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0.1 Abbreviations
In the review, the following abbreviations will be used:

• PreS: presynaptic

• PostS: postsynaptic

• AP: action potential

• EAP: extracellular action potential

• AIS: axon initial segment

• GABA: γ−aminobutyric acid

• DIV: days in vitro

• HD-MEA: high-density microelectrode array

• EPSP: excitatory postsynaptic potential

• IPSP: inhibitory postsynaptic potential

• Pt-black: platinum black

• u: sorted unit, or putative neuron. The output of the spike-sorting procedure

• CV: coefficient of variation

• ISI: inter-spike interval

• FR: firing rate

• IBI: inter burst interval

• E: excitatory neurons

• I: inhibitory neurons

• ICCS: immunocyto-chemistry staining

• EDTC: ensemble decision tree classifier

• GBDT: gradient boosted decision tree classifier

• SVC: support vector machine classifier

• STP: spike-transmission probability

• CCG: cross-correlogram
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0.2 Abstract
Strategies to navigate the complexity of the brain are vital for a bottom-up under-
standing of the function (and dysfunction) of neural circuits, and thus the brain it-
self. The first step towards reducing this complexity is to create a parts list of the
individual elements comprising neural circuits. Identifying functionally distinct types
of neurons enables the systematic analysis of their individual contributions to circuit
function. Yet, reliable and high-throughput neuron type classification remains a chal-
lenge. Modern extracellular electrophysiological devices offer access to the activity of
neural ensembles at high spatiotemporal resolution. In this study we asked if multi-scale
features harvested from high-resolution extracellular electrophysiology enable reliable
and high-throughput profiling of neurons into two broad functional classes: excitatory
and inhibitory. We addressed this question using generic in vitro networks of rat pri-
mary dissociated hippocampal neurons grown on high-density microelectrode arrays.
Using ground truth labels — assigned based on spike train correlations or molecular
features— we assessed the feasibility of such a task. Eventually, we used the labelled
data set to train classification models and evaluated the influence of individual fea-
tures on overall performance, and what information this could give us regarding the
underlying physiological behavior.
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Chapter 1

Introduction

Understanding the principles of information processing in the brain is one of the pri-
mary challenges in neuroscience [1]. Information processing is widely thought to be
an emergent property of the dynamics of large neuronal circuits [2]. Studying such a
system requires simultaneous access to the electrophysiological readouts from a large
number of neurons that make up such circuits. With technological advancements in
extracellular electrophysiology, it is increasingly possible to record electrical activity
from hundreds to thousands of neurons at once [3]. However, the high dimensional
complexity of these readouts, and the structural heterogeneity of the neural circuits
have been major challenges towards interpreting such data sets. If any improvements
are to be made in this direction, they have to start from bottom up: by trying to reduce
this complexity and remove degrees of freedom from the problem.

Neurons are the elementary computational units of the brain. The first and central
step towards reducing complexity would be to identify functionally distinct types of
neurons so that the working of a network of neurons can be simplified in terms of inter-
actions between distinct neuronal sub-populations. Such simplifications are expected
to enhance our understanding of the working principles of neuronal ciruits in the brain.

Self-organizing neuronal networks cultured in vitro are promising model systems to
study a generic assembly of biophysically complex neurons. They can be grown on
planar microelectrode arrays that offer stable, long-term, bi-directional (record and
stimulate) access to the electrical activity of these neurons. In particular, the use of
high-density microelectrode arrays (HD-MEAs) has great potential in this field because
they enable the acquisition of spatially and temporally highly resolved information, cov-
ering, possibly, the whole neuronal network. However, it would be desirable to simplify
such rich data sets, for example, by stratifying the recorded neurons by their functional
classes, to improve their interpretability. The two main functional neuron classes that
make up neuronal ensembles are excitatory and inhibitory neurons. Interactions be-
tween these classes of neurons are considered to be critical in shaping the activity of
the network [3][4].

Currently, there are no methods to reliably infer the functional class of a neuron in in
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vitro models based only on electrical readouts and activity patterns. In this study, we
explored the feasibility of distinguishing neurons into excitatory and inhibitory classes
based solely on multiscale features derived from extracellular readouts acquired using
HD-MEAs. We used ground-truth data, in which neuronal class labels were assigned
independently of electrophysiology, to benchmark the reliability of our classification.

The following sections will provide a short overview of the subject and electrophysio-
logical theory behind the thesis. After an introduction on neurons and their features,
we will talk about their classification: what do we mean when talking about cell types,
how and why we should distinguish them and what problems arise in this endeavor.
The discussion will then focus on the specific classes of interest to us, and why we chose
to work with an in vitro model. The electrophysiological aspects of the thesis, and the
tools to deal with them, will then be described, and a brief summary of the structure
of the thesis will be presented.

1.1 Neurons are the fundamental units of the nervous
system

Neurons are the principal cellular elements of the nervous system together with glial
cells. They are functionally distinct and form the basic components of the electrical
network of the nervous system that is at the core of all brain functions. While there is
great anatomical variation among neurons in the nervous system, they share a general
morphological form and the ability to respond in an electrical and ligand-dependent
manner.

Neurons have four defined regions: soma (or cell body), dendrites, axon and synaptic
terminals (Fig 1.1). The soma, which has a radius around 0.005mm to 0.1mm in
mammals, contains the cell’s nucleus and much of the genomic expression and synthetic
machinery of the cell. Neurons are generally thought to have input and output poles.
Elaborate branching tree-like extensions – called dendrites – arise from the soma and
form the input pole of the neuron. They act as the receivers for signals arising from
other cells of the nervous system. A unitary axon acts as the transmitter or output
pole of the cell. It can vary in length from ca. 0.1mm to more than 2m and can have
a diameter ranging between 0.22 µm and 20 µm. The axon conducts electrochemical
signals termed action potentials away from the soma. Action potentials initiate in a
specialized microdomain at the proximal end of the axon called the axon initial segment
(AIS), and propagate at speeds ranging from 1m/s to 100m/s.

For a brief description of each of these neuronal compartments and its functional roles,
please refer to Appendix A.1.
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Figure 1.1: Sketch of a neuron and its four regions. In these figure we can see the four regions
that compose a neuron: soma, dendrites, axon and synaptic terminals (green). The arrows represent
the direction of electrical signalling: dendrites collect signals from other neurons and transmit them
to the soma, where they are integrated. The resulting signal – the action potential – is transmitted
away from the soma along the axon. Signals are expressed in the form of a variation in the membrane
potential that travels along the neurons. Adapted from [5], pg. 547.

1.2 Motivation and challenges of neuronal classifica-
tion

Different types of cells constitute the basic computational element of the brain, the
neuronal ensemble. Having a better understanding of their distribution in the network
and their reciprocal interactions would open the door to understanding the functioning
of the much more complex machine, the brain itself. In this section, we first attempt
to define the term ‘cell types’ and ‘classes’ in the context of neurophysiology. We then
summarize the motivation for attempting this kind of classification, what techniques
are available for such a task, and underline some of the challenges involved.
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1.2.1 What are cell types?

Cell types are defined as families of cells that share a specific function, different from the
ones of other families of cells [3]. As the function of a single neuron is often difficult to
determine, and may only be identifiable in a neuronal circuit, we can define a neuronal
type as a population of cells sharing homogeneously some properties, differing from
other neurons [3]. The three main categories for these characteristics are morphological,
physiological and molecular [6][7]. Morphological features such as dendritic and axonal
branching, as well as soma size, can be used to determine morphological types. For
physiological properties, firing rate (by firing we mean the action through which a
neuron sends a signal to other neurons) and resting membrane potential are used as
well as biophysical features. The protein and mRNA composition are the molecular
features that are mainly used for the definition of types.

As a simplification of the neuronal zoo, classification also needs to be well organized
with a hierarchical structure. This will allow us to analyze the structure of the brain
on different scales, focusing on more or less specific, diversified neurons. In addition
to this, it also allows for simpler updating of the list of classes and types, and uses
relationships between types as a feature itself [3].

In the brain, the hierarchy of neurons goes from classes and subclasses, to types and then
to subtypes, all defined according to the feature properties listed above. An example
of this hierarchical diversification can be seen in Fig(1.3). The class is defined as a
collection of types that share a common feature [4]. The first distinction that we can
make is between projection neurons (or principal), which send their axons outside the
structure where their soma is localized, and intrinsic neurons (or interneurons), with
synapses only in the same structure as the soma.

We can see some examples of neuronal types and classes in the neocortex. In this
structure, we have a larger population of principal neurons (80%) than intrinsic ones [4].
The main class of projection neurons in the neocortex is composed by the pyramidal
cells. This name is used to describe a variety of principal neurons in all regions of
the brain (we also have pyramidal hippocampal neurons), characterized by a large,
triangular soma. We can see the morphology of pyramidal cells in the neocortex in
Fig(1.4 A). Just below the pyramidal neurons, the same figure also shows some examples
of the many diverse types of interneurons in the neocortex (Fig 1.4 B). In this case,
we have the additional use of molecular features for the types characterization. It
must also be noticed that the term pyramidal cell in cortex and hippocampus is often
used as a synonym of excitatory neuron (as pyramidal cells in these structures are
mainly excitatory), while interneurons are considered to be mainly inhibitory. In these
structures, excitatory neurons are also refered to as glutamatergic, while inhibitory
ones are GABAergic neurons (with a few exceptions) [3]. Another kind of binary
diversification is between excitatory and inhibitory neurons, on which we will focus
in this thesis. An example of hierarchical structure for classes and types can be seen in
Fig(1.2), in which we have excitatory and inhibitory neurons as the largest classification
scale in the neocortex.
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Figure 1.2: List of known types and classes known in the cerebral cortex. The types in the
center (colored boxes) were determined via single cell transcriptomics. The types on the left are the
corresponding types that were previously identified via morphological, connectivity and neurochemical
properties. As we can see, all types belong to –apart for a few non-neuronal ones– either the pyramidal
excitatory class (7 previously known types) or inhibitory interneuron class (4 previously known types).
Adapted from [3].
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A deeper outlook of the variety of types and subtypes of neocortical neurons can also
be seen in Fig(1.2), in which we also have a few more interesting examples. Excitatory
(glutamatergic) cortical neurons have five known subclasses, being: projecting layer 4
neurons that can be further separated in spiny stellate cells and star pyramidal cells
depending on the presence of apical dendrites, corticocortical projection neurons, pyra-
midal tract neurons, corticothalamic projection neurons, and layer 6b subplate neurons.
The four subclasses, each one of which can be subdivided in types, in the GABAergic
class are named after their expressed neurochemical marker: somatostatin-expressing
(SST+) cells, vasoactive intestinal peptide-expressing (VIP+) cells, parvalbumin ex-
pressing (PVALB+) cells and cells that express 5-hydroxytryptamine receptor 3A but
lack VIP (HTR3A+VIP-).

Figure 1.3: Hierarchy of cell classification in the cortex.

1.2.2 Multiple properties may be used to classify neurons

Neuronal classification can be performed via multiple characteristics, each one with its
own techniques of acquisition. Here, we briefly list each one and determine the pros
and cons of all of them and when they should be used. In doing so, we should keep in
mind that the cell-classification efforts should be based on large data sets, so that small
variations inside type definitions can be identified as such, and infrequent cell types can
also be found. We will eventually see that the technique implemented in this project,
extracellular electrophysiology, offers the most advantages among all the available ones.

The first attempt at classification was made by Cajal, using the Golgi stain technique.
This way, he differentiated neurons based on their common morphological structure.
Some examples of this kind of classification, taken from Cajal’s paper, can be seen in
Fig(1.4). As we have already said, the main morphological properties that were used
are axonal and dendrite shapes and branching, together with spine density and spine
shape. An example of how morphology can be used to distinguish between cell classes
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and types can also be seen in Fig(1.5.a), in which the cells where imaged from brain
slices after staining and show stereotypical shapes for their types [3].

Figure 1.4: Morphologies of neurons in cortex, cerebellum and retina. Types in the cerebel-
lum and retina are much better defined, thanks to their simple architecture. A. are principal neurons.
B. are interneurons. Adapted from [4].

The morphology of the cell is directly related to the function of the cell. This means
that this kind of classification is incredibly powerful at finding distinctions between cell
phenotypes, and can be used to confirm or refute possible classifications from other
methods. Morphological classification relies on techniques such as electron and light
microscopy. They are still incredibly time-consuming and resource-consuming, which
means that they have a low throughput of information. In addition, high-resolution
imaging is usually done with high-energy microscopes, which could be detrimental to
cell health [8][9].

Another vastly used method for cell classification is the molecular one, based on protein
or mRNA profiling of the cells. The new methods that have been developed in this
field have greatly improved the sensitivity of this kind of classification. Molecular
classification is reliable, determines well defined, objective and quantifiable separations
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between types and classes, and yields a high throughput of data. The most advanced
technique in this field, single cell RNA sequencing, requires though for the cells to be
dissociated and separated completely, which kills the cells in the process and makes
it very invasive, disrupting further experiments on the cells. Examples of this kind of
classification can be seen in both figure Fig(1.5.c) and Fig(1.2).

The third kind of classification technique is the biophysical one, which collects infor-
mation about the activity of the cells to determine differences in behavior. These
differences, when observed homogeneously in a large enough sample, can then be used
to define class- or type-specific properties. The main techniques used for biophysical
classification are intracellular recordings, via patch-clamp method, optical imaging with
voltage sensitive dyes and extracellular recordings using MEAs. While patch-clamping
offers a reliable way of observing the specific behavior of cells, it can work only on one
cell at a time, and is invasive. The most cells recorded this way, using the same setup,
was 12, very far from the kind of high-throughput analysis we need. Some classification
examples based on stimulus-response properties recorded via patch-clamping can be
seen in Fig(1.5.b) Optical imaging, be it with voltage or calcium indicators, offers high
data throughput, and a direct window into the activity and behavior of the cell. It
is still very expensive, requires a lot of resources and has comparably worse temporal
resolution than modern extracellular electrophysiology. The use of HD-MEAs offers
an incredible amount of data and information, is the least invasive process among all
the ones listed (even optical imaging requires the addition of indicators, disrupting the
normal activity), acts as a direct access to the function and activity of the cell and
allows for the same cells to be measured multiple times, under the same or different
conditions, before being disposed. Extracellular electrophysiological recordings have
already been used vastly in vivo for classification; some examples in this regard are
regular spiking, fast spiking, intrinsic burst and chattering neurons in the cat primary
visual cortex [10], or the distinction between interneurons and pyramidal cells in the
awake macaque cortex [11] and in the rat cortex [12], all of which were mainly based on
firing rate, trough-to-peak interval and connectivity analysis from in vivo recordings.

As we have seen in this section, there are many techniques and properties that can be
used for classifying neurons. Each of these has its pros and cons, but we know what
we should look for in a classification technique: reliability, high data throughput, low
invasiveness, low time and resource cost, and precision. Thanks to the advances in the
field of HD-MEAs, extracellular electrophysiology has the most of these qualities among
all the techniques.

1.2.3 What is the purpose of neuronal classification?

There are many reasons for the amount of interest behind neuronal cell-type identi-
fication and classification. First, as a tool to simplify the system. The brain is an
incredibly complex machine, which for many years has been studied in terms of com-
partments: different regions of the brain have different functions, which concatenated
together make up what we define as thought. Every characterization of neurons in types
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or classes, with their attached functionalities, reduces this complexity, and makes the
chaotic sea of information regarding the brain much more manageable. Thus, we need
to produce a parts list, in order to consider neurons in terms of types instead of indi-
viduals, which would be far too complicated. Second, the study of diseases would also
be improved: each disease affects different neurons in specific ways, and being able to
discern between them while recording would help in figuring out the disease itself. As
an example, amyotrophic lateral sclerosis only affects lower and upper motor neurons
[3].

1.2.4 Neuron-type classification has many obstacles

There are many obstacles in general in the cell classification effort. The first one is
different terms corresponding to specific levels of hierarchy, like "variety", "class" and
"subtype", have been used indiscriminately over the years [4]. A common definition
framework is thus necessary. In addition to this, some names have changed connotation
during the years: the name pyramidal cell, for example, has changed over the years and
is now also used to indicate cells that do not have a triangular soma or the characteristic
branching pattern that first suggested the name [4]. Secondly, cell classification is also
difficult to be done quantitatively: discontinuous variations along–possibly–multiple
features are required to define a good classification metric [3]. This is also necessary
not to risk splitting a single type, because of small variations within its population.

Apart from these, the most relevant problem is that in order to implement the best
classification possible, we need to find a harmony between all the different techniques.
It is often difficult to find a correspondence between classification in the morphological,
molecular, and biophysical fields.

When different techniques identify the same classes and types, the classification is more
robust and representative of the underlying diversity of cells. Some examples of coherent
classification across properties can be seen in Fig(1.5), in which 5 types are shown, which
were differentiable by morphology, biophysical properties and molecular signature. An-
other example are MSN neurons (medium spiny neurons), which are GABAergic and
thus inhibitory. These also offer some insight on why multiple properties coming from
different techniques are needed: MSN neurons are inhibitory, but spiny neurons are
mostly pyramidal and thus excitatory. MSN constitutes a smaller subtype among the
inhibitory class that shares morphological similarities with a largely excitatory mor-
phological class. Another interesting example of cross-technique classification is that
of parvalbumin expressing fast-spiking interneurons, in which both molecular marking
and electrophysiological features are used to define a neuron type (which belongs to the
GABAergic and inhibitory class).

Finally, the lack of translation of many classification metrics across model systems
presents a considerable challenge. Dissociated neuronal networks in vitro cultured on
microelectrode array systems are a popular model system to study a generic ensemble
of neurons. These systems enable label-free simultaneous long-term recordings from
populations of neurons at high temporal resolution. Additionally, the complementary
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metal-oxide-semiconductor (CMOS) based high-density MEA (HD-MEA) systems de-
veloped in the BEL lab offer unprecedented spatial resolution that enables the mapping
of neuronal activity ranging from subcellular compartments through individual neurons
to entire networks [13][14].

Figure 1.5: Neuron types classified via different properties. Neurons can be classified based
on morphological, molecular and physiological features. Adapted from [3]. In the figure, we see five
examples of cortical neurons that show characterizing differences through all of the different kind of
features.

However, many of the classification metrics that offer reliable neuron class separability
in in vivo animal models do not translate well to the in vitro culture context. Clear
statistical parameters and feature combinations from these rich data sets that enable
reliable distinction between even broad functional neuronal classes (e.g., excitatory
vs. inhibitory neurons) are still lacking. Fast and high-throughput data-based neuron
type inference would be invaluable as a scientific tool to study neuronal information
processing and in applications, e.g., in functional biomarking of neurological disease
models, drug screening and neurotoxicity studies.

The next section gives an overview of the main functional classes of neurons: excitatory
and inhibitory neurons, and previous studies that have attempted to identify them in
multiple model systems.
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1.3 Distinguishing GABAergic inhibitory from gluta-
matergic excitatory neurons

The two broad functional neuron classes of the nervous system are glutamatergic excita-
tory neurons and GABAergic inhibitory neurons. The ability to identify these neuron
classes would enable to study the distinct contribution of each subpopulation to the
underlying computation of neuronal circuits.

Several synaptic neurotransmitters can act as activators or inhibitors on postsynaptic
cells. Glutamate is the main excitatory transmitter in the brain, acting as an activator
for channels in the postsynaptic neuron with a similar permeability for both K+ and
Na+: through this process, it induces a depolarization of the postsynaptic membrane,
which generates an excitatory postsynaptic potential (EPSP). γ−aminobutyric acid
(GABA), on the other hand, binds to GABA-A and GABA-B receptors: the first
results in an increase in the Cl− influx, while the second results in a decrease in the
Ca2+ influx and an increase in the K+ efflux. This causes a hyperpolarization of
the postsynaptic membrane, generating an inhibitory postsynaptic potential (IPSP).
At the same time the binding of the GABA-B receptor leads to a K+ efflux also in
the presynaptic neurons, thereby inhibiting its ability to release neurotransmitters, in
particular glutamate [15].

There are multiple studies that have reported reliable separability between neurons of
these classes based on specific features observed in extracellular electrophysiological
recordings in vivo [16][12][2][11][17][10]. This studies used extracellular features tied to
both the spike shapes generated by each neuron and the corresponding time-series in
vivo [12]. However, many of these metrics turn out to be unreliable indicators in in vitro
models [18][19] and there is still no certainty about which features could enable a similar
classification as in in vivo. Multiple studies have been investigated in this direction,
some of which claimed to have found promising features [18], but direct confirmation
has remained elusive and many of these studies have been refuted in later years [20].

Moreover, these studies were performed using low density microelectrode arrays. The
low spatial density of these arrays provide less information about the underlying struc-
ture of the circuit and the neuron themselves. They also did not implement any ad-
vanced spike sorting technique in their analysis, but rather a less precise visual method,
relying on low plating density and large pitch between electrodes to separate putative
neurons. This in turn provided them with low precision in the distinction between
units (where by unit we mean a putative neuron, a possible neuron identified from
electrophysiological features and not via imaging), and thus their properties, on whose
reliability the classification is fully based on. Due to the low spatial resolution of their
arrays they could not design a series of multichannel unit properties, as their whole
sorting technique was based on neurons only being detected from one electrode. We
will report how multichannel features will prove to be vital for the efficiency of the
classification. Their approach of classification was to find a separation between classes
in one or two-dimensional feature distributions: no attempt was made to observe the
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high dimensional structure of the data in two dimensions. Nor did they use any kind of
machine learning based model, either supervised or unsupervised, or attempted drafting
a labeled ground truth data set, which could then made available in the public domain.
In this project, we aimed at improving all of these points, in which we identify possible
reasons to the failure in classifying neurons in vitro up until now.

1.4 High density MEAs for extracellular electropyh-
siology

The functioning of the brain cannot be directly deduced by the behavior of the single
neurons: it is determined by the way these cells interact in a network, processing
information as a series of complex machines interconnected with each other rather
than the single gears. The best way to access information about this pathways, and
the interactions between the neurons, is to observe their electrophysiological behavior.
Neurons send and receive information in the form of an inflection of their membrane
potential, with respect to the resting potential. This inflection, and the travelling
signal produced, is called action potential (AP), and is discussed more in detail,
along with the resting potential, in Appendix A.2, in which also existing models for this
two properties are briefly seen. As we have anticipated in the previous section (1.2), to
be able to classify neurons efficiently we must be able to collect data and information
on the number scale of a whole network. For this, and for all the reasons listed in
section 1.2, we chose to measure electrophysiological features from the extracellular
environment, using the relatively new technology known as HD-MEAs.

Recordings of the AP are usually done either through the patch-clamp technique, or
using HD-MEAs. Although the patch-clamp technique allows the measurement of in-
tracellular voltages and transmembrane currents of the neuron at high fidelity, it is
invasive and can only be applied to a small set of neurons at the same time.

For this reason, in later years, the use of HD-MEAs has become more and more preva-
lent in neuroscientific research. This technology enables long-term access to the whole
network at the same time without damaging cells. It consists of tens of thousands of
electrodes, regularly spaced on a small surface, that can record variations in electri-
cal potentials in the conducting medium at high spatiotemporal resolution. By using
these arrays to record neuronal networks, we are thus able to record the behavior of
the whole network with minimal loss. This gives us a lens through which to observe
the interactions at the origin of information processing. While MEAs have been in use
in the field since 1970, the introduction of complementary-metal-oxide-semiconductor
(CMOS) technology has enhanced greatly the resolution, both spatially and temporally,
also increasing the sensing area and making them one of the protagonists in modern-era
neuroscience. Modern CMOS-technology-based MEAs are widely used in this field, fea-
turing thin metal electrodes arranged in an array with a pitch < 30µm. Even though
these chips can be used both for recording and for stimulating neurons, we mainly
focused on using them for measuring the extracellular potential, which is a direct con-
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sequence of the action potential generated at the AIS and propagating through the
axons.

1.5 Aim and structure of the thesis
One of the current main objectives of neuroscience is understanding the principles of
information processing. The brain is a complex machine, and so are the neuronal
circuits that compose it. As for any other machine, the first step to disentangle its
functioning is to reduce its complexity, and this endeavor starts with the creation of a
functional parts list of its smallest components. There is thus an urgent need to explore
reliable data-based indicators of functional neuronal classes.

The aim of this master thesis was to determine a procedure for classification between
excitatory and inhibitory neurons, based solely on their electrophysiological behavior
recorded via HD-MEAs. The possibility of being able to discern between the two
main neuronal classes through high throughput in vitro recordings would offer many
advantages to the neuroscientific field, as described in 1.4 and 2.1.1.

In order to give an unambiguous proof that extracellular spikes can be used to define a
meaningful diversification between the two main classes of neurons, the thesis included
the following intermediate goals:

• Development of a full pipeline, going from the raw recordings through a spike-
sorting method (Kilosort2.5 [21]), curation of the identified putative neurons (or
units) and extraction of waveform and time-series related features and returning
the high dimensional feature space which we designed as the core of the project.

• Creation of a labeled, ground truth data set, to check the efficiency of the classifi-
cation and infer physiological information from it. Two procedures were developed
to collect this labeled data set: one based on immunocytochemistry staining and
a full imaging pipeline, the other on neuronal connectivity inference and spike
transmission probability kindly provided by Dr. Julian Bartram [22].

• Development of a machine learning procedure to classify the neurons with respect
to the collected data, based on either visual confirmation of a separation between
data points (via also the use of dimensionality reduction machines), or a series of
supervised classifiers, both linear and nonlinear, trained and tested on the labeled
data sets.
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Chapter 2

Materials and methods

In the following section, we describe the tools and techniques implemented in the
project. First we focus on the cell cultures, why we chose in vitro models for the
experiments, and how exactly the cultured networks were prepared. Then we describe
the HD-MEA, and how these were used to record electrophysiological activity. The
discussion moves then to spike sorting, how it detects putative neurons (to which we
often refer to also as unit), and the electrophysiological features that we extracted for
each one of these units. The immunocytochemistry-based imaging pipeline is consid-
ered after this, as well as the two procedures we established to obtain a labelled ground
truth data set of units. Eventually, we also talk about the machine learning techniques
implemented, both in terms of dimensionality reduction and supervised classifiers.

2.1 Primary dissociated rat hippocampal cultures

All of our recordings were performed in vitro, where we recorded the electrophysiological
activity of primary dissociated rat hippocampal cultures. In the following, an overview
of the reasons behind the choice of in vitro models, and the procedure for extracting
and culturing our cells.

2.1.1 The choice of in vitro model system

There are numerous advantages to working in vitro with neurons, given that a robust
recapitulation of the physiological state is achieved. It offers greater control over exper-
imental conditions, more reliable repetitiveness of experiments, being able to affect via
chemical agents the same population multiple times to observe different combinations
of effects. The kind of stability that in vitro setups offer also gives us a chance for
more delicate and dense measurements [13][14], like the ones needed for feature-wise
classification necessary to break down information processing in the brain. The use of
in vitro models offers a series of advantages [23] with respect to procedures performed
in vivo:
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• Environment control: temperature, pH level, nutrients, humidity, everything is
under the direct influence and control of the researcher.

• Replicability: much easier to replicate under same conditions than in vivo studies.

• Reduction in variability: this one is particularly important. By working in vivo,
we greatly reduce the complexity of the system itself. The innate variability
of in vivo systems, which are affected by multiple factors not always under our
control, like the stress levels of the animal, is partially removed in vitro. In in
vitro systems, most of the factors that affect fluctuations in the system are under
our control, or can anyway be observed and quantitatively accounted for.

• Time requirement: in vitro cultures are usually measurable in a matter of days
or weeks, and can be measured multiple times.

• Quantity of consumables: the required quantity for reagents is much smaller than
for an in vivo experiment.

• Reduction of animal use: the stress exerted on living animals is greatly reduced.

Obviously, the use of in vitro models also comes at a price, with some disadvantages
with respect to studies done in vivo:

• Absence of periphery: many processes are determined by signals and influences
coming from the periphery of the body.

• Difficult handling: in vitro systems are more fragile than in vivo ones, and require
a lot of knowledge about handling and sterile working conditions, as they do not
have innate systems to protect them from bacteria, fungi or viruses.

• Loss of structure: some structures, in particular mostly 3-dimensional ones, are
usually lost when working in vitro.

The choice between the use of in vivo or in vitro systems has to be made depending on
the specific study, weighing both pros and cons of both techniques to determine which
one is going to serve better the objective of the researcher. For our study, we determined
the pros of measurements done in vitro to far outweigh the cons. It was particularly
relevant, in our choice, the possibility of using HD-MEAs for recordings, as they gave
us exactly what we needed for the success of the project: long-term and simultaneous
recordings, with very high throughput, and high spatiotemporal resolution [13].

2.1.2 Cell extraction and dissociation

The experimental protocols involving animal tissue harvesting were approved by the
veterinary office of the Canton Basel-Stadt according to Swiss federal laws on animal
welfare and were carried out in accordance with the approved guidelines. The hip-
pocampi of E-18 Wistar rat embryos were extracted in ice cold HBBS (Gibco), then
dissociated in trypsin with 0.25% EDTA (Gibco).
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2.1.3 Cell plating

After sterilization, and just before cell application, 8 µL of 0.02mg/mL laminin (Sigma-
Aldrich) in Neurobasal medium (Gibco, Thermo Fisher Scientific) were added to the
HD-MEAs, to improve and support growth of the cells and differentiation, and were in-
cubated this way for 30 minutes at 37◦C. The chips were then seeded with populations
of 10000, 20000 or 30000 cells over the sensing area of the array ∼8mm2, and incu-
bated for 30 minutes at 37 °C before the addition of 1.5mL of plating medium, whose
stock consists of 450mL Neurobasal (Gibco), 50mL horse serum (HyClone, 1.25mL
Glutamax(Invitrogen), and 10mL B-27 (Invitrogen). After ≈72 h we substituted half
of the plating medium with growth medium, for which the stock solution consists of
450mL D-MEM (Invitrogen), 50mL horse serum(HyClone), 1.25mL Glutamax (Invit-
rogen), and 5mL sodium pyruvate (Invitrogen. The media change procedure was then
repeated twice a week, at intervals of ∼96 h. All chips were covered with a lid and
kept in closed Petri dishes, equipped with smaller Petri dishes filled with water to help
maintain the necessary humidity, and kept in an incubator at 37 °C, 5% CO2 and 20%
O2.

2.2 High density MEAs

In this project we recorded the electrophysiological behavior of neuronal cultures in
vitro via an HD-MEA called MEA1k, featuring 26400 bidirectional electrodes, with an
area of 5 × 9 µm2, and arranged on a 3.85 × 2.10mm2 array with a pitch of 17.5 µm.
Printed circuit boards (PCB) were connected through gold wires to the chips, while
epoxy (Epo-Tek 353ND, 35ND-T, Epoxy Technology Inc., Billerica, MA, USA) was
used to protect the wires from saline solutions like the culture medium. The process
of adding and curing of epoxy to the chip is called packaging, and is done in order to
protect the exposed wires from water and medium after the plating. A fully packaged
chip can be seen in Fig(2.1).

(a) (b)

Figure 2.1: The CMOS high-density microelectrode array (HD-MEA), used in the project.
(a) An HD-MEA before packaging. (b) A packaged HD-MEA: the dark circle is the epoxy, protecting
the wires and contained by a plastic ring, while the rectangle in the middle is the sensing area of the
electrode array.
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The high spatial resolution of the array allowed us to reliably localize the neurons. The
chip features the possibility of configuring 1024 readout channels, which can be used
to record simultaneously with different possible configurations over the sensing area.
Sampling is done at a 20 kHz frequency, with a power consumption of 75mW (the
readout noise was typically around 2.4µVrms between 300Hz and 10 kHz, and 5.4 µVrms

between 1Hz and 300Hz). Before the actual cell plating chips were also sterilized by
immersion in 70% ethanol for 40min to an hour, after which they were rinsed with
deionized water (DIW) 3 times.

2.2.1 Platinum black deposition

A platinum black (Pt-black) layer was deposited over the electrodes before sterilization.
This was done to reduce the impedance of the electrode by increasing the sensing sur-
face, thus improving the signal-to-noise ratio (SNR) of the recorded signal. We covered
the HD-MEA array surface with a solution of chloroplatinic acid hexahydrate 7 mM,
Sigma-Aldrich, St. Louis, MO, USA) and lead acetate (0.3 mM, Honeywell, Morris
Plains, NJ, USA) in DIW, then we applied a 550µA current to the array electrodes,
while a Pt reference electrode was immersed in the solution, and gently scrubbed the
sensing surface with a cotton-swab (or pipetted in and out the solution) to improve
the adherence of Pt-black to the electrodes. The entire procedure lasted ≈1min per
HD-MEA, and once completed, we examined the chips under a microscope to assess
the state of the deposition.

2.2.2 Recording

Recordings were performed using the MaxLab Software (MaxWell Biosystems, Zurich).
While being recorded, the chips were kept inside incubators at 37 °C, 5% CO2 and 20%
O2. Recordings were done via the ‘Activity Scan’ mode (not spikes only), at a sampling
rate of 20 kHz and with configurations chosen to cover the entire electrode array. We
used one of two configurations for the recordings: the first, was composed of 7 sparse
steps (one out of two channels were selected, both column and row wise), the first of
which covered in part the left side of the array and the right, as can be seen in Fig(2.2);
the second was a custom configuration (7C), in which the first 6 steps were the same
as for the 7X (but starting from the border of the array), and the last was set so that
the routed electrodes only kept a space between two consecutive ones in the vertical
direction. All steps were designed to route exactly 1020 electrodes each.

2.3 Spike sorting

The action potential is seen in the recording as a temporal and local deflection of the
voltage, which takes the name of spike waveform. When multiple healthy neurons are
close to the same electrode, as in our case, their spikes overlap and get entangled,
making it difficult, together with consistent background noise, to distinguish spikes
coming from different neurons. Spike sorting is a term used to describe the process
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Figure 2.2: Configurations of the recording in the default 7 sparse setting. The image
is a representation of the 7 different, consecutive configurations that composed a 7 sparse recording.
The 7 configurations are characterized by a different coloring, for the electrodes that are activated
respectively. After the first configuration (in black, half on the left and half on the right side) was
done, the electrodes in the second configuration (dark blue) were routed and recorded, and so on until
the last configuration (in white).

of identifying and assigning each spike to the correct neuron, thus returning what’s
defined as spike train (the time series of the spiking events for the specific unit during
the recording), based on the features of the recorded waveforms. As a spike sorting
machine we used Kilosort2.5 [21], a scalable and fast algorithm. Kilosort2.5 takes also
in account the fact that our recordings are collected through electrodes that are closely
spaced, which can record the same spike at different positions on the array, giving
rise to specific spatial shapes of our waveforms, determined by the electrophysiological
characteristics of the neuron and by its position relative to the electrodes. Spatial and
temporal information are then used together, to assign spikes to putative neurons, or
units. The data pre-processing and major computational steps involved in spike sorting
are briefly outlined in the following subsections.

We take also this chance to clarify the distinction between unit (or putative neuron)
and neuron: a unit is the output of a spike-sorting procedure, a putative neuron to
which a series of spikes were attributed based solely on electrophysiological recordings.
By neuron, instead, we meant the real cell, which can be observed via imaging. In order
to be certain that our units actually correspond to neuron, we need to correlate with
imaged cells, as we did in this study.

2.3.1 Pre-processing

The signals were filtered first with a high-pass filter at 300Hz, to remove low-frequency
fluctuations, then, from each sample the median of the signal across all channels was
subtracted (common average referencing) to remove artifacts shared across recording
sites. The data was then whitened across channels to remove correlated noise.

During the recording, some channels could be too far from any neuron to pick up
meaningful waveforms and have a very low signal-to-noise ratio. In order to make
the spike sorting procedure more reliable and ease the computational load, a masking
procedure for these channels must be developed. In Kilosort2.5, this process was based
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on the following observation: any mean spike waveform, (averaged over spike waveforms
measured at different times on the same channel), can be described well by an SVD over
the spatio-temporal waveform, with variable number of spatial or temporal components.
Each spike was then represented by “private PCs”.

2.3.2 Template matching

At the basis of the template matching framework was a generative model for the elec-
trical voltage, based on the fact that electrical potentials coming from different sources
sum approximately linearly in the extracellular medium. Each spike k is assumed to be-
long to one of N clusters, representing the number of neurons, and its cluster identity is
defined as σ(k). Each neuron n has a corresponding normalized waveform, described as
the matric Kn, with dimensions equal to the number of routed channels by the number
of time samples for each spike.

Kn is then approximated through a three dimensional SVD of the kind Kn = UnWn, so
that Kn is deconstructed in three pairs of spatial and temporal functions Un and Wn,
with norm 1. The voltage at time t measured by channel i is modeled as:

V (i, t) = V0(i, t) +N (0, ϵ) (2.1)

where N (0, ϵ) is a Gaussian noise with variance ϵ. We then have:

V0(i, t) =

s(k)≥t−ts∑
k,s(k)<t

xkKσ(k)(i, t− s(k)) (2.2)

where index k indicates spikes that overlap at timepoint t and xk is the amplitude of
spike k:

xk ∼ N
(
µσ(k), λµ

2
σ(k)

)
(2.3)

This last expression takes into account variability in the amplitude of spikes originat-
ing from the same neuron due to many physiological and structural reasons, such as
adaptation and attenuation during a burst and drift of the neurons. Having a variance
that scales with the square of the mean represents the fact that spikes coming from
neurons closer to the channel vary in relative amplitude, not absolute. ϵ and λ are
scaling hyperparameters.

From this model, the following cost function was defined:

L(s, x, K, σ) = ∥V − V0∥2 +
ϵ

λ

∑
k

(
xk

µσk

− 1

)2

(2.4)
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and was minimized with respect to spike times s, amplitudes x, cluster assignment σ
and templates K. The sum on the right of this expression limited the number of spikes
to be assigned amplitudes strongly deviating from the average of the cluster, scaled by
ϵ
λ
∈ [1, 10].

2.3.3 Cost minimization step

After the templates were initialized, optimization was performed by alternating between
a template matching step and an optimization of the template waveforms. Eventually,
similar clusters of spikes get merged. It is known that the temporal density of spikes
across the electrode array varies vastly, due to the locations of the neurons with respect
to the channels. The best strategy to initialize the templates is to do it in such a way
that finds a match between the number of initial clusters to the local spike density across
the array. An initial detection of the spikes is done via an amplitude threshold, and
each of these spikes is compared to a subset of prototypical spikes built progressively
while going through the recording, with the only constraint that these initial prototypes
have to be different enough. Of these prototypes, only the best N are kept, depending
on how many matches they had with spikes in the recording. Then the spike prototypes
were used for the initialization of a K-means clustering machine, scaled so that it does
not rely on spike amplitudes (which might bring errors, as they depend on distances
relative to the electrodes). The K-means algorithm aims at minimizing equation (2.3.2),
in which the spike times are fixed, and the ones found through the amplitude detection.

These clusters were used for the initialization of the first set of templates Kn, which
were considered to be fixed, along with the corresponding mean amplitudes, for the step
in which the algorithm tries to find the optimal spike times, cluster assignment of said
spikes and amplitudes. As said previously, the templates were obtained from the average
waveform Am through an SVD decomposition, and had a low-rank decomposition of
the kind:

An ∼ µnKn = µnUnWn

In which ∥UnWn∥ = 1, Un orthonormal and Wn orthogonal.

Spike times were optimized through a template matching machine: given template n,
it first looked for times where the dot product between the raw data and the template
waveform was large, and the amplitude of the spike was close to µn. Among all these
dot products, only the local maxima were kept, and a sample window was imposed
around each spike time, in which no other peak could be detected (to take into account
the refractory period). As a final step, a matching pursuit algorithm was used to find
overlapping spikes.

At each iteration, the spike times and the template waveforms K were re-estimated.
The spike times were computed via (2.3.2), and the average waveform An for the cluster
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n was updated using the following algorithm:

Anew
n (i, t0)← e−jn/ηAold

n (i, t0) +
(
1− e−jn/η

) σ(k)=n∑
k∈ batch

V
(
i, s(k) + t0

)
(2.5)

where jn is the number of spikes that have been assigned to this cluster, and the aver-
aging is weighted with respect to the old samples with an exponential, in which η is a
memory constant. So An can be seen as an average waveform for the old samples. Tem-
plate matching and the inference step were alternated until the cost function reached
a plateau, after which, overlapping spikes were dealt with.

2.4 Feature extraction
For each recording, multiple features were computed. One of the main contributions of
the project was the design of an exhaustive feature space. Many papers that tried to
deal with the same task mainly focused on a single feature modality, either based on the
time-series information of their network or on the waveform features, which are known
to work well in vivo. In particular, Becchetti et al. [18] focused on time-series features
because they surmised that waveform features were highly unreliable, being heavily
dependent on the distance between the neuron and the recording electrode. Recent
papers determined that this dependence reflects only on the amplitude of the waveform
and not on its shape, so that dealing with normalized waveforms would be enough to
be able to also use the waveform features, as Weir et al. did [19]. We thus decided that
we would try to integrate as many features as possible, over different granularity and
spatiotemporal scales, making use of dimensionality reduction machines to also interact
and analyse higher-dimensional feature spaces, which might contain more information
about the distribution of our neurons and about a possible threshold between different
classes. Our feature space was organized as follows:

• Waveform features:

– Cellular scale - measures averaged over multiple channels, and often repre-
sented as arrays instead of scalar values. We referred to them as multichannel
features.

– Subcellular scale - measures averaged over a single channel, what we called
the best channel. We referred to them as single channel features. All sin-
gle channel features can also computed over different channels to make a
multichannel feature, given a coherent ordering of the channels.

• Time-series features:

– Long scale - in the scale of minutes.

– Short scale - in the scale of milliseconds.

– Intermediate scale - in the scale of seconds, such as burst features.



23

• Curation features - features used to quantitatively assess the quality of the spike
sorted units.

In the following sections, we describe how the individual features were computed and
the constraints we imposed (if any).

2.4.1 Filtering

In order to compute many of the features, in particular those related to the waveform
of the spikes, we had to filter the signal to remove the background noise. We used an
infinite impulse response bandpass filter, with a lower frequency limit of 300Hz and a
higher frequency limit of 7 kHz. In our project, we chose a fifth-order filter, and applied
it to individual cutouts of the recording.

2.4.2 Curation features

Before computing the features, the data-set had to be cleansed of all outlier units,
which could either correspond to artifacts of the sorting procedure (such as multiple
units which actually correspond to just one neuron, and vice-versa) or to non-healthy
neurons. The outlier detection was performed by applying sequentially a series of filters,
based on:

• Inter-spike interval (ISI) violation rate

• Average firing rate

• Maximum amplitude

• Signal-to-noise ratio

We first eliminated all units with an amplitude lower than 30 µV in their best channels.
The best channel of a unit was defined as the one with the largest amplitude among
the channels that comprised its spatial footprint. This first automatic curation was
then followed by another much stricter one, based on the observation of the curation
parameter distributions and the conserved units’ behavior and described in detail in
3.1.1.

2.4.3 Waveform features

In order to get into the merit of the single waveform features, first we have to discuss how
the waveforms themselves are computed. For each unit, or putative neuron, detected
by Kilosort2.5, the so-called best channel was defined.

Among the files output by Kilosort2.5, Templates.npy contains the templates com-
puted by the spike sorter for each unit: each template corresponded to a series of
optimized and smoothed waveforms, one for each active channel in the recording. It
was better not to use these templates for the evaluation of the waveform features: they
were optimized through an unsupervised, recursive process to which we had no access,



24

and were deliberately created to be “vague” in their form, as they were then used in
a template matching process for which they could not work if they were too specific
and peculiar (as described in 2.3). The templates still retained most of the information
about the average amplitude of the spikes recorded on that channel for that specific
unit, so we could use them to look for the channel over which the largest template for
the unit, meaning the template with the deepest dip, was computed. The largest spikes
are usually detectable around the AIS of the neuron, which in 80% of the cases is close
to the soma itself, so we assumed that the channel that recorded the largest spikes was
directly under or in the vicinity of the main body of the neuron: this was what we
called the best channel.

Once we identified the best channel for each unit, we extracted a cutout: we took the
spiking times of a hundred random spikes assigned to the specific unit, and cut out
of the signal recorded by the best channel 80 samples (corresponding to 4ms for a
20 kHz sampling rate) around these spiking times. These cutouts were then filtered as
described before, and averaged, to produce an average waveform for the unit. Most
of the waveform features that we will describe later on were computed from these
mean cutouts, which from now on will be referred to as footprint waveforms. Before
proceeding, a bit more details about the spiking times chosen to compute the waveforms
must be given. As will be shown later in the thesis, spikes during a burst tended to
attenuate in amplitude, so that picking one of the later spikes in a burst could bring to
an error in the averaged waveform, as we would have had to then take into account also
the law by which they attenuate; to avoid doing this, the hundred random spikes were
chosen only from a smaller subset containing isolated ones and spikes that were either
first or second in a burst, with priority for the first ones (the second ones were included
only if there were not enough spikes in the other two families, which rarely happened).

After computing footprint waveforms for all units, we compared them with the template
waveform on the corresponding channels. In Fig(2.3) we show one such comparison,
considered over the best channel for the unit.

While there seemed to be some agreement in the general form of the trough, there
were quite a few differences, which could be explained. First, we observed that the dip
was deeper in the footprint waveform than the template: this could be attributed to
the filtering procedure that Kilosort2.5 involves in its computation, which could cause
it to lose some of the amplitude of the spikes (their filtering procedure was stricter
than ours, as Kilosort2.5 filtered between 350Hz and 3.5 kHz, which was the expected
range of frequencies for our spikes). As the filtering procedure corresponded to basically
removing from the signal the Fourier components corresponding to frequencies out of the
range, keeping a stricter range meant removing more components and, thus, attenuating
the average amplitude of the signal. We also noticed that the form of the wave was
different both before and after the depolarization step (corresponding to the dip in the
potential): the template was smoother in these intervals, while the footprint waveform
was more jagged. While the footprint waveform was the simple product of an averaging
between different spikes, the template was an extremely optimized and unsupervised
version of the waveform, which Kilosort2.5 used in a series of template matching steps:
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Figure 2.3: Comparison between a footprint waveform and the template over the best
channel, for an example unit. The template waveform was unwhitened and rescaled to convert it to
the appropriate units. While there is good agreement between the dips, the shapes differ quite a lot,
especially before and after the depolarization step.

thus the template had to maintain a smoother and more “vague” look, in order for the
algorithm to be able to find spikes which were ‘similar’ to it, which it could not do
if the template were to be specific as the footprint waveform was. For these reasons,
we preferred to use the footprint waveforms to compute the features, rather than the
templates waveforms.

Another point of interest is then the footprint: for each unit, the footprint was defined
as the averaged cutouts over the best channel and the set of nearest channels to the best
one. The footprint gives insight about the morphology of the neuron, and about the
reliability of putative neurons (Fig(2.3)). As we can see in this case, the unit should
be considered to be not very reliable: having such small cutouts over channels that are
directly adjacent to the best channels is very unlikely, as these should still be recording
the same spikes as the best channel. Once we have the footprints for all our putative
units, we can go ahead and compute waveform features.
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Half-height width

The half height width was computed as the interval, in milliseconds, between the two
sides of the depolarization spike at the half-height of the trough, as can be seen in
Fig(2.4). The fact that our waveforms were actually discrete series of samples could
present a problem in this instance: if we were to just choose the two samples nearest to
the actual half-height on either sides to compute the distance, we would incur in possibly
large errors. In order to avoid this approximation, we instead took the two samples
on each sides for which the half-height fell in-between and performed a polynomial fit,
taking into account these samples and the ones immediately before and after (Fig(2.4)).
Once the fit was performed, we took the time coordinates of the nearest points generated
by the fit as our times of reference to compute the half-height width, thus largely
reducing the error (by two orders of magnitude, as the fit was operated over a linear
space composed of a hundred points).

Figure 2.4: Visualization of the procedure to compute the half-height width. Once the two
samples closest to the half amplitude were found (circled in green in the figure), a polynomial fit was
applied on each slope (red dashed lines), using the above samples and the two closest ones (circled in
orange). The half-height width was then determined by finding the distance between the two closest
points in the respective fits.

Amplitude

The amplitude was the only waveform feature for which we used the template wave-
form returned by the spike-sorting procedure to compute. While the actual form of
the template should not be used for characterization, as it is optimized via a “black
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box” procedure, the amplitude of the template could be used (after unwhitening and
appropriate rescaling), as it did not depend as much on the machine learning procedure
operated by Kilosort2.5. The amplitude, however, could not be used as a single-channel
feature (this distinction will be more clear once the concept of multichannel feature has
been explained, in 2.4.6) for classification: spike amplitude was directly correlated with
the distance between the neuron and the recording electrode, as it decayed exponen-
tially with it [19]. It was difficult to account for this correlation without knowing the
exact relative position of neurons and recording spikes, which would require us to have
images with a much higher resolution and reliability than we can, together with very
isolated neurons. Thus, we did not deem this measure to be reliable enough to be used
in the classification analysis. As the amplitude of the templates determined by Kilo-
sort2.5 was closer to the amplitude of the actual spikes (due to our filtering excluding
more modes), we could use it as a curation feature, to remove the units with small
templates over the best channel, which were likely to be artifacts.

Trough to peak distance

The trough to peak distance was one of the main features used to characterize the
difference from extracellular recordings between excitatory and inhibitory neurons in
vivo [24]. In order to compute it, we took for each unit the footprint waveform over
the best channel and computed the distance between the trough of the spike and the
following peak, as shown in Fig(2.5).

Depolarization and repolarization slopes

Depolarization and repolarization slopes were computed from the cutout over the best
channel. For each unit, we took the midpoint between trough and peak of the waveform
after the trough (the “half height” of the spike). We then computed the slopes using the
tangent curve to the waveform at the midpoint before and after the trough, as shown
in Fig(2.5).

2.4.4 Time-series features

The computation of time-series features was based on thespike times output by Kilo-
sort2.5, which returned all the times corresponding to recorded spikes and the respective
unit to which they were attributed.

Firing rate

The firing rate was computed as the total number of spikes attributed to a unit divided
by the total duration of the recording:

FR =
Nspikes

Trecording

(2.6)
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Figure 2.5: Image showing what the different waveform features computed are. As we can
see both depolarization and repolarization slopes were calculated around the half-height of the trough,
same as the width of the spike, and the amplitude. The trough-to-peak distance was just defined as
the time interval between trough and peak.

Autocorrelation

The spike train autocorrelation is often used to determine the behavior of a neuron.
The spike-train for one unit was separated into bins with a bin width equal to 0.5ms;
this binned array was then convolved with itself with a lag of 50ms, which eventually
resulted in the autocorrelogram (ACG) showed, for unit 1 in the STP labelled data set:

Figure 2.6: Autocorrelogram computed from the spike train of a labelled unit (E). The
width of each bin was 0.5ms. The central bin, which would have been equal to 1 and non-informative,
was set to 0 intentionally.
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After computing the ACG for each unit, we wanted to parameterize it. To do so, we
fit the positive-lag portion of the autocorrelogram with a 3-exponential curve fit [24],
as described by the equation 2.7:

ACGfit = max

(
c

(
e
−x−trefrac

τdecay − de
−x−trefrac

τrise

)
+ he

−x−trefrac
τburst + rateasymptote, 0

)
(2.7)

Where x was the autocorrelogram, trefrac the refractory period, the single τ (respectively
decay, rise and burst) were the characteristic times for the different sections of the
autocorrelogram behavior, and the other parameters, such as the coefficients and the
rateasymptote were added to enhance the quality of the fit. The three exponential curves
used for the fit can be seen in Fig(2.7a). Fitting the positive-lag portion of Fig(2.6)
with the equation in 2.7, we obtained the result shown in Fig(2.7b). As we can see from
this figure, the fit described well the behavior of the ACG. Of the parameters described
by the fit, we focused especially on τdecay , τrise and τburst, which we used as features
descriptive of the autocorrelogram behavior in the classification analysis.

(a) (b)

Figure 2.7: 3-exponential fit for autocorrelogram. (a) Image showing the three different expo-
nentials that were used for the fit (red is decay, blue is burst and green is rise), adapted from [24]. (b)
Result of the 3-exponential fit described in 2.7, applied to the positive-lag portion of Fig(2.6). As we
can see, the curve determined by the fit (in orange) followed the behavior of the ACG. The average
R2 score for this fit, over all the autocorrelograms for the labelled data set, was ∼ 0.8.

2.4.5 Burst features

In order to compute burst features, we first devised a method to detect bursts in our
recordings. The algorithm designed worked in a few steps: first, it defined a threshold
ISIthreshold for the ISI of the specific unit which separated spikes belonging to bursts
from those instead considered to be isolated, then it ran this threshold over the spike
train of the unit to detect bursts.
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Figure 2.8: The distribution of the logarithm of the ISIs for a putative neuron (unit 0,
MEA1k 4205). As we can see, the distribution was bimodal, and the threshold was found as the
minimum (in green) of the corresponding Gaussian kernel density estimate (in orange). The threshold
was denominated "personal" as it was the one specifically computed for the unit, and not one averaged
over many units (which was the other alternative for the computation, which we rejected).

If the threshold found through the dynamic procedure for a putative unit resulted to
be lower than 1ms or larger than 100ms, the threshold was hard set to 100ms. This
detector assumed that periods with high and low ISIs represented spikes that were
either inside a burst or isolated [25]. A burst was detected if there were at least 5
consecutive spikes with ISI lower than ISIthreshold and if the total duration of the burst
was larger than 3ms.

To calculate the ISI ithreshold for unit i, we computed the distribution of the logarithm
of the ISIs for i. As can be seen in Fig(2.8), this distribution typically had a bimodal
behavior: spikes that belonged to the left mode, which corresponded to lower ISIs,
were spikes that were present within bursts (phasic firing), while those that appeared
in the right mode were isolated spikes (tonic firing), with higher ISI. The threshold
was then the local minima between these two modes, computed after smoothing the
distribution with a Gaussian kernel density estimator (with bandwidth=0.2, using the
scipy.stats.gaussian_kde method in Python).

After detecting bursts, we computed for each unit burst features, such as inter-burst
interval (IBI), burst average ISI (or Phasic ISI), burst average firing rate (or Phasic firing
rate), average number of spikes per burst (to which we will simply refer to as "number
of spikes" in the following sections) and amplitude attenuation of spikes within bursts.
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Both burst average ISI and burst average FR were computed for each burst generated
by a unit, and then the results belonging to the single bursts were averaged together.
The IBI was computed by averaging the inter burst intervals (time interval between
the end of a burst and the start of the successive one) between all bursts detected for
a unit.

Attenuation

By attenuation, we referred to the dynamic changes of spike shapes (primarily ampli-
tude) of a given unit, within bursts. Consecutive spikes inside a burst tended to become
sequentially smaller, often following a behavior which we found to be exponential.

Figure 2.9: Average attenuation of spike amplitude along a burst for a putative neuron
(unit 0, MEA1k 4205). In blue we have the average amplitudes for the different ranked spikes, nor-
malized with respect to the largest one. In orange the exponential fit from which we extracted the
exponent, as a parameter representing the behavior for the specific unit.

We wanted to represent this behavior as a single parameter in our feature space. To do
so, we selected for each unit all the bursts containing at least 6 spikes, where the rank
of the spike indicates its position within the burst (so the first spike in a burst has rank
1, the second, rank 2, and so on). We then averaged the amplitudes of all spikes having
the same rank, and built a sequence of average amplitudes to represent the average
attenuation for the unit, normalized by the largest average in the series. Eventually we
performed an exponential fit, which can be seen in Fig(2.9), and the exponent (Attexp)
of the fit was used as the parameter to insert in the feature space. The only constraint
imposed on the fit was that it had to pass through the first point of the sequence (so
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the average amplitude or rank 1 spikes). As access to the raw data for STP ground
truth data set (described in 2.6.1) was not possible, we couldn’t compute this feature
for the labelled units. For this reason, this feature was excluded in the end from the
classification analysis.

2.4.6 Multichannel features

One of the most important features of the HD-MEA is the high spatial resolution: each
array is constituted by 26,400 electrodes, with a pitch of 17.5 µm. We postulated that
if our routed channels are close enough, the electrophysiological recordings could also
carry information about morphological and functional identity of the cell. To convey
this information in the form of features, we developed the concept of multichannel
features. For each unit, we sorted the channels based on the amplitude of the tem-
plates computed over them by the spike sorter, in descending order. Each one of the
waveform features was then computed for the footprint waveform computed over the
first 5 channels ordered this way, for all the units. This way, all the waveform features
were represented, in this multichannel space, as arrays with 5 elements, instead of just
scalars as for the single channel features previously described.

For each unit, the 5 best channels were then ordered as follows: to each channel cor-
responded a template waveform, computed by the spike sorter as an optimized and
processed average of all the spikes fired by the unit. For each one of these templates,
we determined the time point corresponding to the peak of the signal (corresponding
to the lowest point of the trough in our recordings). We then ordered the channels
based on these time points, which represented the latency of the spikes for that chan-
nel and were tied to the propagation of the signal from the AIS, where it originated.
The assumption was that the channel with the lowest latency, or the earliest spike, was
the closest to AIS of the neuron, and increasing latency indicated removal from it. All
the feature arrays were sorted according to this latency based ordering. In case two
channels had the same latency, the order was then chosen randomly between the two.

After being ordered, the feature arrays were scaled between the minimum and the
maximum values for each unit, following the equation:

Xstd =
X −max(X)

max(X)−min(X)

Xscaled = Xstd(max(X)−min(X)) +min(X)

(2.8)

where X is a feature array. This was done in an effort to limit the influence of distance
between the neuron and the recording channels. Scaling these features this way removed
any dependence over the amplitude of the spikes, and only retained information about
the effect distance from the AIS had on the features. All feature arrays were this way
composed of values between 0 and 1, for all units.
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2.5 Imaging pipeline
The fulcrum of the project was to collect a ground truth data set, containing cells
labeled as either GABAergic (inhibitory) or Glutamatergic (excitatory). In order to do
so, we stained our cultures via immunocytochemistry staining, with antibodies specific
to the two classes, and collected the stained images via microscopy. These images were
later processed to find the positions of the single neurons and create the data set.

2.5.1 Staining

In order to stain the cells, we used an immunostaining technique based on primary and
secondary antibodies. First we fixed the cell cultures on the chips, using IC Fixation
Buffer (FB) containing paraformaldehyde: we first cleaned the chips of their medium
by rinsing once, slowly, with PBS, after which we removed the PBS and added the
FB, which we left on for 10 minutes. After that we removed the FB and twice added
PBS, removed it after 5 minutes and added it again. Eventually we added 1ml of PBS
and removed it immediately, then added 1ml of Blocking Solution (BS) per chip. The
reason why we added the BS was to block the specific sites to which the secondary
antibody could inadvertently bind, ruining the staining process. The blocking solution
was composed of 5mL PBS (10X), 2.5mL Triton, 0.5mL sodium azide, 0.5 g bovine
albumin serum, 5mL normal donkey serum and DIW to reach a total of 50mL. Once
filled with BS, the chips were left for 45 minutes on an oscillating plane (5 oscillation-
s/minute), after which the BS was removed. The chip was then filled with the primary
antibodies, added to a so-called Antibody Solution (AB). The preparation for the AB
was the same as for the BS, with 1.5mL of normal donkey serum instead of 5mL.
The primary antibody solution for each chip was composed of: 1mL AB, 5 µL Rabbit
GAD65/67 for GABAergic cells, 25 µL Mouse HUC and 2 µL chicken NeuN. The chips
were left on the oscillating plate for 2 h with this solution, which was then removed and
substituted with the secondary staining (after cleaning the chips with PBS three times).
HUC antibodies bind to antigens present exclusively in all neuronal cells; Glutamate
decarboxylase 65/67 (GAD 65/67) is involved in gamma-aminobutyric acid (GABA)
synthesis, which is an indicator of inhibitory neurons; NeuN is a neuron-specific nuclear
protein, and Anti-NeuN stains exclusively neuronal cells in the central and peripheral
nervous systems. The composition of the secondary staining solution was: 1mL AB,
2 µL Donkey-anti-Rabbit (AlexaFluor, 488 nm), 2 µL Donkey-anti-Mouse (AlexaFluor,
568 nm), 2 µL Donkey-anti-Chicken (AlexaFluor, 647 nm) and 1 µL DAPI (405 nm) as
a counterstain. Once again, the chips were left in the dark on the oscillating machine
for 2 h, then cleaned of the secondary staining solution with PBS. Finally, 1mL of PBS
was added to each chip as to not let them dry up, and they were conserved in the fridge
until we could put them under the microscope.

2.5.2 Microscopy

For the imaging we used a confocal microscope with spinning disk (W1 Upright Spinning
Disk Confocal, Nikon Zstage + MCL Piezo), and a dipping lens with a magnification
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of 20X. The number of stages to cover the entire chip was variable between 28 and
40, depending on how close we wanted to be to the border of the array. For each
stage multiple images for the different wavelengths were taken, for different z-positions
around a single central z-position, which varied depending on the HD-MEA. For each
stage and z positioning, we took images via lasers (488 nm for GAD65/67, 568 nm for
HUC and 647 nm for NeuN as counterstaining). In order to capture the underlying
electrode array, we used a 515 nm laser. The full images were stitched together us-
ing Huygens Professional (version=21.10; ScientificVolume Imaging, 10% overlap,
circular vignetting correction mode).

2.5.3 Image processing

Each stage image collected by the confocal microscope was composed of 5 channels and
around ∼ 25 stacked images for each of them, corresponding to the different z-positions.
The stacked images were collapsed into one (corresponding to a 2-dim matrix) by se-
lecting for each pixel the maximum intensity one over all the z positions for that chan-
nel. Once the stage-wise images were collapsed, stitching of the stages was performed
via Huygens Professional. Stitching was optimized over just two channels: the one
capturing the electrode array, which we called "regular channel", and the one captur-
ing either HUC staining or GAD65/67, called "irregular channel". The corresponding
stitching template was then used to stitch over the other channels as well: this was
done to increase performance time-wise. Coordinates of the four corner electrodes were
extracted from the regular channel in the stitched image (the pixel at the intersection
of the diagonals of the rectangular electrode was considered as position). These co-
ordinates were then compared with those provided by the manufacturer, to construct
a mapping between the positions of objects in the images and in the artificial frame
of reference of the actual electrode array. This mapping took into account rotation of
the electrode array in 3-dimensions, considering the axes passing through the lower left
corner of the image as axes of rotation.
Cell segmentation was then performed using Cellpose [26]. Once the images corre-
sponding to the HUC (all neuronal bodies, or somas) and the Gad 65/67 (only in-
hibitory cells) channels had been segmented, we removed from the images clusters of
cells, considering cells with a respective distance of less than the diameter of a cell to
be clustered. This was done because, in order to correlate imaged cells and spike-sorted
units (which was our objective), we needed well distinguished neurons. We then sub-
tracted from the HUC segmented image the inhibitory cells found in the GAD 65/67
channel, to obtain an image containing mainly excitatory neurons. Using the subtracted
image and the GAD65/67 one, we could then pinpoint the positions of the routed elec-
trodes standing directly below respectively excitatory and inhibitory cells, as described
in section 2.6.2.
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2.6 Ground truth data set
In order to perform classification between excitatory (E) and inhibitory (I) units, we
needed a ground truth labelled data set to use both for the training and the testing of
the different models. In order to establish this ground truth data set, two procedures
were developed:

• Spike-transmission probability (STP) based labelling.

• Imaging-based (ICCS) labelling.

We can briefly see the methodology behind both of these procedures.

2.6.1 Spike-transmission probability

It is possible to establish the E or I identity of neurons based on their respective
interactions, and the way they influence each other’s firing pattern [27]. The method
and data were the same used in [22], and were kindly shared by Dr. Julian Bartram.

Figure 2.10: Visual description of the STP computation. (top) CCG between 4 different
units (excitatory in red and inhibitory in blue), with respective putative interactions (the dashed
lines represented weaker interactions, supposedly not direct). (bottom) On the let, the CCG between
two units, with the slow baseline (dashed blue line). On the right, the histogram resulting from the
subtraction of the baseline from the CCG. The bins in green, when summed, returned the STP value.
Adapted from [22].

In order to determine if spike sorted units were either E or I, the concept of spike
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transmission probability was used: if the average effect of a neuron on other neurons
with which it had a direct synoptic connection was to promote their spiking, then it
was excitatory; on the other hand, if it made their firing less likely, it was an inhibitory
neuron. To check if the effect of a unit on another is excitatory or inhibitory, the
cross-correlogram between the spike-trains coming from the two units could be used.

(a)

(b)

Figure 2.11: Difference in STP between excitatory and inhibitory units. (a) Results of the
difference between the CCG and the baseline for an excitatory (on the left) and an inhibitory (on the
right) unit. (b) The STP values for all considered interactions between pre- and postynaptic units in
a single recording. The mean STP for all presynaptic units is shown in the vertical bar to the right.
Adapted from [22].

First, the CCG was computed between the two chosen units, using a recording of >3 h.
In order to determine the post-synaptic effect of our target unit, a slow CCG baseline
had to be extracted, representing the behavior we would expect to see between the
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two units if there was no interaction at all. Extraction of this baseline was done by
convolving the CCG with a partially hollow Gaussian kernel, with std = 10 and hollow
fraction equal to 60% [27]. After subtracting this baseline from the CCG, the resulting
bins were normalized by the number of spikes fired from the presynaptic unit (which
was the one whose identity we were inspecting). The STP was then computed as the
sum of bins in a 4ms window starting at the 1.5ms positive lag. To determine the class
of a single unit, this procedure was repeated multiple times with different post-synaptic
units: the results were then averaged to determine the STP.

In figure Fig(2.11) we can see a visual interpretation of the STP computation process.
In Fig(2.10), we can see (top) the CCG for 4 different units (red are excitatory, blue are
inhibitory) with their corresponding expected interactions represented as lines between
either circles or triangles (dashed lines represent weaker interactions, probably not
direct.) In the same figure we can see (bottom) how the STP for a single synaptic
interaction was computed: first the baseline was computed for a single CCG (bottom-
left of Fig(2.10)), represented here as a blue dashed line. This baseline was subtracted
from the CCG, resulting in the figure on the bottom-right. The bins in green are the
ones whose sum is equal to the STP. In Fig(2.11a), we see how different the CCG looked
after baseline removal for putative inhibitory or excitatory pre-synaptic units. As can
be observed, the difference between an excitatory and an inhibitory pre-synaptic unit
was determined by the STP, given by the sum of the bins in green in the figure: if
the presynaptic unit was excitatory, the STP had a positive value; if instead it was
inhibitory, the computation returned a negative value. For the final classification of
units as either E or I, we took as reference Fig(2.11b): in this matrix, the STP for all
connections between 39 units were represented. The final STP value was computed as
the average over all STP values calculated for one presynaptic unit (in the figure, this
would correspond to the average between all values in a row). These mean values are
represented in the vertical bar on the right of Fig(2.11b).

All the labelled units used in this report for the ground truth data set were computed
with this procedure, and were the result of the work of Dr. Julian Bartram. All thanks
and recognition go to the authors of [22]. Using this procedure, a labelled data set
composed of 39 I and 54 E units was created.

2.6.2 Imaging-based labelling

In order to obtain a ground truth data set, with neurons labelled as either E or I,
we designed a procedure based on immunocytochemistry staining and imaging. The
procedure was the following for each HD-MEA: after the recording, the culture was fixed
using PFA (paraformaldheyde), then stained following the procedure described in 2.5.1,
for all neuronal cells and also, specifically, for GABAergic neurons. Afterwards, the
array was imaged following the methodology described in 2.5.2. The images collected
for a single HD-MEA, which ranged between 35–42 tiles that covered the entire array,
were stitched together using Huygens professional, to form two images representing
the population: one for the neuronal staining (image N), and one for the GABA staining
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(image G). Cell segmentation was performed on each image using Cellpose2.0 [26].
Using a custom code written in Python, the images were then filtered for clusters of
cells, which we wouldn’t have been able to use for the cell position identification and
correlation that we needed for the labelling. The clustering filtering was simply set such
that all cells that had a distance lower than the average diameter of a cell from the
closest one were removed from the image. Subtracting from image N , all cells identified
in image G, we were left with an image (image E) containing only non-GABAergic cells,
which we assumed to be E cells. We then had two images containing cells belonging
to either the E or the I classes. These cells had to then be localized on the array, and
correlated with the units sorted using Kilosort2.5, to create a labelled data set.

(a) (b)

Figure 2.12: Masks derived from the images immunocyto-stained for all neurons. (a) and
GABAergic neurons (b), via Cellpose2.0. The white dots are segmented cells. As we can see, the
image on the left was far more populated than the one on the right, which could indicate either an
absence of GABAergic cells in our population or a malfunction of the antibodies used for the staining.

In order to correlate the segmented cells to the sorted units, we first had to find the
electrodes that were closest to the cells in the microscopy images. To do this we
collected also a full image of the electrode array of the HD-MEA. Knowing the position
of 3 corners of the array in the image, we could then recreate an artificial array, using
the spacing given by the producers of the chips (17.5 µm) and the correct number of
rows and columns, and fit it over the electrode array in the images. We can see the
corresponding rotated and translated electrode array (in red) drawn over the imaged
array for one of our chips (HD-MEA 4171) in Fig(2.14b). We can see in Fig(2.13) the
way in which artificially computed electrodes fitted over the real, imaged counterpart.
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In this figure (in which we have overlaid both the YFP image of the electrode array
and the HUC image for the neurons, which can bee seen over the electrodes), the red
dots represent the artificially computed electrodes.

Figure 2.13: Artificial electrode grid overlayed on the imaged one. This image shows the
way in which the artificially computed electrodes fitted over the real ones in the microscopy image.
The real image shows both all the neurons (HUC staining) and the underlying array (captured via
YFP imaging).

The artificial grid was translated and rotated in three dimensions to fit over the imaged
one, by using three corners of the imaged array as reference. The rotation in three
dimensions was needed because the frame for immobilizing the chip during imaging
could have been rotated with respect to the objective, as well as the array itself could be
slightly rotated over the chip. The array could also be tilted vertically, due to the gluing
process that fixes it over the chip. By applying the composite transformation, taking
as rotation axis on both planes the ones passing through the lower left corner of the
array, we reduced the misplacement of the artificial electrodes with respect to the real
ones. In the middle of the array, which was the most susceptible area to misplacement,
we encountered at most a misplacement of ∼50 µm (less than two electrodes).

Once the artificial electrode grid had been generated, we traced the position of each
channel (or routed electrode) on the image. For each cell belonging to either image
E, for which the corresponding mask is shown in Fig(2.12a), or image G (Fig(2.12b)),
after filtering, we traced the underlying electrodes. Electrodes were considered to be
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(a) (b)

Figure 2.14: Immunocyto-stained images of our chips. (a) shows the microscopy image for the
HUC-sensitive immunocyto-staining. This staining shows all the neurons, with no distinction between
E and I neurons. The color coding is only representative of the intensity of the fluorescence measured
by the microscope. (b) image showing how the full artificially computed electrode grid fitted over
the real, imaged one. The underlying image is the microscopy image collected to visualize just the
electrode array. In both (a) and (b), the lines in which the image becomes darker corresponds to the
regions where different tiles were stitched together using Huygens professional.

"underlying" if any of the pixels that composed the surface of the electrode fell in the
same space as the pixels of the cell in the mask.

We can use Fig(2.15) as a visual aid to better understand the full cell tracing procedure.
Let us consider the cell closer to the middle of the image as our reference, which we will
call cell R. Cell R is a cell that was identified to be E via the procedure described above.
For each artificially computed electrode, we considered as the surface of the electrode
for checking if it was beneath a cell a square 35 µmX35 µm, shown in the figure with
a white outline. As we can see, cell R in the figure fell inside this area, so this was
considered a directly underlying channel. If the cell fell inside the area of an electrode
that was not routed during the recording, the directly adjacent routed electrodes were
considered as indirectly underlying channels. All of the electrodes circled in white in
Fig(2.15) were the electrodes that were identified as directly or indirectly underlying
the cell in the middle, which was an E neuron in Image E. These electrodes constituted
the list of underlying channels for cell R.

Once we had such a list for each cell identified in image E and image G, we proceeded
with correlating these cells with the units sorted by Kilosort2.5. To do so, we also
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Figure 2.15: Image describing the procedure to assign immunocyto-stain determined
labels to the spike-sorted units. The dots represent channels of the artificially computed array.
The white square outlines the surface assigned to the channel in its middle (in green). A similar area
was assigned to all channels in the array, and these were checked to see if any cell fell inside such
area (such as for this case). Channels for which this condition was satisfied, or which were adjacent
to non-routed electrodes for which it was, are circled in white. The green dot represents the best
channel for a spike sorted unit, and the yellow ones the adjacent routed electrodes. The lines in
orange are the footprint waveforms over the specific channels for the unit which had the highest level
of correspondence with the cell in the middle, and to which its label was assigned.

built a list for each unit, composed of the identities (so the number that acts as ID
for the channel) of the best channel for the unit, and all the channels adjacent to the
best one. We then compared the channels contained in this list with the ones in the
lists for cells in image E and image G. When two lists had a correspondence of more
than 3 channels, then the label of the cell in the image (either E if in image E or I if
in image G) was assigned to the unit with which this correspondence was found. We
can see such a case in Fig(2.15): in this, the dot in green represents the best channel
for a unit, while the yellow ones were the adjacent ones (all together they composed
the list of channels for the comparison). All channels which have both a colored dot
(either yellow or green) and are circled represent a correspondence between the unit
and cell R. The label of cell R, in this case E, was then assigned to the corresponding
unit (which in this case was u187 for the specific recording). In this case we had also
an additional confirmation that our method for labelling units was working, as the best
channel for u187 was standing almost directly beneath cell R. The waveforms shown in
orange were the footprint waveforms computed over the single channels for u187, from
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the raw recording. In the rare case in which multiple units shared channels with the
same cell from image G or image E (rare as we first filtered the images for clusters),
the label was assigned depending on the following hierarchical decision:

• the label was assigned to the unit for which the best channel was a directly
underlying channel.

• if none of the units had a best channel which was directly underlying, the label
was assigned to the one with the highest level of correspondence (largest number
of channels shared between lists)

• if the correspondence level was the same for both units, the label was not assigned
to either.

The same procedure was followed also in cases in which we had more than two units
under scrutiny. As we can see from figure Fig(2.12b), this method presented an issue:
not enough I cells were observed to make labelling possible. For this, two hypothesis
were raised, still to be verified: either there was an issue with the immunocytochemistry
staining (related to the concentrations of the agents, cross-talk or to the antibodies
themselves), or no I cells were present on the chips to be observed. As the creation of
a labelled data set did not work yet with this procedure, all the labelled units used in
the following sections were determined using the spike transmission probability (STP)
based method described in 2.6.1.

2.7 Machine learning techniques
The end result we were aiming for in this thesis was a classifier between E and I
units, based on extracellular electrophysiological recordings. In order to obtain this
result, we used a series of machine learning methods, to assess possible procedures for
classifications. These consisted in two kinds of approach.The first was a visual one,
in which we used dimensionality reduction machines to observe the distribution of the
high-dimensional data in a lower, interpretable space. We implemented linear and
nonlinear methods, in the hope of being able to detect via these a peculiar structure
of the data in high dimension, which might represent a classification threshold. The
second approach was more quantitative, and involved the use of supervised classifiers,
both linear and nonlinear, to identify what feature space was going to be the best for
the classification, and specifically which features.

2.7.1 Dimensionality reductions machines

As anticipated in the introduction, in a first step we tried exploring the data collected
from our cell cultures via some machine learning techniques, to try and detect interesting
underlying structures in the feature space that we could use to pinpoint a classification
technique. As working in lower dimensionality features spaces hasn’t shown any success
in the same endeavor in the past [20], we decided to try and deal with many features
at the same time, so in a higher dimensionality feature space or in its subspaces. To
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efficiently perform analysis in higher dimensionality we resorted to dimensionality re-
duction machines, to try and reproduce the complex, high dimensional topology of the
feature space in a number of dimensions which we could visualize and interact with.
The main methods that we used were PCA and UMAP. We will briefly discuss the
theory at the basis of each one of these methods, their weaknesses and strengths.

Principal Component Analysis

Principal component analysis (PCA) is a linear dimensionality reduction machine with
high interpretability. It relies heavily on the varying behavior of the population. PCA
can be used to reduce the dimensionality of any space by an arbitrary amount, usually
dependent on the amount of variation we would like to preserve in the lower dimensional
space.

The first step for PCA was to standardize the data: this was done because PCA uses the
variation over the single features to design the reduced space. Standardization consisted
simply in subtracting, from each feature, the corresponding mean and dividing by its
standard deviation. Next, we computed the covariance matrix of our high-dimensional
space, and calculated its eigenvalues and eigenvectors. The principal components were
then identified by sorting the eigenvalues (and corresponding eigenvectors) in decreasing
order. The principal components are new variables (or coordinates in the reduced
space), constructed as a linear combination of the original variables.

Principal components are uncorrelated, and are computed in such a way that they con-
tain most of the information just in the first few ones (the total number of components
is the same as the dimension of the original space). The information is also referred
to as variational energy, as it describes mostly the way in which the population varies
across the different features (which is exactly what we need for this project). To retain
this information, principal components are constructed such that the first ones con-
tain information about the largest variance in the data set. The eigenvectors of the
covariance matrix correspond exactly to the directions with the highest variance in the
feature space. The eigenvalues represent the amount of variance described along the
corresponding eigenvector, so we could create a rank of principal components based on
the eigenvalues themselves. The variational energy contained in each eigenvector was
then computed as the corresponding eigenvalue divided by the sum of all the eigenval-
ues. To obtain the final reduced feature space, each element of the standardized data
set was projected into the space having as axes the principal components (so they were
projected on the directions of maximum variance). In this project, PCA was performed
via the sklearn.decomposition.PCA method in Python.

What made PCA powerful was its linearity: as the variables in the reduced space were
just a linear combination of the original standardized ones, it was very easy to interpret
the results of PCA. For example, if PCA underlined a separation between two modes,
we could immediately tell what feature (or combination of features) was determining
this distinction, just by backtracking the algorithm.

The weakness for PCA was related to the complexity of the original feature space:
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often, if in the initial space the structural complexity of the data set was too high, or
the data is distributed very homogeneously, each principal component accounted for
just a small amount of information. If not enough information was contained in the
first few features, so that it was directly observable by the user, we had to refer to other
methods to extract classification and structures from the reduced space.

UMAP

The term UMAP stands for Uniform Manifold Approximation and Projection, and
is used to represent a nonlinear dimensionality reduction method. UMAP works by
first constructing a high-dimensional graph from the data, and then reduces it to a
2-dimensional version, optimized to be as structurally similar as possible [28]. In this
high-dimensional graph, edges are constructed with weights that represent the proba-
bility that the corresponding points are connected. This probability of connection is
established by extending a multidimensional sphere around each point, and connecting
them when the spheres intersect. The choice for the radius of the sphere is chosen lo-
cally for each point by UMAP, based on the distance from the point and its nth nearest
neighbor. The probability of connection then decreases as the radius from the point
grows, making up a “fuzzy ball” around each point (the full structure is called a fuzzy
simplicial complex [28]). Thus, the graph is constructed, with the additional imposed
feature that each point has to be connected to at least its nearest neighbors. The reduc-
tion to the lower dimensional space is then performed, optimized to maintain the same
high dimensional structure. The most important hyperparameter to be tuned in UMAP
is the number of neighbors (NN) to be considered when building the high dimensional
graph: low NN will increase the focus of the reduction on the local interactions, while
large NN will maintain the global structure more, at the cost of the local. Increasing
or decreasing the NN is then comparable to increasing or decreasing the resolution of
the reduction, at the cost of susceptibility of noise in the distribution (whereby noise
we mean peculiar local structure non-representative of the actual distribution).

2.7.2 Supervised classifiers

Using the labelled data set given to us by Dr. Julian Bartram, we could train a series
of supervised machine learning classifiers, both linear and non-linear. Each model was
trained on all the possible different subspaces of the feature space (time-series features,
single and multichannel waveform features and mixture of the last two with the first).
As will be shown in the results section, the performance of each model was determined
via a series of metrics. We computed the Precision of a classification as:

Precision =
TP

TP + FP
(2.9)

Where TP and FP are, respectively, the counts of true positives (so correct classifica-
tion) and false positive (incorrect classification). We also computed the Accuracy, as
follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.10)
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In which TN and FN are true negatives and false negatives. As ours is a binary
classification, positive and negative will just represent the excitatory and inhibitory
classes. The last score computed was the F1-score, for which the formula is:

F1 score = 2 ∗ Precision ∗ Recall
Precision + Recall

(2.11)

For which we also need to define the Recall :

Recall =
TP

TP + FN
(2.12)

The F1-score is the most reliable source of information for the classification, in cases in
which the training data set is skewered towards one of the two classes (as is our case,
with 54 E and 39 I units). For the assessment of feature importance, one method was
implemented for all classifiers: the permutation feature importance. The permutation
importance is computed as the decrease in a certain classification score (in our case
we chose the F1-score), with respect to permutation across all the data points of every
feature in the feature space, in succession. This permutation is performed multiple
times over the same feature, and the importance is computed as the average over all
the implementations. All the classifiers then had specific procedure to compute feature
importances, which are going to be described in the following sections.

It is particularly important, for nonlinear classifiers, the correct choice of the hyperpa-
rameters involved in the computation. The procedure via which these hyperparameters
were optimized over the different feature spaces is described in Appendix(B)

Linear support vector machine

The linear support vector machine (LinSVM) is a linear classifier that aims at determin-
ing the maximum-margin hyperplane between the two different classes in the labelled
data. This is defined as the hyperplane which is maximally distant from the nearest
data points belonging to either class. This hyperplane is defined as the set of points
that satisfies the condition:

w⊤xi − b = 0 (2.13)

where x are the points belonging to the hyperplane and w is the vector normal to the
hyperplane, while b is the parameter that determines the offset of the hyperplane along
w with respect to the origin. As we did not expect the data to be simply linearly
separable, we used a version of the SVM based on a soft-margin procedure (all the
computations were done via the svm.LinearSVC function in the sklearn package in
Python), which uses a hinge loss function (2.14) to determine the best hyperplane.

max

(
0, 1− yi

(
w⊤xi − b

))
(2.14)
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Logistic regression classifier

The logistic regression classifier is a linear classifier that, in the case of binary classi-
fication, works by determining the probability of a single data point of belonging to
either class. The log-odds for each data point to belong to one of the two classes are
computed, as linear combination of independent variables. The method consists in
computing the cross-entropy of the predicted distribution with respect to the actual
distribution of labels in our labelled data. The cross-entropy, also called negative loss,
is then minimized, to determine the parameters of the logistic regression.

Kernel support vector machine

An alternative to the simple, even if powerful, linear support vector machine is the
kernel support vector machine. This method is used in cases in which the performance
of the LinSVC is low, and consists in performing the same procedure of the LinSVC
with soft-margin, but with an additional dimension added to the feature space. A new
feature is added to each data point, with a computation based on the real features,
in the hopes that this additional dimension will disentangle the data and allow for
the LinSVC to perform better. The function used to calculate the additional feature
is called kernel, and many kernels are available for this computation. To be specific,
in our attempt at classification we implemented a Gaussian Radial Basis Function
(RBF) as our kernel, a powerful tool that improves classification but makes the clas-
sifier nonlinear. This kernel depends on two parameters, gamma and C, which were
optimized via a grid search for each feature space used (for the optimization we used
the modelselection.GridSearchCV in the sklearn package in Python).

Ensemble decision tree classifiers

Decision trees are a particularly powerful tool in the classification field, as they are
"invariant under scaling and various other transformations of feature values, robust to
inclusion of irrelevant features and produce inspectable models" [29]. A single decision
tree works by selecting a random subset of m features from the total feature space
(this is called "feature bagging"), and choosing among those the best feature and best
threshold value to split the population in two classes, attempting at separating the
labelled classes as well as possible according to some measures of impurity (in our
case, the Gini index). The two separated families of samples form two new leaves
of the tree, and the procedure is repeated for each node. This algorithm is repeated
sequentially until we reach a point in which each leaf has data points belonging to
only one class (minimal impurity) or until a depth (depth represents the number of
sequential iterations of the algorithm computed) imposed by the user. The best kind
of classification for a decision tree is obtained when the tree spontaneously reaches an
iteration at which the impurity has a value of 0, but this kind of deep trees is very
prone to overfitting. The use of ensemble decision trees classifiers (EDTC) makes up
for this problem: many decision trees, or learners, are trained over the labelled data,
and the classification will be determined as the majority vote by this ensemble of trees.
In order to improve the performance of this EDTC, for each tree in the ensemble a
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different random subset of the data set with replacement is chosen (this procedure is
called "bootstrap aggregating"). The random choices in the bootstrap agggregation
and in the feature bagging are what makes these classifiers nonlinear. The EDTC in
this project was implemented using the ensemble module in the sklearn package in
Python. This supervised classifier also had a specific procedure to compute feature
importance, called Gini importance or Mean Decrease in Impurity : this is computed
as the number of splits that use the specific feature over all trees, proportionally to the
number of split samples and normalized over the number of splits.

Another model closely related to decision trees is the Gradient Boosted Model (GBM),
which in this project was implemented via the use of the lightGBM package in Python.
In this, each decision tree was built to perform better where the previous one made errors
in the classification. Combining these trees, then, is bound to improve the performance.
It is based on some loss function that the algorithm aims at minimizing: each new tree
is then added to the model such that it reduces the loss function. To do so, the tree’s
parameters and subsets of features and samples are optimized, following this gradient
descent procedure. The procedure stops after a set amount of iterations or when the
loss function reaches a plateau and does not decrease anymore.

2.8 Full pipeline

We briefly summarize the full procedure for this project. Primary hippocampal rat
neurons were cultured over an HD-MEA, and recorded after 14 DIV. Each recording was
performed as a 7X-sparse configuration on MaxLab Live, so that for each HD-MEA the
final output were 7 different raw files, corresponding to different areas of the electrode
array and covering it fully. Each of these recordings was spike-sorted individually with
Kilosort2.5, then all resulting units from a single HD-MEA were collected into a single
data set. For each putative neuron output by the spike-sorting procedure we computed
a series of features, both over a single channel or concatenated measures over different
channels (multichannel features), and both for the waveforms and the time-series. The
data sets also went through a rigorous process of curation, based on these features,
to remove all putative neurons that would make our classification effort more difficult.
This full procedure was repeated for all of our HD-MEAs.

At this point, we had two different pipelines working in parallel: an ICCS and a
STP based one. For the ICCS pipeline we fixed the cells in the recorded HD-MEAs,
immunocyto-stained them for all neuronal species and for inhibitory neurons specifi-
cally, and imaged them with a confocal microscope at 20X enhancement. The images
for a single HD-MEA were stitched together with Huygens Professional, segmented
with Cellopse and processed to find a correspondence between imaged neurons and
spike-sorted putative neurons. Once these correlations were found, the corresponding
labels from the images (either excitatory or inhibitory) were used to build a labelled,
ground truth data set of computed features. The STP pipeline worked similarly, but
used a different method, based on neuronal connectivity and electrophysiology, to es-
tablish the labels for the putative neurons (described in 2.6.1). We once again thank
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Dr. Julian Bartram for allowing us to use his STP data set.

The labelled data sets were then explored visually, both with simple plotting and with
the use of dimensionality reduction machines, to observe any peculiar structure in the
data. Eventually, the labelled data sets were used to train and test different classifica-
tion models, in an effort to successfully classify between E and I putative neurons. The
importance of the features towards classification was also studied, to infer information
regarding the physiological differences between the two classes in vitro.
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Chapter 3

Results

In this chapter, we present the results of our efforts to determine one, or a series of
extracellular electrophysiological features that could be used to classify neurons be-
tween putative excitatory (E) and inhibitory (I) classes. The first part of the chapter
is dedicated to the curation procedure and feature space exploration, consisting of the
visualization of the distributions of single or pairs of features [18][20]. This is followed
by the analysis of high-dimensional feature spaces, containing most of the information
gathered for our units, and reduced via dimensionality reduction machines to be ob-
served and studied. The last part of the chapter is dedicated to the results of a series of
supervised machine learning classifiers, linear and non-linear, trained and tested over
the data set labelled based on spike-transmission probability (STP) estimates.

3.1 Data exploration

We started our data exploration by examining the curation features for our data. This
helped us determine the best threshold values to impose for curation. Using strict
enough threshold values, we could extract the best possible units from our data set, in
order to achieve reliable classification.

The first step to discern a classification feature between E and I units (or putative
neurons) was to explore the single feature distributions (or at most two-feature distri-
butions). In case a separation between modes was observed in one of these distributions,
we explored the specific feature to try and understand where this diversification might
arise, given the physiological aspects of our systems. In this section, we started by
studying exactly these kinds of distributions, initially over the unlabeled data set as
well as the labelled one, but then focusing on the STP data only. The reason for this
was that even if we were to observe a separation in clusters in the unlabeled data, we
would have no way to tell for sure if it was representative of the two classes, an artifact
of our data set or another behavior unrelated to the E and I classification. This could
result in incorrect deductions, based on incomplete information, and we would anyway
need to observe the same separation in the labeled data set to draw some conclusions.
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In a second step, we explored higher dimensional feature spaces using dimensionality
reduction machines, linear and nonlinear, to embed this spaces in 2-dimensional plots
containing as much information as possible, which we could then observe and analyze
one by one.

3.1.1 Semi-automatic curation check

In the first stretch of this project, in which we still did not have an established ground-
truth data set, we tried exploring our data, to try and identify the features which
would be most relevant for us. For this analysis, we built a full pipeline, going from the
recorded raw data through Kilosort2.5 [21] for spike sorting, then the computation via
a custom code of many features, regarding both waveforms and time-series, which are
described in (2).

First, we had to deal with the curation of the putative units: that is, the removal
of falsely detected neurons, resulting, typically, from spike sorting artifacts. After
the standard automatic curation, described in Section(2.4.2), we started by checking
the footprints of some randomly chosen units among those that were included by the
curation, to assess if an ulterior curation was needed. From a “good unit”, we expected
a footprint like the one in Fig(3.1). There, templates and cutouts over the best channel
as well as the closest routed electrode fit well each other, which is an indication that
the spike sorting algorithm identified a real neuron, whose AIS was in the vicinity of
the best channel (in this case, channel 996). The fact that the templates and cutouts
over the other channels were all not too small is also the indicator of a good detection.
In Fig(3.1) we have an example of a bad footprint: cutout and template over the best
channel (134) are very different, and over the other channels we have cutouts with a
very little spike or just noise. In this case, the unit was probably an artifact of the
sorting technique, as it is very unlikely for routed channels near a neuron to not pick
up anything when the neuron is spiking.

We also see that the waveform footprint over the best channel has a much deeper trough
than the corresponding template. This usually suggests the splitting of a single recorded
neuron in two different units (usually due to a strange firing pattern, or fluctuations
in the recording). The missing sink in the best channel template, which is visible in
the waveform footprint, must have been dealt with in another unit, localized close to
the location of unit 65 (abbreviated as u65). Depending on how noisy the recording
was, we had variable amounts of aberrations and spike-sorting artifacts like this in our
results, some of which survived the first automatic curation.

One way of checking if this was indeed a split neuron would be to look at the cross-
correlograms (CCG): if the spike sorting algorithm had split a single neuron in two
putative units, we would find two units with strong correlation. Let us consider u65 as
an example, of which we can see the footprint in Fig(3.2). The first step is to check
which units share the most channels (surrounding the best channel) with it, which
indicated units that were detected as close to one another. Over these channels, we
computed the average similarity between the two units over the templates. If we take



51

Figure 3.1: Spatiotemporal footprint of u515, (from MEA1k 4205). In black we represent the
overlaid templates over the corresponding channels (which are chosen as the closes active channels to
the best channel, which is the first in the legend list). The colored waveforms are the corresponding
footprint waveforms.

all units with which u65 shares at least 7 channels, the one with the highest similarity
in terms of templates was u64, with a similarity score of ∼ 0.56 (computed as cosine
similarity) and whose footprint is plotted in Fig(3.3). As we can see, this unit shows a
better sink at channel 134 (its best channel) in terms of amplitude, which was the same
channel at which we were missing part of the trough for u65 in Fig(3.2). This means,
together with the similarity score, that it is a good candidate for a split neuron. We
can then show the CCG corresponding to units u65 and u64, in Fig(3.4).

From the CCG in Fig(3.4) we could not discern if the two units were actually the same
neuron: the autocorrelogram (ACG) for u64 had the shape we would expect for a correct
unit, with higher bin values close to the 0ms lag, but equal to 0 in the period exactly
around the 0ms lag, corresponding to the refractory period. On the other hand, the
ACG for u65 had a shape determined by a low number of assigned spikes, with sparse
bins homogeneously distributed and no clear pattern.
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Figure 3.2: Spatiotemporal footprint of u65, (from MEA1k 4205). In black, we represent the
overlaid templates over the corresponding channels (which are chosen as the closes active channels to
the best channel, which is the first in the legend list). The colored waveforms are the corresponding
footprint waveforms.

We then moved along the list of units which were similar to u65, for example, u77,
which had a similarity score lower than ∼ 0.56 (which was the similarity score between
u65 and u64). Checking Fig(3.6), footprint waveforms and templates were similar for
all channels but the best channel, in which we were seemingly missing part of the
trough (as for u65). Once we checked the CCG in Fig(3.7) we saw that there was a
high correlation between the two units, with a peak larger than 1 close to the 0ms lag.
We could interpret all of these factors as the two units being actually a single putative
neuron that was split erroneously during the spike-sorting. At this point we had three
options: increase the thresholds for the curation, run one more time the function and
see if one of the two units would disappear (likely u65, with a slightly higher threshold
over the average firing rate), remove the worst unit (in this case u65) manually, or
try merging the two units. Given the aim of the project, which required us to only
maintain the best possible putative neurons to have clean features over which to build
a ground truth data set, we avoided merging units unless the spike sorter only identified
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.
Figure 3.3: Spatiotemporal footprint of u64, (from MEA1k 4205). In black, we represent the
overlaid templates over the corresponding channels (which are chosen as the closes active channels to
the best channel, which is the first in the legend list). The colored waveforms are the corresponding
footprint waveforms.

a few neurons. We preferred, in the case of a large number of putative neurons being
sorted, to implement increasingly stricter curation, to maintain only the best units,
with quality over quantity in mind. We thus observed the total distribution of our
unlabeled data set over the curation features, shown in Fig(3.5), and established strict
thresholds based on this observation. The orange vertical line in the figures represents
the location of the threshold (either lower or higher) for each feature.

As for the inter spike interval (ISI) violation rate, we ignored all units with a value
larger than 0.05Hz, as can be seen in Fig(3.5a). This was due to the fact that we
expected in our 20 minutes recordings, the units to have no more than 60 violations of
the ISI. The value in this case could not be just 0 for the violation rate threshold: as
we have seen, there are multiple reasons for which the spike-sorting algorithm might
assign spikes even if they do not satisfy the ISI violation criteria (merging of neurons,
overlapping of spikes, bursting and more). This first step removed around ∼ 8% of the
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Figure 3.4: Cross-correlograms between u65 and u64, (MEA1k 4205). Each bin has a width
of 1ms, so that the cross-correlogram spans a period of 100ms (50ms per side) around each reference
spike

total population.

As a second curation step, we imposed a threshold over the average firing rate of at
least 0.04Hz, shown in Fig(3.5b). We observed, over multiple recordings, that the
spike-sorting procedure did not work reliably for units with less than 50 spikes assigned
to them. These units ended up being in most cases just containers for noisy spike
waveforms, which could not be assigned to already established units via the template
matching. Given that we were dealing with 20 minutes recordings, the chosen thresh-
old removed this kind of units which amounted to around ∼ 15% of the remaining
population.

Finally, we focused on the signal-to-noise ratio (SNR) in Fig(3.5c), for which we imposed
a threshold of at least 8. This was done based on the observation of the units that
were placed under this value, their footprints and some of their features. ∼ 12.5% of
the remaining population was left out this way, with the final curated data set being
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composed of 768 units. Both u65 and u77 ended up being removed this way. Once
again, even though numerous units were lost via this procedure, it was justified since
we were much more interested in the quality of the units, rather than the quantity.

(a) (b)

(c)

Figure 3.5: Feature distributions for the curation procedure. In orange, for each distribution,
we have the chosen threshold for that curation parameter. (a) Imposing the upper threshold of 0.5Hz
over the ISI violation rate removed ∼ 8% of the total population. (b) The 0.04Hz lower threshold for
the average firing rate (amounting to ∼ 50 spikes) removed ∼ 15% of the remaining units. (c) The final
curation step removes ∼ 12.5% of the remaining units, with an SNR lower threshold of 8. Eventually,
the procedure leaves us with 768 curated units.
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Figure 3.6: Spatiotemporal footprint of u77, (from MEA1k 4205). In black we show the template
corresponding to each channel, while the colored waveforms are the footprint waveforms. The difference
between the trough over channel 155 for the cutout and the template seems to indicate that the template
is missing part of a potential sink, which is usually a tell for a split neuron.
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Figure 3.7: Cross-correlograms between u65 and u77, (MEA1k 4205). Each bin has a width
of 1ms, so that the cross-correlogram spans a period of 100ms (50ms per side) around each reference
spike. From the top-right figure, we see a high correlation between the two units, with a correlation
in the immediate vicinity of the reference spike that surpasses 1 (obviously this cannot be considered
as a conditional probability anymore)
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3.1.2 Low dimensionality feature distributions

In the process of establishing the best features to perform a classification, we first
analyzed some of the distributions over the features that we computed. Without having
a ground truth data set, this constituted the first attempt at classifying the neurons
in a way that would then allow to infer the physiological differences between the two
classes [18][20]. We separate the results regarding this first approach in either waveform
features or time-series features. During the observation of the results, we will see
that no distinction can be made between different modes, or families, with respect
to distributions over only one feature. While at the start we also show distributions
regarding the unlabelled data set, the majority of the focus for the exploration was be
on the ICCS labelled one. This was because having labelled units gives us more insight
about the possible significance of diversification in the distributions.

Waveform features

We tried to observe possible patterns or modes in the distributions corresponding to
different features tied to the waveform of the putative neurons. If not specified other-
wise, the waveforms considered for the computation of these features are the averaged
cutouts over the best channel for the single unit: that is, the footprint waveform over
the best channel. For the computation of the distributions we created a data set con-
taining data coming from different chips. In (3.8) we can see the different features that
we studied in relation to the footprint waveform of the single putative neurons.

Figure 3.8: Image showing what the different waveform features computed were. As we
can see both depolarization and repolarization slopes were calculated around the half-height of the
trough (taken from the 0, here indicated by the dotted line), same as the width of the spike, and
the amplitude, which was mainly considered as a parameter for curation, and was considered as the
difference between the zero and the trough.
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Starting with the depolarization slope, in Fig(3.9a) we can see the corresponding dis-
tribution of our units, which is largely peaked for values around ∼−2.9 mV

ms
. Let’s focus

our attention on the units that had values of the depolarization with absolute value
larger than 10 mV

ms
, composing the 5% of total population, which are shown in orange in

the total distribution in Fig(3.9a) and whose focused distribution is in Fig(3.9b). As
we can see, also from Fig(3.9d), these units showed no peculiar pattern in their dis-
tribution. Moreover, looking at Fig(3.9c), we see that these extreme-case units almost
exclusively belonged to the ones recorded via the HD-MEA labelled as 4171, which was
also the main source of our available data, with more than 3000 units surviving the semi
automatic curation, and 575 the second round of curation. Taking into consideration
the distribution represented in Fig(3.9a), we see that no separation between different
modes could be observed. Therefore, the depolarization slope was not representative of
a different behavior between excitatory and inhibitory neurons and could not be used
as a feature by itself for classifying our units data set into different classes.

(a) (b)

(c) (d)

Figure 3.9: Figures relative to the depolarization slope distribution of all of the sorted
units. The whole set of units, scattered among chips as visible in (c), was distributed with respect
to the depolarization slope (a) with a peak around ∼−2.9 mV

ms and with no visible separation between
families, as can also be seen from (d). In (a) in orange we see units falling below −10 mV

ms , whose
specific distribution is in (b) and (c) shows in orange that the chip that recorded most of them is
4171. The units count in (c) is relative to the total number of units before curation. In (d) we see the
labelled units with the corresponding depolarization, the ones falling below −10 mV

ms in orange.

From Fig(3.10) we can see that the average footprint waveform over the best channel
for units belonging to the population with highest depolarization slope (orange), with
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absolute value larger than 10 mV
ms

, had a much deeper trough than those that fell under
this value (in blue). This could be expected: given that the half-height width of the
spikes varied just slightly, and with it the depolarization time, the depth of the trough
was mainly determined by the depolarization slope. Among the footprint waveforms
with higher absolute value of the depolarization shown in the background of Fig(3.10)
(thin orange lines), we see one with a huge peak before the depolarization. We will
discuss this more in detail below, when talking about the repolarization.

Figure 3.10: Comparison between waveform footprints, for units having depolarization slope
larger or smaller than −10 mV

ms , which represented the threshold for the bins with the highest population
in the distribution in 3.9a. The average spike for units in the corresponding population (orange) has
a smaller trough than the one for spikes outside of this population (blue), as to be expected.

Looking at the distribution according to the repolarization slope shown in Fig(3.11a),
we can see that it was not a visibly bimodal distribution: we could thus deduce that it
would not be possible to define a classification machine based on the repolarization slope
as a single feature. In Fig(3.11c) we see that there was no pattern in the distribution.
In this figure we also represented, in orange, the units belonging to the family that
had depolarization slope with absolute value larger than 10 mV

ms
: as we can see they

all showed also a high repolarization slope, as to be expected, with the exception of
a few on the rightmost side which had lower repolarization slope. We extracted a
few of these apparent outliers, and plotted them in Fig(3.11b). We can observe that
these spikes tended to have very large peaks before the trough, which is a kind of non-
physiological behavior or a structure usually attributed to dendritic spikes, in which we
have no interest, and a normal behavior after the trough. These outlying units were
likely artifacts of the spike sorting, and represented only a very small part of the total
population (> 0.95%).
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(a) (b)

(c)

Figure 3.11: Figures relative to the repolarization slope distribution of all of the sorted
units. In (a) we see the distribution of our data set with respect to the repolarization slope, which
did not show any kind of bimodal behavior, nor any apparent outlier. In (c) we have the distribution
of the single units, where the units considered specifically in the depolarization slope discussion and
shown in Fig(3.9b) are in orange. Some of these units, on the right side of the plot, showed a strange
behavior with smaller values of the repolarization slope than we would expect. We extracted three
representative outliers and plotted them in (b), from which we could see that they had an high peak
before the trough, considered as non-physiological or, at most, to be expected from a dendritic spike,
in which we had no interest.

For both depolarization and repolarization slopes we checked the behavior of the ground
truth data set established via spike transmission probability (STP) method, for which
we knew whether each unit was an excitatory or inhibitory one. As can be seen in
Fig(3.12), the ground truth data set confirmed that there was a strong correlation
between depolarization and repolarization slopes. Neither of the features showed a well
defined diversified distribution behavior between putative excitatory (red) and putative
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inhibitory (light blue), as can be observed from the kernel density estimates on the top
and right of the figure.

Figure 3.12: Depolarization and repolarization slopes combined distribution. We can see
depolarization and repolarization slopes are strongly correlated in the immunocyto-stained ground
truth data set (putative excitatory and inhibitory units in red and light blue, respectively). From the
kernel density estimates on the top and right of the figure, we can also see clearly that there is no
bimodal behavior to be observed in regards of the slopes for putative excitatory and inhibitory units.

From the behavior shown in Fig(3.12) we could deduce that no classification could be
implemented between excitatory and inhibitory units depending on depolarization and
repolarization slopes over a single waveform (best channel waveform).

We can see the way our units are distributed with respect to the half-height width in
Fig(3.13a): units were considered as outliers if they had half-height width larger than
−0.7ms (small red bins in figure), and constituted only 0.5% of the total population.
On the left Fig(3.13b), the distribution without the outliers: as we can see there was
no bi-modality, so once again the half-height width did not constitute a good feature to
establish a diversification criterion as a standalone. In Fig(3.13c) we can see how the
units were distributed individually: in orange we have the outliers from the depolariza-
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tion slope analysis (Fig(3.9b)), which did not stand out in terms of half-height width;
in red we see the outliers of the half-height width defined previously.

(a) (b)

(c)

Figure 3.13: Figures relative to the half-height width distribution of all of the sorted
units. In (a) the distribution over the half-height width for our whole population, where in red we
represented bins with values higher than 0.7ms. (b) shows how the distribution would look if units
belonging to these bins, considered to be outliers, were removed. (c) shows how the single units were
distributed, with units which were taken in consideration in the depolarization slope discussion (in
orange) and the outliers for the current feature in red

We plotted the footprint waveforms over the best channel for a couple of these outliers
which we reputed representative of the family, in Fig(3.14), to discuss the possible
reasons why we had units with such a large half-height width. Both the footprint
waveforms showed a highly non physiological behavior: Fig(3.14a) had low amplitude,
even if above the curation threshold, and a too smooth and slow spike, while Fig(3.14b)
did not show a well defined trough, and had a large positive spike. Both of these
footprint waveforms belonged to putative neurons that could thus be considered as
sorting artifacts, along with the other outliers described previously in this section, and
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were removed from the data set for the high dimensional feature space exploration. We
should remember that, due to the fact that we were aiming at a classification based
also on these features, we were not afraid of losing bad units, which could make the
unsupervised machine learning exploration much less reliable.

(a)

(b)

Figure 3.14: Waveform footprints for representative units belonging to the half-height
width outliers family. Both footprint waveforms showed a strange behavior, very different from
what we would expect from somatic or axonal spikes, and the corresponding units, together with the
others belonging to this group, were removed from further analysis.

Additionally, we observed this feature, along with the trough-to-peak interval, for the
STP ground truth data set, represented in Fig(3.15). While the two features don’t
show strong correlation, we see that for both trough-to-peak interval and half-height
width the two classes show largely similar behaviors. The main exception is that the
distribution for trough-to-peak interval is slightly more skewered toward larger values
for excitatory units than inhibitory ones.
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(a)

(b) (c)

Figure 3.15: Distribution plots for E and I units relative to their half-height width and
trough-to-peak interval. From (a) we see that there was not a clear correlation between the two
features, and neither of them strongly separated the two classes. This is better seen in (b) and (c),
where we saw that for both classes and features the density distribution were very similar. The only
appreciable difference is that the distribution over the trough-to-peak was slightly more skewered
towards larger values for the excitatory units than the inhibitory ones.
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Time-series features

Along with waveform features, we also computed time-series related features, such as:
average tonic ISI and firing rate, average phasic ISI and firing rate (were by phasic we
mean the activity inside bursts, and tonic instead covers the whole spike train), inter-
burst interval, number of spikes per burst, ans rise, burst and decay time constants for
the autocorrelogram. No linear classification threshold was found over these features,
neither in the low nor the high-dimensional features spaces. We computed multiple
distribution plots in varying dimensions both for the STP ground truth data set and
for the unlabeled data set. In no case were we able to determine a classification threshold
between E/I putative neurons. In the following pages we will only show results from
the labelled data set, as it is the one from which we could gather more information
about the specific class distributions.

Figure 3.16: Distribution plots of E and I units with respect to total average firing rate
and ISI. From the scatter plot we can easily see the hyperbolic relationship between the two featues,
which was to be expected given the respective definition.

From Fig(3.16) we can see the characteristic hyperbolic relationship between firing rate
and ISI for the labelled units, but observing both the scatter plot and the distribution
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densities (on the top and right side of the figure), we see no clear separation between
E and I classes. We also inspected the autocorrelogram for each unit. In order to
reduce the autocorrelation behavior to a series of quantifiable parameter, we computed
three different characteristic times for the 3-exponential fit of the autocorrelogram: rise,
decay and burst times (respectively τr, τb and τd, described in 2.4.4) [30][31]. As these
features are heavily correlated (∼ 1 correlation across all of them), we only show the
distribution of our units depending on one of them, in particular τd. As can be seen from
Fig(3.17), the two population showed no differentiation when it came to autocorrelation
behavior.

Figure 3.17: Distribution density for E and I units with respect to the τd parameter
of the autocorrelogram. Only this parameter was shown as all of the characteristic times of the
autocorrelation are linearly correlated. As such, one parameter is enough to convey the information
needed.

We computed multiple features related to bursts, such as phasic firing rate, average
phasic ISI, number of spikes per burst and IBI. Neuron can have very different behaviors
inside and outside bursts, and we wanted to make sure we were characterizing the phasic
behavior on its own. It’s possible, by looking at Fig(3.18), to see that we could not
determine a threshold to distinguish between E and I units depending on burst features
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alone, in a low-dimension feature space environment.

(a)

(b) (c)

Figure 3.18: Collection of distributions for burst related features. No distinctive threshold
could be determined from the computed features. As we can see, the distinctive hyperbolic relation
between firing rate and ISI is still visible for phasic parameters.
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3.1.3 High-dimension feature distributions

We have seen from the previous section that it’s not possible to determine a classification
threshold between E and I units over observation of low dimensionality feature distri-
butions. Using algorithms such as PCA and UMAP, we projected higher-dimensional
feature spaces on a 2-dimensional plot: our assumption was that E and I putative neu-
rons could cluster in higher dimension, and using a dimensional reduction we could
visualize this clustering in an embedded space with dimension equal to 2. In order to
reduce the dimensionality, we used a linear and a nonlinear dimensionality reduction
machines.

Linear dimensionality reduction

We performed a dimensionality reduction over different high-dimensional subspaces
of the feature space, using principal component analysis. In figure Fig(3.19) PCA was
applied separately to the waveform features computed on the footprint waveform for the
best channel only (a), and to the time-series features (b). Neither subspaces contained
enough variational information about the two classes for them to be separated in the
embedded space. For the single channel waveform features, we had no separation in the
embedded space between the two classes (represented in red and blue). The explained
variance of the two principal components used for the plot was ∼ 0.99, so almost all the
information contained in this data set in the high dimensional space was transmitted
to this 2-dim one. For the time-series features dimensionality reduction, we see that
there was no clear separation between the two classes, even though I units seemed to
be clustered more closely together than E units, which were instead diffused over the
space. The explained variance ratio for the two principal components in this case was
∼ 0.99.

(a) (b)

Figure 3.19: Principal component analysis applied to different subsets of our feature
space. Between squared parenthesis we show the explained variance of the represented principal
components (a) PCA applied to the waveform features of our putative labelled units, computed over
the best channel only [0.99]. (b) PCA applied to all time-series and burst features [0.99]. As we can
see, reducing linearly these features spaces to a 2-dim embedding space did not produce any separation
in clustering between classes.
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Both of the data sets reduced in Fig(3.19) were standardized before the dimensionality
reduction. That is, their mean was set to 0 and variance to 1 over each feature. This
was done to ensure that the principal component analysis was performed correctly, even
with features that ranged very differently and have different units of measurement.

In Fig(3.20) we can see PCA applied to the sub-spaces of the feature space containing:
single channel waveform features and time-series feature together Fig(3.20a), and burst
related features alone Fig(3.20b). In both cases we see that no separation or specific
clustering of the two classes could be discerned. Fig(3.20b) and Fig(3.19b) are very
similar, due to the fact that they were computed over two subspaces that shared most
of the features (the time-series space only has two, strongly correlated features more
than the burst feature space), and PCA being a linear algorithm projected them via a
similar transformation. This also gave us insight over the fact that the features that
contained most variational information energy were those related with burst features,
while tonic values were less relevant towards PCA.

(a) (b)

Figure 3.20: Principal component analysis applied to different subsets of our feature
space. Between squared parenthesis the explained variance of the two principal components repre-
sented (a) PCA applied to the feature subspace containing waveform features computed only on the
first channel and time-series features. [0.99] (b) PCA applied only to burst features [0.99]. As we can
see, reducing linearly these features spaces to a 2-dim embedding space did not produce any separation
in clustering between classes.

Eventually we applied PCA to the sub-spaces of the feature space with the highest
dimension, or largest number of features Fig(3.21). In Fig(3.21a) the dimensionality
reduction was applied to the multichannel waveform features, that is waveform features
computed over 5 different channels among the best ones for each putative neuron (or
unit) and ordered by latency. Each feature was scaled between the minimum and the
maximum for each unit, to remove the bias due to the possible distance between chan-
nels and origin of the spikes that were used to compute the features. As we can see
in this case the units were more spread out in the embedding space, but still no clas-
sification could be observed between them. With just two principal components (PC)
in these cases we had ∼ 0.38 explained variance ratio for the multichannel waveform
features, which decreased to ∼ 0.34 if we added the time-series features. In order for
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the principal components of the two data set to explain at least 95% of the full variance
of the data sets, we would have needed 9 PC for the multichannel waveform features
and 13 if the time-series features were added.

(a) (b)

Figure 3.21: Principal component analysis applied to different subsets of our feature
space. In the squared parenthesis, the explained variance of the principal components shown in the
figures. (a) PCA applied to the feature subspace containing multichannel waveform features, computed
over the 5 best channels and ordered depending on channel template latency [0.38]. (b) PCA applied
to the subspace containing multichannel waveform features and all time-series features [0.34]. As we
can see, even reducing linearly this high-dimensional feature space did not produce a good clustering
between classes.
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Nonlinear dimensionality reduction

We performed dimensionality reduction via UMAP (Uniform Manifold Approximation
and Projection), a nonlinear algorithm which maintains the topology of the higher-
dimensional space using a graph and edges between data points, instead of distance
based metrics. This is particularly useful when operating on large dimensional spaces,
which are subjected to the curse of dimensionality. If the data has a particular struc-
ture in the high dimensional space, this structure will be also represented in the 2-
dimensional embedded space.

We first applied UMAP to the features space containing only waveform features com-
puted over the best channel for each putative neuron (or unit), represented in Fig(3.22a).
In Fig(3.22b) we can see the embedded space computed with UMAP for our labelled
units based on their time-series features. Both data sets were standardized before ap-
plying UMAP. Neither of the figures showed any specific clustering of E and I units.

(a) (b)

Figure 3.22: UMAP applied to subspaces of the features space for the labelled units. (a)
UMAP applied to the feature space containing only waveform features computed over a single channel.
(b) UMAP applied to the time-series features space. Even using a non-linear dimensionality reduction,
which maintains the topological aspects of the higher dimensional feature space, no specific clustering
was observed for the two classes.

In Fig(3.23a) we see the embedded space computed via UMAP, for the feature space
composed by single channel waveform features and time-series features. No separation
between the two classes was visible in this reduced space, and E and I units were equally
distributed over it. Same considerations applied to the data set whose reduction is
represented in Fig(3.23b), in which UMAP was applied to burst-related features only.
To be noted that, while in the case of PCA the outlook of the population was preserved
between the time-series features reduction in Fig(3.19b) and the burst features one in
3.20b, in the case of dimensionality reduction performed via UMAP this preservation
was not sustained: this was due to the innate stochasticity and nonlinearity of UMAP
as a process. If we look at Fig(3.22b) and Fig(3.23b), we can see that they had very
different structures indeed.
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(a) (b)

Figure 3.23: UMAP applied to subspaces of the features space for the labelled units. (a)
UMAP applied to the subspace of the feature space containing all waveform features computed over
the best channel for each labelled unit and all time-series related features. (b) UMAP applied to the
feature subspace containing only burst-related features. No separation wass visible in these embedding
spaces between the two different classes.

If there was a somewhat organized structure in the high dimensional space, such as a
specific clustering of the units, UMAP would preserve this structure in the embedded
space. When such a structure is not present, the stochastic nature of UMAP makes
it so that each iteration will show a different distribution of the data points in the
embedded space.

We then applied UMAP to higher-dimensional feature spaces: namely the ones contain-
ing multichannel waveform features, computed over different channels, and time series
features in addition to these. In both cases, multichannel features where scaled between
the minimum and the maximum for each putative neuron, to remove the bias due to the
position of the neurons with respect to the recording channels. When applying UMAP,
additional care had to be put on the preprocessing of the data, as UMAP was a strong
tool and would represent any high-dimensional structure faithfully, even if it was an
artifact or a bias-caused one. If, for example, we did not scale between the minimum
and the maximum the multichannel amplitudes for each unit, UMAP would cluster
together all units having recorded large amplitude spikes over their first channel, and
the ones with a smaller amplitude in another cluster. Theses clusters would not be rep-
resentative of the nature of the two classes or any physiological property of the neurons,
as the amplitude was mainly influenced by the distance with respect to the recording
electrode, for which there was still no model that can be used to account reliably for
this behavior, without knowing the exact distance between neuron and electrode.

In Fig(3.24) we see the embedded space computed by UMAP over the multichannel
waveform features: as for the other, low-dimensional spaces that we reduced, no clus-
tering or separation was visible in the reduced space. Even by applying UMAP to the
multichannel waveform features and the time series together, whose result can be seen
in the reduced space in Fig(3.25), no classification seemed to be possible based on the
topology of the high-dimensional space. This last data set was the one containing the
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larger amount of information about our labelled units, and either it did not organize in
class-specific structures in the high-dimensional space, or UMAP was not able to detect
this structures.

Figure 3.24: Dimensionality reduction performed via UMAP, of the high-dimensional
feature space containing multichannel waveform features. These features were calculated
for the footprint waveforms computed for the 5 best channels for each putative neuron, and ordered
depending on the latency corresponding to the channel. For each unit and for each feature, the entries
corresponding to the different channels were scaled between the maximum and the minimum value. As
we can see, even in a reduced space that reproduced the high dimensional feature space topology, no
separate clustering was possible. Multiple combinations of removal of different features were attempted,
with no separation produced.

For each one of the plots shown in this section multiple different iteration were per-
formed, with different sets of hyperparameters, namely the number of neighbors to be
considered for the construction of the graph, the minimum distance in the embedded
space and the metric to be used for the construction of the graph (both euclidean and
manhattan distance were used, but above we only showed results for the manhattan
distance), with no improvement towards the classification.
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Figure 3.25: Dimensionality reduction performed via UMAP, of the high-dimensional
feature space containing multichannel waveform features and all time-series related fea-
tures. As we can see, even in a reduced space that reproduced the high dimensional feature space
topology, no separate clustering was possible. Multiple combinations of removal of different features
were attempted, with no separation produced.
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3.2 Classification

After attempting classification via visual identification of structures or specific clus-
tering in the data distribution, using dimensionality reduction machines, we used two
different kinds of machine learning classifiers:

• Linear classifiers, such as linear SVM and logistic regression.

• Non-linear classifiers, such as kernel SVM, Ensemble decision tree classifier and
gradient boosted tree classifier.

While most of the non-linear classifiers available require as many features as possible
to work properly, linear classifiers are more susceptible to having too many variables
involved. This is due to the fact that most linear classifiers involve some kind of dis-
tance metric to work, and thus are susceptible to the curse of dimensionality. For
this reason, instead of using immediately all of the data available, we proceeded by
starting with low-dimensional feature spaces for all classifiers (single channel waveform
features, time-series features), and then passed onto trying to classify E and I through
high-dimensional feature spaces (single channel waveform features plus time-series fea-
tures, multichannel waveform features plus time-series features). In the following the
corresponding classification results are going to be listed. Notice that burst features
alone were not added to this part of the report, as the results were almost identical to
that of the classification for all the time-series features.

Performance of the classifiers is going to be shown in form of confusion matrices. If
not stated otherwise, the model was fitted and tested over the whole data set: as
the amount of labelled data at our disposal at the moment of this report was scarce,
splitting test and train data sets gave rise to a high degree of variability, depending on
how the splitting was performed. The most relevant results, for this reason, are the
metric scores listed in Tab(3.1), which were computed as average values of 5-fold cross
validations of the models.

3.2.1 Linear classifiers

We first attempted classification via use of linear classifiers. Linear classifiers perform
classification based on combining linearly the features contained in the data set, and
extracting a decision function that assigns labels to the data based on some training data
set. The reason for which linear classifiers are to be preferred with respect to nonlinear
ones, if performance is similar, is that the decision function of linear classifiers is easily
interpretable. The importance of the features towards classification is usually accessible
in form of coefficients developed by the algorithm for the decision function. This makes
linear classifiers a better choice for classification, if there is also an interest in inference
through the results and in understanding the characteristic features of the different
classes (as is our interest in this case).

The first linear classifier we used was the linear SVM. In Fig(3.26) we see the perfor-
mance of the classification in form of confusion matrices. In Fig(3.26a) we can see the
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confusion matrix relative to single channel waveform features. In this case the classifier
was biased, with an acceptable level of precision only over E and high rate of mis-
classification for I units. In Fig(3.26b) we have the classification performed only over
time-series features, in which the bias towards E units was even higher. In both of this
classification attempts we saw the first weakness of these linear classification machines:
in some instances, if the decision function could not find a way to separate linearly the
classes, it just attempted at lowering the value of the cost function by classifying most
units to the largest family (in this case, the E units one). It seems like the minima of
the cost function did not coincide with a well performing classification attempt, but
just with the least worst one.

(a)

(b)

Figure 3.26: Linear support vector classifier applied to different subsets of the feature
space. (a) Linear SVC applied to single channel waveform features (C = 10). Precision was higher
for E than I units, as most I units were misclassified. (b) Linear SVC applied to time-series features
(C = 0.01). Bias towards E units was very high, the classifier tended to classify most units as excitatory
regardless of the training data set.

In Fig(3.27), the confusion matrices show reports of the performance of linear SVC
applied to higher dimensional feature spaces, mixtures of both waveform and time-series
features. The linear SVC applied to both single channel features and time-series features
seemed to perform better than the previous case with separated feature spaces, as can
be seen in Fig(3.27a). In Fig(3.27b), which shows the classification performance for
multichannel waveform features and time-series it was instead even clearer the problem
with this kind of linear classifiers if the dimensionality was too high. In this case, All of



78

the I units were assigned correctly, while more than half of the E units were misclassified
as I themselves.

(a)

(b)

Figure 3.27: Linear support vector classifier applied to different, high-dimensional subsets
of the feature space. (a) Linear SVC applied to single channel waveform features and time-series
features together (C = 1). Precision is higher for I than E units. There is a certain level of balance in
the accuracy over both classes (b) Linear SVC applied to multichannel waveform features plus time-
series (C = 10). All of the I units in the test data set were classified correctly, but more than half the
E units were misclassified.

We could examine the feature importance for the linear SVC applied to the single chan-
nel waveform features and time-series features, for which the average performance was
better (3.27a). Here we computed importance via two different procedures: permuta-
tion importance and coefficients values. For permutation importance, the model was
fitted and tested multiple times, while permuting the values of one feature among all
putative neurons in the data set at each iteration. The importance was computed as
the decrease in a certain classification performance score metric with respect to the
unchanged case. In this instance the chosen metric was the F1-score, as our data set
had a higher number of E units (54) with respect to the I (39), making the F1-score
metric a better score than the accuracy.

In Fig(3.28) we see the permutation importances computed as described above. As we
can see the most important feature in this case was the inter-burst interval, followed
by the waveform slopes (they were highly correlated with each other, so it was un-
derstandable that the importance of one would imply that of also the other), and by
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other burst related features. Other waveform features and tonic time-series features
had zero importance, meaning that their being shuffled among units did not affect the
performance of the classifier trained for Fig(3.27a).

Figure 3.28: Permutation importance of single channel waveform features and time-series
features, with respect to a linear SVC classifier.

Below in Fig(3.29) we have another set of feature importances, computed as the co-
efficients calculated by the linear SVC after being trained to classify for Fig(3.27a).
These coefficients were directly tied to the classification function, and a coefficient with
a larger absolute value indicated that the corresponding feature was more important
towards classification. Even though the order and importances changed with respect to
3.28, the most important features remained those tied to phasic behavior of the units.
From the perspective of coefficient importances, waveform features as a whole seemed
to be less relevant than time-series related one, while the characteristic decay time of
the autocorrelation gained importance, as well as the total firing rate computed for
each unit. In this case, no feature had zero importance, meaning that no feature could
be removed from the classifier while still maintaining the performance.
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Figure 3.29: Importance of single channel waveform features and time-series features in
terms of coefficient value, with respect to a linear SVC classifier.

As a second kind of linear classifier, we used logistic regression to classify between E
and I units. The same feature sub-spaces were used, and the results are shown below.
Classification performance was overall similar to the linear SVC, with a slightly more
balanced accuracy for the best model (3.31a).

First we attempted classification using logistic regression over the two lower dimensional
spaces containing single channel waveform features Fig(3.30a) and time-series features
Fig(3.30b). As we can see, for single channel waveform features we obtained acceptable
results only towards classification of E units, while the I units were assigned with equal
probability to either class. For time-series only features we had instead an heavier bias
towards E units, as most I units were classified as E and only 56% of E units were
correctly classified. These results were overall similar to the ones for linear SVC, but
we can see that in Fig(3.26b) the bias towards E was far more marked.



81

(a)

(b)

Figure 3.30: Logistic regression classifier applied to different subsets of the feature space.
(a) Logistic regression applied to single channel waveform features. Precision was higher for E than I
units, while classification for I units separated them equally in either classes. (b) Logistic regression
applied to time-series features. We had a heavy bias towards E, as most of the I units are classified
wrongly as E. Precision for E units is also quite low.

Next we proceeded, as with the previous method, to classify the units based on higher
dimensional feature spaces. In Fig(3.31a) we see the best performing model, applied
to a mixture of single channel waveform features and time-series features. In this case
we had perfect balance between E and I units, no bias, and precision was pretty high
for both (0.67 was the highest average accuracy seen up to now). Once we moved on
to an even higher dimensional space, that of multichannel waveform features and time-
series features, the performance deteriorated drastically. The bias towards E reinstated,
precision was less than 0.5 for I and low for E as well. We could assume this to be due,
once again, to the curse of dimensionality: to perform classification, logistic regression
makes use of distance metrics (in particular euclidean distance), which performed badly
in high dimensionality. The performance in this case was difficult to compare to the
one of linear SVC, as in Fig(3.27b) the classifier was just classifying most units as I to
reduce the cost function, without the actual training enhancing it.
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(a)

(b)

Figure 3.31: Logistic regression classifier applied to different, high-dimensional subsets
of the feature space. (a) Logistic regression applied to single channel waveform features and time-
series features together. We had an equilibrium between classification of E and I units, and precision
was quite high (67%) for both (b) Logistic regression applied multichannel waveform features and
time-series features together. The large increase in classifying parameters made classification worse for
both classes, and more than half I units were misclassified.

Once again, we checked feature importance for the best performing logistic regression
classifier, the one operating on the mixture space of single channel waveform features
and time-series features. First we observed the permutation importance, in which mul-
tiple iterations of the training and testing of the model work in succession, permuting
a different feature among units at each iteration. As we can see in Fig(3.32), the most
important features were related to phasic behavior, followed by waveform features. This
was consistent with what we observed for the linear SVC, and confirmed that the burst
behavior of the units was tied with their class. As burst behavior was also expected
to be related to neuronal function, this could correspond to a specific physiological
function of E and I units.

As feature importance for logistic regression could be regarded in terms of model co-
efficients as well, we considered these values in 3.33. The most important feature was
the number of spikes per burst, once again related to bursting behavior. Tonic activ-
ity or total activity time-series feature grew in relevance, such as total firing rate and
characteristic decay time of the autocorrelation. All single channel waveform features
had low importance.
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Figure 3.32: Permutation importance of single channel waveform features and time-series
features, with respect to a logistic regression classifier.

Figure 3.33: Importance in terms of value of the coefficients of single channel waveform
features and time-series features, with respect to a logistic regression classifier.
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3.2.2 Nonlinear classifiers

We applied nonlinear classifier to different subspaces of our feature space, expecting
an improvement in performance, in particular for what concerned higher dimensional
feature spaces such as multichannel waveform features plus time-series features. This
improvement in performance was indeed observed, both over testing and training op-
erated over the same data set and with cross-validation based metrics (can be seen in
Tab(3.1)). When working with nonlinear classifiers, one must always be aware of the
risk of overfitting, which is very high with these kind of models, and the lower level
of interpretability. Most nonlinear models also require a very large amount of training
and testing data to perform at the best: in particular the number of samples should
always be much larger than the number of features involved. As this was not our case,
we assumed that the classifiers could be improved vastly by expanding the available
labeled data set.

(a)

(b)

Figure 3.34: Confusion matrix for Kernel SVC with gaussian kernel applied to different
subsets of the feature space. (a) Kernel SVC applied to single channel waveform features (C = 20),
precision was higher for E units; for both classes the majority of the units were classified correctly. (b)
Kernel SVC applied to time-series features (C = 40). The classification was biased towards E, with
more than half of both E and I units being classified as E.

The first nonlinear classifier we used was a kernel SVC, with a radial basis function
kernel. For each use of the kernel SVC, the optimal parameters for the model were
determined via the use of the GridSearchCV function in the sklearn.model_selection
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module in Python. A kernel SVC classifier uses a kernel function to expand the feature
space, by adding a dimension via the kernel and correlated to the available variables. It
had the potential of improving the performance with respect to a linear SVC, but as the
underlying method was the same, we did not expect it to offer any improvement to the
higher-dimensional feature spaces classification. In these cases we actually expected
it to perform worse, as the addition of a dimension would only make the curse of
dimensionality even more problematic.

First we used a kernel SVC over the single channel waveform features and time-series
feature spaces, for which the performances in terms of confusion matrices can be seen
in Fig(3.34). The best performance for this classifier was seen on the single channel
waveform features data set, in which we obtained very high precision for E units. For
time-series features the classification was biased towards E units, with more than half
I units being misclassified.

(a)

(b)

Figure 3.35: Confusion matrix for Kernel SVC with gaussian kernel applied to different,
high-dimensional subsets of the feature space. (a) Kernel SVC applied to single channel wave-
form features and time-series features together (C = 10), precision was higher for E units; for I units,
only 55% of the units were classified correctly. (b) Kernel SVC applied to multichannel waveform
features and time-series features together (C = 1). I units were equally partitioned in both classes,
while most (62%) of E units were classified correctly.

Applying kernel SVC to higher dimensionality feature spaces returned the expected
results. In Fig(3.35a) the average accuracy of the classifier was lowered with respect to
the linear SVC in Fig(3.27a), for the single channel waveform features plus time-series
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features. In the same way, the accuracy over the multichannel waveform features plus
time-series features in Fig(3.35b) decreased with respect to Fig(3.27b). This was to be
expected, as the kernel SVC only added a feature to two spaces which were already
high-dimensional.

Figure 3.36: Permutation importance of single channel waveform features and time-series
features towards classification of E/I units with kernel SVC, with gaussian kernel. Most important
features were time-series related. In particular, among the most important we had most of the burst
related features.

No importance in the form of coefficient could be computed for any of the nonlinear
classifiers, so we only computed importance based on permutation of features. The
feature importance represented in Fig(3.36) was computed for the classifier trained on
single channel waveform features plus time-series features, which as we said decreased
in accuracy with respect to the corresponding linear SVC one. We can see in this case
that the feature with the highest importance was the total average firing rate, followed
by burst related features. In the linear SVC classifier burst features were higher in the
hierarchy of importance, while the total firing rate was lower. The same applied to the
logistic regression classifier, and both classifiers performed better over this feature space
than the kernel SVC one. We could then assume that the decrease in performance of
the kernel SVC was due to the fact that it determined the total firing rate to be more
important towards classification than burst related features, which instead seemed to
be more specific to the two classes.

Next we used an ensemble decision tree classifier (EDTC). A decision tree classifier
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creates a waterfall of feature-based decisions to separate samples from the two classes.
Each decision generates a new branch with two leaves, each one of which will contain
a percentage of samples from either classes. The aim of the decision tree is to make it
so that each leaf of a branch has the largest amount of one unit and lower of the other,
and vice versa. The algorithm stops when each leaf only has samples belonging to one
or the other class. A single decision tree is not very powerful, which is why an ensemble
model pools many of them together: each one is trained over a different subset of the
data (bootstrapping), and the predicted classes are determined as an average of the
predictions over many different decision trees thus trained differently.

We first applied an EDTC model to the lower dimensionality feature spaces, as before.
For single channel waveform features (Fig(3.37a)) and time-series features (Fig(3.37b))
the performance of the classifier did not improve with respect to the linear classifier
used previously or the kernel SVC, as EDTC, like all decision tree based models, need
very high amounts of data and features both to work best.

(a)

(b)

Figure 3.37: Confusion matrix for Ensemble Decision Tree Classifier (EDTC), applied to
different subsets of the feature space. (a) EDTC applied to single channel waveform features. Most
units were classified correctly for either classes, precision was more than 0.6 for both E and I. (b)
EDTC applied to time-series features. More than half of the population for each class was classified
correctly, with a slight bias towards E units.

For the single channel features and time-series features, the classifier worked as ex-
pected. As we can see in Fig(3.38), the classifier’s performance did not improve in
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this case, and it was still lower than that of linear SVC and logistic regression for this
specific feature space.

Figure 3.38: Confusion matrix for Ensemble Decision Tree Classifier, applied to the subspace
composed by single channel waveform features and time-series features together (maximum depth =
25, minimum samples per leaf = 1, minimum samples per split = 10, number of trees = 100). More
than 60% of each population is classified correctly, with a slightly larger precision for E units.

It was interesting to study the feature importance determined by EDTC over this set
of features. Such importance, in the case of EDTC and all nonlinear classifiers, could
only be computed as permutation importance. This was computed by implementing
a series of training and testing of the classifier over the data set, permuting over all
units one feature for each iteration, and studying how a specific score decreased with
respect to the default situation. As our data set was composed of more E units than
I, respectively 54 and 39, we chose as the score to be checked the F1-score. As we
could observe, the importance of the features resembled strongly what we obtained also
for previous models, both linear and nonlinear. Burst features such as the number
of spikes per burst and the inter-burst interval (IBI) were the most relevant towards
classification, followed by waveform features. Trough-to-peak interval is among the
most utilized features used to distinguish between E and I units in vivo, and in the
importance scale showed in Fig(3.39) it was in third place among all features in vitro
in our case.
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Figure 3.39: Permutation importance of single channel waveform features and time-series
features, towards classification of E/I units with EDTC. The most important features resulted to be
burst-related time-series features, followed by trough-to-peak interval, which is used successfully as a
classification parameter in vivo.

The best classification results were obtained for the EDTC classifier applied to multi-
channel waveform features and time-series features together, for which the results are
presented in the form of a confusion matrix in Fig(3.40).

Figure 3.40: Confusion matrix for EDTC, applied to the subspace composed by multichannel
waveform features and time-series features. More than 70% of each population was classified correctly,
with a larger precision for I units than E. Among the classifiers and subspaces shown until this point,
it was the first one to pass the 70% precision mark for both classes.
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As we can see, precision was higher than 0.7 for both classes, and we had an average
accuracy of ∼ 0.74. This was the best performance we obtained in the classification
effort, and was also confirmed through the cross-validation process whose results are
shown in Tab(3.1)(in which the performance was actually better). It was of primary
importance, then, to check the permutation importance of the features, to better un-
derstand what allowed for such an improvement in performance. The most relevant
result we could see from Fig(3.41) was that burst related features were still among the
most important (especially the IBI), and the most important waveform features did not
all come from the same ranked channel.

Figure 3.41: Permutation importance of multichannel waveform features and time-series
features towards classification of E/I units with EDTC. As we can see, among the most
important features we have waveform features coming from differently ranked channels, showing that
the accuracy of the classifier is due to the more global view that this subspace offers. Using multichannel
features we indirectly add the spatial dimension to the classification, which describes the underlying
morphology of the neuron itself.

Relevance of waveform features was then directly tied to the way the signal evolved as
it propagated further from the AIS. The assumption we made was that, by selecting
features coming from different channels, we are also incorporating the morphology of
the corresponding unit. This was also conveyed to the classifier via the cell dimension
parameter, which placed quiet high in the importance score. Having a high spatial
resolution and developing features based on spatial distribution was thus a powerful
instrument towards classification, if we used a model that was able to perform well
with a large number of features (as the EDTC). The confusion matrices represented
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in Fig(3.40), Fig(3.37) and Fig(3.38) were computed by repeating the training and
testing over 10 different computations, splitting and shuffling in a different, random
way the data set and then computing the metric on the concatenated result. This was
done in an effort to reduce overfitting, to which these models were prone, as the data
set pool was a bit too small to really appreciate the classification power of this machine.

The last model we used was the gradient boosted model (GBDT), based on decision tree
classifier, from the LightGBM library in Python. This model differed from the EDTC
in the training of the different trees in the ensemble, which were trained sequentially
rather than in parallel. At each step a series of decision trees was trained on the negative
gradient of a loss function (in our case, the log-loss function, same used in the logistic
regression), then a new set was trained based on the results of the first stage. We first
tried to perform a classification using this method over the low dimensional feature
spaces, comprised only of single channel waveform features and time-series features. As
we can see from Fig(3.42), the classifier performed poorly over this low dimensional
spaces: as for the EDTC, the GBDT classifier needed either many features or many
data points to fully take advantage of the ensemble character of its procedure.

(a)

(b)

Figure 3.42: Confusion matrix for gradient boosted decision tree classifier (GBDT) ap-
plied to different subsets of the feature space. (a) GBDT applied to single channel waveform
features. Classification was biased towards E, and for both classes precision was more than 0.5. (b)
GBDT applied to time-series features. The same number of I units was classified in both classes, while
precision for E was higher than 0.6.
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Finally, we used a GBDT classifier on the multichannel waveform feature plus time-
series features space, for which we obtained the results shown in figure 3.43: as we
can see, accuracy and precision were consistent with what we obtained for the EDTC
classifier applied on this space. The only real improvement with respect to the EDTC
seemed to be a more balanced result, with a lower precision in the E and an higher
one for the I, but the change was small. As for the EDTC model, confusion matrices
for the GBDT were computed over 10 iterations, in between which the training and
testing sets were reconstructed, each time with a different split shuffle but with the
same stratification as the original data set. This way we reduced the risk of overfitting,
which was one of the main problems when using this model, especially when working
with a small data set like ours.

Figure 3.43: Confusion matrix for gradient boosted decision tree classifier, applied to
multichannel waveform features and time-series features together. Precision was higher than 0.7 for
both classes, and classification was more balanced between E and I than with the EDTC.

3.2.3 Classifiers comparison

We have seen in the previous section different models and data sets used for classification
between E and I units, based on electrophysiological data only. The subsets of the
feature space over which we attempted classification were:

• Single channel waveform features - feature related to the waveform of spikes gen-
erated from the unit. The features were computed over a cutout, created by
averaging together all spikes generated by the unit and record by the best chan-
nel for that unit.

• Time-series features - features related to the time series alone, composed by all
of the times of spikes assigned to that unit by the spike sorter. Sometimes, we
used features related to spikes in bursts only: in this case, these were called
burst-features.

• Multichannel waveform features - same features computed for the single chan-
nel waveform features. The footprint waveforms for the computation for these
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Feature space F1 score Accuracy Precision Predicted
fraction (E, I)

Single channel WF
Linear SVC (0.2± 0.2) (0.47± 0.08) (0.3± 0.3) (0.01, 0.99)
Logistic regression (0.48± 0.03) (0.57± 0.03) (0.58± 0.02) (0.99, 0.01)
Kernel SVC (0.6± 0.5) (0.5± 0.1) (0.5± 0.3) (0.99, 0.01)
Ensemble tree classifier (0.65± 0.06) (0.59± 0.07) (0.63± 0.03) (0.98, 0.2)
Time-series features
Linear SVC (0.5± 0.4) (0.6± 0.2) (0.4± 0.4) (0.01, 0.99)
Logistic regression (0.5± 0.1) (0.6± 0.1) (0.6± 0.1) (0.1, 0.9)
Kernel SVC (0.67± 0.08) (0.6± 0.06) (0.64± 0.03) (0.65, 0.35)
Ensemble tree classifier (0.70± 0.05) (0.65± 0.07) (0.68± 0.07) (0.26, 0.74)
Single channel WF
plus time-series features
Linear SVC (0.41± 0.4) (0.5± 0.2) (0.5± 0.3) (0.43, 0.57)
Logistic regression (0.65± 0.12) (0.6± 0.1) (0.65± 0.01) (0.33, 0.67)
Kernel SVC (0.67± 0.08) (0.6± 0.07) (0.65± 0.03) (0.73, 0.27)
Ensemble tree classifier (0.71± 0.04) (0.65± 0.07) (0.67± 0.04) (0.99 0.01)
Multichannel features
plus time-series features
Linear SVC (0.4± 0.1) (0.4± 0.2) (0.4± 0.4) (0.86, 0.14)
Logistic regression (0.57± 0.1) (0.6± 0.1) (0.6± 0.1) (0.68, 0.32)
Kernel SVC (0.7± 0.2) (0.68± 0.02) (0.66± 0.04) (0.5, 0.5)
Ensemble tree classifier (0.77± 0.03) (0.79± 0.01) (0.8± 0.1) (0.96, 0.04)

Table 3.1: Classification metrics for all classifiers used and all feature subspaces explored.
The column on the right contains the class predictions for the corresponding models for the full
unlabelled data set, trained on the full labelled one.

features were taken over multiple channels, so that each feature was an array of
values, instead of just a scalar. Values in the array were then scaled between the
minimum and the maximum, and ordered based on the latency of the average
spike recorded over the specific channel.

Combinations of time-series and waveform features were also used, to work in higher
dimensional spaces, and were actually the ones with the best results.

For classification, we used both linear and nonlinear models over each sub-space of the
features space. In the previous section, when not indicated otherwise, the training was
performed over a shuffled subset of the whole data set, while the testing and scores
computation was done over the full data set, instead of just a small subset. This was
done to reduce the variability given by different choices of training and testing data sets,
and to have a larger pool of data for both the training and the testing, as the labelled
data at our disposal represented only 93 units. All the classification metrics shown
in Tab(3.1) were, instead, averaged over results coming from a 5-fold cross validation
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computation of each model, over each feature space. Results for the GBDT and the
EDTC were almost identical, and thus only those for the EDTC were represented in the
table. As we could see, the results that we had in the previous section, in which metrics
were computed using a different combination of training and testing data sets, are
reiterated. Linear classifiers performed on par with nonlinear classifiers in the context
of low-dimensional features spaces, such as single channel waveform features and time-
series features. The disparity increased with the dimensionality of the space over which
we are classifying, for which nonlinear classifiers performed largely better. The best
result overall was obtained for the EDTC classifier applied over multichannel waveform
features and time-series features together. In this case, F1-score, accuracy and average
precision were all higher than 0.75. We were particularly interested in the F1-score,
which was to be the preferred metric in the case of a slightly skewered population like
ours, and for which the closest the value was to 1 the better the classification was
deemed. F1-score for the EDTC over multichannel features and time-series features
was the largest overall, equal to ∼ 0.77. We noticed that it also maintained a very low
variance over the different folds, and the same could be said for all metrics computed
over EDTC with respect to the other classifiers. EDTC then also seemed to be a more
stable classifier than either linear and other nonlinear ones.
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Chapter 4

Discussion

In this project, we attempted to distinguish glutamatergic excitatory (E) from GABAer-
gic inhibitory (I) neurons based only on extracellular electrophysiological features. New
tools in the field of electrophysiological recordings, in particular HD-MEAs with their
high spatiotemporal resolution, constitute a very high throughput source of neurophys-
iological information. There is a need to classify neurons into classes while they are
active in a network, to gain a better understanding of the principles of information
processing in biological neuronal networks. Being able to perform such a classification
in vitro would make it possible to repeat experiments in a very controlled environment,
under tunable conditions, thus reducing the innate complexity of biological systems
(which is still too high in vivo to obtain conclusive results). Even though such classifi-
cation has been shown to be possible in vivo [24][32][17][2][12], attempts in vitro have
remained inconclusive [18][20].

The intent of this project was to use labelled data sets of E and I units, and their re-
spective electrophysiological recordings, to discern the features that distinguish between
the two classes, and subsequently draft a procedure to rapidly classify large amounts
of recorded cells. To work towards this objective, we developed a pipeline to obtain a
labelled data set, based on immunocytochemistry and imaging. This would allow us to
use molecular features, which are difficult to observe but are, nonetheless, very precise,
to trace classification features in an electrophysiological field, at high-throughput. The
immunocytochemistry procedure was based on tracing down E and I neurons on the
electrode array, to then correlate these cells with the units found via spike sorting.
This procedure did not return the results we hoped for, as it was not possible from
the images to identify any I neurons. We postulate that this could have been due to
poor culture health during our experiments. In order to proceed with the classification
effort, we decided then to use as labelled data set one which was established via spike
transmission probability, by kind concession of Dr. Julian Bartram.
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4.1 Feature distributions exploration
We first tried to establish a simple threshold between E and I units based on single
features, or at most mixtures of two features. It is known that some extracellular
electrophysiological features have been used successfully towards classification between
E and I classes in vivo [24][12][33], such as trough-to-peak distance. We plotted the
distributions corresponding to each one of these features for both our large non-labelled
data set and for the labelled one. We hypothesized that if such canonical features alone
were sufficient to enable reliable neuron class separability, we would observe distinct
bimodal characteristics in the distribution of feature values in the unlabelled data set,
or see a specific separation of the labelled one. However, no diversification of this sort
was observed when using this low dimensional feature space exploration, as already
described before [20].

Our next step was to explore higher-dimensional feature spaces. Using more of our
features together, our interest was on possible multi-dimensional structures the data
points might form. As we were not able to observe directly spaces with more than 3-
dimensions, we used dimensionality reduction machines to reduce them to bi-dimensional
embedding spaces. We used both linear and nonlinear dimensionality reduction ma-
chines towards this endeavor, being able this way to also use what we called multichannel
features. These vectorized features, were collected over multiple channels for each unit.
They took into account not just the morphology of the cell, but also the kinetics of the
AP as it propagates away from the initiation zone.

PCA, which was our choice as a linear dimensionality reduction machine, was easily in-
terpretable, but did not return any useful information about separation of the data set
into classes. Regarding the higher dimensional feature spaces, comprised of both wave-
form features (single channel or multichannel) and time-series features, the explained
variance of the first two principal components only amounted to < 0.4. For the lower
dimensional feature spaces the explained variance was much higher, ∼ 0.99, but with
no separation between E and I. From these results we could conclude that not enough
information was likely contained in low dimensional feature spaces, either just single
channel waveform features or time-series features, for a classification to be performed.

Higher dimensional feature spaces, instead, while still not showing diversification, only
explained a small portion of the variance when embedded via a dimensionality reduc-
tion, suggesting that there might be a separation hidden in more dimensions. We thus
used UMAP, a nonlinear dimensionality reduction that aims at preserving the global
and local structure of the data set manifold. UMAP is very efficient at maintaining
any peculiar structure in the higher dimensional feature space, at the cost of direct
interpretability. No separation could be observed in any of the UMAP reduced feature
spaces, between labelled E and I units.
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4.2 Classifiers

We next used supervised machine learning classifiers, trained and tested over our la-
belled data set. We performed training and testing using both linear (Linear SVM,
logistic regression) and nonlinear (kernel SVM, EDTC, GBM) classifiers, and com-
pared the performances. For each of these we also inspected the importance of each
feature towards classification, to infer some information about what might physiologi-
cally diversify E and I neurons in vitro.

Table 3.1, summarizes the averaged scores for different metrics over a 5-fold cross val-
idation. The performance for the various classification algorithms heavily depended
on the training set (due to the small size of our labelled data set) for a single itera-
tion; the k-fold cross-validations offer instead a reliable score estimation. As we can
see, the performance of linear classifiers remains mostly stable over the different fea-
ture spaces, with the logistic regression always performing slightly better than linear
SVC over most of them (the difference between the two is increased for single channel
waveform features). Focusing on the F1 score, which, given the bias in our data set
(54 E, 39 I units) was the best metric for performance evaluation, we found that both
linear classifiers tended to fail for the largest feature space (multichannel features plus
time-series features). This is especially evident if we compare it to the results from the
nonlinear classifiers. Burst-related features also appear to be the most relevant ones
in terms of feature importance for linear classifiers; this behavior is observed for both
linear classifiers, and is stable for different choices of training and testing. It is also
interesting to notice that single channel waveform features, which are historically better
for discerning between E and I units in vivo, here are apparently the least important
features towards classification. This might be due to the inability to replicate with
100% fidelity, the physiological environment in vitro (such as the absence of peripheral
signalling, or the 3D dimensional structure).

Nonlinear classifiers showed lower performance in lower dimensional feature spaces (but
still on par or higher than linear classifiers for all scores). The primary importance of
burst related features is also maintained, with an increased relevance of waveform fea-
tures as well. The best performing classifier, based on all tested scores, was the EDTC
based on multichannel features and time-series feature together. For this classifier, we
obtain the highest average F1 score, accuracy and precision, with an average precision
of ∼ 0.8 and an F1 score of ∼ 0.77.

Observing the feature importance relative to this model and feature space (which are
the same as for the GBM model), we see that the merit of this improvement in per-
formance is mainly due to the use of multichannel features. Observing in particular
Fig(3.41), we see that among the most important features we have multiple waveform
features, which instead for in all the single channel feature spaces were the less relevant
ones. In this case, the waveform features are the ones computed over differently ranked
channels, with all channels chosen for the computation having similar relevance towards
classification (no channel rank appears to be stably higher in the hierarchy). Among the
important features we also have, as for all the models and feature spaces, burst related
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features. The appearance of many differently ranked multichannel waveform features
in the importance hierarchy, together with the vast improvement in performance with
these features and the use of a nonlinear classifiers, are an interesting result.

The successful decision process involved in the training of the EDTC (or GBM) models
is making use of the information coming from different channels, in order to perform
classification. The channels were chosen based on the amplitude of the cutouts com-
puted over them, which we said is dependent on the distance with respect to the origin
of the channel itself. Based on this choice of the channels, and on the way we decided to
order them (based on the latency of the spike), we indirectly added to the data set also
information on the underlying morphology of the cell, and the behavior of the signal as
it propagates away from the AIS (either along the dendrites or the axon). Morphology
of E and I neurons is historically known to be different [16], so having insight over can
be the decisive knowledge we needed to add to the model. The nonlinear models are
able to pick up this hidden information in the feature space, and use it to better classify
the E and I units.

Looking at Tab(3.1), we can also infer some information about our own cultures and
measures. As we discussed in section (2.6.2), we were unable to determine labels for our
units based on the imaging process. The reason for this was that we were unable, for
any of our recorded cultures, to observe inhibitory cells in the images, after performing
the ICCS (as can be seen in Fig(2.12b)). We have two possible interpretations to
this absence of inhibitory cells in the GAD-stained images: either the used primary
antibody was from a faulty lot; or inhibitory neurons in our cultures died (e.g. due
to excitotoxicity) before we recorded and imaged. Tab(3.1) contains, in the rightmost
column, the predicted labels over our curated, unlabelled units (in particular, the ratio
of E and I units in the whole population). We can see that for our best performing
model - the EDTC model trained over the whole labelled data set - the units classified
as E in the best performing feature spaces (multichannel features or single channel
features plus time-series) far outnumber the ones predicted as I. If we focus on EDTC
applied over the multichannel waveform features and time-series features (which when
tested had an average accuracy of ∼ 0.8), the predicted E units are 0.96 of the total
population, while I units only constitute 0.04 (this is even lower for the second best
performing feature space, with only 0.01 ratio of I units). This, together with the
peculiar behavior in the ICCS process which we already described, seems to support
our hypothesis regarding the absence of I units in our cultures.
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Chapter 5

Conclusion

The aim of this project was to record, curate and classify sorted putative units, based
on their waveform features and time-series related features. Neuronal networks of pri-
mary rat hippocampal neurons were cultured, and their extracellular electrophysiologi-
cal behavior recorded using high-density microelectrode arrays, or HD-MEAs. The raw
recordings were then curated to eliminate artifacts and units that would have made our
classification effort more difficult. From the remaining units, an assortment of features
were extracted, over different temporal and spatial scales. Two different methods were
then implemented, to create a labelled data set of excitatory and inhibitory putative
units. One was based on immunocytochemistry staining, and aimed at imaging the
glutamatergic (excitatory) and GABAergic (inhibitory) neurons, to be then traced on
the electrode array and assigned to the corresponding sorted units.

This line of analysis did not return usable results due to issues in the immunocyto-
staining process, so we resorted to the second method: labels assigned via an electro-
physiological connectivity study, in particular in the form of spike transmission proba-
bility. Thanks to this labelled ground truth data set, we were able to analyze features
corresponding to the two different classes to find a separation between excitatory and
inhibitory units based solely on this extracellular and high-throughput recordings. The
first attempt at classification was performed via visualization of 1 (or at most 2) di-
mensional feature distributions, which did not return any useful information about
separation between the two classes [18][20][19].

We postulated that the two classes might form some peculiar structures in the higher
dimensional feature spaces, which we were not able to visualize and in which clustering
machines would work inefficiently, because of the curse of dimensionality. We thus
employed dimensionality reduction machines, both linear and nonlinear, to try and
maintain any such high-dimensional structure in a 2-dimensional space, which could
then be visualized. This procedure, once again, did not return any useful information
regarding separation between the two classes: none of the plots exhibited a prominent
diversification between the excitatory and inhibitory labelled units.

The last attempt at classification was performed via supervised machine learning classi-
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fiers. For this step, we also implemented linear and nonlinear machines, with promising
results, especially for nonlinear classifiers. We trained and tested our classifiers over
the labelled data, and obtained the highest accuracy (∼ 0.79) for the ensemble decision
tree classifier, implemented over the multichannel waveform features and time-series
related features together.

Observing the feature importance in our classification, we could also deduce some of the
underlying behavior of the classifier, and why its performance over this high-dimensional
feature space improved so much with respect to the other classifiers and spaces. While
burst features were among the most important ones for all classifiers and different
feature spaces used for training, waveform features were always the less relevant ones
towards classification (that is, the most uniform across classes). This was the case
until we introduced in the training data set the multichannel waveform features: in
the EDTC applied to this feature space, which returns the best performance, waveform
features were deemed the most important ones. Not just that, but the importance did
not directly depend on the specific channel for which the features had been computed:
different features, coming from differently ranked channels, shared the same amount of
importance at the top of the relevance list.

By using these multichannel features, thanks to the high spatiotemporal resolution
of our MEAs, we are very likely augmenting our feature space with spatial informa-
tion about our neurons: their dimension, structure, the speed at which the signal is
propagating through their morphological sections and how it is modified during this
propagation. All of this information, not directly observable for us, is then captured by
EDTC models, which are very sensitive to small but consistent variations in the feature
space, and result in the best classification possible.

We can thus conclude that the ability to classify neurons based on their extracellular
electrophysiological behavior is directly tied to the amount of information about the
structure of the neuron itself we can either explicitly or implicitly recapitulate in our
measurements, for example with the concept of multichannel features. This is only pos-
sible via the use of recording tools with superior spatial resolution, such as HD-MEAs,
and powerful classification machines that are able to extract these underlying statis-
tical dependencies from the data. We can also expect that the performance could be
improved even further with higher density of electrodes, or higher number of recording
channels, and with a larger labelled data set to train the supervised classifiers.

Data based methodological advances to systematically analyze information-dense com-
plex data sets is a critical prerequisite to extract meaningful and neurobiologically
relevant principles from extensive extracellular electrophysiological data. We would
like to note that the analysis pipeline proposed in this work, and the techniques to
systematically train, benchmark, and refine data-based inference engines (classifiers in
our case) are contributions in this direction.
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Appendix A

Neuron structure and
electrophysiology

A.1 The compartments of the neuron
In the following subsection, we describe in more detail the different compartments of
the neuron, their function and their morphology.

A.1.1 The main body of the neuron – Soma

The soma is the cell body of the neuron. It contains the nucleus and connects the
dendrites to the axon initial segment. As all of the proteins necessary to the neuron are
assembled in the soma, and can only travel a brief distance by diffusion from the nucleus,
the axon contains microtubules associated motor units that transport the proteins to
their destination (for example the synaptic terminal, which might be meters away from
the nucleus). While most excitatory synapses land on dendritic spines, most inhibitory
ones are directly connected to the soma (in the case of pyramidal neurons). The axon
sprouts from the soma at the axon hillock, whose membrane contains many voltage-
gated ion channels, and acts as the origin of the action potential.

A.1.2 How neurons receive signals – Dendrites

Dendrites are extensions of the neuron that propagate to the soma the electrochemical
stimuli received from other neurons via synapses. Once a signal reaches a synaptic
button, in the case of chemical synapses, the presynaptic axon or its telodendria release
neurotransmitter, that traverse the synaptic cleft and attach to specific receptors on
the membrane of the postsynaptic dendrites. This receptors, once activated, can induce
either an excitatory or inhibitory response in the dendrite: contributions from each
dendrite are integrated together in the soma, and if the total sum surpasses a specific
threshold, an action potential is initiated in the AIS, and starts propagating into the
axon (and back in the soma itself). Depending on their morphology, neurons can be
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unipolar, bipolar or multipolar: unipolar neurons are characterized by a single stalk
exiting the soma and separating into neuron and dendrites, bipolar have dendrites
and axon on opposite side of the cell body and multipolar neuron have one axon and
multiple dendritic trees. Pyramidal cells, which are the main excitatory neuron type in
the cerebral cortex and hippocampus, belong to this last group, and are characterized
by a high concentration of Na+, Ca2+ and K+ channels in their dendrites.

Figure A.1: The different morphologies of a neuron, depending on the number of dendrites
and the respective positioning of axon and dendrites. Peripheral process is another term to describe
dendrites, while central process describes axons. Adapted from [34], pg. 35.

A.1.3 How neurons send signals – Axon

Axons act as cables that propagate action potentials from the cell body towards other
neuron. They have varying lengths (up to 2m) and diameters. Axons are enveloped in
a myelin sheath, which acts as an insulator and is composed of two types of glial cells:
Schwann cells and oligodendrocytes. Along the axon there are gaps in the myelin sheath,
called nodes of Ranvier. The insulation allows for a faster propagation of the AP, while
the gaps serve the purpose of regenerating the action potential, which has lost some of
its amplitude during the propagation. Of great relevance in the axon is the axon initial
segment (AIS): this region at the origin of the axon separates the soma and the axon
itself, and helps in the initialization of the action potential. It is approximately 20µm
to 60µm in length and unmyelinated, and is characterized by an high concentration
of voltage-gated sodium channels. It is characterized by three morphological features:
∼ 50nm undercoat, an absence of ribosomes and bundles of microtubules called fascicles
[35]. An elevated concentration of proteins acts as a barrier between the cytoplasm of
the soma and the AIS, lowering the speed of diffusion of membrane lipids and proteins.
The morphological structure of the AIS can also change dynamically to respond to
physiological and pathological changes, with variations that can last from seconds to
entire days.
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Figure A.2: Sketch of multiple axons running close to each other. As can be seen the
oligodendrocyte is myelinating all of the axons, and one Node of Ranvier, where the depolarization
happens again along the propagation, is visible over the central axon. Adapted from [34], pag 37.

A.1.4 How the signal is transmitted between neurons – Synapses

A synapse is a specialized structure which enables the communication of electrical or
chemical signals from one neuron to the other. The signal is transmitted from the so
called presynaptic cell, travels through the synaptic cleft, and enters the postsynaptic
cell. Thus, a synapse has both pre- and postsynaptic sites, each with its own set of
molecular machinery, to facilitate interneuronal communication.

Presynaptic structures tend to be localized along axon terminals where the axon divides
into multiple thinner branches, whereas, postsynaptic structures are generally located
along the dendritic tree. However, synaptic inputs may also be received on the soma
or along the axon hillock as well.

Synapses could be of two main types: electrical or chemical. Electrical synapses main-
tain the continuity of the cytoplasm between pre- and postsynaptic cells, and facilitate
rapid transmission of signals. At chemical synapses, there is no such continuity, instead,
a complex chain of electrochemical transduction is initiated.

All of the signals incoming in the receiving part of the postsynaptic neuron cause
variations of the transmembrane potential, which get integrated together and, if the
potential surpasses a certain threshold, the AIS in the postsynaptic cell fires an action
potential of its own.

Electrical activity in the presynaptic neuron leads to the release of chemicals called
neurotransmitters from the presynaptic terminal that diffuse across the cleft and bind
to receptors on the postsynaptic end and cause the direct or indirect opening of ion
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channels in the postsynaptic cell membrane.

We focus mainly on chemical synapses, as the synaptic transmitters will be what makes
it possible to apply the staining that we are going to need. The vesicles that diffuse
the neurotransmitter in the presynaptic terminal are concentrated in active zones. An
increase in Ca2+ levels at the presynaptic terminal, caused by the action potential and
the consequent opening of specialized channels, results in the fusion of the vesicles with
the membrane, causing the release of the neurotransmitter (the process is known as
exocytosis). After traveling across the synaptic cleft, the transmitters bind to specific
receptors in the postsynaptic cell membrane, activating them, and causing the opening
or closing of ion channels.

All of these passages comport a delay in the transmission of the signal, in a range going
from just 0.3ms to a few milliseconds. Chemical synapses also act as amplifiers of
the transmitted signal: even a weak presynaptic signal opens up thousands of vesicles,
increasing the chance of the generation of a postsynaptic AP. It is also important
to note that the function of the neurotransmitters does not directly depend on the
neurotransmitters themselves, but on the postsynaptic receptors and the channels that
they activate: in general, the same neurotransmitter might excite some cells, while
acting as an inhibitor for others.

A.2 Electrochemical signalling in neurons

The aim of the project is to determine a classification procedure between E and I
neurons based on extracellular electrophysiological characteristics. The functioning of
the brain is based on the interactions between neurons, which form locally structures
which we can define as neuronal circuits. Understanding information processing in
the brain then comes down to building a functional model for neuronal circuits and the
pairwise interactions between neurons in them. We have already seen the morphological
structures at the basis of neuron-to-neuron interactions (see section 1.1). We take a
step back and study the signal that functions as the information carrier within neuronal
circuits, the action potential.

A.2.1 The action potential

As we know, neurons communicate with each other, and thus process information as a
network, via the generation, propagation and reception of electrical signals in the form of
a sudden, large variation in the potential across the membrane of the neuron, between
the cytoplasm and the extracellular fluid. This potential is commonly called action
potential (AP), and was first studied in the squid giant axon by Hodgkin and Huxley
in 1952, in a series of papers that earned them the Nobel Prize. The AP is produced
by a sudden depolarization of the membrane from its equilibrium value, caused by a
flux of ions across the membrane through specialized voltage-gated channels, which
is translated in an ionic current. The AP has three phases: the depolarization, the
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overshoot and the repolarization phase. Before and after the AP the membrane also
goes through an hypopolarization and an hyperpolarization phase, respectively.

Figure A.3: The three main phases of an action potential: depolarization, overshoot and repo-
larization, preceded by an hipopolarization of the membrane and followed by a brief hyperpolarization.
Adapted from [36].

APs differentiate via their amplitude, the duration and the ions involved in the depolar-
ization/repolarization steps, and can be either Na+-dependant (as for neuronal axons
and soma, characterized by large amplitude and brief duration), Na+/Ca2+-dependant
or Ca2+-dependant [37]. We focus on Na+-dependant AP: Na+ channels are com-
posed of 4 homologous domains, and act as a positive and fast feedback response to a
membrane depolarization, via an influx of Na+ ions. Once an incoming stimulus, usally
corresponding to the integration of many stimuli coming from the dendrites, brings the
membrane potential from its RMP (A.2.2) to a threshold potential usually around
−50mV to −40mV , the depolarization causes the opening of Na+ voltage-gated chan-
nels (hypopolarization phase), following an all-or-none law in which all stimuli below
threshold do not produce any effect on the postsynaptic neuron. The starting current
of ions through the few open channels causes an increase in the depolarization (depo-
larization phase) due to the rapid influx of Na+ caused by both electrical and chemical
gradient, which in turns opens more channels until all of the channels in the AIS are
open, at which point the cytoplams has been charged positively and Vm is closer to
Nernst equilibrium potential for the sodium, VNa ≃ +61mV (overshoot, the potential
gets circa to Vm ≃ +50mV ). Vital characteristic of the Na+ channels is the fact that,
after a brief activation period, they inactivate, thus dropping the sodium permeability
and decreasing quickly the depolarization (the peak of the AP corresponds to inac-
tivation of all Na+ channels): for the channels to reactivate again it takes a couple
milliseconds, so that the current AP cannot reopen the channels that have determined
its generation (repolarization phase).
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Figure A.4: Propagation of the action potential in the axon. As we can see, the action
potential propagates via depolarizing sequentially the membrane of the axon (A), by increasing the
membrane potential above the threshold and leaving behind regions of already open/inactive sodium
channels, which determine the refreactory period and the inability of the AP to backpropagate (B).
In (C) we see the effect of the myelin sheath and the Nodes of Ranvier, which makes it so that the
depolarization only happens at specific and regularly spaced positions along the axon, increasing the
speed of the propagation. Adapted from [34], pag 41.

Also K+ voltage-gated channels play a role in the repolarization of the membrane,
even though it’s much less relevant in mammalian than in the giant squid studied by
Hodgkin and Huxley. These channels can be either delayed rectifier, activating with
a delay and slowly deactivating (they play a role in the repolarization), or fast acti-
vating and deactivating (only relevant for firing patterns). Membrane depolarization
tends to open the delayed rectifier K+ channels, causing an outflux of K+ ions that
speeds up even further the repolarization after the influx of Na+ has depolarized the
membrane. These channels open in a slower fashion than their Na+ counterpart, and
the K+ outflux is pushed both by a concentration gradient and by the electrical one
(once the Vm becomes positive). Before setting back to its resting potential, Vm always
passes through a state in which it is more negative (hyperpolarization phase). The
period immediately after the firing of an AP is known as refractory, and no AP can be
generated during this period by the excitable cell (with the exception of its very end,
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when a strong stimulus over the threshold might be able to induce a new triggering
episode): during this time sodium channels are still either open from the old AP, and
cannot thus open again to generate a new depolarization, or are inactivated and haven’t
had the time to regenerate and become active again.
As we said, the AP is actually not generated in the soma, but in the AIS: stimuli incom-
ing are collected in the dendrites, integrated in the soma and passed to the AIS, where
the triggering zone either fires a spike or not. This is because the EPSP needed to trig-
ger an action potential in the AIS is just 10− 20mV , while in the soma it has to be as
large as 30− 40mV . Once an AP is generated, it travels along the axon by sequentially
depolarizing its membrane and following the same phases we just described, and thanks
to the refractory period of each segment of the axonal membrane, it cannot travel back-
wards. The AP propagates much faster in a myelinated axon than an unmyelinated, as
the myelin sheath insulates the axon allowing for saltatory conductance, with the sole
exception of the Nodes of Ranvier, at which the depolarization happens and the AP
gets "recharged". A larger diameter of the axon also causes a faster propagation. Once
the AP reaches the terminal part of the axon, it induces a release of neurotransmitters
from the presynaptic membrane, which then diffuse across the synaptic cleft to reach
the receptors on the postsynaptic membrane. Here, depending on the neurotransmit-
ters and their respective receptors, the postsynaptic neuron will experience either an
excitatory or inhibitory effect from the presynaptic signal.

A.2.2 Resting potential

The distribution of various ionic species (in particular N+, Ca2+ and Cl−) across the
membrane produces a resting membrane potential (RMP), due also to the presence of
specific ionic channels that allow free passage for the corresponding ions [36]. All of the
ionic species have specific equilibrium potentials Veq, which can be described by Nernst
equation:

Veq,X =
RT

zXF
ln
[X]e
[X]i

(A.1)

Where X is the ionic species, [X]i and [X]e are the internal and external concentration
of such species, R is the universal gas constant, T the temperature in kelvin, F is
Faraday’s constant and zX is the is the valence of the ions.
The equilibrium membrane potential can then be determined via the Goldman-Hodgkin-
Katz equation:

Vm =
RT

F
ln

(
pK
[
K+
]
e
+ pNa

[
Na+

]
e
+ pCl[Cl−]e

pK [K+]i + pNa [Na+]i + pCl[Cl−]i

)
(A.2)

where pX are the permeability values corresponding to the different ions, or via Millman
equation:

Vm =
gKVeq,K + gNaVeq,Na + gClVeq,Cl

gK + gNa + gCl

(A.3)
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where gX is the membrane conductance for the different species. ATPase pumps make
sure that no ionic species is at its equilibrium potential, by pumping three Na+ out
for each two K+ driven inside, thus fighting the spontaneous ionic current across free
channels. The RMP is between −40-−80mV with respect to the external fluid (for
neurons it is about −70mV ).
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Appendix B

Classification optimization

The optimization of the classifiers, in particular the nonlinear ones, was implemented
via the GridSearchCV method in the sklearn.model_selection package, in Python. This
works by computing a k-fold classification (in our case the number of folds chosen was
5) for a range of values over each parameter, and choosing the set that returns the
best classification quality metric, which we chose to be the F1-score. The optimized
hyperparameters thus computed are shown below, in table (B.1).

Feature space C Maximum
depth

Minimum
samples per leaf

Minimum
samples per split

Single channel WF
Kernel SVC 20
EDTC 8 2 2
Single channel WF
plus time-series
features
Kernel SVC 10
EDTC 25 1 10
Multichannel features
plus time-series
features
Kernel SVC 10
EDTC 25 2 2

Table B.1: Optimized hyperparameters for the nonlinear classifiers, with the feature spaces
they were calculated upon. For all feature spaces, the number of estimators for the EDTC chosen via
the optimization procedure was 100.
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