50 Hz frequencies while abnormal ventricular conduction is
characterized by high frequencies (above 70Hz), forming notches on the QRS
[7]. Stress leads to the activation of the Sympathetic Nervous System (SNS),
resulting in the increase of heart rate and its force of contraction. As a result,
the amount of blood circulates faster through the body to deliver more oxygen
to the organs and skeletal muscles as an attempt to eliminate the stressor [2].

During times of stress, the body releases hormones like adrenaline and
cortisol, which can increase heart rate, blood pressure, and cardiac output.
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Figure 1.3: Typical ECG signal with characteristics peaks P,Q,R,S,T [6]

These changes in the body’s physiology can be detected by an ECG, which
will show an increase in the heart rate, changes in the shape of the waves on
the ECG tracing, and other abnormalities. Heart rate (HR) is the most widely
adopted and straightforward measure to estimate levels of stress, it is the
number of beats per minute, heart rate increases significantly during states of
stress. HR is one of the most widely used measures of human stress available in
the literature as shown in 1.4. Heart rate is defined as the number of heartbeats
in one minute (bpm). The RR interval of the ECG signal, which is defined as
the interval between consecutive heartbeats has an inverse relationship with the
heart rate of a person. Therefore, an ECG can be a useful tool in evaluating the
impact of stress on the body and detecting potential cardiac problems related
to stress.
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Figure 1.4: Main Features Related to
stress detection for ECG signal [2]

Heart Rate is the most widely
adopted and straightforward
measure to estimate levels of
stress. Alternative, the mean
RR interval can be used, hav-
ing an inverse relationship with
heart rate. According to [2],
the heart rate is the most im-
portant features used to detect
stress being a reliable measure
for the arousal part of stress.
The HRV, instead, has a chaotic
behaviour in states of anger,
anxiety or sadness whose rhyth-
micity can be described by a
measure known as cardiac co-
herence. SDNN and RMSSD
are reduced during stress consi-
tions.
In frequency domain, instead,
the LF band is modulated by
both sympathetic and parasym-
pathetic activity, while the
HF band corresponds only to
parasympathetic activity. Thus,
the ratio LF/HF is considered
a distinctive approach for the
sympathetic modulation and
is the more prominent feature
in frequency domain increasing
during stress condition.

1.3.2 Electroencephalogram (EEG)

The electroencephalogram (EEG) is a recording of the electrical activity of the
brain from the scalp. It is a non-invasive procedure that involves placing small
electrodes on the scalp of a patient. The electrodes detect the electrical signals
that are generated by the brain’s neurons as they communicate with each other,
and transmit them to a machine that records the data. The recorded data is
represented graphically as a series of waves that correspond to different states
of brain activiy. These waveforms reflect the cortical electrical activity, which
is a widely used technique to estimate changes in neurophysiological activity
associated with external stimuli and/or with the performance of specific tasks
[2] and has a typical shape as shown in Figure 1.5.

An EEG has a frequency content ranging from 0.01 to around 100 Hz and
varies from a few microvolts to approximately 100 µV, the slow components
around 0.01 Hz correspond to slow cortical potentials that in clinical routine are
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usually not recorded (they are filtered out); however, they may be of interest
for brain-computer interfaces. The most frequently used method to classify
EEG waveforms is by the frequency, the most commonly studied waveforms
include [8]:

• Delta with frequency range from 0.5 to 4Hz, it is physiologically seen in
deep sleep and is prominent in the frontocentral head regions;

• Theta with frequency range from 4 to 7Hz, this is the rhythm which is
brought on by drowsiness as well as early stages of sleep and it is most
prominent in the fronto-central head regions;

• Alpha with frequency range from 8 to 12 Hz, the posterior dominant alpha
rhythm is characteristically present during relaxation or conditions with
minimal cognitive demands or emotional strain in the occipital head region.
It is the defining feature of the normal background rhythm of the adult
EEG recording;

• Sigma with frequency range from 12 to 16 Hz, this activity is also known
as "sleep spindles", they may be slow (12 to 14Hz) or fast (14 to 16Hz)
and are seen most prominently in the fronto-central head regions;

• Beta with frequency range from 13 to 30 Hz, which is the most frequently
seen rhythm in normal adults and children during conditions with signifi-
cant processing demands or high alertness levels, it is most prominent in
the frontal and central head regions and attenuates as it goes posteriorly.

Stress conditions are considered to decrease the alpha activity and increase the
beta activity waves. For instance, certain conditions such as sleep deprivation
and performance of a cognitive task may only affect the lower alpha power
(8-10.5 Hz) whereas the higher alpha power (11-12 Hz) may actually be reduced
in both conditions. Power of higher frequency rhythms (between 30 and 70 Hz)
may provide a sensitive index of stress response magnitude [2]. Alpha band
activity is dominant in the relaxation phase when the cognitive demands are
minimal whereas, on the contrary, it has been found that situations involving
high strain or alertness, beta-band activity is found to be significant. Stress
is found to be correlated to the beta wave in the temporal part of the brain.
When a subject is having a negative mood or depression the alpha and beta
band activity is dominant.

Prolonged exposure to stress can also have negative effects on brain function
and lead to the development of various neurological conditions, such as anxiety,
depression, and post-traumatic stress disorder (PTSD). These conditions can
also be detected and diagnosed through changes in the electrical patterns
recorded by an EEG. The EEG can provide rich and reliable information on
the factors that cause stress, since continuous recording of EEG signals on a
real-time basis can greatly contribute to an understanding of field subjects’
stress patterns because these signals are rapidly responding to many different
stressors. Therefore, EEG can be very useful in studying field stressors or
developing online physiological monitoring systems.
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Figure 1.5: Typical raw EEG acquired with biosignalplux [9]

1.3.3 Electrodermal Activity (EDA)
Sweat glands produce moisture through pores towards the surface of the skin,
whenever they are triggered. When the balance of positive and negative ions in
this secreted fluid changes, the eletrical current flows more readily. This results
in decreased skin resistance, or in other words, increased skin conductance.
The electrodermal activity (EDA), also known as galvanic skin response (GSR),
is a physiological measurement of electricity flow through the skin. An EDA
sensor measures the change in skin conductance, these changes are caused by
alterations in sweat secretion and sweat gland activity as a result of changing
sympathetic nervous system activity, even moderate amounts of sweating that
are not observable at the skin surface can alter skin electrical conductivity [2].

EDA can be measured using electrodes placed on the skin, typically on the
fingers or palms of the hands, and is commonly used in research and clinical
settings as a physiological marker of emotional arousal and stress and has a
shape as shown in Figure 1.8. EDA has been used to study a range of phenomena,
including emotional responses, cognitive processing and physiological reactivity
to stress. The measurements of EDA signals are composed of the convolution
of two signals, as shown in Figure 1.6:

• Skin conductance level (SCL), tonic part: this signal relates to the slower
acting components and background characteristics of the signal;

• Skin Conductance Response (SCR), phasic part: this signal refers to the
faster changing elements of a signal.

The SCL signal establishes the base level of the signal. Changes in the
SCL are thought to reflect general changes in autonomic arousal, which is a
physiological response that occurs when the autonomic nervous system (ANS) is
activated, resulting in changes in bodily functions that are not under voluntary
control. The tonic level of EDA signal, can differ significantly across different
individuals. Due to this, the actual tonic level on its own is not completely
informative.

The SCR is closely related to the activity of the sweat motor system which,
at the same time, is closely associated with the parasympathetic nervous system
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Figure 1.6: Typical components of EDA signal.

[10]. The phasic component is sensitive to specific emotionally arousing stimulus
events; these bursts can occur between 1-5 seconds after the onset of emotional
stimuli. The pattern of the skin response data is distinct according to the
state of the person and is considered as one of the reliable stress measurement
methods. SCR part of EDA increases when encountered with an emotionally
arousing situation.

There is a well-established correlation between electrodermal activity and
stress. Whenever the person is under stress, their sympathetic nervous system
becomes activated, which lead to an increase of the moisture in the human skin
resulting in an increase in the SCL and SCR part of the electrodermal acitivy.

Figure 1.7: Main Features Related to
stress detection for EDA signal [2]

When a person is under stress,
the two most relevant features
of the EDA are both tonic part
SCL and phasic part SCR which
increases due to skin moisture
increase. According to [2], SCL
was considered the most effec-
tive stress correlate among fea-
tures from HRV, RSP and EMG.
Other common features that are
used in stress studies are the
SCR frequency, SCR amplitude,
SCR latency, SCR rise time,
SCR half recovery and SCR re-
sponse onset.
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For example, researchers have found that people who experience high levels
of chronic stress, such as those with post-traumatic stress disorder (PTSD),
tend to have higher levels of EDA than those who do not. In addition, EDA
has been used in biofeedback interventions to help individuals manage stress
and anxiety. By monitoring their EDA, individuals can learn to identify and
regulate their physiological responses to stress, which can improve their overall
well-being.

Figure 1.8: Typical raw EDA acquired with biosignalplux [11]

Although one of the main purposes of sweating is thermoregulation, sweating
is also triggered whenever a person is exposed to a stimulus, such as emotionally
loaded images. This type of sweating is called emotional sweating. Sweat
secretion, which reflects the changes in arousal, is driven unconsciously by the
automatic nervous system (ANS) in order to meet behavioral requests. When a
person is under stress, both tonic part SCL and phasic part SCR increases due
to skin moisture increase. Even the expectation of a painful or stressful event
can elicit increases in the EDA. The peaks of SCR usually appear between
1.5 and 6.5 seconds after the onset of stressor stimuli. [2] The response of the
human skin is not under human conscious control and is dependent on the
changes in the sweating pattern of a subject and thus reflects the behavior of
the sympathetic nervous system. GSR measurement locations are part of the
body with a large number of sweat glands. There exist a variety of possible
locations on the human body for the measurement of GSR.

1.3.4 Respiration and Breath Rate (BR)
The respiration signal refers to the physiological process of breathing, which
involves inhaling oxygen-rich air and exhaling carbon dioxide-rich air. Respi-
ration is controlled by the respiratory center in the brainstem, which receives
input from various sensors in the body that detect changes in oxygen and
carbon dioxide levels in the blood, as well as other factors such as pH and
temperature. In general, this signal may have the shape as shown in Figure 1.9.

The breath rate is the rate at which breathing occurs, which is usually mea-
sured by manually counting chest wall movements per minute. The respiratory
center is located in the medulla oblongata (lower brainstem) and is involved in
the minute-to-minute control of breathing [12]. This rate can vary depending
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on various factors, such as age, physical activity, and overall health. A normal
respiratory rate for adults at rest is typically between 12 and 20 breaths per
minute, while in children it can range from 20 to 30 breaths per minute.

Under stress conditions, breath rate generally increases with emotional
arousal and decreases with relaxation, while tense situations may cause mo-
mentary interruptions in breath. Negative emotions such as stress are linked
to irregularities in the respiration pattern, increase of the minute volume, the
shift from abdominal to thoracic breathing and faster and shallower breathing
[2]. Oxygen consumption rate can be extracted from the respiratory rate of
the person and is considered a reliable measure of human stress too because
the oxygen demand is increased under stress [13].

For the Respiration Signal (RESP), breath rate and breath depth (amplitude)
are the most common measures of respiration. Under stress conditions, breath
rate generally increases with emotional arousal and decreases with relaxation,
while tense situations may bause momentary interruption in breath. The breath
rate (BR) significant changes during stress as shown in 1.4. Besides, negative
emotions such as stress are linked to irregularities in the respiration pattern,
increase of the minute volume, the shift from abdominal to thoracic breathing
and faster and shallower breathing [2].

During times of stress, the body’s "fight or flight" response is activated
and the respiration rate may increase. This increased respiration rate can be
detected through changes in the respiration signal, such as an increase in the
frequency and depth of breaths. These changes are designed to provide the body
with the extra oxygen needed to respond to the stressful situation. However,
prolonged exposure to stress can also have negative effects on respiratory
function, and lead to the development of various respiratory conditions, such
as asthma, COPD, and hyperventilation syndrome. These conditions can also
be detected and diagnosed through changes in the respiration signal.

Figure 1.9: Raw Respiration signal acquired with biosignalplux [14]

Breathing rate (BR) can be estimated by extracting respiratory signals
from the electrocardiogram (ECG) or photoplethysmogram (PPG) using either
feature- or filter-based techniques. There are three idealised types of respiratory
modulation of the ECG and PPG: baseline wander (BW), amplitude modulation
(AM), and frequency modulation (FM). If the amplitude of the respiratory
signal is too small compared to the underlying noise, then the signal may not
be distinguishable from the noise, preventing the precise estimation of BR. The
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morphology of the ECG is modulated by respiration because the filling and
emptying of the lungs cause change in the electrical impedance of the chest.
Monitoring of breath regulation has also been proposed as a way to minimize
the oscillations in HRV due to respiration, respiratory rate can be also used as
a feature, combine it with additional biosignals for calculating the stress level
of the subjects.

1.3.5 Photoplethysmography (PPG)
Photoplethysmography (PPG) is an optical non-invasive method measuring
variations of skin hue associated with concurrent changes in blood volume
in subcutaneous blood vessels during the cardiac cycle. This measurement
provides valuable information about the cardiovascular system [2].

A typical PPG device contains a light source that generates pulses and
receive the reflected light a photodetector. The light source emits light to a
tissue and the photodetector measures the reflected light from the tissue. The
reflected light is proportional to blood volume variations [15]. From the PPG
signals the pulse rate (PR), pulse rate variability (PRV) and blood pressure
(BP) can be extracted; it is also used for HRV parameters estimation as it
present high temporal peak agreement in relation to ECG.

Figure 1.10: Raw PPG signal and its corresponding ECG.

PPG signal basically consists of four points which are diastolic points,
systolic points, dicrotic notch and dicrotic wave as shown in Figure 1.10. The
diastolic and systolic points are the important mechanism in PPG signal as
it can provide useful information regarding the cardiovascular system. The
systolic phase starts with a valley and ends with the pulse wave systolic peaks,
the pulse wave end is marked by another valley at the end of the diastolic
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phase. While the time duration between two consecutive systolic points in
the signal determine the instantaneous heart rate of an individual [16]. The
stress-induced vascular response index (sVRI), which is a PPG-based measure
is proposed to assess stress levels. Stress can also be reflected in peripheral
vasoconstriction, being related to decreased pulse wave amplitude (PWA) in
PPG signals [16].

1.4 Stress Inducing Tasks
Stressors may be either physical (environmental and physiological) or psycho-
logical/mental (cognitive and emotional) or mixed. There may be several types
of stressors used in psychophysiology research:

• Physical, as strenuous physical activity, sleep deprivation, tiredness, painful
stimuli, acute injury or medical emergency;

• Environmental, such as extreme temperature conditions, high levels of
humidity, high levels of noise;

• Mental task, for example task demands and conditions taxing the person’s
cognitive capacities, inconsistent reward/reinforcement schedule;

• Social, as disturbances in social interactions, undesirable social roles,
criticism, self-criticism;

• Psychological/emotional, as disturbances in personal life, intense emotional
states, mental disorder affecting daily function;

• Chronic, as severe financial difficulties, poor living conditions, job insecu-
rity;

• Traumatic, as memory of past traumatic experience that intrudes into
consciousness and still affects the psycho-emotional state of a person [2].

The physical stressor has a direct effect on the body and induces direct
metabolic or physiological changes. Physical stress may be an external environ-
mental condition or the internal physical/physiologic demands of the human
body. Psychological or mental stressors primarily activate the brain centers to
disturb homeostasis without having any direct effect on the body. Numerous
laboratory methods have been established to induce stress in humans, including
the cold pressor test (CPT), Trier Social Stress Test (TSST), Maastricht Acute
Stress Test (MAST), Montreal Imaging Stress Task (MIST), Stroop Color-Word
Test (SCWT) and Mental Arithmetic (MA) [17].

1.4.1 Cold Pressor Test (CPT)
The cold pressor test was developed as a tool to study blood pressure variability
by Edgar A. Hines. The test consisted of a 30-min baseline period during which
blood pressure measurements were obtained, followed by a 60-s immersion of
either a hand or a foot in ice water at 4-5 ◦C during which blood pressure was
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taken after 30 and 60 s with the cuff placed on the opposite arm. This test has
a major limitation: it involves only physical pain sensation for stress induction
without involving psychosocial evaluative threat. Being a physical stress, it
only elicits the activation of the brain stem region, which in turn activates
the sympathetic adreno-medullary system. It also lacks the uncontrollability
and unpredictability of the procedure, which is an essential feature for robust
activation of stress response [17].

1.4.2 Trier Social Stress Test (TSST)
The Trier Social Stress Test (TSST) emerged as a psychosocial stress protocol
that reliably and consistently produced hypothalamic-pituitary-adrenal (HPA)
axis stimulation. The TSST imposes a 15-minute period of psychosocial stress
that includes 5 minutes of anticipatory stress, 5 minutes of public speaking and
5 minutes of mental arithmetic performed before a panel of evaluators. The
consistent and large endocrine response to the TSST is believed to result from
participants’ concern about poor performance, which engenders a combination
of ego involvement and awareness of social judgment with the potential for
negative consequences. Physiologic markers of the stress response are obtained
from salivary samples gathered before, during, and 1 hour after the induced
stress period [18].

1.4.3 Stroop Color-Word Test (SCWT)
The Stroop Color-Word Test (SCWT) is a neuropsychological test extensively
used for both experimental and clinical purposes. It assesses the ability to
inhibit cognitive interference, which occurs when the processing of a stimulus
feature affects the simultaneous processing of another attribute of the same
stimulus. In the most common version of the SCWT, subjects are required
to read three different tables as fast as possible. Two of them represent the
“congruous condition” in which participants are required to read names of
colors (henceforth referred to as color-words) printed in black ink (W) and
name different color patches (C). Conversely, in the third table, named color-
word (CW) condition, color-words are printed in an inconsistent color ink (for
instance the word “red” is printed in green ink). Thus, in this incongruent
condition, participants are required to name the color of the ink instead of
reading the word [19].

1.4.4 Montreal Imaging Stress Task (MIST)
The Montreal Imaging Stress Task (MIST) consists of a series of computerized
mental arithmetic challenges along with social evaluative threat components.
To allow the effects of stress and mental arithmetic to be investigated separately,
the MIST has 3 test conditions (rest, control and experimental). In the rest
condition, subjects look at a static computer screen on which no tasks are shown.
In the control condition, a series of mental arithmetic tasks are displayed on
the computer screen, and subjects submit their answers by means of a response
interface. In the experimental condition, the difficulty and time limit of the
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tasks are manipulated to be just beyond the individual’s mental capacity. Upon
completion of each task, the program presents a performance evaluation to
further increase the social evaluative threat of the situation [20].

1.4.5 Social Evaluative Tasks
Psycho-social stress is a type of human stress which occurs when an individual
has to face people or a group of people as in a public speaking task. When a
socially threatening situation occurs, two mechanisms of the human body are
affected, which include the autonomic nervous system and the neuroendocrine
system. Instead of real-life events exposure, virtual reality has also been used as
a stressor. Virtual reality exposure therapy (VRET) is an intermediate phase
between thoughts and real-life events. Virtual reality is useful for a person
who has difficulty imagining fearful tasks, it has also the advantage that if the
stimuli become too threatening for the patient, the therapist has the control to
stop the stimuli. The public speaking task as a social stressor has been a focus
on very few studies. Existing literature either focuses on the real audience or
a virtual audience. It has been shown that when men and women are both
subjected to real-life stressors, no significant difference based on gender was
found [13].

1.4.6 Maastricht Acute Stress Test (MAST)
The Maastricht Acute Stress Test (MAST) is designed to be a simple, quick,
and non-invasive procedure aimed at activating the human stress system. The
MAST procedure combines the most stressful features from two of the most
common experimental paradigms, the TSST (involving novelty, unpredictability,
ego involvement) and the CPT (involving physical pain). In direct comparison
to a range of other validated stress protocols, the MAST induces similar, if not
greater, changes in Blood Pressure (BP) immediately and 5 min following the
conclusion of the stress test, and significant increases following the procedure
in subjective experiences of stress, pain, and unpleasantness, as measured on
Visual Analog Scales (VASs). In addition, the procedure has incorporated lack
of control by not allowing participants to know how long their hand will be
submerged in water in each trial [21].

1.4.7 Mental Arithmetic Task (MAT)
MAT is one of the most commonly used stimuli for inducing stress. Mental
arithmetic task is a mechanism to increase the mental workload by performing a
series of arithmetic operations with a varying range of difficulty. This stimulus
is easy to implement and does not requires any special instrument [13].
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Chapter 2

Noise Analysis

2.1 Noise Analysis in Biosignals
Biosignals have quite low signal-to-noise ratio and are often corrupted by
different types of artifacts and noises originated from both external and internal
sources. The presence of such artifacts and noise poses a great challenge for
biosignals analysis. Internal sources of artifacts are due to different body
activities.

External artifacts arise from coupling due to unwanted external interferences.
For these reasons, biosignals often require to be pre-processed properly by
removing such artifacts and interferences before any further analysis and
feature extraction. There are several ways to pre-process a signal, the first
way is to use digital filters. However, digital filtering is not suitable enough to
effectively remove such artifacts, so advanced signal processing techniques have
been proposed in the literature for this purpose.

2.1.1 Noise in ECG
A typical ECG signal of a normal subject is shown in Figure 1.3. Artifacts (noise)
are the unwanted signals that are merged with ECG signal and sometimes create
obstacles for the physicians from making a true diagnosis. There are mainly
four types of artifacts encountered in ECG signals: baseline wander, powerline
interference, EMG (Electromyography) noise and electrode motion artifacts.
Electromyography is a technique for evaluating and recording the electrical
activity produced by skeletal muscles. EMG is performed using an instrument
called an electromyograph to produce a record called an electromyogram. An
electromyograph detects the electric potential generated by muscle cells when
these cells are electrically or neurologically activated [22].

Baseline wander, is the effect where the base axis (x-axis) of a signal appears
to move up and down rather that be straight. This causes the entire signal to
shift from its normal base as shown in Figure 2.1 and distorts ST-segment
and other low-frequency components of the ECG signal. In the ECG, this
effect is caused due to improper electrodes, patient’s movement and breathing.
The amplitude and duration of the wander depend on electrode properties,
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Figure 2.1: Baseline wander in ECG [23]

electrolyte properties, skin impedance, and body movements. The frequency
content of the baseline wander is in the range between 0.05 and 1 Hz, it means
that is a low-frequency artefact in ECG [23].

The powerline interference is introduced because of the electromagnetic
interference of the alternating supply. This represents a common noise source in
the ECG. The interference may be due to stray effect of the alternating current
fields due to loops in the patient’s cables. Other causes are loose contacts
on the patient’s cable, as well as dirty electrodes. When the machine or the
patient are not properly grounded, power line interference may even completely
obscure the ECG waveform. It is necessary to remove powerline interference
from ECG signals as it completely superimposes the low frequency ECG waves
like the P wave and T wave [23]. Such noise is characterized by 50 or 60 Hz
sinusoidal interference, possibly accompanied by a number of harmonics. Such
narrowband noise renders the analysis and interpretation of the ECG more
difficult, since the delineation of low-amplitude waveforms becomes unreliable
and spurious waveforms may be introduced.

EMG noise is caused by electrical activities in muscles, which arise from eye
and muscle movements and heartbeat. Typical sources of MA are muscle move-
ments near the head region, like neck movements, swallowing, and so on. The
presence of muscle noise represents a major problem in many ECG applications,
especially in recordings acquired during exercise, since low amplitude waveforms
may become completely obscured, and in general can alter the shapes of local
waves of the ECG signal. Muscle noise presents a much more difficult filtering
problem since the spectral content of muscle activity considerably overlaps
that of the PQRST complex [23]. EMG leads to distortion of local waves of
the ECG signals due to a frequency match in the range of 0.01-100 Hz, this
makes it challenging to denoise the signals for proper recognition of various
ECG arrhythmias.

Electrode motion artifact is the noise introduced to the ECG that results
from motion of the ECG electrode.

In order to record an ECG signal, electrodes (transducers) are placed at
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Figure 2.2: Typical Electrode placements

specific positions on the human body. In particular, the biosignalplux ECG
is primarily designed for a single-lead ECG acquisitions in the Einthoven
configuration. in Figure 2.2 the electrode placements is in the configuration by
using the standard ECG sensor with electrode cable lenghts of 1.5 cm and 3
cm (reference).

Specifically, electrode movement causes deformations of the skin around the
electrode site, which in turn cause changes in the electrical characteristics of
the skin around the electrode and alters the impedance of the skin around
the electrode. These electrical changes appear in the ECG as motion artifacts.
Motion artifacts can produce large amplitude signals in the ECG and can
resemble the P, QRS, and T waveforms of the ECG of baseline wander, but are
more problematic to combat since their spectral content considerably overlaps
that of the PQRST complex. These artifacts occur mainly in the range from 1
to 10 Hz, and in the ECG are manifested as large-amplitude waveforms which
are sometimes mistaken for QRS complexes [24].

2.1.2 Noise in EEG
The various waveforms of the EEG convey clinically valuable information. The
presence of artifacts in EEG signals can increase the difficulty in analyzing
the EEG and to obtaining clinical information. Removing these artifacts is
essential as they can affect the detection and extraction of features from the
EEG signal. Among other possible categorizations, artifacts can be coarsely
separated into those of physiological and non-physiological of technical origin.
The most prevalent kind of artifacts are the following [25]:

• Ocular artifacts. The ocular artifact is a biological, non-neural disturbance
generated by eye blinks and eye movements. The amplitude of these
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artifacts can be much larger than EEG signals, hence posing a serious
problem for further analysis.

• Muscle artifacts. The electromyogram (EMG) measures the electrical
activity on the body surface caused by contracting muscles. This artifact
is typical of patients who are awake and occurs when the patient swallows,
talks or walks. These signals have a wide frequency range and can be
distributed across different sets of electrodes depending on the location
of the source muscles. EMG presents a wide spectral distribution, thus
perturbing all classic EEG bands: in particular, it considerably overlaps
with beta activity in the 15-30 Hz range but may be as low as 2 Hz, making
the widely used alpha band also vulnerable to muscle artifacts.

• Cardiac artifact. The amplitude of the cardiac activity on the scalp is
usually of low amplitude; however this greatly depends on the electrode
positions and differs for certain body types. When an electrode is placed
on or near a blood vessel, it causes pulse, or heart beat artifacts and the
expansion and contraction of the vessel introduce voltage changes into the
recordings. The artifact signal has a frequency around 1.2 Hz, but can
vary with the state of the object. This artifact can appear within EEG
as a sharp spike or smooth wave. ECG artifact is recognized easily by its
rhythmicity, if EEG and ECG are simultaneously taken. The identification
of ECG artifacts is simple; they can be easily identified by coinciding with
the ECG tracing.

• Electrode artifact. Morphologically, this appears as single or multiple
sharp waveforms due to abrupt impedance change. It is identified easily
by its characteristic appearance and its usual distribution, which is limited
to a single electrode.

Figure 2.3: Five normal brain rhythms and three different kinds of artifacts
[25]
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2.1.3 Noise in EDA
Wearable devices are more prone to noise and artifacts and EDA is not immune
from this issue. The main characteristic of EDA are peaks, known as skin
conductance responses (SCRs), which occur as a reaction to a stimuli. Mea-
surement of EDA in ambulatory settings creates uncertainty on what causes
the peaks in the signal and hence, makes the signal vulnerable to the presence
of artifacts. Among the factors that influence the presence of artifacts in
ambulatory EDA signals are the recording procedure, such as the stability of
electrodes, the influence of environment temperature and the user’s physical
activity. These factors cause artifacts that could resemble or not SCRs.

Figure 2.4: Typical Electrode placements for EDA

For this reason the artifacts can be divided into two sub-groups described
as follows:

• Shape artifacts refer to artifacts that do not resemble physiological re-
sponses. Improper placement of electrodes or their movement for instance
causes abrupt changes in the signal that cannot be generated by the
electrodermal system itself and do not conform to the specifications of
physiological responses. In Figure 2.4 is shown an example of the placement
of the electrodes in the anterior side of the hand,

• Thermoregulation responses refer to physiological responses that are similar
to EDA responses, but are not caused by electrodermal system. High
physical activity or even increase in environmental temperature rises user’s
sweating, hence leading to physiological responses in EDA signal caused
by thermoregulation rather than the electrodermal system. Such artifacts
might be misinterpreted as physiological responses elicited by for instance
an emotion, reducing the reliability of an emotion recognition system [26].

Noises in EDA can be also categorized into two another types: extrinsic noises
and intrinsic noises. Extrinsic noises are defined as noises that are generated
from environments outside of human body, for example electromagnetic field
related noises or variability in temperature and humidity on skin. Besides the
extrinsic noises, several human physiological activities other than ones related
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to stress, such as activation of muscles and thermoregulatory sweating, also
cause undesired modulation in EDA, which is called intrinsic noises, like for
example respiration noise.

Recently, a couple of studies have been conducted to better alleviate motion
artifact. Since part of the motion artifact has similar frequency range with
the desired EDA signals, the denoising methods have primarily depended on
prior knowledge about the morphological characteristics of noise-free EDA
signals. These methods have been validated to effectively suppress the motion
artifact. Overall, the extrinsic noises are appropriately alleviated by previous
denoising methods based on differences in signal characteristics. However,
theses denoising methods based on differences in signal characteristics, are
limited to attenuate intrinsic respiration noise because the respiration noise
has similar signal characteristics with EDR, the EDA’s reactivity to stress [27].

It should be noted that unlike other biosignals, such as ECG and PPG, EDA
does not exhibit periodicity. Hence, manual adjudication of clean versus noisy
EDA can be rather tricky.

2.1.4 Noise in Respiration Signal (RESP)
A good quality respiration signal as shown in Figure 1.9 should have little to
no baseline wandering, which means there is no shifts parallel to the x-axis,
it should also have clean and periodic peaks and valleys and approximate a
sinusoidal form. The typical kind of artifact in the respiration signal is the
motion artifact. In the case of jumping, the signal is corrupted by having in the
peak that corresponds to the jump a vertical shift, so the valley is much slower
and the peak is much lower as well compared to the expected signal. Another
motion artifact can be caused by a torso rotation that leads to significant
changes in the signal, where the peak and the valley are much earlier and
much shorter than in the expected signal. Slow breathing dynamics and low
respiration frequencies break out of the characteristic sinusoidal signal form of
the respiration signal.

More than motion artifacts and baseline drift, other kinds of noise can be:

• Muscle noise is an high-frequency noise that can be caused by the contrac-
tion of the chest muscles during respiration,

• Thermal noise is random noise that arises due to the random motion of
electrons within the recording circuity,

• Environmental noise includes noise from sources such as air conditioning,
fans, and other electrical appliances that can be picked up by the recording
device.

2.1.5 Noise in PPG
PPG measures the blood pulse wave from which the heart rate, its variations
and even the respiratory rate can be extracted. The largest problem with the
proper extraction of these health parameters is that the PPG signals are often
measured during various kinds of movement and therefore are corrupted with
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motion noise. This noise can appear in the form of unruly signals of large
amplitudes in the PPG signals. It is also reflected in the frequency domain
and overlaps with the frequency range of breath or heart rate. The quality of
the PPG signal depends on the location and the properties of the subject’s
skin at measurement, including the individual skin structure, the blood oxygen
saturation, blood flow rate, skin temperatures and the measuring environment.
These factors generate several types of additive artifact which may be contained
within the PPG signals. The main artifacts in PPG are described as follows:

• Powerline Interference is a type of noise that could be due to the instru-
mentation amplifiers as for the ECG. Moreover, high frequency artifacts
caused by mains power sources interference is induced onto the PPG
recording probe or cable. This artifact introduces a sinusoidal component
into the recording, clearly displayed as a spike.

• Motion artifact may be caused by poor contact to the fingertip photo sensor.
Variations in temperature and bias in the instrumentation amplifiers can
sometimes cause baseline drift as well. Usually the cause of motion artifacts
is assumed to be due to vibrations or movement of the subject. The shape
of the baseline disturbance caused by motion artifacts can be assumed to
be a biphasic signal resembling one cycle of a sine wave.

• Low amplitude PPG signal takes into account the PPG waveform that
is subject to sudden amplitude changes due to the automatic gain con-
troller, which adjusts the gain of the amplifier automatically based on the
amplitude of the input signal. This may cause amplitude saturation in
the amplitude of the PPG waveform at a maximum or minimum value,
or to rest at some random fixed value. However, the reduction of PPG
amplitude can be directly attributable either to a loss of central blood
pressure or to constriction of the arterioles perfusing the skin.

• Premature ventricular contraction is a kind of artifact in which these
premature ventricular beats interrupt the normal heart rhythm and cause
an irregular beat. This is often felt as a "missed beat". This type of
arrhythmia will affect the main events detection accuracy in PPG signals
[28].

2.2 Digital Filtering
There can be several ways to prevent the presence of artifacts, but it is impossible
to completely eliminate the noise by just prevention. For this reason digital
filter is one way to clean the signal from noise. Filters are used for two purposes:
signal separation, used when a signal as been contamined with interference or
noise, and signal restoration, used when a signal has been distorted in some
way (for example an image acquired with an improperly focused lens). Digital
filtering, which is nothing but a discrete-time LTI system, is a common part
of preprocessing the recorded biosignals to attenuate out-of-band noises and
artifacts. The out-of-band noise refers to unwanted signals or noise that exist
outside the desired frequency band of a system.
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There are two ways of obtaining a digital filter:

• By convolution of the impulse response of the filter with the input signal:
y[i] = qM−1

j=0 h[j]x[i − j], that normally means y[i] = h0x[i] + h1x[i − 1] +
h2x[i − 2] + ...

Where: y[i] is the output signal, h[j] is the impulse response (coefficients
of the filter), x[i-j] is the input signal and M is the quality of the filter, so
the higher is M the better is the filtered signal.
This kind of filters are called Finite Impulse Response (FIR), they
are the slowest but have the best performance and are defined by their
filter kernel (impulse response),

• By recursion, considering in the summation also the previous values of the
output signal:
y[i] = a0x[i] + a1x[i − 1] + a2x[i − 2] + ... + b1y[i − 1] + b2y[i − 2] + ...

Where a and b are the recursive coefficients of the filter.
These kind of filters are called Infinite Impulse Response (IIR), since
their impulse response is composed by sinusoids exponentially decaying.
Theoretically these are infinite but can be truncated after it falls beyond
noise level. They have worse performance but higher speed and are not
defined by a filter kernel but by a set of recursive coefficients.

Both FIR and IIR filters have been found to be used in the pre-processing
stage depending on the application and given specification. Depending on the
frequency range of the artifact affecting the biosignal, there are several types
of FIR or IIR filters that can be used:

• Low-Pass Filter if the desired bandwidth of the recorded signals is known
and various biosignals are being considered, a standard FIR low-pass filter
can be applied to eliminate high-frequency out-of-band disturbances and
artifacts present in the raw recording. This type of filter is versatile and
can be employed, for instance, to eliminate EMG noise from ECG signals
or to avoid aliasing during EEG acquisition.

• High-Pass Filter can be used when is needed to attenuate the signal taken
into account below a certain frequency range. For example, a standard
techniques for removing the baseline wander in the ECG acquisition is to
use a high-pass filter. Another case in which a high-pass filter may be used
is when is needed to remove the dc offset (constant voltage that is added
to an AC signal) which in turn is largely caused by the electrode/gel/body
interface, if a patient stays still, the cut-off frequency of the filter can be
chosen equal to 0.05 Hz.

• Notch Filter or also known as band-rejection filter, passes most frequencies
unaltered, but attenuates those in a specific range. It is used in many
applications where a specific frequency component needs to be eliminated.
For example, it can be used to remove powerline interference (50 Hz).
However, the problem with notch filtering is that it not only removes
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the removes the powerline interference at the fundamental frequency but
also removes signal components at that notch frequency, so the cut-off
frequency has to be determined in advance to design the filter.

• Pass-Band Filter is a filter that allows signals between two specific frequen-
cies to pass, but that discriminates against signals at other frequencies.
Instead of having a cut-off frequency there is a pass-band region in which
the signal pass without any corruption, and outside the range the signal
is attenuated. For example, a correct selection of the frequency filter
pass-band ensures adequate isolation of the high frequency QRS complex
of the ECG signal against the background of the low frequency P and T
waves of the signal, low frequency noise, and 50Hz powerline artifacts. An
optimal filter pass-band for ECG processing can be 8-20 Hz, in order to
be effective in reducing noise and interference while preserving the QRS
complex and other important low-frequency features of the signal.

Digital and analog filters both take out unwanted noise or signal components,
but filters work differently in the analog and digital domains. Analog filters
are circuits made of analog components such as resistors, capacitors, inductors
and op amps. Digital filters are often embedded in a chip that operates on
digital signals. According to the frequency response function achieved by the
filter, the common filters in wearable sensors can be divided into three types:
Butterworth filter, Chebyshev filter, and Elliptic filter, which can segment the
target signal with different characteristics. It is worth noting that the three
types are not fixed analog or digital filters, and the conversion between analog
filters and the corresponding digital filters can be achieved through algorithms.

• Butterworth Filter has the characteristic that the frequency has good sta-
bility both inside and outside the pass frequency range, and the frequency
band is maximally flat in the pass band. However, Butterworth filters
have the disadvantage of a slow descent in the stop band, resulting in a
long equivalent transition band. If the signal of interest happens to be
within the transition band, it is prone to distortion. This disadvantage
can be overcome as the filter order increases. The decay of the resis-
tance band accelerates with increasing order, resulting in more accurate
processing results. Based on the above characteristics, the Butterworth
filter is suitable for cases where the passband and stopband ripples are
small, and the requirements for the transition band signal are low. When
choosing the Butterworth filter order, accuracy and complexity should be
balanced. For example, in a wearable device for real-time detection of eye
vergence in a virtual reality, a third-order Butterworth filter is used for
band-pass filtering, or when performing in-ear continuous PPG monitoring,
a fourth-order Butterworth low-pass filter with a cutoff frequenct of 10 Hz
was selected as the low-pass filter [29].

• Chebyshev Filter is another type of filter that compared to the Butterworth
filter, with the same order the Chebyshev filter drops faster in the stop
band, but the response in the pass band fluctuates with respect to the
response in the pass band region for a Butterworth filter. Chebyshev
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filters are further divided into two types: Chebyshev I filters which have
equal ripple in the pass band and flat in the stop band; Chebyshev II
filters which have flat in the pass band and equal ripple in the stop band.
However, sometimes too rapid a drop can also have an adverse effect on
the results. For example, the rapid drop in the stopband of a Chevyshev I
filter gives it a narrower transition band than a Chevyshev II filter, which
can adversely affect its ability to filter out anomalously correlated signals
[29].

• Elliptic filters, are equiripple in both passband and stopband; it is different
from the Butterworth filter with a flat passband and an equal ripple in the
stopband, and the Chebyshev I filter with an equal ripple in the passband
and a flat stopband. Comparing with the filters mentioned before, at
the same order, Elliptic filters have the smallest passband and stopband
fluctuations, as well as the narrowest transition band. Elliptic filters
require only a lower order to achieve the same accuracy as Butterworth
and Chebyshev filters. Elliptic filters have the significant features of a
narrow transition band and fast attenuation [29]. In the field of wearable
sensors, Elliptic filters are not as popular as the other two types of filters.
Most studies on Elliptic filters focus on its ability to handle ECG signals,
since the Elliptical filter has the best effect of low-pass filtering among
all the filters in the case of high-frequency noise generated. Moreover,
because the Elliptical filter transition band is so narrow, ECG sensors
often use it precisely to eliminate 50 Hz power line interference [29].

2.3 Single Artifacts Removal Techniques
The variety of artifacts and their overlapping with signal of interest in both
spectral and temporal domain, even sometimes in spatial domain, makes it
difficult for simple signal preprocessing techniques such as typical digital filtering
or amplitude thresholding to identify them from desired biosignals. Usually,
the extra-physiological artifacts such as line interference or electrode noise can
be removed by digital filtering techniques as there is a spectral separation. But
careful attention is required to remove physiological artifacts as they co-exist
within the same frequency range of the signals.

2.3.1 Empirical Mode Decomposition
Several techniques have been proposed in the literature for denoising biosignals
based on empirical mode decomposition(EMD). This technique has been used
for analyzing non stationary signals. The aim of EMD methods is to adaptively
represent the signal as sums of zero-mean oscillating components, called the
intrinsic mode function (IMFs) using a sifting process. In other words, the
EMD algorithm decomposes the signal, x[n], into a set of components with
amplitude-frequency modulated, b[n], called intrinsic mode functions (IMFs). In
the whole data set and at every point, every IMF must satisfy that the number
of extrema are the same with the number of zero crossings or differ at most by
one, and the mean value of the evelope defined by the maxima and minima
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must be zero. The signal reconstruction process is achieved by total sum of
IMFs and the residual. The major advantage of EMD is that the basic functions
are derived from the signal which is different from the wavelet approach whose
basis functions are fixed. The noise components of a noisy signal are centered
on the first IMFs (high-frequency IMFs) and the useful information of the signal
is often concentrated on the last IMDs (low-frequency IMFs). Thereby, the
denoising method can be based on the partial construction of the signal using
only the last relevant IMFs. This denoising method can be used for several
artifacts such as: ocular artifacts in EEG, motion artifact in PPG. EMD has
been adopted to analyze non-linear and non-stationary signals like EEG as
explained in [30]. It has been demonstrated that EMD filtering technique can
be very helpful to remove the eye blink and eye movement artifacts in a single
channel EEG by partial reconstruction from the components of decomposition.
In this method, the noisy IMFs are identified relying on entropy and reconstruct
the signal using IMFs that comprises lower entropy [30]. EMD decomposes the
signal into IMFs, which are extracted through an iterative sifting process. The
algorithm for a general raw EEG signal x(t) is described as follows:

(a) Determine the peaks of raw EEG signal,

(b) Construct the lower envelope and upper envelope of the signal separately
by using a cubic spline interpolation,

(c) Generate the first Intrinsic Mode Function (IMF1) by subtracting the
mean evelope from x(t).

(d) The first residual component is obtained by subtracting IMF1 from x(t),

(e) Repeat the process described from step (a) to calculate the next IMF by
considering the residual component as a new signal,

(f) Repeat the process until no more IMFs can be extracted. The original
signal x(t) can be reconstructed from IMF

In the case of motion artifacts in PPG, with a measure from an accelerometer is
possible to measure movement and link it to the part of the respiratory signal
which is corrupted with motion artifacts, but traditional filtering methods may
not work well since they cannot distinguish between the sought after signal
and the movement noise. Nevertheless, there are some possibilities to alleviate
this issue even if no acceleration signal is available. The disadvantage of these
methods is that they only marks the faulty parts and cut them out entirely. To
overcome this problem it is possible to generate a syntethic reference signal out
of the corrupted PPG signal with the use of EMD. The idea is to generate a
reference signal from the corrupted PPG signal using Complex Empirical Mode
Decomposition (CEMD). To generate the reference noise signal the following
steps have to be done:

• First, all the local minima and maxima of the originals signal x(t) =
d(t) = S(n) + N(n) need to be found. Where x(t) is the raw accelerometer
signal, S(n) is the raw PPG signal and N(n) is the motion noise.
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• The next step is to envelope all the maxima and all the minima, after all
the envelope signals are generated, the mean value, m(t) is calculated. The
value of the mean is then subtracted from the original signal: h(t)=x(t)-
m(t) and the new signal h(t) is decomposed into IMF by sifting process
until h(t) meets the IMF conditions.

• Therefore, the next step is to identify the quasi-residue function r(t)=x(t)-c.
This loop has to be repeated until r(t) has only one extrema.

• Afterwards, the spectrum of each IMF based on the predefined frequency
range has to be computed.

• The last step to generate the reference noise signal is identifying the desired
signal portion range and eliminating IMF corresponding to the desired
frequency components of the PPG [31].

It is possible to generate a reference signal out of a corrupted PPG signal with
EMD, after the reference signal is generated, an adaptive filter can be used to
remove motion artifacts [31].

In [32], an integrated EMD adaptive threshold denoising method (IEMD-
ATD) is proposed, which is suitable for the reduction of noise in ECGs. This
method contains four steps:

1. First, the ECG is decomposed through integrated EMD (IEMD) into a
set of IMFs and one residual term,

2. Second, all of the IMFs are divided into three groups: high-frequency
noise predominant IMFs, noise-free IMFs and IMFs with low frequency
artefacts,

3. Third, high-frequency noise predominant IMF are denoised by the proposed
peak filtering denoising method after the adaptive threshold is calculated.

4. Finally, the denoised ECG signal is reconstructed by summing the denoised
IMFs and the noise-free IMFs and directly discarding the IMFs with low-
frequency artefacts.

2.3.2 Wavelet Transform
A wide range of approaches have been developed to try to extract both time
and frequency information from a waveform. Basically they can be divided
into two groups: time-frequency methods and time-scale methods.

Wavelet transform is a time-frequency technique that was introduced to
overcome the limitations in time and frequency resolution. Wavelet decomposes
a signal into different frequency components and studies each component with
a resolution matched to its scale. This property can be used for denoising
purposes. The wavelet transform can be used as yet another way to describe the
properties of a waveform that changes over time, but in this case the waveform
is divided not into sections of time, but segments of scale. In numerical
analysis and functional analysis, a discrete wavelet transform (DWT) is any
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Figure 2.5: Denoised ECG by using EMD [32].

wavelet transform for which the wavelets are discretely sampled. As with other
wavelet transforms, a key advantage it has over Fourier transforms is temporal
resolution: it captures both frequency and location information. For example,
wavelet denoising is applied on the raw PPG signal to eliminate high frequency
noise, and then a methods based on wavelet transform combined with adaptive
filter is applied to eliminate motion artifacts. The discrete wavelet transform
(DWT) is not time-invariant. Due to this drawback, denoising via the DWT
often suffers from additional artifacts like ringing effects in the vicinity of
a discontinuity. To address the problem, the stationary wavelet transform
(SWT) can be used , which is time-invariant and performs no downsampling.
Consequently, the lenght of the sequences at each level is the same as that of
the original sequence, which provides better sampling rates in the low frequency
bands compared with standard DWT. For example, in [33], EDA data were
decomposed into 8 levels. After high-pass filtering inside the SWT, the wavelet
coefficients of SCL and SCRs will both have mean values around zero.

A typical histogram of the wavelet coefficients of an Skin Conductance (SC)
signal is shown in Figure 2.6, with a fitted model of two mixed Gaussians
superimposed. The Gaussian with smaller variance corresponds to the wavelet
coefficients of SCL, while the Gaussian with larger variance corresponds to the
wavelet coefficients of SCRs. Apart from the two distributions, there are a few
very large coefficients in the histogram, which are motion artifacts that need to
be removed [33].

In [34] study for ECG, a discrete wavelet transform using the eight-order
symlet wavelet was applied to a single channel recording to create an eight-
level wavelet decomposition of the raw signal. After calculating the wavelet
coefficients, nonlinear thresholding in the wavelet domain was used for artifact
removal, where the absolute value of the coefficients greater than the threshold
was set to zero. The inverse wavelet transform was then implemented using
the new coefficients to obtain the clean ECG signal as shown in 2.7.
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Figure 2.6: Histogram of the wavelet coefficients of an SC signal with a fitted
model of two mixed Gaussians superimposed

Figure 2.7: Four levels of wavelet decomposition of the ECG signal before
and after thresholding [34].

2.3.3 Independent Component Analysis (ICA)

Independent component analysis (ICA) is a statistical and computational
technique for revealing hidden factors that underlie sets of random variables,
measurements, or signals. ICA defines a generative model for the observed
multivariate data, which is typically given as a large database of samples. In the
model, the data variables are assumed to be linear mixtures of some unknown
latent variables, and the mixing system is also unknown. The latent variables
are assumed non-Gaussian and mutually independent, and they are called the
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independent components of the observed data. These independent components,
also called sources or factors, can be found by ICA. For the ICA model, n
linear mixtures

x1, x2, .., xn

of n independent components combined together in a mixture are denoted as:

xj = aj1S1 + aj2 + . . . + ajnSn ∀j (2.1)

Whereas, X is a random vector whose elements are a mixture of

x1, x2, .., xn

, S is the random vector with components

s1, s2, .., sn

and
aj1, aj2, .., ajn

are the mixing coefficients.
This equation model can be rewritten as the generalized form:

X = AS (2.2)

The above model is called Independent Component Analysis or the ICA model.
This model is solved with the assumption that components of S are statistically
independent, independent components follow non-Gaussian distribution, and
the mixing matrix A is square. After estimating the matrix A, is easy to find
its inverse transformation (I):

S = IX

This equation calculates each independent component of S from the mixture
of signals [35]. ICA has been used to extract independent components from
ECG signal which is synthetically mixed with the random noise in [35]. The
concept of two independent components, i.e. one is ECG pure signal and the
other as noise, has been applied.

Figure 2.8: Left: Contaminated ECG component. Right: Extracted noise
from ECG signal using ICA

In [3] an ICA has been used to reduce intrinsic signal artifacts in EEG,
the raw EEG was decomposed into different components and therefore the
artifactual components were identified. To calculate different components in
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EEG signals the Extended Infomax method was applied to decompose the
original EEG recording across 14 different electrodes into 14 components. The,
three components that represented the most common intrinsic signal artifacts
were removed.

2.3.4 Principal Component Analysis (PCA)

PCA is one of the Factor Analysis methods. It is aimed at the reduction of
a wide range of random variables to a smaller set. PCA is a mathematical
technique that can be used to identify and remove sources of noise or variation
that are not of interest in a given dataset. In the context of biosignals, this can
include various types of artifacts such as electrical noise, motion artifacts, or
other sources of interference that can affect the quality of the signal. The goal
of using PCA in this context is to extract the underlying signal of interest while
minimizing the impact of the artifacts. This is typically done by identifying
and removing the principal components of the signal that are most strongly
correlated with the artifacts. PCA is a method based on matrix calculus, one
of the first steps is to calculate and to select the eigenvalues of the co-variation
matrix. The greatest eigenvalues should be selected from the calculated numbers.
On the basis of the selected values the analysis is carried out in order to ascertain
the most significant principal components. The greater an eigenvalue is, the less
information is going to be lost. The goal is to minimise information loss. For
the selected eigenvalues the eigenvectors are computed by means of a system of
linear equations. The last step of the algorithm is the estimation of the point in
the new space, the point corresponding to the given observation vector [23]. In
general, the PCA method allows to separate some of the factors, components,
which contain artefacts. It also allows to decrease, for example, the volume
of an EEG signal and as a result, an EEG signal decreased by the artefacts
is obtained. However, eliminating too much information from an EEG signal
can render the signal useless. It is the fragments which are essential for the
description of the EEG signal content that would be extracted in that case.

Figure 2.9: PCA methods applied for artefact correction

The first picture presents elimination of one EEG signal component. Along
with that, the second one presents how a signal looks after elimination of 12
components. That resulted in disappearing of the EEG signal [23].
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2.3.5 Adaptive Filter
In general, an adaptive filter is a type of digital filter that is capable of adjusting
its parameters in response to changes in the input signal. It is used in various
signal processing applications, such as noise cancellation, equalization, and
system identification. The adaptive filter works by minimizing the difference
between the desired output and the actual output of the filter. This is achieved
by adjusting the filter coefficients in real-time based on the error signal, which
is the difference between the desired output and the actual output of the filter.

Adaptive filters have been shown to be useful in motion artifact reduction in
some studies, for example Tong et al. [36] used an anisotropic magnetoresistive
(AMR) sensor and an accelerometer as the source of reference input, and their
results indicate that adaptive filtering can reduce the amount of motion artifact
present in the ECG, and the accelerometer-based sensor outperforms the AMR
sensor.

In [36], the adaptive filtering method is used because it can adaptively
track the signal under non-stationary conditions and can adjust its impulse
response to filter out the noise in the input with little or no prior knowledge
of the signal and noise characteristics. The adaptive filter works generally for
the adaptation of signal-changing environments, the spectral overlap between
noise and signal, and unknown or time-varying noise. It has the capability
of adaptively tracking the signal under non-stationary conditions and can be
used for different purposes, such as system identification, prediction, and noise
cancellation. Figure 2.10 shows the working principle of the adaptive filter in
noise cancellation. In adaptive noise cancellation systems, the objective is to
produce a system output X’(n) that is the best fit in the least squares sense to
the signal X(n) by feeding the system output back to the adaptive filter and
adjusting the filter through an adaptive algorithm to minimize total system
output power. The adaptive filter contains a digital filter with adjustable
coefficients and the adaptive algorithm to modify the values of coefficients
for filtering each sample. The coefficients of the digital filter are continuously
changed according to the chosen adaptive algorithm so as to minimize the
mean squared value of the error signal e(n). The reference signal S(n) is fed
into a digital filter to produce an output N’(n), which is as close as possible to
the replica of the noise N(n). Subsequently, this filtered signal output y(n) is
subtracted from the primary input d(n) to obtain the estimated desired signal
X’(n).

Figure 2.10: Principle of the adaptive filter in noise cancellation [36].
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2.3.6 Sampling Nyquist Theorem
The Sampling Nyquist Theorem is defined as follows: in order for a band-limited
(i.e., one with a zero power spectrum for frequencies f > F ), baseband (f > 0)
signal to be reconstructed fully, it must be sampled at a rate

fs > 2 ∗ F (2.3)

.
A signal sampled at fs = 2F is said to be Nyquist-sampled, and

fs

is called the Nyquist frequency. No information is lost if a signal is sampled at
the Nyquist frequency, and no additional information is gained by sampling
faster than this rate. The Theorem relates the frequency bandwidth F of the
signal subjected to sampling to the minimal required sampling frequency fs.
This relationship is described as follows:

fs ≥ 2fm (2.4)

where fm is the frequency of the highest significant frequency component
emerging above the noise floor of the entire system.

Many educational resources identify fm as the highest frequency component
in the signal, and in a noise free environment this definition would be the
simplest. However, biomedical processes and signals are routinely recorded
in dynamic noisy environments, and the identification of this component is
difficult, if not impossible. Therefore, for the purposes of biomedical signal pro-
cessing, it would be prudent to modify the traditional definition of fm from the
highest frequency component in the signal to the highest significant frequency
component in the signal emerging above the noise floor. The determination
of this component can be made objective if one considers the nonidealities
and artifacts determining the noise floor of the analog instrument prior to the
digitization, as well as the resolution of the analog-to-digital conversion process
used by the data acquisition system .
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Chapter 3

Machine Learning
Algorithms for Stress
Detection

3.1 Machine Learning Techniques
Machine Learning is a system of computer algorithms that can learn from
examples on their own without being explicitly coded by anyone and automati-
cally improve their performance through experience. In this way the system is
capable of improving its actions and make better decisions, since it becomes
more and more accurate in predicting the outcome.

A learning paradigm is a particular pattern on which a system learns. A
machine, when given some data, also has a pattern approach that dictates
the learning process. There are three main paradigms when it comes to
Machine learning, and they can be divided into supervised, unsupervised,
semi-supervised, and reinforcement learning (RL) [37].

• Supervised learning is an approach where a computer algorithm is trained
on input data that has been labeled for a particular output. This kind
of method assumes that labeled training data is available. The various
algorithms generate a function for mapping inputs to desired outputs. By
comparing its output with the intended one on the training data, it can
find and correct mistakes, modifying the model and achieving a greater
accuracy [37]. This type of paradigm is based on training and good at
both classification and regression problems.

• Unsupervised learning, here models are not supervised using a training
dataset, which means that the computer is provided with unclassified and
unlabelled data. The models find the hidden patterns themselves and
understand from given data. The main goal is to find the fundamental
structure of the dataset and group that data according to similarities and
finally signify that dataset in a compressed format.

• Semi-Supervised learning are problems where you have a large amount of
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input data (X) and only some of the data is labeled (Y). These kind of
problems sit in between both supervised and unsupervised learning.

• Reinforcement learning involves training agents to take actions in an
environment to maximize a reward signal. It has the main aim to, through
interactions with the environment, to produce actions that maximize the
system’s performance. In this way, software agents can discover and model
the ideal behaviour within a specific context.
The method used is a trial and error search, where the system learns
which actions are favorable, and therefore gets a reward, and which ones
are disadvantageous, getting a penalization. This reinforcement signal is
essential for the machine to learn which actions are best.

Supervised learning problems can be further grouped into regression and
classification problems as shown in Figure 3.1:

• Classification: a classification problem is when the output variable is a
category, such as "stress" or "no stress"

• Regression: a regression problem is when the output variable is a real
value, such as "euros" or "height".

Unsupervised learning problems can be mostly grouped in one category [37]:

• Clustering: is a technique that groups data points. That is, given a
set of data points, a clustering technique can be used in order to classify
each data point into a particular group. A clustering problem is where
you want to discover the inherent groupings in the data, such as grouping
customers by purchasing behavior.

Figure 3.1: Machine Learning Techniques [38]
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Some of the most popular algorithms in supervised learning are briefly
presented below:

• Support Vector Machine (SVM), this algorithm includes two concepts:
hyperplane and feature space. In a binary classification, the hyperplane
is a decision boundary that separates the two classes. In a multi-class
classification problem, the hyperplane is a higher-dimensional surface
that separates the data points of different classes. The goal is to find
the hyperplane that maximizes the margin between the classes, i.e., the
distance between the hyperplane and the closest data points of each class.
Depending on the number of features and their dimensions, sometimes
a transformation in vector space is required to achieve the best possible
separation hyperplane. The search for the separation hyperplane in the
transformed spaces, usually of very high dimension, is based on the kernel
function. This algorithm simultaneously minimize the classification error,
while maximizing the geometric margin, which is the distance between the
hyperplane and the nearest training points.
SVM works well with unstructured (data that has no pre-defined structure
or format) and semi-structured data (data that has some structure or
format, but is not fully structured). SVM can solve any complex problem
with an appropriate kernel function, can scale high dimensional data, risk
of overfitting is low, comparatively memory efficient. The disadvantages is
that it requires a long time for training large datasets, lack of transparency
of results and doesn’t perform very well in noise. The main applications
of this algorithm can be for example handwriting and text recognition,
facial expression classification, speech recognition, cancer diagnosis and
prognosis [38].

• Naïve Bayes is defined as a type of probabilistic classifier that aims to
process and categorize data. The operation of this classifier is simple, it
is essentially a technique for assigning probability theory to classify data.
Naive Bayes classification algorithms utilise the Bayes theorem. The central
idea is that the probability of an event may be adjusted as new data are
entered. This classifier is not a single algorithm, but a family of automatic
learning algorithms that makes use of statistical independence. This
method is faster, solves multi-class prediction problems, is more suitable
for categorical input variables than numerical variables, requires much
less training data when its assumptions of the independence of features
hold true. The disadvantages are that when it faces the zero-frequency
problem, which are situations where one or more categories or classes in
the training dataset have no instances or examples, the estimation can be
wrong in some cases which makes its probability outputs less reliable and
it assumes that all predictors are independent which happens rarely in
real life. The main applications of this algorithm can be text classification
and sentiment analysis [38].

• Decision Trees are described as algorithms that perform repeated splits in
the dataset to provide maximum data separation, the resulting structure
is similar to a tree. Each node represents a feature and each branch is
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a decision that needs to be made according to the value of that feature.
One of the most frequently used criterion to split into branch is using the
information gain, this implies that the entropy reduction caused by dataset
division is maximized in every split. It is a simple and easy method to
understand, interpret and visualize, the output can be easily interpreted
by humans. It is used for both classification and regression problems and
can handle continuous and categorical variables. Another advantage is
that it handles missing values and outliers automatically and needs less
training period. The disadvantages are that overfitting is present, is not
suitable for large datasets, small noise can make it unstable leading it to
wrong predictions, chances of high variance in the outputs which leads to
many errors in the final estimation. The main applications may be the
use of demographic data to find prospective clients, energy consumption
and healthcare management [38].

• Random Forest is the most popular Decision Tree algorithms use, it is
defined as a classifier that uses ensembles of trees in order to achieve a
better classification performance. It provides high accuracy through cross-
validation, reduces overfitting in decision trees, works fine with categorical
and continuous values, used for both classification and regression problems,
automatically handles missing values present in the data, uses a rule-based
approach that does not require normalizing data, and feature scaling. The
disadvantages are that it takes more computational power and resources
required to build numerous trees to combine their outputs, it also requires
more time for training, suffers interpretability due to the ensemble of
decision trees, fail to determine the consequence of each variable. The
main applications may be on bank industry, healthcare sectors, stock
market and E-commerce [38].

• Linear Regression is a statistical method used to model the relationship
between a dependent variable and one or more independent variables.
When there is only one independent variable and the relationship between
the independent and dependent variable is linear, the regression is simple
and linear. However, when there are multiple input variables, it is a
multiple linear regression. The aim is to fit a line between the input and
output variables, known as the regression line. The best fitting line or
equation is the one that minimizes the sum of the squared errors between
the predicted values and the actual values of the dependent variable.

• Logistic Regression is a classification algorithm used to predict the prob-
abilities of a targeted variable. The objective or dependent variable is
dichotomous, meaning that there may only be two possible classes but
it may be expanded also to a multi-class setting. It is easier to imple-
ment and interpret, make no assumptions about distributions of classes in
feature space, it can easily extend to multiple classes, classify unknown
records fast, it performs well on linearly separable datasets, is less prone
to overfitting and can consider regularization to avoid it. It provides also
great training efficiency in some cases with low computation power, it
may be updated easily to reflect new data. The disadvantages are that it
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constructs linear boundaries, it may lead to overfitting when the number
of observations are less than the number of features. Is also important to
ensure that there is little to no multicollinearity, when two or more predic-
tor variables in a regression model are highly correlated with each other,
between the independent variables. Logistic Regression is not suitable for
solving non-linear problems due to its linear decision surface. Additionally,
capturing complex relationships may be challenging, and the model can
be sensitive to outliers. The main applications may be for example: online
credit card transaction, text editing, gaming [38].

Some of the most popular algorithms in unsupervised learning are briefly
presented below:

• Artificial Neural Networks (ANNs) are widely used computer models in
prediction. ANNs consist of a set of units, called artificial neurons, con-
nected together to transmit signals. The input information passes through
the neural network, where it undergoes various operations, producing
output values. Each neuron is connected to the others through links. As a
general rule, they have one or more layers of interconnection, called hidden
layers, which are responsible for connecting the neurons to each other.
Between each of the neurons, a gate called the activation function which
allows each neuron to be activated or deactivated according to a certain
activation function is usually added. ANNs may be used for example in
image and speech recognition, in robotics and automation environment
and in natural language processing.

3.1.1 Performance Metrics for Classifiers
Performance metrics are useful in machine learning because they provide a way
to quantify the effectiveness and accuracy of a model. They allow practitioners
to compare different models, evaluate the performance of a model over time,
and make informed decisions about which model to use in a given situation.

Performance metrics also provide a way to evaluate the performance of a
model on unseen data. This is important because it helps practitioners to
understand how well the model will perform on new data that it has not seen
before.

Additionally, performance metrics can also be used to identify areas where
the model is weak and needs improvement. For example, if a model has a low
recall, it may not be identifying all positive cases, and this can indicate that
the model needs to be adjusted or retrained.

Every machine learning task can be broken down to either Regression or
Classification, just like the performance metrics. In regression, it can be
used, for instance, the average prediction error (on the test set) to evaluate
the performance of a particular prediction algorithm. In classification, the
counterpart of the average prediction error would be the so called accuracy,
which simply counts the relative number of correct predictions:

Accuracy = Number of correct predictions

Total number of predictions made
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The accuracy is the proportion of correct predictions made by the model out of
all predictions made. It is commonly represented as a percentage, with a value
between 0 and 100. A model with high accuracy is able to correctly identify the
majority of the samples in the dataset. It should be noted that accuracy alone
may not always be the best metric to evaluate a model’s performance, as it
does not take into account false positives or false negatives. However, accuracy
hardly tells the full story about a classification algorithm’s performance.

In classification, is also important to be aware about the type of error that
may occur. In the context of machine learning, Type I error is related to false
positive rate (FPR) and Type II error is related to false negative rate (FNR).
A type I error in this context would be when individuals are classified as
positive, while they negative in reality. A type II error is when the individuals
that are classified as negative, while they are positive in reality.

Figure 3.2: False Positives (FP) and False Negatives (FN). Source: Optimiza-
tion for Machine Learning Course

A confusion matrix is a table that is used to define the performance of a
classification model, typically a binary classifier, as shown in Figure 3.3. It is a
table with two rows and two columns that reports the number of true positives,
false positives, true negatives, and false negatives for a binary classifier. The
columns of the matrix represent the predicted class, while the rows represent
the actual class. The entries in the matrix are the number of observations that
fall into each combination of predicted and actual class. The four important
measures that can be derived from a confusion matrix are:

• True Positive (TP): the number of correct positive predictions,

• False Positive (FP): the number of positive predictions that are actually
negative,

• True Negative (TN): the number of correct negative predictions,

• False Negative (FN): the number of negative predictions that are actually.

The confusion matrix can be used to calculate various metrics such as
accuracy, precision, recall, F1 score, and AUC-ROC. Together these provide a

39



Figure 3.3: 2x2 confusion matrix. Source: Optimization for Machine Learning
Course

comprehensive understanding of model performance. By building the confusion
matrix on test sample data, we can obtain estimates of the main classification
performance criteria:

• Precision p: the number of TP divided by the number of all classified
positive results,

• Recall r : the number of TP divided by the number of total actual positives,

• Specificity s: the number of TN divided by the number of total actual
negatives

• F1 score: is a metric that combines precision and recall to measure the
performance of a binary classifier, it is the harmonic mean of precision
and recall. It is particularly useful when the classes in the dataset are
imbalanced.

In binary classification, the class prediction for each instance is often made
based on a continuous random variable X, which is a "score" computed for the
instance (e.g., estimated probability in logistic regression). Given a threshold
parameter T, the instance is classified as "positive" if X>T, and "negative"
otherwise. The ROC curve is created by plotting the true positive rate (recall,
TPR) against the false positive rate (FPR) at various threshold settings. In
other words, the ROC curve shows the ratios between true alarms and false
alarms. The Area Under the ROC Curve (AUC) is an evaluation metric
for checking a classification model’s performance, it represents the degree or
measure of separability and has a shape as shown in Figure 3.4. It tells how
much the model is capable of distinguishing between classes, so higher the AUC,
better the model is at predicting 0s as 0s and 1s as 1s. A perfect classifier will
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have an AUC of 1, while a random classifier will have an AUC of 0.5. An AUC
of 1 means that the model has perfect discrimination and it is able to separate
the positive and negative classes perfectly. AUC values between 0.5 and 1 are
considered to be good models. AUC is a useful metric as it is insensitive to the
imbalance of the dataset and it does not depend on the threshold setting of
the model. It’s a robust metric that can be used in various applications such
as medical diagnosis, fraud detection, and natural language processing.

Figure 3.4: Example of a ROC curve and its AUC

However, in the case of highly imbalanced set, the ROC curve is not the
best metric to use to evaluate the performance of a method.

In the case of highly imbalanced set, is preferred to use the precision-recall
(PR) curve. In an imbalanced dataset, the number of examples in one class (the
minority class) is much smaller than the number of examples in the other class
(the majority class). Therefore, PR curves can be used in this case to evaluate
the model’s performance based on its ability to correctly identify examples
from the minority class.

The PR curve shows the trade-off between precision and recall for different
threshold as shown in Figure 3.5. A high area under the curve represents
both high recall and high precision, where high precision relates to a low false
positive rate, and high recall relates to a low false negative rate.
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Figure 3.5: Example of a PR curve [39].

42



Chapter 4

Proposed Framework

4.1 General Pipeline of the work
The proposed work is divided into the following steps as shown in the general
scheme in Figure 4.1:

Figure 4.1: General Scheme for analysis of mental stress

• Step 1 : Data Acquisition;

• Step 2 : Pre-processing;

• Step 3 : Feature Extraction;
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• Step 4 : Feature Selection;

• Step 5 : Machine Learning Algorithm;

• Step 6 : Classify the stress in levels (n=2 and n=3).

4.1.1 Wearable Sensors Used
The sensors used in this work belongs to the Biosignalsplux company, which
is a company that specializes in the development and production of hardware
and software solutions for biosignal monitoring and analysis.

Biosignalsplux’s biosensors can measure a variety of physiological signals,
such as electrocardiogram (ECG), electromyogram (EMG), electrodermal ac-
tivity (EDA), respiratory signals, among others. In the proposed work the
biosensors are used to measure in particular ECG, EDA and Respiration Signal.

The whole used system is composed by four components: a 4-channel hub,
a ECG sensor, a EDA sensor and a Piezo-Electric Respiration (PZT) sensor.

Figure 4.2: 4-channel biosig-
nalsplux hub.

The 4-channel hub enables the usage of up
to 4 sensors simultaneously. The standard
version of this hub does not have an internal
memory and a digital port which allows the
usage of biosignalsplux accessories. How-
ever, these features can be added to a 4-
channel device. The communication with
biosignalsplux devices is done via Bluetooth
or USB.

Three different signals (ECG, EDA, Respiration Signal) have been acquired
through biosignalsplux, all of them with a sampling frequency equal to 500 Hz
and a resolution of 16 bit.

Figure 4.3: Standard biosig-
nalsplux ECG sensor

The low-noise ECG local differential triode
configuration, figure 4.3 enables fast applica-
tion and unobtrusive data acquisition. The
state-of-the-art design of the analog fron-
tend on this sensor is specifically targeted
at analyzing minutiae in the data and pro-
vides medical grade raw sensor data. In Fig-
ure 2.2 is shown how the electrodes should
be placed in the human body during the
acquisition.
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This sensor can be used to extract heart rate data and other ECG features,
for this reason can be used in a lot of research fields such as biomedical, sports,
biofeedback and so on.

Figure 4.4: Standard biosig-
nalsplux EDA sensor

The biosignalsplux EDA sensor is capable
of accurately measuring the electrical prop-
erties of the skin which changes. The low-
noise signal conditioning and amplification
circuit design provide optimal performance
in the detection of even the most feeble
electrodermal skin response events.

The biosignalsplux EDA sensor is designed to acquire the change of skin
activity such as sweat with two measuring electrodes. One example is the
placement of the electrodes on the anterior side of the hand on two adjacent
fingers of interest as is shown in Figure 2.4. Another placement could be on
the palm of the hand.

Figure 4.5: Standard biosig-
nalsplux Respiration(PZT) sen-
sor

The biosignalsplux Piezoelectric Respiration
(PZT) sensor is an entry-level solution for
basic respiration data acquisition. This sen-
sor consists of a wearable chest-belt with an
integrated localized sensing element that
measures displacement variations caused
by the volume changes of the thorax or
abdomen during respiratory cycles (inhal-
ing/exhaling).

Typical applications of this sensor include respiration monitoring to deter-
mine respiration cycles, rates, relative amplitudes, and other features.

4.1.2 Data Acquisition
Forty healthy subjects recruited participated in this study. The subjects were
asked to sit comfortably and stay still.

All the data were collected in a controlled laboratory setting using wearable
sensors through the biosignalsplux platform. In total, 5 active AgCl (silver
chloride) electrodes were used with an elastic band for the respiration signal.

All the signals were acquired with a sampling frequency of 500 Hz and a
resolution of 16 bit.

In the Data Acquisition process, the first step to be done is the attachment
of the sensors to the subject. This step is critical in the data acquisition process,
as it ensures that the data collected is accurate and reliable. For this reason,
is important to ensure that the subject is comfortable and relaxed during the
attachment process to minimize any potential sources of stress that could affect
the results.
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Once the sensors are attached to the subject, the second step is the appli-
cation of stressors, which refers to the process of inducing a stressor in the
subject to elicit a physiological response that can be measured and analyzed.

In the proposed thesis, the application of stressors is made by asking to the
subjects to perform a stress test, which is composed by different tasks as shown
in Figure 4.6.

Figure 4.6: Stress Test Pipeline

In particular, the whole test presented in our work takes approximately
45 minutes in which different kind of stressors are applied in a controlled
environment.

Both the first and last task are used just as relaxation task, in both tasks
the subject is typically asked to sit quietly and relax for a short period of time,
while their physiological responses are measured using the sensors that were
attached in the data acquisition process.

In particular, the first relaxation task is used as a baseline that provides
a reference point for the subject’s physiological responses in a relaxed state,
against which the responses to the stressor can be compared.

Once the baseline task is done, the stressors are applied to the subject.
At first, it was asked to the subject to watch two different types of several

minutes video clips coming from two different movies. The first video was
designed to induce positive emotions, such as excitement or fun. The second
video, instead, was designed to induce negative emotions, such as fear, anxiety
or disgust.

Four arithmetical questions were proposed in this test, three counting
backward and one mental arithmetical task. Particularly, the difficulty of the
counting backward task increases moving forward with the test. In the mental
arithmetical task, it was asked to the subject to solve as much as possible
mathematical problems in one minute, the problems may be designed to be
challenging or difficult, such as long division or complex multiplication, to
induce stress in the subject.
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With the arithmetical questions also the Stroop Color task is proposed,
which procedure is presented in the subsection 1.4.3. This task can be stressful
because it requires the subject to suppress a prepotent response (reading the
word) and instead respond based on a different dimension (color).

At the end, a speaking and reading tasks were also proposed. In the
speaking part, it was asked to the subject to describe which are his strength
and weaknesses in one minute. In the reading task, the subject is asked to read
a passage of text under time pressure and once the time is over, is also asked
to the subject to explain the text in detail in one minute.

After each task four questions were proposed to all the subjects to establish
the value of the person’s perceived stress as expressed in self-report ratings
(e.g. from 0 to 10). The ground truth was formed as a combination of ratings
coming from 4 questions:

1. How relaxed were you?

2. How stressed were you?

3. How did you feel?

4. How involved were you?

The first two questions are related to the level of relax and stress during
the tasks and the last two questions are related to the valence and arousal
measures.

In the presented work, two different classification were made: a binary
classification and a three-class classification. Once all the self-assessment
coming from the subject were taken, these were mapped into labels using a
precise method.

• For the binary classification, the self-assessment rating can be mapped to
a binary label, where a rating of stress between 0 and 5 is labeled as "no
stress" (label 0) and a rating bigger than 5 is labeled as "stress" (label 1).

• For the three-class classification, the self-assessment rating can be mapped
to a three-class label, where a rating of stress between 0 and 4 is labeled
as "no stress" (label 0), a rating between 5 and 6 is labeled as " medium
stress" (label 1) and a rating bigger than 6 is labeled as "high stress" (label
2).

4.1.3 Pre-Processing
The first step of the pre-processing part consist in the Unit Conversion of
the acquired signals. In scientific terms it is always recommended the use of
specific units, like electric tension (V) or electric current (A). Each sensor that
Biosignalsplux commercialized has a datasheet where a transfer function is
mentioned for unit conversion be done.

For the ECG, the transfer function is the following and the signal range
goes from -1.5 mV to 1.5 mV:

ECG(V ) =
(ADC

2n − 1
2) · (V CC)

GECG

(4.1)
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ECG(mV ) = ECG(V )
1000 (4.2)

In which:

• VCC=3V (operating voltage),

• GECG = 1000 (sensor gain)

• ADC is value sampled from the channel,

• n is the number of bits of the channel.

For the EDA, the transfer function is the following and the signal range goes
from 0 µS to 25 µS :

EDA(µS) =
(ADC

2n ) · (V CC)
0.12 (4.3)

EDA(S) = EDA(µS) · (10−6) (4.4)

Where:

• VCC=3V (operating voltage),

• ADC is the value sampled from the channel,

• n number of bits of the channel.

For the respiration signal, the transfer function is the following and the
signal range goes from -50% to 50%:

PZT (%) = (ADC

2n
− 1

2) · (100%) (4.5)

Where:

• PZT(%) is the displacement value in percentage (%) of full scale,

• ADC is the value sampled from the channel

• n is the number of bits of the channel

The second step in the pre-processing part consist in applying the denoising
method to the acquired signal to remove the noise (acquisition component that
is not relevant for the study process).

Filtering of Heart Rate Signal

In the case of ECG, there may be many source of noise due to different factors
as presented in section 2.1.1. There are different ways to suppress the noise
in the Heart Rate signal. The first way to reduce the noise can be made by
using two different digital filters: Notch filter and High-Pass Butterworth Filter.
The Notch filter is used to suppress the Powerline Interference at 50Hz with
a quality factor equal to 0.5. The High-Pass Butterworth Filter with cut-off
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frequency of 0.5Hz, instead, is used to eliminate the Baseline Wander (low
frequency noise), EMG noise and electrodes motion noise.

In the proposed work, noise reduction is made by using the band pass filter
consisting of a low pass filter cascaded by a high pass filter with a filtered band
between 0.5 Hz and 40 Hz and the filtered signal has the shape as shown in
Figure 4.7.

The purpose of low pass filter is to suppress high frequency noise, filter
design using digital filters having integer coefficients allows real time processing
speeds.

Figure 4.7: Example of Raw vs Cleaned ECG

Filtering of the EDA signal

Noise reduction in the case of EDA signal can be made in different ways. A first
method that can be applied is made by: a low-pass filter with cut-off frequency
of 0.25 Hz and smoothing techniques such as exponential smoothing and moving
average filter have been widely applied to mitigate noises with higher frequency
range that desired EDA signals, which are caused by electromagnetic fields
or instability of electrode contacts. Also an high pass filter with 0.05 Hz has
proven effective to suppress lower frequency noises introduced by variability in
electrode impedance, humidity and temperature on skin.

In the presented thesis, noise reduction is made by using a Low-Pass But-
terworth Filter with cut-off frequency of 3 Hz and order 4. This filter is mainly
used to eliminate the high-frequency noise due to the electrode motion artifact
and the filtered output is shown in Figure 4.8.

Figure 4.8: Example of Raw vs Cleaned EDA
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Filtering of the Respiration Signal

For the Respiration Signal, there may be several approach to clean from noise
sources. Wavelet denoising can be used to remove noise from the respiration
signal while preserving its temporal and spectral characteristics, this technique
decomposes the signal into different frequency subbands and applies different
levels of smoothing to each subband, based on the amount of noise present.
Adaptive filtering methods can also e used to remove noise from the respiration
signal, which adapt to the changing characteristics of the signal and noise.
These methods are particularly useful for removing noise that changes rapidly
over time or is non-stationary.

In the proposed thesis, the approach used is to use filtering techniques such
as a bandpass filter, which can remove noise outside of the frequency range
of the respiration signal. In particular, a Pass-Band Butterworth filter with
[0.05,3] Hz band-pass region, has been used to remove low-frequency noise and
high-frequency noise, respectively, and the filtered output is shown in Figure
4.9.

Figure 4.9: Example of Raw vs Cleaned Respiration Signal

It is important to consider the type of noise and characteristics of the
respiration signal when selecting the appropriate method for cleaning the
signal.

Signal To Noise Ratio (SNR)

A common evaluation metric used to evaluate the performance of digital filtering
is SNR.

SNR stands for Signal-to-Noise Ration, which is a commonly used measure
to evaluate the quality of a signal in the presence of noise. In the context of
biosignals, noise can arise from various sources, SNR is defined as the ration of
the power of the signal to the power of the noise. Mathematically, it can be
expressed as:

SNR = 10 · log10(
Psignal

Pnoise

) (4.6)

where Psignal is the power of the signal, and Pnoise is the power of the noise.
The SNR is usually expressed in decibels (dB), which is a logarithmic unit
that allows for easy comparison of ratios. A higher SNR indicates that the
signal is stronger relative to the noise, and thus the signal can be more easily
distinguished from the noise. A low SNR, on the other hand, indicates that
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the noise is more dominant and can make it difficult to accurately measure the
signal.

In summary, SNR is an important metric in the analysis of biosignals as
it provides a measure of the quality of the signal in the presence of noise.
Specifically, the signal is higher than the noise if the SNR is higher than 1 (in
dB higher than 0) and inversely, if it is below 1 (in dB below 0) the influence
of the noise is higher than the influence of the signal and, thus, it might be
impossible to recover the signal.

Though signal to noise ratio is important for every type of signal, the process
for calculating it can be difficult. In this work an example of SNR values is
shown in Table 4.1 with the value of a raw ECG and the cleaned version of the
signal with different types of digital filter:

Type of Filter SNR SNR in dB
RAW 33.435 30.484
Pass-Band Filter 1 39.648 31.964
Pass-Band Filter 2 38.173 31.635
Notch Filter 35.801 31.078
Notch+High-Pass Filter 32.438 30.221

Table 4.1: SNR values for an ECG signal

Where:

• The first Pass-Band Filter is made by using the HeartPy package with
cut-off frequency [0.01, 40] Hz and order 3,

• The second Pass-Band Filter is made by using the Butterworth Filter with
cut-off frequency [0.01, 40] Hz and order 3,

• The third case is made by using a simple Notch Filter with cut-off frequency
of 50 Hz and quality factor equal to 1,

• The fourth filter is made by the combination of a Notch Filter and a
Butterworth High-Pass Filter with cut-off frequency of 0.5 Hz and order 5.

HeartPy is an open-source Python package that provides tools for heart rate
variability (HRV) analysis. In this context, it has been used for signal processing.

4.1.4 Feature Extraction
A feature of a biosignal refers to a measurable characteristic or attribute of a
physiological signal that can be used to extract useful information about the
underlying physiological process or state.

In general, features of biosignals can be extracted using some signal process-
ing techniques, and can provide information that can be used to diagnose or
monitor physiological conditions, such as stress, or also to develop predictive
models in the field of stress detection.

There may be different kind of features of biosignals:
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• Time-domain features: derived from the amplitude and timing of the signal,
these type of features show how a signal changes with time. Examples
include: Mean Heart Rate (HR), R peaks, Mean RR intervals, Tonic
component of SC (SCL), Phasic component of SC (SCR), Frequency of
SCR peaks, extraction of inhalation peaks (RSP peaks), Breath rate, Mean
BB interval.

• Frequency-domain features: derived from the frequency content of the
signal, these type of features show how much of the signal lies within each
given frequency band over a range of frequencies. Examples include: Total
power of the signal, Absolute power of the low frequency (LF) band (that
ranges in the 0.04-0.15 Hz band) , Absolute power of the high frequency
(HF) band (that ranges in the 0.15-0.4 Hz band) , LF to HF power ratio
(LF/HF).

• Nonlinear features: derived from the nonlinear dynamics of the signal,
these features describe complex and often non-repetitive patterns in the
signal. Examples include: index of short time variability of BB intervals
(SD1), index of long time variability of BB intervals (SD2), approximate
entropy of heart rate variability (ApEn).

• Statistical features: derived through statistical analysis of the signal, these
features may help to identify data trends and patterns. Examples include:
mean value of the signal, variance of the signal (Var), standard deviation
of the signal (SD), kurtosis of the signal (Ku), skewness of the signal (Sk).

It should be noticed that these features are used to characterize the signals
accurately.

Figure 4.10: Extracted Features From Biosignals
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In Figure 4.10 is shown which are the features that are selected and extracted
from each biosignal take into accont. In particular, for both ECG, EDA and
Respiration Signal the Frequency-Domain, Non-linear and Statistical Features
exctraced are all the same. These features are defined as follows:

• For the Frequency-Domain Features: LF is the spectral power of the low
frequency band (0.04-0.15 Hz), HF is the power of the low frequency band
(0.15-0.4 Hz), ULF is the power of the ultra low frequency band (0.0-0.0033
Hz), VLF is the power of the very low frequency band (0.0033-0.4 Hz),
VHF is the power of the very high frequency band (0.4-0.5 Hz), LF/HF is
the LF to HF power ratio, rLF is the ratio of low frequency, rHF is the
ratio of high frequency, peakLF is the peak frequency of the low frequency
band, peakHF is the peak frequency of the high frequency band.

• For the Non-Linear Features: SD1 is the index of short time variability
of RR or BB intervals, SD2 is the index of long time variability of RR
or BB intervals, SD1SD2 is the ratio between short term and long term
variability of RR or BB intervals.

• For the Statistical Features: sd is the standard deviation, sk is the skewness,
ku is the kurtosis, q1 is the first quantile of the signal (25th percentile),
q3 is the third quantile of the signal (75th percentile), q05 is the 5th
percentile of the signal and q95 is the 95th percentile of the signal.

Instead, for the Time-Domain Features there are different features for each
particular signal:

• For the ECG signal: meanHR is the average heart rate, minHR is the
minimum value of heart rate, maxHR is the maximum value of heart
rate,sdHR is the standard deviation of HR, modeHR is the difference
between maxHr and minHr, nNN is the number of RR intervals, meanNN
is the average of RR intervals, SDSD is the standard deviation of the suc-
cessive differences between RR intervals, CVNN is the standard deviation
of RR intervals, SDNN is the standard deviation of RR intervals divided
by the mean of the RR intervals, pNN50 is the proportion of RR intervals
greater than 50ms, out of the total number of RR intervals, pNN20 is the
proportion of RR intervals greater than 20ms, out of the total number of
RR intervals, RMSSD is the root mean square of successive RR interval
differences, medianNN is the median of the RR intervals, q20NN is the
20th percentile of the RR intervals, q80NN is the 80th percentile of the
RR intervals, minNN is the minimum of the RR interval, maxNN is the
maximum of the RR interval and triHRV is the HRV triangular index,
integral of the intensity of the RR interval histogram divided by its height.

• For the EDA signal: min is the minimum value of SCR, max is the
maximum value of SCR, mean is the average value of SCR, sd is the
standard deviation of SCR, maxdiff is the maximum difference between
peaks and onsets, mindiff is the minimum difference between peaks and
onsets, meandiff is the average difference between peaks and onsets.
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• For the RESP signal: meanRR is the average respiration rate (RR),
minRR is the minimum value of RR, maxRR is the maximum value of RR,
sdRR standard deviation of RR, modeRR is the difference between maxRR
and minRR, nBB is the number of Breath to Breath, meanBB is the
average of BB intervals, SDSDb is the standard deviation of the successive
differences between BB intervals, CVNNb is the standard deviation of
BB intervals, SDNNb is the standard deviation of BB intervals divided
by the mean of the BB intervals, RMSSDb is the root mean square of
successive BB interval differences, medianBB is the median of the BB
intervals, q20BB is the 20th percentile of the BB intervals, q80BB is the
80th percentile of the BB intervals, meanTT is the average time between
successive Troughs (TT), SDTT is the standard deviation of TT intervals,
q20TT is the 20th percentile of the TT intervals, q80TT is the 80th
percentile of the TT intervals, meanBA is the average valuea of breath
amplitudes, meanBW is the average value of breath widths (time between
peak and through).

All the features were extracted manually by constructing proper functions in
the Python environment made for that purpose. There are also many algorithms
that can be used for feature extraction from biosignals, depending on the type
of signal and the specific features of interest.

Examples of commonly used algorithms for feature extraction are:

• Fourier Transform, technique used to converts a signal from the time do-
main to the frequency domain, it can be useful for identifying characteristic
frequencies in the signal,

• Wavelet Transform, technique used to identify patterns in signals that
vary in both frequency and time, it can be useful for identifying transient
events in the signal,

• Time-Frequency Analysis: such as the spectogram, can provide information
about the changes in frequency content over time, it can be useful for iden-
tifying changes in frequency content associated with different physiological
processes.

4.1.5 Features Selection
A feature selection algorithm is important for several reasons in the environment
of machine learning pipeline for biosignal analysis.

It helps first of all to improve the model performance by selecting only
relevant features that are strictly correlated to the work taken into account, in
this case correlated to the stress detection field, because irrelevant or redundant
features can cause overfitting or may decrease accuracy. It may also reduces
the computational complexity of the model by reducing the number of features
that need to be analyzed, resulting in faster training and testing times and
reduced memory usage.

Since the total number of feature extracted are approximately 131, a feature
selection method is needed.
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The most important aspect of a feature selection algorithm is that it also
enhances interpretability by identifying the most important features that con-
tribute to the model’s predictions, helping to understand the underlying physi-
ological processes or conditions that are being analyzed.

The general steps to follow when is needed to implement a feature selection
algorithm are the following:

1. Define the problem: determine the objective of the feature selection
process,

2. Choose a metric: is important to determine an evaluation metric to
measure the performance of the model. In the case of a stress detection
algorithm, which is a classification problem, it might be useful to choose
the accuracy or the precision as the evaluation metric,

3. Choose a feature selection method: there are various methods for selec-
tion features, including filter methods, wrapper methods, and embedded
methods. Each method has its strengths and weaknesses, and the choice
of method depends on the dataset and the problem at hand,

4. Implement the feature selection algorithm: apply the chosen method to
the dataset to select the most relevant features,

5. Evaluate the performance: evaluate the performance of the model with
the selected features using the chosen evaluation metric. Compare the
perdormance to the baseline model using all features to determine if the
feature selection process improved the model’s performance.

In the presented work the chosen feature selection algorithm is the Recursive
Feature Elimination (RFE) that works as shown in Figure 4.11, which uses a
machine learning model to iteratively select the most important features from
a dataset, in this particular case, the machine learning model selected is the
Logistic Regression model.

Figure 4.11: How a Recursive Features Elimination works

In the context of logistic regression, RFE involves training a logistic regression
model using all the available features in the dataset. After that, the algorithm
ranks the importance of each feature based on their coefficients, which indicate
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how much each feature contributes to the prediction of the target variable.
The least important feature is then removed from the dataset, and the logistic
regression model is retrained using the remaining features. The process is
repeated until we have a predefined number of features or until the performance
of the model stops improving.

In the proposed thesis, after a trial and error the final number of feature
selected is chosen equal to 20, the combination of this number of features with
the different machine learning algorithms taken into account gave the best
accuracy achieved.

Other Feature Selection strategies

There are several other feature selection algorithms that can be used with a
dataframe and labels to identify the most relevant features for a binary and
multiclassification problem. Some other examples may be:

• SelectKBest: this algorithm uses statistical tests (such as for example
ANOVA) to select a fixed number of features that have the highest score,

• Lasso (Least Absolute Shrinkage and Selection Operator): this regulariza-
tion technique can be used for linear models to select features by shrinking
the coefficients of less important features to zero,

• Random Forest: this algorithm uses decision trees to identify the most
important features by calculating the feature importance measure.

Is also important to notice that it is not mandatory to use the same algorithm
for feature selection and classification. Is possible to use any feature selection
method (such as RFE or SelectKBest). The purpose of feature selection is to
identify the most informative features in your data that are relevant to the
target variable, regardless of the classification algorithm you will use. In fact,
using different algorithms for feature selection and classification can sometimes
be beneficial.

For example, you can use a feature selection method that is less computation-
ally expensive, such as SelectKBest, in combination with a more computationally
expensive classification algorithm such as a deep neural network. This can save
you time and computational resources without sacrificing performance.

Another method that may be taken into account besides features selection
is SHAP (SHapley Additive exPlanations). It is a method for explaining the
output of a machine learning model by assigning feature importance scores
to the input features. SHAP values provide a unified framework for feature
attribution in machine learning models, and can be used to explain the output
of any black-box model. The SHAP values represent the contribution of each
feature to the model output, they also take into account the interaction between
features and the correlation between features. These values can also be used to
generate feature importance plots that show the relative importance of each
feature in the model as shown in Figure 4.12.

To calculate SHAP values, first of all is needed to train the model on the
data, then a set of background data is selected to represent the distribution of
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Figure 4.12: Features Importance using SHAP values

the data. Then the SHAP values are calculated for each data point by changing
the features and observing oh the model output changes.

Once the values are calculated, they can be used to generate feature impor-
tance plots that show the relative importance of each feature in the model, and
can be used to identify the most important features for stress detection.

4.1.6 Machine Learning Algorithm
Once the relevant features have been selected, the next step in the machine
learning part of a stress detection algorithm is to train a model using the
selected features.

The first step to be done is the splitting of the labeled biosignal data into
a training set and a testing set, it is an important step since it enables the
evaluation of the model’s performance on new, unseen data.

The data are usually split randomly, which means that each data point has
an equal chance of being included in either the training or testing set. The
size of the training set is typically larger than the size of the testing set, with
a common split being 80% for training and 20% for testing. However, the
optimal split will depend on the size and complexity of the dataset, as well as
the performance of the model on the testing data.
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In addition to splitting the data into a training and testing set, cross-
validation can be also used to further assess the performance of the model. In
cross-validation, the data is split into multiple folds, and the model is trained
and evaluated on each fold separately.

In the proposed work the data are split randomly with the 80% of the data
for training and 20% for test with random state equal to 42.

The third step is to choose a machine learning algorithm, since there are
many different algorithms that can be used for stress detection, including
decision trees, support vector machines, random forest, neural network, linear
discriminant analysis and XGBoost, the choice of the proper algorithm will
depend on the specific characteristics of the data and the goals of the project.

The first task taken into account is the binary classification, which involves
label the data into two categories or classes, that means to classify biosignals
as either indicative of stress or not indicative of stress. The dataset was labeled
with binary values (0 or 1) indicating whether the individual was experiencing
stress or not during the recording of the biosignals.

First Approach with Leave-One-Out (LOO) Cross-Validation

Several techniques were used to be able to do a comparison and choose the
most suitable machine learning algorithm for this stress detection study. The
first technique used was the Leave-One-Out (LOO) classification, which can be
used for evaluating the performance of a classification model.

In LOO classification, each data point in the dataset is used as a test instance
once, while the rest of the data points are used as training instances to train
the model. To perform LOO classification, the model is trained on all data
points in the dataset except for one, which is used as the test instance. The
model then predicts the class of the test instance based on its features, and the
predicted class is compared to the actual class label of the test instance. This
process is repeated for every data point in the dataset, with each data point
being used once as a test instance.

The first classification algorithm used with LOO technique is Random Forest,
which builds an ensemble of decision trees, where each tree is trained on a
random subset of the features and data points. For this reason, combining LOO
cross-validation with Random Forest can be a powerful approach for building a
stress detection algorithm. This approach led to an accuracy of 69%.

The second classification algorithm used with LOO technique is Linear
Discriminant Analysis, which is a statistical technique used to find a linear
combination of features that can best separate two or more classes of data.
In this context, LDA can be used to find a linear boundary that separates
stress and non-stress states based on the features extracted. Combining LOO
cross-validation with LDA can be useful to build a stress detection algorithm,
since LOO can be evaluated on a diverse range of data points and LDA can
provide a linear boundary that separates stress and non-stress states. This
approach led to an accuracy of 50%.

The third classification algorithm used with LOO technique is Support Vector
Machine (SVM), which is useful to find an hyperplane that best separates two
classes of data, with the aim of maximizing the margin between the hyperplane
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and the data points closest to it. Furthermore, SVM can provide a hyperplane
that separates stress and non-stress states based on the features extracted.
This approach led to an accuracy of 58%.

The fourth classification algorithm used with LOO technique is Penalized
regression with Elastic Net , which is a statistical method that combines both
L1 and L2 regularization penalties to perform variable selection and avoid
overfitting in regression models. Penalized logistic regression with Elastic Net
regularization can be used for classification tasks, where it can find a set of
predictor variables that are most important for predicting the target variable.
Furthermore, Elastic net can provide a sparse set of important features that are
most useful for predicting stress, while also avoiding overfitting. This approach
led to an accuracy of 62%.

The last classification algorithm used with LOO technique is Light Gradient
Boosting Machine (LGBM), which is a gradient boosting framework that uses
tree-based learning algorithms. This type of method is often used for multiclass
classification problems and can handle high-dimensional datasets with ease.
The use of both LOO and LGBM can provide accurate and efficient predictions
for multiclass classification problems, while also handling high-dimensional
datasets. This approach led to an accuracy of 63%.

In Figure 4.13 the previous explained results are summarized:

Figure 4.13: Results of the Machine Learning Algorithms used with LOO
technique.

The algorithm that present the best performance in the binary classification
using LOO technique is Random Forest, which brings to a confusion matrix of
this shape:

Second Approach with Recursive Feature Elimination (RFE)

In order to achieve better performance, to improve the interpretability of the
model and to reduce the computational time, before the machine learning
algorithm is applied the RFE technique.

The first algorithm used with RFE technique is XGBoost. XGBoost is an
algorithm used for binary classification problems, it builds a series of decision
trees, where each tree tries to correct the mistakes of the previous tree. During
the training part, the algorithm assigns weights to the training examples based
on their importance, and uses gradient descent optimization to find the optimal
weight for each decision tree.
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Figure 4.14: Confusion Matrix of Binary Classification with Random Forest

Once all the decision trees are trained, their predictions are combined using
a weighted average, and the final prediction is made by comparing the weighted
average to a threshold value. This approach led to an accuracy of 84%.

The second algorithm used with RFE technique is Linear Discriminant
Analysis, which leads to better performance, in particular leads to an accuracy
of 75%. However, it’s important to note that the optimal approach may vary
depending on the specific dataset and classification task. In some cases, it may
be more effective to apply LDA before RFE or use other features selection
methods altogether.

The third algorithm used with RFE technique is Neural Network. After
selecting the relevant features, you would train the neural network on the
selected features using the training set. The neural network can have multiple
hidden layers and use activation functions to map the input features to the
output labels. In particular, two different dense layer were used: the first
one by using a Rectified Linear Unit (ReLU) activation function, which is
a non-linear function or piecewise linear function that will output the input
directly if it is positive, otherwise, it will output zero, the second hidden layer
use as activation function a sigmoid function, which is a non-linear function that
guarantee that the output of this unit will always be between 0 and 1. The last
two parameters to tune are the loss function and the optimizer. The chosen loss
function is the binary crossentropy, which is a loss function that is commonly
used in binary classification problems, which measures the difference between
the predicted probability distribution and the true probability distribution.
Specifically, it calculates the cross-entropy loss between the predicted output
and the true output. Instead, the chosen optimizer is the Adam optimizer,

60



which is commonly used to update the weights and biases of a neural network
during training. It is an adaptive learning rate optimization algorithm that
dynamically adjusts the learning rate of each weight based on the first and
second moments of the gradient. This can help to speed up the convergence of
the neural network during training. The following approach led to an accuracy
of 79%.

Figure 4.15: Machine Learning Algorithms used with RFE.

The most performing algorithm for binary classification is XGBoost with
the previous use of an RFE algorithm for features selection. This method leads
to the following confusion matrix:

Figure 4.16: Confusion Matrix for XGBoost with RFE method.

The XGBoost model has a ROC curve of this shape:
This model presents also an AUC=0.82 of the ROC curve. This result means

that the model’s performance is reasonably good at distinguishing between
the two classes in the binary classification problem. In pratical terms, this
means that if you use this model to classify new instances, you can expect it to
correctly classify positive instances as positive about 82% of the time, while
minimizing the number of false positives.
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Figure 4.17: ROC curve of XGBoost algorithm

Multi-Classification (3 Classes)

The second machine learning algorithm is for the Multiclassification case (3
classes): labeled as "no stress" (label 0), "medium stress" (level 1) and "high
stress" (level 2). This algorithm presents worst performance with respect to
the Binary Classification problem.

This may due to several reasons, one problem is related to the higher level
of complexity of the problem. With three classes, the algorithm has to learn
to distinguish between three different categories instead of just two. This can
make it harder for the algorithm to find the decision boundaries between the
different classes and lead to worse performance.

Another problem is the potential for imbalanced classes. For example, one or
more classes may have significantly fewer data points that the others, making it
harder for the algorithm to learn the characteristics of those classes and leading
to poorer performances. In the presented work, in the binary classification, the
dataset is balanced having 85 samples labeled as "no stress" and 77 samples
labeled as "stress"; for the 3-class classification, instead, there are 65 samples
labeled as "no stress", 50 samples labeled as "medium stress" and 47 samples
labeled as "high stress". This may lead to a imbalanced dataset in a low-level.

Additionally, a 3-class classification problem may be more prone to overfitting
than binary problem. This is because there are more parameters for the
algorithm to learn, which can make it more likely to memorize the training
data instead of learning general patterns.
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4.1.7 Related works

Stress detection using wearable sensors

Nowadays sensors play an important role in medical science and related appli-
cations. These are generally used for the detection and measurement of various
diseases and their levels. The devices which use one or more sensors such as
HR, ST, GSE, RR, ACC, BP sensors are considered as wearable sensors. Stress
can be monitored using only one physiological signal also, but the results could
be inappropriate. Stress Detection using ECG HRV significantly contributes
to stress detection due to its close relationship with the autonomic nervous
system. With the help of the combination of different HRV characteristics,
it is possible to distinguish between rest, physical and mental conditions, as
HRV is sensitive to any change in the mental or physical state [38]. Also, the
reactivity and recovery from mental and physical stress are strongly correlated
with the HRV parameters associated with parasympathetic activity. In [40] a
small and lightweight sensor named RF-ECG was used to record the real-time
ECG signals with 204 Hz sampling rate. Stress detection was used here to
address the confusion issues of facial recognition to activate the relaxation
service. Negative emotions and stress were recognized with 83.33% of accuracy
by combining emotion recognition and stress detection.

As there are many techniques available for the estimation of stress from
physiological signals, its fine-grained assessment is still a challenge. Tania
Pereira et al. studied various HRV metrics for stress level assessment using a
short-time window, where a sub-set of HRV metrics namely AVNN, rMSSD,
SNDD and pNN20 showed consistent differences between stress, and non-stress
phases.

A publicly available dataset "WESAD" [41] was used and in particular ACC,
ECG, BVP, BT, respiration, EMG and EDA data were used. In this study, some
machine learning algorithms have been used such as KNN, Linear Discriminant
Analysis, Random Forest, Decision tree, kernel SVM classifiers, and achieved an
accuracy of up to 81.65% and 95.20% for 3-class and binary class respectively.
They have also applied a simple feed-forward deep learning technique which
increased the accuracy up to 84.32% and 95.21% for that respective classes
which showed that deep learning is better than the traditional machine learning
classifiers and the generalization is possible with the Leave-one-subject-out
evaluation scheme. In [42] ECG, HR and GSR were used during a Stroop
Test. A fuzzy logic algorithm was developed and the data was trained in the
Adapative Neuro-Fuzzy Interface System (AVFIS) and the C programming
language was used which has support for detectiong data from serial ports used
by Arduino boards. An accuracy of 72% was calculated for preditcing stress
levels, by conducting a one-tailed Spearman’s Rank Correlation coefficient test,
it results that this system is very capable of precisely predicting the user’s level
of mental stress with a high level of consistency. The advantages are that this
system can be used to increase awareness of stress among mouse users, but the
limitations are that as the sensors were self-made, they have to first tested and
validated by experts before using in the experiment.

In [2] an overview of multimodal analysis studies, along study population,
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stimuli used, biosignals recorded, classification scheme and best accuracy
received is summarized in Figure 4.2.

Study Population Stimuli Biosignal
Used

Classification
System

Best Ac-
curacy
Achieved

Kim et al.
[43]

Videos,
images,
sounds

EDA,
SKT,
ECG

SVM 78.4%

Healey et
al. (2005)
[44]

24 sub-
jects

Driving
Task

ECG,
EMG,
EDA, RSP

LDA 97.30%

Giakoumis
et al. [45]

21 sub-
jects

Puzzle,
Memory
Tasks

EDA,
ECG,
Body ac-
tivity

LDA 96.60%

Setz et al.
(2010) [46]

33 sub-
jects

MIST EDA,
ECG, RSP

LDA,
SVM

82.80%

Al-shargie
et al.
(2015) [47]

12 sub-
jects

MIST EEG SVM 94.00%

Xia et al.
(2018) [48]

22 sub-
jects

Mental
Arith-
metic
Task

EEG,
ECG

PCA,
SVM

79.54%

Cheema et
al. (2019)
[49]

30 sub-
jects

Institute
examina-
tion

PCG,
ECG

LS-SVM 96.67%

Table 4.2: Overview of Stress Detection Algorithms
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Chapter 5

Discussion and Results

5.1 Discussion
There may be several limitations to a stress detection algorithm that uses
biosignals from wearable sensors and self-assessment of the subjects during a
stress test.

First of all, all the stress tests have been performed in a laboratory or a
well-controlled environments, by simulating through tasks stress conditions.
The induced stressors were usually intense in order to achieve a prominent
and measurable amount of acute stress, as in as in [2]. However, in real life
conditions, stressors are usually complex procedures that involve many aspects
of human personality or multiple stressors occur due to the complexity of the
way of living. Different sessions of an experiment would be employed to cover
different stressors but their simultaneous application is not always possible.

The effectiveness of stress inducing tasks is also a question under investigation.
Their effectiveness are subject to originality and habituation. Other important
dimensions are its duration and associated involved processes (e.g., habituation
during continuous/repeated exposure, competition with opposing external
stimuli and self-regulation). In [2] the most effective stressful effects are
observed at the beginning of the experimental procedure. The engagement of
the participant wanes as the experiment progresses, and its maintenance can
be partially achieved with relaxation intervals between tasks. Furthermore, the
stress detection algorithm may only be able to detect certain types of stress,
such as physiological stress, but may not be able to detect other types of stress,
such as psychological stress or stress related to specific tasks or events.

However, both simulated stressors and real stressors have their own ad-
vantages and disadvantages, and the choice depends on the specific context
and goals of the algorithm. Simulated stressors can provide controlled and
repeatable conditions for testing and training the algorithm, they can also be
easily manipulated to create different levels and types of stressors. This allows
for standardized and consistent evaluation of the algorithm’s performance.

Real stressors, instead, can provide a more reliable setting for evaluating
the algorithm. They can capture the complexity and variability of real-life
stressors and the dynamic changes in physiological and psychological responses
over time, but they can be also unpredictable and difficult to replicate.

65



In the case of developing an algorithm for real-time stress monitoring in daily
life, using real stressors may be appropriate. Alternatively, if the goal is just to
compare the performance of different algorithms in a controlled environment,
simulated stressors may be more appropriate.

The second limitation is about the self-assessment of the subjects. For
example, in [3], two datasets have been used to show the versatility of their
work on predicting individuals’ stress both in a controlled laboratory setting
while acquiring brainwaves using a traditional wired-EEG and at actual job
sites while recording workers’ brainwaves using a wearable EEG device.

For the first dataset, the participants rated each video regarding the levels
of arousal, valence, like/dislike, dominance and familiarity. The authors used
the subjective rating to label signals as high stress and low-stress conditions.

In the second dataset, the authors collected EEG signals using a wearable
EEG device from three real construction sites and EEG signals were collected at
least two hours after workers started their work to eliminate possible individual
biases from varying baseline stress levels among different subjects. In order to
assess subjects’ stress levels and label the signals, subjects’ cortisol samples were
collected from their saliva after each session; high level of cortisol is associated
with higher stress.

Considering the higher EEG recording quality in the first dataset, since
the signals were recorded in a controlled laboratory, compared to the second
dataset, it was expected that the first one would lead to a higher classification
accuracy. In Figure 5.1 is shown the algorithms prediction accuracy for the
two different datasets.

Figure 5.1: Algorithms prediction accuracy.
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One possible explanation for this result is the selected stressors to induce
stress in the tested datasets; real job sites stressors have been used to induce
stress in the second dataset, while in the first one virtual stimuli are used.
The stressors in actual jobs site induce higher stress to compare to a virtual
stimulus such as watching the video. One other reason for the lower classification
accuracy of the suggested framework can be related to the labeling process. In
the first dataset, a subjective survey was used to label the individual’s stress.
However, in the second dataset, the authors labeled the data by measuring
individuals’ stress by using the cortisol level. There exists higher uncertainty
while labeling the data using subjective methods as compared with labeling
based on stress hormone.

Another issues, as explained in [2], is that most biosignals are susceptible to
noise or artifacts due to individual’s body parts movements or activities.

Signal denoising includes techniques such as low-, band- and high-pass filter-
ing, notch filtering, the Least Mean Squares (LSM) or Recursive LSM, wavelet
denoising, Principal Component Analysis (PCA), Independent Component
Analysis (ICA), and their variations. In the presented work, the mainly used
denoising method is digital filtering. This may lead to several problems:

• Loss of information about the signal: digital filtering is a linear process
that removes frequency components that are above or below a certain
threshold. Is important to set the threshold in such a way that important
frequency components about the signal are not removed, otherwise it may
lead to a loss of signal information,

• Introduction of artifacts: digital filtering can introduce artifacts in the
signal, in the case in which the filter settings are not optimized for the
particular signal being processed,

• Inability to remove all types of noise: digital filtering is effective at
removing certain types of noise, such as high-frequency noise, such as
high-frequency noise, but it may not be effective at removing other types
of noise, such as baseline wander or motion artifacts,

Other methods, such as wavelet transforms, EMD, and ICA, can be useful
in cases where the noise is non-stationary or has a complex frequency spectrum.
These methods can also be more effective at separating the signal of interest
from noise that is mixed in with the signal. However, they may be more
computationally intensive and require more expertise to implement effectively.
Overall, digital filtering is a useful method for denoising biosignals, but it is
important to consider the specific characteristics of the signal and the noise
when deciding on the best approach.

Another limitation is related to the limited dataset available for the stress
detection algorithm. When developing a stress detection algorithm, the quality
and amount of data used to train and test the model is crucial to determine
how reliable is the model trained.

In this thesis, a dataset of 35 healthy subjects were recruited to participate
in this study. The subjects consisting of 28 men and 7 women, are aged between
20 and 44, having a 80% of the dataset composed by men and just the 20%
with women, this may already lead to an unbalanced dataset.
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When using a limited dataset there may be different issues: the first one is
related to the fact that the algorithm may not have sufficient training data to
learn the necessary patterns and features that are essential for detecting stress.
With a smaller sample size, the algorithm may not generalize in a proper way
and may also produce less reliable results when presented with new data.

Another problem that may arise in the field of using a limited dataset is
overfitting. When there is a limited and unbalanced amount of data, the
algorithm may focus on specific features and patterns within the data rather
than generalizing to broader trends. This may lead to the problem that the
algorithm may not be able to detect stress in new data that differs significantly
from the original dataset. Therefore, if the dataset is not diverse enough, there
may be the problem of having biased results and this may also lead to the
algorithm only detecting certain types of stress and not others.

Finally, a limited dataset can result in the lack of variability in the training
data, this may lead to the algorithm not being able to handle the range of
stress levels that occur in real-world situations. This may also be one of the
reason why the algorithm performs better in the binary classification case and
worst in the three-classification case.

In summary, a limited dataset for a stress detection algorithm can result in
insufficient training data, overfitting, biased results and lack of variability in
the algorithm’s performance. For this reason, is essential to ensure that the
dataset used for training is diverse and large enough to produce accurate and
reliable results when detection stress.

Another problem about acquiring of the data from people can be related to
the quality of the data taking into account. The quality of the dataset collected
can affect the performance and reliability of the algorithm, and the quality may
be influenced by some factors, including:

• Movement artifacts: any kind of movement of the subject may lead to a
motion artifact in each signal that sometimes can reduce the quality,

• Signal acquisition hardware: the quality can be affected by the quality of
the hardware used to acquire it, including amplifier, electrode lead and
other equipment. For example, in some subjects it was possible to find
a saturation during the acquisition of the EDA signal, in that case, the
information in that period of time during the saturation is lost,

• Patient-specific factors: individual variability in physiological parameters
such as heart rate or breathing rate may change depending on the specific
subject.

Poor data quality can result in inaccurate or unreliable results, which can
limit the usefulness of the algorithm in practical applications.
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5.2 Results
Stress detection, self-assessment and analysis in humans are significant processes
in order to confront this phenomenon.

From the above discussed approaches, it is clear that physiological sensor
signals can be used to detect stress level of the individual where physiological
sensing devices are used to collect these signals. To apply a stress detection
method some steps are required in order to obtain reliable results.

The first important point to note is that the classification process must be
kept in mind from the moment the signals are obtained (during the acquisition
process). Without a robust acquisition process the signals become useless for
a correct later classification. All operation carried out in later stages will be
useless if the first step of the whole process is not carried out correctly. For
this reason, the acquisition process is crucial and is also important to prepare
the subjects in order to avoid voluntary movements.

In addition, a correct application of the different filters during the pre-
processing stage will be crucial for the following phases. For instance, if the
signal is not filtered appropriately, noise can be introduced into the data and it
may lead to some mistakes in the feature extraction algorithm.

Once the signals have been pre-processed, the next important step is to
obtain the different features that allow us to quantify them. This will be done
in a further process which is the classification, but the crucial previous step
is the feature selection. There is no evidence in the literature on the number
of variables or the minimum number of functions that should be used. In this
context, is important to do a trial and error approach, which is an approach
that involves testing different feature selection algorithms until the desired
outcome is achieved. This approach typically involves trying multiple solutions
or methods, and then evaluating their effectiveness based on the results.

This approach is often used in situations where the problem is complex and
there is no clear or obvious solution, and where it is not possible to simply
apply a proven formula or method.

Furthermore, using more physiological signals (such as ECG, EDA and
Respiration Signal) has the advantage that it enables to monitor several systems
and, as a consequence, several types of responses provide a better mapping
of the physical, psychological and cognitive state of a subject. Nonetheless, a
disadvantage is that the use of different signals makes the system more complex,
more difficult to maintain and it has a higher computational cost when using a
classifier.

According to the analysis performed previously, there are specific biosignals
that present consistent pattern so as to be efficient and specific in discriminating
stress conditions. For instance, Heart Rate (HR) related features are the most
prominent features which increases significantly during stress, however, this may
be attributed only to the arousal dimension. Also Skin Conductance Response
(SCR) and Skin Conductance Level (SCL) appear also to be consistent measures
being typically increased during stress.

Another important issue to concern is the substantial intra- and inter-
individual variability of the stress response [2]. For a given person, the same
stimulus or condition may elicit a strong or weaker stress response depending on
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varying social (e.g., high vs. low peer pressure), contextual (e.g., high reward
vs. low reward), and cognitive-emotional parameters (e.g, instruction to engage
in cognitive appraisal of the situation). Different persons may develop very
disparate stress responses to the same stressor. Moreover, different stressor
types may be more appropriate and specific to particular types of stress.

Various machine learning algorithms were applied to build classification
model. The most performing models in both binary and three-class classification
were XGBoost and Random Forest. These methods are particularly effective for
a stress detection task because they can handle complex time-series data and
are robust to noise, which may be very common when it comes to biosignals.

In addition, both methods provide feature importance measures, which can
help identify the most important features that contribute to stress detection.
This can provide insights into the underlying physiological mechanisms of stress
and make the model more easy to be interpreted.

70



5.3 Conclusion
The present study employed diverse signal processing and machine learning
techniques to create a stress detection framework that utilizes physiological
signals from multiple modalities. This framework takes into account the
variations in biosignal patterns across different individuals when exposed to
various stressors.

Based on the results obtained in this study, it can be concluded that a stress
detection algorithm using biosignals acquired from wearable sensors can achieve
good performance in terms of accuracy. This suggests that the use of such
technology has the potential to provide reliable and accurate stress detection
in various settings.

The application of a combination of Recursive Feature Elimination (RFE)
and XGBoost algorithms showed good results, especially in the case of bi-
nary classification for stress detection. The performance of this combination
algorithm was noteworthy, achieving an overall accuracy of 84%.

Furthermore, many wearable devices are available in the market which can
be used in physiological signal data collection. These devices are user-friendly
and give less error and noise. Hence, these can be used to monitor and measure
stress levels without affecting the user’s daily functioning.

However, further research is necessary to improve the performance of the
algorithm and to investigate its applicability in real-world scenarios.
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