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1 Abstract

Timing is crucial in several cellular processes that rely on precise temporal
organisation, ranging from cell-cycle control, to cell differentiation and cel-
lular development. Here, in order to have a certain temporal order of gene
expression, there are many regulatory mechanisms that not only need to be
temporally organized, but whose timing fluctuations require to be tightly
controlled. Indeed, since gene expression is a stochastic process, fluctuations
in the amount of mRNAs or proteins naturally induce fluctuations on the
time needed to reach the expression values necessary to induce downstream
processes. Different regulatory strategies can be implemented in order to
reduce these timing fluctuations. In this work, we are interested in the role
played by microRNAs (miRNAs) in the control of timing fluctuations. miR-
NAs are small non-coding RNA molecules whose regulatory role in gene ex-
pression is widely recognised. In particular, by studying a stochastic model
for the interaction between miRNAs and targets with Gillespie simulations,
we showed that timing fluctuations can be minimized by the interplay of
different sources of noise depending on the initial size of the miRNA pool.
We showed that (i) if a miRNA is produced together with its target, while
the production of the target increases over shorter time than a constitutive
unregulated gene, timing fluctuations increase; (ii) if a pool of miRNA is
already present when the miRNA-target is produced, then target expression
is delayed with respect to constitutive regulation but with reduced timing
fluctuations. We then compared our theoretical predictions with single-cell
experimental data. In these experiments cells were transfected with bidirec-
tional synthetic constructs containing sequences for a miRNA-target and its
constitutive counterpart by means of two different fluorophores. By following
their fluorescence over time at the single cell level, we obtained single-cell time
trajectories for both a miRNA-target and its constitutive expression. From
these single-cell time-trajectories we could then measure first-passage times
and coefficient of variations, to be compared with simulations. Experimen-
tal data showed only a partial agreement with our theoretical model, thus
informing on different possible alternatives to our modelling strategies.
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2 Introduction

This work is a crossover between physics and biology, since we are studying
the problem of the miRNA regulatory action on the timing noise in gene
expression, by using some tool, most often used for physical problems, as
the first-passage time. In addition, a simplificative model of protein produc-
tion, mediated by miRNA, was implemented to do simulations . Then the
simulations produced have been analyzed statistically in order to undestand
how the noise does behave under certain conditions. As a final point the
simulations results were compared with the experimental counterpart.
As already said, the first-passage time is most often exploited for physical
studies, but in this case is interesting to inspect the noise characterizing
the FPT in gene expression. First passage time is the first time at which a
gene reaches a certain level of expression. For each simulation, due to the
sthochastic nature of gene expression, one will have a different first passage
time. More in general, is not well known how the cells manage to mantain
perfect timing in sequentially ordered biochemical processes, for example in
cellular development. The cellular control machinery is very complex and
not yet fully understood.
MicroRNAs are among the regulators of gene expression , and because they
play a role in regulating the noise of the number of proteins synthesized,
they will play a role in decreasing timing fluctuations. The aim of the work
is to find a model that well reproduces the data collected througth experi-
ments, and to find if, under certain conditions, the noise of the first passage
time reaches a minimum. The first objective is important to better under-
stand how the miRNA regulatory machinery does work, since it is not yet
fully understood. The model that is further presented tends to simplify the
beheviour of the miRNA but, as one can read in the next chapters, it well re-
produces experimental results in some specific cases. Despite this, the model
fails to accurately represent the experimental data, and many questions re-
main unanswered. One idea for future studies may be to add a new chemical
species to the model, ribosomes .
The second objective is to undertand if the noise in timing, has a minimum
under certain condition. In particular is interesting to understand if fluctua-
tions in time are somehow controllable and which conditions are required to
reduce significantly the noise.

A gene can reach a target level of expression with a certain cell-to-cell
variability, even in genetically identical populations of cells exposed to the
same stimulus, due to the intrinsic noise that characterizes chemical reations.
In particular if a gene has to reach a certain level of expression, what will
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vary is the time in which the expression reaches it. In many cellular processes
the cell need a specific protein to be expressed up to a certain threshold level,
so since this threshold level is a fixed value, it is interesting to see how does
varies the crossing time.
Understanding the temporal variability of gene expression is useful to better
understand the basic biological mechanisms at the single cell level. Isolating
the possible regulatory strategies able to control this variability can be useful
to understand how the regulatory networks associated to cellular timing does
work. [2]
A wrong timing in protein synthesis could also bring to disastrous effects,
since many cellular processes need a set of action that must be performed in
the right order and following a precise timeline.
Here we develop simulations and then analyze experimental data to study the
fluctuations in time necessary to reach a target gene threshold. In particular,
one of the aims of this work is to understand for which condition the model
exploited in simulations is in more agreement with experimental data. The
model under study has been tested for two different initial conditions.In the
first case, it was assumed that miRNA is not present at time t=0, but can
be synthesized from the initial time of the simulation. In the second case we
assume that a nonnegligible pool of miRNAs is already present in the system
at time t=0. Clearly, the cellular environment is dense and chaotic, and it
cannot be predicted a priori whether a nonnegligible amount of miRNA is
already present. Despite this, it is still interesting to try to see if one of the
two possibilities is more inflated than its counterpart. It is also interesting
to understand whether temporal noise has different behaviors depending on
the initial conditions of the system, and whether it can be controlled in some
way.
Another aim of the research is to understand the role of miRNA on FPT
noise and if there are certain conditions for which the variability is minimal.

In the first section there will be an overview on the miRNA genesis and
role in the cellular environment, in particular by focusing on its regulatory
activity in gene expression.
In the second section will be presented the model that have been exploited
in the simulations by a mathematical point of view. Next, individual typ-
ical trajectories are depicted, helping to better understand how the system
evolves as initial conditions change. .
Then in the third section has been described the experimental setup with
which has been measured the level of expression of proteins. The second
section explains the work done on the experimental data, particularly how
the trajectories were selected. In addition, the most significant trajectories
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are illustrated and commented on.
The final section shows the results obtained after doing statistical analysis
on both theoretical and experimental trajectories. in particular, statistical
analysis was done on the first passage times calculated from the individual
trajectories.
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3 MicroRNAs and their regulatory role

3.1 microRNA biogenesis and regulation of gene ex-
pression

A cell is mainly composed by proteins, which are, not only its building blocks,
but also the excecutors of cells main activities. It is clear that protein syn-
thesis is the most important process in cell life. [1]
The genetic information of the cell is preserved in the cellular DNA, that in
eukaryotic cells, is ”protected” in the nucleus. When the cell needs specific
proteins, in response to an external stimulus , the genetical information con-
tained in a small portion of the DNA, called gene, is passed to the messenger
RNA(mRNA), and subsequently, from mRNA, protein are syntetized.[1] In
particular the process that passes genetic information from DNA to RNA is
called transcription, since the genetic information contained in a portion of
the DNA is copied in a different chemical species (DNA is a sequence of sin-
gle pieces of deoxyribonucleic acid, RNA is a sequence of ribonucleic acid),
which has almost the same language.[1] The set of enzymes that perform
transcription are the RNA-polymerases.
The process that passes information from RNA to proteins is called trans-
lation and is performed by ribosomes, which is a complex made by proteins
and some specific RNAs.[1]
most of the transcribed genes are mRNAs, synthetized starting from coding
genes,but a portion of genes is also non-coding, and from the latter other
types of RNA are produced, as the microRNAs (miRNAs). The miRNA is
a very short RNA, tipically it is ≈ 20 − 22 nucleotides long.[1] They are very
important in eukaryotic cells expecially for their regulatory activity, both
transcriptional and post transcriptional (in this research has been inspected
the post trancriptional regulation.[1] Over 1000 different miRNA are present
in human cells and regulate one third of the protein coding mRNA.[13]

MiRNAs have been found in all animal cells and some of them are highly
conserved across many species (from sea urchins to humans).[1]
Indeed, has been discovered that miRNAs are present also in the nucleus
and can regulate gene expression at the transcriptional level. The regulation
performed by miRNA can be on transcriptional gene activation(TGA) or
on transcriptional gene silencing(TGS), this means that miRNA can either
initiate gene expression, or can prevent it. The first miRNA discovered to
perform trancriptional gene activation was the miR-373, present in human
cells, which activates the transcription of proteins CDH1 and CSDC2. Mech-
anisms througth which miRNA regulates gene expression at a transcriptional
level is not yet fully understood. [14]
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For what concerns post transcriptional regulation, in cytoplasm, miRNA
regulates gene expression by linking to some specific binding sites presents on
the mRNA, both preventing translation or by favourating mRNA degradation.[1]
The miRNA precursor is synthetized by RNA polymerase II after which they
are capped and polyadelinated, in order to increase its stability. After this
the miRNA couples with some specific proteins in order to form an RNA
induced silencing complex(RISC)(as depicted in Figure 1). Such complex
then binds to the 3’ untraslated region (3’UTR) of target mRNAs, if the
latter has complementary binding sites for the specific miRNA, to induce
target degradation and translational repression.[7]

If the base pairing is extensive(more often in plants cells), the RISC,
once bound to a specific binding site of a mRNA, cleaves it and then rapidly
unbounds and as a consequence the mRNA is rapidly digested by cellular
degradation machineries .[1] Extensive base pairing means that there is a
very high complementarity between RISC and binding sites present on the
target mRNA. Once decoupled from the cleaved target, RISC is free to bind
to another free target mRNA. In such a way, the RISC can rapidly destroy
a big set of the target mRNA. [1]
If the the base pairing is not so extensive (as in animals cells) it tipically re-
press mRNA translation and in some rare cases it can bring to degradation.
Moreover a single miRNA can bind to houndreds of different mRNAs .[1]
MiRNA-target reaction is dynamic and depends on miRNA concentration,
target concentrations, miRNA-target affinity. Indeed miRNA suppression
of mRNA targets is not ubiquitous between cells, even if cells are identi-
cal. RISC is supposed to move in the cytoplasm through diffusion so it is
not possible a priori to know where it is located in cell. For this reasons
miRNA regulatory activity can be different in two identical cells. Moreover
the understanding of when and how the miRNAs exerts their functions in
the nucleus is not so clear.[7]

For this many reasons also miRNA-target binding event is a stochastic
process itself.
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Figure 1: MiRNA transcription and mechanism of action.MiRNA is tran-
scribed by RNA-polymerase II into the pri-miRNA. Then the pri-miRNA is
again processed by the Drosha and Pasha to the pre-miRNA stage. Then
the miRNA is exported in the cytoplasm by the exportin-5 througth nu-
clear pores. The pre-miRNA is then further processed by the Dicer into two
strands, which are 20-22 nucleotides long. On of those strands then couples
to other proteins to form the RISC. AS a final point the RISC will bind
to the target mRNA. If the complenentarity between miRNA and mRNA is
perfect the mRNA is cleaved, on the contrary if the complementarity is not
perfect, mRNA is subject to translational repression. Image adapted from
”miRNA in spinal muscular atrophy pathogenesis and therapy”, Francesca
Magri , 2018 [10]
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Figure 2: A simple representation of the bidirectional Tet promoter.The
green block is the set of genes that express the eYFP and the red box is for
the mCherry. One can notice that on the rigth of red box,attacked to it,
there is the sequence of the binding sites for the miRNA(in this specific case
miR-20),Image adapted from Mukierji,2011[5]

3.2 MicroRNA can generate threshold in target gene
expression

As already said, miRNA regulate gene expression in the cytoplasm by pro-
moting target mRNAs’ degradation or inhibiting their translation. In partic-
ular, to prove gene expression repression performed by miRNA, is performed
a single cell measurements by using quantitative fluorescence microscopy. In
Mukukherji experiment has been used a two color fluorescent reporter system
in order to simultaneously observe gene expression in presence and absence
of miRNA mediation. Indeed they ingegnerized a bidirectional Tet-inducible
promoter driving two genes expressing the fluorescent proteins mCherry and
enhanced yellow fluorescent protein(eYFP). [5]
The 3’UTR of mcherry has been ingegnerized to contain N binding sites
complementary to the specific miRNA added in the environment. The eYFP
has been left unchanged and has no complementary binding sites for the
specific miRNA already present in the cellular environment(miR-20) . Then
the prepared DNA sequence has been tranfetted in the host cell. This DNA
sequence is represented in figure 2.[5]

The first measure is made for 0 binding sites on the 3’UTR and as expeted
the quantity of mCherry has grown accordingly to the increase of eYFP. If the
binding sites are increased to 1 has been observed that the initial increase
in eYFP has no corresponding increase in regulated mCherry as shown in
figure 3.[5]

Those results highlights the presence of a non-linearity between mCherry
level and eYFP level, since a sort of treshold appears in the expression for
mCherry. Below this threshold the mCherry is highly repressed, above the
the threshold the expression return similiar to the unregulated case(eYFP).
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Figure 3: Scatter plot relating eYFP concentration on x axis and mCherry on
y axis.The eYFP has been binned and the corresponding mCherry has been
mediated for each bin. The variable N indicacetes the number of binding
sites present on the target mRNA, complementar to the miR-20. As one can
observe there is a delay in the expression of the mCherry(in the case of 1
binding site) with respect to the one of the eYFP highlighting the existance
of the threshold behaviour,Image adapted from Mukierji,2011[5]
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Figure 4: Steady state solution for eYFP concentration on the x axis,cslled
r0 and mCherry concentration on y axis called r.In the first graph each curve
correspond to a different value of kon, with kon that increases from the left
curve to the last curve on the right, in the second one each curve correspond
to a different concentration of miRNA,Image adapted from Mukierji,2011[5]

In order to explain this behaviour had been developed a model that assumes
the interaction between miRNA and mRNA to be tritative. In this experi-
ment the miRNA level has been keep constant.[5]
The treshold level is sharpened by the increase of the number of binding sites
present on the regulated portion of mRNA. In the mathetematical model the
number of binding sites present on the regulated portion is modelled by the
coupling rate kon, which is the rate at which mRNA and miRNA couples
between themselves. In this article have been plotted the concentration of
the regulated gene in function of the unregulated genes for different values of
kon. As one can see the treshold at which the regulated gene start to be ex-
pressed, grows in function of kon and also in function of miRNA concentration
as depicted in figure 4. [5]

So the miRNa driven repression is strong for low target expression(consisting
in very low expression below the treshold) and weak target repression for high
target expression(consisting in a good level of expression above the treshold).
This tritative machanism is the base on which the models implemented to
perform simulations stands as we can see in next section.
As a conclusive remark this threshold behavior could be one reason for cell’s
phenotipic differentiation. Indeed during a developmental transition in an
organims, the presence of miRNA can favour the expression of some gene
despite other ones specializing the cell.
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3.3 First Passage Time

First-Passage time (FPT), or first hitting time, is the time at which a stochas-
tic or a random process first crosses a threshold. In our case, the threshold
to be reached is a protein concentration fraction. In particular during the
protein synthesis a steady state in protein concentration is reached after a
certain time, called pss. So the crossing time at which is reached a selected
fraction of the pss is the FPT.
Since gene expression is a stochastic process, the trajectories of the protein
concentrations fluctuate around its mean behaviour, as illustrated in figure
5. For many different trajectories, as a consequence, will correspond many
different first passage times.

One of the first work calculating the first passage time for the biological
framework of our interest, is the one done by the group of research headed
by Alma Dal Co. In Dal Co’s paper was done something similiar to what
has been done for this work, but it was inspected mainly the unregulated
case. In particular, in their work, was exploited a model in which it was not
present any regulation. The gene that must be expressed is switched on at
some time t0 = 0, from which is calculated the FPT.[2]
It was used the standard model of stochastic gene expression in which are
present only two chemical species, mRNAs and proteins. The time evolution
for this two chemical species is governed by two differential equation, which
are the following:

d[P ]
dt
= k1[m] − γ1[P ]

d[m]
dt
= k2 − γ2[m]

Here the k1 and γ1 are respectively the translation rate and the protein
degradation rate.k2 and γ2 are respectively the transcription rate and the
mRNA degradation rate. The rates were choosen with the condition γ1 >> γ2
since tipically protein life is higher than the mRNA one.[2]

In the figure 5 is depicted the model schematic representation. Clearly in
the simulation the initial condition for protein and mRNA is [P ](0) = 0 and
[m](0) = 0. Moreover the the protein expression level at the steady state is
given by

pss = k1k2
γ1γ2

As a final remark, the threshold level (̃p) to be crossed is expressed also as
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Figure 5: Definition of the threshold crossing problem. The gene is switched
on at time t=0. After some time the trajectory of the protein expression
reaches the steady state pss. Since the gene expression is a stochastic process,
all trajectories will fluctuate around their mean behaviour. The stochastic
trajectories are depicted in blue in the top image, their mean behaviour is
drawn in red. The first passage time is the time at which the trajectory
crosses the threshold pss. All first passage times can be collected to calculate
their probability distribution depicted in the bottom image. Image adapted
from Dal Co ,2017
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Figure 6: In the image is represented the standard model of stochastic gene
expression. In particular the gene is switched on at time t = 0. As one
can observe, starting from the initial time the gene can be transcribed to a
mRNA with rate k2, the latter is degraded with rate γ2[m].The protein is
translated with ratek1[m] and degraded with rate γ1[P ],Image adapted from
Dal Co ,2017[2]

an adimentional parameter which depends on the pss defined as

α = (̃p)
pss

In the paper was evaluated the coefficient of variation of the first passage
time as a function of the threshold α. The coefficient of variation is the ratio
between the standard deviation and the mean value, in this case, of the FPT.
The CV is useful, since it is adimentional, to compare data variability, even
if data sets have different dimensionalities or different mean values.
In this work does emerges the fact that the coefficient of variation of the first
passage time does exhibit the presence of a minimum for certain condition.
In particular the minimum is appoximatively at half of the threshold for
α ≈ 0.5. In order to test the algorithms implemented for this work the same
calculus was reproduced and the very same results were found. The results
of the simulations are depicted in the subsequent picture.
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Figure 7: CV of the FPT in function of α.As one can observe there is a
minimum in the CVt of the FPT at a certain value of the threshold α. In
this case the minimum is at α ≈ 0.5. This result has been obtained by
selecting the same rates of the article of Dal Co.
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4 Algorithms and miRNA mediatied model

for gene expression

4.1 Gillespie algorithm

The Gillespie algorithm has been first developed by Doob in the mid-1940s,
and then lately riderived by Gillespie in 1970. After that, the algorithm be-
came widely used. It is an algorithm mainly used to simulate the kinetics of
chemical reactions and as such allows to know in detail the time evolution of
the different chemical species involved in a biochemical process. [20] [19]

The main structure of the algorithm is the following:

1. Initialisation of the system. For example for biochemical reactions the
initial concentrations of reactants must be initialized, the time must be
initialized to zero, and a stopping time must be declared;

2. Monte Carlo. For each reaction to simulate, a putative time is randomly
selected from a distribution that depends on the process one wants to
simulate, then the reaction associated to the lowest time is chosen;

3. Update. The state of the system must be updated according to the
reaction selected in (2);

4. Repeat. Repeat step (2) and (3) until the stopping time is reached.

For our simulations, we implemented the original Gillespie algorithm.

4.2 MiRNA-mediated regulation: the standard model

In order to analyze the experimental data, and thus better understand miRNA-
mediated regulation, we studied a minimal model for miRNA-target inter-
action. This model is a simple evolution of the minimal model for gene
expression, that accounts for gene transcription and translation, and mRNA
and protein degradation. On top of these reactions, we added the miRNA
regulatory activity, modelled via a titration mechanism (i.e. we added the
possibility of having miRNA-target complexes that can either unbind or be
degraded. As long as an mRNA is bound in complex with a miRNA, it
cannot be translated). We then explored different initial conditions for this
model in terms of miRNA pool size. Indeed, we account for transcription
and degradation reactions for the miRNA, which can be already present in
the system with a pool of a given size. The presence of a pool of miRNA
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Figure 8: Schematization of the model simulated with the Gillespie algo-
rithm. Two different genes code for an mRNA (gene r, in red) and a miRNA
(gene s, in blue), which can be transcribed with rates k2 and k3 respectively.
miRNA s and mRNA r can either be degraded with rates γ3 and γ2 respec-
tively, or bind into a complex with rate kon, which can in turn be degraded
with rate γ4 releasing a miRNA. Only mRNA r not bound to miRNA can
be translated with rate k1 into protein p, which can eventually be degraded
with rate γ1. Image adapted from Del Giudice, 2018. [6]

gives interesting and different out-of-steady-state outcomes with respect to
a case in which the initial amount on miRNA is zero.

Since in our experimental set-up it is not known a priori if a pool of
miRNA regulating the target is already present, we are interested in exploring
the different predicted out-of-steady-state scenarios. In the design of this
model the production of mRNA and proteins has been strongly simplified,
avoinding details that account for example for proter activation/inactivation
or polymerase or ribosome binding/unbinding reactions. Our miRNA/target
interaction model is represented schematically in the Figure 8.

As one can notice, the miRNA has its own production rate, k3, so the
idea is that the miRNA is produced in the whole simulation. The ordinary
differential equations describing this model are the following:

d[P ]
dt
= k1[m] − γ1[P ]

d[m]
dt
= k2 − γ2[m] − kon[m][µ] + koff [C]

d[µ]
dt
= k3 − γ3[µ] − kon[m][µ] + koff [C] + γ4(1 − γ5)[C]
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d[C]
dt
= kon[m][µ] − koff [C] − γ4(1 − γ5)[C] − γ4γ5[C]

Where [P],[m],[µ],[C] are respectively the protein P, mRNA m, miRNA µ
and complex C concentrations.
Here many different rates have been introduced. In particular we have k1 and
γ1 which are respectively the translation and degradation rates for protein
P. k2 and γ2 are the transcription and degradation rates for mRNA m.
kon and koff are the rates of miRNA/target binding and unbinding.
k3 and γ3 are the transcription and degradation rates for miRNA.
Finally γ4 and γ5 are respectively the degradation rate for the complex C
and the fraction of miRNA µ that is degraded together with complex C (so
that (1 − γ5) represents the probability that a miRNA is recycled after its
interaction with the target).

The claim is to produce stochastic simulations in order to find the be-
haviour of the first passage time in many different regimes, depending on
rates values.
As pointed out in [5], dependig on the relative amount of miRNA and target
mRNA, we can distinguish three regimes: above the threshold (more mRNA
than miRNA), at the treshold (mRNA and miRNA in similar amount), and
below the threshold (more miRNA than mRNA). The system can be brougth
to one of those regimes by tuning the target transcription ratek2 while keep-
ing fixed the other parameters (and in particular the miRNA transcription
rate k3). Indeed, it has been verified in [30] that the treshold level for k2 is
given by:

k2 = k3
γ5

The single simulation in the ”over the treshold” regime is the most similar to
the constitutive (unregulated) case (a gene which is simply transcribed and
translated).

Indeed in this regime the transcription rate is much higher than the one
for miRNA and so in this case its regulatory action is not so evident. It is
interesting the fact that by systematically decreasing the transcription rate
k2 toward the treshold level becomes more evident an overshoot.
An overshoot in an increase of the protein concentration that exceed evidently
the pss in the starting times of the trajectory, then the expression level return
to its steady state.
This is due, to the fact that the transcription rate is comparable but still
higher than the one for miRNA, k3, and so miRNA reaches a significative
level of expression only after the mRNA. This brings to a sort of delay in

19



regulatory action that brings to the overshoot. Also in some trajectories
taken from the experimental data this behaviour is evident, confirming this.
At the treshold the overshoot is very evident, but the regulatory action of
the miRNA reduces significatively the level of expression of the protein with
respect the above the threshold behaviour.
Finally in the sub treshold regime the protein is almost unexpressed since its
concentration oscillate between zero and very low level of expression.
Depending on γ5 one can distinguish three different regimes.
For γ5 ≈ 1 we are in the stechiometric case in which the miRNA is almost
never recycled, but is destroyed when the miRNA and mRNA decouples for
the complex destruction rateγ4.
For γ5 ≈ 0.5 we are in the intermediate case in which the miRNA has the
same probability to be recycled and to be destroyed.
Finally for γ5 ≈ 0 we are in the catalytic case in which almost all the miRNA
is recycled.
In those three cases the treshold varies since it does depends on gamma5.
Moreover the simulations are made also in the unregulated case, but this time
the stochastic data are obtained by simply putting the trancription rate of
miRNA to zero, k3 = 0.By doing this the miRNA is kept to zero so there is
not any regulatory action.
The rates have been changed in order to keep the pss at the same level for
both regulated and unregulated case. In particular the the protein mean
value at the steady state, pss, in this regulated case has an explicit form,
which is the following

pss = 1

2γ1
(k1k2
γ2
− k1k3
γ2γ5

− γ3k1
γ5kon

− γ3k1koff
γ4γ5kon

+ k1
γ2γ4γ5kon

∗

∗
√
4γ2γ4γ5kon(γ3γ4k2 + γ3k2koff) + (−γ2γ3γ4 − γ2γ3koff + γ4γ5k2kon − γ4k3kon)2)
The first passage time is calculated when the protein conconcentration

reaches a fraction of this steady state. In figure 9 are depicted some trajec-
tories which are the result of a single simulation for each regime mentioned
earlier.
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Figure 9: In the following pictures are depicted on the y axis the concen-
tration of the four chemical species, which arein particular [P] for protein
concentration, [m] for mRNA’ s one, [µ] for the miRNA, and [C] for the
miRNA-mRNA complex. In this case [µ](0) = 0. On the y axis is also
depicted the protein mean value at the steady state pss and protein concen-
tration, after a ”growth stage” , oscillates around this value. On the x axis
there is time t. As one can observe image A and D are very similiar. Indeed
in image A the system is above the threshold and in this case the transcrip-
tion rate of the mRNA is much higher than the miRNA’s one. For this reason
the miRNA regulatory activity is not appreciable at all and as a consequence
the two trajectories are very similiar. The main difference is the fact that the
miRNA’s concentration[µ] and the complex one [C] are different from zero in
the case A and are zero for case D. Then the image B represent the system at
the threshold. In this case is very evident the presence of the overshoot that
consist in a protein overexpression in the first quarter of the trajectory since
the mRNA and miRNA trancription rates are similiar but the mRNA’s one
is still higher than the miRNA’s one. As a consequence, miRNA regulatory
activity becomes evident only after a certain time . As a final point, image
C represent the above the threshold regime in which protein concentration
is comparable with the one of the other chemical species, and the miRNA
regulatory activity is really evident.
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The second set of simulations were made by changing the initial condition
of miRNA amount. Indeed, in this case a pool of miRNA is already present
and has a nonnegligible quantity . This new model is interesting because is
not known a priori if a certain quantity of miRNA is already present in the
cytoplasm.
This small difference with respect to the previous model will consist in great
differences in simulations. Indeed in this case, the threshold like behaviour
discussed in the Mukherji paper[Mukherji], becomes evident, and the protein
starts its expression only after a certain time. Since miRNAs are already
present in cellular environment in a great number, when at time t = 0 the
gene is switched on, the protein production is stopped by this abundance. In
this case, as a consequence proteins synthesis is delayed.
Another important consequence of this model is the fact that is not possible
to obtain anymore an overshoot. As already said when this phenomenon was
presented, the overshoot is a consequence of the fact that the mRNA tran-
cription is higher than the miRNA’s one. In this model, a pool of miRNA
is already present and is not possible to observe it since it is more proba-
ble that the miRNA binds to its target mRNA, preventing the translation
of proteins. As a consequence, mRNAs cannot reach a significant level of
expression before the miRNA’s one and the overshoot phenomenon is not
observable anymore.

The protein concentration mean value at the steady state, pss is the same
of the former case.
In figure 10 are depicted some trajectories characterizing the three regimes
already anticipated.
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Figure 10: Characteristic trajectories produced by simulation for the case
with the pool of miRNA. At the time t = 0
there was a pool of 400 miRNA already present in the system. As one can
observe for all the three regimes, above the threshold, at the threshold and
below the threshold (respectively figures A, B, C) there is a clear delay in
protein expression that start to be appreciable only when the concentration
of ”free” miRNA present in the system becomes very small and comparable
with the concentration of mRNA. Moreover, oberving figure A and B one

can notice, as already said, that the overshoot effect is not possible
anymore at the threshold regime(figure B). What changes between this two
regimes is the effectiveness of the regulatory action of the miRNA. Indeed
in the figure B the protein is more repressed than figure A. as k2 decreases,

the protein becomes less expressed. Figure C represent the below the
threshold case and, as in the previous case, the protein expression highly
repressed and comparable with the one of the other chemical species.
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5 Experimental setup and data analysis

The experimental setup is described in detail here below.
A bidirectional synthetic construct with a Tet-inducible promoter driving
the expression of two genes has been engineered by the research group I did
my thesis with. As in [5], the two genes code respectively for the mCherry
fluorescent protein and the enhanced yellow fluorescent protein (eYFP). The
3’UTR of mCherry may contain N binding sites complementary to miRNA
miR-20a, while the 3’UTR of eYFP is left unchanged. The synthetic con-
struct was then transfected into Human Embryonic Kidney 293 (HEK-293)
cells, a cell line expressing miRNA miR-20a at high levels.
Six hours after transfections, cells were time-lapse monitored at a fluorescence
microscope for 72 hours, with one frame every 30 minutes. Since N = 0, ...,9,
there were ten different experimental conditions monitored in parallel. A
tracking algorithm developed within the research unit has then been used to
track single cells over time and generate single-cell fluorescent time trajecto-
ries (with the two fluorophores measured over time for every single cell).
We obtained ∼ 20 × 103 single cell trajectories per each experimental condi-
tion, whose duration could vary from a few minutes to several hours. Out
of these trajectories, we selected for further analysis only those whose level
of fluorescence was below the saturation of the signal for both mCherry and
eYFP, and that could contain gap with no eYFP fluorescence for no longer
than 1.5 hours. Indeed, we reasoned that while a very low/almost zero fluo-
rescence on mCherry could imply a regulatory miRNA-mediated effect, eYFP
should be always present and thus sequences of zero values of fluorescence
for eYFP longer than 1.5 hours could be due to bad performances of the
tracking algorithm.
Single trajectories belonging to the different experimental conditions (N =
0, ...,9) were collected in different matrices, each one corresponding to a dif-
ferent N on the mCherry sequence, and then analyzed. In Figure 10 we
show a sample of representative single cell trajectories, to be compared to
stochastic simulations.

Since in experiments with transient transfections it is usually assumed
that the system reaches the steady state 48 hours after transfection, we
evaluated the mCherry and eYFP steady states by mediating the last 9 time
points of each cell trajectory per each experimental condition (N = 0, ...,9).
The scatter plot of these mean steady-state values for the two fluorescent
proteins is shown in Figure 11.
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Figure 11: Characteristic trajectories taken from the experimental dataset.
The trajectories selected are the most significative and the model we sim-
ulated well reproduces some of them. In particular in panel (A) we show
a trajectory that is thougth to belong to the ”above the threshold” regime.
The protein synthesis starts very soon in time so it could be possible that a
large amount of the transfected construct is entered into the cell. The tra-
jectory belongs to the dataset with mCherry with N=1, so that we can argue
that either protein translation is mildly regulated or the pool of miRNA is
very small. Trajectory in panel (B) shows an overshoot. We can also observe
that protein fluorescence begins to rise with a little delay, a scenario partially
compatible with the presence of a pool of miRNA. In panel (C) the delay
in fluorescence rising is even more evident than in (B), suggesting that the
pool of miRNA keeps mCherry concentration very low until a threshold is
crossed. Panel (D) is important for futher studies and new models to be
implemented. Indeed, we can notice a step-wise growth in protein expres-
sion, suggesting that some rates are changing over time. We argue that this
scenario is compatible with a competition mechanisms, where miRNAs and
ribosomes compete for binding to the same mRNA.
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Figure 12: Scatter plot of the concentration of proteins at the steady state.
On the x-axis there is the fluorescence of eYFP, the unregulated protein, on
the y-axis the fluorescence of mCherry. As one can notice, the expression of
mCherry decreases as the number of binding sites increases. Each point cor-
responds to a steady state, and each color corresponds to a different number
N of binding sites.
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Figure 13: Steady states for the eYFP have been divided in 10 bins and
the average value of the steady states contained in a bin has been evaluated
together with its standard error. (A) Scatterplot with mean eYFP values on
the x axis, and mean mCherry values on the y axis. (B) The same as in (A)
in linear scale.

Datapoints were then grouped in 10 bins over eYFP fluorescence and then
both eYFP and mCherry were mediated over these bins. Figure 12 shows
the result of this binning. However, it seems that the varibility of mCherry
upon varying eYFP is negligible.
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6 Results

As a final point of the work, have been calculated the first passage time
for both the two models and for experimental data. In models, the first
passage time is the first time at which the protein’s concentration cross the
threshold α starting at time t=0. For what concerns experimental data, first
passage time is again the first time at which proteins’s expression crosses the
threshold starting from the first time at which the protein’s luminescence is
different from zero. In this case indeed the transfetted mRNA begin to be
translated at random times, since cells can also divide in two daughter cells
in which the construct can also enter. So after cell division the target mRNA
start to be translated only after a certain time. For the models have been
performed simulation for which has been calculated the first passage time.
Then, with the values of first passage time calculated one can calculate the
coefficient of variation defined as the ratio between the standard deviation of
the FPT and its mean value. The CVt has been calculated for 20 different
and equispaced values of the threshold α, from 0 to 1. For each value of α
have been performed 100000 simulations. For the first model the coefficient
of variation has been performed for all the regimes introduced in its section
. The obtained results are depicted in figure 14 and 15, the result obtained
for the experimental data are the ones in figure 16

Another calculation performed in both cases is the average first passage
time as a function of the threshold α for both the model and experimental
data. here the experimental and theoretical results are in disagreement. The
simulation’s results are depicted in figure 17, the experimental counterpart
is depicted in figure 18.

As a final point it was calculated the mean first passage time as a function
of the binding sites on the mCherry’s mRNA. The trajectories were binned in
three different bins, depending on their steady state values in fluorescence.
The curve shows a maximum for small values of binding sites. Also this
phenomenon has not yet a theoretical interpretation. This is depicted in
figure 19.

Results obtained suggests that the model exploited in this work is still
uncomplete. Despite this, several interesting results were obtained, which
could be useful in understanding how to improve the model in further works.
An idea could be the introduction in the model of a new chemical species,
ribosomes, that compete with miRNA for the binding of target mRNA. In
this model protein can be translated only if ribosomes and mRNA are bound.
Moreover, another interesting result is the fact that if miRNA is produced
simultaneously with its target, the translation of target take shorter times
with respect to its unregulated counterpart. In this case, timing fluctuations
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Figure 14: In this figure are depicted the results obtained for the coefficient
of variation as a function of the threshold α. Figure A is in the almost
catalytic case, in which one has an high recycle of miRNA. The result that
we wanted to obtain, i.e. a minimum in the coefficient of variation as a
function of threshold. There are numerical issues for the below the threshold
regime. A possible explaination of this, is the fact that the pss in those cases
is approximatively 0, since in this case the protein is highly repressed. So
the FPT in this case is just a random number. In figure B the minimum of
the CVt as a function of α has been obtained only in the above the threshold
behaviour. This happens because the noise increases as the γ5 rate increases.
Indeed the CVt at the threshold is very high since it is higher than 1. It
means that the noise in data is too high. The same happens in image C.
The simulations are very noisy and the outcome are good only in the above
the threshold case. What we can conclude from those plot is the fact that
the a minimum in the CVt is always present in the above the threshold case.
Stochastic simulations are too noisy in the intermediate case and the almost
stechiometric case, highlighting the fact that a low recycle of miRNA result
in an great increase of noise. Moreover the below the threshold case is out
of our interest since it has not an experimental counterpart since the protein
is almost not expressed.

29



Figure 15: Coefficient of variation as a function of alpha for the pool of
miRNA model. As one can observe this case is less noisy than the previous
model. Moreover the minimum in noise is for very low values of the threshold
α. This means that protein can be produced in very high precision in timing
but only in small amounts.

grow. On the other hand, when a pool of miRNA is already present in cellular
environment, the gene expression takes longer times to reach the threshold
level, but the timing noise is reduced. So there is an interplay between the
velocity and the fluctuations in timing in which a certain level of protein
expression is reached.
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Figure 16: In the picture is depicted the coefficient of variation as a function
of α for five different values of binding sites. As one can observe even in this
case is evident the presence of a minimum in the coefficient of variation. As
one can observe it seems that there is not any particular reltion between the
number of binding sites and the value of the threshold at which is present the
minimum. Moreover it doesn’t seem to exist a relation between noise(CVt)
and the number of binding sites at fixed α since the curves crosses between
themselves
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Figure 17: In the picture is depicted the average first passage time as a func-
tion of α in the theoretical case. All the regimes depending on the threshold
were inspected. The average first passage time increases as α increase. so
the function is monotone increasing with respect to α
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Figure 18: In the picture is depicted the average first passage time as a
function of α in the experimental case. The curves correspond to 4 different
values of binding sites present on the target miRNA. In this case the function
seem to be a sigmoid, so it seems that there is a saturation phenomenon in
the mean FPT as a function of alpha. No justification for this phenomenon
has been found. Our hypothesis is that this phenomenon depends on the
sensitivity of the instrument used to collect the experimental data.
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Figure 19: In the picture is depicted the average first passage time as a func-
tion of the number of binding sites on mRNA in the experimental case. The
mCherry steady state were divaded in 3 different bins. In arbitrary units of
fluorescence, ”high” bin contains steady state with fluorescence higher than
40000. The ”medium” bin correspond to values which go from 25000 to
40000. The ”low” bin correspond to steady state values lower than 25000.
The function shows a maximum for lower values of binding sites. This be-
haviour has not yet any theoretical justification.
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