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ABSTRACT 

Autonomous vehicles have started revolutionizing the automotive industry about a decade ago, 

and are now starting to revolutionize the construction and agricultural fields. 

Construction and agriculture presents different challenges with respect to the automotive 

counterpart, some of them given by the environment, others given by the nature of the vehicle at 

study. 

The aim of this thesis is to analyze the sensors and the sequence of algorithms that are needed for 

AV applications, and apply them to the vehicle at study, the Merlo telescopic handler, in order to 

understand and highlight the challenges posed by this kind of vehicle in an agricultural 

environment. 

The analysis has been carried out on four different fields: path planning, Lidar data clustering, 

obstacle representation, navigation. 

Particular attention has been given to the clustering algorithms, in which both well established 

solutions and a very recent algorithm have been analyzed and implemented. 

The clustering and navigation algorithms have been tested using two different datasets, one 

belonging to the construction field and the other to the urban environment: the lack of freely 

available agricultural Lidar datasets is still a difficult point in the development of AV for 

agriculture. 

The challenges posed by the arm of the telescopic handler have been analyzed and visualized 

using the same datasets as above. 
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INTRODUCTION 
The telescopic handler 

The telescopic handler is a machine equipped with four wheels of the same size, and in this it 

differs form the tractor. It’s a machine that uses an hydraulic pump in order to push pressurized oil 

in several hydraulic cylinders, in order to push and extend its distinctive component, which is the 

telescopic arm. The telescopic handler has commands in order to maneuver the arm and its 

attached tools in several configurations, making it able to lift, bring down, extend and retract the 

load that is being maneuvered. The versatility of the machine makes it capable of working in 

several different environments with different mission goals, for many of which, though, the base 

constituted by the wheels alone is insufficient in order to provide the necessary stability. To 

account for this, four extendable legs are also powered by the hydraulic pump: these legs have the 

task to stabilize the telescopic handler in a static configuration (this means that the vehicle won’t 

be able to move while the legs are extended) and are composed of the leg and of the hydraulic 

cylinder that makes them extend.  

 

Figure 1-Merlo Roto telescopic handler 

The telescopic handler is not to be confused with the forklift: the latter is a machine, usually 

smaller in size with respect to the handler, that is only able to lift loads in a vertical way, and 

whose lifting device, which are the forks, have limited mobility with respect to the telescopic arm. 

In fact, the forks of the forklift don’t move longitudinally, and this makes so that they never leave 

the base of the forklift.  

The telscopic handler is constituted of the wheels, the main body, the cabin and the arm. Usually 

the arm is placed, in its resting position, on the right of the cabin, allowing good visibility for the 

operator when handling loads. Inside the cabin there are commands in order to drive the machine 

and to move the arm, and the design is studied in order to be able to do both at the same time; 

the arm in the newer models is controlled by a joystick, and the signal transmission to the control 

unit is electronical. This allows for the latest models to be able to control remotely, within certain 

limits, the arm maneuvers. For example, when the basket lifter is attached to the arm, and 

operators are on it, they can control the machine without having another person in the cabin. 
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The arm of the telescopic handler is attached to the right of the cabin with a big hinge: this can be 

modeled and viewed as a rotational joint, with its working angle included between 0° (resting 

position) and 80° (largely varying between models and manufacturers) [1]. 

The arm of the telescopic handler is composed in an onion-like structure: multiple steel 

parallelepiped, the smaller one closer to the tip, slide one into the other during the extension and 

retraction phases. This can be modeled by a series of multiple prismatic junctions. Hydraulic 

cylinders placed inside the arm are the actors of this extension movement. The smaller of the 

parallelepipeds ends with an almost perpendicular component, called nose (highlighted in red in 

figure 1). The nose constitutes the link between the extendable part of the arm and the end 

effector of the arm, which is called the “zattera” and badly translates into english. The end 

effector is attached to the nose with a revolute joint, that allows it to change its angluar 

orientation within some degrees. The “zattera” then constitutes the attach point for lots of 

different tools, that increase the versatility and use case scenarios of the handler. Most popular 

tools are forks, multifunction claws, earthmoving bucket, pallet forks, straw bale picks, basket 

lifter. The moltitude of the tools that are attached to the telescopic handler makes it clear that the 

mission it can be used into belong to the most different environments: agricultural, construction, 

quarries, civil works.   

The telescopic handlers’ names contain in them the maximum liftable capability and arm 

extension; for example  the Merlo Turbo Farmer 44.7 is able to lift 4400 kilograms at a height of 7 

meters, or the Merlo Roto 50.30 is able to lift 5000 kilograms at a height of 30 meters. As it can be 

seen, the range of products varies a lot, depending on the use cases.  

Some models of  telescopic handler are capable of rotating their cabin and arm at a full 360°; in 

the Merlo franchise, these go by the name Roto, and are composed of the same components of 

the “normal” telescopic handler, plus a big central pin that allows for the upper part of the 

machine to freely rotate. This allows for an additional degree of freedom and even more use 

cases. 

One of the peculiar distincive traits of the Merlo telescopic handler in particular is the feature of 

having four steering wheels, and the hydrostatic transmimssion. The latter one is the feature that 

allows the former to exists. Hydrostatic transmission has the advantage of transmitting high 

powers at virtually any distances, using flexible tubing; this is what allows it to create out of axis 

transmissions and without any particular alignment constraints [2]. This also implies the advantage 

of having a good peak load absorption, making the telescopic handler a robust vehicle. The power 

over weight ratio is very high, and this allows for compact actuators situated far away from the big 

engine-pump body. The sacrified factor in the hydrostatic transmission is the efficiency, as it is 

lower than the dry counterpart. The hydrostatic transmission also provides a challenge in deriving 

the transfer function from the control unit to the  wheel, and this aspect is of importance in an 

autonomous driving context. There are several ways to perform system identification of this kind 

of transmission, one of the newest being the Set Membership approach (Abuabiah, Regruto, Set-

membership identification of a dry-clutch transmission model, 2017); this work was not carried 

out in this thesis but it will be of necessity in order to the creation of a future prototype. 
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Autonomous driving in the agricultural field 

Autonomous driving solutions in the agricultural field has seen a growth in research in recent 

years, some examples of recently published papers on the topic are [3], [4]. The usage of 

autonomous vehicles in this particular field present a number of advantages that make it so that 

lots of companies are investing in reseach and development so to create autonomous versions of 

their robots [5], [6]. The usecases are widely distributed across the whole spectrum of agricultural 

activities.  

Tractors maufacturers, for example John Deer, focused their energy towards the development of 

autonomous driving tractors, based on their classical man-driven vehicles (figure 2). 

 

Figure 2- source: John Deere 

These kinds of tractor autonomous solutions are aimed at big open spaces, open fields, and long 

and continuous working regimens. The activities carried out by these tractors are mostly 

ploughing, fertilizing and harrowing, so mostly soil working activities carried out over long 

distances. Intensive working of big quantities of soil require driving tractors for lots of hours at a 

time, resulting in stressful human conditions and even medical conditions to the back [7], 

therefore putting at risk the health conditions of the workers, potentially leading to chronical 

conditions. The introduction of self-driven tractors could be a turning point in the health related 

hazards in the “big fields” sector. Another point to keep in mind is the increased productivity of 

the soil, since the self driven tractors don’t need breaks and can work at nighttime in some cases.   

Another state of the art development field for agricultural robots is automated weeding. Weeds 

constitute a problem in orchard scenarios as they are an infesting factor, causing in the less 

serious cases trouble in picking up the fruits produced by the plants (that is, nentheless, a revenue 

limiting factor), and in the worse scenarios they can be the source of pathogens for the tree. 

Industries such as Aigro has worked towards creating solutions for automated weeding, since 

weeding is an activity that needs to be done several times in the arch of the year. The robot Aigro 

UP removes weeds using the tine harrow situated behind the traction-wheels; the machine works 

at slow speeds, as is common in these scenarios, but the speed factor is not quite important  in 
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these kind of applications, where the productivity factor is given by the overall orchard situation 

over the year, and not by the speed at which the weeds are removed in a single session. This 

solution works on battery packs, and this is a common occurrence in small agricultural robots, 

while is not as common for the big tractors; the electrical solution, in its actual state of the art 

state allows the working of a 5 to 10 hectare field at a time. 

 

Figure 3- AigroUP - source: Aigro 

 

Another common field of interest in the context of agriculture robotics is vineyards care. 

Vineyards care is a sector more aimed towards high quality products rather than mass production, 

and its challenges are different from the ones that have to be accomplished by a self-driving 

tractor. The quality of the final product makes it so that a single solutions for all tasks does not 

exists, and several activities are needed in order to arrive at the grape picking time. Actions to be 

performed include thinning out excessive foliage, spraying pesticides, checking for signs of 

dehydration or malnutrition, fertilizing etc. Some of these tasks can be performed by normal rover 

robots, other need robots that can encapsule the whole file. An example of thinning and foliage 

control is given by the Vitibot Bakus bot, which has a particular bridge shaped form that allows it 

to navigate around the whole file, shown in figure 4. The vineyard control robots come in different 

sizes depending on the type of cultivation, the width of the file and the steepness of the terrain. 

This kind of robot is an example of extremely specialized robot, which puts it on the opposite side 

of the spectrum of the general purpose tractors.  
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Figure 4 - Vitibot's Bakus - source: Vitibot 

Another agricultural related job that is being taken on by robots in certain parts of the world is 

weed control over railways. This activity is similar to orchard weeding operations, but it differs 

from it mainly for the size of the working area. In the case of the orchard the working area is a 

closely delimited space, often marked with some kind of fence or barrier, usually in a rectangular 

shape. In the case of railway weed control, the working area is the narrow line that coasts the 

whole perimeter of the rails, and therefore is more similar to a line, and can extend for hundreds 

of kilometres. The collaboration between Vitirover and MDP [8], has created in France a solar 

powered rover capable of cutting weeds and navigating through challenging environments, in 

order to keep the grass level around railways under control. The solar panels that the rover is 

equipped with make it so that it can work continuously for several days or even weeks, without 

the need for human intervention.  This kind of robot presents other differencies with respect to 

the orchard counterpart than autonomy, mainly related to the naivgation setting. As it can be seen 

in figure 5, the Vitirover solution navigates having as a reference guide a red line that runs along 

the railway. This is a great semplification that allows for navigation algorithms to be simple line 

following algorithms, something that general purpose weeding don’t have, as they need to be able 

to work in a less-structured environment.  

 

 

Figure 5 - Vitirover weeding along a railway - source: Vitirover 
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Working mission and considered scenarios  

The mission that is tackled in this thesis works groups under the open field activities. In the 

previous section it was presented that several open field activities are carried out by tractors, and 

related to soil working. Although soil working can be considered one of the activities feasible by 

the telescopic handler, it is not one of those at its core activities. The peculiarity of the telescopic 

handler is, of course, the ability of performing movimentation of loads with good dexterity. An 

open field activity that requires good dexterity is hay ball movimentation. Hay balls 

movimentation is currently carried out manually, but it has the potential to become an automated 

task; it is a repetitive task and hayballs are relatively simple objects to handle. 

The draft of the ISO 18497 [9] proposes some classifications and scenarios in which autonomous 

vehicles for agriculture will need to fall into. In particular it proposes, in the nomenclature section: 

perception system: system that gathers and processes information about the environment in 

which the machine is operating 

warning zone: area where if an obstacle is within and no action is taken, then the obstacle might 

enter the hazard zone 

hazard zone: area which is a subset of the warning zone and where if an obstacle is within that 

area, then the potential for injury can exist 

autonomous mode: mode of machine operation in which a machine performs functions related to 

its defined tasks without operator interaction 

autonomous operating zone: designated area in which machines operate in autonomous mode 

active state: machine system state in which partially automated, semi-autonomous or 

autonomous functions are provided 

safe state: operating state of a system with acceptable level of risk for operator or bystander even 

when the control system fails or partly fails 

use case: specific situation in which a product is used; includes machine type(s), operating 

conditions, functional ranges, system boundaries and operational design domain 

Using the proposed nomenclature, we can define the use case of the autonomous vehicle studied 

in this work as open field autonomous work. The functional ranges refer to the extent to which the 

machine can still performed its assigned task. Here we will consider an almost completely 

controlled environment, in the sense that some sort of map of the environment is given to the 

machine, and localization is available; in this sense the functional ranges of the machine will be 

limited to obstacle avoidance of non-alive obstacles, and in the case of presence of alive obstacles, 

such as humans or animals, the machine will exit the active state (state in which the machine 

performs the work it is assigned) and enter the safe state, see above for definition. Since the 

presence of humans mandates the entering of the safe state, the scenario in which the machine 

operates is not a cooperative scenario but a fully auotnomous one. In this sense, the definition of 

hazard zone needs to be stretched to injuries provoked to the machine or its surroundings 

(comprising obstacles), because injuries to people are not considered. Therefore we can speak of 

hazard zone in the general sense of zone that leads to some form of damage to objects. The 
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warning zone meaning remains unchanged. Both the hazard zone and the warning zone will be 

tuned and adjusted by enhancing or reducing the safety boundaries around the machine, in the 

context of the navigation algorithm and obstacle representation presented in chapters 4 and 5. 

 

High level scheme of the considered solution 

Autonomous driving is a name that labels an incredible amount of research that crosses lots of 

field in computer science, mathematics, automation engineering, sensor fusion, sensor 

technology, although most of it is done in the automotive domain. The focus of this thesis work is 

to perform simulations of some of the blocks that compose the chain of algorithms that build an 

AD system. In certain blocks, state-of-the art algorithms will be compared to well-estabilished 

solutions; the whole process will be analized, where it makes sense to do so, highlighting the 

additional challenges posed by the fact that the physical vehicle at study is a telescopic handler 

and not a transportation vehicle. 

In the high level scheme presented in the next page, the covered blocks are presented, divided 

into tematic groups, with colors having the following meaning: 

• The blocks containing data that belongs to the input and output elements of the algorithm 

are highlighted in red 

• The blocks containing actions that are performed online (from the moment the machine 

enters active state to where it returns to safe state) are highlighted in green 

• The blocks containing actions that are performed offline (before the machine enters active 

state; these blocks may be done on board or remotely) are highlighted in blue 

The blocks not implemented in this work, but that are cited more or less extensively are, at least: 

• A machine learning or deep learning algorithm that, given the input provided by the 

cameras, determines the presence of people or animals in the warning zone and 

consequently toggles the active state / safe state switch. Examples of popular algorithms in 

literature are [10] 

• A finite state machine that, based on the environment, the perceived obstacles, the 

weather ecc… tunes the parameters of the different algorithms such as clustering, 

navigation… in order to obtian the best performance in each working environment 

• A finite state machine that determines current mission, waypoints and initiates safe state 

mode if the conditions of the environment/weather or the data coming from the sensors 

aren’t acceptable for navigation. This also accounts for the presence of people / animals 

detected by the machine learning / deep learning algorithms.  
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CHAPTER 1 – OFFLINE PATH PLANNING 

1.1 Introduction to path planning 
Path planning is a general problem that arises in various areas of automation engineering; for 

example how to move the end effector of a robot manipulator is a famous example of a path 

planning problem: The robot must be able to move through an environment without entering 

contact with obstacles and performing the assigned task. 

In our case, the problem of path planning consists of finding an obstacle free path that the ego 

vehicle can follow in order to arrive to the objective area. The components of the path planning 

problem are: 

• the ego vehicle, which in our case is the telescopic handler 

• the starting point 

• The objective point; usually, instead of an objective point an objective area is considered 

instead: this helps with the feasibility of the problem and it's similar to a real use case 

scenario, where it is not needed to achieve perfect positioning in one point 

• The obstacles: the obstacles are considered to be static; in the mission scenario considered 

examples of obstacles could be a building, a fence, a wall. Note that in this part of the 

algorithm moving obstacles such as people or vehicles are not accounted for.  

In the consider scenarios a map of the whole working area is considered to be given; this 

assumption implies that the telescopic handler will not be completely autonomous in the 

sense that some sort of human guidance will be needed; for example if the vehicle is 

supposed to work in a factory a map of the factory will have to be processed by a human 

and transformed in a representation of the factory that clearly shows the various kind of 

obstacles that are present.  

This aspect can be seen as a limiting factor of the capabilities of the machine come but it 

also the advantage of being able to retain the machine from going in a particular area 

where instead it would go if a map of the area were not to be available. In this sense this is 

a conservative approach to autonomous driving. 

Apart from the basic elements written above, path planning comes in different flavors, because 

there are different missions that can be achieved by an autonomous vehicle; for some of these 

missions the exact shape of the path, provided that it is an obstacle free one, is not important; 

examples of this category are the missions in which the vehicle has to transport some amount of 

material from one place to another like in a construction site: it is not important the path taken to 

move the material as long as it doesn't impacts with anything. 

 

 

 

But there can be cases in which the in particular path taken is important: an example of this are 

the various soil preparation activities such as plowing watering or even planting. In this case is the 
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past must satisfy specific requirements such as shape working area coverage etc; this kind of 

requirements are often difficult to incorporate in a path planning algorithm solver and are another 

example of an activity that would be preferentially done offline by a human worker. On the other 

hand if the requirements are not particularly stringent and the machine is only supposed to follow 

some specific points in the working area it is possible to introduce the concept of waypoints: a 

waypoint is the fine as an intermediate objective point from which the path necessarily needs to 

pass by; again as in the case of the objective point a certain tolerance can be accounted for when 

defining the waypoints. 

In Figure 1 some example of path planning problem are given (this is an example concerning 

indoor mobile robots): 

 

Figure 6- path planning exmples 

 

 

In Figure 1.b an important aspect of the path planning problem emerges: it is not a problem with 

just one solution; in fact this is a problem that, if feasible, has an infinite number of solutions; but 

some solutions will be better than others and it will be important to define metrics to evaluate this 

concept of “goodness” of a solution. 
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1.2 Working scenario and motivations 
In order to understand the motivations behind the choice of the path planning algorithm, some 

considerations about the working scenario have to be done. 

The development of the thesis was done around a target mission, that is to move a simple load 

from one point to the other. The exact means on how to handle the load are irrelevant; the 

machine is supposed to start with the load already loaded in a previous operation. The chosen 

load has then been chosen to be a hayball, which can be taken by the machine via various tools, 

and the chosen working scenario is that of the outsides of a farm; that is, some sort of field where 

agricultural work needs to be done.  

The first big hypotesis underlying the farm scenario is the “visible sky hypotesis”: the chosen 

environment is an open one, as the sky is assumed to be visible at all times, and this means that 

verticality of the machine or obstacles that do not start from the ground up will not be accounted 

for; this is a limiting hypothesis for a number of  reasons:  

• Stocking areas of different kinds of material often include some vertical and nonconvex 

structure that extends some meters above the ground 

• There may be present temporary structures such as tensile structures that leave the 

ground free but consitute an obstacle some meters above 

• In real farms, the material can often be stocked inside, or has to be moved inside the farm.  

• Telescopic handlers often work staying outside of a closed working area and then moving 

the material inside it using the arm, this is impossible to do without considering vertical 

encumbrance 

As it is noticeable, the “visible sky hypotesys” presents various limitations that affect the 

performance of the handler and also its potential. One of the strenghts of the telescopic handler is 

its versatility, and the ability to work in an unstructured environment; assuming that all loads and 

obstacles are on the ground can be seen as quite irrealistic in most cases.  

The hypotesys was assumed in order to simplify the first study and algorithms, but it it worth 

mentioning that use cases where it holds well exist, and can be considered important enough to 

justify it by themselves. In the following, some remarkable examples are given: 

• Moving big quantities of excavated material in a wide environment such as a cave 

• “Human machine cooperation”: since the sensors mounted on the machine can work at 

nighttime, a possible case is the one where a human operator gathers the goods to be 

transported in an open area near the farm (covering small distances) and leaves the 

machine to cover big distances over and over during nighttime.  

• Ploughing: this is a classical open field activity in which autonomous driving has been 

shown to be very efficient at, and seldom requires entering in closed areas 

After the first part of the development of the path planning algorithm, the problems deriving form 

the “visible sky hypotesis” will be partially solved, see chapters 4 and 5. 
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The second big hypotesis underlying the farm scenario is the “static hypotesis”: this refers to the 

staticity of big structures in a farm or field. While it is true that some changes can occour over 

time, it is reasonable to think that from the moment the path planning algorithm develops a 

possible path for the vehicle to the moment the vehicle has started moving, no big changes should 

have happened in the working area topografy. This hypothesis is easy to find in agricultural 

scenarios, and the field scenario is one of them; instead, common scenarios where this hypothesis 

wouldn’t work too well are construction sites, where big changes in the topology of the place can 

happen rather quickly (i.e.: a tower crane can block a previously available way by putting some 

heavy pallet). 

Assuming staticity of the working environment allows us to compute a possible path only once 

(from here the name offline path planning), but this shoudn’t be confused with the absence of 

moving actors in the scene: moving people, vehicles, loads ecc… are all allowed to be in the 

working area of the machine as long as their dimensions do not alter topologically the map of the 

place. This means, we are assuming that possible obstacles that were not considered during the 

offline path planning process can be avoided, and thus treated as obstacles rather than map 

features.  

For example, if a cow happens to walk in the designated path of the handler, it is assumed that 

there is enough space for it to avoid it and return on the designated path, after some time. 

In figure 2, the green pentagon- shaped obstacle causes a topological change of the environment, 

that renders the previously computed path (in bold blue) unfeasible. A new path is needed, 

represented by the dot stretch line. 

 

 

Figure 7- Topological change in the environment 

 

With the basic hypotesis  in mind, we’ll now take a look at the various kinds of algorithms that are 

used to solve this problem. 
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1.3 Path planning algorithms 
The first notion to introduce in order to talk about path planning algorithms is the notion of free 

configuaration space. Strictly speaking, the free configuration space can be defined as the set of all 

feasible cofigurations, and this accounts for all constraints of the vehicle (or robot), usually 

kinematics and size ones [1]. 

 

Figure 8- free configuration space 

 

This kind of algorithm is said to be a global algorithm, as it searches for a path that connects the 

initial point to the final; a local algorithm, instead, solves a problem only in the immediate vicinity 

of the current position of the robot. This latter category is also often referred to as path following 

algorithms, more on chapter 5. 

In this chapter we focus on global algorithms, and they are usually divided into three classes: 

• grid-based search algorithms  

• visibility graph algorithms 

• sample-based algorithms 

 

1.3.1 Grid-based search algorithms 

This kind of algorithms work by discretizing the free space (called F from now on) into elementary 

cells. The elementary cells will contain or not contain an obstacle, and therefore can be seen as 

free cells or occupied cells. After the discretization, the problem is translated into a connettivity 

graph problem, where the goal is to find a path that connects starting point to end point passing 

only in free cells. 

So the grid-based search algorithms divide the path finding problem in two: a discretization 

problem (also known as cell decomposition problem) and a connectivity problem. 
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The cell size is important: they can’t be too big or with a complicated shape, and they can’t have 

holes; cell decompositions must also satisfy these constraints: [2]. 

• finding a path that connects two points inside of a cell must be an easy task: convex cells 

are to be prefered as each point inside them can be simply connected by a line (from the 

definition of convex set) 

• adjacent information between cells must be easily retainable 

• given two points of the space, finding which cells contain them must be an easy task. 

If the composition satisfies all properties allocated above, the problem reduces to the resolution 

of a graph. Most popular methods for this objective are Dijkstra and A* algorithms, more on these 

later. 

One of the possible ways to decompose a space is the vertical decomposition, here described: let 

P be the set of vertices that enclose the space of configuration with obstacles Cobs. for each point 

belonging to P Extend when possible, vertical segments towards up and down directions inside of 

Cfree until we reach again Cobs. This divides the space in lines and triangles, as shown in figure 5, 

And there are four possible cases as shown in figure 4.  

 

Figure 9- 1) bidirectional extension 2) towards up 3)towards down 4) impossible extension 

 

Figure 10- vertical decomposition of a generic space 

Once a composition has been created, it is necessary to define the road map. For each cell Ci, let qi  

be its designated sampling point: there are various ways to define a sampling point, usually the 

centroid of the cell is preferred.  
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Let G(V,E) be the topologic graph defined in the following way: for each cell Ci, define a vertex qi 

such that each cell has one independently from its size. sampling point inside of our 2D cell, start a 

line  that connects it to a sampling point in the 1D cell that are on its boundary. Edges created this 

way represent paths that unify between them all the adjacent cells. Graph created in this way 

satisfy accessibility conditioned from the moment that every point can be reached via line, thanks 

to the convexity of cells; It also satisfies connectivity conditions from the moment that G has been 

created by the composition that intrinsically maintains connectivity of Cfree. An example of road 

map can be seen in Figure 6. 

 

 

Figure 11 - example of roadmap 

Once the road map has been obtained, the last step to perform is to solve the graph; in order to 

do this, Most popular algorithms are Dijkstra and A*. In Figure 7 an example of solved road map 

can be seen: 

 

Figure 12- example of solved roadmap 
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Grid based search algorithms are quite simple in their working, But their main drawback is the 

computational cost. In fact, supposing that n vertex are present, the complexity cost is O(n2); In 

the case of a particularly complex model, computation time will be extended too much. 

1.3.2 Dijkstra algorithm 

This is a popular algorithm used to solve graphs, and it can be seen as the basis on which A* is 

built. It is not an algorithm that can by itself find a path, it is the algorithm used to solve the graph 

problem obtained for example in the first part of the grid based algorithms, that is the class 

decomposition. 

The Dijkstra algorithm visits the nodes of the graph in a similar way as a search in width or in 

depth. At each instant the set N of nodes of the graph is divided in three parts: the set of already 

visited nodes V, the set of frontier nodes F, and unknown nodes that are still to be examined [3]. 

A value dz is given to each node z, initially put equal to 1.  

At each step the algorithm takes from the set F any note z with dz minimum, It moves it from F to 

V, and moves all the successors of z unknown in F. For each successor w of z values dw are 

updated. Update is done according to:   

𝑑𝑤 ←min{𝑑𝑤,𝑑𝑧 + 𝑝𝑎} 

where a is the arch that connects z to w; if the value of dw has been modified, then uw is put equal 

to z.  

The basic idea of this algorithm is the following: if we know that arriving to z costs dz, arriving to w 

can't cost more than arriving to z and moving along and arch until w. 

The algorithm starts with V= Ø, F={x}, dx=0 and continues until y is not visited or until F=Ø: In this 

case, y is not reachable from x along an oriented arch.  

At the end of the algorithm dz contains for each node z the weight of a minimum path from x to z; 

furthermore, vector u allows to reconstruct the tree of minimum paths with origin in x. 

In order to better understand the algorithm, a simple example is reported: the objective is to 

reach node 5 starting from node 0:  
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Figure 13 - starting configuration of the algorithm 

First step: node 0 is visited, while 1,2,4, are put in frontier F (double circled in figure 9): 

 

Figure 14 -  first step, visiting 0 

Now we have to take the frontier node with minimum distance from 0, and it can be seen how 

Djikstra algorithm solves problem in an amplitude way: node 3 and 4 are quite distan from 0 in 

terms of path weight, and thus the closest node is 1. 1 is visited, and this updates d and u: 

 

Figure 15 - second step, visiting 1 
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Once again, instead of choosing nodes initially added to the frontier, we proceed with the node 

that presents minimum d, that is node 2. The effect is simply  to move node 2 in the set of visited 

nodes, as the for the only successor of node 2, that is node 3, we already know a better path (with 

smaller weight) than the one that would pass in 2.  

 

Figure 16 - third step, visiting 2 

 

 

Now the minimum d node is node 3, and visiting it updates d and u: 

 

Figure 17 - step 4, visiting 3 

Lastly, node 4 is visited:  
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Figure 18 - step 5, visiting 4 

The following step will find a path between 0 and 5, of weight 4: following back the pointers of u 

the path can be seen: 0,1,3,4,5. 

It can be proved that Djikstra algorithm is complete: that means that it will find an existing 

solution or it will be able to return an error if a solution is not found. An algorithm that is not 

complete will continue to work forever. 

 

1.3.3 Sample-based algorithms 

This class of algorithms presents a great advantage with respect to the grid based one; that is, 

reduced computational cost and hi speed; diffrently from what happens in grid based, where the 

whole configuration space is explored, here the problem is analized in a stocastic fashion, and that 

is the main contributor to reducing computational cost.  

The two main algorithms of this family are Probabilistic Roadmap (PRM) and Rapidly-exploring 

Random Tree (RRT). Both algorithms can be seen as the succeession of two phases, namely: 

• Learning phase: here the Cfree space is analized and nodes are stocastically chosen and 

connected by archs. The set of chosen nodes constitutes a graph 

• Quering phase: here the best path between all possible paths in the graph previously 

found are analized; graph solving algorithms are needed, such as Dijkstra. 

The differences between PRM and RRT are in the learning phase, while the quering phase is 

common in both. 

The PRM algorithm has not been analized, while RRT (more specifically, one of its variants) has 

been analized and implemented in the final project. The choice was carried out looking at various 

papers on autonomous robots in which many flavours of RRT were developed, making easy to 

include many types of constraints, some examples of these papers are [4] , [5] , [6] , [7] . 
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1.3.4 RRT algorithm 

The main idea behind RRT is quite simple: it aims at creating a graph in the learning phase which 

will then be analized in the quering phase. In order to create such graph, starting at the first point 

of the graph (which is known to be in the free space as our robot can’t start its movement inside 

of an obstacle), a number of random points are randomly generated in a neighborhood of the first 

point, and they are connected to it.  

Each time a new vertex is created, tho, a check is made that such vertex lies outside of an 

obstacle, and inside of the free space region. Also, the link between a vertex and the previous 

point with which the vertex will  be connected to must be obstacle free; this means that all the 

points that are on such link will have to be tested too.  

Once a new vertex is successfully added to the graph, the algorithm starts all over on this new 

vertex. It stops when a node is generated within the objective region, or when a iteration limit is 

reached.  

It is worth writing the algorithm in a list- fashion: 

Learning phase of an RRT algorithm: 

1. Creation of the graph G(V,E) as an empty set; the starting point is added to is as the 

first node, called qstart, which is obviously belonging to Cfree. 

2. Random generation of a node qrand, coming from  Cfree, following some generation 

parameters (more on this later). 

3. Identification between existing nodes of G of the closest node to qrand: this node will be 

called qnearest 

4. Computation of the new node qnex, using  a so called steering funciton(more on this 

later) 

5. Validation of the path between qnearest and qnew : the link between them must belong to 

Cfree, so it doesn’t have to collide with anything. 

6. Once validation is successful, adding qnew to V, and the arch that connects qnearest and 

qnew to E. 

7. Repetition of the previous steps until a point qnew that belongs to the objective region is 

added to the graph, or the number of iterations reaches a pre set number n. 

8. End of algorithm, with the resulting solution G(V,E). 

 

The steps presented so far are quite popular and standardized, and written in a number of papers 

such as [8].The pseudo code for the algorithm is given in figure 14: 



26 
 

 

Figure 19 - pseudo code for RRT 

 

 

1.3.5 RRT* algorithm 

The first major variant of the standard RRT algorithm is the so calleed RRT* algorithm, which is in 

short “an optimized version of RRT”. 

The RRT* algorithm is based on a simpler and version of the original RRT algorithm, which appears 

to be a worse choice. Such simpler algorithm is called RRG (Rapidly-exploring Random Graph). 

The main difference between RRT and RRG is the following: each time a new node qnew  and the 

conseguent arch, are added to the graph G(V,E), it will also be connected to a neighborhood of the 

qnearest node (as long as all the archs that will be created are collision free ones). 

A rule to define the concept of neighborhood of the qnearest node is needed: a distance is therefore 

introduced:   

 

where: 

• The parameter η is the same parameter used in the steering function of step 4 of the 

original RRT algorithm. It is a reasonable distance from qnearest , and in the RRG case it 

constitutes an upper limit to r.  

• d is the dimension of the configuration space of Cfree: in case of a 2D map, d=2. 

• γRRG: it is a multiplying factor that depends on the dimension of configuration space and 

the Lebesgue measure of Cfree. It is defined by: 
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γRRG > γRRG
∗ = 2 (1 +

1

𝑑
)

1
𝑑

 [
𝜇(𝐶𝑓𝑟𝑒𝑒)

𝜁𝑑
]

1
𝑑

 

• V is the set of vertices of the graph G(V,E) 

 

Comparing RRG and RRT: the end result of RRG is a graph with same vertices as the one resulting 

from the RRT algorithm, but with much more archs and lines that connect them; in this case, there 

is the possibility that some closed cycles can exist.  

 

In the following figure 15 the RRG algorithm is reported in pseudo code form: 

 

Figure 20- RRG algorithm pseudo code 

 

 

At a first glance it is unclear why to use RRG instead of RRT: not only it is slower, the fact that 

loops can exists makes the resolution of the graph more difficult. Infact, RRG is by itself a worse 

version of RRT, but here comes into play the peculiar aspect of the RRT* algorithm: the rewiring 

phase. 

The rewiring phase is run each time a new node is connected to all nodes in its neighborhood: the 

new node qnew is reconnected to the graph not in a path that minimizes the cost of the local 

segment that links it to the graph, but in order to minimize the overall cost of the path that starts 

from the fist node. Once rewiring is run for the node qnew  ,it is then run also for all nodes 

belonging to the neigborhood of qnew . 

The process described so far guarantees the computational efficiency of a graph tree structire and 

a solution which is asymptotically optimal. 
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It is useful to write the total RRT* algorithm in a list fashion: 

1. Creation of the graph G(V,E) as an empty set; the starting point is added to is as the 

first node, called qstart, which is obviously belonging to Cfree. 

2. Random generation of a node qrand, coming from  Cfree, following some generation 

parameters (more on this later). 

3. Identification between existing nodes of G of the closest node to qrand: this node will be 

called qnearest 

4. Computation of the new node qnew, using  a so called steering funciton(more on this 

later) 

5. Validation of the path between qnearest and qnew : the link between them must belong to 

Cfree, so it doesn’t have to collide with anything. 

6. Computation of the set Xnear containing all nodes that lie within a dinstance r from qnex 

7. Adding of qnew  to V. 

8. Creating auxiliary variables for the rewiring phase: 

• qmin : initially set equal  to qnearest ,it is the node prior to qnex and the one that 

minimizes the cost of the overall path from qstart to qmin to qnex 

• cmin: it is the cost of the overall path from qstart to qmin to qnex   

9.  Rewiring phase: the algorithm searches inside the set Xnear the node that, if 

considered        as prior to qnew, can minimize the the overall cost of the path; if a node 

is found, the algorithm updates the variables qmin and cmin . 

10.  After qnew has been connected to the graph in the best possible way, the algorithm 

evaluates if the nodes  belonging to Xnear can be connected to the graph with a minor 

cost considering qnew as prior node. 

 

In the following figure 16, the psuedo code of RRT* is provided: 

 
Figure 21 - pseudo code for RRT* 
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In figure 17 an example of the rewiring phase is given: at first the new node qnew was linked to the 

upper part of the graph, while the two nodes in its surroundings were connected to the bottom 

part of it. During the rewiring phase, it is seen that a smaller ovrall cost is achieved if the two 

nodes are connected to the new node qnew  instead.  

 
Figure 22- rewiring example 

In Figure 18 a result from running the RRT* algorithm has been reported. The implementation has 

been written by [9] (trova matlab implementation). The run time on an i7 dual core processor 

varies between 7 and 9 seconds, depending on the random creation of the trees. Still, it can be 

considered adequate for a one-time path planning before the navigation starts. 

 

Figure 23 - Result of RRT* implementation in Matlab 
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CHAPTER 2 – SENSORS AND METHODOLOGIES FOR AUTONOMOUS 

NAVIGATION 

2.1 Obstacle perception 
The algorithms and methods explained in chapter 1 belong to what can be defined as the offline 

part of the mission. That is, they exploit all available information on the map at the moment of 

starting the mission. We can call this information “a priori knowledge”, and the path created on 

the basis of the a priori knowledge can be called “reference path”; it will be the goal of the control 

algorithm to try and follow as closely as possible the reference path.  

In certain fields of robotics the a priori knowledge is all that is needed in order to succeed the 

mission; a valuable example of application are welding robots: welding robots usually operate 

under extremely controlled conditions, and the path of the end effector can be wholly computed 

before the beginning of welding operations, as it is extremely unlikely that new and unexpected 

obstacles will enter the working zone of the welding robot. Thus, in this case and in general in the 

case of CNC machining, the reference path will be only computed once and followed without 

intermediate modifications. 

Unfortunately, for the case study of an autonomous telescopic handler, it is unlikely that the 

working environment will be isolated from the external world once the reference path is 

computed. It is worth noting that, especially at this time and progress of autonomous vehicles for 

construction and agriculture, human-machine cooperation is still strongly discouraged; the 

machines have not yet reached a degree of safeness such that working while humans are present 

is considered a feasible activity. In fact, work of an autonomous vehicle is suggested to operate in 

an environment isolated from humans, and the machine should reach a safe state whenever 

human presence is detected. The laws are actually still quite behind in this particular field, but 

some general ideas have been found in the drafts of ISO norms such as [1] .However, even if the 

machine is suggested to operate in non human presence, human interaction still has to be taken 

into account, and it usually means a stopping of the activity of some sort.  

In this chapter we don’t focus on human interaction, but on the more general topic of obstacle 

detection. Without considering the case where the obstacle is human, obstacle detection is of 

paramount importance in this application of autonomous navigation, as the usual working 

environments of the telescopic handler can be constantly entered by vehicles and animals. Non 

moving objects are also a problem: in fact, every change to the environment that is not present in 

the a priori knowledge must be taken into account. This includes both interacting with moving 

objects and also avoiding still objects that are left in the way of the reference path. 

The first step towards obstacle identification and avoidance is the perception step, for which a 

number of sensors and methodologies have been developed.  
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2.1.1 Ultrasound sensors 

Ultrasound sensors are a family of devices that use ultrasonic waves to  perform different kinds of 

measurements; in an obstacle detection framework, ultrasound sensors are used to measure point 

to point distance. 

An ultrasonic sensor is usually composed of a transmitter and a receiver: the transmitter is made 

of a transducer that converts electrical energy into ultrasound, while the receiver receives the 

sounds and converts it into an electrical energy; different kind of measurements are then 

performed on this electrical quantity to reconstruct the distance of the perceived obstacle. 

More in detail, the most popular technique for measuring point to point distances is called 

sonomicrometry: it consists of transmitting and receiving discrete bursts of ultrasound between a 

transmitter and a receiver. The transmitter emits a short burst of ultrasounds which travel through 

the air until an object is encountered, which makes the burst bounce back to the receiver; when 

the burst is emitted a timer is started and when the receiver senses an incoming burst the timer is 

stopped. Assuming that the speed at which the ultrasonic wave travels through the medium is 

known, then the traveled distance can be simply computed via: 

𝑑 =
𝑡𝑖𝑚𝑒 ∗ 𝑐𝑠

2
 

where cs is the medium’s speed of sound.  

The use cases of ultrasonic sensors are quite vast and diverse: they can be used for measuring 

liquid levels, for measuring the presence or absence of certain gasses in an environment; these 

cases are relevant because they take advantage of one key characteristic of ultrasonic sensors: 

their performance does not depend on light conditions. They work equally well during daytime 

and nighttime, and the surface texture of the particular obstacle is not important. 

One of the major fields of application of ultrasonic sensors is parking assistance, where they have 

been employed for years. This is because they are cheap sensors, and their accuracy is usually 

quite good: 1% to 3% of the detected range is standard, while under controlled conditions it can 

be brought down to 0.1% to 0.2%. [2]. 

Their range varies from sensor to sensor, but most popular sensors work in a 1 cm to 1000 cm 

range; thus, we can classify them as short range sensors. 

They are mainly used for gross detections, where orientation and shape of the object are not 

important, as they are only able to give a single measurement per object.  

 

Figure 1- HC_SR04 a popular DIY ultrasonic sensor 
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2.1.2 Radar 

Radar indicates a technology that measures distances and direction of an object using radio 

waves. The name Radar is an acronym and stands for Radio Detection and Ranging. 

The principle at the heart of radar is called backscattering, and it is not too different from the basic 

principle of the ultrasonic sensor. Instead of sound waves, radio waves are used. More in detail, 

when a radio wave hits an object of size larger than its wavelength, parts of it are bounced away 

form the object. In the case the object size is smaller than the wavelength, other phenomena 

occur, such as diffusion or diffraction.  

The backscattered radio wave is then received by an antenna, that computes the distance based 

on the same formula used in the ultrasonic sensor, that is: 

𝑑 =
𝑡𝑖𝑚𝑒 ∗ 𝑐𝑟

2
 

where cr is the medium’s speed of propagation of the radio wave, about 300m/µs. 

Is it also possible to compute the azimuth angle of the detected object. 

A radar system is composed of: 

● An antenna, which acts both as a transmitter and as a receiver. 

● A waveguide, which is a hollow metal pipe that is used to confine and carry radio waves. A 

typical radar waveguide application is reported in figure 2. 

● A duplexer, which is a device used to decouple the transmitted wave from the received 

one. 

● A timing device that is some sort of very accurate and precise clock. 

 

Figure 2 - waveguide for a rotary radar system 
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The radar transmitter produces waves that are strongly directional, and are parallel to the 

horizontal plane on which the radar is mounted on. This is also referred to as the azimuth plane. 

Due to the strong directionality of the antennas that act both as transmitter or receiver, if a 360° 

field of view is required, the antenna will have to be mounted on a rotating joint, such as the one 

shown in figure 2. 

The radar technology comes in different flavors for different applications, and thus the range of 

distances and accuracies varies a lot, but all applications have the same kind of problems: 

multipath fading, constructive and destructive interference, internal and external radio noise in 

the transmitter or in the receiver… This array of uncertainties makes it mandatory to elaborate the 

radar signals in a stochastic way; in this sense, as more widely in the telecommunication field, 

probability concepts such as false positives (false detections) and false negatives (missed 

detections) are introduced. The aleatory nature of radar measurements thus implies that some 

sort of filter, algorithm, and probabilistic criteria are needed in order to correctly handle the 

results. 

In the autonomous vehicle field, radars have been widely used both in experimental and in 

commercial vehicles (one notable example is given by Tesla’s lineup). In this application, the 

dimensions of the sensor are quite smaller with respect to the long range military counterparts 

(figure 3a), and sensors are usually compact and flat (figure 3b).  

 

Figure 3a: military long range radar     Figure 3b: automotive grade radar 

 

Working frequencies for automotive radars are in the range of 75 – 110 GHz , and in the IEEE radio 

spectrum frequency bands they are classified as W, with wavelengths in the order of 2.7 mm to 4 

mm [3]. 

The range of a commercially available radar system for automotive lies in between 1m – 2m and 

100m. A single sensor can give multiple detections in a single scan, making it possible to not only 

evaluate an object distance but also its shape, if a suitable clustering algorithm is coupled with the 
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measurement. One of the good features about Radar is the fact that it is resilient with respect to 

adverse weather conditions: Radar works equally well in all weather conditions such as fog, rain, and 

snow, and dust. Another upside of Radar is that it can determine relative traffic speed or the 

velocity of a moving object accurately using the Doppler frequency shift, and this feature is unique 

to Radar. The main downside to this technology is that it is not angularly accurate, and scans 

performed using a Radar present distorted objects, whose shape can vary considerably from the 

actual one; in later years, high definition Radar have mitigated this problem. An example of Radar 

distortion and a comparison with the Lidar sensor (see next paragraph) is given in Figure 4. 

 

Figure 4: comparison between Lidar and high resolution Radar scan. The details of the bridge highlight the radar distorsions 

 

2.1.3 Lidar 

Lidar is an acronym and stands for Light Detection And Ranging, reminiscent of the Radar 

acronym. 

The concept at the heart of Lidar is very simple: Lidar sensors perform scans by emitting laser 

pulses, which then bounce back and are read from a receiver. Again, the formula used to measure 

the distance to the obstacle is: 

𝑑 =
𝑡𝑖𝑚𝑒 ∗ 𝑐𝑙

2
 

where cl is the speed of light. 

Lidar can be used to measure objects of all sorts of materials: stones, water, chemical substances, 

clouds, terrestrial objects and even single molecules, thanks to the laser beam being extremely 

narrow. Lidar is widely used in aerospace applications, to map terrain from aircrafts and in 

atmospheric research: in these kinds of applications high energy Lidars are employed. 

For autonomous vehicles applications another kind of Lidar technology is used: micropulse. 

Micropulse Lidar uses less power with respect to the high energy counterpart, and is often “eye 

https://en.wikipedia.org/wiki/Doppler_effect
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safe”, meaning that it can be operated in human populated environments without the need for 

eye protection. This is of course crucial in applications such as automotive but also agricultural and 

construction. 

Lidar sensors can be divided into categories based on their scanning mechanism: 

● Spinning Lidar: they employ a single laser beam that is directed towards a spinning mirror: 

the mirror redirects the beam towards the area to be scanned, and receives back the 

return beam. Since a mirror usually rotates around one axis, it can only scan radially. In 

order for it to scan across a 2D field of view, one option is to add a second mirror that 

redirects the laser beam perpendicular to the plane of the first mirror. Another option is to 

use one single mirror and two laser beams. This technology allows for a sensor with 360° of 

coverage, making it ideal to be mounted on top of vehicles for a complete view of the 

surroundings. 

● Solid state Lidar: it is also called phased array Lidar system. This solution comes from the 

world of radars, and it employs an array of microscopic antennas,in the order of 106 

antennas. The principle is to time the flash of antennas (in Lidar case: lasers) so that the 

incoming radiation measured can be correlated with the flash timing. This allows for the 

sensor to not have any moving parts, and the big advantage is a great increase in its 

lifespan: 100000  hours vs 1000 hours of the spinning Lidar system. Once the technology is 

mass produced, it also allows to reduce costs. 

● MEMS Lidar: MEMS is an acronym which stands for microelectromechanical mirrors. Their 

working principle is the same as the spinning Lidar, but in a much smaller factor: they are 

cost effective and lighter with respect to spinning Lidar, and can potentially  become a 

competitor of solid state Lidar. At the current state of commercial products, they are prone 

to discalibration due to vibration. This latter aspect is not to be under-estimated in the 

agricultural and construction fields, where the vehicles are subject to lots of vibration 

sources, both external (uneven and difficult terrain) and internal (engine and on-board high 

power appliances). 

● Flash Lidar: flash Lidar follows a different principle with respect to scanning Lidar: the 

entire field of view is illuminated at once with a diverging beam in a single pulse. In 

scanning Lidar the sensor is a single point sensor, while in flash Lidar the camera contains a 

1D or 2D sensor array. This can be particularly useful in cases where the vehicle with the 

Lidar mounted on is moving at some speed, as flashing a whole image at once eliminates 

the disallineation problems that arise during scanning of a wide field of view.  

 

A Lidar system is composed of many different components, two of which are constant throughout 

the various technologies: 

● Laser: in general, the laser used for Lidar systems lies in the range of 600 nm – 1550 nm; 

the fields of application are very diverse and include autonomous vehicle navigation, aerial 

inspection, precision agriculture, forestry and land management, cartography and 

mapping, and military applications too. Some of the named applications can be classified in 
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airborne Lidar applications, meaning that the sensor is mounted on a drone or plane. In 

regards to autonomous terrestrial vehicles use, common wavelengths are 905 nm and 

1550 nm [4]. 

A study performed in 2014 [5a] has highlighted advantages and disadvantages of the two 

wavelength technologies, with the focus on adverse environmental and weather 

conditions. Water is absorbed about 140 more times by the 1550nm solution, and while 

operating in rain and fog the degradation of the 1550nm waves is 4-5 times worse than the 

905 nm counterpart. Power consumption in wet conditions is also a negative side for the 

1550 nm solution, as they require more than 10 times more power than a similar 905 nm 

system. Their performance under good weather conditions is comparable. 

Since the telescopic handler will have to operate outdoors in variable and not optimal 

weather conditions, the 905 nm technology appears more adequate to the mission 

scenarios. The Velodyne HDL 32-E, which is the sensor with which the datasets used in this 

thesis were recorded, is a sensor which uses 905 nm wavelength.  

Photodetector/ receiver: there are two main technologies used in Lidar systems: solid state 

photodetectors and photomultipliers.  

● Time of flight camera: a device that measures the time of flight of a single laser pulse. 

Lidar sensors have been used extensively in recent years in the autonomous vehicle field, and in 

research projects such as the one reported in [5], including various prototypes; while Lidar system 

have the disadvantage of being more expensive than other mid range sensors such as radar, their 

precision and accuracy makes it a great tool for fast prototyping and testing of algorithms on a real 

robot or AV. Most autonomous car manufacturers, such as Google and Toyota are using Lidar as 

their prime sensor. In the context of urban navigation, the difference between a Lidar scan and a 

radar scan can be seen in figure 5 (Lidar scan) and figure 6 (radar scan): in the Lidar scan there is 

an amount of detail much greater than in the radar scan: the accuracy and angular definition 

makes it easy to understand what are the objects being scanned, and it is easier to see edges and 

shapes of the various obstacles (within certain limits).  

The radar scan, on the other hand, shows less detail and establishing the exact shape and location 

of the obstacles may become a difficult task if only the raw data from the sensor are used. It needs 

to be said that state of the art radar devices for automotive use offer performance similar to Lidar 

devices, but the angular accuracy and distortion are still present. 

 



38 
 

 

Figure 5 - Lidar scan of a crossroad, the vehicle performing the scan is situated at the center of the scene, in the black void 

 

 

Figure 6 - radar scan of an urban environment, the scanning vehicle is placed in the center, in white 

 

For the application studied in this thesis, a single spinning Lidar sensor has been chosen. The main 

reasons for this choice are:  

● Greater detail of the scans with respect to radar scans imply a better identification of 

obstacle location, size and orientation; furthermore, better resolution and higher density 

make the point cloud clustering (which is the raw data outputted from the sensor) 

algorithms work better. This is the major reason for the choice of the sensor, as the focus 

of this thesis was the analysis of the algorithm chain needed for navigation. Not having to 

deal with the stochastic processing of the data coming from a non high end Radar sensor 

was a good simplification. 
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● One useful feature of the Lidar readings is that they are able to penetrate, with certain 

limits, leaves of grass in a field. This can be useful if the working area of the vehicle is an 

uncut field.  

● Although the sensor is quite expensive, the product which it would have been used on was 

a high end telescopic handler. In the case of a mass production of autonomous vehicles 

and where  cost is a more crucial factor, radar technology would have been a better choice, 

with additional measures such as the ones described in 2.1.5. 

 

2.1.4 Cameras for obstacle detection 

The use of cameras is widespread across all kinds of autonomous navigation applications, and 

their usage varies a lot.  

The sensors described so far all work according to the same principle: sending some kind of wave 

or signal and waiting for a return signal to come. Computation of distance comes from measuring 

the elapsed time. 

Cameras don’t send any signal out, so if one wants to use them for obstacle detections other 

methods are to be used. An example of such methods is to use two cameras in a configuration 

called stereoscopic cameras. This kind of configuration has been used in various robotics 

applications, some of which concerning exploration missions (figure 7). 

 

Figure 7- Mars exploration rover equipped with stereo cameras 

By themselves, stereoscopic cameras provide two video signals but no information regarding the 

depth of the objects being recorded is provided.  

Stereo cameras recordings are to be coupled with computer vision techniques in order to 

extrapolate depth information from the recordings. This essentially means that some kind of 

algorithm has to be continuously run on the camera data only to get information about depth, the 

so-called depth map. This is obviously an extra computational cost if compared to, for example, a 

Lidar system solution, where the stream of data from the sensor already contains depth 

information.  
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An alternative solution to depth mapping using stereo cameras is to use both a normal camera and 

an infrared camera. This configuration is the one used in the famous Kinect sensor (figure 8 and 

figure 9). 

 

Figure 8 - Kinect sensor 

 

Figure 9- Output of kinect sensor. Closer objects are depicted in red, far objects are in blue 

The working principle of the kinect is the following: a narrow band of light (infrared light in this 

case) is projected to the environment; when this band of light encounters a 3D surface, the band is 

deformed on this surface. The infrared camera captures the distortion of the band, and 

computations can be made to reconstruct the shape of the object. Usually, not only a single band 

of light is projected, but a whole stripe pattern; this allows to capture depth information of the 

whole image.  

 

2.1.5 Cameras for object classification and sensor fusion 

Obstacle detection is not the only field where cameras are used. In fact, a major application for 

cameras is object classification. Object classification consists in taking an image of an object as an 

input and getting a category as an output. Usually a number of output categories are given, each 

with its own probability. For example, a picture of a cat used as an input for object classification is 

likely to be labeled as “cat” and as other similar animals, in a well trained algorithm. In figure 10 a 

typical output of a well trained algorithm is shown. The problem of object detection and 

classification has received incredible interest in the last years, great progress has been made and 

the interest seems to grow each year [6]. 
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Figure 10 - typical output for classification problem 

The task of classification is tackled using the classical machine learning algorithms and 

methodologies such as Naïve Bayes estimators, Support Vector Machines, Feedforward Neural 

Network. More recently, the so-called deep learning technologies such as Convolutional Neural 

Networks have been recognized as working extremely well, and have already been used on 

commercial vehicles such as Tesla cars.  

In most computer vision applications, the camera+algorithm system must be able to perform 

another task: edge detection; that is, the understanding of the boundaries of an object. Again in 

figure 10 it is possible to see edge detection at work: all the classified objects have a bounding box 

that surrounds them. Multiple object recognition and edge detection is a much more difficult task 

than object classification on its own, also because in the latter it is easier to give training and 

validating data to the algorithm. In figure 11 a typical road output of a commercially available 

vehicle is given: bounding boxes around objects show the category in which the object is 

recognized into, as well as its location. 

 

Figure 11- Output of a Tesla vehicle 

In all advanced autonomous applications, a mixture of all the sensors presented above is used; 

Lidar, Radar ultrasonic sensors and multiple cameras with Machine Learning algorithms are often 
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used together by fusing their sensor data, in order to exploit the better qualities of each 

technology and to improve redundancy. This approach is often referred to as Sensor Fusion, and 

one of its advantages is that it is able to soften the “blind spots” of each sensor. For example, a 

highly reflective object may cause problems in the Lidar sensor detection, but it is correctly 

detected by the Radar sensor. Dirt particles can obstruct the Lidar receiver and thus cause loss of 

detections, but this is not a problem for the Radar receiver. Lidar sensor struggles at extremely 

close distances, while ultrasonic can be used to cover areas close to the machine chassis. Radar 

doesn’t have problems in fog, rain, snow or dust conditions. 

The frame shown in figure 12 comes from a Lidar and a Radar sensor mounted on a vehicle in a 

highway scenario (source: Matlab). The detections obtained by the Lidar and the Radar are fused 

together in order to improve robustness and mitigate the effects of false positives and false 

negatives of each sensor. 

 

Figure 12- Multiple sensor data. Source: Matlab 
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2.2 Localization 
In this thesis work, in the algorithm section, the hypothesis of perfect localization of the telescopic 

handler has been made. This fact was used, in particular, to navigate the a priori map, following a 

reference path. It is surely a strong assumption, but the development of localization technologies 

in recent years makes it a reasonable one. The approaches considered for this task are two: the 

usage of a GPS sensor, which relies on satellite data, and the use of SLAM techniques, which rely 

solely on data observed onboard. 

 

2.2.1 GPS RTK 

The GPS is a widespread technology that uses satellite networks to estimate the position of a 

receiver. More in detail, GPS is a type of GNSS, which stands for Global Navigation Satellite 

System, which works by connecting the receiver to four or more satellites belonging to the 

network. 

In order to compute the receiver position, the distance between each satellite and the receiver 

must be computed, and it can be done by measuring the time the signal takes to travel from the 

satellite to the receiver. Such a delay is found by aligning a pseudorandom binary sequence that is 

generated on the satellite to a sequence generated on the receiver. The two sequences are 

generated as a function of atomic standard time, for example GPST, which is a time that is not 

subject to the corrections that other times on earth have, like leap seconds.  

The sequence sent by the satellite will arrive at the receiver with some delay equal to the time it 

needs to travel the distance; therefore the receiver will receive a sequence which is delayed from 

its own internal one. The time elapsed for the radio signal to travel from the satellite to the 

receiver is found by aligning the two pseudorandom sequences, counting how many steps far 

away the two are. This process is subject to various errors like ionospheric delays and clock errors. 

The distance from only one satellite is not enough to determine the receiver location; with each 

satellite to receiver distance, what is found is the locus of points on earth that share that distance 

from a satellite. Therefore, a number of satellites have to be employed, at least four, and the 

intersection of all the solutions from all the satellites gives the position of the receiver. These 

distances are referred to as pseudoranges: as there are accuracy errors in the time measured from 

all different satellites, the term pseudo-ranges is used rather than ranges for such distances, as 

they present the same error. 

The precision of GNSS systems such as GPS and GLONASS is in the order of 1 meter in the average 

case. Although this is enough for directions, which is the “classic” use of commercial GPS receivers, 

it is not enough for navigation tasks such as the ones the considered telescopic handler will have 

to face. In such cases, a variant of the GPS system can be introduced: GPS RTK, which stands for 

GPS Real Time Kinematics.  

GPS RTK technology is composed of a receiver, mounted on the vehicle, like in the normal GPS 

case, and a fixed base station (figure 13). 
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Figure 13 - GPS RTK configuration 

 

The difference with the classic GNSS is given by the base station: the base station is a receiver and 

transmitter placed near the working area of the vehicle; the maximum range for precision 

enhancement is indicated to be about 20 km [7]; since the base station’s position is fixed, it can be 

known with great precision, and can be continuously improved.  

The mobile unit position is enhanced with several methods [8]; the first one is carrier phase 

measurements: the base station transmits to the mobile unit(s) the phase of the carrier wave of 

the signal sent by the satellite, in addition to the information content of the signal. The mobile unit 

confronts their phase measurement with the one provided by the base station. This correction is 

transmitted using several different ways, one of the most popular being UHF(ultra high frequency) 

radio signals.  

The second one is Doppler Measurements, which can be considered as a scaled version of the 

time-derivative of the carrier phase measurement [8]. 

The absolute position accuracy of a single receiver with respect to Earth can be improved up to the 

accuracy of the base station, which is expected to be high as it doesn’t move for very long times. 

RTK has another interesting feature: in the case of multiple mobile units their relative position can 

be computed within millimeters margin. This could be an interesting feature to exploit in 

structured navigation environments, and would be of paramount importance in a fleet scenario, 

where multiple vehicles work cohesively to reach a certain task. 

Practically speaking, an accuracy of some centimeters is a realistic estimate of the performance of 

an RTK system in good conditions, and it is enough to validate the hypothesis that the position of 

the handler is perfectly known, within certain performance requirements. The base station is not a 

limiting factor, as the working scenario considered is the one of a farm; since the base station 

needs to be within 10/15 km from the mobile receiver, this will be good enough for most farms. 
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Also, it is likely that the working area will always be the same, and so installing a base station and 

leaving it unmoved for long periods of time is a reasonable scenario. 

That said, GPS RTK still requires sky visibility at all times. 

 

 

 

2.2.2 SLAM 

One of the requirements of any GNSS system is clear sky view, and again this is reasonable to 

expect in most agricultural applications, but as long as autonomous vehicles go there is another 

tool widely used in the field, and that is called SLAM (Simultaneous Localization And Mapping). 

SLAM can be defined as the computational problem of defining the vehicle location in an unknown 

map. In order to tackle such a task, the vehicle needs to navigate the map and gather data about 

it. Thus, this is a problem that needs to be solved when either no map data is available, little map 

data is available or no position data is available, for example in the case in which the vehicle needs 

to be working underground or where there is no signal with satellites.  

This problem is solved in different ways according to the different sensors and on board 

computers available; this means that the objective is an approximate solution, good enough for 

navigation. Due to the uncertain nature of this kind of task, the approach followed by most of the 

algorithms is to treat both map data and vehicle position as probabilistic variables. That is why in 

some basic versions of SLAM algorithms filters such as the Extended Kalman Filter are employed. 

The core steps of any SLAM algorithm are [9]: 

● Landmark extraction: the algorithm tries to extract relevant features from sensor 

measurements, such as sharp corners, particular shapes etc. 

● Data association: where landmarks are combined together trying to build a coherent map 

● State estimation: position and orientation of the vehicle are estimated 

● State update: position and orientation are updated 

● Landmark update: map estimate is updated according to new measurements 

 

Each single step presented above can be solved by different kinds of algorithms, according to what 

data is available. 

The employed sensor determines the types of algorithms that will be used and the likelihood of a 

good solution to happen. For example, Lidar sensors are a great choice for SLAM applications as 

they provide lots of information about shapes and potentially important landmarks that are easy 

to recognize due to the high resolution and accuracy of  the Lidar. On the other hand, visual data 

has also been used in SLAM algorithms, called vSLAM (visual SLAM), as cameras provide great 

amounts of detail. In figure 14 a map built using a Lidar sensor and a SLAM algorithm has been 

built: 
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Figure 14 - An occupancy grid built using SLAM with a Lidar sensor 

 

One of the key aspect of the SLAM problem is the so called loop closure. That is, once the vehicle 

gathers data of a place it already has visited, it needs to be able to understand that the map 

portion computed before and the one it is witnessing now are the same. A missed loop closure can 

lead to great misalignments form the real map, and even fail the whole process. Similarly, an 

accepted loop closure in a place where there shouldn’t be one can have similar severe 

consequences. The need for loop closure comes from the unavoidable odometry errors that occur 

during navigation. During navigation, the vehicle needs to keep track of the direction and distance 

it is moving to, and to do so without the availability of a GNSS system is only possible using 

odometry sensors; these kind of sensors are usually encoders of some sort mounted on the 

wheels, that measure the number of wheel turns. But these measurements can be subject to 

various kind of uncertainty, like wheel slipping etc. That means, measured distances associated 

with certain map frames do not correspond to actual distances and position and thus lead to 

increasing misalignments. 

In figure 15 it can be seen that a successful loop closure allows for correction of this kind of 

position errors. 

 

Figure 15 - discrepancies between real pose  and estimated pose 
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In this thesis no SLAM algorithms have been used, as the use of a GPS RTK was considered a 

feasible option, with the hypothesis that the sky is visible at all times. The position of the vehicle in 

the a priori map has been considered perfectly known. 
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CHAPTER 3 – LIDAR DATA CLUSTERING 

3.1 Lidar sensor 

3.1.1 Choice of sensor 

The sensor chosen for this thesis work is the Velodyne HDL – 32E, shown in figure 1. It is a 360 

degree field of view sensor, belonging to the spinning Lidar category. The main choice factor was 

the vertical resolution: lidar sensors mainly come in three different vertical resolution: 16, 32, 64 

vertical channels.  

The 16 channel alternative presents a smaller cost compared to the other two versions, but this 

comes with some disadvantages: as will be made clear in the clustering algorithm section, sparsity 

in the vertical direction can mean that points belonging to the same object are uncorrectly 

classified to different objects and vice-versa. Having only 16 channels means that this kind of 

errors are more likely to happen and the clustering algorithms should follow a more conservative 

approach in order to avoid collisions, leading to worse performance.  

The 64 channel alternative is the most expensive, but has a great vertical resolution. Data coming 

from it contain a great amount of detail and errors in clustering are less likely to happen. More 

data comes at a disadvantage, though: the computational cost of the clustering algorithms grows 

considerably, and thus the frequency of execution of the whole program is reduced. Since the 

algorithm will eventually have to be run on an onboard computer with limited resources to be 

shared among various tasks, this kind of detail can be considered excessive. 

The 32 channel choice is the perfect compromise both in terms of economical and computational 

cost, and the clustering algorithms work well enough with its vertical resolution. 

 

Figure 24- Velodyne HDL 32E 
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The specifications of the sensor are reported in table 1: 

 

Table 1 - HDL 32E specificaitions 

Although this is the sensor of choice, it is fair to say that the proposed algorithms have been 

tested on a number of different datasets belonging to different sensors; this has been an 

unavoidable necessity as visual data was not available for some HDL 32E datasets used in this 

work, and visual data is of great importance in understanding if the clustering algorithm is correcly 

working or not.  

 

3.1.2 Motivations for clustering 

Clustering can be defined as  “Clustering is a fundamental data mining task that has been 

extensively studied. In a typical clustering problem the input is a set of points with a notion of 

similarity between every pair of points, and a parameter k, which specifies the desired number of 

clusters. The goal is to partition the points into k clusters such that points assigned to the same 

cluster are similar” [1]. 

The chosen sensor output is a 32x1024x3 matrix, for a total of 98304  matrix elements that 

correspond to 98304 points. 

The objective of an autonomous vehicle is to follow the reference path avoiding any obstacles in 

the way and to do so it has to check, in some manner, that the chosen trajectory for movement 

doesn’t collide with anything. To do so, collision checking needs to be done with all the data given 

by the lidar sensor, but there are multiple ways to do it.  The first is to use brute force and test 

each and every single point as it comes right out of the sensor; this method thus needs to check 

for almost 100000 collision at each iteration, so it is not very practical; if points are grouped into 

clusters, the collison checking is reduced to some tens or at most hundreds of collision checks, 

thus being more practical. 

Another important reason is that clustered data allows for reasonings that are impossible to do on 

single points. A notable and important example is the orientation of an obstacle vehicle: suppose 

that our autonomous vehicle finds itself in an environment where other vehicles are moving, for 

example a road, a construction site or an agricultural field where tractors are working. Obstacle 

vehicles are most likely equipped with four wheels, two of which have a steering configuration, 

like Ackermann steering. If the orientation of an obstacle vehicle is known and its velocity is known 
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aswell (both in terms of direction and magnitude) it can be possible to estimate its future state for 

some time horizon, for example using a Kalman Filter. Knowing the future state of an obstacle 

vehicle is essential for the naviation task at medium and high speeds, as trajectories that are 

collision free in the present time interval may become unfeasible after some time; viceversa, a 

moving obstacle vehicle can be blocking a trajectory in the present time but may be moving out of 

it after some instants, making such a trajectory feasible. 

These kinds of predictions are only possible some “global” information about all the points that 

belong to a vehicle is available; thus, it is important to be able to distinguish points that belong to 

a vehicle and not to something else. Doing so allows to define some object properties like speed, 

relative position with respect to the ego vehicle, that can be used to create prediction models and 

to track various actors in the scene. 

One last motivation for the importance of clustering and organizing single points into larger groups 

is the ground segmentation problem: the first step that the navigation algorithm has to perform is 

to classify points that are not obstacles as belonging to the ground. This can be done in various 

ways, often using sensor fusion techniques and visual data classified using Neural Networks, but 

lidar points ground classification still contains useful informations.  

 

3.2 Classic clustering algorithms 
In this section an analysis of the most important clustering algorithms will be performed, and 

motivations regarding the choice of such algorithms in the navigation problem will be discussed. 

3.2.1 K-means 
K-means is one of the most popular clustering algorithms, and it is one of the most basic aswell [2] 

; we will refer to data collected by a single lidar sensor scan as “data points”. This means that each 

point belongs to R3, as its components are either the cartesian coordinades x,y,z, or the raw 

sensor output range, azimuth and yaw. For the k-means algorithm we will use x,y,z coordinates for 

each data point. 

In this algorithm the average squared Euclidean distance from the data points is minimized with 

respect to their closest cluster “representative”. The representative point for each cluster is a 

significant point for that cluster in some metric; for example the median point could be a 

representative for a cluster, but other choices are possible.  

Each data point is called xi, and it is a vector of dimension n=3. 

Each representative is called cj, with j = 1,..,k, and it is the representative of cluster Cj. We will be 

calling them cluster centers.  

The squared Euclidean distance from a point xi to any cluster center cj is given by: 

𝐷𝑖𝑗 = ||𝑥𝑖 − 𝑐𝑗||2
2 

Since each point xi must be best represented by one and only one center, the distance between a 

point xi and its representative cluster center is given by: 
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𝐷𝑖 = 𝑚𝑖𝑛𝑗||𝑥𝑖 − 𝑐𝑗||
2

2
   , 𝑗 = 1. . 𝑘 

The objectives of k-means are finding the centers cj so that the sum of all distances from each 

point to its representative is minimized and to assign each point xi to its most representative 

center point. It is possible to formalize this concept by introducing a cost function to minimize, 

that is the sum of distances Di for all N points, and by minimizing it; the problem becomes: 

𝐽𝑐𝑙𝑢𝑠𝑡 = min𝑐𝑗 ∑ 𝐷𝑖

𝑁

𝑖=1

    , 𝑐𝑗 = 𝑐1. . 𝑐𝑘 

Substituting we get the standard explicit form of the problem to be solved: 

 

𝐽𝑐𝑙𝑢𝑠𝑡 = min𝑐𝑗 ∑ 𝑚𝑖𝑛𝑗||𝑥𝑖 − 𝑐𝑗||
2

2𝑁
𝑖=1     , 𝑐𝑗 = 𝑐1. . 𝑐𝑘 ,  𝑗 = 1. . 𝑘 (1) 

 

The k-means algorithm works iteratively in two steps: 

• Data assignment step: for each xi, compute the distances from the current centroids cj,       

j =1..k and assign point xi to the closest centroid. The set of points assigned to centroid cj 

constitutes the cluster Cj. 

• Centroid update step: given the current clusters created in the data assignment step, 

compute new centroids minimizing the cost function (1). The minimum for that cost 

function is simply given by the barycenter of the points of a cluster: 

𝑐𝑗 =  
1

|𝐶𝑗|
∑ 𝑥𝑖

𝑖∈𝐶𝑗
 

Where |Cj|indicates the number of points belonging to cluster Cj. 

This iterative approach is guaranteed to converge to a result but, since the cost function is 

nonconvex, the solution may be a local minimum.  

The algorithm keeps iterating between the two steps until no change in the cluster 

assignments is observed.  

The starting centroids choice can be performed randomly or using more sophisticated 

methods, but since the k-means algorithm solves a nonconvex problem, it means that the 

solution found will depend on the starting point, and that some starting points will perform 

better than other, depending on the current situation. 

 

 

 

There are some observations to be made: 
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• First, the above stated problem is nonconvex, and this means that the solutions found may 

be non optimal, as the solvers can end up finding local minimums. In our case scenario this 

means that the found centers may not be the best representative for each object and that 

different objects could be assigned to the same center. This is particularly true when 

talking about long and far from being spherical objects.  

• Secondly, the algorithm demands that the number of clusters, k, is known in advance. This 

is a reasonable assumption in lots of clustering problems (determining if a point 

representing a patient is ill or sane, for example, is a problem where the number k is 

known and is equal to two) but is most surely not in a computer vision problem. The 

number of visible objects at a time may vary extensively, form one or two to tens of 

objects at the time. This means that it is not possible to pre-choose k; it is still possible to 

find a way to use k-means for computer vision though: the k-means algorithm needs to be 

run multiple times with different values of k, and comparing the results.  

One of the metrics that is usually used to compare results across different values of k is the 

mean distance between data points and their cluster centroid. A large mean distance may 

mean that far points probably not belonging to the cluster are being assigned to it, and this 

is an indicator that the number of clusters k needs to increase. However, if we chose k = N, 

the mean distance would be 0, as each point would constitute a cluster by itself. In general, 

increasing k will always decrease this metric, thus it can’t be used by itself. What is done is 

to consider not the value of k that minimizes this metric, but the so called “elbow point” of 

the cost vs parameter function. Essentially, it is the point where the rate of decrease of the 

cost function sharply shifts, as is shown in figure 2.   

 

 

Figure 25- Elbow point for the choice of k 
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In figure 2 the point where the sharp shift happens is given by k=3, which means that the number 

of clusters in this case is probably going to be 3. Higher values of k don’t decrease the average 

dispersion as much as increasing from 2 to 3. 

Another observation to be made is that, as stated in equation (1), k-means can be very sensitive to 

to outliers; this is a feature shared with most optimization problems that involve the l-2 norm, also 

known as the Euclidean norm. Common ways to counter the sensitivity to outliers is to add a 

regularization term [3] , which can be an l-1 norm term or an l-infinite term. Another possibility is 

to get rid of the Euclidean norm and to base the whole problem on the l1 norm, obtaining an 

algorithm that is referred to as k-medians.  

In the following figures 3 and 4 two typical cases of failure in k-means algorithms are shown: in 

figure 3 two concave objects (original points on the left, in blue and in red) are classified according 

to k-means (on the right). The centroids are the two crosses on the right: they highlight the fact 

that the algorithm has tried to find the barycenter of the two halves of the whole dataset by 

dividing it in half; k-means has thus created two circular shaped clusters, losing the “elongated 

nature” of the original objects. This can be attributed to the l-2 norm term. 

 

Figure 26 - poor performance in clustering problem; on the left the original points, on the right the clustered points 

 

In figure 4 a similar problem occours: although the number of cluster is correctly chosen equal to 3 

(and this by itself is not an obvious fact to happen) the original data shown on the left are quite 

sparse: this leads to the two small dense circles being accorpated into one cluster, and the big 

circle, more sparse in nature, being split in two.  

Results like these, and the fact that multiple iterations of k-means need to be run in real time 

without knowing the top value that should be used as a cap for k has lead to consider other 

algorithms to be implemented for this autonomous driving application. 
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Figure 27 – another k-means clustering fail 

 

3.2.2 DBSCAN 
Recapping the problems related to k-means, the two main disadvantages found with it can be 

stated to be the requisite of a prior number of clusters k, and the fact that k-means works well 

mainly with spherical-like clusters, due to the l-2 norm being in the cost function. 

DBSCAN is an algorithm introduced in [4]. 

Its acronym stands for “Density-Based Spatial Clustering of Applications with Noise” and its 

approach, as the name suggests, is based on the intuitive notion that clusters of points present 

some feature of density, and that points that are classifiable as noise do not present such feature. 

The algorithm is able to correctly identify not-spherical shapes like elongated shapes, and it does 

not require to know in advance the number of clusters, fixing the two main problems present in k-

means and derivatives. Moreover, it is an efficient enough algorithm, and its light weight 

computational cost is a relevant aspect in the field of real time clustering. 

As stated in [4], DBSCAN can work with any notion of distance between two points p,q, but as far 

as computer vision for autonomous applications go, Euclidean distance is the usual choice. The 

space of the point is the 3D Euclidean space but  the algorithm can work in higher dimensions. The 

algorithm requires two parameters to be given as an input besides the set of points to cluster 

(such set of points will be referred to as D): Eps, which is related to maximum distance between 

points belonging to the same cluster; MinPts, which is related to minimum points between two 

connected points in a cluster. Both parameters will be better explained in the following definition 

section. 
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In order to understand the working principle of DBSCAN, some definitions need to be given: 

1. Eps-neighborhood of a point p: the Eps-neighborhood of a point p is denoted by Neps(p) 

and is defined as follows: 

 𝑁𝑒𝑝𝑠(𝑝) = {𝑞 ∈ 𝐷 | 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠}, where dist indicates the Euclidean distance, in our 

case. 

An important observation to make is that a point close to the center of a densely 

populated cluster (also known as core points) will have a number of other points in its Eps-

neighborhood much greater than a point belonging to the border of the cluster (also 

known as border points). This is especially true for clusters for point like borders, where the 

frontier points are mostly surrounded by empty space. 

 

2. Directly density-reachable: a point p is directly density-reachable from a point q with 

respect to MinPts, Eps when: 

• p ∈ Neps(q) and 

• the number of points contained in Neps(q) is ≥ MinPts 

this second condition is called “core point condition”. Each couple of points belonging to 

the core points set will be directly density-reachable for both points, but if one of the 

points is a border point then reachability will possibily be admitted only for one point. 

Figure 5 shows this latter case:  

 

Figure 28 - directly density-reachable points 

3. Density-reachable: a point p is density-reachable from a point q with respect to MinPts and 

Eps if there is a chain of points p1,..,pn, where p1=q and pn=p such that each point pi+1 is 

direclty density-reachable form pi. Again, this notion of reachability is not symmetric for 

border points but it is symmetric for core points. It arises that two points belonging to the 

border of a cluster can be not density-reachable. For this reason, the following definition is 

given. 

 

4. Density-connected: a point p is density-connected to a point q with respect to MinPts and 

Eps if there is a third point, called o, such that both p and q are density-reachable from o 

with respect to MinPts and Eps. This definition is such that two border points belonging to 

the same cluster are density-connected. 

 

Finally, the definition of a cluster can be given: 



57 
 

 

5. Cluster: the set of points density-connected maximal with respect  to density-reachability. 

In this way, the notion of noise is simply given by the set of points not belonging to any of 

the clusters found by the algorithm. Formally: a cluster C is a not-empty subset of D 

saisfyng: 

• for each p,q: if p ∈ C and q is density-reachable form p with respect to MinPts and 

Eps, then q ∈ C. 

• for each p,q ∈ C: p is density-connected to q with respect to MinPts and Eps. 

It is worth noting that this definition of cluster makes such that the smallest cluster that 

can be found by DBSCAN is composed by a minimum of MinPts. 

 

The algorithm analysis of DBSCAN is now proposed. DBSCAN creates clusters starting from a 

random unassigned point (all points are classified as unassigned at the beginning of the algorithm 

and are then assigned when clusters are being created) and once a cluster has been created it 

moves to the next by choosing another random unassigned point and trying to form a new cluster 

from it. Once no new clusters are created, all remaining points are classified as noise. 

Input: Points, Eps, MinPoints 

Step 1: Choice of a random point; the point is accepted as the beginning of a new cluster is the 

number of points lying in the Eps-neighborhood of such point are at least MinPts, otherwise it is 

discarded and labelled as noise. In figure 6, the starting point is highlighted in green, the dotted 

line is a circle of radius Eps and it is assumed that MinPts is less than 7, so to accept this set of 

points as the beginning of a cluster.  

 

Figure 29 -starting point and Eps-neighborhood 

 

Step 2: For all points belonging to the Eps-neighborhood of the starting point, a try to expand the 

cluster is made: each point’s Eps-neighborhood is checked for the presence of new points. If the 
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newfound points satisfy the density-connected condition, they are added to the cluster. In figure 7 

three points that satisfy this condition have been found and are highlighted in blue. 

 

Figure 30 - growing clusters 

The resuting cluster is composed of all points shown in figure 7. For each of the newfound points 

Step 2 is repeated until new points are not found.  

Step 3: Once no new point is found, the algorithm goes on to the next random points and starts all 

over from Step 1. In figure 8 a new point is chosen for a new cluster attempt . Let’s suppose that 

MinPts is chosen to be 5. In this case since the Eps-neighborhood of the new point contains less 

than 5 points, it is discarded as new cluster and classified as noise. 

 

Figure 31 - new cluster attempt, the three points highlighted  in blue belong to another cluster 

The algorithm goes on until all points have been either classified as clusters or as noise. 

It is notable that the parameters Eps and MinPts are not known at the beginning of the clustering 

phase, but their choice can be done via trial and error.  Once chosen, the parameters can be left 

unchanged, diffrently with what happens with parameter k in the k-means algorithm. This makes 
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DBSCAN derived algorithms a great choice for an application such as clustering for automated 

driving tasks. 

In this thesis work, a derived DBSCAN algorithm has been used: it is called pcSegDist, which stands 

for Point Cloud Segmentation based on euclidean Distance, and it is one of the algorithms 

contained in some of the Toolboxes for Matlab used in this work.  

Using it on data coming from various datasets has shown that it is able of fast segmentation even 

on limited hardware such as the pc the scripts were run on, and the cluster themselves were 

correctly identified, once the parameters were correctly tuned; more on this will be discussed 

later, but an anticipation is needed to justify the next section of this chapter: although the way 

Matlab memorizes point cloud data and although choosing MinPts not too small so to make  the 

algorithm avoid small clusters made of noise (making it run faster), the frequency of executions 

per second usually topped at 10 Hz. This by itself is an almost-accepatble performance, compared 

to some of the commercially available vehicle, which run at around 20Hz [5], but the fact is that 

clustering isn’t the only real time application that needs to be done: path replanning, ground 

segmentation and possibly control applications such as traction control etc… although in a less-

prototipal implementation is it reasonable that dedicated hardware will be used for specific tasks 

such as machine learning camera applications, a starting point of 10 Hz for the clustering algorithm 

alone is a bit on the down side. 

That is why a new approach based on a recently published paper has been implemented and 

examined, and will be presented in the next section. 

 

3.3 FLIC (FAST LIDAR IMAGE CLUSTERING) 
FLIC (Fast Lidar Image Clustering) is a clustering algorithm specifically designed for Lidar data 

introduced in the paper [6]. 

This algorithm has been chosen mainly for its extremely high frame rate, which was declared to be 

165 Hz when running the Python implementation on a single CPU i7-6820HQ CPU @ 2.70 GHz core 

and processing data from a 64 channel Velodyne Lidar. My implementation written in Matlab 

running on an old laptop with a single i7 core processor still managed to run at 40Hz-50Hz.  

The main idea behind FLIC is now presented: the point cloud structure used in Matlab toolboxes is 

essentially a width x height x 3 matrix, where width and height are the number of horizontal and 

vertical points measured by the lidar, and the three elements are x,y,z coordinates. This actually is 

not how the Lidar sensor outputs data. In fact, data provided by the sensor contains width x height 

x Range data, and cartesian coordinates are then computed internally by Matlab in order to create 

the Point Cloud structure: this involves simple calculations, which are nontheless repeated 

thousands of times. 

FLIC avoids the creation of a three-dimensional point cloud from the range measurements and 

works directly on the laser range values of the sensor. 
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The idea is that points measured on single objects have a distance between them significantly 

inferior to that of points measured on two different objects. The way that data is acquired through 

a Lidar sensor allows them to be represented in a set of 2D binary matrices, reframing the 3D 

clustering problem in a 2D connected-component-labelling task. 

3.3.1 GROUND REMOVAL 
The first step in the work pipeline for objects clustering is ground removal, which is the action of 

removing from the point cloud (or from a 2D representation as in this case) the points that belong 

to the ground. This by itself is already a non trivial task to do in general conditions, as simply 

removing points below a certain z-coordinate may fail to correcly remove ground points when the 

road surface is uneven, but since the Lidar is mounted on top of a vehicle in a way so that its 

spinning axis is perpendicular to the ground, it makes sense to try and remove points that belong 

to a plane perpendicular to the z axis.  

There are various algorithms made for this specific task,  the one that is here used is called 

pcfitplane [7] and is contained in various Matlab toolboxes. It accepts as input data the point 

cloud and a parameter that is the maximum distance of a point with respect to an inlier to the 

possible plane, and it gives as an output the equation of such possible plane and all points that 

belong to it.  

Once the points belonging to the ground data are removed, an action that can be done simply by 

substituting their Range value with the NaN value, the rest of the data can be processed by 

clustering algorithms. 

Why is ground plane removal necessary? It is necessary because two objects lying on the ground 

can be seen as connected between them by the ground itself, and this would lead to the creation 

of enormous clusters with little to no sense. In figure 9 a point cloud before (on the left) and after 

(on the right) ground removal is shown. 

 

Figure 32 - point cloud data before and after ground removal 
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It is worth noting that the “concentric points” situated near the origin that span the flat ground 

around the ego vehicle (which is situated exactly at the origin) are correctly identified as ground 

and removed. Failing to remove these points would mean considering them as obstacle, therefore 

making it impossible for the navigation algorithm to find any feasible path to move to. A maximum 

distance of 0.8m – 1m was seen to be adequate in every dataset that was tried. 

 

3.3.2 BINARY CONNECTIVITY MATRICES 

As stated before, the speed of FLIC relies on the fact that it works on 2D connection matrices, so 

the first step to do is to understand what they are and how to create them. 

The distance between two points read by two adjacent Lidar scans can be evaluated as shown in 

figure 10 (source: [6]). 

 

Figure 33 - trigonometric relations used in the creation of connectivity matrices 

 

The angle alpha is the angle between one sensor cell measurement and the next one; it depends 

on the sensor, and generally it is different in the vertical span and in the horizontal span. The order 

of magnitude of such angles is of 0.2° for the horizontal span and of 1° for the vertical span. More 

considerations on these angles will be done later. 

Remembering that the available data from one measurement is composed of the segments OA 

and OB, the formula used to find D is: 

𝐷 =  √||𝑂𝐴||2 + ||𝑂𝐵||2 − 2 ∗ ||𝑂𝐴|| ∗ ||𝑂𝐵|| ∗ 𝑐𝑜𝑠𝛼   (1) 

  

If we square both sides of (1) and indicate with d1=||OA|| and d2=||OB|| we can write the 

equation used in the code implementation: 

𝐷2 = 𝑑1 ∗ 𝑑1 + 𝑑2 ∗ 𝑑2 − 2 ∗ 𝑐𝑜𝑠𝛼 ∗ 𝑑1 ∗ 𝑑2    (2) 
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The equation (2) is worth of some comments:  

• d1 is the range value, in meters, contained in one of the 1024*32 “mesurements cells” 

provided by each lidar scan and d2 is one of the measurements contained in an adjacent 

cell, an horizonal one or a vertical one.  

• Once a value for D has been chosen, and D2 can be pre-computed offline, if a couple 

(d1,d2) produces a result on the right side greater than D2 then the two points are 

considered not belonging to the same object and therefore are not considered connected. 

If a couple (d1,d2) produces a result that is less or equal than D2 then the two points are 

considered to belong to the same object and are therefore considered connected. 

• What said above means that the equation (2) is evaluated for all adjacent couples in the 

1024*32 range image. Its simplicity allows for this many evaluation as: the computation of 

the right side only requires 4 multiplications (as the computation of 2*cosα can be pre-

computed for speed and therefore doesn’t count as a fifth multiplication) and 2 additions. 

This not only makes the core condition much simple but it also means that a future 

possible implementation on an hardware dedicated to make those computations really 

efficiently is possible. 

• Instead of evaluating (1), the evaluation of (2) allows for the avoidance of computing the 

square root, which is a costly operation to perform. 

For the sake of clarity, in figure 11 an example of the range matrix is shown:  

 

Figure 34- range matrix 

The NaN values indicate cells where the Lidar sensor didn’t measure anything (missing return 

laser); the bottom lines present an “island” of values close to each other: running the (2) equation 

on these cells will confirm that they are close enough, thus connected.  

It is now necessary to discuss how the range image will be converted to a binary connection matrix 

(indicated with BCM from now on). The approach used consists in the creation of three support 

matrices that will be created respectively for the horizontal connectivity, the vertical connectivity 

and a third matrix that will simply display if a cell contains a valid number or a NaN value. 
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Their sizes varies, and will be discussed later, but it is worth to already say, naming m and n the 

rows and the coloumns of the original range image, that the final BCM will be a (2m-1)*(2n-1) 

matrix. 

In order to create the horizontal connectivity matrix, called H from now on, the following 

algorithm has been run on the whole range matrix, called R from now on, as shown in the piece of 

code contained in figure 12. 

 

Figure 35 – Matlab implementaiton of horizontal connectivity matrix 

As is visible, the central if statement contains the equation (2), where ch and Dh have been pre computed. 

The result of this piece of code is a matrix H which contains 1 for points in R close to each other and 0 for 

points in R far away from each other, using (2) as threshold. 

The same thing is done for the vertical connectivity matrix, as shown in figure 13: 

 

Figure 36- Matlab implementation of vertical connectivity matrix 

The reasoning is the same behind the horizontal connectivity matrix, and the result is a matrix V. 

For the third matrix, which is the one that contains the information on whether a cell in R is a valid 

measurement or not, the algorithm simply tests if the value contained in that cell is a valid number or the 

value NaN. This third matrix is referred to as RB, which is short for range binary. 

The next step consists of stacking the three matrices together, in order to preserve the connectivity 

information, in a way that allows us to then run a 2D connected component algorithm (more on this later). 

In order to do this, the H,B and RB matirces need to be extended and brought to the final dimension of 

(2m-1)*(2n-1). This “extension” process essentially consists of filling with zeros certain rows 

and/or coloumns of the matrices. 

The horizontal connectivity matrix H is a (m,n-1) matrix. In order to extend it, a coloumn of zeros is 

added between each original coloumn, with the first zero coloumn added before the first original 
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coloumn. Rows of zeros are added aswell. Matlab indexing makes it quite easy to create this kind 

of “sparse” matrices, as shown in figure 14: 

 

Figure 37 - creation of horizontal extended matrix 

The same process is repeated, using different indexation, for the matrices V (creating matrix VE) 

and matrix RB (creating matrix RBE). The result is shown, using as example the process from H to 

HE, in figure 15. The added zero-rows and coloumns are highlighted in red. 

 

Figure 38 - on the left, the original H matrix. On the right, the extened HE matrix 

After the three extended matrices HE,VE, RB are obtained, they are stacked one on another, 

simply summing them. The final result is the BCM, the binary connection matrix, which is a (2*m-

1,2*n-1) matrix; this matrix contains the clusters of the original range image in the form of “isles” 

of number ones. A cluster of points close enough to each other will in fact produce H and V 

matrices with ones in the position of connection points. What is now to do is to recognize these 

isles of ones and label them as different clusters. 

 

3.3.3 RECOGNIZING CLUSTERS IN BINARY CONNECTION IMAGE 
The previously created BCM contains connection between horizontal and vertical points, but not 

diagonal points. Therefore, the numbers between points in the diagonal sense are of no pratical 

interest from the point of view of clustering.  

In order to find the “isles of ones” in the BCM, a connected-component Matlab algorithm has been 

used, called bwconncomp [8]. This algorithm comes from black and white image processing, and 

therefore is applyable to the binary connection matrix that we produced. In fact, the BCM can be 

interpreted as a black and white image, as it is only composed of zeros and ones. 

 

 

Figure 39- detail of BCM containing a road sign 
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By default bwconncomp searches for 2D clusters with a connectivity of 8, but in our case the 

useful connectivity is 4, since diagonal vicinity is not accounted for. Figure 17 shows the difference 

in connectivities (source: Mathworks) 

 

Figure 40- 4 and 8 connectivities. Source: Mathworks 

Running bwconncomp on the BCM returns an object containing various informations: the used 

connectivity, the number of clusters found, and the clusters themselves, indicated as lists of pixel. 

Pixels can be indexed as a single progressive number, counting from the top left pixel onward. This 

kind of indexing is not ideal for row and coloumn manipulation, as rows and columns are not 

explicitly indicated. To pass to the row, coloumn notation a Matlab function called ind2sub has 

been used: the pixels belonging to each cluster are now stored in row, coloumn format. There is a 

catch though: these are the clusters present in the BCM image, but what we need are the clusters 

contained in the original Range matrix R. A downsampling process is thus needed, in order to get 

back to the (m,n) matrix. 

This isn’t simply a dimension issue, the pixels in the BCM that connect two points in the range 

matrix don’t have any physical meaning, and are only a mean to use bwconncomp, and thus do 

not constitute valid elements of the clusters. 

The downsampling is performed for each cluster, only taking the rows and columns that 

corresponded to actual points in the original range matrix. The final result is an image size (m,n) 

whose pixels are labelled as clusters. 

After that, the pixels, that are now in the sub format are re-converted in linear indexing format; 

this is done for the purpose of creating a coloured image to overlay to the original range image in 

order to see if the algorithm works well or not. For display purposes, each cluster is given a 

random color. The results of clustering on a lidar reading are shown in the next section. 
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3.3.4 FLIC RESULTS AND COMMENTS 

The data used for testing this algorithm comes from a recording of 10 seconds of travel in a 

construction road environment, and was registered on a Velodyne HDL32E sensor. This sensor has 

got 32 vertical channels and 1083 horizontal channels. The raw data coming from the sensor is 

thus a 32x1083 matrix containing numeric values in meters, and it is the so called Range image.  

A single frame of the data is displayed in figure 18: each pixel has been assigned a greyscale colour 

based on its value, closest points are depicted as white while far points are depicted as black, 

using a discretization of 255 values. The 255th value, complete black, is reserved for NaN points. 

Since the image is large and narrow, only a portion of it is displayed, in order to increase visibility. 

 

Figure 41 - portion of Range image 

FLIC is run on figure 18 and produces the result shown in figure 19: there are various aspects to 

analize: 

• The big brown cluster is a wall like structure that starts in the immediate vicinity of the ego 

vehicle and extends itself in the distance. FLIC correclty recognizes the whole cluster as one 

entity. 

• Complex shapes are recognized as well: on the left, in white, a road sign with a nonconvex 

shape is correctly recognized as one object. Also, the pole that connects it to the ground is 

recognized aswell. 

• Foliage and trees constitute a problem: due to their sparse nature, well visible in the center 

part of both figures 18 and 19, the connectivity of the whole tree is lost; small clusters are 

created instead, but their physical meaning is irrelevant. This phenomenon is due to the 

sparse nature of foliage, and will be tackled in the next section. 

• There are some oversegmenting issues in the big brown cluster. Particularly on the right, it 

is possible to see that small horizontal clusters are being created inside the brown one, and 

this seems to be due to some missed data recordings, as visible looking at figure 18. 

Nentheless, they do constitute a problem. 

• Since the ground has been removed before the creation of clusters, points belonging to 

ground and to the sky have the same NaN colour to them, indicating the absence of an 

obstacle. 
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Figure 42 - same portion of image clustered by FLIC – in the red circle, an oversegmented cluster 

 

A reasonable hypothesis for this behaviour is that excessive sparsity of data leads to bad clustering 

performance. This phenomenon is due to either missing measurements because the laser was 

deviated by reflective surfaces or sparsity in the vertical direction. In fact, the vertical direction 

only presents 32 channels, and expecially at long distances this means that each object is only hit 

by a few laser beams.  

Another reason, as already said looking at figures 18 and 19 can be the sparsity of the object itself: 

trees, bushes and other kinds of foliages are by their nature sparse.  

It is worth remembering that the implemented version of FLIC used, for the aknowledgement of 

clusters, a connection component algorithm with connectivity 4. This was chosen because the 

condition expressed by equation (2) is only verified for horizontal and vertical neighbors, and not 

for diagonal ones.  

In the paper [6] these kinds of unsatisfactory results are noted and analized aswell. A solution 

found by the authors is to extend the notion of neighbor to more external points than to just the 

four points directly connected. 

 

3.3.5 MAP CONNECTIONS AND MINIMUM THRESHOLD 
The concept of extending the checked connectivity to points more far away is called in [6] Map 

Connections (MC). The shape of the connectivity 4 is preserved as the neighbor points that are 

checked are only the points above, below and on the left and right, but the checked points are 1 or 

3 points away from the first neighbor. 

The code remains the same up until the creation of the BCM, as not much can be done for missing 

data or sparsity.  

After that a second BCM is created: the difference with the first BCM is that data are checked for 

(2) not with their direct neighbor but with the 3rd point. This second BCM matrix is created by 

changing the index of the tested points, as shown as example in figure 20: 
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Figure 43 -  extended horizontal connectivity matrix for the 3rd neighbor matrix 

Since the checked points are not the direct neighbors, the values of the cosine ch2 between the 

points is changed; the distance DH2 between the points is changed aswell.  

The application of this algorithm leads to increased robustness and larger clusters in general. 

The new obained 3 neighbors matrix is then overlayed to the original BCM, using an OR operator. 

The result is shown in figure 21:  

 

Figure 44- FLIC with 1MC 

Some of the oversegmenting issues have been solved. In particular, the green cluster in the center 

(highligted with a red dotted circle in figure 21) of the image is correclty identified as a single 

cluster, while it was oversegmented in two different clusters in the basic version of the algorithm, 

as visible in figure 19. It is also possible to notice a better result in the right bottom side of the 

image, where the missing data present in the big light green cluster have not constituted the 

creation of small clusters, as opposed to what has happened with the basic version of FLIC. 

The quality of clusters can be therefore said to have been increased by the adding of one Map 

Connection. But, it can be noted that in the segmented image in figure 21 there are still lots of 

small cluster, expecially regarding points that are far away. This is due to the sparsity of the 

sensor, and is especially notable in far away objects. Although there is nothing wrong with those 

sparse measurements, they are not of big interest for the navigation algorithm, as they can vary 

quite abruptly and a planning algorithm that keeps track of far away small objects may become 

excessively slow. Therefore, a minimum threshold has been introduced to filter away not 

significant clusters. It is necessary to note that, if the threshold is correctly chosen, close objects 

will not be affected by this measure, as the more an object is close to the lidar, the more the 

number of detections and therefore points. A too large threshold can make the algorithm run very 

fast, but will miss small objects even at a medium to close distance to the sensor. 

A threshold of minimum 10-20 points per clusters has been seen to be working well with the 

construction road dataset; in figure 22 an implementation with 1 MC and a threshold of 15 points 

is reported. The blue dotted circle in figures 21 and 22 highlights the improvement in the 

clustering performance obtained by introducing the threshold. 
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Figure 45 - FLIC with 1MC and 15 points as threshold; the absence of small clusters is highlighted in the blue circle 

  

The clustering performance with these two improvement has improved considerably. The 

frequency at which the algorithm runs varies between 10 Hz and 20 Hz, so it is actually a little 

better with respect to the DBSCAN algorithm, but the difference is not as big as indicated in [6]; 

this may be because of the lack of software optimization in my Matlab implementation. 

Another notable problem that has been found is that the horizontal angle between two adjacent 

measurements was not clearly indicated in the dataset of the HDL32E sensor; this is probably due 

to the fact that usually the knowledge of this angle is not of intrest of the users of the sensor, as 

the majority of clustering algorithms use as a representation the Point Cloud data structure. An 

estimate based on similar sensor has identified the angle to belong to the 0.1° - 0.4° range, but of 

course exact knowledge should be required for the best clustering performance. In order to be 

able to use various Matlab toolboxes in the following chapters of this work, the chosen algorithm 

has been DBSCAN, used in the native Matlab implementation in the function pcsegdist. 
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CHAPTER 4 – OBSTACLE REPRESENTATION 

4.1 FROM CLUSTERS TO CUBOIDAL MODELS 
Once the points perceived by the Lidar sensor have been successfully grouped together in clusters, 

as explained in the previous chapter, it is necessary to extract some information from these 

aggregated points. As a reminder, clustering was a necessity because path planning algorithms can 

not deal with hundreds of thousands of points, which is the raw data outputted by the Lidar 

sensor, but what has been done up until this point was simply giving each individual point a label 

indicating which point aggreggation it belonged to. The next step is to to extract useful 

information from the clusters, and this information will be the input for the navigation algorithm. 

In this way, from this chapter onwards, we will no longer need to keep track of each individual 

point that surrounds the telescopic handler.  

First, let’s define what the clusters we are dealing with are. The Matlab function used to create 

cluster was pcsegdist. This function gives as output an array with size (m*n,1), in which each 

element is a label number, and a label is given to each point of the point cloud. The points with 

label “0” are the ground points or points for which there is no measure available, such as the sky, 

or unclustered points. Every other point belonging to a cluster is given as label a number > 0.  

So, after using pcsegdist, we need to loop through every cluster; the number of clusters is simply 

the biggest label number. For each cluster, we therefore have the list of indices of each point. We 

can select the points belonging to a cluster from the original point cloud by using Matlab indexing; 

the result are Nc point clouds, where Nc represents the number of clusters. Once we have the 

clusters point clouds, we can proceed in finding useful information to represent them: for 

example, we might try to find a 3D shape that encapsules all the points. Although it could be 

possible to try and find the smallest 3D shape that fits the points (kind of trying to find an 

enclosing mesh) the way that was chosen is to try and fit cuboids to the cluster point clouds. 

Cuboids are parallelograms with all angles equal to 90°. In the literature, there are many different 

proposed algorithms to achieve such a feat. A popular tool that has been used for example in [1] is 

Principal Component Analisys, or PCA. PCA is an algorithm commonly used in unsupervised 

learning problems, where the searched feature is the organization of data points. PCA essentially 

tries to find the direction of maximum variance, which is the direction that, if taken alone, can be 

used to best represent the data. PCA has been used extensively for finding patterns, expecially in 

high dimensional problems, where its repeated application allows to find a subset of dimension 

with which to express data. Since the points contained in a point cloud are three dimensional 

points, a simpler method has been used. 

Before talking about the used algorithm, though, it is important to clarify one point: in this thesis 

work the objective of the navigaiton algorithm will be to navigate the telescopic handler on a flat 

surface, with its arm fixed. The topology of the environment in the z-axis, therefore, is not of 

interest; an obstacle located above the ground will be considered the same as an obstacle located 

on the ground, the case where the telescopic handler passes below a bridge-like obstacle is not 

considered. To translate this concept in our algorithm, every point will be projected on the 2D 
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plane situated at z=0, and navigation planning will be carried out in 2D. This 2D plane projection 

will be the set of point on which the cuboid-fitting algorithm will work on. After having found a 

fitting rectangle for the base, the height of the cuboid will be given by the largest z-value 

contained in the cluster. The algorithm used to fit the 2D projection of point cloud into rectangles 

is the algorithm proposed in [2]. This algorithm does not use PCA: since the dimension of the 

problem is 2, the authors have used a simpler approach, but a reminescence of the core idea of 

PCA is kept. In fact, the algorithm proposed in [2] iterates through all the possible directions of the 

rectangle; at each iteration, it is easy to find a rectangle oriented in that direction and that 

contains all points in the 2D projection of the cluster. Each time a candidate rectangle is created, 

the distance of all the points from the four sides of the rectangle is computed. These computed 

distances can be used to separate the points into two sets, namely P and Q.  

These two sets of points are then used to solve the following optimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑐1, 𝑐2, 𝜗

 ∑(𝑥𝑖 ∗ 𝑐𝑜𝑠𝜗 + 𝑦𝑖 ∗ 𝑠𝑖𝑛𝜗 − 𝑐1)2 + 

𝑖𝜖𝑃

∑(−𝑥𝑖 ∗ 𝑠𝑖𝑛𝜗 + 𝑦𝑖 ∗ 𝑐𝑜𝑠𝜗 − 𝑐2)2 

𝑖𝜖𝑄

             (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  
𝑃 ∪ 𝑄 = {1,2, . . , 𝑚}

𝑐1, 𝑐2 ∈ 𝑅
0° < 𝜃 < 90°

 

Where c1, c2 and θ are the parameters of the perpendicular lines that compose the two internal 

sides of the rectangle (in this context internal refers to the direction that unites the cluster with 

the lidar sensor, situated at  the origin).  

For each iteration, the squared error constituited by equation (1) is computed; we look for the 

direction (so, the sets P and Q) that minimize such an error. That direction and therefore those 

values of c1,c2, θ will constitute the parameters of the best fitting rectangle. In figure 1 the result 

of such algorithm on a random lidar mesurement (source: [2]). 

 

Figure 46-rectangle L shape fitting 
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The algorithm proposed in [2] is contained natively in the Lidar Toolbox, under the function 

pcfitcuboid. This function receives in input a Point Cloud object and gives as output a 

cuboidModel object. This object class can be created by specifying nine parameters in the form of 

a 9x1 vector. These parameters are: 

• xctr, yctr, zctr, which these specify the center of the cuboid. 

• xlen, ylen, zlen, which these parameter specify the length of the cuboid axes. 

• xrot, yrot, zrot, which specify the rotation angles respectively in the x,y and z axis. They are 

positive when the angle is clockwise. In figure 2 the cubid parameters are shown. 

 

Figure 47 - cuboid model parameters 

As explained before, the base of the cuboid is found by projection on the xy plane and 

subsequent l-shaped fitting and the height of the cuboid is put equal to the highest point in the 

cluster. But, since the navigation algorithm actually only works in 2D (that means it only works 

using the base of the cuboid), the height data is actually discarded. The choice of using cuboids 

and not mere rectangles thus is not essential for the navigation algorithm, and could be 

replaced by a 2D visualization. It has been kept mainly for the reason that a 3D visualization of 

the point cloud, its clusters, and the cuboids associated with them is very useful in the testing 

phase, as 3D data are easier to see and interpret. This allows for better understanding of the 

algorithms, although is not used by the navigation algorithm itself.  

That said, it is a feature that would be implemented in a follow-up work, specifically in the 

algorithms dedicated to catching and holding the objects to be moved with the telescopic arm. 

Infact, even if 2D navigation is sufficient for the objectives that autonomous driving for a 

telescopic handler is aimed at, the movimentation aspect needs 3D representation. The idea 

would be to either use cuboids or cylinders as enclosure shapes for the target object, but the 

solution implemented in pcfitcuboid (to project to the base and give as height the highest 

point) may not be ideal, as its core concepts is more oriented to navigation.  
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4.2 OCCUPANCY MAP REPRESENTATION 
Once the clusters have been enclosed into cuboids, the single point clouds are discarded. This is to 

speed up computations and because every information contained in the point clouds has already 

been passed onto the cuboids. The cuboid representation on its own, however, is not yet usable 

for the navigation algorithms, and needs to be translated into another representation. There are 

mainly two kinds of obstacle representation, and the first one are occupancy maps, or occupancy 

grids. 

Occupancy grids were first proposed by H. Moravec and A. Elfes in 1985 [3], and represent a 2D 

slice of the 3D obstacles map; in this case, the 2D slice of interest is the base of the cuboids, as it 

already contains all the cluster points projected onto it. An occupancy grid is composed of a 

number of small cells, each one of them containing a binary random variable that represents the 

presence or absence of an obstacle. Since it is a 2D representation, it is correct to think at is as a m 

by n, where the dimensions depend on the width and length of the environment the robot is 

navigating into, and on the chosen resolution. The resolution is given in cells/m, and a finer 

resolution means a denser map. As said, the values contained into the cells are binary random 

variables: in this context a value of “0” is considered free space, a value of “1” is considered 

occupied space, but this alone does not take into account the unavoidable uncertainty linked to 

occupancy measures. For this reason, each cell is given a probability of occupancy, and in order to 

be able to report this to a single number, some estimator (such as mean estimator) is used in 

order to bring down the probability density function of a single cell into a scalar number between 

0 and 1. The result is that the occupancy grid assumes the appearance of a grayscale image. 

Occupancy grid representation mainly relies on three assumptions: 

• a cell is either occupied or free 

• each cell is independent from the others 

• the world is static, so the obstacle don’t change 

The first assumption seems in contrast with the probabilistic nature of the cells, as we have said 

that cells can assume values in between 0 and 1. In order to solve this contrast and to be able to 

give to an algorithm a way to easily make decisions in the grid, a threshold value is defined, called 

occupied threshold [4]. Cell values above the occupied treshold are considered as fully occupied, 

while cell values below the occupied threshold are considered fully free. This allows for tunability 

of the algorithms for different applications and risk scenarios. 

The third assumption is about staticity of the world: once a map has been created, it is assumed 

that the world does not change, and that the path planning algorithm can work within it. This is a 

valid assumption for controlled environments, but is not valid for the applications studied in this 

work, where the presence of new vehicles and obstacles can’t be ignored. In order to take into 

account the varying nature of the environment, the map itself must be updated when new data 

comes in. In our case, at this point of the work, such data is represented by the bases of the 

cuboids. The bases of the cuboids are the bases of the shapes that encapsule the obstacles, 

therefore they represent points in the map that are fully occupied, and can be represented by the 

value 1. It is worth remembering the assumption made and data available up to this point. Firstly, 
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it is assumed that (Chapter 2) the position of the telescopic handler is known with sufficiently high 

precision due to the use of RTK geolocalization, which allows precision up to the centimeter; 

secondly, it is assumed that a priori map is given: as said in Chapter 1 the a priori knowledge of the 

working environment is assumed to be known, for example using satellite data or drones readings. 

This a priori map, in order to be used for the offline path planning algorithms explained in Chapter 

1, was already available in the form of an occupancy grid. Therefore, when the navigation starts 

(ie: the telescopic handler starts moving and following the offline-computed reference path) an 

occupancy grid is already known and present, and the handler position inside of it is known. Lastly, 

at each lidar scan and subsequent clustering and cuboid fitting, a number of occupated rectangles 

are given, referenced with respect to the lidar sensor.  

A naïve approach would be to divide the rectangles into occupancy matrices, using the same 

resolution used in the a priori occupancy grid, and then overlay the occupied rectangles to the a 

priori grid, substituting the previously free cells with completely occupied cells (containing a 1). 

Although this is the easiest way to include the obstacles in the map, it presents some difficulties: 

firstly, the lidar sensor works at around 10 Hz, and it presents noise; this means that clusters and 

consequently occupation rectangles can vary a lot at a relatively high frequency, causing flickering 

in the cell values of the occupation grid; moreover, if the only criterion is to substitute cells values 

with 1 when an object is detected, a possible unwanted result when high noise is present is to 

saturate the occupancy grid with ones, creating a number of imaginary obstacles.  

The solution to this flickering problem is to use some sort of filter; filtering is a widely used tool 

and many algorithms are available, such as Kalman filters. But, since each cell only contains a 

binary random variable, a particularly well fitted tool is Bernoulli Bayesan Estimators. Bernoulli 

Bayes allows to compute the posterior probability density of a binary random variable, using both 

the priori knowledge (in this case, past measurement or versions of the occupancy map) and 

update data (in this case, lidar data in the form of occupancy rectangles). This allows for various 

enhancements, as the weight for the prior and new data can be adjusted, by increasing and 

decreasing the variances of the prior distribution of each cell and of the lidar data distribution; for 

example, in the case of challenging weather conditions, the incoming lidar data can be given a 

higher variance, as it is possible that noise affects the sensor. The formula for computing posterior 

distribution is given in (3): 

𝑝(𝜃|𝐷) =
𝑝(𝐷|𝜃) ∗ 𝑝(𝜃)

𝑝(𝐷)
                                              (3) 

Where θ is the random variable at study, in our case the scalar value in a single cell, D is the data 

contained in a cell of the lidar reading occupation rectangle, and p(·) indicates the probability 

density function. Using this kind of estimator allows to solve the flickering problem and to update 

the occupation map using a probabilistic approach. Although occupancy maps are a widespread 

tool used for robotic navigation, the method used in this work is different. 
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4.3 FROM CUBOIDAL MODELS TO OBJECT LIST REPRESENTATION 
Using occupancy map approach for the offline path planning procedure, which as explained in 

Chapter 1 is done before the telescopic handler starts moving, is an appropriate way to use the a 

priori information of a bird eye view map; but using occupancy map approach for a dynamic 

environment presents some issues. A part from the flickering effects presented in the previous 

paragraph, the big issue resides in the navigation algorithms that needs to be used in combination 

with the occupancy map. Such algorithms, like the presented RRT*, present a non marginable 

computational cost, and updating the starting occupancy map whenever encountering an obstacle 

means to re-run the navigation algorithm at every lidar scan; even if downsampling is considered 

in the lidar scans (re-running RRT* once every 2, 5 , 10 lidar scans) the time used by the navigation 

algorithm is still too much for being run in real time, at least for test performed on a reasonably 

powerful machine (dual core i7). The pure occupancy grid strategy, although simple, is 

computationally too heavy, especially for large environments. Therefore, the used method is now 

presented. 

The a priori occupancy grid is searched offline, and used in order to create a reference path for the 

telescopic handler to follow (more on this in Chapter 5). The algorithm used in this offline phase 

does not need to be extremely efficient, as this part is computed offline (and may even be run on 

server computers not localized where the physical machine is). This reference path is an obstacle-

free path, which of course is obstacle free only when considering the a priori obstacles; but even if 

vehicles or other obstacles can find themselves between the reference path, it is a reasonable 

assumption to make that it will mostly be obstacle free. This means, once the machine has gotten 

around an obstacle and returned to the reference path, it can continue the rest of the navigation 

as was originally planned (offline). This assumption makes the use of dynamic occupancy maps an 

overshoot: with dynamic maps the machine could, in theory, find itself in a totally different 

environment at each lidar scan and be able to plan a new path from zero, as  RRT* is run at each 

scan. The mostly free reference path assumption therefore doesn’t need a whole map update, but 

simply needs a way to avoid a finite and reasonably small number of obstacles that are on the 

path. The found solution is to store the obstacles into a list, called an obstacle list. This list must be 

some kind of data structure that allows for easy use and consultation of all of the obstacle 

characteristics, such as distance from the handler, height, width, length, orientation; each element 

of this list (each obstacle) will need to be tested for collision with the ego vehicle (it is the name 

given to the telescopic handler). If a collision will be detected a new path will have to be planned, 

otherwise the ego vehicle will continue on its default path, but the method to detect collisions will 

not influence the occupancy grid, that will not be updated once the vehicle starts moving. A data 

structure used for these kinds of purposes is present in Matlab in the Navigation Toolbox under 

the name dynamicCapsuleList [5]. 
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4.4.1 Structure of dynamicCapsuleList 

The dynamicCapsuleList object manages two lists of capsule-based collision objects in 2-D space. 
Collision objects are separated into two lists, ego bodies and obstacles. In our case the ego body is 
a rectangle representing the 2D eclosure of the base of the telescopic handler and the obstalces 
are the rectangles being the base of the cuboids found using pcfitcuboid. Each collision object in 
the two lists has three key elements: 

• ID –– Integer that identifies each object, stored in the EgoIDs property for ego bodies and 
the ObstacleIDs property for obstacles. 

• States –– Location and orientation of the object as an Mx3 matrix, where each row is of 
form [x y theta] and M is the number of states along the path of the object in the world 
frame. The list of states assumes each state is separated by a fixed time interval. xy-
positions are in meters, and theta is in radians. The default local origin is located at the 
center of the left semicircle of the capsule. 

• Geometry –– Size of the capsule-based object based on a specified length and radius. 
The radius applies to the semicircle end caps, and the length applies to the central 
rectangle length. To shift the capsule geometry and local origin relative to the default 
origin point, specify a fixed transform relative to the local frame of the capsule. 

For now, regarding the state element, we just consider it to be a 1x3 matrix containing the current 

location of either the ego vehicle or the obstacle. In the Geometry element, there is a reference to 

a radius parameter, the reason being that each body stored into the dynamicCapsuleList object 

must be a capsule-like shape, as the one shown in figure 3: 

 

Figure 48 - 2D capsule (source: Matlab documentation) 

The reason for it being a capsule like shape are to be searched into the most common application 

for obstacle avoidance: autonomous driving for the automotive industry. Since on-road vehicles 

are always of a rectangular shape and since the ego vehicle doesn’t want to get extremely close to  

them, it makes sense to include some form of tolerance in the representation of an obstacle; in 

fact, looking at figure 3 it is easy to see that increasing the radius r, for a given rectangle shape of 



78 
 

length Length and width W < r will cause the navigation algorithms to keep more far away from 

the obstacle vehicle, both from behind (as the round capsule shape is placed in front and on the 

back of the vehicle) and from the sides, as increasing the radius incrases the width of the capsule 

aswell.  

Up to this point in the program the obstacle are represented by cuboid objects. It is now necessary 

to transform each cuboid into elements of dynamicCapsuleList. As written above, the cuboid 

objects parameters are stored in a 9 by 1 vector. The necessary information for creating the 

capsule of an object are its x and y coordinate in the lidar reference frame, its yaw angle, and the 

width and length of the cuboid base, considering the length the longest of the two dimensions; 

since navigation is performed in 2D some data are discarded (the height, the z coordinate, the two 

angles of rotation around x and y axis). Actually, the fact that the length is the biggest among the 

two dimensions of the base rectangle is not guaranteed by default, but due to the nature of lidar 

scans (that cannot capture the whole cluster but only one corner and two sides, see figure 1) it is 

handy to have the length being the biggest. In order to do so, an if statement is added: if the yaw 

angle is bigger than 30° or smaller than -30° then length and width are swapped, and the yaw 

angle is set to 0°; the cuboid creation function doesn’t check for the longest dimension when 

choosing the yaw angle. It is fair to say that this measure was also adopted because the available 

dataset on which to perform testing were not agricultural dataset, they were city or highway 

datasets: in these scenarios vehicles tend to travel collectively along the same direction, with very 

small yaw angles expecially for vehicles surrounding the ego vehicle (it is easy to visualize this fact 

when imagining a fleet of vehicles travelling a highway). Although this if condition is very useful in 

improving navigation performance in the tried datasets, it can be safely said that it would be 

useless when moving inside an agricultural-like environment, where the direction of moving actors 

can be unpredictable. The length and width are therefore extracted from the cuboid model, and 

the x and y coordinates too, but in order to use them for the capsuleList objects a further step is 

necessary, due to change of coordinates. The cuboid objects x, y and z proprieties are referred to 

the center of the cuboid, while the center coordinates of the capsule object are at the center of 

one of the semicircles of the capsules, as can be seen in figure 3. The yaw angle is also visible in 

figure 3; in the snippet of code shown below the necessary transformations for correctly passing 

between the two reference frames are shown. As another safety reason, there has been set  

minimum capsule dimensions for each cluster: in this way, undersegmented obstacles or small 

bodies can benefit from a larger safety margin; in the case of undersegmentation, having 

minimum dimensions makes so that if in subsequent lidar scans the cluster becomes much bigger 

due to correctly segmented data, the navigation algorithm will have already taken a safer road 

than the one that would have been chosen without this measure. The code is here reported: 

obstacleLength=models{i}.Parameters(4); 
            obstacleWidth=models{i}.Parameters(5); 
            yaw = models{i}.Parameters(9); 
            if (yaw > 30||yaw<-30) 
                temp = obstacleLength; 
                obstacleLength = obstacleWidth; 
                obstacleWidth = temp*1.4; 
                yaw = 0;                                %safety condition 
            end 
            actorGeom(i).Geometry.Width = max(obstacleWidth,carWidth);  %minimum clustercondition 
            actorGeom(i).Geometry.Length = max(carLen,obstacleLength); 
            actorPoses(i).States = [models{i}.Parameters(1)-
cos(yaw)*obstacleLength/2+obstacleWidth/2,models{i}.Parameters(2)-sin(yaw)*obstacleLength/2,yaw]; 
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4.4 COLLISION CHECKING 
The setting for obstacle avoidance is that all obstacles and ego body are stored in the capsule list 

structure; in order to validate a path for the vehicle to follow, it is necessary to check the ego 

vehicle for collision with every object. In the following chapter this concept will be extended in 

time, but for now let’s limit the analysis at the static case, that means checking collision at the 

current time instant. There are various algorithms in literature able to check collision between 

general shaped complex objects, such as [6] but our case is a particularly favorable one; in fact, 

not only we are checking for collisions in R2, but we are also checking between objects that are 

convex; in fact, both the ego vehicle and the obstacles are respresented by the capsule objects 

represented in figure 3, whose shape is clearly convex. This fact allows us to use tools such as the 

Separating Axis Theorem or SAT [7] and [8]. The SAT states that two convex objects are not in 

collision if there exist a line onto which the object projections do not overlap. The line on which 

the projections are cast on is called the separating axis, and if the objects are not colliding, the line 

that is perpendicular to the separating axis and that passes in between the two convex objects is 

called the separating line. The problem of determining whether two objects collide or not, 

therefore, becomes the problem of finding a separating axis. If the objects have particular 

geometry, their faces normals or other features direction can be used as candidate separating axis. 

In figure 4 the concept of separating axis and line are esemplificated. 

 

Figure 49 - SAT (source: Wikipedia) 

A simple implementation of the SAT has been prototyped and tested for simple objects, but in the 

end it has been discarded: included in the dynamicCapsuleList class a method for checking 

collision is natively present, and can be invoked by calling the function checkCollision. The 

checkCollision function receives as input a dynamicCapsuleList object and provide several different 

outputs depending on the options specified. The function does not test all the bodies for collision 

between obstacles themselves, but it only checks for collisions between the ego body (or multiple 

ego bodies if present) and obstacle bodies. The method used in the current version of 

checkCollision is not specified, but in previous versions it was an implementation of the SAT [9]. It 

is important to remark the “static” nature of the collision checking action: the objects are checked 

in their current state and current geometry, but in these states the velocity, direction, or 
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acceleration are not specified, meaning that no future projection is done. This means that an 

object whose collision with the ego vehicle is imminent, or not far away in the future states, will 

not be detected; this by itself is not a flaw in the structure of the class but is a feature that needs 

to be correctly exploited, as will be made more clear in Chapter 5. 

4.4 LIMITATIONS  
Although the combined usage of the a-priori occupancy grid for the initial path planning and the 

discrete list of capsules for obstacle avoidance is convenient in terms of computation time and of 

simplicity of the approach it presents some drawbacks. Firstly, the “mostly free reference path” 

hypothesis must hold, and it is easy to imagine scenarios where this isn’t true, such as a herd of 

animals crossing the road. Since synthetic or real data testing was unable to be done due to 

hardware limitations and absence of dedicated datasets, it is unclear to what extent the obstacles 

on the reference path can constitute a problem. In the case of a topological change in the map, 

the “mostly free path” hypothesis wouldn’t hold. Another limitation is consituted by non-convex 

obstacles: this type of obstacles can be correctly identified and segmented, but in the cuboid 

phase their dimension will be inevitably increased, making them convex shapes. This by itself, in 

very simple scenarios, can be seen as a safety measure, as the telescopic handler won’t go near 

the non-convex obstacle, avoiding possible dead ends; on the other hand, this aspect may affect 

navigation performance overall, as some possible paths will be discarded even if they would be 

perfectly feasible. In general, complex obstacles or complex placed obstacles can determine the 

failure of the navigation algorithm, and therefore limit the usage of this kind of algorithm to open 

field simple applications.  These kinds of limitations may be solved with the usage of dynamic 

occupancy maps, although real time execution speed would be an issue. 

4.5 TELESCOPIC HANDLER: THE TELESCOPIC ARM ISSUE 

4.5.1 Simple model of the arm 

A part from the application field, there is a major difference between an automotive vehicle and a 

telescopic handler, and that is obviously the arm. The arm of a telescopic handler can move up 

and down around its hinge and can extend and retract. At the end of the arm there is a sort of end 

effector called nose, to which an horizontal metal component, called “zattera” is attached; the 

“zattera” is the docking point where various accessories can be linked, depending on the needed 

mission. From the navigation point of view, solving the problem of the arm is relatively easy: 

supposing that the vehicle is moving with its arm at rest (parallel to the ground) the easiest way to 

include the arm is to create a bigger capsule for the ego vehicle; this is a conservative approach 

not aimed at performance, but at safety. A less conservative approach is to model the handler, the 

arm and the “zattera” as individual and separate objects. This can be easily done with the use of 

the already used dynamicCapsuleList, in its 3D variant. The body of the vehicle and the “zattera” 

dimensions are fixed, while the arm length can vary. Therefore, the arm capsule will be able to 

vary its length aswell. The use of dynamicCapsuleList3D allows to use the same navigation 

algorithms as in the 2D case, without having to change any code exept the part regarding the 

definition of the ego boides geometry. Creation of the three capsules is quite easy, and it involves 

some simple reference frame transformations.As for the main body, no changes were made from 
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the 2D case except now it is a 3D capsule. As for the arm, the reference frame of 3D capsules 

follows the same logic as 2D, see figure 3. The center of its reference frame is therefore placed 

where the hinge of the arm is placed. The arm capsules can be subject to a geometry 

transformation and to a state transformation; the geometry transformation is given by the current 

length of the arm, and it is a parameter already being kept track of in the current commerical 

machines; the state transformation is a rotation around the intrinsic y axis of the arm capsule. As 

for the “zattera”, its dimension can’t vary, therefore its capsule is only subject to a state 

trasnsformation regarding its location: this is a translation that keeps the capsule at the end of the 

arm in its rotating and telescopic maneuvers.In figure 5 the obtained capsules are shown in four 

different moments of movement of the arm; the simulated movement is a typical for the 

telescopic handler: firstly the arm is aimed at a target (top two images) and then it is extended 

(bottom two images). 

 

Figure 50 - top images: aiming the arm; bottom images: extending the arm 

Thanks to the use of capsules, this three component model is readily usable in navigation, and can 

be used to navigate the telescopic handler when its arm is placed in a non-rest position. Due to 

the current handling of the obstacle, though, the algorithm is not able to exploit the 3D 

movimentations of the handler. This thesis work was aimed at pure navigation, but the next step 

for 3D object handling would require a different object avoidance than listing. A 3D occupancy 
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map is a possibility that could enable some sort of end effector movement, but this needs to be 

carefully thought in future work.  

4.4.2 Obstruction handling 
A part from being a component that can collide with the external world, the arm has another 

significant issue, and in order to understand it is necessary to take a look at the analized telescopic 

handler, and at the designed lidar attach point. The machine at matter is the Merlo MF 44.7,  

which is a telescopic handler aimed at agricultural work (figure 6). This thesis work has been 

developed using data recorded from a single sensor, mounted on top of a Ford Fiesta. The 

equivalent of this setup for the MF 44.7 would be to place the sensor on top of the roof, in the 

spot marked by the red dot in the left figure 6. The roof by itself constitutes an obstacle to the 

laser beams that are aimed at the space surrounding the base of the MF 44.7, and this alone 

implies the necessity of additional sensors whose job is to map the obstacles in close proximity.  

 

 

Figure 51 – on the left: the Merlo MF 44.7. On the right: the inner corner points of the arm, in yellow 

But there is another object that obstructs the line-of-sight of the lidar, and that is obviously the 

arm. If nothing is done in regard to the arm presence, the result will be that the navigation 

algorithm will constantly perceive a close obstacle to the right; in fact, it will perceive an obstacle 

so close such that all tested trajectories will result unfeasible and colliding with the arm. In order 

to solve this, the solution adopted is the same one adopted for the ground problem: it is worth 

remembering that also the ground is very close to the lidar sensor and that it too will be perceived 

as an obstacle preventing navigation. The solution for the ground was to try to fit an horizontal 

plane in the and then to remove the points that fit the plane from the point cloud, so that the 

whole ground area would be filled with NaN cells, that do not partecipate to the clustering 

algorithm and therefore will not constitute an obstacle. With the arm we’ll do the same: all the 

points perceived where the arm is will be substituted by NaN values. In order to do this, we have 

to define the set of points that are obstructed by the arm. This can be done by defining four plane 

equations, choosing an internal positive normal direction for each of them and then doing the 

intersection of the points that satisfy each equation.  Actually, since we are not planning on 

making maneuvers that involve avoiding obstacles specifically over or under the arm portion, we 

won’t consider the whole vertical plane projection of the triangular region that has as vertices the 
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lidar itself, the posterior internal edge of the arm and the front internal edge of the arm. This 

means that we’ll only need to have the equaiton of two planes (the “front plane” and the “back 

plane”). In order to comment the code, it is useful to remind the equation of a plane in R3, which is 

given by:  

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0                (4) 

Since the arm can move, rotating around its hinge and then extending, the equations of the two 

planes will change depending on the current state. In order to give a more realistic geometric 

model, the arm has been treated as a cuboid rather than a capsule; since we are not using this 

model for collision checking but for generating planes, the cuboid geometry best suites the task. 

The cuboid is created using fixed size for the section of the arm, namely 0.8 m, and using as 

variable parameters the inclination angle and the arm length; the cuboid then can be placed in any 

possible configuration in order to simulate the effect of the real arm on lidar readings. 

Once the arm is in a certain position, represented by the cuboid, we first extract the corner points 

of the cuboid using the funtion getCornerPoints; we get the 8 points that are the vertices of the 

arm. Since the lidar sensor is put on the roof of the cabin, the points that are encountered by the 

lidar beam are the 4 internal points, shown in the right figure 6, highlighted in yellow. In order to 

distinguish which are the internal points in all the configurations, the following has been done: an 

array passing through the center of the arm cuboid, along the direction of extension, is defined. 

This array has the base in the pivoting point of the arm and the arrow pointing in the direction of 

the extension. The reference frame for lidar reading is the sensor placed on top of the roof, with 

the x-axis positive along the forward direction of the machine, the y-axis positive on the left 

direction and the z-axis pointing up. The arm on the MF 44.7 is placed on the right of the cabin, 

this means that the points belonging to the same quadrant as the arm are negative in y-

coordinates, and the points closest to the lidar sensor are the ones whose y-coordinate is larger 

than the y-coordinate of the vector passing through the arm. In order to distinguish between front 

and back points, the criteria is that all points farer than 1.5 m are considered front points, as no 

arm can extend less than 1.5 m. Once internal points are divided into front and back, they can be 

separated into top and bottom points if necessary, but since we’ll only define front and back 

planes we won’t need it. Before explaing how the planes were found, a consideration has to be 

made: since the available dataset was the one of a ford fiesta, whose roof height is considerably 

less than the roof height of the telescopic handler, the point at which the lidar sensor is 

considered to be placed is not at the origin but at [0;0;zlidar], where zlidar is set at 1.6m.  

The front plane is the one passing through the lidar sensor and the two front points, while the 

back plane is the one passing through the lidar and the back points. Both are therefore passing 

through 3 points; in order to find the plane parameters in the form of (4) we wrote a simple 

Matlab function that solves the system of three equations obtained by substituting the 3 points in 

(4). We do this for both the front and the back plane, and get the equations of two planes. Both 

the front and the back plane are planes that are parallel to the z-axis (their normal is therefore 

orthogonal to the z-axis); this means that in order to find the points that are inside the arm region 

we need to write (4) having y explicit, and therefore the points inside the arm region, looking at 

the front or at the back plane, will be given by: 
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𝑦 <
−𝑎𝑥 − 𝑐𝑧 − 𝑑

𝑏
       (5) 

Additionally, points belonging to the front plane will have their x-coordinate > 0, while points 

belonging to the back plane will have their x-coordinate < 0; these conditions have to be kept in 

mind when removing the arm obstacle points, otherwise points that do not belong to the arm 

region will be deleted. In figure 7 the result of the code implementation of what explained up to 

now is reported, as top view. The arm is highlighted in red, and in this frame is not elevated. The 

point cloud readings are given in blue; it is easy to see the chassis of the car highlighted in the 

center of the image, placed at the center of the reference frame. The two planes are highlighted in 

the color purple, and extend from the center, intersecating the inner corner points. The region on 

the right of the two planes is black, as all lidar readings from that region have been replaced by 

NaN values. The region behind the vehicle also appears to not have any points, but this is the 

effect of the roof obstructing the view of the laser beams, and not part of the arm point removal 

algorithm.  

 

Figure 52 - result of arm occlusion point removal - top view 

A legitimate question arising after seeing these result is: won’t the vehicle try to navigate always 

on the right since no obstacles are perceived? Since the lidar can’t see past the arm, it can’t 

perceive the presence of obstacles and navigating in the arm-occluded region may have fatal 

consequences in people are present. But since it is necessary to eliminate arm point for the 

feasibility of any trajectory, it will be up to the navigation algorithms presented in Chapter 5 to 

take care of not going to the “forbidden region”. 
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CHAPTER 5 - NAVIGATION 
 

5.1 MODEL PREDICTIVE CONTROL 
 

Model Predictive Control, commonly referred to as MPC, is a type of control algorithm that has 

been widely studied and used in recent years. Its flexibility and performance has made MPC one of 

the most versatile control methods for complex dynamic systems. 

The use scenario of MPC doesn’t reside in controlling simple systems in known conditions, but 

controlling either complex systems or simple systems is complex conditions; in particular, referring 

to the latter, MPC can efficiently handle changes in environment, perform future predictions and 

act consequently.  

The core aspects of MPC can be understood by analyzing its name; MPC uses 

● a model of the system (in control theory referred as plant), usually a dynamic model 

written in standard space state form. For several applications [1] it is sufficient to use a 

simplified model of the plant at study, capturing its main dynamics; more complex models 

lead to higher computation times.  

● a prediction of the future state of the system, which is obtained by integrating the model 

equations over a certain period of time. This prediction feature is what allows MPC to be a 

flexible tool capable of applying in advance certain control inputs to the plant so to prepare 

to future changes  

● control obviously refers to the fact that it is a control algorithm, but an important aspect of 

MPC can be understood by focusing on the control action. MPC is a great tool because, due 

to the model prediction action performed, it is able to both compute the control input and 

the state trajectory for a certain period of time. Most tools used in automation only allow 

for either computing a trajectory prediction of the plant state, or the control input to be 

applied to it, but MPC does both at the same time. 

 

In the most general scenario we can consider a MIMO nonlinear system, that is written in the state 

equation form: 

  

where x ∈ Rn is the state, u ∈ Rnu is the command input and y ∈ Rny the output of the system. In 

MPC it is assumed that all states are measured  with a fixed sampling time Ts and their values are 

provided with the same sampling to the NMPC algorithm to obtain a prediction of the plant. 

Naming y^ the prediction of the y variable in the time [t,t+Tp] obtained by applying an input 

sequence U, we can define the error between the reference r and the predicted y as: 
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The working principle of MPC is the minimization of a cost function. This function, often referred 

to in literature as J, is a function that is defined between the current time period and a future time 

period, referred to as Tp, or prediction horizon. The function usually assumes the form reported in 

(1), where x refers to the state of the system, r refers to the reference output of the system, which 

can coincide partially or completely with the state of the system, R is a weight matrix that allow to 

give more importance to the regulation of some states rather than others. 

(1) 

There are three contributors to the function; the first contribution penalizes the diverging of the 

state of the system from the reference state r; minimization of this component leads to a system 

that closely tracks the reference state; it is useful to anticipate that the reference state in our case 

is given by the a priori computed reference path. 

The second contribution to J penalizes high command input activity, minimization of this term 

leads to a system that works with low intensity control inputs; this second term can equivalently 

be viewed as an energy conservation term, since controlling a system with minimum input activity 

will lead to a more energy efficient approach.  

The third contribution to the cost function is a term that penalizes the final value of the difference 

between the reached state and the reference state; while the first and second terms are the sum 

of values computed at each sampling time from the current time to Tp, this latter term can be 

seen as a final value cost. This also means that the first two terms are computing a weighted 

vector norm, where each element of the vector is the value computed at a certain time instant, 

and the third term is simply a scalar. 

As can be easily seen, the close tracking of the reference and the low energy consumption are two 

objectives in competition with each other. In order to choose the balancing between the two, the 

magnitude of the R and Q matrices needs to be tuned. Increasing the weight of Q leads to a 

system with better tracking and worse energy management, while increasing the weight of R leads 

to an energy efficient system with poor tracking performance.  

 

The solution is obtained by solving an optimization problem that has the objective that is stated in 

(1), and that can be subject to a wide set of constraints. In fact, the ability of explicitly add the 

constraints to which the system is subject to is one of the good aspects of MPC; for example, it is 

possible to explicitly add input saturation constraints: this is useful in the case that the actuators 

that control the system have physical working limits, such as the maximum steering angle of a 
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wheel. By adding the constraints to the optimization problem, the solutions that will be found by 

solving it will already be feasible with respect to the physical system, and no additional action will 

be required. This is not the case for lots of control methods (such as Eigenvalue placement, LQ 

control), that quite often compute solutions where the control variables assume values that are 

not feasible for the physical actuators; in those kinds of control methods, the adopted solution is 

usually to slow down the system in order to need lower control actions, but this often leads to 

poor performance and is not scalable to more complex scenarios.  

 

The result of the controller will be a control sequence u(tau), with tau=t,t+1,..,t+Tp. This sequence 

can be interpreted as a vector of dimension of Tp, which is a function of time; this means that the 

minimization variable of the optimization problem is actually a function, and this makes J the 

function of a function, which is called a functional. Minimization of a functional is a hard task to 

accomplish, as the dimension of the u(t) variable is very large;in order to simplify the problem 

form a computational viewpoint, two “tricks” are used. 

Firstly, it is assumed that the variable u can only change up to a certain time instant called Tc, or 

control interval, which is a fraction of the prediction horizon Tp. After Tc, the input u is kept 

constant.  

Secondly, in the time period that u can change, u is parametrized, using different parametrization. 

A popular one is here reported, where u is piecewise linear and continuous: 

 

 

 

 

The overall result gives the following formulation for the MPC problem which, since we have put 

ourselves in the most general case, can fall under the category of NMPC (Nonlinear MPC). 
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The solution of this problem is computed at each sampling time; it is important to notice that the 

computed solution is the optimal solution in the sense that it is the solution to a minimization 

problem but since this is, in general, a nonconvex optimization problem there exists the risk of 

local minima trapping. So the solution is an optimal one but possibly not a globally optimal one. 

Another point to note is that the solution is optimal only for the current problem being solved (the 

time t problem), which means that at t+1 the solution will not be optimal anymore, and applying 

the solution found at a previous time instant would mean applying an open loop command. 

Therefore the principle of receding horizon (RH) is applied: at any time t solve the optimization 

problem over the prediction horizon [t,t+Tp] and apply only the first input u*(k) of the optimal 

sequence U*(k). At time t+1 repeat the optimization over the prediction horizon [t,t+Tp+1] [2]. 

 

In real-world applications, the exact plant model is seldom known. This means that an 

approximated model f^, h^ is used for control design, instead of the "true" model f, h (this holds 

for any method). Practical industrial experience shows that MPC tends to be inherently robust, 

even without any particular consideration in the design phase beyond ensuring the accuracy of 

dynamic models and formulating realistic specifications in terms of operational constraints and 

cost function weights. A necessary condition for lack of robustness is that the value function and 

state feedback law are discontinuous. There exists a wide range of NMPC formulations that 

include robustness into the formulation of the optimization problem. One can mainly distinguish 

between several robust approaches, such as the min-max NMPC, the H∞ NMPC and the 

parametrized controller. All those techniques typically require a high computational effort and 

thus cannot be applied to problems where a small Ts is required. Thanks to the receding horizon 

strategy, standard NMPC is in general characterized by good robustness properties [1].  
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5.2 REFERENCE PATH 
In order to be able to use any control algorithm, a reference signal must be given. In our case the 

reference signal to track is the path found in the offline path planning section, in Chapter 1. The 

reference path has been found using an algorithm such as RRT*. The found solution is composed 

of nodes and edges, following the graph taxonomy, but it can also be seen as a piecewise linear 

curve. In figure 1 the solution found by an RRT* algorithm is highlighted in red. Although it looks 

like a smooth curve, it is actually a piecewise linear curve, thus it presents abrupt variations of 

direction in the nodes. In order to create a smooth reference path, a naive approach could be to 

try and fit a (N-1) order polynomial to the N points that constitutes the nodes of the solution 

found by RRT*. As explained in [3] this approach has some drawbacks: 

 

 

 

● It is not possible to assign the initial and final velocities 

● As the order of the polynomial increases, its oscillatory behavior increases as well, and this 

may lead to unnatural trajectories. 

● Numerical accuracy for computation of polynomial coefficients decreases as the order of 

the polynomial increases 

● The system of constraint equations is hard to solve 

● The polynomial coefficients depend on all the assigned points; if even one point changes, 

all of the coefficients need to be recomputed. 

 

Figure 1: solution found by an RRT* algorithm in a test maze 
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A popular solution in robotics in order to overcome the presented drawbacks, is to use a number 

of low order polynomials as interpolation, continuous at the nodes. In particular, both the curve 

(which represents the position) and its first derivative (the velocity) must be continuous at the 

junction points. This implies that the minimum order polynomials that can be used are third order 

polynomials.  

In Matlab it is possible to interpolate points using the built-in function polyfit. 

 

 

 

 

 

5.2.1 Frenet Coordinate system 
 

We firstly define a global coordinate system as an inertial coordinate system; for this purpose, we 

can imagine the reference system solidal with the RTK antennas installed on the working area, 

with its origin placed somewhere in the field, known. Since the obstacle representation, the a 

priori occupancy map and the navigation algorithms are all considered in R2, the global coordinate 

system will be composed by an origin O and two vectors. The z-coordinate will not be considered.  

Considering the solution found by the RRT* algorithm, in the global reference system we can write 

the coordinates of all nodes as couples (x,y).  

 

Let’s now suppose that all nodes in the RRT* solution have been connected using some 

continuous function, for example a single polynomial or, as explained in the previous section, a 

series of cubic polynomials, with continuity conditions at each node linking two cubic polynomials: 

this is required because the Frenet formulas apply to curves which are non degenerate, meaning 

that they have non-zero curvature in each point [4]. 

 

Once the curve has been defined, we can express points belonging to it as  

[x y Θ k δk s], where x,y and Θ are Euclidean States expressed in the global coordinate system, 

with Θ in radians; “k” is the curvature of the curve in a specific point, expressed in meters; δk is 

the derivative of curvature with respect to arc length in meters per second and s is the arc length, 

computed starting from the path origin. 

 

The path origin is placed at the first node of the curve, which corresponds to the starting position 

for the machine. In figure 2 the explained reference path is shown (source: Matlab). 
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Figure 2 - reference curve for Frenet coordinate system 

 

In Matlab we can create this reference path curve using the function referencePathFrenet. This 

function fits a set of points, called waypoints, to a smooth curve; the used method is not reported 

in the documentation, it could be fitting a series of cubic polynomials as explained in Siciliano book 

or some other method. 

Once the reference path curve is given, we can express every point in R2 in the Frenet coordinate 

system. 

Since we are in R2, in order to express the coordinates of a point P, we need two coordinates. 

These coordinates in the Frenet coordinate system are the distance from the arc origin, defined as 

s, and the distance of P from the projection of P on the reference curve, defined as L. 

We are interested in defining not only the position of a point P in the Frenet coordinate system, 

but also its velocity and acceleration. Therefore we can define the derivatives δs, δ2s, which are 

the first and second derivatives of s with respect to time; we can also define δL, δ2L, which are the 

first and second derivatives of L with respect to s.  

 

We thus define the Frenet State of a point moving in R2 as a vector of dimension 6: [s δs δ2s L δL 

δ2L]; in figure 3 the Frenet coordinates are visualized and the Frenet state is reported. The thick 

black line is the reference curve. 
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Figure 3: Frenet coordinate system - source: Matlab 

 

Using the Frenet States we can define the position of a point by defining s and L. The other 

components of the state are more useful that simple cartesian velocity and acceleration, the 

reason are here reported: 

● δs is the time derivative of arc length: since the vehicle will be traveling on the reference 

curve, or on an alternative curve defined using the same Frenet states, δs corresponds to 

the longitudinal velocity of the vehicle, which is the main component of the vehicle and the 

one on which we can act using wheels commands. 

● δ2s corresponds to the longitudinal acceleration of the vehicle. 

● δL is the derivative of L with respect to s, and it corresponds to the slope of the alternative 

trajectory with respect to the reference curve; a zero δL refers to a direction that is parallel 

to the reference path. 

●  δ2L is the concavity of the alternative trajectory with respect to the reference curve 

 

The definition of the above quantities allows us to easily define alternative states for the vehicle 

and thus alternative trajectories, using variables that refer to an intuitive reference frame for the 

computation of alternative trajectories. 

.see also (Optimal Trajectory Generation for Dynamic Street Scenarios in a Frene´t Frame Moritz 

Werling, Julius Ziegler, Soeren Kammel, and Sebastian Thrun) 

 

 

5.2.2 Frenet trajectory generation 

Using the Frenet states, it is possible to define points that have specific features that relate to the 

reference curve. If we define a parameter for a number of points we can define curves. For 

example, only defining the fourth parameter, L, for a set of points, is defining a curve parallel to 

the reference path (shown as dashed line in figure 3), that can be seen as a path as well.  
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We may not be able to define a state for every single point in which we want to pass, but we can 

define the initial state and the terminal state, and have some sort of interpolation algorithm do 

the linking between them. 

 

However, we are not simply interested in creating a geometric path, but we also care to define a 

timing law as well. The path obtained as a “smoothed” solution of the RRT* algorithm is a pure 

geometric object that lies in R2. It can be parametrized as a function of its length but it remains a 

geometric object. A trajectory, however, can be defined as a “path plus a schedule” [5], or  “path 

plus timing law”. The first thing we need to do is define what is the reference path we are going to 

use, in order to have the origin and axis of the Frenet coordinate system defined. 

 

In the Matlab Navigation Toolbox, there is an object called trajectoryGeneratorFrenet that can be 

used to create trajectories, both on and off the reference path. In order to use it, we first create a 

connector object, using as argument the reference path : connectorFrenet = 

trajectoryGeneratorFrenet(refPath). 

 

Next, in order to define a trajectory we need: a starting point, a final point and, in the simplest 

case, the time needed to arrive from the former to the latter. More in detail, we’ll work using the 

Frenet State; so instead of a starting and terminal point we’ll define a starting and terminal state: 

this allows us to specify not only the waypoints of the searched trajectory but also speed, 

acceleration, curvature…at desired points. We’ll set the states only for the starting and ending 

point, and let the connect object fit a polynomial between the two. 

In order to use the connect object function to create a trajectory between the starting state and 

the ending state, we specify the time the movement between the two needs to take, as follows: 

 

[~,trajGlobal] = connect(connector,initState,termState,time)   (2) 

At this point the connect function computes a feasible solution that connects the states, 

generating a number of intermediate Frenet States in between the two. 

The solutions are found as fourth or fifth order polynomial curves, depending on the number of 

constraints applied: the application of a constraint is implemented by specifying a state value for 

an element in the Frenet state. The elements of the starting state are all known, and thus defined, 

while in the elements of the terminal state we have a degree of freedom of leaving one or more 

values undefined, inserting the value NaN. 

In figure 4, the reference path is shown in red, and a set of alternative trajectories are shown in 

green; this set of trajectories has been obtained by setting as terminal states: termstates = [30 0 0 

L 0 0]; where L is a vector whose values span between -10 and +10; thus termstates is a vector as 

well: the connect object can accept vectors as an argument, and returns a number of trajectories 

equal to the size of the vector. 
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If instead we impose the terminal state to be termstate=[s 0 0 NaN 0 0] we are relaxing the 

problem on the fourth constraint, therefore obtaining as solution a fourth order polynomial 

instead of fifth. In many cases we don’t know the value of all elements in the terminal state, a 

representative example is given by the terminal state generated in a overtaking maneuver: in this 

maneuver we may want to keep a certain final velocity, to have some lateral displacement, but we 

probably are not interested in the arc length s of our trajectory, as long as velocity and lateral 

displacement are respected. 

Constraint relaxation has been shown to produce more natural-like trajectories: in figure 5(a), the 

terminal state has been set to [6 10 0 5 0 0], while in figure 5(b) it has been set to [NaN 10 0 5 0 0]. 

 

 

Figure 4: reference path and alternative trajectories setting all terminal state values 

 

In figure 5(a), the imposed arc constraint makes it so that the trajectory starts in one direction, 

returns back to the starting point, and then proceeds forward until the terminal state is reached; 

this is an unnatural and dangerous behavior, and although the terminal state has been reached, 

the way it was reached wouldn't make sense. Relaxing the arc length constraint (figure 5(b)) 

respects all velocity and lateral displacement constraints while providing a natural curve, although 

the control on the arc length is lost. Another possible solution, which is not possible to perform 

using the connect function, would be to relax the constraint on time; this would lead to reaching a 

terminal state with also the arc length specified, and could be a topic of a follow up work.  
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Figure 5(a): all constraints imposed            Figure 5(b): arc length constraint relaxed 

 

The line of code reported in (2) gives as output the trajGlobal variable, which is a data structure 

composed of two fields: Trajectory and Times. 

● Trajectory is a N-by-6 matrix, each row of which is a path point in the Frenet state (despite 

the name Trajectory, this is actually a path in R6) or in the global reference system. In the 

latter case, which is the default one, the state is composed by [x y theta k v a], where x and 

y are the coordinates in the global reference frame, theta is the inclination angle with 

respect to the x axis and v and a are, respectively, velocity and acceleration modules of the 

point in the theta direction.  

 

● Times is a N-by-1 vector, which associates a time value to each row in the Trajectory 

matrix. The time between consecutive rows in the Times vector is fixed, and chosen before 

calling the connect function; this time step can be tuned and chosen in different ways, the 

choice that was carried out in this work is to set it at 0.1s. The reason for this is that the 

Lidar scans of the dataset used for testing were collected with a frequency of 10Hz; 

choosing as time step 0.1s means that the very next state after the current state of the 

vehicle will be reached when a new Lidar scan will be recorded. This concept has some 

connection with the idea of receding horizons presented in MPC, but will be better 

explained later. Other choices of the time step are possible too, being anyway smaller than 

0.1s. 

 

5.2.2 Cinematic constraints 

 

There are cinematic constraints related to the trajectories that the telescopic handler can perform: 

thanks to the use of the RRT* algorithm for computing the solution of the offline path planning 

problem, the minimum curvature radius constraint was already considered, and the resulting 

reference path curve already contains it. Only looking at the geometric side of the trajectory (so, 

the path) we therefore are sure of the feasibility of the reference curve, but we don’t have any 

guarantee about the feasibility of the alternative trajectories. 
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As will be explained in the next sections, due to the mechanism of generation of the alternative 

trajectories, we don’t have a way of pre-imposing the cinematic constraints before computing the 

alternative trajectories themselves.  

What will be done is, once the set of alternatives has been computed, each alternative will be 

tested for feasibility of the constraints. The trajectories that won’t satisfy all the constraints will be 

discarded and not used down the line. 

 

The minimum steering radius of the Merlo MF 44.7 is 4.090m. The maximum curvature is the 

reciprocal of the radius, and so is:  

 

maximum curvature = 1/radius = 1/4.090m = 0.2445m-1 

 

Therefore, we set a parameter to the maximum curvature of the telescopic handler at study.  

 

The maximum acceleration allowed for nominal-situation driving in highway scenarios [6] lies in 

between 15 ÷ 20 m/s2 . We have set a maximum acceleration of 10 m/s2. 

 

The maximum permissible velocity for this autonomous vehicle application has been set to 5 

km/h, or 1.39 m/s. It is important to remember that the autonomous vehicle will operate only in 

controlled environments, and won’t navigate in streets, therefore we don’t need minimum speed 

requirements. Recap of cinematic constraints: 

 

● maximum curvature =  0.2445 m-1 

● maximum acceleration = 10 m/s2 

● maximum (longitudinal) velocity = 1.39 m/s 

 

The procedure used in order to apply these constraints is the following: given the set of alternative 

trajectories to the reference path, for each trajectory the function evaluateTrajectory is called, 

passing as an argument all the trajectory  points of the trajectory under testing. The trajectory 

points are passed as N points in the global reference frame, this means they are [x y theta k v a]. 

The check performed by the evaluateTrajectory function is then quite easy, as each point of the 

global trajectory passed is tested for its k, v, a parameters to be lower than requested. The 

evaluateTrajectory function returns 1 if the three cinematic requirements are all met, otherwise it 

returns 0. 
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Additionally, it is also possible to impose minimum cinematic requirements, especially in the 

velocity field. 

 

5.3 NAVIGATION ALGORITHM ANALYSIS AND SIMILARITIES WITH MPC 
 

5.3.1 Initialization of capsule list 

The first thing that is done after the reference path has been defined is the creation of an empty 

capsule list. Since no tracking has been implemented in this work (see section 5.4 for the 

theoretical analysis on tracking) the empty capsule list is created at each sampling time instant. 

This means that no knowledge of previous obstacles or their motion is kept in memory. In order to 

avoid having “ghost obstacles” that are present in the capsule list but aren’t actually present the 

capsule list is deleted before each measurement is processed. Another measure taken in order to 

simplify capsule list handling is the a priori selection of a fixed number of obstacles. This choice 

greatly reduces the effort required to dynamically change the size of all data structures connected 

with the capsule list, and provides robustness to the code. The number of a priori capsules that are 

created has been set to 10. Testing using the two datasets found on the Matlab website has 

shown that 10 is an appropriate number for road applications. No data has been analyzed in the 

agricultural environment, though. 

The 10 capsules are created and initialized in a position far away from the ego vehicle, at (-1000,-

1000) in the cartesian plane. The default size of the capsules is [5,2] meters. 

 

The parameter maxHorizon is chosen: this parameter is the equivalent of the prediction interval Tp 

of the Model Predictive Control. It is the maximum time for the navigation algorithm to perform 

predictions about the future states.  

 

5.3.2 Alternative trajectories generation 

After the initialization of the capsule list, all of the alternative trajectories are computed. The 

alternative trajectories generation happens in the same way at each iteration, and could be 

potentially avoided by storing them in dedicated variables, but the computational cost of 

computing them is negligible. 

Firstly, the vector containing all the alternative terminal states is computed. The terminal states 

are created as zero vectors in the Frenet state, where the constraint on the longitudinal element is 

dropped by imposing it equal to NaN, the second term corresponding to longitudinal velocity is 

put equal to the chosen target velocity (since we are interested in arriving at a destination and 

stopping, this is put to 0) and the term on the lateral offset is put equal to 2.5m. The choice of 

2.5m is arbitrary and should be tested with real world agricultural data. The result is a set of 

trajectories equal to the ones reported in green in Figure 4. 
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This approach for generating alternative trajectories can be seen as a static approach, as it is the 

same at each iteration. This results to be quite different from the MPC formulation that gives as a 

result the control command u(t). 

In fact, the MPC solution u(t) is the solution of the MPC minimization problem, which is the 

minimization of the J cost function (see paragraph 5.1, equation (1) ), which is nonlinear. That 

problem is tackled by minimization algorithms which, given the nonlinear nature of J, can end up 

being trapped in local minima. In any case, the computational effort required to solve at each 

iteration the MPC minimization problem is the main drawback of MPC.  

In this work, the much simpler trajectory generation will surely bring less than optimal solution, 

but the approach is justified by the supposed sparsity of obstacles in the working environment of 

the telescopic handler (see previous Chapters). 

The behavior produced as a result of this choice of terminal states is simply “try to avoid the 

obstacle by passing either to its left or to its right”, as it's supposed to be true that the obstacle is 

one that can be passed in such a way.  

On field validation needs to be performed to verify that these kinds of hypotheses and solutions 

proposed are sufficient to correctly tackle the problem. 

 

5.3.3 Terminal states cost function 

While the alternative terminal states and trajectories are being computed, the cost of each 

terminal state is computed as well, and stored for later. Each terminal state is passed onto a 

function called evaluate_terminal_costs that computes the cost associated with the individual 

terminal state.  

There can be very different ways to compute a cost function. In the more general approach 

considered in the MPC formulation the cost factors are the weighted norm of the difference 

between the state and the reference and the vector norm of the input vector u, for energy saving 

or input constraint purpose; both factors are weighted and are functions of time, and the cost 

function is defined in the interval [t,t+Tp]. There is also a term associated with the cost of the state 

reached at Tp, and that term is independent of the time.  

In this work the cost function used is much simpler than the complete formulation of the MPC cost 

function, and only considers the latter term, the one associated with the state reached at the end 

of the prediction interval, which in our case is given by the terminal states. This cost function will 

not provide the same level of performance of the full MPC cost function, but the computational 

cost of computing it is very low and therefore friendly with the real time requirements. 

The cost function is composed of two terms: a velocity cost and a time cost. 

● The velocity cost penalizes terminal states whose speed differs from the reference desired 

speed; the cost is linear. 

● The time cost penalizes fast trajectories. Although this may sound counterintuitive, slow 

trajectories are the best trajectories for a non urban autonomous vehicle, as they are 
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smoother than faster trajectories, since slower trajectories means lower instantaneous 

accelerations. 

The terminal states (and subsequently their trajectories) are then sorted according to the 

computed costs: they will be tested for collision starting from the ones with less cost associated. 

 

5.3.4 Lidar data processing 
At this point, the current Lidar frame is processed. Since most of the point cloud processing has 

been already explained in the previous chapters, here only the order in which the algorithms are 

executed will be reported.  

Firstly, the data in the point cloud belonging to the ground is removed. Secondly, the remaining 

points are clustered in order to recognize objects; here both DBSCAN algorithms or FLIC can be 

used. Thirdly, the clusters are fitted using L-shape fitting into cuboids models. The following piece 

of code is reported as it synthesizes the operations performed: 

 

 

loop performed for cuboid fitting of all clusters 

 

Once cuboid models are obtained, they are assigned to the capsules that were initialized at the 

beginning. The unused capsules are left in the default location of (-1000,-1000), where they do not 

constitute an obstacle for any trajectory.  

The dimensions of the capsules are updated as well: in particular, they are assigned the maximum 

between their default value and the cuboid model value. This measure is a safety precaution taken 

in the case of under segmentation of a cluster, for example in the case some part of an obstacle is 

labeled as ground. Having minimum dimensions will make the navigation more cautious. 

Errors will arise in the case where the number of cuboid models exceeds the number of initialized 

capsules.  

 

5.3.4 Trajectories collision checking 

Starting from the least cost trajectory, the cinematic constraint valid trajectories are tested for 

collision avoidance. The collision checking is performed by a pre-built function belonging to the 

capsuleList object.  

The collision checking is performed exploiting a prediction of the ego vehicle, performed up to the 

maxHorizon time instant.  
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The model which is predicted is a pure cinematic one: the center position of the ego vehicle is 

computed according to the values computed in each alternative trajectory up to the maxHorizon 

time instant. This concept presents some similarities with the MPC formulation, although it is 

much simpler. In the MPC formulation the inputs can be the actuation inputs of the actuators of 

the autonomous vehicle, and this would require to know the dynamics of the whole vehicle. Here 

the researched inputs are simply the trajectory waypoints, and this means that the model with 

which the predictions are made can be a purely geometrical one. Nevertheless, simulating this 

simple model still allows for multiple considerations on the navigation algorithm in all of its parts.  

From the point of view of the capsule list, it is considered as multiple ego vehicles are present at 

the same time, the multiple vehicles being the prediction of the ego vehicle across time.  

In Figure 6 the predictions of the ego vehicle along the green trajectory are reported in gray. 

The capsules containing red rectangles are the obstacle capsules, and the red rectangles are the 

cuboid models; it is worth noting that the object situated at the most right presents a capsule 

much bigger than its dimension (due to the cautious approach cited above) and it is clear to see 

how this does constitute a safety precaution, as in the absence of the big capsule one of the 

feasible trajectories could pass right in front of the obstacle. 

In the bottom left corner a small capsule without a red rectangle inside is present: it is one of the 

unused initialized capsules, which has been placed at (-10,10) instead of (-1000,1000) for 

visualization purposes. 

Finally, a green hollow rectangle is present in the center of the image: that is the position of the 

ego vehicle and the first capsule directly around it is the capsule at time t. 
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Figure 6: predictions of the ego vehicle along a candidate trajectory 

About the color of the trajectories: 

● the white trajectories are collision untested trajectories: in fact, once a trajectory is found 

as feasible, all superior cost trajectories are not checked for, in order to save 

computational costs 

● the green trajectory is the lower cost collision free trajectory 

● the red trajectories are trajectories that present a collision with an object in the 

maxHorizon time interval 

● the light blue dotted trajectories do not present feasible cinematic constraints and are 

therefore discarded from the collision checking process 

The on-path trajectory is always the first one being tested initialized with a cost of 0. 

5.4 TRACKING 

 

An important observation needs to be made about the work done so far; as a reminder the 

information workflow so far has been: sensor acquisition of Lidar data, ground preprocessing, 

obstacle clustering, obstacle list update and finally navigation. The whole stream of algorithms is 

performed in real time, at the highest frequency that the hardware and the software 

implementations allow. However, at every iteration of the algorithms, the information gathered in 

the previous cycles is lost; for example, at each new Lidar scan the chosen clustering algorithm is 

run and new clusters are created, discarding the old clusters and all information contained in 
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them. This means that whenever an object is detected, it is considered as a new obstacle every 

time. It can be said that the system works statically, as all decisions are made with respect to the 

current state without using the past variables, and that the notion of time is unused. 

This of course is not the optimal way to handle all the gathered data, and the tool to be used in 

order to improve performance is tracking.  

 

Tracking refers to the activity of predicting and following an object’s motion (more generally, an 

object’s state), as well as memorizing its history, by correlation of old and new measurements; in 

general, tracking is done with respect to multiple objects. 

Implementation of tracking presents numerous advantages: 

● It is possible to handle missing data frames: an existing track at time t-1 can be kept and 

considered as an obstacle at time t even if no new measurements have been made at time 

t. This makes the navigation system resilient to false negative errors 

● It is possible to handle sensor uncertainty and perform filtering activity on noisy data; in 

the case of challenging environment conditions (an example for the Lidar sensor are 

reflective weather conditions like snow) the usage of tracking can mitigate the effects of 

“jumpy” detections 

● It is possible to perform predictions on the obstacle conditions for a time interval in the 

future: this aspect is of crucial importance for the navigation aspect, as future predictions 

of the obstacles can be included in the collision checking phase of the alternative 

trajectories validation, and lead to the choice of better alternatives that already consider a 

prediction of the future environment: this will make less likely the phenomenon of 

frequently jumping between different trajectories, and lead to a smoother trajectory 

planning overall. 

 

In order to talk about the tracking algorithms, we’ll refer to the concepts of detection and track. A 

detection can be defined as a measurement of an obstacle performed at a present time instant, t. 

It is also often referred to as an observation. 

A track can be defined as a past detection, or the measurement of an obstacle at a past time 

instant, t-1. The set of all detections of a past time instant t-1 can be called the set of tracks. 

 

We will also define two algorithms that are commonly used in tracking, either in their original 

form or in a variant flavor. These algorithms are the Hungarian algorithm (also known as Kuhn-

Munkres algorithm [7]) and the Kalman Filter.  

 

● The Hungarian algorithm is a tool that can associate an object from a past frame to a 

present one, using some kind of score as a metric [8]. This algorithm is used to solve the so-

called data-association problem of tracking. 
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● The Kalman Filter is an algorithm that can perform a prediction of the state of a dynamic 

system based on current state (and possibly, input) measurements, as well as perform 

current state estimates by correcting the previously computed prediction with the current 

measurement. A popular form of the Kalman filter is given by the Prediction/Correction 

form  [9]. This algorithm is used to solve the so-called prediction problem of tracking. 

 

5.4.1 Data-association problem - Hungarian algorithm 

 

In order to tackle this problem with the Hungarian algorithm, we need to choose a score with 

which to compare the tracks and detections of two consequent frames. Before that, we need to 

define what kind of object the detections (and as a consequence the tracks) are.  

Since in most computer vision solutions that use tracking the classification part is left unchanged 

with respect to the solutions that don’t use tracking [10], we will keep the classification section of 

this work unchanged, and introduce the tracking after it. In our case, where the only sensor used is 

the Lidar sensor, the classification part is composed of the clustering algorithm.  

In order to reduce computational complexity, instead of considering as detections the clusters of 

points, we’ll consider the cuboids instead. Since we are performing navigation in 2D, the variables 

that define each cuboids are 5: [x,y,𝛩,w,h], and therefore what will be used as detection won’t be 

a full cuboid but only the rectangular base of it. The detections are thus oriented rectangles in R2. 

 

The observation “frames” are thus composed of a set of rectangles. The rectangles of the t-1 

frame constitute the set of tracks, while the rectangles of the t frame constitute the set of 

detections. There are some popular scores used in the literature for comparing subsequent 

frames: 

● Intersection over unit (IOU): this score function is defined in [0;1]. It is computed by 

measuring the overlapping portion of two rectangles, one belonging to the set of tracks 

and the other to the set of detections, and dividing it by the sum of their areas. Three cases 

are reported in Figure 6, where the tracks are colored in blue while the detections are 

colored in red: 
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Figure 6: three 

values of IOU score. (Source: thinkautonomous.medium.com) 

 

● Shape score: this score function is defined in [0;1]. The score is higher for detections that 

have similar shape and size from previous frames. Given that all detections and tracks are, 

in our case, rectangles, using this score could make it difficult to distinguish between 

different objects. 

 

● Convolution cost: this score works by running a Convolutional Neural Network on all the 

detections and tracks and, where the convolutional features remain the same it means that 

the object is probably the same one. 

 

We’ll consider the IOU score. In Figure 7 the time instant t-1 is reported as t0, the time instant t is 

reported as t1. In t1 the detections are the red rectangles, while the tracks are the blue dotted 

rectangles. The detections are three, two of which overlap to some extent the tracks and one of 

which appears to be a new object. It is possible to build a matrix by writing on the rows the t1 

detections and as columns the t0 tracks, and in which each element ij on the matrix is the IOU 

score of the detection i with the track j: 

 

Detection / Track Track 1 Track 2 Track 3 

Detection A IOU = 0 IOU = 0 IOU = 0 

Detection B IOU = 0.56 IOU = 0 IOU = 0 

Detection C IOU = 0 IOU = 0.77 IOU = 0 

 

Looking at this table it is immediate to correlate Detection B with Track 1 and Detection C with 

Track 2. We’ll also refer to this table as a matrix, named C. 
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Figure 7 : example of two subsequent frames after clustering and rectangle fitting (Source: thinkautonomous.medium.com) 

 

As far as Track 3 is concerned, in the present time instant no measurement has matched it. This 

could have happened either because the object that Track 3 belonged to disappeared or because 

of a false negative error: an unsatisfactory clustering action, a missed Lidar measurement ecc. 

Using the notion of tracks, we may still keep Track 3 in memory for future time instants 

subsequent to t1, where maybe some detections will match with it; this is what allows the tracking 

algorithm to behave like a noise filter. It is common to insert in these implementations a 

threshold, where if a track doesn’t receive detection updates after a number of measurements, it 

is dropped.  

In the end (see Figure 7 on the right) we are left with four tracks, one of which comes from a new 

detection, Detection A. 

 

So far the covered case was the simplest one, meaning that in the Detection/Tracks matrix there is 

at most one nonzero IOU score for each track (or for each detection). In the most general scenario 

this is not the case: the matrix C can be composed of all nonzero elements. Nevertheless, since the 

score function is defined between [0;1], it can be said that it is a nonnegative matrix. The problem 

becomes the one of finding the best detection match for each track, under the hypothesis that 

there is at most one detection for each track. This hypothesis is strong, and can be sometimes not 

respected in the cases where the clustering algorithm over segments a single object: this is a case 

where for two detections a single track is corresponding. 

The mathematical formulation of the general case is: 

 

𝑚𝑎𝑥  𝑇𝑟 (𝐿 ∗ 𝐶 ∗ 𝑅) (3) 
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where Tr indicates the trace of a matrix, and L, R are permutation matrices, which are the 

optimization variables of the problem. This is the problem that is solved by the Hungarian 

algorithm, and the output is the matrix M who matches the detections to the tracks by maximizing 

the IOU (or other) score. 

 

Thanks to the Hungarian algorithm we can assign old and new measurements to each object, 

which we can denote with a number k. For each object k we can define a state xk, which is a vector 

of dimension 5: xk = [x,y,𝛩,w,h], where x,y are the rectangle center coordinates expressed in an 

inertial reference frame, for example the reference frame composed by the RTK antennas. Also, 

we can denote with xt
k the state of object k at time t. 

 

5.4.2 Prediction problem - Kalman Filter 
 

Once we have identified an object, and we are able to assign new measurements to it, we are 

interested in predicting its future state and correcting the current state measurement with the 

prediction obtained from past measurements.  

This problem is tackled using the Kalman Filter. 

The Kalman Filter is an algorithm proposed by R.E. Kalman in 1960 [11] that has been widely 

studied, used and expanded during the decades.  

In the paper, Kalman defines three different problems, namely the data smoothing problem, the 

filtering problem and the prediction problem. Given that the current time is t, and the time at 

which we are interested in knowing the values of the state of an object is t1, we have a data 

smoothing problem if t1<t, a filtering problem if t1=t and a prediction problem if t1>t. 

In the case of tracking, we are interested in the filtering and the prediction problems.  

 

The setting of the problem is the following: we are interested in filtering and predicting the state 

of an individual track k. Such state is xk = [x,y,𝛩,w,h]. We do not know the inputs that the track is 

subject to, as we can only measure the output using the Lidar. Defining each track k as a discrete 

system S: 
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where x(t) ∈ Rn , y(t) ∈ Rq , v1(t) ∈ Rn , v2(t) ∈ Rq and: 

● v1 (process noise) and v2(measurement noise) are white noises with zero mean value and 

known variance which are uncorrelated with each other [12] 

● A ∈ Rnxn, C ∈ Rqxn and the variance matrices of v1 (V1 ∈ Rnxn) and v2 (V2 ∈ Rqxq) are known. 

Given that track/system data are collected up to N, the one step prediction is indicated by 

x̂(N+1|N), and can be visualized with the block diagram reported in Figure 8, where the top blocks 

are the system at study (the track in our case) and the bottom blocks, denoted by K are the 

Kalman filter: 

 

 

Figure 8: block diagram of the one step Kalman predictor. Source: Michele Taragna’s Slides 

 

A more popular version of the Kalman predictor is given by the predictor/corrector form (Figure 

9). The form reported in Figure 9 is the one of a non-autonomous system, as the input u is present, 

since in our case the tracked objects can be considered as autonomous, it is sufficient to discard 

the u input.  
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Figure 9: block diagram of the one step Kalman predictor in predictor/corrector form. Source: Michele Taragna’s Slides 

The predictor/corrector form of the Kalman filter contains the same prediction information as the 

standard one step Kalman filter (so, the x̂(N+1|N) prediction), plus the correction of the current 

measurement, x̂(N|N): this term, highlighted in red in Figure 9, uses both the prediction from the 

past N-1 measurements and the innovation contained in the y(N) measurement in order to give a 

corrected estimate of the current state of the system S.  

This gives the knowledge not only of the N+1 state (prediction) but also of the N state (correction), 

and is thus both a prediction and a filtering algorithm. This versatility makes it a quite popular 

implementation. 

A common use scenario where the filtering action comes into use is when a GPS system loses 

signal for some time instants or when, due to some kind of issues, the measured position acquires 

an uncertainty higher than the one in the past measurements. The filtering action reduces the 

damages that could be made by following the new, more uncertain measurements.  

 

In the use case presented here, the filtering action is useful to counteract the flickering effect that 

is often observed in most perception systems. We are referring to the effect where, passing from 

one frame to another, the clustered objects change much more than the physical objects do. This 

phenomenon is unavoidable, and is created by the relatively long chain of algorithms that lead 

from the Lidar data to the clustered bounding boxes; reminding the main steps, each Lidar frame 

has its ground removed using a plane fitting algorithm, has its objects clustered using a DBSCAN 

flavored clustering algorithm, then the clusters are represented by bounding boxes using L-Shape 

fitting; a small change in the output of one or more links of the chain and all the subsequent 

objects can vary considerably. For example, if the ground segmentation algorithm doesn’t 

recognize a piece of ground as ground, two separate objects that are adjacent to that piece of 

ground will be grouped together and clustered as a single entity, modifying the list of objects, 

therefore the list of detections, having two tracks that will present no new detection and creating 

a new track due to the nature of the Hungarian algorithm.  
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This is just an example of the flickering effect that can be present due to small uncertainties and 

errors that get enhanced in the chain of algorithms. 

 

Finally, a third form of the Kalman filter is presented, the multistep Kalman predictor (Figure 10). 

The working principle is the same as the one step Kalman predictor, but the time interval in which 

the system’s state prediction is performed is not 1 but r. This can be referred to as a prediction 

interval, in which each object which is outputted by the Hungarian algorithm is predicted for r 

time instants.  

This kind of prediction is quite useful in our use case: let’s consider a case where only one object is 

detected, to which we can refer to as system k, and consider the set of r predictions performed by 

the multistep Kalman filter; this is equivalent to a set of oriented rectangles. The whole set of 

oriented rectangles can be added to the dynamicCapsuleList object that was introduced in Chapter 

4. 

From the point of view of the navigation algorithm, at the current time instant t, there will be r 

capsules present in the capsule list; the trajectory generator and the collision checker will 

therefore consider not only the current detected obstacle, but also the r predictions in the future. 

This will lead to choosing trajectories that will be feasible up to r time instants in the future. Of 

course, at the following time instant t+1 a new measurement of the detected object will bring new 

information on its system k and the set of predictions will change, but if the Kalman filter is 

working well and the object’s motion doesn’t change abruptly it is likely that the trajectory 

computed at time instant t will still be valid for some subsequent time instants. 

This will allow not only for less computational resources to be used in the trajectory testing phase 

(and this advantage is arguably existent, since the Kalman filter itself presents non negligible 

computational cost), but will allow the autonomous vehicle to find itself in more cautious positions 

and orientation.  

Also, this kind of approach is unavoidable to use in the case of particular maneuvers, such as the 

takeover maneuver, that require a certain amount of prediction of the environment, but are not in 

the scope of this thesis. 
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Figure 10: multistep Kalman predictor. Source: Michele Taragna’s Slides 

 

 

Another important aspect that is tackled by the combination of tracking and multistep Kalman 

prediction is the following: suppose the ego vehicle is moving along a collision free path at time t, 

and another external vehicle (which at time t is not on the reference path) is moving in a fashion 

that will intersect with the reference path at some time t+c. If the navigation algorithm lacks some 

sort of multistep prediction, the ego vehicle will keep on moving along a currently collision free 

path until the external vehicle will be directly on the path. This may mean two vehicles could 

suddenly find themselves at relatively close distance while both traveling at nonzero speed, and in 

this kind of situation braking or rapidly changing trajectory could be unfeasible: if a sudden 

obstacle appears in front of the ego vehicle while traveling at nonzero speed all the alternative 

trajectories computed in the Frenet space may be unfeasible, and lack of action may lead to 

accidents. 
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6. CONCLUSIONS  
The exploratory work conducted in this thesis has analyzed some solutions involved in key aspects 

of autonomous vehicles. The application field of the vehicle is the agricultural one, and this has 

allowed for some simplifications, like the mostly-free working environment, which allows for a 

capsule oriented object representation, and offline path planning only done once before the 

starting of the mission.  

 

About the RRT* algorithm, the possibility for including the maximum curvature constraint in the 

generation of the reference path allows the creation of a path that will be surely possible to track 

by the vehicle at study, at least from a cinematic side, eliminating one cause of tracking error from 

the big picture. The solutions provided by RRT* are often quite curvy and generally are not optimal 

in the sense of distance from the starting point to the objective area. In the main mission scenario 

considered (the handling of a hay ball from a defined starting point to a defined objective area) 

this aspect can be overlooked, especially if the vehicle is operating -as one of the starting 

hypothesis imposes- without human or animal presence around it; in the case of human presence, 

which is something that will have to be dealt with in the future implementation of autonomous 

driving for telescopic handler, the curved trajectory offered by RRT* could be difficult to predict 

and react to, and a less curvy solution should be looked for. 

Another application in which this kind of geometric path is problematic is plowing, which is not the 

core mission of a telescopic handler but it resides in its possibilities. 

Some companies solutions considered during the initial research phase of this thesis involve a 

semi autonomous or non autonomous offline path planning: the former being the selection of 

waypoints in the working area of the telescopic handler, which will be interpolated by polynomial 

of some order, the latter being the complete path drawing performed by the human operator; in 

both cases, cinematic feasibility of the solution and absence of obstacles along the path will be 

hand checked by the human operator before uploading the path to the machine. Although this 

procedure involves the expense of having a dedicated operator that provides navigation service, it 

can be ideal in the cases in which the exact path to be followed is important (e.g. plowing), or in 

which the passage in waypoints represents an important aspect of the mission. 

 

About the sensors, the usage of a single Lidar sensor has appeared (although this hypothesis has 

not been validated by simulation due to lack of adequate hardware) insufficient; most 

autonomous vehicle reside on a variety of sensors, and use sensor fusion techniques to obtain 

detailed and robust information; as exposed in Chapter 2, the trend of later years it to reside more 

and more on camera sensors and machine learning or deep learning techniques, united with 

sensor that can actually measure distances such as Radar or Lidar. 

Although insufficient by itself, the density and resolution of Lidar has been found to be sufficient 

to successfully perform clustering of obstacles most of the time, at least in the datasets used for 

the simulations. 
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The usage of the RTK GPS system has only been given as an hypothesis, and no simulations have 

been performed in this regard however its use for the considered case scenario seems adequate 

as the distances that can be covered by the RTK antennas (about 10-20 km) reside in the range of 

a medium to large farm.  

 

The validity of Lidar clustering in agricultural datasets is yet to be tested due to the difficult 

availability of dedicated datasets, and should be the object of a followup work.  

Integration with cameras and machine or deep learning techniques still seems to be a compulsory 

passage to be done in order to go towards the safety requirements cited in the early version of 

norms like the ISO 18497-3. 

 

About the clustering algorithms, k-means has been analyzed and not implemented as the required 

number of clusters is a difficult aspect to deal with; elbow point selection of multiple different 

cluster number simulations has shown to be excessively costly and with no guarantees about the 

optimality of the solution. 

The recently proposed FLIC (Fast Lidar Image Clustering) has been analyzed and implemented, 

both in its original flavor and in the 1-Map Connection variant. The results of the simulations have 

presented some success and some failures in clustering objects from the construction Lidar 

datasets, as covered in Chapter 3. 

Part of the errors is to identify in the imprecision of the data about the angle of two adjacent Lidar 

measurements, since this angle is not an information that was available on the free datasheet of 

the sensor, and its value was only supposed based on similar models by Velodyne. The tests on the 

FLIC algorithm’s clustering accuracy should be re-performed when having availability to a physical 

Lidar sensor or to detailed information about a sensor used in a dataset.  

The execution frequency of FLIC was in the range of 5 to 10 Hz, varying from the complexity of the 

scene. The reasons for this variability are unknown, but an aspect to highlight is that, contrary to 

what was done by the authors of the FLIC paper, the implementation was written in Matlab and 

optimization issues could be at play. Also, since the raw azimuth, elevation, range data were not 

available in the dataset (the data was already given under the Point Cloud format), in order to be 

able to work with FLIC the cartesian data contained in the PointCloud object has been turn into 

azimuth, elevation, range by a custom function: this could be the source of slowness in the code 

execution. Again, tests using a real Lidar sensor should be performed to verify that the speed 

results (that lay in the order of 100 Hz) of the original paper are possible. In such a case, the 

implementation of FLIC in a follow up version of this project should be highly considered. 

That said, with the elements available at the moment (those being the performed simulations) not 

much difference in speed has been observed between FLIC and Matlab’s own pcsegdist function, 

which is based on DBSCAN; on the other hand, clustering accuracy performance appears to be in 

favor of the DBSCAN derived algorithm. The clustering speed is again in the order of 5 to 10 Hz 

using the same dual core i7 processor, and thus pcsegdist is to prefer to FLIC, at least with the 

current available elements of choice. 



115 
 

 

 

 

About the obstacle representation, the choice was between object list representation and grid 

based representation, and the former has been chosen. The reason for this choice is that the 

supposed environment is an open field one, with mostly free space and while the possibility of 

encountering an obstacle is contemplated, it is assumed that it is a rare one, and that the changes 

done to the a priori knowledge of the environment are limited, in the sense that the vehicle can 

always return on the reference path after avoiding the obstacle; the obstacle are also supposed to 

have a very definite shape and considerable size, that constitute an easily identifiable obstacle, 

such as a cow, a parked vehicle, a hayball. 

Since the agricultural dataset was not available, a dataset which has similar layout in terms of 

identifiability of obstacles ecc. was a highway dataset present on the Matlab website. After 

performing some simulations, the capsule list representation was considered adequate for 

handling such an obstacle-sparse scenario. The performance of this kind of obstacle 

representation in the case of a cluttered environment is unknown, and should be the object of a 

followup work; an aspect to remind is that the convexity of the objects represented in an object 

list makes it easy to perform collision checking, using tools such as the SAT; the usage of grid 

based obstacle representation could be more computationally demanding. 

 

About the navigation: for the alternative trajectory representation, the choice made was to use 

fixed alternatives in the Frenet space; this tool allowed us to define a fixed set of optimal states 

and then to produce a set of alternative trajectories form the current reference path (whether it 

be the actual “global” reference path or already an alternative path that is being followed due to 

the presence of an obstacle in a previous time instant), while keeping the computational cost 

associated with the trajectories generation very low, as it is simply the cost of interpolating a 

number N of polynomial of the 4th or 5th order in the space of states in R6. Therefore, the solution 

for the trajectory to follow is to be searched in a finite number of N alternatives; this is opposed to 

the solution that is found in the case of MPC, as exposed in chapter 5. 

In MPC, the solution of the problem is obtained by minimizing the cost function J, which is the 

function of a function and therefore it is a harder problem to solve with respect to what used in 

this work. 

Moreover, the definition of the MPC cost function allows for taking into account more than just 

the terminal state deviation from a reference state, and allows for energy and point to point 

tracking considerations. The energy aspect is something that should be implemented in a future 

version of this work, while the point to point tracking cost should be implemented only in path-

sensitive applications, like plowing. The handling of a hayball, which is the mission scenario 

considered here, does not require point to point tracking. 

The solution provided by MPC is optimal, while the one found in our case has no guarantees of 

optimality, while being computationally much more efficient than MPC. 
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The solution provided by the code is a set of trajectories that are used for obstacle free navigation, 

and the vehicle model used is a very simplified one, as it is simply a cuboid. 

The only physical constraint considered in this work, apart from the speed and acceleration ones 

which are common for most AV applications, is the maximum curvature constraint. In a follow up 

work, a complete or at least simplified cinematic and dynamic model of the telescopic handler 

should be used. The Merlo telescopic handler can move in three different driving configurations: 

two steering wheels, four steering wheels and crab movement. For each of these driving 

configurations a cinematic model should be derived; for the two steering wheels configuration the 

classic bicycle model could be used, while for the other two configurations custom models should 

be derived.  

From the dynamics point of view, this work completely ignored all the dynamic aspects, and they 

should be inserted in the follow up work. The presence of both a cinematic and dynamic models, 

as well as the necessary modeling of the drivetrain and the actuators, suggest that a more model-

oriented approach should be adopted.  

MPC, in this regard, is a great candidate for it, as the kinematics and dynamics can be directly 

modeled into it, and the solution obtained could directly be the inputs to be provided to the 

actuators, whether they be eclectic motor torques, steering commands, ecc. 

 

Lastly, the occupation provided by the telescopic arm has been simulated using a simple approach, 

with the Lidar sensor considered to be on top of the machine. These simulations have highlighted 

two aspects. First, the safest navigation condition is to travel with the arm at the lowest possible 

position. In this case, the occlusion created by it is the smallest one and objects in the medium and 

long distance are steel in line of sight of the sensor. The case in which traveling needs to occur 

with the arm in a non - resting position brings us to the second point, which was already cited at 

the beginning of the conclusion: the usage of a single Lidar sensor is insufficient for the telescopic 

handler use cases. The arm constitutes an obstacle that blinds the Lidar of almost half of the 

plane, and does not allow for safe navigation, or even navigation at all, since turning on the right is 

impossible whilst the arm blocks the view. It seems therefore necessary to add perimetral sensors, 

perhaps Radar sensors, in order to fill the gap that can be left by occlusions. 
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7. APPENDIX 

7.1 FLIC IMPLEMENTATION 

7.1.1 main 
%questa versione implementa il clustering robusto con 1MC 

%questa versione implementa l'ignorare i clusters con un numero di elementi 

%minore di Nmin 

clear 

close all 

clc 

%% 0.  sensor specifications and minimum cluster number 

% tipo di sensore 

% velodyne HDL32E 

va = 1.33;      %[deg] vertical angular resolution, specified in datasheet 

ha = 0.2;       %[deg] horizontal angular resolution NOT FOUND PRECISE  IN 

DATASHEET 

cos_vert = 2*cos(deg2rad(va)); 

cos_horiz = 2*cos(deg2rad(ha)); 

cos_vert2 = 2*cos(deg2rad(2*va)); 

cos_horiz2 = 2*cos(deg2rad(2*ha)); 

Dh = 0.8*0.8; 

Dh2 = 4*Dh; 

Dv = 0.8*0.8; 

Dv2 = 4*Dv; 

%minimum cluster number 

Nmin=15; 

%% 1. load data 

fileName    = 'lidarData_ConstructionRoad.pcap'; 

deviceModel = 'HDL32E'; 

veloReader = velodyneFileReader(fileName, deviceModel); 

%% 1.bis create point cloud display 

% Specify limits of point cloud display 

xlimits = [-25 45]; % meters 

ylimits = [-25 45]; 

zlimits = [-20 20]; 

%Create a pcplayer 

lidarViewer = pcplayer(xlimits, ylimits, zlimits); 

%Customize player axes labels 

xlabel(lidarViewer.Axes, 'X (m)') 

ylabel(lidarViewer.Axes, 'Y (m)') 

zlabel(lidarViewer.Axes, 'Z (m)') 

%% 2. frame by frame clustering 

for frame = 1:200 

   %1. simula il sensore che restituisce la Range matrix 

   ptCloud = readFrame(veloReader); 

   x = ptCloud.Location(:,:,1); 

   y = ptCloud.Location(:,:,2); 

   z = ptCloud.Location(:,:,3); 

   Range = xyz2range(x,y,z); 

   %2. connection matrix and FLIC core 

   BCM = 

connection_matrix_1MC(Range,Dh,Dh2,Dv,Dv2,cos_horiz,cos_horiz2,cos_vert,cos_vert

2); 
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   CC = bwconncomp(BCM,4); 

   %3. downsampling 

   lista_pixel_finale = {}; 

   for idx = 1:CC.NumObjects 

       if(size(CC.PixelIdxList{idx},1)>Nmin) 

           %pixel --> ij 

           lista_pixel = CC.PixelIdxList{idx}; 

           [a,b] = ind2sub(size(BCM),lista_pixel); 

           %ij esteso --> ij downsampled 

           lista_ij_downsampled_1 = a(((rem(a,2) == 1) + (rem(b,2)))==2); 

           lista_ij_downsampled_2 = b(((rem(a,2) == 1) + (rem(b,2)))==2); 

           %ij downsampled --> ij finale 

           lista_ij_finale_1 = (lista_ij_downsampled_1+1)./2; 

           lista_ij_finale_2 = (lista_ij_downsampled_2+1)./2; 

           %ij finale --> pixel finale 

           lista_pixel_finale{idx} = 

sub2ind(size(Range),lista_ij_finale_1,lista_ij_finale_2); 

       end 

   end 

   %rimuovo le celle vuote(quelle che contenevano SOLO un pixel pari) 

   lista_pixel_full=lista_pixel_finale(~cellfun('isempty',lista_pixel_finale)); 

   %creating matrices for RGB (three different due to difficult pixel indexing) 

   %la dimensione cambia perché le letture lidar a volte cambiano di singoli 

pixel 

   R_r = zeros(32,1088); 

   image_r = zeros(32,1088,3); 

   G_r = R_r; 

   B_r = R_r; 

   

   for idx=1:size(lista_pixel_full,2) 

       R_r(lista_pixel_full{idx})  = rand; 

       G_r(lista_pixel_full{idx})  = rand; 

       B_r(lista_pixel_full{idx})  = rand; 

   end 

   image_r(:,:,1) = R_r; 

   image_r(:,:,2) = G_r; 

   image_r(:,:,3) = B_r; 

   figure(3) 

   imshow(image_r) 

   %uncomment per vedere sotto ai clusters anche il raw data 

   %imshow(Range,[]) 

   %im=image('CData',image_r); 

   %im.AlphaData=max(image_r,[],3); 

   

   %update point cloud player 

   view(lidarViewer, ptCloud) 

   pause() 

%      save('cluster_pixel','lista_pixel_full','Range'); 

%      return 

end 

7.1.2 connection matrix standard 

 
function [BCM,H,HE] = connection_matrix(R,Dh,Dv,ch,cv) 
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%CONNECTION_MATRIX  crea connection matrix di una matrice 

%   riceve in input una matrice mxn e ne restituisce una 2m-1x2n-1 con la 

%   connettivita in distanza Dh^2 (horizontal) e Dv^2 (vertical), 

%   per poter essere processata da un CCL algorithm 2d 

%   ch = 2*cosine horizontal angle between lidar cells 

%   cv = 2* cosine vertical angle between lidar cells 

%   importante la funzione riceve in input gia il cos moltiplicato x2 per 

%   evitare una moltiplicazione in piu 

%   importante: la distanza in input è quella al quadrato per evitare una 

%   operazione di radice 

[m,n] = size(R); 

BCM = 0; 

% creazione horizontal connectivity matrix 

H = zeros(m,n-1); 

for j = 1:m 

   for i = 1:n-1 

       if R(j,i)*R(j,i) + R(j,i+1)*R(j,i+1) - ch * R(j,i) * R(j,i+1) < Dh 

           H(j,i) = 1; 

       end 

   end 

end 

% creazione vertical connectivity matrix 

V = zeros(m-1,n); 

for j = 1:m-1 

   for i = 1:n 

       if R(j,i)*R(j,i) + R(j+1,i)*R(j+1,i) - cv * R(j,i) * R(j+1,i) < Dv 

           V(j,i) = 1; 

       end 

   end 

end 

% creazione range binary 

RB = ~isnan(R); 

%creazione range binary extended 

RBE = zeros(2*m-1,2*n-1); 

RBE(1:2:end,1:2:end) = RB; 

%creazione horizontal extended 

HE = zeros(2*m-1,2*n-1); 

HE(1:2:end,2:2:end) = H; 

%creazione vertical extended; 

VE = zeros(2*m-1,2*n-1); 

VE(2:2:end,1:2:end)= V; 

%creazione binary connection matrix 

BCM = RBE+HE+VE; 

end 

 

 

 

 

7.1.3 connection matrix with one Map Connection 
 

function [CM_1MC] = connection_matrix_1MC(R,Dh,Dh2,Dv,Dv2,ch,ch2,cv,cv2) 

%CONNECTION_MATRIX  crea connection matrix con 1 MC, sovrapponendo con un 
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%OR la conn matrix a un elemento di distanza con la connection matrix a 3 

%elementi di distanza 

%CAMBIAMENTI RISPETTO ALLE VERSIONI NON SPARSE E SPARSE: BISOGNA INSERIRE SIA 

%2*COS(alfa) che 2*COS(2*alfa) 

%E SIA D=(D)^2 CHE D = (2D)^2 

%   riceve in input una matrice mxn e ne restituisce una 2m-1x2n-1 con la 

%   connettivita in distanza Dh^2 (horizontal) e Dv^2 (vertical), 

%   per poter essere processata da un CCL algorithm 2d 

%   ch = 2*cosine horizontal angle between lidar cells 

%   cv = 2* cosine vertical angle between lidar cells 

%   importante la funzione riceve in input gia il cos moltiplicato x2 per 

%   evitare una moltiplicazione in piu 

%   importante: la distanza in input è quella al quadrato per evitare una 

%   operazione di radice 

[m,n] = size(R); 

%% 1. conn_mtx 1 elemento di distanza 

% creazione horizontal connectivity matrix 

H = zeros(m,n-1); 

for j = 1:m 

   for i = 1:n-1 

       if R(j,i)*R(j,i) + R(j,i+1)*R(j,i+1) - ch * R(j,i) * R(j,i+1) < Dh 

           H(j,i) = 1; 

       end 

   end 

end 

% creazione vertical connectivity matrix 

V = zeros(m-1,n); 

for j = 1:m-1 

   for i = 1:n 

       if R(j,i)*R(j,i) + R(j+1,i)*R(j+1,i) - cv * R(j,i) * R(j+1,i) < Dv 

           V(j,i) = 1; 

       end 

   end 

end 

% creazione range binary 

RB = ~isnan(R); 

%creazione range binary extended 

RBE = zeros(2*m-1,2*n-1); 

RBE(1:2:end,1:2:end) = RB; 

%creazione horizontal extended 

HE = zeros(2*m-1,2*n-1); 

HE(1:2:end,2:2:end) = H; 

%creazione vertical extended; 

VE = zeros(2*m-1,2*n-1); 

VE(2:2:end,1:2:end)= V; 

%creazione binary connection matrix 

BCM = RBE+HE+VE; 

%% 2. conn_mtx 3 elementi di distanza 

%extended sparse range 

ESR = zeros(2*m-1,2*n-1); 

EH = ESR; 

EV = ESR; 

ESR(1:4:end,1:4:end) = R(1:2:end,1:2:end); 

%binary extended sparse range 
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BESR = ESR; 

BESR(isnan(BESR))=0; 

BESR=(BESR>0); 

%extended horizontal connectivity matrix 

for i = 1:4:2*m-1 

   for j = 1:4:(2*n-1)-4 

       if ESR(i,j)*ESR(i,j) + ESR(i,j+4)*ESR(i,j+4) - ch2 * ESR(i,j) * 

ESR(i,j+4) < Dh2 

           EH(i,j+1:j+3) = 1; 

       end 

   end 

end 

%extended vertical connectivity matrix 

for i = 1:4:(2*m-1)-4 

   for j = 1:4:(2*n-1) 

       if ESR(i,j)*ESR(i,j) + ESR(i+4,j)*ESR(i+4,j) - cv2 * ESR(i,j) * 

ESR(i+4,j) < Dv2 

           EV(i+1:i+3,j)=1; 

       end 

   end 

end 

%sparse connettivity matrix 

SCM = BESR + EH + EV; 

%% 3. somma OR delle  due matrici 

CM_1MC = BCM|SCM; 

 

7.2 TELESCOPIC HANDLER OCCLUSION SIMULATION 
This function receives a pointCloud object as input and returns a pointCloud object in which the 

points belonging to the cone occluded by the arm of the telescopic handler in the current position 

have been removed. 

 
function pcout = simula_occlusione(currentLidar) 

   roi = [-20 50 -10 10 -2 2]; 

in = findPointsInROI(currentLidar,roi); 

currentLidar = select(currentLidar,in); 

z_lidar = 1.6; 

%% 1. define braccio as cuboid 

br_width = 0.8; 

br_length = 10; 

br_depth = br_width; 

braccio = cuboidModel([4,-br_width-0.1,2,br_length,br_width,br_depth,0,-10,0]); 

xlim([-10 10]) 

ylim([-10 10]) 

zlim([-1 10]) 

%% 2. get corner points 

vertices = getCornerPoints(braccio); 

%seleziono solo i vertici interni(perchè gli altri non occludono) 

med_y = mean(vertices(:,2)); 

vertices_int = vertices(vertices(:,2)>med_y,:); 

vertices_est = vertices(vertices(:,2)<med_y,:); 

%tra i vertici interni, seleziono vertici back e front, 1.5m è un buon 

discriminante perchè tutti i bracci 
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%al minimo sfilo sono più lunghi di 1.5m 

ver_int_back=vertices_int(vertices_int(:,1)<1.5,:); 

ver_int_front=vertices_int(vertices_int(:,1)>=1.5,:); 

%tra i vertici esterni, seleziono vertici back e front, 1.5m è un buon 

discriminante perchè tutti i bracci 

%al minimo sfilo sono più lunghi di 1.5m 

ver_est_back=vertices_est(vertices_est(:,1)<1.5,:); 

ver_est_front=vertices_est(vertices_est(:,1)>=1.5,:); 

%tra i vertici interni, seleziono i vertici up e down 

med_bu = mean(ver_int_back(:,3)); 

med_fu = mean(ver_int_front(:,3)); 

ver_int_up(1,:) = ver_int_back(ver_int_back(:,3)>=med_bu,:); 

ver_int_up(2,:) = ver_int_front(ver_int_front(:,3)>=med_fu,:); 

ver_est_up(1,:) = ver_est_back(ver_est_back(:,3)>=med_bu,:); 

ver_est_up(2,:) = ver_est_front(ver_est_front(:,3)>=med_fu,:); 

ver_int_down(1,:) = ver_int_back(ver_int_back(:,3)<med_bu,:); 

ver_int_down(2,:) = ver_int_front(ver_int_front(:,3)<med_fu,:); 

ver_est_down(1,:) = ver_est_back(ver_int_back(:,3)<med_bu,:); 

ver_est_down(2,:) = ver_est_front(ver_int_front(:,3)<med_fu,:); 

%% 3. define planes between origin and vertices 

%front plane 

[af,bf,cf,df]=Plane_3Points([0,0,z_lidar]',ver_int_front(1,:)',ver_int_front(2,:

)'); 

[xf,zf] = meshgrid(0:0.1:45,0:0.01:3); 

yf = 1/bf.*(-af.*xf-cf.*zf-df); 

%back plane 

[ab,bb,cb,db]=Plane_3Points([0,0,z_lidar]',ver_int_back(1,:)',ver_int_back(2,:)'

); 

[xb,zb] = meshgrid(0:-0.1:-10,0:0.01:3); 

yb = 1/bb.*(-ab.*xb-cb.*zb-db); 

%top plane 

[at,bt,ct,dt]=Plane_3Points([0,0,z_lidar],ver_int_up(1,:),ver_int_up(2,:)); 

[xt,yt] = meshgrid(-5:0.1:40,-10:0.1:0); 

zt = 1/ct.*(-at.*xt-bt.*yt-dt); 

%% 4. remove points from point cloud 

xpc = currentLidar.Location(:,1); 

ypc = currentLidar.Location(:,2); 

zpc = currentLidar.Location(:,3); 

%removing right of front plane 

for i = 1:size(xpc,1) 

   if(ypc(i)<0&&xpc(i)>0) 

       if(ypc(i)< 1/bf.*(-af.*xpc(i)-cf.*zpc(i)-df)) 

           xpc(i) = NaN; 

           ypc(i) = NaN; 

           zpc(i) = NaN; 

       end 

   end 

end 

%removing right of back plane 

for i = 1:size(xpc,1) 

   if(ypc(i)<0&&xpc(i)<0) 

       if(ypc(i)< 1/bb.*(-ab.*xpc(i)-cb.*zpc(i)-db)) 

           xpc(i) = NaN; 

           ypc(i) = NaN; 
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           zpc(i) = NaN; 

       end 

   end 

end 

%% 5. visualize point cloud 

hold off 

outpc = pointCloud([xpc,ypc,zpc]); 

pcshow(outpc); 

plot(braccio),hold on 

surf(xf,yf,zf,'FaceColor','magenta','FaceAlpha',0.3,'EdgeColor','none'); 

surf(xb,yb,zb,'FaceColor','magenta','FaceAlpha',0.3,'EdgeColor','none'); 

hold on 

end 

 

7.3 LOCAL NAVIGATION 
This code performs ground removal using plane fitting, clustering using Matlab’s pcsegdist based 

on DBSCAN, L-shape fitting using Matlab’s cuboid fitting based on “Xiao Zhang et. al., Efficient L-

Shape Fitting for Vehicle Detection Using Laser Scanners, 2017” and replanning as explained in 

Chapter 5. No GPS data is considered. 

 
clear 

close all 

clc 

% Set random seed to generate reproducible results. 

S = rng(2018); 

mappa2d=1; 

%% 0A.parameters and reference path 

% Default car properties (in this version, these are the minimum obstacle 

properties) 

carLen   = 4.7; % in meters 

carWidth = 1.8; % in meters 

rearAxleRatio = 0.25; 

% Maximum obstacle properties 

maxLen = 20; %in meters 

%replanning parameter 

replanRate = 2; % Hz 

% Define the time intervals between current and planned states. 

maxHorizon = 7; %in seconds 

timeHorizons = 1:maxHorizon; % in seconds 

% Define cost parameters. 

latDevWeight    =  1; 

timeWeight      = -1; 

speedWeight     =  1; 

% Reject trajectories that violate the following constraints. 

maxAcceleration =  10; % in meters/second^2 

maxCurvature    =   2; % 1/meters, or radians/meter 

minVelocity     =   0; % in meters/second 

% Desired velocity setpoint, used by the cruise control behavior and when 

% evaluating the cost of trajectories. 

speedLimit = 2; % in meters/second -> circa 7.2 kmh 

%create path based on waypoints 

waypoints = [0 0; ... 
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   50 -30]; 

refPath = referencePathFrenet(waypoints); 

connector = trajectoryGeneratorFrenet(refPath); 

figure(5) 

show(refPath); 

hold off 

% Synchronize the simulator's update rate to match the trajectory generator's 

% discretization interval. 

sampleTime = connector.TimeResolution; % in seconds 

%% 0B.initialization of caplist 

%create capList for trajectory collision detection 

capList = dynamicCapsuleList; 

capList.MaxNumSteps = maxHorizon*10+1; 

numSteps = capList.MaxNumSteps; 

%create vehicle capsule 

egoID = 1; 

[egoID, egoGeom] = egoGeometry(capList,egoID); 

egoGeom.Geometry.Length = carLen; % in meters 

egoGeom.Geometry.Radius = carWidth/2; % in meters 

egoGeom.Geometry.FixedTransform(1,end) = -carLen*rearAxleRatio; % in meters 

updateEgoGeometry(capList,egoID,egoGeom); 

%here you can choose maximum number of actors to keep track of --> 

%considerarli con le dimensioni fisse è una forma di tracking 

numActors = 10; 

actorID = (1:numActors)'; 

actorGeom = repelem(egoGeom,numActors,1); 

updateObstacleGeometry(capList,actorID,actorGeom); 

models = cell(1,numActors); 

%% 0C.Initialization of point cloud viewer 

hCuboid = figure; 

panel = uipanel('Parent',hCuboid,'BackgroundColor',[0 0 0]); 

ax = axes('Parent',panel,'Color',[0 0 0]); 

title('Fitting Bounding Boxes') 

% Specify limits of point cloud display 

xlimits = [-25 45]; % meters 

ylimits = [-25 45]; 

zlimits = [-2 6]; 

colorLabels = [... 

   0      0.4470 0.7410; ... % Unlabeled points, specified as [R,G,B] 

   0.4660 0.6740 0.1880; ... % Ground points 

   0.9290 0.6940 0.1250; ... % Ego points 

   0.6350 0.0780 0.1840];    % Obstacle points 

% Define indices for each label 

colors.Unlabeled = 1; 

colors.Ground    = 2; 

colors.Ego       = 3; 

colors.Obstacle  = 4; 

%linehandles serve per visualizzare le varie traiettorie 

lineHandles=[]; 

%this pcplayer is used if you want to see segmented ground points 

% % Create a pcplayer 

% lidarViewer = pcplayer(xlimits, ylimits, zlimits); 

% 

% % Customize player axes labels 
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% xlabel(lidarViewer.Axes, 'X (m)') 

% ylabel(lidarViewer.Axes, 'Y (m)') 

% zlabel(lidarViewer.Axes, 'Z (m)') 

% Set the colormap 

%colormap(lidarViewer.Axes, colorLabels) 

%frame counter 

frame=0; 

%% 0D.load data 

%if ~exist('lidarData','var') 

   dataURL = 

'https://ssd.mathworks.com/supportfiles/lidar/data/TrackVehiclesUsingLidarExampl

eData.zip'; 

   datasetFolder = fullfile(tempdir,'LidarExampleDataset'); 

   %if ~exist(datasetFolder,'dir') 

       unzip(dataURL,datasetFolder); 

   %end 

   % Specify initial and final time for simulation. 

   initTime = 0; 

   finalTime = 35; 

   [lidarData, imageData] = 

loadLidarAndImageData(datasetFolder,initTime,finalTime); 

%end 

%%Looping though recorded data 

for j=1:size(lidarData,1) 

   currentLidar = lidarData{j}; 

   egoState = zeros(1,6);  %no gps considered, only local 

   %clear obstacle detections 

   %% 1.generate trajectories 

   %generate reference terminal state 

   [termStatesref,timesSimple] = generate_terminal_simple(... 

       speedLimit,0, timeHorizons); 

   %generate alternate trajectories (1 for sx, -1 for dx) 

   [termStatesSx,timesSimple] = generate_terminal_simple(... 

       speedLimit,1, timeHorizons); 

   %generate alternate trajectories (1 for sx, -1 for dx) 

   [termStatesDx,timesSimple] = generate_terminal_simple(... 

       speedLimit,-1, timeHorizons); 

   %combine all terminal states and times 

   allTS = [termStatesref;termStatesSx;termStatesDx]; 

   allDT = [timesSimple;timesSimple;timesSimple]; 

   numTS = [numel(allDT)]; 

   %Evaluate cost of all terminal states. 

   costTS = evaluate_terminal_costs(allTS,allDT,speedLimit,... 

       speedWeight, timeWeight); 

   % Generate trajectories. 

   egoFrenetState = global2frenet(refPath,egoState); 

   [~,globalTraj] = connect(connector,egoFrenetState,allTS,allDT); 

   return 

   % Eliminate trajectories that violate constraints. 

   isValid = 

evaluateTrajectory(globalTraj,maxAcceleration,maxCurvature,minVelocity); 

   %% 2.separate ground points from obstacle points 

   % 2.1 select data in region of interest 

   roi = [-10 40 -6 6 -2 1]; 
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   in = findPointsInROI(currentLidar,roi); 

   ptCloudIn = select(currentLidar,in); 

   % 2.2 remove ego vehicle points 

   vehicledim = [-1 3 -1 1 -0.1 1.5]; 

   ptCloudIn = remove_ego_points(ptCloudIn,vehicledim); 

   % 2.3 remove ground plane 

   maxDistance = 0.1; 

   %needed >0.3 for this specific dataset --> 

   % other addiotional constraints on ground segmentation and/or point cloud 

   % segmentation may be needed 

   referenceVector = [0 0 1]; 

   [~,inliers,outliers] = pcfitplane(ptCloudIn,maxDistance,referenceVector); 

   ptCloudGround = select(ptCloudIn,inliers,'OutputSize','full'); 

   ptCloudWithoutGround = select(ptCloudIn,outliers,'OutputSize','full'); 

   scanSize = size(ptCloudIn.Location); 

   scanSize = scanSize(1:2); 

   % Initialize colormap 

   colormapValues = ones(scanSize, 'like', ptCloudIn.Location) * 

colors.Unlabeled; 

   colormapValues(inliers,:) = 

repmat(colorLabels(colors.Ground,:),size(inliers,1),1); 

   colormapValues(outliers,:) = 

repmat(colorLabels(colors.Obstacle,:),size(outliers,1),1); 

   % Update view for ground points visualization 

   % view(lidarViewer, ptCloudIn.Location, colormapValues),hold on 

   %% 3. cluster points on euclidean distance, dividing left and right 

   distThreshold = 0.3;  %minimum distance between two different clusters 

   %splitting point cloud in 2 per ridurre i problemi delle bounding boxes 

   %giganti 

   ptCloud1 = 

select(ptCloudWithoutGround,ptCloudWithoutGround.Location(:,2)>0,'OutputSize','f

ull'); 

   ptCloud2 = 

select(ptCloudWithoutGround,ptCloudWithoutGround.Location(:,2)<0,'OutputSize','f

ull'); 

   [labels1,numClusters1] = 

pcsegdist(ptCloud1,distThreshold,'NumClusterPoints',50); 

   [labels2,numClusters2] = 

pcsegdist(ptCloud2,distThreshold,'NumClusterPoints',50); 

   %perchè  per ogni chiamata di pcsegdist i labels vengono resettati, facendo 

così non si fa confusione 

   numClusters = numClusters1 + numClusters2; 

   labelColorIndex1 = labels1; 

   labelColorIndex2 = labels2; 

   pcshow(ptCloudIn.Location,labelColorIndex1,'Parent',ax); 

   pcshow(ptCloudIn.Location,labelColorIndex2,'Parent',ax); 

   %% 4. fit cuboids 

   for i = 1:numClusters1 

       idx = find(labels1 == i); 

       models{i} = pcfitcuboid(ptCloudWithoutGround,idx); 

           points1 = getCornerPoints(models{i}); 

       plot(models{i}) 

   end 

   for i = numClusters1+1:numClusters 
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       idx = find(labels2 == i-numClusters1); 

       models{i} = pcfitcuboid(ptCloudWithoutGround,idx); 

       points2 = getCornerPoints(models{i}); 

       

       plot(models{i}) 

   end 

   % plot ego vehicle model 

   drawcuboid('Position',[-carLen*rearAxleRatio,-

carWidth/2,0,carLen,carWidth,2],'Color','green'); 

   for i = numClusters+1:numActors 

       models{i} = []; 

   end 

   %% 5. trajectory replanning based on detections --> 

   % Update the collision checker with the current position 

   % of all actors in the scene. 

   for i = 1:numActors 

       %states needed: x,y,yaw --> model parameters 1,2,9 

       if i<=numClusters 

           obstacleLength=models{i}.Parameters(4); 

           obstacleWidth=models{i}.Parameters(5); 

           yaw = models{i}.Parameters(9); 

           if (yaw > 30||yaw<-30) 

               temp = obstacleLength; 

               obstacleLength = obstacleWidth; 

               obstacleWidth = temp*1.4; 

               yaw = 0;                                %safety condition 

           end 

           actorGeom(i).Geometry.Width = max(obstacleWidth,carWidth);  %minimum 

cluster condition 

           actorGeom(i).Geometry.Length = max(carLen,obstacleLength); 

           yaw = deg2rad(yaw); 

           actorPoses(i).States = [models{i}.Parameters(1)-

cos(yaw)*obstacleLength/2+obstacleWidth/2,... 

               models{i}.Parameters(2)-sin(yaw)*obstacleLength/2,yaw]; 

       else 

           actorPoses(i).States = [-10,-10,0]; 

           actorGeom(i).Geometry.Length = 1; % in meters 

       end 

   end 

   updateObstacleGeometry(capList,actorID,actorGeom) 

   updateObstaclePose(capList,actorID,actorPoses); 

   % Determine evaluation order. 

   [cost, idx] = sort(costTS); 

   optimalTrajectory = []; 

   trajectoryEvaluation = nan(numel(isValid),1); 

   for i = 1:numel(idx) 

       if isValid(idx(i)) 

           % Update capsule list with the ego object's candidate trajectory. 

           egoPoses.States = globalTraj(idx(i)).Trajectory(:,1:3); 

           updateEgoPose(capList,egoID,egoPoses); 

           %UNCOMMENT QUA PER VEDERE LA CAPLIST DALL'ALTO, DURANTE IL 

           %REPLANNING 

           if (mappa2d) 

               figure(2) 
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               show(capList,"TimeStep",[1:numSteps]) 

           end 

           % Check for collisions. 

           isColliding = checkCollision(capList); 

           if all(~isColliding) 

               % If no collisions are found, this is the optimal. 

               % trajectory. 

               trajectoryEvaluation(idx(i)) = 1; 

               optimalTrajectory = globalTraj(idx(i)).Trajectory; 

               break; 

           else 

               trajectoryEvaluation(idx(i)) = 0; 

           end 

       end 

   end 

   for i = 1:numClusters 

       plot(models{i}) 

   end 

   % plot ego vehicle model 

   drawcuboid('Position',[-carLen*rearAxleRatio,-

carWidth/2,0,carLen,carWidth,2],'Color','green'); 

   for i = numClusters+1:numActors 

       models{i} = []; 

   end 

   % Display the sampled trajectories. 

   lineHandles = []; 

   lineHandles = 

exampleHelperVisualizeScene(lineHandles,globalTraj,isValid,trajectoryEvaluation)

; 

   pause 

end 

 

 


