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Abstract

High-temperature superconductors constitute a very special class of materials,

whose puzzling properties and rich physics have caught the attention of the

physicists soon after their discovery. The peculiar self-organization of the elec-

trons into periodic structures of wavelength λ breaking the periodicities of the

underlying lattice, called stripes, is found to coexist with superconducting cor-

relations.

By employing Variational Monte Carlo simulations on a single-band Hubbard

model on the square lattice with both nearest-(t) and next-nearest-(t′) neigh-

bour hopping, the present work investigates the consequences of increasing hole

doping on the instauration of stripes and the behavior of the superconduct-

ing order parameter, with a particular focus on cuprate superconductors, along

with a discussion on how the two phenomena affect each other. We consider

two different values of the next-nearest neighbour hopping parameter, that are

appropriate for describing cuprate superconductors.

We observe that stripes are the optimal state in a wide doping range, while

they melt into a uniform state for large values of the doping. A larger absolute

value of the next-nearest neighbour hopping is found to penalize the formation

of stripes. The existence of charge and spin order, associated to the static struc-

ture factor N(q) and the spin-spin correlations S(q) respectively, is discussed,

along with the metallic or insulating character of the stripes. Superconducting

pair-pair correlations D(x) indicating the presence of superconductivity are, on

the other hand, suppressed with respect to the uniform state, suggesting a com-
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peting interplay between stripes and superconductivity. The phase diagram for

the single-band Hubbard model is found to be dominated by stripes, leaving

little room for superconductivity.

Our findings shed light on the underlying physics of these complex mate-

rials and contribute to a deeper understanding of high-temperature supercon-

ductivity, with potential applications in the development of new and improved

superconducting technologies.
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Chapter 1

Highly-correlated Electron

Systems and Cuprates

The conventional quantum theory of electronic structure of solids, known as

"Fermi liquid theory", which successfully describes the properties of many good

electrical conductors and semiconductors, treats the electrons in the material as

a gas of weakly interacting particles and the electron-electron interactions are

mostly analyzed at the mean-field level.

If the interaction term is small compared to the kinetic energy or, in other

words, if the Coulomb repulsion U resulting from the intra-atomic electron-

electron interaction is small compared to the bandwidth W 1 determined by the

hopping amplitude, approximations such as the Hartree-Fock approach are con-

sidered to be adequate. In this scenario, the band structure and single-particle

state spectrum can be determined using a one-particle potential that includes

exchange. The corrections beyond this approximation, known as correlation

contributions, can be treated as weak perturbations when U is much smaller

than W .

This is not always the case in physically realistic systems, as the bandwidth
1The bandwidth W is defined as the energy difference between the highest and lowest

energy levels in the band, namely W = Emax(k)− Emin(k).
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and Coulomb repulsion can have comparable energy scales, or the Coulomb re-

pulsion can even be greater, making them strongly correlated systems. Strong

enough Coulomb repulsion can also result in magnetic order in electron sys-

tems, that cannot be described by the single-particle picture with spin-split

bands, leading to challenges in the theoretical description of antiferromagnetic

(AF) states (developed where a nonzero average magnetic moment on each site

appears in a direction that alternates from site to site) in itinerant electron

systems with a half-filled band [1]. This can result in the Mott Metal-Insulator

Transition (MIT), which is one of the topics explored in this chapter.

1.1 The Mott Metal-Insulator Transition

The transition from a metallic to an insulating phase can sometimes be explained

in terms of conventional band theory.

For instance, consider an element with an even number of electrons per unit

cell. Due to the fact that the number of states in a band is twice the number of

elementary cells, materials that have an even number of electrons per unit cell

and crystallize in structures with a monoatomic unit cell should have completely

filled or empty bands unless there is an energy overlap between the bands. This

overlap of bands is what makes divalent elements of the second group in the

periodic table metals.

As the distance between atoms increases, the overlap between the wave func-

tions of neighboring atoms decreases and the bands become narrower. Once the

atoms are brought very far apart, they become independent and the atomic

energy levels are recovered. The narrowing of the bands is displayed in Fig. 1.1.

When the overlap between the bands reaches zero at a critical value of the

interatomic distance, the lower band becomes completely filled and the upper

band becomes empty, resulting in an insulating state. For smaller lattice pa-

rameters, instead, the material remains metallic.

This type of metal-nonmetal transition that occurs when the lattice param-

eter is altered (for example, by applying pressure) is known as band-overlap or
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Figure 1.1: Variation of the bandwidth as a function of the distance between

the atoms [1].

Wilson transition, named after A.H. Wilson (1931). The resulting insulating

state is referred to as a band insulator or Bloch-Wilson insulator. The inter-

action with the periodic one-particle potential plays a dominant role in the

formation of bands and this transition can be explained within the one-particle

picture without taking into account the electron-electron interaction.

Naively, according to the predictions of the one-particle band picture, one

would expect systems with an odd number of electrons per atom to be always

metals. In reality, however, this is not the case.

For example, NiO is not a metal despite having an odd number of electrons,

as the Ni2+ ion has eight 3d electrons but the band states cannot by filled by

eight electrons in order to get a full band and an empty one. This cannot be

explained by antiferromagnetic ordering, as NiO is insulating even in the para-

magnetic phase. Similarly, in CoO, a transition from a paramagnetic insulator

to an antiferromagnetic insulator is observed with an odd number of d electrons.

Another example is V2O3, which undergoes a first-order phase transition

from an AF insulating state to a metallic state. The conductivity changes

abruptly by several orders of magnitude. The phase diagram becomes even more

complex when pressure is changed; this is done in practice by doping the material

with atomic species that have a larger/smaller atomic size, effectively varying the

lattice constants. In this case, three phases are found: a paramagnetic metallic

phase, a paramagnetic insulating phase, and an antiferromagnetic insulating
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phase.

Figure 1.2: Temperature vs Pressure phase diagram of V2O3, doped with Cr

and Ti at concentration x. The pressure is decreased by replacing V with Cr

atoms, that have a larger atomic size. Ti-doping, on the other hand, results in an

increased pressure, allowing electrons to move easier and hence the system enters

the metallic phase. The vertical dashed line indicates the ambient pressure (or

undoped material). From D. B. McWhan et al., Phys. Rev. B 7, 1920 (1973).

N. F. Mott proposed in 1949 that the correlation between electrons can open

a further gap within the conducting Bloch band and resulting in an insulating

state. Indeed, in the Bloch picture the electron-electron repulsion is not con-

sidered, meaning that electrons described for instance by plane waves and with

momenta k and k′ have equal probabilities of being located at any point in the

Bravais lattice, even on the same site. However, the Coulomb repulsion should

prevent this from happening. As a result, Mott suggested that the actual den-

sity of states in real bands is different from what is predicted by Bloch theory

due to the presence of electron-electron repulsion.

If the distance between atoms decreases and the bands widen, a sudden and

abrupt (first-order) transition from insulating and strongly correlated to metallic

and weakly correlated behavior is expected. This Mott transition occurs as a
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result of changes in the ratio U/W due to variations in temperature or pressure,

or changes in dopant concentration.

The mechanism is illustrated in Fig.1.3.

Figure 1.3: Density of states ρ(ϵ) as the on-site Coulomb interaction strength

U increases, from right to left.

As the interaction increases, starting from the Bloch band (rightmost sub-

plot), the density of states first shows a minimum at the band center (central

subplot), dividing it into a lower energy sub-band (consisting of singly occu-

pied Wannier states) and a higher energy sub-band (with some doubly occupied

Wannier states). Beyond a critical interaction level, the minimum in density of

states vanishes and the two sub-bands become separated by an energy gap in

two distinct bands (as seen in the left part of the figure). At half-filling, the

lower energy band is completely filled and the higher energy band is empty,

resulting in an insulating state.

1.2 The Hubbard model

The Hubbard Model (1963), named after J. Hubbard, is a model that includes

the interaction between electrons and allows to take into account the eventual

magnetic behavior of the electron system. It was specifically derived in order to

explain the MIT transition.

In the Fock space built on Wannier functions, the single particle Wannier
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states are labeled by the sites of the Bravais lattice, and they overlap less and

less as the sites are far apart.

In second quantization, the creation operator for an electron on the site Rj

is given by

c†Rjσ
=

1√
N

∑
k

e−ik·Rjc†kσ, (1.1)

where c†kσ creates a Bloch electron with momentum k and spin σ. This allows

us to write the one-body part of the electron Hamiltonian in its tight-binding

form

H
(1)
el =

∑
RR′σ

tRR′c†Rjσ
cR′

jσ
(1.2)

where

tRR′ =

∫
d3rϕ∗(r − R)H(r)ϕ(r − R′) (1.3)

is the overlap integral, and ϕ(r − R) the Wannier functions centered on R.

The electron-electron interaction, written also in real space, becomes

H
(2)
el =

1

2

∑
R1R2R′

1R′
2σ1σ2

VR1R2R′
1R′

2
c†R′

1σ1
c†R′

2σ2
cR2σ2

cR1σ1
(1.4)

with2

VR1R2R′
1R′

2
=

e2

4πϵ0

∫
d3rd3r′ϕ∗(r−R′

1)ϕ
∗(r′−R′

2)
e−qTF |r−r′|

|r − r′|
ϕ(r′−R1)ϕ(r−R2)

(1.5)

In the simplest form of the Hubbard model, only the Wannier states located

at R1 = R2 = R′
1 = R′

2 are taken into account, since their contribution is

dominant.

Upon identifying Rj → j, the electron-electron interaction Hamiltonian of

Eq.1.4 is rewritten as

H
(2)
el =

1

2

∑
j1,j2,j′1,j

′
2,σ1,σ2

Vj1,j2,j′1,j′2c
†
j′1σ1

c†j′2σ2
cj2σ2cj1σ1 . (1.6)

2Here, e is the elementary charge, ϵ0 the dielectric constant, and the potential includes the

Thomas-Fermi screening effect.
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As a further simplification, only the hopping among adjacent sites (with

nearest-neighbours denoted by ⟨. . . ⟩ and next-nearest-neighbours by ⟨⟨. . . ⟩⟩) is

kept. Explicitly,

tj,j′ =


−t for ⟨j, j′⟩

−t′ for ⟨⟨j, j′⟩⟩

0 otherwise

. (1.7)

By keeping only the terms for j = j1 = j2 = j′1 = j′2, noticing that the

only choice σ2 = −σ1 amounts to a non-vanishing contribution (since we cannot

annihilate twice the same spin on a given site) and defining U = Vj1,j2,j′1,j′2 , we

obtain the celebrated Hamiltonian of the Hubbard model

H = −t
∑

⟨j,j′⟩,σ

c†jσcj′σ +
U

2

∑
j,σ

c†jσc
†
j(−σ)cj(−σ)cjσ. (1.8)

The second term can be rewritten as follows:∑
j,σ={↑,↓}

c†jσc
†
j(−σ)cj(−σ)cjσ = c†j↑c

†
j↓cj↓cj↑ + c†j↓c

†
j↑cj↑cj↓ (1.9)

= nj↑nj↓ + nj↓nj↑ = 2nj↑nj↓ (1.10)

in order to obtain the final result:

H = −t
∑

⟨j,j′⟩,σ

c†jσcj′σ + U
∑
j

nj↑nj↓ . (1.11)

To gain insight into the physics of the model, we first consider the scenario

where the number of electrons is equal to the number of lattice sites (half-filling).

The interaction between electrons is treated in the mean-field approximation,

which is reasonable for weak couplings where U ≪ t. In this picture, the elec-

trons fill half of a band, resulting in a metallic system. Conversely, when U ≫ t,

the half-filled Hubbard model is equivalent to an antiferromagnetic Heisenberg

model with exchange coupling J = −2t2/U . In this case, spins can be ex-

changed, but electrons cannot carry current, leading to an insulating system.

Due to the strong on-site repulsion, if an electron hops to a neighboring site,

double occupancy occurs only briefly, and one of the electrons must hop back
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to the temporarily empty site. The t − J model, which is a further simplifi-

cation, keeps the kinetic energy term, adds a Heisenberg interaction between

neighboring spins, and considers Coulomb repulsion by excluding states with

double occupancy.

Since the Hamiltonian captures in the two limits both the metallic and the

insulating behavior, it was proposed as a candidate to describe an interaction

induced phase transition from a metallic to a Mott insulating phase.

1.3 Conventional Superconductivity

The electrical resistivity of metals decreases as the temperature is lowered. In

an ideal crystal without any impurities or inhomogeneities, the contribution of

lattice vibrations to the resistivity would vanish at zero temperature, resulting

in a null resistivity. However, in real samples, the presence of impurities and

inhomogeneities leads to finite transport relaxation times for electrons even at

T = 0, causing a finite conductivity σ = nee
2τ/me according to the prediction

of the Drude model3. The liquefaction of helium in 1908 made it possible to

study the metal resistivity at much lower temperatures than before. In 1911, H.

Kamerlingh Onnes found that the resistivity of pure mercury dropped suddenly

to a very low value, practically zero within experimental error, around T = 4.2K,

which is known as the liquid-helium temperature. The remarkable discovery is

shown in Fig.1.4.

This result was unexpected4 and later confirmed for a broad class of metals,

which show a similar behavior. These metals do not have a gradual decrease

in resistivity with temperature but, instead, their resistivity drops suddenly to

zero at a finite critical temperature, Tc. This phenomenon was named supercon-
3In the (classical) Drude theory of transport, ne is the density of conduction electrons,

e the elementary charge, τ the average time interval between two collision events, me the

electron mass.
4Indeed one might wonder which one between the scattering amplitude and the electron

mobility would first drop to zero first as the temperature decreases (leading to no resistivity

in the former case and no conductivity in the latter).
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Figure 1.4: Temperature dependence of the resistivity of mercury at low temper-

atures, as measured by Kamerlingh Onnes [Comm. Phys. Lab. Univ. Leiden,

No. 120b (1911)] [2].

ductivity and the materials were referred to as superconductors by Kamerlingh

Onnes [2].

The critical temperature of superconductivity typically observed is much

lower than the temperatures at which magnetic ordering or density-wave states

occur. Superconductivity can be easily disrupted by a thermal energy of just

a few millielectron volts, which suggests that the interaction responsible for

this phenomenon is much weaker than the dominant interactions (Coulomb

repulsion or exchange) in electronic systems. This led H. Fröhlich and J. Bardeen

to propose in 1950 that superconductivity could be due to electron-phonon

interaction. The discovery of the isotope effect the same year confirmed that

ions and their vibrations play an important role in superconductivity.

The emission of a phonon by one electron and its absorption by another can

be seen as a direct interaction between the two electrons.

This interaction, mediated by phonons, is attractive when the electrons are

close to the Fermi surface within a range determined by the width of 2ℏωD

in the phonon spectrum. From a pictorial point of view, the first electron

causes a deformation and polarization in the lattice that attracts the other
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electron. If this attraction is strong enough, it can overcome the repulsive

Coulomb interaction between the electrons. On the other hand, contributions

from electrons further away from the Fermi energy, where the interaction is

repulsive, can be disregarded.

These concepts are applicable to conventional superconductors where the

attraction between electrons is caused by phonon-mediated interactions even if

also other mechanisms, such as magnetic interactions, can generate attraction

between electrons.

In 1956, L. N. Cooper made a significant contribution to the understanding

of superconductivity by showing that if the potential between two electrons is

attractive, no matter what is its origin, a bound state of two electrons, called

Cooper pair, can be formed when they move through a Fermi sea that is

already filled.

Under these circumstances the pairs are formed not one by one, but instead

the entire Fermi sea becomes unstable below a critical temperature Tc. This new

state, known as the superconducting state, has completely different properties

from those of the Fermi system. The non-analyticity of the binding energy

of the Cooper pairs in relation to the interaction potential highlights that the

superconducting state cannot be obtained through perturbation theory from the

non-interacting Fermi sea.

1.3.1 The BCS Theory

The development of the BCS theory [3], the microscopic theory of superconduc-

tivity, named after J. Bardeen, L. N. Cooper, and J. R. Schrieffer, was made

possible in 1957 due to the discovery of the instability of the electron gas in

forming Cooper pairs. The role of singlet Cooper pairs is assumed dominant,

and only those processes involving singlet pairs with total momentum zero scat-

tered into singlet pairs are considered5. The Hamiltonian acting on the reduced
5The restriction to singlet pairs alone is not acceptable in the superfluid phase of 3He. Ad-

ditionally, experimental data supports the existence of triplet pairs in certain unconventional

superconductors.
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Hilbert space of the K = k + k′ = 0 singlet pair states is

HBCS =
∑
k

ϵk(c
†
k↑ck↑ + c†−k↓c−k↓) +

∑
k,k′

Vk,k′c†k↑c
†
−k↓c−k′↓ck′↑, (1.12)

where the interaction Vk,k′ in most cases only weakly depends on k and k′, since

only electrons near the Fermi surface are involved in the creation of Cooper pairs.

ϵk is the electronic dispersion relation.

A further crucial assumption of the BCS theory is that all electrons in su-

perconductors are paired as Cooper pairs in the ground state. This means that

if a state with wave vector k and spin ↑ is occupied, the state with wave vector

−k and spin ↓ will also be occupied. This requirement is fulfilled by the ground

state of a non-interacting Fermi gas, of the form

|ΨFS⟩ =
∏

|k|<kF

c†k↑c
†
−k↓ |0⟩ , (1.13)

where |0⟩ is the vacuum state of electrons.

The electrons are unable to take advantage of the attractive interaction be-

tween them because there are no available empty states for them to be scattered

into elastically. If the momentum distribution function has a smoothed out dis-

continuity, meaning that there are empty states below the chemical potential

and filled states above it, the kinetic energy increases compared to the ground

state of free electrons. However, this increase can be offset by the binding energy

of the Cooper pairs. It may be energetically favorable for the system to tran-

sition to a new state where the distribution function is smoothed over a finite

energy range, but all electrons are still bound into pairs through the attractive

effective interaction.

According to the BCS theory, the ground state of a superconductor is a co-

herent linear combination of states that consist of Cooper pairs with all possible

wave vectors k that, for Ne electrons, would look like

|ΨNe
⟩ =

∑
k1,...,kNe/2

αk1
. . . αkNe/2

c†k1↑c
†
−k1↓ . . . c

†
kNe/2↑c

†
−kNe/2↓ |0⟩ , (1.14)

but calculations are made feasible by choosing a simpler, variational wave-

function explicitly written as a superposition of states where pairs (k ↑,−k ↓)
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are either occupied or empty, for every possible value of k. This gives the BCS

Ansatz

|ΨBCS⟩ =
∏
k

(uk + vkc
†
k↑c

†
−k↓) |0⟩ . (1.15)

The quantities uk and vk are variational parameters to be minimized in

order to find the ground state energy. Their moduli |vk|2 and |uk|2 represent

respectively, according to the probabilistic interpretation of the wavefunction,

the probability of having or not having the pair associated to the momentum k

in the system. To ensure the normalization constraint ⟨ΨBCS |ΨBCS⟩ = 1, the

relation

|uk|2 + |vk|2 = 1 (1.16)

has to be satisfied. It is worth pointing out that Eq.1.15 reduces to the the

wavefunction of the normal metal of Eq.1.13 in the particular case in which

uk = 0, vk = 1 for k < kf

uk = 1, vk = 0 for k > kf

. (1.17)

From a practical point of view, being the number of electrons not fixed in

Eq.1.15, it is sometimes convenient to move to the grand canonical ensemble.

This can be done by considering the total number of particles

N =
∑
k,σ

c†kσckσ =
∑
k

(c†k↑ck↑ + c†−k↓c−k↓), (1.18)

taking into account the chemical potential µ, and redefining the BCS Hamilto-

nian of Eq.1.12 as

HBCS → HBCS − µN, (1.19)

leading to

HBCS =
∑
k

ξk(c
†
k↑ck↑ + c†−k↓c−k↓) +

∑
k,k′

Vk,k′c†k↑c
†
−k↓c−k′↓ck′↑ , (1.20)

with ξk = ϵk −µ being the energy of the electrons measured with respect to

the chemical potential6.
6It is straightforward to show that, by computing V ar(N), the discrepancy between the
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At the very root of the BCS approach, the variational wavefunction of

Eq.1.15 is used to find a variational estimate of the ground state energy. By

defining the superconducting parameter

∆k = −
∑
k′

Vk,k′⟨c†k′↑c
†
−k′↓⟩ = −

∑
k′

Vk,k′u′kv
′
k, (1.21)

where ⟨. . . ⟩ = ⟨ΨBCS | . . . |ΨBCS⟩, one can show that, in minimizing ⟨ΨBCS |HBCS |ΨBCS⟩,

the variational parameters of the BCS wavefunction are given by

u2k =
1

2

(
1 +

ξk
Ek

)
(1.22)

v2k =
1

2

(
1− ξk

Ek

)
, (1.23)

with

Ek =
√
ξ2k +∆2

k. (1.24)

The Eq.1.20 can be simplified to a mean-field problem whose Hamiltonian

is given, discarding constant terms, by

HMF
BCS =

∑
k,σ

ξkc
†
kσckσ +

∑
k,k′

Vk,k′

(
⟨c†k↑c

†
−k↓⟩c−k′↓ck′↑ + c†k↑c

†
−k↓⟨c−k′↓ck′↑⟩

)
(1.25)

which becomes

HMF
BCS =

∑
k,σ

ξkc
†
kσckσ +

∑
k

(∆kc−k↓ck↑ +∆∗
kc

†
k↑c

†
−k↓) (1.26)

upon substituting the definition for ∆k.

Given the expressions for u2k and v2k, a set of self-consistent equations for the

parameters ∆k is found

∆k = −1

2

∑
k′

∆k′

Ek′
Vk,k′ . (1.27)

Under the hypothesis of having

Vkk′ =

−V/Ω for |ξk|, |ξ′k| < ℏωD

0 otherwise
, (1.28)

results obtained using a fixed number of particles and those calculated using the BCS wave-

function is extremely small.
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the approximation

∆k =

∆0 for |ξk| < ℏωD

0 otherwise
(1.29)

follows and the self-consistency equations become easily solvable by replacing

the sum over the momenta by an integral over the energy, with the insertion of

the density of states g(E). Here, V > 0 is a constant, the minus sign in Eq.1.28

makes explicit the attractiveness of the potential, and Ω is the volume of the

solid.

It is then possible to show that, as a final result,

∆0 ≈ 2ℏωDe
−1/V g(EF ) , (1.30)

with ωD denoting the Debye cutoff frequency.

1.3.2 The gap parameter ∆

The mean-field analysis of the BCS Hamiltonian allows to compute the con-

densation energy, that is the energy difference between the superconductor and

normal ground-state energies, and relate it to Eq.1.24. Indeed, Ek coincides to

the energy of the quasiparticle excitations above the ground state (sometimes

called bogulons7). This makes clear the role of the self-consistent parameter ∆

as that of an energy gap. A nonzero value of ∆ changes the spectrum with

respect to that of a normal metal as shown in Fig.1.5.

The BCS approach considers the gap parameter to be independent of energy

and only dependent on momentum k. However, in actuality, ∆k can possess

a nontrivial dependence on k due to the symmetry of the underlying lattice

structure.
7This name derives from the Bogoliubov transformation involved in the discussion. Bogu-

lons are related to the fermion operators γkσ and γ†
kσ , representing the creation and anni-

hilation of quasiparticles with wave vector k and spin σ of the correlated system (i.e. of

the interacting electron gas where an appropriate attractive 2-body coupling is acting among

electrons).
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Figure 1.5: Spectrum of quasiparticles in the superconducting state [2] for the

superconducting state (solid line) and normal metal (dashed line). The value

of the gap at ξk = 0 is usually denoted by ∆0.

For instance, in crystal structures with a center of inversion, it must either

be even (∆k = ∆−k) or odd (∆−k = −∆k) under inversion through the origin

in k space. ∆k may not have the same sign everywhere on the Fermi surface

and can result in regions of opposite sign being separated by nodal lines. Such

states correspond to Cooper pairs with non-zero internal angular momentum,

which is allowed by the point group symmetry of the lattice.

The symmetry of the superconducting gap function, whether even (such as

s- or d-wave) or odd (p-wave), determines the spin of the Cooper pairs, which

can either be a singlet or a triplet. An even orbital symmetry leads to a spin-

singlet wave function, while an odd orbital symmetry leads to a spin-triplet wave

function. However, the presence of a spin-orbit interaction limits the possibility

of a mixture of singlet and triplet pair states.

In conclusion, the gap parameter is a well-defined quantity whose symmetry

can be experimentally determined. The pair amplitude ⟨c†k↑c
†
−k↓⟩ encapsulates

the essence of the macroscopic phase coherence in all superconducting states.

A few symmetries on the two-dimensional square lattice are reported in

Fig.1.6. The s-wave symmetry is fully and isotropically gapped, whereas the

dx2−y2-wave and dxy-wave symmetries exhibit along the Brillouin zone bound-

ary in diagonal directions a gap which is identically zero for the former and
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Figure 1.6: Symmetries of the gap parameter on the two-dimensional square

lattice. The dashed line represents the Fermi surface, while the solid curves

indicate the first excited states.

maximum for the latter. As will be discussed later on, the d-wave symmetry is

a distinctive feature of unconventional superconductors, as for cuprates.

1.3.3 Gap equation and Critical Temperature

8 Among the many fundamental results of the BCS theory, there is one very

relevant in the discussion of the present work. The quantity ∆k, representing

the width of the forbidden region in the excitation spectrum, is directly related

to the critical temperature Tc. At nonzero temperature, the quasiparticle states

are thermally excited and a number of Cooper pairs is broken. Along to this

process, the energy gap decreases, until eventually the system transitions to

the normal metallic state. In conventional superconductors, the temperature

dependence of the gap ∆(T ) is found to follow a universal behaviour, as reported

in Fig.1.7.

A mean-field approach at a temperature T > 0 of the BCS theory can

account for this phenomenon. Indeed, one can express the product c†k↑c
†
−k↓ as

c†k↑c
†
−k↓ = ak + (c†k↑c

†
−k↓ − ak), (1.31)

where ak = ⟨c†k↑c
†
−k↓⟩T is the thermal average and the second term the fluctu-

8For an exhaustive discussion, see [1].
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Figure 1.7: Values of the superconducting gap ∆ normalized w.r.t. its value

at zero temperature ∆0 as a function of T , for different materials. From P.

Townsend and J. Sutton, Phys. Rev. 128, 591 (1962).

ation operator. The gap parameter is in this case defined as

∆k = −
∑
k′

Vkk′⟨c†k↑c
†
−k↓⟩T . (1.32)

The complete mathematical derivation involves the introduction of the Bogoli-

ubov canonical transformation, and leads to the following self-consistency equa-

tion

∆k = −1

2

∑
k′

Vkk′
∆′

k
E′

k
tanh

βE′
k

2
(1.33)

where, again, Ek =
√
ξ2k +∆2

k. This last equation is a generalization at nonzero

temperature of Eq.1.27 and reduces to it at zero temperature. By moving from

a sum over momenta to an integral over the energy, under the same assumptions

of the previous section (with the only difference of having ∆ = ∆(T )), the gap

equation at the critical temperature, where ∆ = 0, leads to

kBTc =
2eγ

π
ℏωDe

−1/V g(Ef ), (1.34)

where γ is the Euler’s constant and 2eγ

π ≈ 1.13.

At this point, Eq.1.30 and Eq.1.34 can be used to get rid of the material-

dependent parameters g(Ef ) and ωD in order to obtain a single universal equa-
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tion with no free parameters. This represents the most fundamental result of

the BCS theory, directly connecting Tc and ∆0

∆0

2
=

π

2eγ
kBTc ⇒

2∆0

kBTc
≈ 3.528 . (1.35)

The agreement of the measured gap to the values predicted theoretically, for

some superconductors, is reported in Fig.1.8. For many of them, the two values

are rather close but however, for other materials the difference is appreciably

different, pointing out the limitations of the BCS theory. Still, being able to

measure a well-defined ratio even for these materials is a remarkable result.

Figure 1.8: The ratio 2∆0/kBTc for some superconductors [1].

The reason why the BCS theory, which is essentially a mean-field theory, is so

good at describing many fundamental features of conventional superconductors

is that the effective coherence length of the Cooper pairs (or, in a sense, their

size) ξ is usually 100 to 1000 times larger than the lattice constant a. If we

consider a sphere with a radius approximately equal to the distance between

two electrons forming a Cooper pair, this volume would likely contain around

106 other pairs9. This large number of pairs in the volume ensures that any

fluctuations are smoothed out and effectively averaged.
9This is not the case for cuprates, being in fact unconventional superconductors.
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1.4 High-temperature Superconductivity and Cuprates

10 The discovery of superconductivity in layered copper-oxide compounds, by

Bednorz and Müller in 1986 [6], has been surprising: first of all because of

the highest transition temperature ever observed at that time (30K), as shown

in Fig.1.9, but also since, in their "normal" (i.e. non-superconducting) state,

they are insulators. The materials exhibiting high-temperature superconduc-

tivity are called high-temperature superconductors (HTSCs). Due to the low

electron-phonon coupling constant11 and the unexpected nature of the mate-

rials (transition-metal oxides), along with other unusual features such as the

remarkable linearity of its resistivity at low temperatures above Tc and the k-

dependent superconducting gap (d-wave pairing, see Fig.1.10), it became clear

that a different mechanism was at play, distinct from the conventional super-

conductivity.

HTSCs are obtained from AF Mott insulators "parent" compounds (ma-

terials in which a strong electron-electron interaction generates both the an-

tiferromagnetism and the insulating behaviour, as introduced before) that are

electronically doped. Local magnetic correlations survive in the metallic com-

pounds, hence it is appropriate to describe these materials as doped antiferro-

magnets. Since then, many families of compounds have been shown to exhibit

superconductivity at high temperature.

1.4.1 Correlation Effects

In the standard theory of solids the kinetic energy of the electrons is considered

the primary energy in the system, while the interactions between electrons and

their effects are considered secondary. Indeed, their main behaviour is primar-

ily determined by the reduction in total kinetic energy supported by a periodic

potential, which enables the delocalization of local orbitals into extended wave-
10Main references: [4, 5]
11The upper limit for electron-phonon coupling, according to BCS theory, occurs at Tc >

30K
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Figure 1.9: Behaviour of the resistivity of BaxLa5–xCu5O5(3–y) as a function

of temperature, at different current densities [6].

functions with a well-defined momentum (i.e. highly structured in momentum

space). As a result of the uncertainty principle, the electronic states are highly

homogeneous in real space.

The presence of a potential energy drives any eventual transition to a low-

temperature ordered phase, inasmuch as it involves a gain in energy between

electrons at a smaller cost of kinetic energy.

The mean free path l is a key concept in describing transport properties: it

is defined as the distance travelled by an electron in between two consecutive

scattering events. As long as l is much larger than λF , the de Broglie wavelength

at the Fermi energy, it is well defined.

Many synthetic metals, among which also cuprate HTSCs, seem to violate

this theory and the mean free path inferred from data by a conventional analysis

is shorter than λF , implying an ill-defined momentum space. The main source

of trouble relies in the nature itself of these materials: they are doped correlated

insulators, in which the short-range repulsive interaction is not only a secondary
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Figure 1.10: Superconducting gap ∆ as a function of the angle along the Fermi

Surface (FS) . Except at ky = ±kx (d-wave pairing), there is a finite gap protect-

ing the ground state from the creation of excitations (photoexcited electrons).

From J. Mesot et al., PRL 83, 840 (1999).

effect, but the largest energy in the system.

However, the ground state of this part of the Hamiltonian is not unique, so

the kinetic energy cannot simply be treated as a perturbation; such materials

display substantial structure in both real space and momentum space. The

conventional theory of Fermi liquids, as a consequence, must be abandoned.

Neither the kinetic energy nor the potential energy is totally dominant, and

they must be treated on an equal footing.

Also the very successful theory of superconductivity developed by Bardeen,

Cooper and Schrieffer is no longer appropriate to describe high-temperature

superconductivity in cuprates, being the original one designed to describe good

metals and not doped insulators.

1.4.2 General features of cuprates

Among the uncountable number of cuprates, La2−xSrxCuO4, a layered cuprate

with built-in broken symmetry (see Fig.1.11), is one of the most studied, as

it shows superconductivity in a wide range of doping x (achieved by atomic

28



substitution of trivalent La with divalent Sr). Superconductivity develops in

the CuO2 planes, that have a square lattice geometry.

Figure 1.11: Atomic and magnetic structure of La2CuO4. Arrows indicate the

orientation of the magnetic moments in the AF phase. The lattice parameters

shown correspond to its low-temperature orthorhombic (LTO) crystal structure.

The CuO6 octahedron in the center of the cell is also reported [5].

The undoped ("parent") compound La2CuO4, i.e. with x = 0, has a lay-

ered perovskite structure, in which the crystalline environment for Cu atoms is

tetragonal and it is an insulator with antiferromagnetic order in the CuO2 plane.

Each Cu has six O neighbours (see also Fig.1.13(a)), but with the octahedral

arrangement elongated along the c axis, perpendicular to the planes.

Electronic structure

A closer look at the electronic structure of copper oxides allows one to see

why these materials tend to become Mott insulators and explain why a single-

orbital12 Hubbard model is a good model.
12i.e. in which each site has only one place where at most two electrons can accommodate.
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The role of the oxygen atoms located between each pair of copper atoms

cannot be ignored in gaining a complete understanding of the situation.

The copper atom is a multi-orbital system with 9 electrons in five d-orbitals,

as reported in Fig.1.12.

Figure 1.12: The five d-orbitals of Cu

In an undistorted lattice, the octahedral symmetry favours energetically the

t2g orbitals (see Fig.1.13(c)), that have lower Coulomb repulsion among the

electrons in the d-orbitals and the oxygens, being further away from one another.

This is not the case in Fig.1.13(b), where the electrons in the dx2−y2 orbital

are closer to the oxygens and hence more energetically costly. When a lattice

distortion along z is instead present, as in the case of cuprates, the dz2 and

dx2−y2 levels split, being the dz2 energetically favoured (Fig.1.13(d)).

As a result, among its 9 electrons, each Cu atom has one electron (conse-

quently one hole) on each ion site in the d shell, in the dx2−y2 orbital, effectively

creating a half-filled orbital; because of its finite overlap with the p orbitals of

the four neighboring O atoms in the CuO2 planes, Wannier orbitals centered

around the Copper atoms are created.

The illustration in Fig.1.14 shows the orbital radial charge densities at the

typical Cu-O spacing and provides insight into the relationship between Cu and

O. The strong overlap between the Cu 4s states and the O 2p states suggests
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that these electrons can be treated as having been transferred to the O, resulting

in a valence of 2− when the O 2p states are filled. On the other hand, the

peak density of the Cu 3d states is located inside that of the 3p and 3s states,

indicating strong Coulomb interactions between Cu 3d electrons. Furthermore,

the significant overlap between the Cu 3d and O 2p orbitals results in significant

hybridization.

Figure 1.13: (a) Cu atom (in red) surrounded by six O (in white) in a octahedron

structure. (b) Top view of a Cu orbital (central atom) and O (orange circles).

(c) Energy levels in the undistorted structure. (d) A lattice distortion along the

z axis splits the dz2 and dx2−y2 levels, creating an (effective) half-filling.

The behavior of Copper oxides at low energies is considered to be well rep-

resented by a single-band Hubbard model [7], due to a strong on-site repulsion

that disfavors configurations with either no holes or two holes. This leads to a

microscopic understanding in terms of the Hubbard model or its strong coupling

version.
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Figure 1.14: Radial charge densities for outer orbitals of Cu and O at a tipical

Cu-O bond spacing [5].

Superexchange

The properties of the parent compound La2CuO4 have been explained by An-

derson [8], who described it as a Mott insulator with superexchange driving AF

correlations among Cu moments, rather than a "conventional" insulator in the

sense of simple band theory. Indeed, according to conventional band structure

calculations, La2CuO4 is expected to be metallic.

The concept of superexchange is here discussed for the simple Hubbard

model, with a single orbital per Copper site (disregarding in this brief anal-

ysis the impact of the oxygen atoms) on a square lattice and nearest neighbour

hopping only t. The conventional band theory focuses on the kinetic energy of

electrons and the attempt of an electron to reduce its energy by hopping from

one site to the next. The band width is equal to 8t. The Hubbard model also

considers the Coulomb repulsion U between two electrons on the same site. If U

is larger than the band width, the electrons will tend to be localized on individ-

ual sites. Despite this, an electron can still reduce its kinetic energy by making

virtual hops to a neighboring site and back (see Fig.1.15), but only if its spin
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Figure 1.15: Schematic representation of the Hubbard model and the superex-

change mechanism. The hopping process, indicated by the purple arrow has an

energy "cost" −t; the double occupancy, disfavoured by the Coulomb repulsion,

costs U ; the AF configuration, indicated by the red line, has cost J = 4t2/U .

[5]

is antiparallel to that of the electron already on that neighboring site, due to

Pauli exclusion principle. This results in an effective Heisenberg exchange en-

ergy between antiparallel spins, known as the superexchange energy J = 4t2/U .

This analysis suggests that the parent compound La2CuO4 should be classified,

as experimentally observed, as an antiferromagnetic insulator.

Phase diagram for Cuprates

The phase diagram of this material, by varying doping and temperature, follows

a universal pattern (see Fig.1.16) in which the long-range antiferromagnetic or-

der is rapidly suppressed and ultimately disappears upon doping with holes or

electrons, leading to the emergence of superconductivity. The metallic state

above the superconducting one shows anomalous features that cannot be de-

scribed by the Landau theory of Fermi liquids. Upon further doping, in the

end, superconductivity disappears and a conventional metallic phase is estab-

lished.

In the case of hole-doping, the maximum superconducting temperature Tc

occurs for a hole doping x ≈ 0.16. On the other side of the phase diagram,

upon electron-doping, since the electronic correlations become even stronger,
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Figure 1.16: Phase diagram of La2−xSrxCuO4 for hole-doping, and

Nd2−xCexCuO4 for electron-doping, from [9]. AF = antiferromagnetic order,

SC = superconducting order; in the pseudogap phase the density of states at

the Fermi level in smaller than that predicted by conventional band theory.

the antiferromagnetic phase is more robust while the superconducting phase

is reduced compared to the case of hole-doping. However, dynamic AF spin

correlations are able to survive13.

This rich behaviour is believed to be driven by the strong electron-electron

correlations, as discussed before.

Suppression of Antiferromagnetism by hole-doping

The phase diagram in Fig.1.16 showed that hole doping x destroys the AF order,

even for small values of x. It is worth investigating the nature of this destruction

and looking for correlations that still survive14.

As suggested in [7] by Zhang and Rice, an effectively nonmagnetic site is

created in a CuO2 plane when a hole (which has its own spin) forms a bound
13This will be discussed in more detail in Chapter 2.
14A comprehensive series of results and techniques can be found in [5]. Here only a few are

reported.
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singlet state with a Cu2+ ion. Magnetic correlations are affected by this bound

hole in two ways: 1) the density of magnetic moments is reduced ("dilution"),

and 2) the motion of the holes can also perturb the spins. Both the effects,

effectively disrupt the magnetic order.

It is worth mentioning that dilution alone can be recreated and studied

experimentally by preparing samples with a fraction z of Cu ions replaced by

Zn and/or Mg. In [10] it is shown that, in a classical 2D antiferromagnet, the

AF order is destroyed at the percolation15 limit of z ≈ 0.41.

Figure 1.17: Impact of nonmagnetic dilution on AF order in

La2Cu1−z(Zn,Mg)zO4, using different techniques and models. In the up-

per plot it is reported the Néel temperature TN , while in the lower one the

staggered moment per Cu normalized to z = 0.

The results from Vajk et al. [11] reported in Fig.1.17, show that: 1) the
15Percolation refers to the point at which a sufficient number of ions/holes are introduced

into a system, such as a CuO2 layer, that the magnetic order is destroyed
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destruction of long-range order due to dilution occurs at the classical percolation

limit, and 2) models that take into account quantum fluctuations capture the

different, and reduced, ordered moment with respect to the classical prediction.

This clear shows that hole doping in CuO2 layers has a greater impact than

the dilution alone, since a much lower concentration of doping holes is enough

to cause the same effects of a strong magnetic dilution.

Despite the long-range AF order being destroyed by a small density of holes,

early studies demonstrated that, at low temperatures, local magnetic order can

persist (see, for instance, the muon Spin Rotation (µSR) experiment from Nie-

dermayer et al. [12].

In this regard, neutron scattering experiments, later discussed in Ch.2, are

a primary tool to investigate the surviving correlations.

1.4.3 The Hubbard model for HTSCs

Models such as the Hubbard model to directly assess the impact of strong

Coulomb interactions, are extremely important in particular when other meth-

ods like conventional density-functional calculations are unable to properly con-

sider strong correlation effects.

The debate about the necessary complexity of a model to understand high-

temperature superconductivity, with some advocating for a simple one-band

model and others suggesting that a multi-band model is needed to capture all

relevant degrees of freedom, is not settled. Multi-band Hubbard models taking

into account multiple orbitals may be necessary to understand the rich behaviour

of compounds such as La2CuO4. However, these models are challenging to solve

and calculations beyond mean-field are limited to small clusters. It is common

to start with a simpler 1-band Hubbard model focusing only on the Cu d-state

and neglecting the impact of the oxygen atoms.

The inclusion of the next-nearest-neighbour hopping t′, mentioned before,

has been shown to be a relevant feature in all cuprates, as it constitutes an essen-

tial material-dependent parameter. Moreover, materials with higher transition
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temperature Tc are associated to larger values of t′ [13].

The previous discussion on the physical and electronic structure of cuprates,

serves as a justification for the appropriateness of the single-band Hubbard

model to describe them.

1.5 Stripe order and HTSCs

Doped antiferromagnets, belonging to the class of strongly correlated materials,

are of particular importance and have been very well studied in the scientific lit-

erature over the years. Here, the parent compound is insulating, even at elevated

temperatures, because of the strong short-range electron-electron repulsion.

The doping process considered is a hole doping, involving the removal of

a small fraction of electrons from the insulating antiferromagnet. However,

despite the charge distribution in a doped antiferromagnet being homogeneous,

the added charges form clumps (predicted theoretically and later discovered

experimentally) that constitute those called "topological defects", across which

there is a change in phase of the background of spins. In particular, in one

dimension these topological defects are solitons, in two dimensions linear "rivers

of charge" and planes of charge when in three dimensions. More in general, for a

generic d-dimensional system, the defects are (d− 1)-dimensional objects. Such

states tend to be insulating, even though they can exhibit a bad-metal character

when thermally-disordered [4].

The importance of studying charge clustering and self-organization of topo-

logical defects resides in the large number of related systems in which they

appear. Different forms of stripe formation show up, for instance, in Quantum

Hall systems [14, 15], and in many other systems with competing interactions.

Hence, the electronic properties of synthetic metals, including their pecu-

liar charge transport and superconducting properties, cannot be understood

without a proper study of the formation of these spontaneously generated local

structures.
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1.5.1 Spin and Charge order in layered transition-metal

oxides

In Sec.1.4.2 the general, and unconventional, features of cuprates have been dis-

cussed. The concept of a stripe phase is one of those features, that emerged over

the years when interpreting a broad range of experimental results on copper-

oxide superconductors and other systems closely related.

By charge order (or charge-density-wave) one refers to an electronic phase

that breaks the translational symmetry of the underlying lattice, by self-organizing

the electrons into periodic super-structures.

In general, the stripe order is an electronic ground state characterized by

a combination of magnetic order and charge order with specific geometric con-

straints on the ordering wave vectors.

Once we allow holes to wander in an antiferromagnetic background, it be-

comes clearer that the creation of striped inhomogeneities can be a consequence.

The reason for the self-organization of local inhomogeneities can be found in

the competition between the tendency of the electrons to cluster in regions of

suppressed antiferromagnetism [16], hence producing a short-range tendency

to phase separation [17, 18, 19], and the long-range Coulomb interaction that

instead frustrates it.

Striped states, reported in Fig.1.18, indeed constitute the best compromise

between these competing phenomena and allow the doped holes to be delocalized

along linear stripes, while the regions far from them remain more or less in the

undoped correlated insulating state.

1.5.2 Theoretical Evidences

The impact of the hole motion was first analyzed by Trugman [20] for a 1-band

Hubbard model (with nearest-neighbours hopping only). As shown in Fig.1.19,

hole motion along a row of sites creates energetically-costly (with cost J , the ex-

change energy) ferromagnetic spin-correlations. In comparison, Fig.1.20 shows

how a hole can effectively move diagonally by rotating around a square one
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Figure 1.18: Schematic picture of a stripe-ordered phase [4]. Magnetic or spin

order are represented by the arrows, while the local charge density is represented

by the blue scale. Clusters of holes (stripes, in the dark-blue regions) lie between

largely undoped regions behaving as in the undoped antiferromagnet.

and a half times. The first "rotation" creates costly ferromagnetic correlation

(configuration 5), successively repaired after the next hopping events.

The first evidence of the possible development of an inhomogeneous state

in a hole-doped cuprate layer came from the paper by Zaanen and Gunnarsson

[21] thanks to a Hatree-Fock calculation on a 3-band Hubbard model. Their

stripe solution is shown in Fig.1.21. A drawback of this particular solution is

that the charge stripes have a density of one hole per copper site along the

stripe, which leads to an insulating state and a spin periodicity that is half

as large as what was observed in early measurements using inelastic neutron

scattering on La2−xSrxCuO4. Stripe states that have a hole density of one-half

per Cu site along the charge stripe, consistently with neutron and transport

experiment, have been found in later studies. As justified in the following lines,

it was expected that the stripe structure, with holes concentrated along rivers

of charge-separating antiferromagnetic domains, would also be manifested as a

periodic modulation of charge with a wave vector twice as long as that of the

incommensurate AF peaks and linked to the hole concentration [22, 21].

It is fundamental to notice that, when crossing the hole stripe, there is a
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Figure 1.19: Motion of one hole in an antiferromagnet. Starting from (a),

the hole hops twice along a row (b) and causes spins to be flipped, creating

energetically-costly ferromagnetic bonds, indicated by squiggles.[20]

shift in phase of the AF background by π (the so-called π-shift), as we proceed

to illustrate with the following schemes. In absence of holes, the electrons (rep-

resented by their spin orientations {↑, ↓}) in an AF pattern arrange themselves

as follows

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ . (1.36)

When a hole, represented by ⃝, is introduced somewhere, the situation changes

↑ ↓ ↑ ↓ ⃝ ↓︸ ︷︷ ︸
π−shift

↑ ↓ (1.37)

and two electrons with parallel spin end up being close to each other.

As a result, the presence of charge stripes disrupts the long-range antiferro-

magnetic order, however, the existence of periodic stripes can still result in a

spin order.

Other evidences for spin and charge inhomogeneities came also from calcu-

lations on the t − J model, indicating that doped holes would tend to phase

separate [18] and the inclusion of extended Coulomb interactions should frus-

trate this phase separation [23], hence resulting in structures modulated in space,

such as striped and checkerboard states.

All the studies in this regard identified a ground state with broken symme-

try and short-range inhomogeneities in charge, arranged in an ordered pattern

of one-directional arrays, separated from the magnetic domains and acting as
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Figure 1.20: Motion of one hole in an antiferromagnet. (a) Going from configu-

ration (1) to (7), that is by rotating around the square 1.5 times, we get a state

degenerate with (1). (b) Plot of relative energy of each configuration in units of

J .

boundaries for the latter.

The density of holes in the stripes is not fixed in principle, but it should

correspond to the value that minimizes the free energy associated with the

competing short- and long-range interactions.

1.5.3 Experimental Evidences

The scientific literature on the topic is extremely vast16, as it reports a variety

of experimental techniques on the even more vast family of HTSCs. In this

section we report a few notable results.

Historically, the first evidence for stripe ordering came from neutron scat-

tering experiments. The details on this commonly utilized technique to char-

acterize the HTSCs will be discussed in Ch.2. From this point forward, we

will utilize reciprocal lattice units (r.l.u.) as the unit of measurement for wave

vectors in momentum space. The use of r.l.u. involves expressing wave vectors

as Q = (H,K,L), corresponding to Q = (H × 2π/a,K × 2π/a, L × 2π/a) in
16See for instance [24, 5, 25]
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Figure 1.21: Stripe solution in a 3-band Hubbard model by Zaanen and Gun-

narsson [21] by Hartree-Fock calculations.

physical units (with a denoting, as usual, the lattice constant).

The occurrence of AF order was first demonstrated for La2CuO4 by Vaknin

et. al. [26]. The crystal structure for the copper atoms in a CuO2 plane of

La2CuO4, for both real and reciprocal space, is schematically represented in

Fig.1.22.

Figure 1.22: Crystal structure for the copper atoms in a CuO2 plane of

La2CuO4. (Left): real space; (Right): reciprocal space[5].

The Néel order with antiferromagnetism, found by looking at its magnetic

structure, causes the unit cell to expand by a factor two in real space, which

leads to the emergence of magnetic superlattice peaks, as shown in Fig.1.23.

Therefore, the detection of the antiferromagnetic order can be accomplished by

identifying these superlattice peaks. For an AF magnetic structure, these peaks
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are located at the wave vectors QAF =
(
± 1

2 ,±
1
2 , L

)
.

Figure 1.23: Magnetic structure for the copper atoms in a CuO2 plane of

La2CuO4. (Left): real space; (Right): reciprocal space. Filled and open circles

denote ↑ and ↓ spins respectively[5].

However, it is crucial to differentiate between the magnetic superlattice peaks

and the structural superlattice peaks resulting from staggered rotations of CuO6

octahedra, as they can rotate slightly. Fortunately, the AF and structural peaks

are observed at different positions, making them distinguishable.

The first experimental evidences for charge and stripe order were identified

in two nickelate compounds La2NiO4.125 [27] and La1.8Sr0.2NiO4
17, in which

stripes run diagonally, as shown in Fig.1.24(b).

Successively, the neutron scattering study by Tranquada et. al. [24] on a

single crystal of La1.48Nd0.4Sr0.12CuO4 (LNSCO, i.e. LSCO doped with Nd

atoms) at doping x = 1/8, whose striped phase appears in Fig.1.24(c), and

reported in Fig.1.25, provided the first direct evidence of stripe order in cuprates.

In this case the stripes are parallel to the Cu-O bonds.

Sets of four "satellite" peaks, appearing in presence of a modulated spin

structure, are found at wave vectors ( 12 ± ϵ, 12 ± ϵ, L) and (− 1
2 ± ϵ, 12 ± ϵ, L),

where ϵ ≈ x = 1/8 = 0.125.

The period of the charge modulation is half that of the spins, which results

in diffraction peaks appearing at second-harmonic positions (see Fig.1.25(c)),

leading to a fundamental relationship between the spin and charge ordering
17Nickelates are materials closely related to cuprates, the main difference being the presence

of NiO2 in place of CuO2 planes.
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Figure 1.24: (a) Orientation of magnetic superlattice peaks for diagonal (open

circles) and bond-parallel (filled circles) stripes. Representation of stripe order

detected in La2NiO4.125 (b), and in La1.48Nd0.4Sr0.12CuO4 (c). [27] [24]. The

thick lines indicate the magnetic unit cell, which is twice the size of the charge

unit cell. Arrows indicate the orientation of magnetic moments on metal atoms,

locally antiparallel, while oxygen atoms have been omitted. The spin direction

rotates by π (relative to a simple AF structure) on crossing a domain wall.

Holes are located at these boundaries, as indicated by circles without arrows;

where a hole is present,centered on a metal site, the circle is filled. In (b) the

hole density is assumed to be uniform along a domain wall, while in (c) it was

assumed a hole-per-Cu ratio of 1/2.

incommensurability factors

δcharge = 2δspin (1.38)

or, in terms of the wavelengths λ of the modulations,

λspin = 2λcharge . (1.39)

Higher harmonics, in principle important to describe the spin structure, play

a negligible role and thus indicate a more sinusoidal pattern of domain modula-

tion. The charge distribution cannot be directly detected by neutrons, instead,
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Figure 1.25: Scans of superlattice peaks of La1.48Nd0.4Sr0.12CuO4 at 11 K and

doping x = 1/8. (a) (H,K, 0) projection of the reciprocal space, showing the

location of the measured charge and spin satellites (black circles) along the

(010) and (110) directions, respectively; Bragg reflections are indicated by white

circles. (b,c) Elastic neutron scattering measurement of the magnetic order

peaks at (0.5, 0.375, 0) and (0.5, 0.625, 0) (b) and of the charge peak at (0, 1.75, 0)

(c), with scans along the arrows indicated in (a).

the modulation of atomic positions associated with the charge modulation, also

known as a charge-density wave, is measured.

This study not only provided the first direct evidence of stripe order in

cuprates but also, together with subsequent studies using neutron and x-ray

scattering, marked the beginning of the entire experimental field of charge or-

dering phenomena in HTSCs.
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1.5.4 The 1/8 anomaly

The previous results are not only interesting in their own right, but also because

they provided the explanation for one of the long-standing mysteries associated

to copper oxide superconductors: the so-called 1/8 anomaly.

A study of the transition temperature as a function of doping in La2−xBaxCuO4

(LBCO) revealed a surprising anomaly, where Tc shows a significant dip at the

unique hole-doping x = 1/8, in contrast to the slight kink at the same doping

level for La2−xSrxCuO4 [28]. The fact that these two compounds, electronically

almost identical, show a difference in Tc suggests the presence of some type of

competing order. This remarkable discovery is shown in Fig.1.26.

Figure 1.26: Comparison of Tc as a function of the doping x in LBCO and LSCO

[28].

A subtle distinction between the two compounds comes from the fact that

the CuO6 octahedra that make up the CuO2 planes are unstable to tilt distor-

tion. An X-ray diffraction study by Axe et al. [29] revealed that, while there are

no average tilts at high temperature, a second-order phase transition at low tem-

perature brings the system to the low-temperature orthorhombic (LTO) phase.

At even lower temperature, however, LBCO can undergo a second transition to

the low-temperature tetragonal (LTT) phase. The LTO and LTT structures are

reported in Fig.1.27. The LTO tilt pattern makes the diagonal directions of the

Cu-O plaquettes inequivalent, while providing no distinction between the Cu-O
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bonds along the c (i.e. perpendicular) direction. On the other hand, in the LTT

phase, the orientation of the tilt axis rotates 90° when moving from one layer to

the next one along the c axis, making clear that the latter phase could be more

favorable for pinning a horizontal stripe phase. This anisotropy is what makes

the two compounds different and is key to the pinning of the electronic order

competing with the superconductivity.

Figure 1.27: Displacement patterns within the two CuO2 planes of a unit cell for

the LTO and LTT structures. Open (solid) circles represent oxygen (copper)

atoms. The oxygen atoms are displaced out of the plane (+ or −) by local

rotations of square planar CuO4 about the tilt axes represented by thick lines.

In the LTT structure the tilt axes rotate by 90° when moving from z = 0 to

z = 0.5, where z is the height along the c axis.

Growing LBCO crystals large enough to perform an accurate characteriza-

tion by neutron scattering has been a challenge at the time of the discovery

of the anomaly (1988). LNSCO, whose momentum structure was determined

by the diffraction experiment reported earlier, was found to exhibit the same

structural phases as LBCO and the same 1/8 anomaly. Hence, the superlattice

peaks for charge and spin order in LNSCO (Fig.1.25), interpreted as evidence of

horizontal stripes, address the anomalous suppression in LBCO as being caused
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by the presence of stripes. Only in 2004, when LBCO crystals at x = 1/8 were

eventually grown, stripe order was confirmed there as well [30].

1.5.5 Coexistence of the two phenomena

The relation between stripes and the mechanism of high-temperature supercon-

ductivity is still an issue, but there is strong empirical evidence for an intimate

relation between the two phenomena:

• Strongly condensed stripe order can suppress superconductivity

• Sometimes a weak stripe ordering can appear at the superconducting tran-

sition temperature Tc

• In several materials a simple linear relation between the inverse stripe

spacing and Tc is found [31]

• By "overdoping" the parent compound, stripe structure and other features

of the doped insulator, together with high-temperature superconductivity,

disappear

Additionally, it has been shown that the best conditions for high-temperature

superconductivity involve stripe correlations that are not too static or strongly

condensed, but also not too unstable or highly fluctuating.
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Chapter 2

Experimental Tools

1The most direct evidence for stripe phases in doped antiferromagnets has come

from neutron scattering and X-ray scattering studies.

When long-period spin and charge density modulations extend over a few

unit cells, the diffraction of a neutron beam yields extra Bragg peaks. The

position of such superstructure peaks allows one to measure the spatial period

and orientation of the corresponding density modulation; its intensity provides

a measure of the modulation amplitude. Being neutrons chargeless particles,

they cannot directly scatter from the modulated electron density. Instead, they

are scattered by the ionic displacements caused by the charge modulation.

X-ray scattering methods (and Resonant X-Ray Scattering (RXS) experi-

ments in particular) are, on the other hand, a great tool for studying the or-

dering of charge, spin, orbital, and lattice degrees of freedom, often providing a

distinctive viewpoint on their interaction and interplay.

Results from inelastic neutron scattering on superconducting La2−xSrxCuO4

[32] and on the related nickelate analog [33], have been the first indication of

long-period spin-density modulations. Electron diffraction allowed to prove the

existence of such ordering in the latter system [34] and, after that, the proper

connection between the magnetic and charge-order peaks was determined in a
1A more complete discussion can be found in [5]
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neutron diffraction study of La2 NiO4.125 [27].

A significant observation is that the charge ordering is always observed at a

higher temperature than the magnetic ordering, which is characteristic [35] of a

transition driven by the charge. The period of the charge order has been shown

to be generally temperature dependent, which means that the hole concentra-

tion along each stripe also varies with temperature; this feature is typical of

structures that arise from competing interactions [36]: the clustering tendency

of holes and the repulsive long-range Coulomb interaction.

Moreover, stripes are easier to detect when they are static, but a perfect

staticness has been shown to be incompatible with the metallic behaviour of the

cuprates [37].

2.1 Neutron Scattering

Neutron scattering is an effective method for investigating strongly correlated

systems. It is capable of detecting common phenomena like magnetic order and

can be used to measure the interaction between magnetic moments by examining

spin-wave dispersions. When magnetic order is absent, it can still detect diffuse

scattering and dynamic correlations. Neutrons are also effective in determining

the atomic arrangement within solids (crystal structure) and lattice dynamics

(phonons).

The neutrons typically involved in experiments related to the present work

are called "thermal" neutrons, quite useful to the study of Bragg diffraction in

crystal structures; in fact, they are characterized by a typical energy of 30meV

(very moderate) and wavelength of order 1.65Å, which is well matched to com-

mon interatomic spacing.

The scattering of neutrons from atomic nuclei is mediated by the strong

force. Contrary to its name, the nucleus, being small in comparison to the

electron cloud of an atom, results in a relatively low scattering cross section.

The nuclear scattering cross section changes from element to element (and

50



even from one isotope to another, as one can see in Fig.2.12), due to the very

complicated interaction between neutrons and atoms, determined by the exact

structure of the nucleus; however, the typical magnitude of the cross section

is roughly independent of atomic number: this is particularly important when

measuring the structure of compounds such as cuprates, where the constituent

elements have very different atomic numbers (as an example, in La2CuO4,

Z(O) = 16, Z(La) = 57, where Z indicates the atomic number).

Figure 2.1: Coherent scattering length as a function of the atomic number. No-

tice the difference between those of hydrogen (H, negative value) and its isotope

deuterium (H2, positive value), despite having the same number of electrons.

As a comparison, x-rays are instead scattered by the electronic charge density

of atoms and the weight per atom in diffraction pattern has a Z2 dependence,

thus providing a 13 times smaller sensitivity to O compared to La. Neutrons,

on the other hand, have roughly uniform sensitivity to all these elements. This

provides a different degree of chemical sensitivity between the two probes, as

clearly visible from Fig.2.1 and Fig.2.2.
2A positive scattering length of a nucleus means that the neutron is subject to a repul-

sive potential as it approaches the nucleus, whereas a negative scattering length involves an

attractive potential.
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Figure 2.2: Pictorial representation of the cross-section of different atoms using

neutron scattering and x-ray diffraction. The x-ray interaction simply depends

on the number of electrons, meaning that adjacent nuclei in the periodic table

have very similar x-ray scattering factors (green circles). On the other hand, as

pointed out in Fig.2.1, neutron scattering allows to distinguish isotopes such as

H from H2 (red circles).

Neutrons are also spinful particles, which means that they are affected by

dipole-dipole interaction, allowing them to scatter from atomic magnetic mo-

ments. Magnetic diffraction and nuclear diffraction can be of the same strength

in presence of large ordered magnetic moments. This is not the case in X-

ray diffraction, where the magnetic cross section is reduced relative to charge

scattering by a factor α2, where α = 1
137 is the fine structure constant.

Creating neutron beams is harder than finding x-ray sources, as will be

mentioned in Sec.2.1.2. The number of neutrons produced by these sources is

in any case modest, hence their "brightness" is lower than in x-ray sources.

One of the challenges of neutron scattering is its weak scattering cross section

and limited source strength, which necessitate the use of large sample sizes.

Despite this, the insights gained from neutron scattering make it worthwhile

to grow large samples. To supplement the information obtained from neutron

scattering, techniques such as muon Spin Rotation (µSR) spectroscopy and

Nuclear Magnetic Resonance (NMR) can be utilized, although they may provide

less information, as they offer greater precision. Although there have been

advancements in Resonant X-Ray Scattering (RXS), neutron scattering remains

a crucial tool for investigating strongly correlated systems.
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2.1.1 Theory of Scattering of Neutrons by a Crystal

3 The general diagram of a neutron scattering experiment is illustrated in

Fig.2.3. Here, the incident neutron has average momentum ℏki and magni-

tude of the wave vector k = |ki| = 2π/λ. where λ is the neutron wave length.

Its energy is given by

Eneutr =
ℏ2k2

2Mn
,

where Mn is the mass of the neutron. Neutrons used in scattering experiments

are non-relativistic. The quantity detected after the scattering event is the new

wave vector kf of the neutron.

Figure 2.3: Diagram of scattering process. [5]

A few assumptions can be made:

• The only degrees of freedom of the crystal are those associated with ionic

motion

• Before the scattering event, the ions are in an eigenstate of the crystal

Hamiltonian with energy Ei

• After the scattering event, the ions are in a different eigenstate of the

crystal Hamiltonian with energy Ef

The initial and final states, and their associated energies, of the neutron-ion

system can be described as follows:
3Main reference:Ashcroft, Mermin: Solid State Physics [38]
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Before scattering:

|Ψi⟩ = ψki
Φi ϵi = Ei +

ℏ2ki
2

2Mn
(2.1)

After scattering:

|Ψf ⟩ = ψkf
Φf ϵf = Ef +

ℏ2kf
2

2Mn
(2.2)

where ψk = eik·r/
√
V and V is volume over which the wavefunction is normal-

ized.

It is convenient to define the neutron momentum transfer

ℏQ = pf − pi = ℏkf − ℏki,

illustrated in Fig.2.4, where the angle 2Θs is called scattering angle and a useful

formula is:

|Q| = k2i + k2f − 2kikf cos 2Θs.

The energy transferred to the sample is given by

ℏω = Eneutr
i − Eneutr

f =
ℏ2

2Mn
(k2i − k2f ).

The neutron-ion interaction can be written as:

V (r) =
∑
R

v(r − r(R)) =
1

V

∑
k,R

vke
ik·[r−r(R)]. (2.3)

Being the range of v of the order of the typical nuclear dimension (≈ 10−13cm),

its Fourier components will vary on the scale of k ≈ 1013cm−1, and therefore be

essentially independent of k in the relevant range for experiments that measure

phonon spectra, in which k ∼ 108cm−1.

The scattering cross-section σ is a measure of the rate of interaction between

radiation and a target, calculated by considering the incoming radiation as a

series of particles, such as photons or neutrons.

The cross-section represents the number of scattering events per unit time

per unit area of the target, per unit incident radiation flux. This measurement is

expressed in terms of an effective area, in units of barn (10−28m2). The quantity
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σ should not be considered as a true geometric cross-section, but rather as an

area proportional to the interaction probability.

In the laboratory, differential scattering cross-sections are measured. The

double-differential cross section d2σ
dΩfdEf

measures the probability of scattering

into a differential solid angle dΩf and energy dEf . The latter is then used to

calculate dσ
dΩ and σ by integrating over the energy of the scattered radiation and

solid angle.

The constant quantity v0 ≈ vk is conventionally written in terms of the

scattering length a, defined so that the total cross section scattering of a neutron

by a single isolated ion is given in Born approximation4, in which nuclei are

assumed to have zero spin and be made of a single isotope, by 4πa2.

Figure 2.4: Scattering triangle

Eq.2.3 is thus written as:

V (r) =
2πℏ2a
MnV

∑
k,R

eik·[r−r(R)] (2.4)

The transition rate P (i.e. probability per unit time) for a neutron to scatter

from pi to pf as a result of its interaction with the ions can be calculated with

4In the most general case this approximation is not valid, implying a dependence of a on the

nuclear state. Besides the coherent term, derived in the present discussion, the cross section

acquires a new incoherent term, which has no distinct energy dependence and contributes,

along with the multiphonon processes, to the diffuse background
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the "golden rule" [39] of lowest-order time-dependent perturbation theory:

P =
∑
f

2π

ℏ
δ(ϵi − ϵf )| ⟨Ψi |V |Ψf ⟩ |2 (2.5)

=
∑
f

2π

ℏ
δ(Ef − Ei + ℏω)

∣∣∣∣ 1V
∫
dreiQ·r ⟨Φi |V (r) |Φf ⟩

∣∣∣∣2 (2.6)

=
(2πℏ)3

(MnV )2
a2

∑
f

δ(Ef − Ei + ℏω)

∣∣∣∣∣∑
R

〈
Φi

∣∣∣ eiQ·r(R)
∣∣∣Φf

〉∣∣∣∣∣
2

, (2.7)

P is related to the measured cross section d2σ
dΩdE by connecting it to the

incident neutron flux

j =
k

Mn
|ψk|2 =

k

MnV
,

so that 5

j
d2σ

dΩdE
dΩdE =

ki
MnV

d2σ

dΩdE
dΩdE =

PV dkf

(2πℏ)3
(2.8)

=
PV k2fdkfdΩ

(2πℏ)3
=
PVMnkfdEdΩ

(2πℏ)3
. (2.9)

Finally, Eq.2.5 and Eq.2.8 can be put together, under the condition for all

the final states f to be compatible with a given initial state i through the

energy-conserving constraint given by the δ-function, to obtain:

d2σ

dΩdE
dΩdE =

kf
ki

Na2

ℏ
Si(Q, ω), (2.10)

where

Si(Q, ω) =
1

N

∑
f

δ

(
Ef − Ei

ℏ
+ ω

) ∣∣∣∣∣∑
R

〈
Φi

∣∣∣ eiQ·r(R)
∣∣∣Φf

〉∣∣∣∣∣
2

(2.11)

and N is the number of atoms per unit volume in the sample.

The quantity Si(Q, ω) can be evaluated using the representation

δ(ω) =

∫ +∞

−∞

dt

2π
eiωt

5Using the fact that a volume element dkf contains V dkf/(2πℏ)3 neutron states of a given

spin.
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and by noting that any operator Â obeys the relation:

ei(Ef−Ei)t/ℏ
〈
Φf

∣∣∣ Â ∣∣∣Φi

〉
= ⟨Φf |A(t) |Φi⟩

and, furthermore, for any pair of operators Â and B̂,∑
f

〈
Φi

∣∣∣ Â ∣∣∣Φf

〉〈
Φf

∣∣∣ B̂ ∣∣∣Φi

〉
=

〈
Φi

∣∣∣ ÂB̂ ∣∣∣Φi

〉
.

In doing so, defining u the vector indicating the (small) displacement of the

ion with respect to its equilibrium position,

Si(Q, ω) =
1

N

∫
dt

2π
eiωt

∑
R,R’

e−iQ·(R−R’)
〈
Φi

∣∣∣ eiQ·u(R’)e−iQ·u(R,t)
∣∣∣Φi

〉
.

(2.12)

Since the crystal is in general in thermal equilibrium, the cross section has to

be averaged for the given initial state i over a Maxwell-Boltzmann distribution

of equilibrium states. This is done by replacing Si by its thermal average:

S(Q, ω) = 1

N

∑
R,R’

e−iQ·(R−R’)
∫

dt

2π
eiωt⟨eiQ·u(R’)e−iQ·u(R,t)⟩, (2.13)

where

⟨Â⟩ =

∑
e−βEi

〈
Φi

∣∣∣ Â ∣∣∣Φi

〉
∑
e−βEi

,

and β = 1/kBT is the inverse temperature. The quantity S(Q, ω) is the dy-

namical structure factor of the crystal, and does not depend on any properties

of the neutrons.

All in all, what we get is the concise and elegant result:

d2σ

dΩdE
dΩdE =

pf
pi

Na2

ℏ
S(Q, ω). (2.14)

2.1.2 Neutron scattering in practice

In this section some basic properties of neutron scattering experiments are dis-

cussed6. The neutron is an elementary particle with a spin 1/2 and is a build-

ing block of the atomic nucleus, together with the proton. According to the
6For a more exhaustive discussion, see Zaliznyak and Tranquada [25]
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standard model of elementary particles, the neutron and proton are fermionic

hadrons, also known as baryons, made up of different combinations of quarks.

The neutron consists of one "up" quark and two "down" quarks, while the

proton consists of two "up" quarks and one "down" quark. The free neutron,

unstable when outside of the nucleus, undergoes β-decay into a proton, an elec-

tron, and an antineutrino. Despite its relatively short lifespan of 15 minutes, it

is still sufficient for the purposes of neutron-scattering experiments.

In order to generate neutron beams, it is necessary to extract neutrons from

atomic nuclei. There are two methods to accomplish this. The first is through

the fission process in a nuclear reactor, where each uranium 235U fission produces

a couple of neutrons, leading to a self-sustaining chain reaction. The second

method involves knocking neutrons out of heavy-metal nuclei (spallation), such

as tungsten or mercury, using a high-energy proton beam.

Experimental measurement of the cross-section

The result of Eq.2.14 does not provide a straightforward way to measure the

cross-section in practice. In a scattering experiment, the sample is placed in

the neutron beam having a well-defined wave vector ki and known incident flux

density φi(ki). The detector measures the partial current δJf (kf ) scattered

into a small (infinitesimal, ideally) volume of phase space

d3kf = k2fdkfdΩf = (Mnkf/ℏ2)dEfdΩf ,

near the wavevector kf , as shown in Fig.2.5.

This measured partial current, appropriately normalized by the phase space

element covered by the detector, yields the scattered current density. At this

point the double differential scattering cross-section can be computed:

d2σ(Q, E)

dΩdE
=

1

φi(ki)

δJf (kf )

dΩdE
. (2.15)

For each incident neutron in the plane wave state eiki·rn , the incident flux

density is φi(ki) = ℏki/Mn. The scattered current density is instead related to

the transition rate Γi→f from the initial state
∣∣ki, S

z
n,i, ηi

〉
, with the neutron in
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Figure 2.5: [25] Schematic representation of the scattering process in a neutron

scattering experiment. (a) elastic, (b) inelastic with neutron energy loss, (a)

with neutron energy gain

the plane wave state eiki·rn with spin Sz
n,i and scattering system described by

the set of variables ηi, to the final one
∣∣∣kf , S

z
n,f , ηf

〉
.

Typical experimental setup

The setup for a neutron scattering experiment will vary depending on the

specifics of the experiment. However, the key components and principles re-

main the same and typically involve the following:

• Neutron source, among those described in the current chapter. The choice

of neutron source depends on the energy range and brightness of the neu-

trons required for the experiment.

• Sample: The sample being studied is typically a single crystal or powder

of the material. In the case of stripe order in cuprate superconductors,

the sample is prepared and aligned in a specific way to allow the neutron

scattering experiment to probe the desired ordered state. This may in-

volve cooling the sample to low temperatures, applying magnetic fields,

or orienting the sample in a specific way.

• Neutron guide and monochromator : The neutron guide is used to trans-

port the neutrons from the source to the sample, while the monochromator

is used to select a specific energy range of neutrons for the experiment.
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• Sample environment : The sample environment is critical for controlling

the temperature, pressure, and magnetic field conditions under which the

sample is studied. This may involve a cryostat for cooling the sample, a

pressure cell for controlling the pressure, or a magnet for applying mag-

netic fields.

• Neutron detectors: The scattered neutrons are measured by neutron de-

tectors, which can be positioned around the sample to collect data from

different scattering angles. The choice of neutron detectors depends on

the type of data being collected and the energy range of the scattered

neutrons. The precise setup and conditions are chosen to maximize the

sensitivity to the desired properties and minimize the contribution from

other types of scattering.

• Data analysis: The data collected by the neutron detectors is analyzed

to extract information about the magnetic and atomic structures of the

sample. This may involve Fourier transforming the data to obtain the

reciprocal space representation of the structure, or fitting the data to a

theoretical model to extract the physical parameters of interest.

2.2 Resonant X-ray methods

7X-rays have been widely used to investigate the internal structure of matter,

as they interact with the electronic clouds surrounding atomic nuclei [41]. Early

signs of resonant x-ray effects were discovered in the 1970s when de Bergevin

and Brunel [42] found that x-rays can also detect electronic spin distribution in

magnetic materials by identifying antiferromagnetic Bragg reflections in NiO.

Subsequently, synchrotron-based x-ray magnetic scattering has been used as

an effective alternative to neutron scattering on several magnetically-ordered

systems. Since its introduction in the 1980s, Resonant X-Ray Scattering (RXS)

has grown into a highly flexible tool for examining ordering phenomena involving
7Main reference: Comin and Damascelli [40]
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charge, spin, orbital, and lattice degrees of freedom, often providing a unique

viewpoint on their interplay.

2.2.1 X-Ray scattering in theory

RXS is a technique where photons are scattered from a material due to their

interaction with the electronic cloud. To have radiation-matter scattering, the

interaction Hamiltonian must contain combinations of operators in the form

aν(q)a†ν(q − Q), where a†ν(q) and aν(q) are operators that create and annihilate

photons with wave vector q, polarization state ν and frequency ω = c|q|. The

effective non-relativistic interaction Hamiltonian can be derived from the full

electron-matter minimal coupling Hamiltonian, and reads:

Htot =
∑
j

{
1

2me
[pj −

e

c
A(rj , t)]2 + V (rj , t)

}
+

∑
j ̸=k

e2

|rj − rk|2
+HEM (2.16)

= Hel +HEM︸ ︷︷ ︸
H0

+
e

mec

∑
j

A(rj , t) · pj︸ ︷︷ ︸
Hlin

int

+
e2

2mec2

∑
j

A2(rj , t)︸ ︷︷ ︸
Hquad

int

(2.17)

where the total Hamiltonian is the sum of the Hamiltonian of the electronic

system alone,

Hel =
∑
j

{
1

2me
p2
j + V (rj , t)

}
+

∑
j ̸=k

e2

|rj − rk|2
,

taking into account the lattice potential V (rj , t) and the Coulomb interaction

term e2

|r−r′|2 , the interaction with the vector potential A(rj , t), and the Hamil-

tonian of the electromagnetic (EM) field alone,

HEM =
∑
q,ν

ℏω[a†ν(q)aν(q) + 1/2];

e and me represent the electronic charge and mass, pj and rj are the mo-

mentum and position coordinates of the j-th electron.

H lin
int and Hquad

int , linear and quadratic in A respectively, couple the electronic

degrees of freedom and the EM field.
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As a basis for the light-matter quantum system, we can use the states

|ΨM ⟩ = |ψm⟩el ×
∣∣ϕ ¯nq,ν

〉
EM

where |ψm⟩el represents the electronic part of the wavefunction (with eigen-

values ϵm and m being the quantum number labeling them), and
∣∣ϕ ¯nq,ν

〉
EM

indicates a photon state with photon occupation n̄q,ν = {nq1,ν1
, nq2,ν2

, . . . }

corresponding to having nq1,ν1 photons with wave vector q1 and polarization

ν1, nq2,ν2 photons with wave vector q2 and polarization ν2, and so on.

Here, M = {m,q, ν} is the label for the global set of quantum numbers.

The interaction between radiation and matter causes the states of the system

{|ΨM ⟩} to not be eigenstates. However, they can still be used as a basis set

in a perturbative approach (i.e. by discarding the interaction terms in the first

place).

In this approach, the unperturbed energy spectrum is defined as

EM = ϵm +
∑
q,ν

(nq,νℏωq + 1/2).

A scattering process is defined as a transition from an initial state

|ϕi⟩EM = |. . .⟩
∣∣nqin,νin

〉 ∣∣nqout,νout

〉
|. . .⟩

of a photon with a certain wavevector and polarization (qin, νin) being an-

nihilated, and an outgoing photon with different wavevector and polarization

(qout, νout) being created in a final photon state

|ϕf ⟩EM = |. . .⟩
∣∣nqin,νin − 1

〉 ∣∣nqout,νout + 1
〉
|. . .⟩ .

Key quantities in this discussion are the probabilities of transition from a

state |Ψi⟩ = |ψGS⟩el×|ϕi⟩EM to a final one |Ψf ⟩ = |ψGS⟩el×|ϕf ⟩EM , under the

additional hypothesis of having |ψm⟩el ≡ |ψGS⟩el (i.e. the electronic part of the

initial and final state is in its ground state). By using the generalized Fermi’s

golden rule [39], the transition probability wi→f between the two quantum states

can be calculated:

wi→f = 2π| ⟨Ψi |T |Ψf ⟩ |2δ(Ef − Ei) (2.18)
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where the T-matrix is defined as:

T = Hint+Hint
1

Ei −H0 + iη
Hint+Hint

1

Ei −H0 + iη
Hint

1

Ei −H0 + iη
Hint+. . .

(2.19)

recalling that H0 = Hel+HEM is the unperturbed Hamiltonian and Hint =

H lin
int +Hquad

int the interaction operator.

The n-th operator on the right-hand side represents the n-th order pertur-

bation term. By looking at the second-quantized form of A(r, t) ∝
∑

q,ν eν ·

[eiq·r−iωta†νq + h.c.], we see that the combinations of operators of the kind a†a

required to describe scattering events, is generated in Eq.(2.19) by the quadratic

interaction operator Hquad
int in the first-order term, and by the linear one H lin

int

in the second-order term. From this, the perturbative transition probabilities

w
(1)
i→f and w

(2)
i→f , corresponding to the first and second order respectively, can

be computed.

In the x-ray regime, the term w
(2)
i→f involves the excitation of a core hole

into an intermediate state through the absorption of a photon, followed by the

re-emission of a scattered photon once the core hole is filled back. This second-

order process is resonant and is associated with RXS. On the other hand, the

first-order term w
(1)
i→f in the scattering process (known as Thomson scattering) is

instantaneous and does not involve the excitation of an intermediate state. The

latter is non-resonant and controls the signal in conventional X-Ray Diffraction

(XRD).
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Figure 2.6: Resonant processes and scattering geometry in RXS, from [40]. (a)

In non-resonant scattering, the excitation process does not involve intermediate

energy states, while in resonant scattering, the energy of the incident photon is

tuned to promote an electronic transition from the ground state |ΨGS⟩ to an

intermediate state |Ψm⟩. This results in the creation of an outgoing scattered

photon through the recombination of the excited electron with a core hole.

(b) Different energy dependence of resonant and non-resonant processes. An

enhancement of the resonant channel near an electronic transition with energy

∆E distinguishes the two. (c) A schematic of a conventional diffractometer,

illustrating the kinematics of the scattering/diffraction process, as outlined in

(d).

The two processes are schematically depicted in Fig.2.6(a). XRD is a one-

step process due to its first-order nature, while RXS is a two-stage process

involving an intermediate state. This is reflected in the different photon en-

ergy (hν) dependencies of the two channels, as shown in Fig.2.6(b). XRD is

almost energy-independent (red dashed curve), while the cross-section for RXS
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is strongly peaked around the energy of the electronic transition (blue curve),

where the experimental signal is greatly enhanced and decays to zero away from

the resonance. This typically occurs at an absorption edge, when electronic

transitions from deeply bound core states to the valence band (and beyond into

the continuum) take place. As a result, RXS is highly sensitive to partial mod-

ulations of the charge density involving a single electronic band, while the XRD

signal reflects the total electronic density and is therefore less sensitive to spa-

tial variations of the density, unless they are accompanied by a distortion of the

lattice, which would involve all the electrons (core and valence).

In order to get closer to computing some observable quantities, the photon-

energy/site-dependent complex tensor called form factor fpq is defined as fol-

lows:

fnpq(ℏω) =
e2

m2c2

∑
i,l

〈
χ
(n)
i

∣∣∣ pq ∣∣∣χ(n)
l

〉
·
〈
χ
(n)
l

∣∣∣ pp ∣∣∣χ(n)
i

〉
ℏω − (ϵ

(n)
l − ϵ

(n)
i ) + iΓil

. (2.20)

Here, χ(n)
i and χ

(n)
l represent the initial and intermediate single-particle

electronic states at site Rn and energies ϵ(n)i and ϵ
(n)
l , respectively, involved in

the light-induced transition i → l. Γil := ℏ/τil is the inverse lifetime of the

intermediate state with an electron in χ(n)
l and a hole in χ(n)

i . The form factor

fnpq is closely related to the X-Ray Absorption (XAS), a first-order process in

the radiation-matter interaction Hamiltonian, which in turn bears a connection

to the resonant scattering cross-section:

IXAS(ℏω) ∝ − 1

ω2
× Im

[∑
n

∑
p

(eνin
)p · f (n)pp (ℏω)

]
(2.21)

IRXS(Q, ℏω) ∝

∣∣∣∣∣∑
pq

(eνin
)p ·

[∑
n

f (n)pq (ℏω)eiQ·Rn

]
· (eνout

)q

∣∣∣∣∣
2

(2.22)

=

∣∣∣∣∣∑
pq

(eνin)p · Fpq(ℏω) · (eνout)q

∣∣∣∣∣
2

. (2.23)

From Eq.2.21 it follows that XAS only depends on the polarization of the

incoming light eνin
.
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On the other hand, in Eq.2.23, the scattering tensor Fpq is a nonlocal quan-

tity (i.e. has no dependence of the lattice position Rn) directly related to the

physical observable in RXS experiments (IRXS). Moreover, the RXS signal

depends on the outgoing polarization eνout
as well.

2.2.2 ...and in practice

In a scattering or diffraction experiment, a monochromatic x-ray beam with

wavevector qin, photon energy ℏωin = c × qin, and polarization eνin
, strikes a

sample and a scattered photon is detected along the direction of the wavevector

qout by an energy-integrating Photon Detector (PD) or an energy-resolving

spectrometer (see Fig.2.6(c)).

At the end of the process, momentum and energy are transferred to the

sample and can be determined from the conservation laws:

hνin = hνout +∆E (2.24)

qin = qout + Q (2.25)

In the case of elastic scattering hνin = hνout and there is no energy transfer

with the sample (∆E = 0), while inelastic scattering events have ∆E ̸= 0.

Elastic scattering probes the static component of the charge and magnetization

density in the system under inspection, while inelastic scattering is sensitive to

dynamic processes and low-energy excitations.

However, due to the finite energy resolution of the spectrometer δE, purely

elastic scattering cannot be accessed experimentally, and it is more appropriate

to use the term quasi-elastic scattering, which probes a regime that is static up

to a timescale τ ∼ ℏ/δE.

In most cases, the energy-integrated measurement provides a reliable repre-

sentation of the momentum structure of the ordered state, due to the fact that

the inelastic part of the spectra usually evolves smoothly and can be discarded

as background in RXS, especially if it has a different temperature dependence

with respect to the zero energy loss feature.
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Usually, RXS experiments investigate the momentum structure by using

the energy-integrated mode. From Eq.2.25, and using hνin = hνout (elastic

scattering), the magnitude of the exchanged momentum can be written as

Q = |Q| = 2qin × sin (θsc/2),

where θsc is the scattering angle. Q can be decomposed along the plane defining

the sample surface, into its in-plane Q|| and out-of-plane Q⊥ components. This

geometry is illustrated in Fig.2.6(d) and the experimental scheme in Fig.2.6(c).

The experimental signal in XRD and RXS can be composed of both resonant

and non-resonant contributions. In the two possible regimes, w(XRD)
fi ≫ w

(RXS)
fi

or w(XRD)
fi ≪ w

(RXS)
fi , different phenomena are probed. In the case of non-

resonant processes being dominant, the signal is proportional to the atomic

number (Z) of the sample. This is because all electrons contribute equally to

the signal, and the diffraction signal is dominated by the core electrons, which

usually outnumber the valence electrons. The exception to this is with lighter

elements, which are not probed very effectively in XRD. Since core states are

tightly bound to the parent nucleus, XRD is primarily used for structural stud-

ies, as it mainly probes the ionic lattice in reciprocal space. On the other

hand, when the scattering process has a strong enhancement corresponding to

a specific electronic transition, the signal bears the signature of the electronic

distribution of the final state of that transition. This characteristic of resonant

scattering allows it to be element-specific and orbital-selective. This capability

has been established and employed in many different systems, such as charge-

ordering in cuprates and cobaltates, and orbital-ordering in manganites, as it

allows to study the spatial inhomogeneities of the valence electrons that char-

acterize the presence of stripe order.
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Chapter 3

Variational Monte Carlo

1Quantum Monte Carlo (QMC) methods are a family of numerical techniques

used to simulate the behavior of quantum mechanical systems. They are based

on the idea of using stochastic sampling from a given probability distribution

to extract a large number of random configurations of the system, over which

one can evaluate the physical quantities of interest.

QMC methods are particularly advantageous in that they are capable of

accurately and reliably simulating complex systems with a large number of

interacting particles, such as molecules or solids. This is important because

such systems are often too complex to solve analytically, and QMC methods

can provide accurate and reliable numerical results.

Variational Monte Carlo (VMC) is a specific type of QMC method that uses a

trial wave function to approximate the true wave function of a quantum system.

The trial wave function is chosen to have a simple form that is easy to calculate,

but is also flexible enough to capture the essential physics of the system. Once

the trial wave function is chosen, the random configurations of the system are

extracted to estimate the ground state energy of the system. Through the

process of variational optimization, the parameters of the trial wave function
1Main reference for this chapter: Becca, Sorella, Quantum Monte Carlo approaches for

correlated systems[43].
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are updated in order to minimize the energy and possibly capture the correct

ground-state behaviour.

The energy is calculated by using the variational principle, which states that

the ground state energy of a system is always lower than or equal to the energy

of any other trial wave function, providing us with the path to find the best

possible state.

An important advantage of this method is that quite general Hamiltonians,

with many parameters, can be considered without affecting much the computa-

tional cost. On the other other hand, the form of the variational wave function

is arbitrarily chosen, which may introduce a relevant bias that cannot be re-

moved through the optimization procedure and therefore fails in capturing the

true physical properties of the system.

3.1 The Variational Principle

At the very heart of VMC there is the variational principle, providing a lower

bound for the exact variational ground-state energy.

Let the exact ground state of a given Hamiltonian H be |Υ0⟩ with (ground-

state) energy E0, and |Ψvar⟩ a generic state that approximates it. The varia-

tional energy for the Hamiltonian can be defined as

Evar =
⟨Ψvar|H |Ψvar⟩
⟨Ψvar|Ψvar⟩

. (3.1)

Any state in the Hilbert space can be written as an expansion in terms of the

eigenfunctions |Υi⟩ of H, with energies Ei. Then

|Ψvar⟩ =
∑
i

|Υi⟩ ⟨Υi|Ψvar⟩ =
∑
i

ai |Υi⟩ , (3.2)

while the normalization condition reads

⟨Ψvar|Ψvar⟩ =
∑
i

|ai|2 = 1. (3.3)

By substituting the expansion of Eq.3.2 into Eq.3.1, we get that

Evar − E0 =
∑
i ̸=0

|ai|2 (Ei − E0) ≥ 0 . (3.4)
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When dealing with |Ψvar⟩, then, all computational efforts are focused on mini-

mizing the variational energy Evar.

In principle, if the variational wave function were able to explore the whole

Hilbert space, we would be able to reach at a certain point |Ψvar⟩ = |Υ0⟩.

However, this is not feasible for practical purposes, as the computational cost

would be huge. Consequently, one usually resorts to an ansatz for the wave

function that lives in a subspace of the entire Hilbert space.

3.2 Quantum averages in VMC

At this point, we can start by discussing how averages of operators can be

computed in the VMC scheme. First of all, we can fix a generic complete basis

set {|x⟩} in the Hilbert space, assumed orthogonal and normalized for simplicity,

such that ∑
x

|x⟩⟨x| = 1. (3.5)

Then, any quantum state |Ψ⟩ can be written as

|Ψ⟩ =
∑
x

|x⟩⟨x| |Ψ⟩ =
∑
x

Ψ(x) |x⟩ . (3.6)

Similarly, given a generic operator O, its expectation value over a variational

wave function |Ψ⟩ is given by

⟨O⟩ = ⟨Ψ| O |Ψ⟩
⟨Ψ|Ψ⟩

=

∑
x ⟨Ψ|x⟩ ⟨x| O |Ψ⟩∑

x ⟨Ψ|x⟩ ⟨x|Ψ⟩
. (3.7)

This last equation, despite looking concise, is a sum over a number of terms

exponential in the number of particles. As it is, it cannot be used to compute

⟨O⟩ in practice. However, it can be rearranged in a form that makes it easy to

deal with by standard Monte Carlo methods. Indeed

⟨O⟩ =
∑

x | ⟨Ψ|x⟩ |2 ⟨x|O|Ψ⟩
⟨x|Ψ⟩∑

x | ⟨Ψ|x⟩ |2
=

∑
x |Ψ(x)|2OL(x)∑

x |Ψ(x)|2
, (3.8)

where the local estimator of the operator O has been defined as

OL(x) =
⟨x| O |Ψ⟩
⟨x|Ψ⟩

. (3.9)
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What is important to note is that the quantity

P(x) :=
|Ψ(x)|2∑
x′ |Ψ(x′)|2

(3.10)

is non-negative for all configurations |x⟩ and normalized (
∑

x P(x) = 1), hence

it can be interpreted as a probability. As a result, the quantum average of the

operator O is equal to the statistical average of the random variable OL(x)

over the distribution P(x). This can be easily done in a Monte Carlo scheme,

in which a sequence of N configurations {|x⟩i}i=1,...,N
are generated by, for

instance, a Markov chain2, according to the desired probability distribution and

⟨O⟩ =
∑
x

P(x)OL(x) ≈
1

N

N∑
n=1

OL(xn) . (3.11)

Another important feature of the VMC approach is the zero-variance property.

Consider the expectation value of the Hamiltonian, i.e. O = H, whose local

estimator is the local energy defined by

eL(x) =
⟨x|H |Ψ⟩
⟨x|Ψ⟩

. (3.12)

If the variational state |Ψ⟩ coincides with one (not necessarily the ground state)

of the eigenstates of H i.e. H |Ψ⟩ = E |Ψ⟩ it follows that the local energy is

simply constant

eL(x) =
⟨x|H |Ψ⟩
⟨x|Ψ⟩

= E
⟨x|Ψ⟩
⟨x|Ψ⟩

= E. (3.13)

Consequently, the random variable eL(x) exhibits no dependence on |x⟩, in-

dicating a variance of zero and a mean value E precisely equal to the eigenvalue,

basically rendering eL(x) a deterministic variable. This scenario however is not

typically encountered in generic correlated models. Nonetheless, in most cases,

the variance of eL(x) reduces when the variational state |Ψ⟩ more closely ap-

proximates an exact eigenstate, leading to reduced statistical fluctuations and

improved numerical efficiency. It is an essential point to note that the zero-

variance property is a unique feature of quantum expectation values, absent in

classical computations where observables experience thermal fluctuations.
2Of course, after an equilibration time. This convergence is ensured by the detailed balance

condition.
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Comment

At first glance, computing the local estimator seems to be an exceedingly difficult

task: indeed Eq.3.13 can be rewritten, using the completeness relation of Eq.3.5

as

eL(x) =
∑
x′

⟨x|H |x′⟩ ⟨x
′|Ψ⟩

⟨x|Ψ⟩
. (3.14)

It entails a summation across all the states of the many-body Hilbert space.

However, only a few terms contribute to the sum when the operator in the

estimator of Eq.3.9 is local. For the present case, for the configuration |x⟩, a

non-zero matrix element ⟨x|H |x′⟩ is associated with O(L) configurations |x′⟩.

To illustrate, let us examine the fermionic Hubbard model. Using the local

basis, |x⟩ is linked to only a few other configurations that differ by one electron

hopping from a given site to one of its neighbouring sites3. The maximum

number of such processes is L times the number of bonds times 2 (owing to

spin). Hence, computing the local estimator necessitates only a limited number

of operations, typically proportional to the number of sites or particles.

3.3 Markov Chain Monte Carlo

Monte Carlo (MC) methods encompass a wide range of numerical algorithms

that rely on repeated random sampling to solve various mathematical and phys-

ical problems. The main objective is typically to compute large sums or com-

plicated integrals, and the novel approach is to bypass an exact enumeration or

integration by generating random samples that are combined to provide an ap-

proximate solution. Therefore, the core of any MC approach lies in the process

of sampling, which involves generating random configurations that are used to

estimate the exact quantity of interest with high accuracy.

The basic idea behind this method is that any integral can be recasted as

the expectation value of a random variable f(x) over a probability distribution
3In our case, in which the Hubbard model allows also the hopping to the next-nearest-

neighbours, the number of non-zero matrix elements ⟨x|H |x′⟩ remains small.
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P (x). For the sake of generality, x ∈ Rd. Explicitly, consider the integral of a

generic function F (x)

I =

∫
dxF (x). (3.15)

Then, it is always possible to split F (x) as the ratio of a probability density

P (x) (with P (x) ≥ 0 and
∫
dxP (x) = 1) and a function f(x) = F (x)/P (x),

such that

I = ⟨f(x)⟩ =
∫
dxf(x)P (x). (3.16)

The central limit theorem guarantees that the deterministic integral I and the

stochastic average ⟨f(x)⟩ become equal when a large number N of samplings

{xi}i=1,...,N over P (x) is considered. In symbols

⟨f(x)⟩ =
∫
dxf(x)P (x) ≈ 1

N

∑
i

f(xi) (3.17)

The meaning of this last equality can be understood as, for large N , the variable

f̄ =
1

N

∑
i

f(xi) (3.18)

is a normally (Gaussian) distributed variable, with mean equal to ⟨f(x)⟩ and

variance σ2/N , where σ2 = ⟨f2(x)⟩ − ⟨f(x)⟩2. Therefore, as N → ∞, f̄ →

⟨f(x)⟩, which is now a deterministic number since fluctuations decrease to zero

with 1/
√
N .

All in all, as long as the number of samplings is large enough, the error due

to statistical fluctuations goes to zero and we have that

I =

∫
dxf(x)P (x) = ⟨⟨f(xi)⟩⟩ , (3.19)

where ⟨⟨. . . ⟩⟩ indicates the statistical average over many independent samples

extracted from P (x).

3.3.1 Markov Chains

Being the sampling process at the heart of the whole method, it is fundamental

to perform it in the best possible way. In this section we discuss a powerful
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(and probably the most popular) strategy to do so, able to deal with probability

distributions that are difficult or impossible to sample analytically. The resulting

scheme is referred to as Markov Chain Monte Carlo (MCMC).

To keep the notation simple, we will focus on a single discrete random vari-

able x, but the generalization to continuous systems is straightforward. For

instance, {x} can represent the discrete Hilbert space of a many-body system

on a finite lattice. However, the total number of possible configurations can

be too large for direct sampling, making it necessary to adopt a probabilistic

approach. This involves constructing a stochastic process, i.e. a random pro-

cess that allows a configuration xn to evolve over discrete iteration times n,

according to a stochastic dynamics

xn+1 = Fn(x1, . . . , xn, ξn). (3.20)

Here, the function Fn governing the evolution over (discrete) time of the config-

uration xn may include a dependence on all the previous configurations and its

stochastic nature is related to the presence of a random variable ξn (distributed

according to a certain probability density Ξ(ξn)). This makes the concept of

"trajectory" not defined and the configurations xn random variables. The goal

is to define a suitable function Fn so that the configurations xn will be dis-

tributed, after enough time n, according to the probability distribution we want

to sample. It is important to note that the time evolution in this context is not

connected to a true dynamics of the system. Rather, it is a method to reach a

steady state that allows for the computation of static properties. A particular

instance of Eq.3.20 is the Markov Chain (or Markovian process)

xn+1 = F (xn, ξn) (3.21)

in which the process bears memory of its previous state only, and F is taken

time-independent. The time evolution is then governed by the (conditional)

transition probability ω(x′|x) (such that ω(x′|x) ≥ 0 ∀x, x′, and
∑

x′ ω(x′|x) =

1) representing the probability of being in configuration x at time n and moving

to x′ at time n + 1. This allows us to write the Master equation associated to
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the Markov chain as4

Pn+1(x
′) =

∑
x

ω(x′|x)Pn(x), (3.22)

describing the evolution of the marginal probability Pn(x) as a function of n.

Although the exact value of the random variable x is not determined, its prob-

ability distribution can instead be computed, by solving the Master equation,

provided an initial condition P0(x).

3.3.2 Approach to equilibrium

The evolution of Pn(x) along the Markov process raises the natural question

of whether the sequence of distributions eventually converges to an equilibrium

(stationary) distribution Peq(x) or not. With no loss of generality, one can

assume Peq(x) > 0 for all configurations x, as we can effectively ignore configu-

rations for which Peq(x) = 0. Two questions have to be addressed:

1. Does Peq(x) exist?

2. Starting from a given and arbitrary P0(x), is the convergence to Peq(x)

guaranteed?

The first question requires Eq.3.22 to become

Peq(x
′) =

∑
x

ω(x′|x)Peq(x), (3.23)

which is satisfied by requiring the sufficient (but not necessary) detailed balance

condition (DBC):

ω(x|x′)Pn(x
′) = ω(x′|x)Pn(x) (3.24)

meaning that, in order to maintain a stable stationary condition, the number of

processes undergoing a transition from x to x′ has to be exactly compensated by
4An altrnative but equivalent formulation makes explicit the (discrete) time derivative of

P (x):
∂P (x)

∂t
≈

∑
x̸=x′

[
ω(x|x′)Pn(x

′)− ω(x′|x)Pn(x)
]
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the same amount of reverse processes from x′ to x. Notice that, since Peq(x) ̸= 0,

if ω(x′|x) ̸= 0 then also ω(x|x′) ̸= 0.

The DBC straightforwardly allows a stationary solution of the Master equa-

tion. Indeed, given Pn(x) = Peq(x) for some n, Eq.3.22 says

Pn+1(x
′) =

∑
x

ω(x′|x)Peq(x) = Peq(x
′)
∑
x

ω(x|x′) = Peq(x
′). (3.25)

Hence, the Master equation admits equilibrium/stationary (i.e. n-independent)

solutions.

Luckily enough, also our second question has an affirmative answer. The

discussion of formal proof is out of the scope of the present work, but can be

found in [43]. Under the ergodicity condition (i.e. if it is possible to reach any

state from any other state with a finite number of iterations of the Markov pro-

cess), one can show that any initial P0(x) will converge towards the stationary

distribution Peq(x). In symbols

lim
n→∞

Pn(x) = Peq(x) (3.26)

Practically, we assume that, after a thermalization time ntherm, the proba-

bility distribution Pn(x) is converged to the equilibrium distribution Peq(x) and

the configurations xn (with n > ntherm) can be used to evaluate the quantity of

interest. However, subsequent configurations are not independent, and it takes

a finite number of steps to reduce the degree of correlation among them. The

correlation time is the time needed to obtain essentially independent configu-

rations. The correlation and thermalization times can be considered equal and

are directly related to the spectrum of the transition probability.

3.3.3 Metropolis algorithm

We are now left with the task of establishing a stochastic dynamics such that the

transition probability ω(x′|x) satisfies the DBC and, after a thermalization time,

the configurations {xn}n≥ntherm are distributed according to a given Peq(x). The

Metropolis algorithm (Metropolis et. al.,1957 (or Metropolis-Hastings, named
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after W. Keith Hastings who generalized it in 1970), based on random walks and

widely used in computational methods, involves accepting a new configuration

if it results in a reduction in total energy. However, if there is an increase in

the total energy, the new configuration is accepted only if it survives a biased

random game governed by a Boltzmann factor. Otherwise, the old configuration

is retained.

To begin with, ω(x′|x) is written as the product of a trial probability T (x′|x)

of proposing a new configuration x′ while being in x, and an acceptance proba-

bility A(x′|x). Explicitly

ω(x′|x) = T (x′|x)A(x′|x). (3.27)

One suitable choice for the acceptance probability, such that the DBC is satisfied

is

A(x′|x) = min

{
1,
Peq(x

′)T (x|x′)
Peq(x)T (x′|x)

}
. (3.28)

As a check, take x and x′ ̸= x such that Peq(x
′)T (x|x′)

Peq(x)T (x′|x) > 1 (the opposite case, in

which the previous ratio is < 1 is obtained analogously). As a consequence,

A(x′|x) = min

1,
Peq(x

′)T (x|x′)
Peq(x)T (x′|x)︸ ︷︷ ︸

>1

 = 1 (3.29)

and

A(x|x′) = min

1,
Peq(x)T (x

′|x)
Peq(x′)T (x|x′)︸ ︷︷ ︸

<1

 =
Peq(x)T (x

′|x)
Peq(x′)T (x|x′)

. (3.30)

Then the DBC can be directly verified

T (x′|x)A(x′|x)Peq(x) = T (x|x′)A(x|x′)Peq(x
′). (3.31)

In practice, being at time n in the configuration xn, the Markov chain iter-

ation is defined in these two steps:

1. Propose a move by extracting a new configuration x′ according to T (x′|xn)
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2. Accept the trial move if, taken a random number η ∈ [0, 1), η < A(x′|xn),

In this case xn+1 = x′. Otherwise, the move is rejected and xn+1 = xn
5.

Pros of the Metropolis algorithm

Among the many important simplifications introduced by this strategy, it is

worth mentioning that

• Only the ratio Peq(x
′)/Peq(x) is needed for the computation of the ac-

ceptance probability of Eq.3.28. The normalization constant, usually very

hard to compute, cancels out

• T (x′|x) can be chosen freely. It can be very simple, symmetric or not. If x

and x′ are too similar, the rejection mechanism fails and the configurations

stay highly correlated. Conversely, if they are too different, correlations

are suppressed but too many moves are discarded. In general, in strongly

correlated models, a 10% acceptance ratio is already good but still the

configurations are correlated.

3.3.4 Metropolis algorithm for electron systems

The general procedure described in the previous section can now be made ex-

plicit for an electron system with Ne electrons. If Ψ(x) = ⟨x|Ψ⟩ is our vari-

ational wave function, with |x⟩ the full many-electron configuration, we can

define P (x) = |Ψ(x)|2 according to the usual probabilistic interpretation of the

wave function.

A common choice for the trial wave function for electron systems, which

must be flexible enough to account for correlations, fluctuations in the particle
5As an example in classical physics, consider Peq(x) = 1

Z
exp{−βE(x)} a Boltzmann

distribution. Then, A(x′|xn) = min{1, exp{−β[E(x′)− E(xn)]}} = min{1, exp{−β∆E}}.

If ∆E < 0, exp{−β∆E} < 1 and the new configuration is always accepted. In the opposite

case, an energetically costly configuration is accepted with probability proportional to the

Boltzmann weight (i.e. exponentially small).
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density n6 and all their different phases, while remaining easy to handle, is the

Jastrow-Slater state, given by

|ΨJ⟩ = J |Φ0⟩ , (3.32)

where |Φ0⟩ is a generic, fermionic non-interacting state and J is the Jastrow

factor taking into account the electron correlation. On a lattice, J takes the

form

J = exp

−1

2

∑
i,j

vij(ni − n)(nj − n)

. (3.33)

Here, vij is a pseudo-potential for the density-density correlations and has to be

optimized for all possible distances |i − j|. The function of the long-range tail

in the Jastrow factor is to produce a bound state between holons and doublons.

While this may hinder conduction, it does allow for local density fluctuations.

A case that is both simple and important is when J includes density-density

correlations only, and not density fluctuations. In this case

J = exp

−1

2

∑
i,j

vijninj

. (3.34)

The two definitions of the Jastrow factor are essentially the same, except for a

multiplicative factor that is not relevant, for systems with conserved number of

particles.

Once defined the wave function, the algorithm proceeds as follows:

1. Select randomly two sites i and j and the spin component σ along the

quantization axis. The new configuration in which one electron with spin

σ hops from i to j, defines the trial probability T (x′|x);

2. Compute the acceptance probability A(x′|x) of the new configuration.

Otherwise, repeat the previous step if the move is not possible;

3. Generate a random number η and accept the new configuration if η <

A(x′|x). Reject it otherwise;
6Fluctuations manifest themselves as the creation of doublons(doubly-occupied sites) and

holons (empty sites).
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4. Compute the quantities of interest (the local energy for instance) every

Ne steps, in order to have uncorrelated configurations;

5. Go back to 1.

All the configurations {x1, . . . , xN} extracted after the thermalization time, will

be distributed according to P (x) and the estimate for the variational energy is

given by

E = lim
N→∞

1

N

N∑
i=1

eL(xi) (3.35)

In principle, we would like to deal with configurations as uncorrelated as pos-

sible in order to have independent random variables, that are easier to handle.

Configurations obtained through a Markov process usually possess some degree

of correlation, since a trial configuration completely uncorrelated from the cur-

rent one has a very low acceptance probability. A common method to circum-

vent the problem, lowering the correlations, is the so-called binning technique,

in which the data set is divided into Nbin bins, each of length Lbin = N/Nbin, so

that the average over the bins is (trivially) the original average, but the proba-

bility distribution of the binned variables changes. As Lbin increases, the binned

variables become more and more uncorrelated and eventually independent ran-

dom variables.

3.4 The Stochastic Reconfiguration Method

We have already pointed out that the variational wavefunction ansatz contains a

number of parameters to be optimized in order to reach the best approximation

possible of the ground state, following the variational principle summarized in

Eq.3.4. In this chapter we discuss the strategy to perform this optimization,

namely the so-called Stochastic Reconfiguration method [44], within Jastrow-

Slater wave functions. It is worth mentioning that an optimization via the zero-

variance property, discussed in Sec.3.2, has been shown to yield less accurate

expectation values with respect of those from energy minimization [45].
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Let us call the "initial" Jastrow-Slater wave function
∣∣Ψ(α0

k)
〉
,
∣∣Ψ0

〉
for sim-

plicity in the following, which depends on a set of p variational parameters

{αk}k=1,...,p. To improve its variational energy, we can apply to it the pro-

jection operator (Λ − H), with Λ an appropriate constant energy shift, such

that

|ΨΛ⟩ = (Λ−H)
∣∣Ψ0

〉
. (3.36)

Since, in general |ΨΛ⟩ is not written in the Jastrow-Slater form, the idea is to

look for the best quantum state |Ψ′⟩ ≡ |Ψ(α′
k)⟩ that approximates it. This can

be done by considering small variations {δαk} of the parameters {αk}

α′
k = α0

k + δαk (3.37)

related to a change of the wave function, at first order in {δαk}, as follows

|Ψ′⟩ = δα0

∣∣Ψ0
〉
+

p∑
k=1

δαk
∂

∂αk

∣∣Ψ0
〉
+O(δα2

k), (3.38)

where δα0 has to match the normalization condition. We define now the local

operators O(α0
k) on the configuration |x⟩ as the log-derivatives with respect to

the parameters

Ok(x) =
∂

∂α0
k

ln
〈
x
∣∣Ψ0

〉
=

1

Ψ0(x)

∂Ψ0(x)

∂α0
k

, (3.39)

with O0(x) ≡ 1, so that |Ψ′⟩ can be compactly written as

|Ψ′⟩ = δα0

∣∣Ψ0
〉
+

p∑
k=1

δαkOk

∣∣Ψ0
〉
=

p∑
k=0

δαkOk

∣∣Ψ0
〉
. (3.40)

Within the method, we now impose that the projection of |ΨΛ⟩ and |Ψ′⟩

onto the subspace defined by Oj

∣∣Ψ0
〉

(j = 0, . . . , p) coincide, i.e.

〈
Ψ0

∣∣Oj |Ψ′⟩ =
〈
Ψ0

∣∣Oj |ΨΛ⟩ , (3.41)

ensuring that the energy computed on |Ψ′⟩ is lower than that on
∣∣Ψ0

〉
. By

substituting Eq.3.36 and Eq.3.40 into the ansatz 3.41 we obtain:

p∑
k=0

δαk⟨OjOk⟩ = ⟨Oj(Λ−H)⟩, (3.42)
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where ⟨. . . ⟩ =
〈
Ψ0

∣∣ . . . ∣∣Ψ0
〉
. Specifically, for j = 0, the previous equation

reduces to
p∑

k=0

δαk⟨Ok⟩ = Λ− ⟨H⟩, (3.43)

while for j = 1, . . . , p we get

p∑
k=0

δαk⟨OjOk⟩ = Λ⟨Oj⟩ − ⟨OjH⟩. (3.44)

By taking out the term for k = 0, the two equations become, respectively,

δα0 +

p∑
k=1

δαk⟨Ok⟩ = Λ− ⟨H⟩ (3.45)

and

δα0⟨Oj⟩+
p∑

k=1

δαk⟨OjOk⟩ = Λ⟨Oj⟩ − ⟨OjH⟩. (3.46)

Being the term δα0 related to the normalization of the wave function only, it

does not affect any physical observable of the system. Thus, we can solve for

δα0 in order to obtain
p∑

k=1

δαk[⟨OjOk⟩ − ⟨Oj⟩⟨Ok⟩] = ⟨Oj⟩⟨H⟩ − ⟨OjH⟩, (3.47)

which is a linear systems in the unknowns {δαk} that, in a compact form,

becomes
p∑

k=1

δαkSjk = fj , (3.48)

where we have defined S ∈ Rp×p a symmetric, semi positive-definite covariance

matrix

Sjk
.
= ⟨OjOk⟩ − ⟨Oj⟩⟨Ok⟩ (3.49)

and a vector (∈ Rp) of generalized forces7

fj = ⟨Oj⟩⟨H⟩ − ⟨OjH⟩. (3.50)
7They are indeed related to the derivative of the variational energy w.r.t. the variational

parameters:
∂E

∂αj
=

∂

∂αj

〈
Ψ0

∣∣H ∣∣Ψ0
〉

⟨Ψ0|Ψ0⟩
= −2fj

.
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All in all, the method consists in performing a MC simulation with fixed

parameters, in which both Sjk and fj are computed stochastically and their

values are used to solve the linear system of Eq.3.48. The parameters are then

updated as follows

δαk =
∑p

j=1 S
−1
kj fj

α′
k = α0

k + τδαk

. (3.51)

The parameter τ is chosen such that is large enough to ensure a fast convergence,

without making the algorithm unstable when it becomes too large.

Finally, the effectiveness of this scheme can be shown in computing the

energy. By taking τ small enough and expanding up to linear order in τ , we get

E(Ψ′) = E(Ψ0) +

p∑
k=1

∂E(Ψ0)

∂αk
δαk +O(τ2) (3.52)

implying

E(Ψ′)− E(Ψ0) = −
p∑

k,j=1

S−1
kj fjfk +O(τ2) ≤ 0. (3.53)

This last step, using the fact that also the inverse of Sjk is semi-positive

definite, shows that, on average, the energy decreases at each step at linear

order in τ . The minimum is certainly reached when all the forces disappear.

3.5 VMC for Cuprates

This section is finally devoted to the description of the research conducted in

the context of this thesis. Specifically, we define and describe the key quan-

tities that constitute the core of the VMC wave function for stripe order and

superconductivity in Cuprates. The results of our empirical analysis and their

implications will be discussed later in Ch.4. The present work is built upon the

previous investigation by VMC simulations of the metallic/insulating charac-

ter of stripes and their relation with superconductivity in the doped Hubbard

model (Tocchio et. al. [46]), and a subsequent work by Marino et. al. [47]
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inspecting its behaviour in its extended version (i.e. by including also next-

nearest-neighbours hopping) for different values of the hopping parameters at

fixed doping8.

The single-band Hubbard model on the square lattice is the simplest model

able to capture the essential characteristics of the cuprates’ phase diagram.

This model comprises the on-site electron-electron repulsion U and the nearest-

neighbor hopping t. However, obtaining accurate approximations or exact so-

lutions for low-energy excitations and the ground state is a challenging task,

particularly for the electron densities that generate unconventional supercon-

ductivity. Various analytical and numerical methods have been employed, lead-

ing to different conclusions since several states with comparable energy levels

have been proposed [48]. It is then crucial to assess the role of extra parameters

in promoting tendencies towards stripes or superconductivity. Consequently,

we start by considering the extended Hubbard model, which comprises also the

next-nearest-neighbor hopping t′, as justified in Sec.1.4.3 [13].

H = −t
∑

⟨R,R′⟩,σ

c†RσcR′σ − t′
∑

⟨⟨R,R′⟩⟩,σ

c†RσcR′σ + H.c + U
∑
R

nR↑nR↓, (3.54)

where c†Rσ and cRσ respectively denote the creation and annihilation operator

of an electron with spin σ on site R, while nRσ = c†RσcRσ is the electron density

per spin σ on site R. By calling N the total number of electrons and L the total

number of sites, the electron density is n = N/L9. The hole doping is x = 1−n.

In the following, R = (x, y) will denote the coordinates of the sites. In order to

set the energy scale, t is set to 1 and, in the following, only the ratio t′/t will

be considered.

Our numerical simulations rely on appropriate variational wave functions

that incorporate correlations, through the Jastrow factor on top of a Slater

determinant or a BCS state. Additionally, backflow correlations [49, 50, 51],

are integrated into the model. The latter play a critical role in constructing
8Both are the main reference for this section.
9Note that at half filling N = L ⇒ x = 0.
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reliable variational states that are comparable in accuracy to other state-of-the-

art numerical methods [52, 53].

The main idea behind the backflow terms is to include correlation effects

directly in the variational wave function, and not only as a multiplicative term

as in the Jastrow factor. The single-particle eigenstates of the mean-field Hamil-

tonian (for instance the BCS Hamiltonian) ϕk(ri,σ) are modified according to

the electronic configuration on the lattice:

ϕbk(ri,σ) ≡ ϵ̃ϕk(ri,σ) + η1
∑
j∈∂i

DiHjϕk(rj,σ) + η2
∑
j∈∂2i

DiHjϕk(rj,σ), (3.55)

where k labels the single-particle eigenstates and ϵ̃,η1 and η2 are variational

parameters to be optimized. Di = ni↑ni↓ and Hi = hi↑hi↓ (with hiσ = 1− niσ)

are the number of doublons and holons, respectively. The notation j ∈ ∂i and

j ∈ ∂2i for sites i and j is indicating nearest- and next-nearest-neighbours.

Furthermore, additional terms useful in the intermediate-coupling regime and

related to all possible hopping processes can be included in the previous equa-

tion.

The wave function is defined as

|Ψ⟩ = J |Φ0⟩ (3.56)

where, consistently with the notation of the previous sections, J is the density-

density Jastrow factor of Eq.3.34 that, with the current indices, is written as

J = exp

−1

2

∑
R,R′

vRR′nRnR′

 (3.57)

and |Φ0⟩ a state obtained from the ground state of an auxiliary non-interacting

Hamiltonian Haux with the introduction of backflow correlations.

Explicitly, Haux is the sum of different terms

Haux = H0 +Hcharge +Hspin +HAF +HBCS . (3.58)

The first term consists of the kinetic energy of the electrons in the Hubbard

model

H0 = −t
∑

⟨R,R′⟩,σ

c†RσcR′σ − t̃′
∑

⟨⟨R,R′⟩⟩,σ

c†RσcR′σ + H.c. (3.59)
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The second and third term take into account striped states both in charge

and spin along the x direction in the following way

Hcharge = ∆C

∑
R′

cos [Q(x− x0)]
(
c†R↑cR↑ + c†R↓cR↓

)
(3.60)

and

Hspin = ∆S

∑
R

(−1)x+y sin

[
Q

2
(x− x0)

](
c†R↑cR↑ − c†R↓cR↓

)
(3.61)

If x0 = 1/2 the stripes are symmetric with respect to the bond halfway in

between two neighboring lattice sites, hence they are called bond centered. Con-

versely, for x0 = 0, the stripes are called site centered, as the symmetry axis lies

exactly on a lattice site. The periodicity of the charge modulation in both cases

is given by λ = 2π/Q. On the other hand, the spin modulation has a π-phase

shift (see the scheme 1.37) across the sites with maximal hole density, resulting

in a spin modulation of 2λ = 4π/Q when λ is even and 2π/Q when λ is odd.

The spin modulation along the y direction is assumed to have Néel order in all

cases.

The fourth term includes antiferromagnetism by standard Néel order

HAF = ∆AF

∑
R

(−1)x+y
(
c†R↑cR↑ − c†R↓cR↓

)
(3.62)

while the last one introduces the BCS electron pairing

HBCS =
∑

R,η=x,y

∆R,R+η

(
c†R,↑c

†
R+η,↓ − c†R,↓c

†
R+η,↑

)
+ H.c. − µ

∑
R,σ

c†RσcRσ

(3.63)

where µ is a generic chemical potential and, eventually, also the pairing ampli-

tude may be periodically modulated in space

∆R,R+x = ∆x

∣∣∣∣cos [Q2 (x+
1

2
− x0)

]∣∣∣∣ ∆R,R+y = −∆y

∣∣∣∣cos [Q2 (x− x0)

]∣∣∣∣
(3.64)

which, in the case with Q = 0 corresponds to a uniform pairing amplitude (with

d-wave symmetry).

The optimizations of the variational wave functions are performed on two

different states:
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• striped state, with charge and spin modulations. This state is set by im-

posing ∆AF = 0 and a given stripe wavelength λ, while the remaining

parameters ∆x, ∆y, ∆C , ∆S , t′, µ, the pseudo-potentials in J and the

backflow parameters are optimized;

• uniform state, appropriate to study homogeneous superconducting states.

This state is set by imposing ∆C = ∆S = 0 and a uniform pairing, while

all the other parameters are optimized. Néel order can eventually emerge

whenever ∆AF ̸= 0.

The presence of charge and spin inhomogeneities is unveiled by computing

the static structure factors

N(q) =
1

L

∑
R,R′

⟨nRnR′⟩eiq·(R−R′) , S(q) =
1

L

∑
R,R′

⟨Sz
RS

z
R′⟩eiq·(R−R′),

(3.65)

where ⟨. . . ⟩ = ⟨Ψ| . . . |Ψ⟩ and Sz
R = 1

2

(
c†R↑cR↑ − c†R↓cR↓

)
is the spin operator

along the z direction. A peak (divergent in the thermodynamic limit) at a given

q indicates an ordering at the related wavelength.

From the small-q behaviour of N(q) it is also possible to assess the metallic

or insulating character of the ground state. Indeed, it is possible to find a

relation between the spectrum of the charge excitations and N(q) [50], with a

charge gap found to be

Eq ∝ lim
q→0

|q|2

N(q)
. (3.66)

The metallic phase is characterized by N(q) ∼ q for q → 0, implying a vanishing

energy gap. The insulating phase, instead, is characterized by N(q) ∼ q2 for

q → 0 and consequently a finite charge gap.

Finally, by computing the correlation functions between Cooper pairs at a

distance r, the existence of superconductivity can be investigated. We chose to

consider singlets along the y direction and observe the change in strength of the

correlations along the x direction. Explicitly

D(r) =
〈(
c†R,↑c

†
R+y,↓ − c†R,↓c

†
R+y,↑

)(
c†R′,↑c

†
R′+y,↓ − c†R′,↓c

†
R′+y,↑

)〉
, (3.67)
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with R′ = R + rx. In the superconducting phase, this object factorizes as

⟨. . . ⟩⟨. . . ⟩, remains finite at large r and proportional to the the order parameter

squared. Conversely, when superconductivity is absent, D(r) decays to zero at

large r.

Comment on the site- and bond-centered nature of the stripes

From a mathematical point of view, site- and bond-centered stripes are well-

defined: in the definitions of Hcharge and Hspin the parameter x0 = 0 for

the former case and x0 = 1/2 for the latter. When the stripes have an even

wavelength λ, the two definitions are clearly related to having the symmetry

axis laying on a site or on a bond10. For odd wavelengths, on the other hand,

such geometrical meaning is much more ambiguous. To see why, we begin by

looking at the case with λ even, fixing as an example λ = 6. In the following

figures, symmetries with respect to a bond will be highlighted in red, while those

with respect to a site in blue.

Figure 3.1: Pictorial representation of a stripe with λ = 6, bond-centered.

In Fig.3.1 a bond-centered stripe with λ = 6 is depicted. This clearly cor-

responds to a symmetry axis halfway in between two neighboring lattice sites.

The situation is equally unambiguous when its site-centered counterpart is con-

sidered in Fig.3.2.
10Considering such symmetries with respect to the sites or bonds where amplitude modu-

lation is the largest or the smallest does not make any difference.
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Figure 3.2: Pictorial representation of a stripe with λ = 6, site-centered.

Taking, as customary, the largest or the smallest amplitude modulation as

a reference for the periodicity, the symmetry axis is located on the lattice site.

Note again how the π−shift doubles the periodicity of the spin modulation.

The situation is instead not so clear when λ is odd, fixing as an example

λ = 5. As before, a bond-centered stripe is shown in Fig.3.3.

Figure 3.3: Pictorial representation of a stripe with λ = 5, bond-centered.

This time, there is no way to enforce a symmetry with respect to the bond

without having also a symmetry with respect with a site. This is equally true

when considering a site-centered stripe with λ odd, as plotted in Fig.3.4: the

site-centered symmetry cannot exist without a bond-centered one.

We can then say that for λ odd, the idea of a site- or bond-centeredness of

the stripes is ill-defined. However, as we will report in Ch.4, our choice has been

to consider site-centered stripes when λ is odd.
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Figure 3.4: Pictorial representation of a stripe with λ = 5, site-centered.
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Chapter 4

Results

In this chapter we finally discuss the results obtained by means of VMC tech-

niques to investigate the instauration of stripes in the single-band Hubbard

model on the square lattice with both nearest-(t) and next-nearest-(t′) neigh-

bour hopping. In Ch.1 we have discussed the main features of cuprates and

justified why this model well describes these materials, while Ch.2 gave us in-

sights on the two main methods to support via experiments the theoretical and

numerical evidences for stripe order.

In the present work we empirically study the instauration of superconduc-

tivity and stripes with different wavelengths λ and different character (bond- or

site-centered) when changing the hole-doping x. We consider two typical values

of the hopping parameter for cuprates (t′/t = −0.25 and t′/t = −0.4) in order

to see how larger values of |t′/t| affect the stripe order. The on-site Coulomb

repulsion U/t = 8, kept fixed throughout the simulations, is chosen to ensure

strong enough correlations. Indeed, in [47] it is shown that for smaller values of

U/t, such as U/t ≲ 4, the striped wave functions are not stable and converge to

the uniform state with vanishing parameters ∆C and ∆S .

Our simulations are conducted on ladders with L = Lx × 6 sites and peri-

odic boundary conditions in both x and y directions. To match the charge and

spin patters in the cluster, we choose Lx = 2kλ, where k ∈ Z and λ the wave-
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length associated to the modulations. This geometry is expected to capture the

behaviour of truly two-dimensional clusters [53], while allowing to accommo-

date long stripes along the Lx rungs. Stripes with even values of λ are taken

bond-centered, while those with odd values of λ are site-centered. However, by

comparing the two configurations we found that bond- and site-centered stripes

are essentially degenerate in energy (within the error bar) for each value of λ

(odd or even).

The Monte Carlo simulation is initialized with an arbitrary1 set of varia-

tional parameters that, at each MC step are updated according to the Stochastic

Reconfiguration method (see Sec.3.4) and consequently the variational energy

decreases until, eventually, oscillates around a stable value bounded from be-

low by the exact ground-state energy, according to the Variational Principle,

discussed in Sec.3.1. In Fig.4.1 a typical curve for the variational (after some

binning) energy along the optimization process is shown. In computing the

average variational energy, the "transient" part is discarded.

From the figure it is safe to assume that the variational energy converged

to the minimum. A safety check is performed by looking at the curves for

the variational parameters, to make sure they have approached a stable value

too. A few of them, as an example, are reported in Fig.4.2. Once the energy

and all the parameters converge to stable values, the optimization run can be

concluded. Their values are fixed to their averages and a run at fixed parameters

is performed to compute, for instance, the quantum averages needed for the

correlation function or the superconducting order parameter.

4.1 Optimal state

In this section we work out the optimal state for different values of hole-doping

x and the two next-nearest-neighbour hopping t′ values. Chosen a value for the

hole-doping, the different wave functions, i.e. striped states for various λ and

the uniform state, are compared by looking at their variational energies. The
1But still reasonable enough to avoid numerical instabilities.
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Figure 4.1: Value of the variational energy E along the optimization process.

Here, each data point represents a bin over 1000 MC steps.

optimal state is the one corresponding to the lowest variational energy.

Both commensurate and incommensurate doping values have been consid-

ered. By "commensurate" doping we refer to the introduction of an integer

number of holes every 1/x lattice sites; conversely, this number is noninteger for

"incommensurate" doping values.

We start by considering the case t′/t = −0.25. The energy per site, in units

of t, as a function of x is reported in Table 4.1. Here, we compare the energy

for the best striped state Estripe with that of the uniform state Euniform for a

broad range of doping values.

The striped state is almost always energetically favourable. As x increases,

the wavelength λ decreases more and more until, at the large doping x = 1/3,

the striped state and the uniform state become energetically indistinguishable.

When discussing the behaviour of the gap parameters in Sec.4.2, we will show

that this effectively corresponds to a melting of the stripe.

The second set of simulations involved the same search for the optimal state
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(a) (b)

(c) (d)

Figure 4.2: Value of a few variational parameters along the optimization process

via Stochastic Reconfiguration.
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x Estripe Euniform ∆E

1/12 -0.6646 (λ = 8) - -

1/10 -0.6920 (λ = 7) - -

1/8 -0.7322 (λ = 5) -0.7239 -0.0082

1/6 -0.7936 (λ = 4) -0.7847 -0.0088

1/5 -0.8280 (λ = 3) -0.8260 -0.0020

1/4 -0.8749 (λ = 3) -0.8727 -0.0021

1/3 -0.9197 (λ = 3) -0.9197 0

Table 4.1: Energy per site (in units of t) for the best striped state Estripe and

the uniform state Euniform, along with their relative difference ∆E = Estripe −

Euniform, as a function of x for t′/t = −0.25. Data are shown for Lx = 48 for

the stripes with λ = 3, 4, 8, Lx = 40 for the stripes with λ = 5 and Lx = 70 for

the stripes with λ = 7. For the uniform state Lx = 48. The error bar on the

energy is always smaller than 10−4t.

but at a larger value of |t′/t|, namely t′/t = −0.4. The results are reported in

Table 4.2. The main effect of a larger hopping |t′/t| is to suppress the stripe

pattern and makes the optimal state converge to the uniform one faster. Indeed,

already at x = 1/4, the striped state is no longer favourable and the uniform

state is the optimal one.

4.2 Behaviour of the gap parameters

In Sec.3.5 we have introduced the gap parameters ∆C , ∆S and ∆AF related to

the "strength" of the charge, spin, and Néel order respectively. In this section

we proceed by looking at their behaviour as the hole-doping increases in the

case t′/t = −0.25, once the parameters converge after a long enough VMC

simulation. Their values are reported in Table 4.3 and plotted in Fig.4.3.

For small doping, as also shown in Table 4.1, the striped state is well estab-
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x Estripe Euniform ∆E

1/6 -0.7901 (λ = 4) -0.7854 -0.0047

1/5 -0.8250 (λ = 3) -0.8244 -0.0005

1/4 -0.8650 (λ = 3) -0.8654 0.0004

Table 4.2: Energy per site (in units of t) for the best striped state Estripe and

the uniform state Euniform, along with their relative difference ∆E = Estripe −

Euniform, as a function of x for t′/t = −0.4. Data are shown for Lx = 48 for all

the stripes and the uniform state. The error bar on the energy is always smaller

than 10−4t.

x λ ∆C ∆S ∆AF

1/12 8 0.4498±0.0024 0.9341±0.001 0.5396±0.0008

1/10 7 0.4165±0.0019 0.8540±0.0005 0.4605±0.0006

1/8 5 0.3828±0.0015 0.8437±0.0006 0.2526±0.0011

1/6 4 0.2113±0.0012 0.6559±0.0004 0.0148±0.0002

1/5 3 0.2068±0.0015 0.4933±0.0006 0.0001±0.0002

1/4 3 0.0739±0.0007 0.3842±0.0003 -0.0001±0.0001

1/3 3 -0.0003±0.0010 -0.0002±0.0002 -0.0002±0.0005

Table 4.3: Value of the gap parameters ∆C and ∆S for the best striped state

and ∆AF for the uniform state, as a function of x for t′/t = −0.25. The λs refer

to the optimal striped state.

lished and indeed ∆C and ∆S are finite. This corresponds to well-defined order

in both charge and spin. Also the uniform state, despite not being the optimal

one, is able to develop Néel antiferromagnetism in the underdoped regime, as

indicated by a finite ∆AF .

As x increases, we see that all these parameters decrease monotonically

until, at large x they become much smaller and eventually negligible. This
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Figure 4.3: Behaviour of ∆C and ∆S for the best striped state and ∆AF for the

uniform state, as a function of x for t′/t = −0.25. The error bars, reported in

Table 4.3, are not visible.

corresponds, for the striped states, to the absence of any order: the stripe

"melts" and effectively reduces to the uniform state. Hence the degeneracy in

energy pointed out for x = 1/3.

Moreover, the weakening of correlations in charge and spin provides a justifi-

cation for the shrinkage of the wavelength λ of the striped states. A long-range,

periodic modulation, extending over many lattice sites, in fact, can be stabilized

only by strong enough correlations; conversely, upon increasing the hole doping,

only shorter stripes can eventually form.

4.3 Correlation functions

The actual presence of charge and spin order in the wave function can be di-

rectly detected in the static structure factors of Eqs.3.5, which exhibit clear

peaks in this case. These peaks are present at Q =
(
2π
λ , 0

)
for N(q) and
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(a) (b)

Figure 4.4: (a): Static structure factor N(q) as a function of qx with qy = 0.

(b): Spin-spin correlation function S(q) as a function of qx with qy = π on a

semi-log scale. Both quantities refer to the optimal striped state at x = 1/6,

t′/t = −0.25 and λ = 4.

Q = (π(1− 1/λ), π) for S(q). Whenever the gap parameters ∆C and ∆S are

finite, peaks in N(q) and S(q), respectively, should appear. From time to time,

the size of the lattice happens to be too small to see them. In this case, using

the fact that the peaks diverge in the thermodynamical limit, the issue is solved

by increasing the lattice size.

The results for N(q) and S(q) for the optimal striped state at x = 1/6 and

λ = 4, visualized in Fig.4.4, show that it is clearly ordered. N(q) exhibits a

peak for qx = π
2 , while S(q) for qx = 3

4π consistently with the wavelength of

the stripe. The behaviour of N(q) at x = 1/3 and λ = 3, associated to a really

small ∆C , is instead plotted in Fig.4.5 and confirms that this state is effectively

uniform. Indeed, the correlation functions for the uniform state and the striped

one at high doping do not exhibit any peaks.

The results displayed in Fig.4.3 suggest that spin modulations are more

robust than the charge and AF ones when increasing the doping. For this

reason, spin-spin correlations are expected to exhibit small peaks even when

the charge-charge correlations do not. To show this, the correlation functions
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Figure 4.5: Static structure factor N(q) as a function of qx with qy = 0. Data

are reported for the non-optimal uniform state at x = 1/6 (circles) and the state

at x = 1/3, λ = 3 (diamonds). In both cases t′/t = −0.25.

for the non-optimal striped state at x = 1/3, λ = 3, next to the optimal state

at x = 1/4 and λ = 3 for comparison, are reported side by side in Fig.4.6.

The peaks for the latter state are correctly located for N(qx, 0) and S(qx, π) at

qx = 2
3π. We can observe though that the former, as already discussed, presents

no peaks in the charge order while, on the other hand, S(q) seems to attempt

some kind of weak ordering at a wavelength close to λ = 3. Even if the state is

practically uniform, as the charge ordering is not realized, the ordering of the

spins tends to imitate those of the optimal wavelength, of the kind

. . . ↑ ↓ ⃝ ↑ ↓ ⃝ ↑ ↓ ⃝ . . .

Now we can move on to assess the metallic or insulating behaviour of the

optimal state in the case t′/t = −0.25 which, as a consequence of Eq.3.66, can

be extracted from the small-q behaviour of the static structure factor N(q). In
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(a) (b)

Figure 4.6: (a): Static structure factor N(q) as a function of qx with qy = 0.

(b): Spin-spin correlation function S(q) as a function of qx with qy = π on a

semi-log scale. The non-optimal striped state at x = 1/3, λ = 3 and the optimal

one at x = 1/4 and λ = 3 are being compared. In all these cases, t′/t = −0.25.

particular, we proceed to plot the quantity N(qx, 0)/qx at small qx. The results

are shown in Fig.4.7.

As a reference, we used the uniform state (circles), which is known to be

metallic (except at half-filling, when each site is occupied by one electron and

the Coulomb repulsion prevents them from moving freely) even though it has

a higher variational energy. We observe that, for the striped state at x =

1/6 (squares), N(qx, 0)/qx clearly tends to zero, compatibly with an insulating

behaviour. On the other hand, for all the other striped states at x = 1/5 (stars)

and x = 1/4 (hexagrams), N(qx, 0)/qx tends to a finite value indicating that

these states are metallic.

4.4 Superconductivity and Stripes

Finally, we address the coexistence of superconductivity and stripe order, by

computing the superconducting order parameter of Eq.3.67 for the uniform (but

not optimal) state and the optimal striped states. The results, in the case

t′/t = −0.25, are reported in Fig.4.8. As before, we have taken the uniform
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Figure 4.7: Static structure factor (divided by qx) N(q)/qx as a function of qx

with qy = 0. Data are reported for different hole-dopings x and t′/t = −0.25.

The state at x = 1/3, being effectively uniform, has not been plotted.

state (circles) as a reference. All the striped states show strongly suppressed

pair-pair correlation with respect to the uniform case. The stripe at x = 1/5

and x = 1/4, despite having a metallic character, exhibit a suppression in D(r)

similar to that of the insulating stripe at x = 1/6. This supports the idea

that the stripe order disrupts superconductivity, no matter their metallic or

insulating character. Also in the case t′/t = −0.4, the very same trend is found.

Stripes, then, are found to compete with superconductivity. Also at strong

hole-doping, however, in which the stripes melt and the uniform state is restored,

superconductivity cannot survive. This can be seen from the phase diagram

discussed in Ch.1. Is there an "intermediate" regime in which the hole-doping

is strong enough to restore the uniform state but not too strong to suppress
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t′/t = −0.25

Figure 4.8: Pair-pair correlations D(r) as a function of r on a log-log scale.

Data are reported for different hole-dopings x and t′/t = −0.25. In presence of

stripe order, D(r) decays much faster than in the uniform state.

superconductivity? To answer this question, we look for the first value of x

at which the uniform state becomes energetically favourable and compute the

pair-pair correlations.

For t′/t = −0.25, as discussed in Table 4.1, the optimal state at x = 1/4

is a stripe of wavelength λ = 3 while at x = 1/3 we have already reached the

uniform state. We then study incommensurate values of x in the range
[
1
4 ,

1
3

]
.

Since the wavelengths of the stripes decrease at increasing doping, it is sufficient

to compare the striped state with λ = 3 and the uniform state in this doping

regime. Their variational energies are presented in Table 4.4.

The difference in energy found in this range are very close to the value of the

error bar, but we can identify as the "transition" doping, the value x = 0.29.

From Fig.4.9, the pair-pair correlations for this state are plotted next to the

uniform but not optimal, superconducting state at x = 1/6 (circles) and the non-
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x Estripe Euniform ∆E

0.26 -0.8837 (λ = 3) -0.8833 -0.0004

0.27 -0.8933 (λ = 3) -0.8932 -0.0001

0.29 -0.9015 (uniform) -0.9016 0.0001

0.31 -0.9086 (uniform) -0.9087 0.0001

Table 4.4: Energy per site (in units of t for the best striped state Estripe and

the uniform state Euniform, along with their relative difference ∆E = Estripe −

Euniform, as a function of incommensurate x for t′/t = −0.25. Data are shown

for Lx = 48 for all the stripes and the uniform state. The error bar on the

energy is always smaller than 10−4t.

superconducting striped state at x = 1/6 and λ = 4 (squares) for comparison.

In this "intermediate" state, superconductivity is suppressed with respect to the

uniform state, most likely due to the already strong hole-doping, but less than

the striped, insulating one, even if x in the latter is much smaller.

To complete this analysis, it is worth investigating the analogous situation

in the case t′/t = −0.4 in which, as we have already mentioned, the effect of

a higher |t′/t| is to shorten the stripes faster and reach the uniform state at a

smaller doping x. The suppression of the stripes at a lower concentration of holes

might be associated to the presence of stronger superconducting correlations.

Following the same reasoning as before, by looking at Table 4.2, the doping

at which the uniform state prevails again is for x in the range
[
1
5 ,

1
4

]
. The

variational energies for these states are recorded in Table 4.5.

As expected, the stripes are suppressed earlier, already at x = 0.21. The

pair-pair correlations for the case t′/t = −0.4, the commensurate doping values

considered and the incommensurate "transition" state, are shown in Fig.4.10.

Again, we can see how correlations in the "transition" state (triangles) are

suppressed with respect to the uniform but not optimal, superconducting state

at x = 1/6 (denoted also in this case by circles), but still stronger than in the
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t′/t = −0.25

Figure 4.9: Pair-pair correlations D(r) as a function of r on a log-log scale, for

t′/t = −0.25. The "transition" state at x = 0.29 (denoted by diamonds) is

reported along with the uniform, superconducting state at x = 1/6 (circles) and

the non-superconducting striped state at x = 1/6 and λ = 4 (squares).

cases where the stripe order is established.

To make sure this "transition" state is effectively the most superconducting

at high x, we show in Fig.4.11 the same curves of Fig.4.10 along with the pair-

pair correlations for the remaining incommensurate doping values in Table 4.5.

To conclude the discussion, we went on to compare the magnitude of the

superconducting correlations. The curves are plotted in Fig.4.12. We observe

how, when |t′/t| is larger, superconductivity for the uniform state is slightly

suppressed. This is equally true for the uniform states at high hole-dopings x,

when the uniform state is restored. This suggests that not only high dopings,

but also larger values of |t′/t| undermine the instauration of superconductivity.

Even more notably, the role of |t′/t| might be dominant, since even a definitely

smaller values of x in the case t′/t = −0.4 is not enough to strengthen the
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x Estripe Euniform ∆E

1/5 -0.8250 (λ = 3) -0.8244 -0.0005

0.21 -0.8321 (uniform) -0.8323 0.0002

0.22 -0.8448 (uniform) -0.8449 0.0001

0.24 -0.8557 (uniform) -0.8559 0.0002

1/4 -0.8650 (λ = 3) -0.8654 0.0004

Table 4.5: Energy per site (in units of t for the best striped state Estripe and

the uniform state Euniform, along with their relative difference ∆E = Estripe −

Euniform, as a function of incommensurate x for t′/t = −0.4. Data are shown for

Lx = 48 for all the stripes and the uniform state. The error bar on the energy

is always smaller than 10−4t.

correlations.
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t′/t = −0.4

Figure 4.10: Pair-pair correlations D(r) as a function of r on a log-log scale.

Data are reported for different hole-dopings x and t′/t = −0.4. The "transition"

state at x = 0.21 (denoted by triangles) is reported. In presence of stripe order,

as already found for t′/t = −0.25, D(r) decays much faster than in the uniform

state.
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t′/t = −0.4

Figure 4.11: Pair-pair correlations D(r) as a function of r on a log-log scale.

Data are reported for all the different hole-dopings x considered and t′/t =

−0.4. The "transition" state at x = 0.21 (denoted by triangles) is the most

superconducting uniform state, after the disappearance of the striped states at

high hole-dopings.
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Figure 4.12: Comparison of the pair-pair correlations D(r) as a function of r

on a log-log scale, for the uniform but not optimal, superconducting states at

x = 1/6 and the two "transition" states for the two values of |t′/t|. A larger

value of |t′/t| seems associated to a suppression of superconductivity, even when

the hole doping required to suppress the stripe order is smaller.
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Chapter 5

Conclusion

In this thesis we explored the consequences of increasing hole doping on the

instauration of stripe order, superconductivity and their reciprocal interplay.

The Variational Monte Carlo method, which allowed us to find the variety of

results shown in Ch.4, proved to be a valuable tool to simulate many-body,

strongly correlated, quantum systems such as cuprates. The two values of the

next-nearest-neighbour hopping |t′/t| served as an additional degree of freedom

to better understand the role of this material-dependent parameter in the case

of two prototypical different compounds in the family of cuprates (with t′/t =

−0.25 and t′/t = −0.4).

By looking for the optimal state for different values of the hole-doping x,

we found that stripes are present over a broad range of doping values, as they

are energetically favourable in comparison to the uniform state. Site and bond-

centered stripes, which we considered for stripes with odd and even wavelength λ

respectively, have been found to be essentially degenerate energy, suggesting that

there is no relevant difference between the two configurations. Upon increasing

x, the wavelength of the stripes shrinks until eventually the uniform state is

restored. A larger |t′/t| is associated to a faster dissolution of the stripes and

leads to the uniform state at a smaller x, probably due to a frustration in the

formation of superconducting singlets.
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The inspection of the gap parameters ∆C , ∆S and ∆AF related to the

"strength" of the charge, spin, and Néel modulations respectively, showed that

they are suppressed as x increases. This fact conveys the idea that long-range

periodic modulations cannot be stabilized and hence the shrinkage of their wave-

length λ. The degeneracy in energy of the striped and uniform states, when the

stripe has "melted", is associated to vanishing values of the gap parameters.

This "melting" is confirmed by looking at the correlation functions N(q)

and S(q), which exhibit peaks in q-space whenever charge and spin order, re-

spectively, are present. The curves for N(q) for a uniform state and the striped

states at x = 1/3, associated to vanishing gap parameters, exhibit the same

behaviour. Spin correlations, however, tend to be stronger than charge corre-

lations, still resulting in weak peaks in S(q): even though the charge ordering

is not realized, the spins still attempt some order close to that of the optimal

wavelength.

The coexistence of superconductivity and stripe order is finally addressed by

looking at the pair-pair superconducting correlations D(r). The uniform (but

not optimal) state at small enough hole-doping x is found to be superconducting.

For both values of |t′/t|, superconductivity is found to be suppressed whenever

stripes (no matter their metallic or insulating nature) are present, suggesting

that the two phenomena interfere with each other. Even when a large x leads

to the disappearance of stripes and the consequent instauration of the uniform

state, superconductivity is again suppressed due to the large number of holes

among the lattice sites.

This fact led us to consider superconducting correlations for the first value

of x at which the stripes melt and the uniform state is restored. This "interme-

diate" doping regime is indeed observed to be more superconducting than any

striped state, but still less than the uniform state at smaller hole-doping. There

exists, then, a small interval in x among which the hole-doping is strong enough

to restore the uniform state but not too strong to suppress superconductivity.

Stronger pair-pair correlations for the larger value of t′/t = −0.4 (with respect

to the case for t′/t = −0.25), which we expected since the uniform state is
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reached earlier, at smaller x, have not been found. Our results instead show

that, in the former case, all superconducting correlations are weaker. This sug-

gests that not only a larger |t′/t| undermines superconductivity too, but its role

in this suppression might dominate that of the hole-doping.

All the main results of the present work are collected and summarized by

the final phase diagram reported in Fig.5.1.

Figure 5.1: Phase diagram collecting all the main results. SC = superconduc-

tivity.

In order to identify the intermediate superconducting regions, the average of

D(r) over the last 10 values has been considered, because we assumed it to be a

good indicator for pair-pair correlations at large r. Above the threshold value 3×

10−4, the state was considered superconducting1. The superconducting region

x ∈ [0.27, 0.29] for t′/t = −0.25 partially contradicts our previous statements,

but in reality it is justifiable since we are right at the boundary between the

two states and the striped states overcomes the uniform state very weakly.

Despite having focused on cuprates only, the phenomena investigated in the
1Clearly this threshold value is chosen arbitrarily, but the goal is to show evidences for some

residual superconductivity in between the striped states and the uniform (but strongly-doped)

one.

111



present work are extremely common in many other high-temperature supercon-

ductors too, and we are confident that our findings might contribute to a deeper

understanding of their physics.

5.1 Future Developments

Of course, there is still a lot of work to be done in this field.

First of all, we remark that the VMC method relies on an ansatz that may

eventually introduce some bias in the results. The one we considered, though,

is expected to be general and flexible enough to account properly for the phe-

nomena studied.

Different values for the Coulomb interaction U could be taken into account.

In the present work we focused on a constant U/t = 8, appropriate to make the

system strongly correlated and able to eventually stabilize the striped states.

However, a more complete picture is obtained by considering even more corre-

lated systems with, for instance, U/t = 12 or U/t = 16.

A more systematic study on the role of |t′/t| is expected to be significant, in

order to better understand how this further parameters affects superconductiv-

ity.

A major issue in our results, however, is the overestimation of the striped

phase when changing the hole-doping, in comparison to experimental observa-

tions. Superconductivity is expected to be more dominant and, consequently,

there must exist additional details actually missing in the current model that

better suppress the stripe order. Some possible improvements could involve

extending the Coulomb interaction up to the nearest-neighbours, and not only

on-site. Further hopping terms might also play a non-negligible role.

Two papers very recently2 published tried to address the limitations of the

single-band Hubbard model which, despite its simplicity, for many decades

proved to be sufficient to describe the physics of HTSCs. In [54], Jiang et.

al. started from a three-band Hubbard model (i.e the Cu dx2−y2 , O px and O

2March 2023. This "very recently" is going to sound very funny to my future self.
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py orbitals) and successively reduced it to an effective single-band model. In

[55], an enhanced superconductivity is found by calculations on an ab initio

model.
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