
POLITECNICO DI TORINO
Department of Applied Science and Technology

MASTER’S DEGREE IN PHYSICS OF COMPLEX SYSTEMS

MASTER’S THESIS

SAMPLING OF MULTI-MODAL
DISTRIBUTIONS ASSISTED WITH

MIXTURES OF NORMALIZING FLOWS

Supervisors
Prof. Gabrié Marylou
Prof. Dolcini Fabrizio
Prof. Biroli Giulio

Candidate
Pierannunzi Elena

290193

Academic Year 2022/2023

Contents

1 Introduction 3

2 Markov Chain Monte Carlo algorithm 5
2.1 Classical version of the Monte Carlo algorithm 5
2.2 Adaptive Monte Carlo augmented with normalizing flows 7

2.2.1 Sampling . 7
2.2.2 Implementation of the normalizing flow 8
2.2.3 Training . 8

3 Mixture of normalizing flows: model and methods 10
3.1 The model . 10
3.2 Implementation of the model: network structure and code specifics 10

3.2.1 Parameters . 10
3.2.2 Training . 11
3.2.3 Initialization . 11

4 Results and discussion 13
4.1 1-dimensional Gaussian mixture . 13
4.2 2-dimensional Gaussian mixture . 18

4.2.1 Comparison with the original code performances 21
4.3 1-dimensional stochastic Allen-Cahn model in presence of an external field . . . 23
4.4 Discussion of the results . 29

5 Conclusion 31

6 References 32

A Multi-Layer Perceptron 34

2

1 Introduction

One of the core challenges in scientific computing is to have access to probability distributions
which are too complex to be manipulated.

This is the case, for example, in the field of statistical inference: when dealing with the
large datasets we are able to collect nowadays from almost all aspects of our lives, the high-
dimensional distributions used as priors, or obtained as posteriors, are typically analytically
intractable.

The same is true in statistical physics, which is founded on the study of physical observ-
ables of systems containing a very large number of interacting degrees of freedom. These
quantities are accessible by means of probability measures defined on a phase space which
inherits the huge dimensionality of the systems themselves.

The traditional answer to this computational issue lies in the Monte Carlo methods (MC).
These techniques provide a way of approximating the moments of target probability distribu-
tions ρ∗(x) by sampling them, while avoiding the expensive numerical integration originally
required.

Despite the extremely significant contribution these methodologies have brought in compu-
tational science, there are still problems for which their performance is not efficient enough.
This is the case of high-dimensional, multi-modal probability distributions, defined by the
presence of multiple metastable basins, or modes, i.e. regions of high probability density iso-
lated by areas of lower probability density (an example is shown in Figure 1).

Figure 1: 1-dimensional bi-modal Gaussian mixture. Means: µ1 = −9, µ2 = 5; variances:
σ2
1 = σ2

2 = 1; statistical weights of the modes: ω1 = 0.2, ω2 = 0.8.

An interesting way to deal with this challenging task is to assist MC sampling with machine
learning (ML) techniques, such as the generative models, which are proved to be efficient in
sampling complex high-dimensional probability distributions. This is the idea developed in the
Adaptive MC algorithm augmented with normalizing flows proposed by [Gabrié et al., 2022],
where the traditional MC local kernel is combined with a non-local one, parametrized by
means of a generative model, the normalizing flow (NF), which is trained on the fly with the
generated samples.

3

This method leads to a notable acceleration in sampling. Moreover, its performances can
be further improved in specific cases which are often encountered in physics, like, for example,
when the modes have very different fine structures or statistical weights. The idea for dealing
more efficiently with these conditions is to extend the original adaptive algorithm by replac-
ing the unique NF with a mixture of normalizing flows, where each component is trained to
represent a single mode.

This Master’s thesis aims to illustrate the theory behind this idea, its implementation and
the performances of the resulting algorithm, compared to the existing methods.

The Thesis is organized as follows. In Section 2 we illustrate the background of our
work: after a brief overview of the traditional MC, we point out why it fails in sampling
accurately multi-modal distributions and the strategies suggested over the years for addressing
this problem. Among these various proposals, special attention is paid to the Adaptive MC
algorithm augmented with normalizing flows and to the specific machine learning techniques
employed for its realization.

In Section 3 we get to the heart of the work around which this Thesis is centered: the
Mixture of normalizing flows algorithm. First, we discuss its structural differences from the
original Adaptive MC, that is, the ingredients required to design a combination of multiple
flows, individually weighted by a parameter which is trained to adapt to the weight of a
specific mode in the target. Next, we focus on the details of the code that implements these
differences.

Section 4 is dedicated to the performances of the new algorithm, evaluated through the
interpretation of the results obtained in three different examples, and through their compari-
son with the original algorithm predictions. This analysis allows us to confirm the ability of
the mixture of NFs in sampling effectively all the known modes of a multi-modal distribution
according to their correct statistical weights, even in a high-dimensional framework.

4

2 Markov Chain Monte Carlo algorithm

2.1 Classical version of the Monte Carlo algorithm

One of the best known MC techniques is the Markov Chain Monte Carlo algorithm (MCMC).
A Markov Chain is a stochastic process where the transition probability from the current state
to the following one is determined exclusively by the current state, and not by how the current
state is attained. This feature is often referred to as Markov or memoryless property, and
it is what makes a Monte Carlo algorithm of the Markov Chain type: indeed, the sequence
of samples it produces satisfies this property, and, as a consequence, can be identified as a
Markov Chain itself. Given so, the algorithm will sample correctly from the desired target
distribution ρ∗(x) if the stationary distribution of the chain is proportional to ρ∗(x).

Before looking at the details of this algorithm and at how, specifically, it manages to target
the right distribution, let’s illustrate a possible framework where it is useful, which is the one
we will stick to in this report: the statistical physics framework.

In this picture, the statistical ensemble most commonly chosen for the description of the
system under analysis is the canonical ensemble, whose associated probability measure is the
Boltzmann distribution1:

ρ∗(x) =
e−βU∗(x)

Z∗
, (1)

where x is the variable describing the particular microstate of the system, and U∗(x) is the
Hamiltonian, i.e. the function representing the total energy of the system, which in this
context will be often referred to as potential. Here, the computational challenge is represented
by the normalization factor, called partition function:

Z∗ =
∑
x∈Ω

e−βU∗(x), (2)

which reads (in the case of discrete systems) as a sum over all the possible configurations x
living in the phase space Ω of the system.

The algorithm proceeds in the following way:

1. Given an initial state xt, a trial move xtrial is proposed, according to a rule that en-
sures the ergodicity of the algorithm (typically by following a local dynamics like the
Hamiltonian one);

2. The acceptance ratio α is computed. There are different ways of defining it, the most
common one is the Metropolis-Hastings rule:

α(xt, xtrial) = min

[
1,

ρ∗(xtrial)

ρ∗(xt)

pxtrial→xt

pxt→xtrial

]
. (3)

The ratio ρ∗(xtrial)
ρ∗(xt)

is where the calculation of the partition function is avoided, by solving
the original computational issue. px→y is the proposal distribution, i.e. the conditional
probability of proposing a move to the state y starting from x. This distribution is

1β = 1
KBT

is the inverse temperature, KB is the Boltzmann constant.

5

related to the transition kernel2 of the Markov Chain:

πx→y = α(x, y)px→y + δ(x, y)

∫
Ω

(1− α(x, y))px→ydy, (4)

which is carefully chosen in order to satisfy the detailed balance condition3, which en-
sures the target distribution is the stationary distribution we are going to converge to
asymptotically by following the chain [Tierney, 1998].

3. The acceptance test is performed. This consists of drawing a uniform random number ξ
between 0 and 1: if α > ξ, xtrial is accepted as the next state xt+1 of the Markov chain,
otherwise the state of the chain is not updated, and xt+1 ← xt.

As anticipated, these methods struggle when dealing with multi-modal probability distri-
butions. For the sampling of this kind of densities the local transition kernel used in MCMC
is not sufficient: once the chain reaches a mode, it will commonly get stuck there, and the
probability landscape will not be explored in its entirety. This happens because the local
moves proposed along the chain will not be sufficiently far to reach a different mode, and
the same result could not be achieved by a series of subsequent steps: this would correspond
to cross a lower probability region, which is strongly disfavoured by the Metropolis-Hastings
rule. Using more chains, one for each of the different modes, would not be a proper solution,
because we would still be unable to capture the relative statistical weights of the basins.

Over the years, different approaches have been proposed to tackle this problem. Probably,
the most popular is based on tempering, where different replicas of the system at different tem-
peratures are simulated independently and simultaneously, and configurations are exchanged
between replicas: this procedure has the effect of warming up and cooling down a state, which
in this way is able to overcome low probability barriers [Hukushima and Nemoto, 1996]. The
main drawback of such method lies in its significant computational expensiveness.

More recently, in accordance with the increasing interest and development in machine
learning techniques, different adaptive variants of MCMC have been designed, where the
transition kernel is optimised while the algorithm run, using the samples previously generated
in the chain. In the context of statistical physics, one of the first attempts in this direction
has been done by [Albergo et al., 2019]: there, Markov chain autocorrelation times are sys-
tematically improved thanks to an update scheme which uses a flow-based generative model
optimized through the minimization of the reverse Kullback-Leibler divergence. A similar at-
tempt has been done in the context of Variational Inference4 by [Zhang et al., 2022], who focus
on the optimisation of a specific version of MCMC, the Hamiltonian Monte Carlo algorithm,
by means of an adaptive map which is improved by minimizing the direct Kullback-Leibler
divergence.

2It is a map that describes the probabilities of specific transitions. In the particular case of a Markov process
with a finite state space, it coincides with the transition matrix, whose entries correspond to the transition
probabilities between each pair of states.

3ρ∗(x)πx→ȳ = ρ∗(ȳ)πȳ→x.
4It is a group of techniques devoted to find the best approximation of a probability distribution among a

parametrised family, following an optimisation procedure over the parameters that only requires the knowledge
of the target distribution up to a factor.

6

The Adaptive MC algorithm augmented with normalizing flows by [Gabrié et al., 2022]
follows this trend, and its novelty lies in the choice of keeping, along with the new adaptive
kernel, the original local one, useful to improve the robustness of the algorithm.

2.2 Adaptive Monte Carlo augmented with normalizing flows

As mentioned previously, this algorithm optimizes MCMC sampling by means of a normalizing
flow, which is an example of what in machine learning is called a generative model.

Devising a generative model is an unsupervised5 ML task that aims at learning a represen-
tation of an intractable probability distribution ρ∗(x), typically defined on a high-dimensional
space, using its samples as training data. Differently from classic statistical inference, where
one looks for a mathematical expression for the target distribution, generative modeling has
the goal of finding a transformation T that maps samples z from a tractable distribution
ρB(z) (e.g., a standard normal), called latent or base distribution, into samples x of the
target distribution, in such a way that T (z) ≈ x [Ruthotto and Haber, 2021].

In the case of a normalizing flow, the transformation T : Ω → Ω we look for must be
invertible (i.e. the inverse map T̄ has to satisfy the condition T̄ (T (x)) = T (T̄ (x)) = x) and
differentiable [Papamakarios et al., 2019].

2.2.1 Sampling

The combination of the local kernel with a global one πT (built to satisfy detailed balance as
well) reads as replacing the original π with a new

π̂(x, y) =

∫
Ω
π(x, z)πT (z, y)dz. (5)

Using this kernel reflects in practice in making the chain alternately evolve according to:

• π: the moves are proposed following a local dynamics (e.g. Langevin dynamics) and are
accepted or rejected according to Eq. (3);

• πT : the moves xtrial = T (z), z ∼ ρB, are proposed following the non-local rule defined
by the normalizing flow, and are accepted or rejected according to the following:

α̂(xt, xtrial) = min

[
1,

ρ∗(xtrial)

ρ∗(xt)

ρ̂(xt)

ρ̂(xtrial)

]
, (6)

where
ρ̂(x) = ρB(T̄ (x)) det |∇xT̄ | (7)

is the push-forward distribution, which pushes the samples from the trivial ρB(z) through
T. This map is trained in such a way that ρ̂(x) ≈ ρ∗(x), but even if the adaptation to
the target is not perfect, the acceptance test makes it possible to draw samples with the
correct statistical weights.

5Unsupervised ML algorithms have the goal of finding a structure, or patterns in the unlabeled input data
they are provided with. They differ from supervised ML algorithms, which are trained with labeled data with
the aim of performing classification tasks.

7

The idea of using two cooperating kernels is present also in [Pompe et al., 2018], where
the multi-modality issue is addressed by combining a similar local kernel with a global one
which takes care of making the chain jump between regions explicitly associated with different
basins.

2.2.2 Implementation of the normalizing flow

The normalizing flow map T is devised as a Real-valued Non-Volume Preserving transforma-
tion (Real NVP) [Dinh et al., 2016].

This transformation corresponds explicitly to Eq. (7), and the choice for its parametriza-
tion is related to the accessibility of the computation of the Jacobian determinant det |∇xT̄ |:
in order for it to be easily tractable, the map is built by stacking a series of simple bijections
called affine coupling layers (ACL), characterized by triangular Jacobian matrices, whose
determinants are the trivial product of the diagonal entries.

In particular, an ACL takes a D-dimensional input x and computes the output y in the
following way:

• the first d < D entries are not modified:

y1:d = x1:d; (8)

• the last D − d entries are transformed according to:

yd+1:D = xd+1:D ⊙ es(x1:d) + t(x1:d), (9)

where ⊙ is the element-wise product, and s and t are, in turn, further maps, respectively
called scale and translation.

The s and t transformations are parametrized by multi-layer perceptrons (MLP), which are
the elementary blocks of deep neural networks. Further details about their structure and how
they work are illustrated in Appendix A.

2.2.3 Training

The parameters θ̄ of the whole flow, which we can now refer to as Tθ̄ (i.e. the combination
of all the coupling layers, each of them including the single sθ̄ and tθ̄ maps), are optimised
by means of the Gradient Descent algorithm: this algorithm minimizes an objective function,
called loss function L(θ̄), which quantifies the discrepancy between the target distribution
ρ∗(x) and the push-forward ρ̂θ̄(x).

This is done during training, which is here executed concurrently with the sampling de-
scribed previously. At each iteration k of the training, the algorithm performs n Monte Carlo
steps (following in part the local kernel, in part the non-local one) and the resulting samples
xi(k) are used to compute the loss function L(θ̄), here chosen as the direct Kullback-Leibler
divergence6 between ρ∗(x) and ρ̂θ̄(x):

6DKL(p(x)||q(x)) is a non-symmetric measure of how two probability distributions p(x) and q(x) are differ-
ent. In optimization problems, where p(x) is the target distribution and q(x) is the approximate distribution,
its direct version is distinguished from the reverse DKL(q(x)||p(x)) by the fact that p(x) and q(x) are switched.
As a consequence, the direct DKL reads as an expectation over the target distribution, while the reverse is
computed as an expectation over the approximate distribution. In the case of Eq. (10), c =

∫
ρ∗(x) log ρ∗(x) is

a constant which does not depend on the parameters of the network θ̄, and hence is not interesting to compute
for the improvement of the network.

8

L(θ̄) = DKL(ρ∗(x)||ρ̂θ̄(x))(θ̄) =

∫
ρ∗(x) log

ρ∗(x)

ρ̂θ̄(x)
dx

= c−
∫

ρ∗(x) log ρ̂θ̄(x)dx

≈ c− 1

n

n∑
i=1

log ρ̂θ̄(xi(k)).

(10)

This loss function is then derived with respect to all the parameters, accordingly to the
back-propagation algorithm, and the resulting gradient ∇θ̄L(θ̄) is used to optimize the map
by updating:

θ̄ ← θ̄ − η∇θ̄L(θ̄), (11)

where η is the learning rate, i.e. the size of the steps taken to approach the minimum of the
function.

9

3 Mixture of normalizing flows: model and methods

3.1 The model

As stated in the Introduction, the unique NF in the adaptive MCMC in [Gabrié et al., 2022]
may not be sufficient for sampling accurately modes with highly different statistical weights.
Hence, in the mixture of normalizing flows algorithm the original NF is replaced with a
mixture of different NFs, one for each known mode of the target distribution.

If we think of a multi-modal distribution as a weighted superposition of separated distri-
butions ρ∗,i(x), one describing each of the N basins:

ρ∗(x) =
N∑
i=1

ω∗,iρ∗,i(x), with
N∑
i=1

ω∗,i = 1, (12)

then, devising a mixture of flows would read as replacing the original push-forward distribution
ρ̂θ̄(x) with a new one:

ρ̂θ̄,ω(x) =

N∑
i=1

ωiρ̂θ̄,i(x), with

N∑
i=1

ωi = 1, (13)

which mimics the structure of the target distribution.
By doing so, we let each of the flows adapt to the single modes’ distributions by following

the same procedure described earlier, while concurrently learning, further than the original
parameters θ̄, the statistical weights ωi that characterize the modes. This choice allows the
model to detect and sample also the so-called weak modes, whose weights are significantly
smaller with respect to the other ones. By using a single flow, in fact, the risk is that the
whole probability mass concentrates onto the predominant modes, forgetting the ”lighter”
ones; if, instead, we devote a specific flow to each of the basins, then all of them keep being
accounted for during training, even when their relative weights reach small values.

3.2 Implementation of the model: network structure and code specifics

The code has been implemented in Python [Van Rossum and Drake, 2009], using the ma-
chine learning library PyTorch [Paszke et al., 2019]. The network is designed as a list of
RealNVPs, each of them implemented according to the code for the single flow devised in
[Gabrié et al., 2022].

3.2.1 Parameters

As mentioned before, the new network is associated to a set of parameters {θ̄, ω}, where
θ̄ = {θ̄i, i = 1, ..., N} correspond to the original parameters of the RealNVPs, while ω =
{ωi, i = 1, ..., N} are the new weights.

In particular, the actual additional parameters defined for this network are not the weights
themselves, but their logarithm logωi: this ensures the real ωi = elogωi remain always positive
during training, even if the parameters are updated to negative values.

The information about the statistical weights associated to each flow is accounted for by
the model in the sampling and the loss function. In particular, when it comes to sampling, the

10

number n of samples to be drawn is split into N values ni (such that
∑N

i=1 ni = n) by sampling
a multinomial distribution: in this way we are able to draw from the entire distribution while
respecting the current weights of the modes. Concerning the loss function (which is just an
adapted version of Eq.(10)):

L(θ̄, ω) = DKL(ρ∗(x)||ρ̂θ̄,ω(x))(θ̄, ω) =

∫
ρ∗(x) log

ρ∗(x)

ρ̂θ̄,ω(x)
dx = c−

∫
ρ∗(x) log(ρ̂θ̄,ω(x))dx,

(14)
here the weights are taken into account by simply expliciting ρ̂θ̄,ω(x) according to expression
(13).

3.2.2 Training

The training algorithm is the same used in the original version of the model, i.e. the one in-
volving a unique NF devised in [Gabrié et al., 2022], where the Adam optimization algorithm7

is chosen.

3.2.3 Initialization

Concerning the initialization of the model before training, two features have to be specified:

• the initial weights of the modes: a neutral choice would be to assign to each mode
the same weight, but if we have some prior knowledge about the distribution of the
probability mass in the target, we can ease the learning by setting the initial weights to
values qualitatively similar to the target ones;

• the base or prior distribution: according to the shape of the target, if known, different
choices can be made for the prior distribution. In this code, the options are:

– ’standn’ : ρB(x) is a mixture of multivariate standard Gaussians, with 0 means and
unitary covariances;

– ’white’ : ρB(x) is a mixture of multivariate Gaussians with means and covariances
given by the user;

– ’coupled’ : ρB(x) is designed to target the probability measure ρ∗[ϕ] = e−βU∗[ϕ]

Z∗
associated to the stochastic Allen-Cahn model. It is still a mixture of multivariate
Gaussians, with means given by the user and covariances built in such a way to
encode the spatial coupling of the field ϕ in U∗[ϕ].

The means and covariances are provided by the user when it is possible to perform a ”pre-
liminary training” to inform the prior distribution. An option would be to take:

7Adam is a widely used variant of stochastic gradient descent algotihm (SGD), where the learning
rate is adapted to each parameter using the training data, leading to a speed-up in the convergence
[Kingma and Ba, 2014]. SGD is, in turn, a variant of the classic GD algorithm, which differs from it in
how much data is used to compute the gradient. In the classic GD, the whole training dataset is used, while
SGD performs a parameter update for each training data-point. This variant is less accurate and could result
in heavy fluctuations of the loss function, but it is much faster [Ruder, 2016].

11

• GD initial means: computed by the GD algorithm (implemented through the automatic
differentiation function provided by PyTorch [Paszke et al., 2017]). Starting from a
point x0 in the vicinity of the interested mode, the algorithm iterates for nsteps with the
goal of minimizing the potential U∗(x) of the target. The value found at the last step is
taken as the x where the potential is minimum, hence where the associated probability
measure has a maximum: this can be assumed as the center of a mode µi;

• MALA initial covariances: estimated as sample covariances

Σi =
1

n− 1

n∑
j=1

(xj − x̄)(xj − x̄)T (15)

where x̄ = µi is the mean of the i -th mode (either the exact or the GD one), and the xj
are samples obtained by letting n random walkers evolve starting from the µi according
to the Metropolis-adjusted Langevin algorithm (MALA)8.

8MALA is a MCMC algorithm where the moves are proposed according to the overdamped Langevin equation
(in 1d):

dx

dt
= − 1

γ

dU∗(x)

dx
+ ξ(t) = − 1

γ

d

dx
(− 1

β
log ρ∗(x)) + ξ(t), (16)

where γ is the friction coefficient and ξ(t) is gaussian white noise. The acceptance test is still performed
according to Metropolis-Hastings rule.

12

4 Results and discussion

4.1 1-dimensional Gaussian mixture

With the aim of testing the performances of the model, we first started studying the simplest
possible case: the 1-dimensional Gaussian mixture.

A Gaussian mixture is a multi-modal Gaussian distribution, which can be interpreted as
a superposition of uni-modal Gaussian distributions centered in different points of the space.
Before proceeding with the illustration of the training results, it is useful to focus on the
structure of the loss function, in order to point out the importance of the normalization of
the weights ωi of the network.

Loss function analysis As mentioned before, the loss function is what in machine learning
quantifies the difference between the current state of the model and the target, informed by
data. Given so, its analysis, and in particular the visualization of its landscape in the space
of the parameters, gives us an insight about whether the devised model will learn accordingly
to our expectations.

Considering that the original code for the single NF behaves correctly, the only concern
for having a good performance in our model is related to the new parameters ωi, which must:

• respect the proper normalization:
∑N

i=1 ωi = 1;

• respect the correct target ratio (for bi-modal distributions:
ω∗
2

ω∗
1

= ω2
ω1

).

The key for respecting these two requirements is to account for the normalization of the
weights in two points of the code:

(a) after each GD step of the training: once the ωi are updated, we modify them manually
by dividing them by their sum;

(b) during the GD step: indeed, it is not sufficient to let the parameters evolve freely and to
normalize them only after the optimization, as specified in (a), but we need to constrain
the optimization itself to this condition. This means the weights in L(θ̄, ω) should be
specified as ωi∑N

i=1 ωi
.

In the following we show how this happens by looking at the landscape of the loss function
for the 1-dimensional Gaussian mixture.

Let’s take:

- a 1-dimensional bi-modal Gaussian target distribution

ρ∗(x) = ω∗
1N1(x;µ∗

1, σ
∗2
1) + ω∗

2N2(x;µ∗
2, σ

∗2
2), (17)

with Ni(x;µi, σ
2
i) = 1√

2πσ2
i

e
(x−µi)

2

2σ2
i , means: µ∗

1 = −9, µ∗
2 = 5, variances: σ∗2

1 = σ∗2
2 = 1,

weights: ω∗
1 = 0.2, ω∗

2 = 0.8 (illustrated in Fig. 1);

- a 1-dimensional bi-modal Gaussian prior distribution, initialized in the exact target
means and covariances

ρB(x) = ω1N1(x;µ∗
1, σ

∗2
1) + ω2N2(x;µ∗

2, σ
∗2
2). (18)

13

Satisfying only (a) corresponds to using the not-normalized loss function, where:

ρ̂θ̄,ω(x) =
N∑
i=1

ωiρ̂θ̄,i(x) = ω1ρ̂θ̄,1(x) + ω2ρ̂θ̄,2(x). (19)

The associated landscape for the loss function in the (ω1, ω2) ∈ R2 plane is the one repre-
sented in Figure 2. We observe that its minimum is realized for values of ω1, ω2 which do not
seem to coincide with the target ones (in green). By manually normalizing the weights after
each GD step, projecting them back to the straight line ω2 = 1 − ω1 where this condition is
enforced, the model might in the end converge to the target, but excessively slowly.

(a) (b)

Figure 2: (a): Not-normalized loss function landscape in the (ω1, ω2) ∈ R
2 plane. (b):

Logarithm of the not-normalized loss function landscape in the (ω1, ω2) ∈ R2 plane. The
green dot represents the couple of target weights (ω∗

1, ω
∗
2); the white arrows represent the

gradient vector field ∇ω1,ω2L(θ̄, ω).

Conversely, if we constrain the GD itself to the normalization as suggested in (b), by using
the normalized L(θ̄, ω), where:

ρ̂θ̄,ω(x) =
N∑
i=1

ωi∑N
i=1 ωi

ρ̂θ̄,i(x) =
ω1

ω1 + ω2
ρ̂θ̄,1(x) +

ω1

ω1 + ω2
ρ̂θ̄,2(x), (20)

the picture is far more promising. In Figure 3a we observe that, indeed, in this case the loss
function captures the correct weight ratio: as it is more evidently showed in the plot of the

logarithm in Fig. 3b, the minimum is located precisely along the straight line ω2 =
ω∗
2

ω∗
1
ω1. This

allows the GD to follow the appropriate direction. Notice that ensuring the normalization in
the loss function computation does not mean that the learned weights are straightforwardly
normalized too: this is the reason why (a) and (b) must be implemented both.

There is, however, a third option for the computation of the loss function, which allows the
network to learn both the correct ratio and the normalization with a unique manipulation. In
fact, it is possible to add to the normalized L(θ̄, ω) a penalty contribution that in principle, as it
is done in the Lagrange multiplier method, constrains the learning to satisfy the normalization

14

(a) (b)

Figure 3: (a): Normalized loss function landscape in the (ω1, ω2) ∈ R2 plane. (b): Logarithm
of the normalized loss function landscape in the (ω1, ω2) ∈ R2 plane. The green dot represents
the couple of target weights (ω∗

1, ω
∗
2); the light blue straight line has slope equal to the target

weight ratio; the white arrows represent the gradient vector field ∇ω1,ω2L(θ̄, ω)

without resorting to (a). The resulting expression would be:

L(θ̄, ω; p) = DKL(ρ∗(x)||ρ̂θ̄,ω(x))(θ̄, ω) + p

(
N∑
i=1

ωi − 1

)2

, (21)

where p is the penalty coefficient, which can be tuned in order to enforce the normalization
condition more or less strongly. Minimizing this new loss function would then mean to find
the parameters ωi that simultaneously minimize the original normalized DKL and the penalty
contribution (

∑N
i=1 ωi − 1)2, hence the parameters that satisfy the condition

∑N
i=1 ωi = 1.

This is confirmed by the plots represented in Fig. 4: now the minimum of the loss function
is found at the exact intersection between the straight line associated to the target weight
ratio, and the one associated to the normalization condition.

From the training experiments it emerges that, in practice, using this variation of the loss
function allows us to omit the manipulation described in (a) only if we accept an error on
the sum of the weights of the order of 0.01. Also, this modification does not speed up the
convergence of the algorithm, so in the following we will stick to the original normalized loss
function.

Training on a weak mode distribution Now that the details of the construction of the
loss function have been provided, we can focus on the model performances. In this first test
we use the following parameters:

• Target distribution, represented in Fig. 5a: means µ∗
1 = −9, µ∗

2 = 5; variances σ∗2
1 =

σ∗2
2 = 1; weights ω∗

1 = 0.01, ω∗
2 = 0.99;

• Initial configuration of the push-forward distribution, which corresponds to the prior
distribution9, represented in Fig. 5b: ’white’ distribution with means µ1 = −5.4,

9The maps Tθ̄ are initialized to the identity transformation, so, before training, Eq.(7) becomes ρ̂θ̄(x) =
ρB(x).

15

(a) (b)

Figure 4: (a): Penalty loss function landscape in the (ω1, ω2) ∈ R2 plane. (b): Logarithm
of the penalty loss function landscape in the (ω1, ω2) ∈ R2 plane. The green dot represents
the couple of target weights (ω∗

1, ω
∗
2); the light blue straight line has slope equal to the target

weight ratio; the pink straight line represents the normalization condition; the white arrows
represent the gradient vector field ∇ω1,ω2L(ω, θ)

µ2 = 3; variances10 σ2
1 = 1.03, σ2

2 = 1.04; weights ω1 = 0.99, ω2 = 0.01. These
initialization values are chosen in order to verify whether network is able to adapt to
the target even starting from a very different configuration;

(a) (b)

Figure 5: (a): Target distribution for the training test on a 1-dimensional Gaussian mixture.
(b): Prior distribution for the training test on a 1-dimensional Gaussian mixture.

• Training parameters: learning rate η = 0.01, batch size bs = 300, number of iterations
n = 5000.

The evolution of the push-forward distribution during training can be observed in Figure
6: unfortunately, due to the weak nature of the mode we are trying to sample, the variations

10These values are obtained as sample covariances over 10 random walkers starting from the exact means
and evolving for 10000 MALA steps.

16

in the push-forward at different iterations are not always visually appreciable. For this reason,
it is better to look at the evolution of the weights values in Fig. 7: here we can see that the
network is indeed learning, since the parameters are changing in the correct direction, and that
already at the 1000-th iteration most of the adaptation to the target has been completed. After
that, the weights keep approaching the target values with increasing accuracy, until the last
iteration, when the correspondence to ω∗,1 = 0.01, ω2,∗ = 0.99 is reached with a negligible error
of ±0.0001. The comparison between the final configuration of the push-forward distribution
and the target one is shown in Figure 8.

Figure 6: Evolution of the push-forward distribution during the training test on a 1-
dimensional Gaussian mixture.

Figure 7: Evolution of the weights of the 1-dimensional Gaussian mixture during training.

In Fig. 9 we can look at the evolution of the loss function value: coherently to what
we see in Fig. 7, we observe a fast significant drop in the first ≈ 1000 iterations, and after
that it remains approximately constant until the end of the training, indicating that learning
continues more slowly.

17

Figure 8: Comparison between the final configuration of the push-forward distribution and
the target for the training test on a 1-dimensional Gaussian mixture.

Figure 9: Plot of the loss function values during the training test on a 1-dimensional Gaussian
mixture.

4.2 2-dimensional Gaussian mixture

Training on a weak mode distribution The second test involved a 2-dimensional Gaus-
sian mixture.

In this case we use the following parameters:

• Target distribution, represented in Fig. 10a: means µ∗
1 = (−9,−9), µ∗

2 = (−5, 5);
variances Σ∗

1 = Σ∗
2 =

(
1 0
0 1

)
; weights ω∗

1 = 0.01, ω∗
2 = 0.99;

• Prior distribution, represented in Fig.10b: ’white’ distribution with means11 µ1 =
(−9,−9), µ2 = (−5, 5); covariance matrices12 Σ1 =

(
0.99 0.00
0.00 0.99

)
,Σ2

2 =
(
1.00 0.00
0.00 1.00

)
; weights

ω1 = 0.99, ω2 = 0.01;

• Training parameters: learning rate η = 0.01, batch size bs = 300, number of iterations

11Values found by running GD for 10000 steps with dt = 0.1 starting from µ1 = (−5.4,−5.4), µ2 = (3, 3).
The resulting values correspond exactly to the target ones.

12Values obtained as sample covariances over 10 random walkers starting from the GD means and evolving
for 10000 MALA steps.

18

n = 5000.

(a) (b)

Figure 10: (a): Target distribution for the training test on a 2-dimensional Gaussian mixture.
(b): Prior distribution for the training test on a 2-dimensional Gaussian mixture.

The evolution of the push-forward distribution during training can be observed in Figure
11: similarly to what happens in the test on the 1-dimensional Gaussian mixture, also here
the variations in the push-forward are not actually visible. Hence, for determining whether
the network is learning according to our expectations, we can look at the evolution of the
weights values in Fig. 12: the adaptation to the target is occurring, and it is qualitatively
evident already in the first 1000 steps; at the last iteration the exact value of the target ratio
is reached.

Figure 11: Evolution of the push-forward distribution during the training test on a 2-
dimensional Gaussian mixture.

This is confirmed by Figure 13, where we can see the comparison between the final con-
figuration of the push-forward distribution and the target one.

From Figure 14 we observe that the loss function, after a sudden increase in the very first
iterations, decreases smoothly and reaches an approximately constant value around iteration

19

Figure 12: Evolution of the weights of the 2-dimensional Gaussian mixture during training.

Figure 13: Comparison between the final configuration of the push-forward distribution and
the target for the training test on a 2-dimensional Gaussian mixture.

n° 1000: this suggests that, accordingly to what we see in Fig. 12, at this point the push-
forward has adapted qualitatively to the target, and in the following iterations, as it happened
in the 1-d case, it keeps improving, but more slowly.

Figure 14: Plot of the loss function values during the training test on a 2-dimensional Gaussian
mixture.

20

4.2.1 Comparison with the original code performances

It is interesting to have a closer look on how the version of the code using a unique NF fails
in the sampling of highly unbalanced probability distributions.

In particular, that model uses a unique flow and, consequently, a prior distribution which
reflects this configuration: in Figure 15b we can see the one chosen in this test is a simple uni-
modal Gaussian centered in (x, y) = (0, 0), with unitary covariance. The target distribution
is the same chosen for the test on the mixture of flows, and it is represented in Fig. 15a.

(a) (b)

Figure 15: (a): Target distribution for the training test on a 2-dimensional Gaussian mixture
using a unique NF. (b): Initial configuration of the push-forward distribution for the training
test on a 2-dimensional Gaussian mixture using a unique NF.

By looking at the evolution of the push-forward distribution in Fig. 16 and at the com-
parison between its final configuration and the target distribution in Fig. 17, we are not able
to tell whether the weak mode has been properly sampled.

Figure 16: Evolution of the push-forward distribution during the training test on a 2-
dimensional Gaussian mixture using a unique NF.

Contrarily to what happens in the mixture of flows algorithm (described in Section 3), in
this case we do not have explicit access to the weights of the modes in the final configuration,
because these are not learned as parameters of the network. Hence, in order to detect whether

21

Figure 17: Comparison between the final configuration of the push-forward distribution and
the target for the training test on a 2-dimensional Gaussian mixture using a unique NF.

the statistical weights of the target are correctly reproduced by the trained model, we can
look at the spatial distribution of a sufficient number n of samples drawn from the final
configuration of the push-forward distribution. This is shown in Figure 18, where n = 105:
among the samples, none of them is located close enough to the mean of the weak mode to
be associated with it.

Figure 18: Scatter plot of the samples drawn from the final configuration of the push-forward
distribution for the training test on a 2-dimensional Gaussian mixture using a unique NF.
Number of samples: 100000.

From this evaluation we can safely confirm that, as anticipated in the description of the
motivation of our work, the original adaptive MC is not able to keep track of weak modes,
since the whole flow ends up concentrating uniquely in the neighbourhood of the predominant
one.

22

4.3 1-dimensional stochastic Allen-Cahn model in presence of an external
field

The last model considered for testing our network is the stochastic Allen-Cahn model, used
in condensed matter physics for the study of phase transitions. According to this model, the
time evolution of the random field ϕ : x ∈ [0, 1]→ R is determined by the following stochastic
partial differential equation:

∂tϕ = a∂2
xϕ +

1

a
(ϕ− ϕ3) +

√
2

β
ξ(t, x), (22)

where a > 0 is a parameter, x the spatial variable and ξ(x, t) is a white noise.
In 1 dimension, the associated Hamiltonian reads as:

U∗[ϕ] = β

∫ 1

0

[
a

2
(∂xϕ)2 +

1

4a
(1− ϕ2(x))2

]
dx, (23)

where the first term is a coupling term which disfavours spatial variations of ϕ and, at suf-
ficiently low temperature, constrains it to align in positive or negative direction in its entire
spatial extension . Analytically, this means the Hamiltonian shows two minima in correspon-
dence of the values ϕ+ and ϕ−, separated by a free energy barrier. It is this barrier that
makes the traditional local MCMC methods not suited for the sampling of this model.

The adaptive MCMC algorithm in [Gabrié et al., 2022] is able to sample efficiently from
the probability distribution associated to Eq. (23), by allowing mixing across the energy
barrier.

In this configuration of the model, the two modes are characterized by the same statistical
weight and it is easy for the normalizing flow to spread its probability mass accordingly to
the target distribution. The situation changes when an external field term is added:

U∗[ϕ, b] = β

∫ 1

0

[
a

2
(∂xϕ)2 +

1

4a
(1− ϕ2(x))2 + bϕ(x)

]
dx. (24)

and the symmetry ϕ → −ϕ present in Eq. (23) gets broken. Depending on the strength
of the field, in fact, weak modes could appear, and the single push-forward, initialized in
ϕ = (0, 0, ..., 0, 0), could initially spread across both modes, but would end up collapsing onto
the dominant one, similarly to what happened for the 2-dimensional Gaussian mixture.

Then, a mixture of flows could help in detecting the correct weight ratio between the basins.

Notice that, even if the real spatial dimension of the model is 1, in order to practically
deal with it we need to discretize the space (and so the field ϕ(x)→ ϕi) in a grid of N sites:
hence, the map we need to train T : RN → RN is high-dimensional. This reflects also in the
discretization of Eq. (22) into the corresponding Langevin equation, used as the dynamics for
proposing the local moves.

Before showing the performances in this particular instance of the model we devised, it is
useful give more details about the specific base distribution we use.

23

Informed base distribution As anticipated in Subsection 3.2.3, for the stochastic Allen-
Cahn model we make use of an informed, or ’coupled’ base distribution [Gabrié et al., 2022],
which encodes the information about the spatial coupling of the field ϕ(x). This is needed
because a Gaussian field with uncoupled spins, corresponding to a system with Hamiltonian
of the form:

UB[ϕ] = β

∫ 1

0

1

2
ϕ(x)2dx, (25)

is not sufficient to learn the map efficiently. In particular, this alternative base measure
is a Gaussian random field with a local coupling, called Ornstein-Uhlenbeck bridge, and its
Hamiltonian is the following:

UB,informed = β

∫ 1

0

[
a

2
(∂xϕ(x))2 +

1

2a
ϕ2(x)

]
dx. (26)

The discretized version reads as:

UB,informed = β

N∑
i=1

[
a

2
(ϕi+1 − ϕi)

2 +
1

2a
ϕ2
i

]
, (27)

and it is implemented as a multivariate Gaussian with:

• mean: corresponding to the mean of the interested mode. This is found by minimizing
the target potential through the GD algorithm, starting from the ”ideal” configuration
ϕ+,− = (0,±1,±1, ...,±1, 0) (Dirichlet boundary condition ϕ(x = 0) = ϕ(x = 1) = 0 are
implemented), of length N ;

• precision matrix :

Σ−1
informed = β

γ − c −c 0 · · · · · · · · · 0

−c γ − c −c . . .
...

0 −c γ − c −c . . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . . −c γ − c −c

0 · · · · · · · · · 0 −c γ − c

(28)

with c = aN , γ = 3ac + 1
c , and size NxN .

Training on a weak mode distribution For the training test on the Allen-Cahn model
we chose the following parameters: coupling coefficient a = 0.1, local field b = 0.025, grid size
N = 10, inverse temperature β = 10.

Concerning the initialization of the network:

• the means with which the prior distributions are initialized are computed by running
10000 steps of the GD algorithm, with a dt = 0.1. The final configuration is shown in
Figure 19;

24

Figure 19: Values of the modes ϕ+,ϕ− of the stochastic Allen-Cahn model in 1 dimension,
obtained by minimizing the target potential through the GD algorithm. Parameters of the
target: b = 0.025, a = 0.1, β = 10. Grid size: N = 10.

• the initial weights of the priors associated to the modes ϕ+, ϕ− are w+ = 0.035, w− =
0.965. These values are chosen by performing preliminary tests13 on configurations with
smaller b: their results, shown in Fig. 20, confirm the expected decreasing trend of w+

at increasing b, so we decide to ease the learning for b = 0.025 by starting from the
values obtained at b = 0.020. In Figure 21 we can see 10000 samples from the global
prior distribution obtained by the weighted sum of the single flows’ ones.

Figure 20: Values of the weights to which the network converge in the test on the stochastic
Allen-Cahn model in 1-d for different b, β, N = 10, a = 0.1.

After training the mixture for n = 15000 steps, with bs = 100 and η = 0.001, we converge
to the final values of the weights ω+ = 0.016, ω− = 0.984, computed as the mean of the values

13These preliminary tests are done on target distributions associated to increasing values of b ∈
{0.005, 0.010, 0.015, 0.020}, a = 0.1, N = 10 and β ∈ {10, 20}. The training parameters are: nsteps = 3000,
bs=100, η = 0.001. The prior distributions are ’coupled’ and are initialized with means computed by the GD
algorithm, run for 10000 steps with dt = 0.1. For each test, the initial values of the push-forward weights are
chosen equal to the values to which the simulation for the immediately smaller b has converged. In particular,
the final weights considered here do not coincide exactly with the value these parameters assume at the last
iteration of training, but they are computed as the mean of the values taken in the last 1000 iterations; the
associated standard deviations are negligible in all the simulations.

25

Figure 21: Samples from the prior distribution for the stochastic Allen-Cahn model in 1
dimension. Parameters of the target: b = 0.025, a = 0.1, β = 10. In red: means of the modes
computed by GD. Initial weights of the modes: ω+ = 0.035, ω− = 0.965. Number of samples:
10000. Grid size: N = 10.

of these parameters along the last 1000 iterations; the associated standard deviations are of
the order of 0.00001, so the error can be considered negligible. In Fig. 22 we observe 10000
samples from the related final push-forward distribution.

Figure 22: Samples from the final configuration of the push-forward distribution for the
stochastic Allen-Cahn model in 1 dimension. Parameters of the target: b = 0.025, a = 0.1,
β = 10. In red: means of the modes computed by GD. In green: means of the modes computed
empirically from the samples drawn from the final push-forward. Number of samples: 10000.
Grid size: N = 10.

From Fig. 23 we see that the loss function along the simulation is very noisy. This be-
haviour can be attributed to two factors: first, the batch size, whose value affects significantly
the cost of the computation, is chosen to be pretty small in order to have faster simulations,
thus determining heavy fluctuations of the loss; second, the push-forward distribution is ini-
tialized in an excellent way (thanks to the GD computation of the means, to the informed
covariance matrices and to the weights obtained from the preliminary tests), hence, being
it very close to the target distribution already in its initial configuration, it is possible that

26

the difference the GD needs to cover to reach the loss function minimum is smaller than the
amplitude of the oscillations due to the batch size. This behaviour makes it difficult to see
whether the loss is actually decreasing: even the moving average14 is not able to capture this
expected trend.

Figure 23: Plot of the loss function values during the training test on the stochastic Allen-
Cahn model in 1 dimension. The moving average is computed using a window size=700.

Anyway, the improvement and convergence of the weights is confirmed by the plot of their
values along training shown in Fig. 24: precisely, in order to appreciate the difference between
the initial and the final value, which is approximately 0.02, this plot shows only the value of
ω+; the complementary behaviour of ω− can be easily deduced thanks to the fact that their
sum is constrained to 1.

Figure 24: Evolution of the weight ω+ of the push-forward distribution for the stochastic
Allen-Cahn model in 1 dimension during training.

In all the tests (including the ones reported in Fig. 20) we are confident that the learning
has converged not only because the parameters stop adapting and start oscillating with neg-
ligible variance around a specific value, but also because the free energy differences computed

14The moving average mi at iteration i of a time series {fi}, i ∈ {i = 1, ..., N} is computed as the mean of
the values of {fi} in the following ws iterations: mi = 1

ws

∑i+ws
i=1 fi. ws stands for window size, and in the

calculation for the loss function it is chosen as ws = 700.

27

using the associated push-forwards (see the following Subsection) are coherent with the results
found in [Gabrié et al., 2022].

Free energy difference The last analysis performed on the stochastic Allen-Cahn model
involved the computation of the free energy difference −∆F = F− − F+ between the modes
ϕ−, ϕ+. Explicitly, this difference is estimated as:

−∆F = log

∫
Rd 1+(x)e−βU∗(x)dx∫
Rd 1−(x)e−βU∗(x)dx

= logE∗[1+(x)]− logE∗[1−(x)], (29)

where 1+(x) is the indicator function of the set {ϕ :
∫ 1
0 ϕ(x)dx > 0}, 1−(x) is the indicator

function of the set {ϕ :
∫ 1
0 ϕ(x)dx < 0}, and E∗ indicates the expectation over the target

distribution ρ∗[ϕ(x)].
Since we have access to the exact expression of the target distribution, but we are not

able to directly sample from it, this computation has been done by means of the importance
sampling, which is a technique that allows to estimate expectations on a target measure (here

ρ∗[ϕ(x)] = e−βU∗[ϕ(x)]

Z∗
) through independent samples from a proposal measure (here ρ̂θ̄,ω[ϕ(x)]

in its configuration at the last training step, which we are able to sample)[Tokdar and Kass, 2010].

Precisely, we take n samples ϕi(x1, .., xN) from ρ̂θ̄,ω[ϕ(x)] and we estimate the expectations
over ρ∗[ϕ(x)] as a weighted average over these random draws:

E∗[1+(x)] ≈
ZIS,+

Z∗
=

1

Z∗

n∑
i=1

1+(ϕi)ŵ(ϕi), (30)

where ŵ(ϕi) = e−βU∗(ϕi)
ρ̂(ϕi)

are called the unnormalized weights, and the unknown Z∗ is canceled
out in the free energy estimator:

−∆F ≈ log(
1

Z∗

N∑
i=1

1+(ϕi)ŵ(ϕi))− log(
1

Z∗

n∑
i=1

1−(ϕi)ŵ(ϕi)) = log

∑N
i=1 1+(ϕi)ŵ(ϕi)∑n
i=1 1−(ϕi)ŵ(ϕi)

. (31)

The estimator of the variance associated to the computation in Eq. (30) is given by:

Var

(
ZIS,+

Z∗

)
≈ V̂ar(1+(ϕi))

neff
, (32)

where neff is the effective sample size:

neff =
n

τ
=

(
∑n

i=1 ŵ(ϕi))
2∑n

i=1 ŵ
2(ϕi)

, (33)

with τ corresponding to the autocorrelation time of the chains [Gabrié et al., 2022].

In Figure 25 we can see the results we obtain following this method for −∆F (b) at different
β. For each combination of the parameters, we used the associated final configuration of
the push-forward distribution obtained in the preliminary tests mentioned in the previous
paragraph, whose related converged weights are represented in Fig. 20. The variance estimator
gives negligible values for all the calculations, so the associated error bars are not visible.

As anticipated, these results are in accordance with the ones found using the adaptive
MCMC augmented with a unique NF.

28

Figure 25: Free energy difference −∆F computed for different values of the external field b
and inverse temperature β.

4.4 Discussion of the results

The first two tests involved mixtures of Gaussians in 1 and 2 dimensions: this family of func-
tions might be one of the most easy and common examples when dealing with probability
distributions, but it is precisely for their simplicity and ubiquity that it was fundamental to
verify that our algorithm is suited to their sampling. The choice for the third test fell on
the stochastic Allen-Cahn model: it is with this model that, further than the adaptation to
multi-modality, we checked the behaviour of our algorithm in a high-dimensional framework.

The main finding we can gather from these experiments is that, as expected, assigning a
single normalizing flow to each of the known modes of the target distribution ensures sampling
takes place accurately regardless of the relative statistical weights of the modes, differently
from what happens in the original version of the algorithm. The key feature for this to be
true is the normalization of the weights in the loss function.

Moreover, we can state that the combination of multiple normalizing flows does not affect
the power of the single flow: the network is able simultaneously to learn the new introduced
parameters, i.e. the weights, and to adapt to the shape of the basins, identifying the correct
means and covariances as well as the original code does.

A big contribution to the efficiency of the algorithm is given by a proper initialization
of the prior distribution and, even before that, by some form of prior knowledge concerning
the modes of the target: with this algorithm, indeed, the issue of exploring the unknown
landscape of a probability distribution is not addressed, and we limit our analysis to the cases
where the location of the basins has already been identified.

Together with the initialization, something that strongly impacts the learning process,
as in any machine learning algorithm, is the tuning of the hyperparameters15. In our case,

15In machine learning, the hyperparameters are those parameters which are external to the model and are
not derived via training. They are typically specified by the user and chosen using heuristics.

29

for example, the need of adapting the weights to very little values makes the tuning of the
learning rate fundamental: the closer we are to the target and the smaller is expected to be
the target weak mode weight, the smaller the learning rate needs to be for having a smooth
convergence. Also the batch size plays, in principle, an important role, but even if we set
it to a particularly small value for relieving the computational burden of the simulation, the
network keeps its ability to find the loss function minimum.

Bear in mind that there is still a limit for the precision on the highly unbalanced weights
this algorithm is able to detect: beyond a certain value, it is the intrinsic representation
limit of the computer that prevents the network from adapting properly to the target. This
is the case, for example, in the stochastic Allen-Cahn model in presence of relatively big
external fields: here the lighter modes could reach a weight of the order of 10−7 or less, which,
being hardly distinguishable from 0, would lead the whole mixture of flows to collapse on the
predominant basin. When dealing with this kind of configurations, an alternative approach
would be to use more suited techniques, like rare events sampling.

Anyway, despite from these first tests the algorithm seems promising, there is still need to
perform experiments on more complex distributions, in higher dimension, where the number
of modes is higher than two.

30

5 Conclusion

The project described in this Master’s thesis had the goal of contributing to the solution of a
crucial issue in scientific computing: the manipulation of complex probability distributions.

An algorithm meeting the challenge of this task must satisfy a series of conditions: it
must take into account the presence of different modes, it must capture their relative weights,
whatever their values are, and it must be computationally efficient, even in high-dimensional
frameworks.

The Mixture of normalizing flows algorithm fulfills all the above requirements.
Starting from the innovative strategy proposed in [Gabrié et al., 2022], i.e. the Adap-

tive MC augmented with a unique normalizing flow, the replacement of the single flow with
a weighted mixture seemed the best idea to address the problem of sampling significantly
unbalanced modes. Looking through the existing literature concerning the topic and the
instruments provided by PyTorch to deal with generative models, I chose to combine the
multiple NFs in a new, outer list, where each module is implemented as the unique flow in
[Gabrié et al., 2022]. A further possibility could have been to realize the mixture at a different
level of the algorithm: not externally, as I did, but inside the unique starting NF, e.g. by
replacing its prior distribution with a weighted combination of priors.

Translating the chosen design in an actual, functioning code has been for me the most
stimulating challenge of the project. Indeed, the main effort has been to implement the
algorithm consistently with the existing code and the constraints of its structure, to which
each of my new modifications had to match in order for the resulting algorithm to function
smoothly.

Hence, the writing of the code has not been straightforward, but in fact frequently in-
terspersed with a series of tests on simple examples, which allowed me to locate the precise
source of any possible error in the long, nested architecture of the network, together with an-
alytical computations. In particular, to the aim of this Thesis work, the most significant has
been the one related to the Loss function analysis (reported in Section 4): only the analytical
treatment of the backpropagation algorithm revealed the proper structure of this function
and the relevance of the role of its normalization.

The decisive proof that the algorithm was properly functioning has been the test on the
stochastic Allen-Cahn model: due to its high-dimensionality, it took more creativity to analyze
the results, which are not intuitively interpretable, but it was this same feature to make the
strengths of the algorithm emerge.

We can thus conclude that the Mixture of normalizing flows algorithm is able to sample
high-dimensional, multi-modal probability distributions even in presence of basins with highly
unbalanced statistical weights.

Upon further testing in more elaborate settings, this method could represent an alternative
to the existing techniques devoted to the sampling of complex probability landscapes. One
of the most common is tempering : its major limitation derives from its computational cost,
which is partly solved in the adaptive MC algorithms, but, despite this, it still represents
an adequate approach to discover the geometry of a distribution when no prior knowledge is
given about it.

Hence, a perspective for future research could be to further extend the adaptive MC aug-
mented with mixtures of normalizing flows, incorporating a tool for the detection of unknown
modes.

31

6 References

[Albergo et al., 2019] Albergo, M., Kanwar, G., and Shanahan, P. (2019). Flow-based gen-
erative models for markov chain monte carlo in lattice field theory. Physical Review D,
100(3).

[Dinh et al., 2016] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016). Density estimation
using real nvp.

[Gabrié et al., 2022] Gabrié, M., Rotskoff, G. M., and Vanden-Eijnden, E. (2022). Adaptive
monte carlo augmented with normalizing flows. Proceedings of the National Academy of
Sciences, 119(10):e2109420119.

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359–366.

[Hukushima and Nemoto, 1996] Hukushima, K. and Nemoto, K. (1996). Exchange monte
carlo method and application to spin glass simulations. Journal of the Physical Society of
Japan, 65(6):1604–1608.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic
optimization.

[Papamakarios et al., 2019] Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S.,
and Lakshminarayanan, B. (2019). Normalizing flows for probabilistic modeling and infer-
ence.

[Paszke et al., 2017] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in
pytorch. In NIPS 2017 Workshop on Autodiff.

[Paszke et al., 2019] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.
(2019). Pytorch: An imperative style, high-performance deep learning library. In Wallach,
H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Ad-
vances in Neural Information Processing Systems 32, pages 8024–8035. Curran Associates,
Inc.

[Pompe et al., 2018] Pompe, E., Holmes, C., and Latuszyński, K. (2018). A framework for
adaptive mcmc targeting multimodal distributions.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: a probabilistic model for informa-
tion storage and organization in the brain. Psychological review, 65 6:386–408.

[Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization algorithms.
CoRR, abs/1609.04747.

[Ruthotto and Haber, 2021] Ruthotto, L. and Haber, E. (2021). An introduction to deep
generative modeling.

32

[Spagnol et al., 2016] Spagnol, S., Galesso, S., and Avanzini, F. (2016). Stima di feature
spettrali di hrtf mediante modelli antropometrici non lineari per la resa di audio 3d. Figure
5. Representation of a Multi-Layer Perceptron.

[Tierney, 1998] Tierney, L. (1998). A note on metropolis-hastings kernels for general state
spaces. The Annals of Applied Probability, 8(1):1–9.

[Tokdar and Kass, 2010] Tokdar, S. and Kass, R. (2010). Importance sampling: A review.
Wiley Interdisciplinary Reviews: Computational Statistics, 2:54 – 60.

[Van Rossum and Drake, 2009] Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference
Manual. CreateSpace, Scotts Valley, CA.

[Zhang et al., 2022] Zhang, L., Naesseth, C. A., and Blei, D. M. (2022). Transport score
climbing: Variational inference using forward kl and adaptive neural transport.

33

Appendices

A Multi-Layer Perceptron

The MLP is the elementary block of deep neural networks. It consists of a system of intercon-
nected perceptrons, also referred to as neurons or nodes, which maps an input vector x ∈ Rn

into an output vector y ∈ Rm through a non-linear transformation.

The neurons are organized into layers. The typical structure of the MLP, for which we
can see an example in Fig. 26, presents:

• a set of source neurons forming the input layer, which has no computational role but
just passes the input vector to the network. Its dimension corresponds to the dimension
n of the input x;

• a set of computation nodes forming one or more hidden layers, each of them with
arbitrary dimension di;

• an output layer, whose dimension m defines the dimension of the output vector y.

Figure 26: Example of the structure of a Multi-Layer Perceptron. The dimensions of the
input and the output layer are: n = 6, m = 1. The number of hidden layers is 2, and they
have respectively dimension d1 = 4, d2 = 3. Source: [Spagnol et al., 2016].

A MLP is fully-connected, meaning that each of the neurons constituting a layer is linked
to all the neurons in the adjacent layers. These links are associated to parameters called
weights θi,j ∈ R (i is the index of the neuron where the link starts, j is the index of the target
neuron in the following layer).

In order to understand how the MLP non-linear transformation takes place, it is useful to
look at the principle of operation of the single perceptron. In particular, the j-th perceptron
computes a single output yj from multiple real-valued inputs {xi}i=1,...,N by linearly combining
them according to the input weights {θi,j}i=1,...,N , by adding a bias bj to this combination,

34

and, in the end, by pushing the resulting sum into a non-linear activation function f(x).
Explicitly, this reads as:

yj = f

(
N∑
i=1

θi,jxi + bj

)
. (34)

There are many choices for the activation function: in the original paper written by
[Rosenblatt, 1958], creator of the MLP, it is a simple Heaviside step function, but common
alternatives are the sigmoid function or the hyperbolic tangent. In the case of the MLPs
building the normalizing flows in [Gabrié et al., 2022], the chosen activation function is a rec-
tified linear unit (ReLU) f(x) = max [0, x].

The single neurons are used in the MLP to propagate the input signal x through the
network, layer by layer, from the input to the output. Specifically, the output of each node
j belonging to a hidden layer or to the output one is computed following Eq. (34), where xi
are the outputs of all the N nodes constituting the immediately previous layer. This implies
a direction of the information processing, hence we can refer to the MLP as a feed-forward
neural network.

The parameters {θ}, that are arbitrarily initialized, can be optimized with the purpose
of resolving accurately the map the network aims to model. This is what enables the MLP
to learn, by means of a process called training. Training consists of minimizing, typically
through Gradient descent algorithm, a cost, or loss function L(θ̄) which quantifies the differ-
ence between the desired and the actual output.

A widely used algorithm for the training of feed-forward neural networks is the back-
propagation algorithm. This acts through two main steps:

• forward pass: the predicted outputs ypred ∈ Rm corresponding to given inputs xtrain ∈
R

n are computed, layer by layer, according to (34);

• backward pass: the partial derivatives ∂θkL(θ̄) of the loss function with respect to all
parameters θk (including the biases) are computed, according to the chain rule. Then,
the parameters are adjusted according to the following:

θk ← θk − η∂θkL(θ̄), (35)

where η is a hyperparameter called learning rate, which measures the steps taken to
approach the minimum of L(θ̄).

The success of the MLP architecture in deep neural networks lies in its representation
power: as stated in [Hornik et al., 1989], ”standard multilayer feedforward networks are ca-
pable of approximating any measurable function to any desired degree of accuracy, in a very
specific and satisfying sense”. The key for this ability is the non-linearity at the level of the
single neurons: if this was not present, then the combination of multiple neurons would be
reducible to a unique, collapsed, linear transformation, and only linear functions would be
reproducible.

35

