
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Business Continuity in Kubernetes
Multi-Cluster Environments

Supervisors

Prof. Fulvio RISSO

Candidate

Francesco TORTA

Academic Year 2022-2023

Summary

Over the past two decades, cloud computing has become a disruptive technology
that has revolutionized the way businesses and individuals access and use computing
resources. The growth of cloud computing has been driven by the increasing demand
for low-cost, scalable, and easily accessible computing resources. Cloud-native
applications are software applications that are specifically designed to run on a cloud
computing infrastructure. They are built using cloud computing principles and
technologies such as microservices architecture, containerization, and orchestration.

"Liquid computing" is a term used to describe the ability to dynamically allocate
resources as needed, allowing for quick and easy scaling up or down. This "liquid"
nature of cloud computing allows organizations to become more agile and respond
quickly to changes in their business needs. Liqo is an open source project started
at Politecnico di Torino that supports this concept and enables the creation of
multi-cluster topologies within Kubernetes. Multiple independent clusters can be
interconnected to share resources and workloads, while being managed as a single
entity.

The goal of this thesis is to investigate how to ensure business continuity in a
multi-cluster environment powered by Liqo, enabling an organization to maintain
its critical business functions and processes in the event of a disruption. Given
the increased complexity of a multi-cluster topology, various failure scenarios are
analyzed, taking into account all key elements of the architecture of a Kubernetes
cluster. The thesis presents the design and implementation of the ShadowEnd-
pointSlice, an abstraction that allows to transparently guarantee service continuity
even if some parts of the multi-cluster infrastructure are out of service. It also
presents the implementation of a custom controller that ensures that the expected
workload is running on the "big" cluster when some worker nodes are not functioning
properly. Lastly, it is described a possible disaster recovery solution that leverages
the potential of Liqo to easily use peered clusters as failover sites.

Part of the work of this thesis has been integrated into the Liqo project and is
available on the official GitHub repository.

ii

Table of Contents

List of Figures vii

Acronyms x

1 Introduction 1
1.1 Introducing Liqo . 1
1.2 Goal of the thesis . 2
1.3 Structure of the work . 2

2 Kubernetes 4
2.1 Kubernetes: a bit of history . 4
2.2 Evolution of workloads management 5
2.3 Container orchestrators . 6
2.4 Kubernetes architecture . 8

2.4.1 Control plane components 8
2.4.2 Node components . 10

2.5 Kubernetes objects . 11
2.5.1 Labels and Selectors . 12
2.5.2 Namespace . 12
2.5.3 Pod . 13
2.5.4 ReplicaSet . 13
2.5.5 Deployment . 13
2.5.6 DaemonSet . 14
2.5.7 Service . 15
2.5.8 EndpointSlice . 16

2.6 Kubernetes networking architecture 17
2.6.1 Container communication within same pod 18
2.6.2 Pod communication within the same node 18
2.6.3 Pod communication on different nodes 19
2.6.4 CNI (Container Network Interface) 19
2.6.5 Pod to service networking 20

iv

2.7 Kubebuilder . 21

3 Liqo 22
3.1 An overview of Liqo . 22
3.2 Liqo Peering . 22
3.3 Liqo Reflection . 23
3.4 Network Fabric . 24

3.4.1 Cross-cluster VPN tunnels 24
3.4.2 In-cluster overlay network 25

3.5 Liqo CRDs . 25
3.5.1 NetworkConfig CR . 25
3.5.2 TunnelEndpoint CR . 26
3.5.3 ForeignCluster CR . 26
3.5.4 ShadowPod CR . 26

3.6 Liqo components . 26
3.6.1 CRD Replicator . 26
3.6.2 Virtual Kubelet . 27
3.6.3 IPAM component . 27
3.6.4 Network manager . 27
3.6.5 Liqo Gateway . 28

4 Business Continuity in Kubernetes 30
4.1 Service Continuity . 31

4.1.1 Pods and Nodes lifecycles 32
4.1.2 Service Mesh solutions . 35

4.2 Disaster Recovery . 35

5 Service Continuity with Liqo 39
5.1 Multi-cluster setup with Liqo . 39

5.1.1 Application use cases and policies 41
5.1.2 High Availability (HA) Liqo components 41

5.2 Failure scenarios . 42
5.2.1 Local worker node failure . 42
5.2.2 Remote worker node failure 43
5.2.3 Local cluster failure . 44
5.2.4 Remote cluster failure . 47
5.2.5 Local control plane failure 49
5.2.6 Remote control plane failure 50
5.2.7 Inter-cluster network failure 51

5.3 NodeFailure controller: resiliency to remote worker nodes failures . 51
5.3.1 NodeFailure controller implementation 53

v

5.3.2 The algorithm . 55
5.3.3 Drawbacks . 55

5.4 Shadow EndpointSlices: resiliency to local cluster failures 56
5.4.1 The ShadowEndpointSlice CR 57
5.4.2 ShadowEndpointSlice controller implementation 59
5.4.3 Limitations . 61
5.4.4 Performance evaluation . 62

6 Disaster Recovery with Liqo 65
6.1 Disaster Recovery with Percona Operator 65
6.2 Using Liqo to automate and simplify the creation of failover sites . 69

7 Conclusions 72

Bibliography 73

vi

List of Figures

2.1 Evolution of applications deployments 6
2.2 Container orchestrators market share 7
2.3 Kubernetes architecture . 8
2.4 Kubernetes master and worker nodes 11
2.5 Kubernetes pods . 13
2.6 Kubernetes Services . 17
2.7 Pod to pod communication within same node 19
2.8 Pod to pod communication across different nodes 20
2.9 Container network interface . 20

3.1 Network Fabric . 24
3.2 CRD Replicator . 28

4.1 High availability control plane with stacked etcd 32
4.2 Node failure diagram . 34
4.3 RTO and RPO metrics . 36
4.4 Disaster recovery: traditional vs cloud-era approach 37

5.1 2-cluster unidirectional deployment 40
5.2 Communication patterns between three microservices spread across

two different clusters through Liqo 40
5.3 Schematic representation of the pod offloading workflow 44
5.4 Graphical representation of the lifecycle of pods during a worker

node failure . 45
5.5 Graphical representation of the EndpointSlices reflection 46
5.6 Graphical representation of failed requests in the event of a local

cluster failure . 48
5.7 Graphical representation of a remote cluster failure 50
5.8 In-Band peering . 52
5.9 Out-Of-Band peering . 52

vii

5.10 Graphical representation of the lifecycle of pods during a worker
node failure, with the NodeFailure controller enabled 54

5.11 EndpointSlice enforcement race condition between two clusters . . . 57
5.12 Graphical representation of the EndpointSlices reflection with the

added ShadowEndpointSlice controller 60
5.13 Graphical representation of the EndpointSlices reflection with the

added ShadowEndpointSlice controller, during a local cluster failure 61
5.14 Exposition benchmark setup . 63
5.15 Liqo exposition benchmark: performance comparison with and with-

out ShadowEndpointSlices . 64

6.1 Cross-site Replication with Percona Operator 66
6.2 Cross-site Replication Mesh . 67
6.3 Configuration of quorum votes for each replica set member 68
6.4 Failover to DR site . 69
6.5 Cross-site Replication with Percona Operator and Liqo 71

viii

Acronyms

K8s
Kubernetes

CRD
Custom Resource Definition

CR
Custom Resource

API
Application Programming Interface

REST
Representational State Transfer

VK
Virtual Kubelet

HA
High Availability

x

Chapter 1

Introduction

In recent decades, cloud-native technologies have become increasingly popular
to handle the high volume of requests and computation that large organizations
handle on a daily basis to serve millions of users. This has led to a paradigm shift
in the way enterprises and individuals approach IT infrastructure, making it more
flexible, scalable and cost-effective. Cloud computing has become a ubiquitous
technology, enabling a wide range of services and applications, from data storage
and processing to machine learning and artificial intelligence. Its flexibility and
scalability have made it a go-to solution for businesses of all sizes, from startups
to large enterprises. Containerization techniques and container orchestrators have
made it even easier to deploy these workloads on a cluster. As a result, clusters are
being used in various areas of the software industry, and there is a growing need to
connect them together to take full advantage of their capabilities.

Kubernetes, one of the most widely used container orchestration platforms, has
played a significant role in the cloud computing industry. Its user-friendly features
and powerful declarative API enable developers to handle the dynamic nature of
modern workloads with ease. Its open source nature and developer-friendly tools
have contributed to its popularity and role in the growth of the cloud community.

1.1 Introducing Liqo
The concept of "liquid computing" refers to the dynamic allocation of computing
resources based on the needs of the user. This approach has become essential for
companies that want to quickly adapt to changes in their operations. Liqo, an
open source project launched at Politecnico di Torino, exploits this idea to enable
the creation of dynamic multi-cluster topologies within Kubernetes.

Liqo’s approach allows multiple independent clusters to be connected together
so that they can share resources and workloads while being managed as a single

1

Introduction

entity. By extending the Kubernetes API, Liqo allows different clusters to be joined
together to form a multi-cluster network of computing nodes. This is achieved by
automatically establishing a peer-to-peer relationship that enables the sharing of
resources and services between independent and heterogeneous clusters.

One of the key benefits of Liqo is its ability to seamlessly offload workloads
to remote peers without requiring any changes to Kubernetes or the applications.
This makes multi-cluster computing native and transparent, as remote clusters
are considered nodes added to the other available nodes in the local cluster. To
facilitate communication between remote pods, Liqo provides a network fabric that
enables multi-cluster pod-to-pod connectivity.

By providing a unified, scalable and flexible computing environment, Liqo has
the potential to change the way enterprises approach their IT infrastructure.

1.2 Goal of the thesis
The goal of the thesis is to investigate how to ensure business continuity in a multi-
cluster environment so that an enterprise can maintain its critical business functions
and processes in the event of a disruption. While multi-cluster topologies bring
many benefits and new capabilities, they also increase infrastructure complexity.
This work analyzes how these limitations can be overcome using Liqo. The business
continuity analysis is divided into two main categories.

• Service Continuity: several failure scenarios are analyzed, taking into
account all key elements of a Kubernetes cluster’s architecture. Different
architectural changes to Liqo are proposed to make it more robust in all these
scenarios.

• Disaster Recovery: it is presented a POC that exploits the potential of
Liqo to easily use peered clusters as failover sites for application data backup
and recovery.

1.3 Structure of the work
The thesis will unfold with the following structure:

1. Chapter 2 provides an overview of Kubernetes, the technology that enables
the orchestration and deployment of cloud-native applications.

2. Chapter 3 provides an overview of Liqo and its key concepts and components.

3. Chapter 4 introduces the concept of business continuity, its problems and
possible solutions in a Kubernetes environment.

2

Introduction

4. Chapter 5 provides a description of the architectural changes to Liqo and its
implementation details to provide service continuity in a Kubernetes multi-
cluster environment.

5. Chapter 6 provides a disaster recovery strategy that leverages a multi-cluster
environment powered by Liqo.

6. Chapter 7 concludes the presented work and summarizes the obtained results.

3

Chapter 2

Kubernetes

This chapter provides an overview of the Kubernetes architecture, including its
history and evolution over time. This summary forms the basis for many of the
concepts presented later. Kubernetes (often abbreviated to K8s) is a large frame-
work, and a thorough examination would require much more time and discussion;
therefore, only a description of the core concepts and components is provided here.
For more information, see the official documentation [1].

2.1 Kubernetes: a bit of history
Around 2004, Google created the Borg [2] system, a small project that initially
had fewer than 5 people working on it. The project was developed in collaboration
with a new version of Google’s search engine. Borg was a large-scale internal cluster
management system that "ran hundreds of thousands of jobs, from many thousands
of different applications, across many clusters, each with up to tens of thousands
of machines" [2].

In 2013 Google announced Omega [3], a flexible and scalable scheduler for large
compute clusters. Omega provided a “parallel scheduler architecture built around
shared state, using lock-free optimistic concurrency control, in order to achieve
both implementation extensibility and performance scalability”.

In mid-2014, Google presented Kubernetes as an open source version of Borg.
Kubernetes was developed by Joe Beda, Brendan Burns, and Craig McLuckie and
other engineers at Google. The development and design of Kubernetes were heavily
influenced by Borg, and many of the early contributors had previously worked on
Borg. The original Borg project was written in C++, while the Go language was
chosen for Kubernetes.

In 2015, Kubernetes v1.0 was released. At the same time as the release, Google
partnered with the Linux Foundation to form the Cloud Native Computing

4

Kubernetes

Foundation (CNCF) [4]. Since then, Kubernetes has grown significantly, achieving
the CNCF graduated status and being adopted by almost all major enterprises.
Today, it is the de facto standard for container orchestration [5, 6].

2.2 Evolution of workloads management
Traditional deployment era In the traditional deployment era, organizations
ran applications on physical servers. There was no way to define application
constraints to limit resource usage, and some applications would end up taking
most of the resources available, making the remaining applications starve. This
led system managers to deploy one server per application, increasing costs and
maintenance work. At this point, the community rediscovered the abandoned
concept of virtualization.

Virtualized deployment era In the virtualized deployment era, developers
could run multiple virtual machines (VMs) on a single physical server and en-
sure that applications did not interfere with each other by running one VM per
application. Virtualization allows defining resource usage constraints for each
VM and ensures that software running on a VM is isolated from the rest of the
system and other VMs, resulting in a much more stable and secure environment,
as applications cannot interfere with each other and cannot freely access private
application data. It also enables better scalability, as application instances can
be easily scaled up or down by creating or deleting VMs as needed. Each VM
contains a complete operating system and can be tweaked to include the properly
versioned dependencies required by the running application: this creates sealed
compartments that are easy to manage, maintain, and troubleshoot. Overall, fewer
physical servers are used, costs are lower, and companies can get the most out of
their available servers, preventing them from being underused.

Containerized deployment era The next step in the evolution of workloads
deployment came with the advent of containerization. Containers work similarly
to VMs, but with less strict isolation properties, allowing different applications to
share the same operating system. For this reason, they are considered lightweight.
Just like VMs, containers have their own file system, share of CPU, memory, process
space and more. Containers are decoupled from the underlying infrastructure: this
makes them portable across clouds and OS distributions. What makes them so
popular is the set of extra benefits they offer, such as:

• Agile application creation and deployment, as container images are very easy
to create compared to VM images.

5

Kubernetes

• Continuous development, integration and deployment, thanks to reliable and
frequent container image build and deployment.

• Application health checks and observability.

• Cloud and OS distribution portability.

• Application-centric management that raises the abstraction level to simply
focus on application execution.

• Resource utilization that yields high efficiency and density.

In parallel with technological advancements, there has been an improvement
in workload management methods: from handling VMs as single entities, we
have moved to a "cattle" model, where VMs are treated in a more general way
(although their management is still strongly coupled to their life), to then go
further and achieve a decoupled approach, as used by Kubernetes: a declarative
way that expresses general intentions that are taken by the system and applied to
all interested resources, without having to deal with the individual instances. This
leads to a more detached view where resources are seen as commodities that can
be created, destroyed, and replaced as needed.

Figure 2.1: Evolution of applications deployments

2.3 Container orchestrators
When hundreds or thousands of containers are created, the need of a way to
manage them becomes essential; container orchestrators serve this purpose. A
container orchestrator is a system designed to easily manage complex containerized
deployments across multiple machines from a central location. As shown in Figure

6

Kubernetes

2.2, Kubernetes is by far the most commonly used container orchestrator. The
following is a description of such system.

Figure 2.2: Container orchestrators market share [7]

Kubernetes provides many services, including:
• Service discovery and load balancing A container can be exposed using

the DNS name or using its own IP address. If traffic to a container is high, a
load balancer able to distribute the network traffic is provided.

• Storage orchestration A storage system can be automatically mounted,
such as local storages, public cloud providers, and more.

• Automated rollouts and rollbacks The desired state for the deployed
containers can be described, and the actual state can be changed to the desired
state at a controlled rate. For example, it is possible to automate the creation
of new containers of a deployment, remove existing containers and adopt all
their resources to the new container.

• Automatic bin packing Kubernetes is provided with a cluster of nodes that
can be used to run containerized tasks. It is possible to set how much CPU
and memory (RAM) each container needs, and automatically the containers
are sized to fit in the nodes to make the best use of the resources.

• Secret and configuration management It is possible to store and manage
sensitive information in Kubernetes, such as passwords, OAuth tokens, and
SSH keys. It is possible to deploy and update secrets and application configu-
ration without rebuilding the container images, and without exposing secrets
in the stack configuration.

7

Kubernetes

2.4 Kubernetes architecture
When Kubernetes is deployed, a cluster is created. A Kubernetes cluster consists
of a set of machines, called nodes, that run containerized applications. At least
one of the nodes hosts the control plane and is called master. Its role is to manage
the cluster and expose an interface to the user. The worker node(s) host the pods,
which are the components of the application. The master manages the worker
nodes and the pods in the cluster. In production environments, the control plane
typically runs on multiple machines and a cluster runs on multiple nodes, providing
fault tolerance and high availability.

Figure 2.3 shows the diagram of a Kubernetes cluster with all components linked
together.

Figure 2.3: Kubernetes architecture

2.4.1 Control plane components
The control plane’s components make global decisions about the cluster (for example,
scheduling), as well as detecting and responding to cluster events (for example,
starting up a new pod). Although they can be run on any machine in the cluster,
for simplicity, they are typically executed all together on the same machine, which
does not run user containers.

API server

The API server is the component of the Kubernetes control plane that exposes the
Kubernetes REST API, and constitutes the front end for the Kubernetes control

8

Kubernetes

plane. Its function is to intercept REST request, validate and process them. The
main implementation of a Kubernetes API server is kube-apiserver. It is designed
to scale horizontally, which means it scales by deploying more instances. Moreover,
it can be easily redounded to run several instances of it and balance traffic among
them.

etcd

etcd is a distributed, consistent and highly-available key value store used as
Kubernetes’ backing store for all cluster data. It is based on the Raft consensus
algorithm [8], which allows different machines to work as a coherent group and
survive to the breakdown of one of its members. etcd can be stacked in the master
node or external, installed on dedicated host. Only the API server can communicate
with it.

Scheduler

The scheduler is the control plane component responsible of assigning the pods to
the nodes. The one provided by Kubernetes is called kube-scheduler, but it can
be customized by adding new schedulers and indicating in the pods to use them.
kube-scheduler watches for newly created pods not assigned to a node yet, and
selects one for them to run on. To make its decisions, it considers singular and
collective resource requirements, hardware/software/policy constraints, affinity and
anti-affinity specifications, data locality, inter-workload interference and deadlines.

kube-controller-manager

Component that runs controller processes. It continuously compares the desired
state of the cluster (given by the objects specifications) with the current one
(read from etcd). Logically, each controller is a separate process, but to reduce
complexity, they are all compiled into a single binary and run in a single process.

These controllers include:

• Node Controller: responsible for noticing and reacting when nodes go down.

• Replication Controller: in charge of maintaining the correct number of pods
for every replica object in the system.

• Endpoint Controller: populates Endpoint objects (which link Services and
Pods) [deprecated and substituted by the EndpointSlice API].

• EndpointSlice Controller: populates EndpointSlice objects (which link Services
and Pods).

9

Kubernetes

• Service Account & Token Controllers: create default accounts and API access
tokens for new namespaces.

cloud-controller-manager

This component runs controllers that interact with the underlying cloud providers.
The cloud-controller-manager binary is a beta feature introduced in Kubernetes
1.6. It only runs cloud-provider-specific controller loops. You can disable these
controller loops in the kube-controller-manager.

cloud-controller-manager allows the cloud vendor’s code and the Kubernetes
code to evolve independently of each other. In prior releases, the core Kubernetes
code was dependent upon cloud-provider-specific code for functionality. In future
releases, code specific to cloud vendors should be maintained by the cloud vendor
themselves, and linked to cloud-controller-manager while running Kubernetes.
Some examples of controllers with cloud provider dependencies are:

• Node Controller: checks the cloud provider to update or delete Kubernetes
nodes using cloud APIs.

• Route Controller: responsible for setting up network routes in the cloud
infrastructure.

• Service Controller: for creating, updating and deleting cloud provider load
balancers.

• Volume Controller: creates, attaches, and mounts volumes, interacting with
the cloud provider to orchestrate them.

2.4.2 Node components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

Container runtime

The container runtime is the software that is responsible for running containers.
Kubernetes supports several container runtimes: Docker, containerd, CRI-O, and
any implementation of the Kubernetes CRI (Container Runtime Interface).

kubelet

An agent that runs on each node in the cluster, making sure that containers are
running in a pod. The kubelet receives from the API server the specifications of

10

Kubernetes

the Pods and interacts with the container runtime to run them, monitoring their
state and assuring that the containers are running and healthy. The connection
with the container runtime is established through the Container Runtime Interface
and is based on gRPC.

kube-proxy

kube-proxy is a network agent that runs on each node in your cluster, implementing
part of the Kubernetes Service concept. It maintains network rules on nodes, which
allow network communication to your Pods from inside or outside of the cluster.
If the operating system is providing a packet filtering layer, kube-proxy uses it,
otherwise it forwards the traffic itself.

Addons

Features and functionalities not yet available natively in Kubernetes, but imple-
mented by third parties pods. Some examples are DNS, dashboard (a web GUI),
monitoring and logging.

Figure 2.4: Kubernetes master and worker nodes [5]

2.5 Kubernetes objects
Kubernetes defines several types of objects, which constitutes its building blocks.
Usually, a K8s resource object contains the following fields:

• APIVersion the versioned schema of this representation of the object

• Kind: a string value representing the REST resource this object represents

11

Kubernetes

• ObjectMeta: metadata about the object, such as its name, annotations, labels
etc.

• ResourceSpec: defined by the user, it describes the desired state of the object

• ResourceStatus: filled in by the server, it reports the current state of the
resource

The allowed operations on these resources are the typical CRUD actions:

• Create: create the resource in the storage backend. Once a resource is created,
the system applies the desired state

• Read: comes with 3 variants

– Get: retrieve a specific resource object by name
– List: retrieve all resource objects of a specific type within a namespace,

and the results can be restricted to resources matching a selector query
– Watch: stream results for an object(s) as it is updated

• Update: comes with 2 forms

– Replace: replace the existing spec with the provided one
– Patch: apply a change to a specific field

• Delete: delete a resource. Depending on the specific resource, child objects
may or may not be garbage collected by the server

In the following we illustrate the main objects needed in the next chapters.

2.5.1 Labels and Selectors
Labels are key-value pairs attached to a K8s object and used to organize and mark
a subset of objects. Selectors are the grouping primitives which allow to select a
set of objects with the same label.

2.5.2 Namespace
Namespaces are virtual partitions of the cluster. By default, Kubernetes creates 4
Namespaces:

• kube-system: it contains objects created by K8s system, mainly control-plane
agents

12

Kubernetes

• default: it contains objects and resources created by users and it is the one
used by default

• kube-public: readable by everyone (even not authenticated users), it is used
for special purposes like exposing cluster public information

• kube-node-lease: it maintains objects for heartbeat data from nodes

It is a good practice to split the cluster into many Namespaces in order to better
virtualize the cluster.

2.5.3 Pod
Pods are the basic processing units in Kubernetes. A pod is a logic collection of one
or more containers which share the same network and storage, and are scheduled
together on the same pod. Pods are ephemeral and have no auto-repair capacities:
for this reason they are usually managed by a controller which handles replication,
fault-tolerance, self-healing etc.

Figure 2.5: Kubernetes pods [1]

2.5.4 ReplicaSet
ReplicaSets control a set of pods allowing to scale the number of pods currently in
execution. If a pod in the set is deleted, the ReplicaSet notices that the current
number of replicas (read from the Status) is different from the desired one (specified
in the Spec) and creates a new pod. Usually ReplicaSets are not used directly: a
higher-level concept is provided by Kubernetes, called Deployment.

2.5.5 Deployment
Deployments manage the creation, update and deletion of pods. A Deployment
automatically creates a ReplicaSet, which then creates the desired number of pods.
For this reason an application is typically executed within a Deployment and not
in a single pod. Listing 2.1 is an example of deployment.

13

Kubernetes

Listing 2.1: Basic example of a Kubernetes Deployment [1]
1 ap iVers ion : apps/v1
2 kind : Deployment
3 metadata :
4 name : nginx−deployment
5 l a b e l s :
6 app : nginx
7 spec :
8 r e p l i c a s : 3
9 s e l e c t o r :

10 matchLabels :
11 app : nginx
12 template :
13 metadata :
14 l a b e l s :
15 app : nginx
16 spec :
17 c on t a i n e r s :
18 − name : nginx
19 image : nginx : 1 . 1 4 . 2
20 por t s
21 − conta ine rPort : 80

The code above allows to create a Deployment with name nginx-deployment
and a label app, with value nginx. It creates three replicated pods and, as defined
in the selector field, manages all the pods labelled as app:nginx. The template
field shows the information of the created pods: they are labelled app:nginx and
launch one container which runs the nginx DockerHub image at version 1.14.2 on
port 80.

2.5.6 DaemonSet
A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes
are added to the cluster, Pods are added to them. As nodes are removed from the
cluster, those Pods are garbage collected. Deleting a DaemonSet will clean up the
Pods it created. Some typical uses of a DaemonSet are:

• running a cluster storage daemon on every node

• running a logs collection daemon on every node

• running a node monitoring daemon on every node

Listing 2.2: Basic example of a Kubernetes DaemonSet [1]
1 ap iVers ion : apps/v1
2 kind : DaemonSet

14

Kubernetes

3 metadata :
4 name : f luentd −e l a s t i c s e a r c h
5 namespace : kube−system
6 l a b e l s :
7 k8s−app : f luentd −logg ing
8 spec :
9 s e l e c t o r :

10 matchLabels :
11 name : f luentd −e l a s t i c s e a r c h
12 template :
13 metadata :
14 l a b e l s :
15 name : f luentd −e l a s t i c s e a r c h
16 spec :
17 t o l e r a t i o n s :
18 # these t o l e r a t i o n s are to have the daemonset runnable on

c o n t r o l plane nodes
19 # remove them i f your c o n t r o l plane nodes should not run pods
20 − key : node−r o l e . kubernetes . i o / contro l −plane
21 operator : Ex i s t s
22 e f f e c t : NoSchedule
23 − key : node−r o l e . kubernetes . i o / master
24 operator : Ex i s t s
25 e f f e c t : NoSchedule
26 c on t a i n e r s :
27 − name : f luentd −e l a s t i c s e a r c h
28 image : quay . i o / f l u e n t d _ e l a s t i c s e a r c h / f l u en td : v2 . 5 . 2
29 r e s o u r c e s :
30 l i m i t s :
31 memory : 200Mi
32 r eque s t s :
33 cpu : 100m
34 memory : 200Mi
35 volumeMounts :
36 − name : var log
37 mountPath : / var / log
38 terminat ionGracePer iodSeconds : 30
39 volumes :
40 − name : var log
41 hostPath :
42 path : / var / log

2.5.7 Service
A Service is an abstract way to expose an application running on a set of Pods as a
network service. It can have different access scopes depending on its ServiceType:

• ClusterIP: service accessible only from within the cluster, it is the default

15

Kubernetes

type

• NodePort: exposes the Service on a static port of each Node’s IP. The
NodePort Service can be accessed, from outside the cluster, by contacting
<NodeIP>:<NodePort>

• LoadBalancer: exposes the Service externally using a cloud provider’s load
balancer

• ExternalName: maps the Service to an external one so that local apps can
access it

The following Service is named my-service and redirects requests coming from
TCP port 80 to port 9376 of any Pod with the app=MyApp label.

Listing 2.3: Basic example of a Kubernetes Service [1]
1 ap iVers ion : v1
2 kind : S e rv i c e
3 metadata :
4 name : my−s e r v i c e
5 spec :
6 s e l e c t o r :
7 app . kubernetes . i o /name : MyApp
8 por t s :
9 − pro toco l : TCP

10 port : 80
11 ta rge tPor t : 9376

2.5.8 EndpointSlice
An EndpointSlice is an abstraction that contains references to a set of network
endpoints of a service. It is created by the kube-controller-manager and con-
tains a list of IP addresses and ports for each pod that backs the service. The
EndpointSlice provides an alternative that is more scalable and extensible than the
original and deprecated Endpoint resource. It tracks IP addresses, ports, readiness,
and topology information for pods backing a service. Listing 2.4 shows an example
of an EndpointSlice resource:

Listing 2.4: Basic example of a Kubernetes EndpointSlice [1]
1 ap iVers ion : d i s cove ry . k8s . i o /v1
2 kind : Endpo intS l i ce
3 metadata :
4 name : example−eps
5 l a b e l s :
6 kubernetes . i o / s e r v i c e −name : example

16

Kubernetes

Figure 2.6: Kubernetes Services [1]

7 addressType : IPv4
8 por t s :
9 − name : http

10 pro to co l : TCP
11 port : 80
12 endpoints :
13 − addre s s e s :
14 − " 1 0 . 1 . 2 . 3 "
15 c o n d i t i o n s :
16 ready : t rue
17 hostname : pod−1
18 nodeName : node−1
19 zone : us−west2−a
20 − addre s s e s :
21 − " 1 0 . 1 . 2 . 7 "
22 c o n d i t i o n s :
23 ready : f a l s e
24 hostname : pod−2
25 nodeName : node−1
26 zone : us−west2−a

2.6 Kubernetes networking architecture
Kubernetes defines a network model that provides simplicity and consistency across
a range of networking environments and network implementations. The Kubernetes

17

Kubernetes

network model provides the foundation for understanding how containers, pods,
and services communicate with each other within Kubernetes [9]. The Kubernetes
network model specifies:

1. Every pod gets its own IP address

2. Containers within a pod share the pod IP address and can communicate with
each other freely

3. Pods can communicate with all other pods in the cluster using pod IP addresses
(without NAT)

4. Agents on a node (e.g., system daemons, kubelet) can communicate with all
pods on that node

5. Pods on a node’s host network can communicate with all pods on all nodes
(without NAT)

6. Isolation (restriction of what each pod can communicate with) is defined using
network policies

As a result, pods can be treated similarly to VMs or hosts (they all have unique
IP addresses) and the containers within pods can be treated similarly to processes
running within a VM or host (they run in the same network namespace and share
an IP address). This model makes it easier to migrate applications from VMs and
hosts to pods managed by Kubernetes. In addition, because isolation is defined
by network policies rather than the structure of the network, the network remains
simple to understand. This type of network is sometimes referred to as a "flat
network".

2.6.1 Container communication within same pod
Containers in a pod are accessible via localhost, they use the same network
namespace. For containers, the observable hostname is the name of the pod.
Since containers share the same IP address and port space, containers must use
different ports for incoming connections. For this reason, applications in a pod
must coordinate the use of ports.

2.6.2 Pod communication within the same node
Before the infrastructure container is started, a virtual Ethernet interface pair (a
veth pair) is created for the container. One interface of the veth pair remains in
the host’s namespace (it is tagged vethxxx), while the other interface is moved to
the container’s network namespace and renamed eth0. These two virtual interfaces

18

Kubernetes

are like two ends of a pipe where everything that goes in one side comes out on
the other. The interface in the host’s network namespace is attached to a network
bridge that the container runtime is configured to use. The eth0 interface in the
container is assigned an IP address from the bridge’s address range. Everything
that the application running in the container sends to the eth0 network interface
and comes out at the other veth interface in the host’s namespace is sent to the
bridge. Thus, any network connected to the bridge can receive it.

Figure 2.7: Pod to pod communication within same node

2.6.3 Pod communication on different nodes
Pod IP addresses must be unique across the whole cluster, so the bridges across
the nodes must use non-overlapping address ranges to prevent pods from different
nodes from receiving the same IP address. There are many methods to connect
bridges on different nodes. This can be done with overlay or underlay networks, or
through regular Layer 3 routing (direct routing).

2.6.4 CNI (Container Network Interface)
CNI (Container Network Interface) is a Cloud Native Computing Foundation project
that consists of a specification and libraries for writing plugins to configure network
interfaces in Linux containers. CNI only takes care of container network connectivity
and removing allocated resources when the container is deleted. Kubernetes uses
the CNI specifications and plugins to orchestrate networking. It can also address
the IP addresses of other containers without using the Network Address Translation
(NAT). Each time a pod is initialized or removed, the default CNI plugin is invoked
with the default configuration. This CNI plugin creates a pseudo-interface, connects

19

Kubernetes

Figure 2.8: Pod to pod communication across different nodes.

it to the underlay network, sets the IP address and routes, and maps them to the
pod’s namespace.

Figure 2.9: Container network interface [10]

2.6.5 Pod to service networking
Pod IP addresses are not permanent and will appear and disappear in response
to replica scaling up or down, application crashes, or node restarts. Any of these
events can cause the pod’s IP address to change without warning. To address
this issue, services have been integrated into Kubernetes. The Kubernetes service
manages the state of pods and allows us to keep track of a set of pod IP addresses
that change dynamically over time. Services act as an abstraction over pods and
assign a single virtual IP address to a group of pod IP addresses. Any traffic

20

Kubernetes

addressed to the service’s virtual IP is forwarded to the group of pods associated
with the virtual IP. In this way, the set of pods associated with a service can be
changed at any time. Clients only need to know the virtual IP of the service, which
does not change [11]

2.7 Kubebuilder
Kubebuilder [12] is a framework for building Kubernetes APIs using Custom
Resource Definitions (CRDs).

CustomResourceDefinition is an API resource provided by Kubernetes that
allows you to define Custom Resources (CRs) with a name and schema specified by
the user. When a new CustomResourceDefinition is created, the Kubernetes API
server creates a new RESTful resource path. The CRD can be either namespaced
or cluster-scoped. The name of a CRD object must be a valid DNS subdomain
name.

A CustomResource is an endpoint in the Kubernetes API that is not available
in a default Kubernetes installation and frees users from writing their own API
server to manage it [1]. With custom resources, you can easily store and retrieve
structured data. In order to have a more powerful management, you also need to
provide a custom controller which executes a control loop over the custom resource
it watches: this behaviour is called Operator pattern [13].

Kubebuilder helps a developer define his Custom Resources, take automatically
basic decisions and write a lot of boilerplate code. These are the main actions
performed by Kubebuilder:

1. Create a new project directory

2. Create one or more resource APIs as CRDs and then add fields to the resources

3. Implement reconcile loops in controllers and watch additional resources

4. Test by running against a cluster (self-installs CRDs and starts controllers
automatically)

5. Update bootstrapped integration tests to test new fields and business logic

6. Build and publish a container from the provided Dockerfile

21

Chapter 3

Liqo

This chapter presents the conceptual foundations of Liqo [14] and the core elements
that make up its architecture.

3.1 An overview of Liqo
Kubernetes technology is widely used to handle cloud tasks. Clusters are designed
to provide more resources (in terms of sheer computing power, available memory,
and storage capacity) than the ones normally required to handle temporary load
spikes. This means that this excess capacity can be used by other clusters that are
less heavily loaded for a period of time. Liqo aims to unleash this potential power
by connecting clusters together and letting them work synergically to pursue their
goals.

To accomplish this task, clusters establish a peering session that results in a
larger virtual cluster that hosts the sum of the resources exposed by each cluster
involved in the peering process.

The advantage of Liqo is that it takes the core concepts known in the Kubernetes
environment and leverages them to achieve more capabilities. Indeed, a cluster
simply sees its peers as (virtual) nodes that add up to its (physical) ones, and
schedules tasks to its nodes regardless of their actual nature.

The next sections describe the concepts presented in more detail, starting with
a core element and how to set it up: the Liqo peering.

3.2 Liqo Peering
Once two (or more) Kubernetes clusters are available to host workloads, they can
become part of a multi-cluster topology by enabling a peering session between them.
This is where the Liqo experience starts off. A Liqo peering connects separate

22

Liqo

entities into a larger environment capable of handling larger workloads. As a result,
each involved cluster becomes aware of the existence of other remote peers, modeled
by the ForeignCluster Custom Resource (CR). This process involves exchanging
network parameters and other cluster information to create a secure VPN that
pods will leverage to communicate with each other as part of a large, distributed,
cross-cluster application.

Cluster peerings are not required to be symmetric. Their flexibility allows a
cluster to establish:

• an outgoing peering, so that the cluster can offload its workloads, but won’t
receive any by its peer.

• an incoming peering, so that the cluster hosts remote workloads, but won’t
offload any to its peer.

• a bidirectional peering, the union of the two above.

When an outgoing peering is active, it is of utmost importance to control what
can and cannot be offloaded. This is done by leveraging some native Kubernetes
concepts, namely Namespaces and label selectors, as well as some logic provided by
Liqo to select which namespaces to offload, which pods within those namespaces to
offload, and even which remote peers are the target of this offloading mechanism.
The possibilities are endless.

The basic requirement for starting a peering session is to have access to the
remote Kubernetes API server. This allows clusters to exchange information
and create resources remotely. The result is a VPN that remote pods use to
communicate as if they were all in the same Kubernetes cluster.

3.3 Liqo Reflection
Once a peering is established, the workload offloading is enabled by leveraging the
virtual node abstraction and the namespace extension.

A virtual node represents a remote cluster and all of its shared resources (e.g.,
CPU and memory). This enables transparent extension of the local cluster’s
resources, as the virtual node added to the cluster is seamlessly taken into account
by the vanilla Kubernetes scheduler when selecting the best place to execute
workloads.

In addition, Liqo allows Kubernetes namespaces to be extended across cluster
boundaries. Once a namespace is selected for offloading, Liqo automatically creates
twin namespaces in the selected subset of remote peers. These remote twin
namespaces host the remotely offloaded pods as well as other resources that live in
the local namespace that has been extended remotely, such as those related to service

23

Liqo

exposition (Ingress, Service, and Endpoints resources) or storing configuration data
(ConfigMaps and Secrets), to name a few.

3.4 Network Fabric
The network fabric is the Liqo subsystem that transparently extends the Kubernetes
network model across multiple independent clusters, allowing offloaded pods to
communicate with each other as if they were all running locally.

Specifically, the network fabric ensures that all pods in a given cluster can
communicate with all pods on all remote peered clusters, either with or without
NAT translation. The support for arbitrary clusters, with different parameters and
components (e.g., CNI plugins), makes it impossible to guarantee non-overlapping
pod IP address ranges (i.e., PodCIDR). Therefore, address translation mechanisms
may be required, provided that NAT-less communication is preferred whenever
address ranges are disjointed.

Figure 3.1 represents at a high level the network fabric established between two
clusters, with its main components detailed in the following.

Figure 3.1: Network Fabric

3.4.1 Cross-cluster VPN tunnels
The interconnection between the peered clusters is implemented through secure
VPN tunnels made with WireGuard and dynamically established at the end of
the peering process, based on the negotiated parameters.

Tunnels are set up by the Liqo gateway, a component of the network fabric
that runs as a privileged pod on one of the cluster nodes. It also populates the

24

Liqo

routing table appropriately and uses iptables to configure the NAT rules required
to comply with address conflicts.

Although this component is executed in the host network, it relies on a separate
network namespace and policy routing to ensure isolation and prevent conflicts with
the existing Kubernetes CNI plugin. Moreover, active/standby high-availability is
supported, to ensure minimal downtime in case the main replica is restarted.

3.4.2 In-cluster overlay network
The overlay network is used to forward all traffic originating from local pods/nodes,
and directed to a remote cluster, to the gateway, where it will enter the VPN
tunnel. The same process takes place on the other side, where traffic leaving the
VPN tunnel enters the overlay network to reach the node hosting the destination
pod.

Liqo leverages a VXLAN-based setup, which is configured by a network fabric
component executed on all physical nodes of the cluster (i.e., as a DaemonSet).
Additionally, it is also responsible for the population of the appropriate routing
entries to ensure correct traffic forwarding.

3.5 Liqo CRDs
The following subsections introduce some of the Custom Resources that Liqo uses
to provide the peering and reflection features.

3.5.1 NetworkConfig CR
This CR represents a set of network parameters (mainly IP addresses) that clusters
use to know how a remote peer has remapped the local PodCIDR, as well as the
remote peer’s PodCIDR. The "spec" part contains data related to the local cluster,
while its "status" part reports the changes to the specifications. The idea is that a
cluster creates this CR and sends it to the remote cluster it is going to establish a
peering with. The remote cluster processes this CR and annotates in the "status"
part everything it needed to change in terms of IP address ranges to avoid conflicts.
These updates are reported back to the owning cluster.

At the same time, the same thing happens in the opposite direction, i.e. the
remote cluster generates a NetworkConfig, writes its "spec" part, and sends it to
the local cluster, which annotates any changes in the "status" part to make the
remote cluster aware of any changes to the original specifications.

Once both CRs are processed, a Liqo control loop reconciles them to create the
TunnelEndpoint CR.

25

Liqo

3.5.2 TunnelEndpoint CR
This CR contains the relevant network configuration to establish a VPN tunnel
with the remote cluster. This allows pods to reach other remote pods as if they
were on the same network.

3.5.3 ForeignCluster CR
This CR models a remote cluster. It contains details about the peering session
that is in place between two clusters, such as whether the peering was successfully
established and in which direction it is going (outgoing, incoming, or both). A
ForeignCluster is created starting from the NetworkConfig that the two parties
have exchanged and processed.

3.5.4 ShadowPod CR
When a pod is scheduled on a virtual node, a pod is created in the remote cluster
for the actual workload execution. In the remote cluster, a new object paired
with the remote pod is created: the ShadowPod. This resource, combined with its
controller, guarantees the presence of the pod in the remote cluster, even in case of
connection failures.

3.6 Liqo Components
3.6.1 CRD Replicator
This component is dedicated to the reflection of some Liqo CRs just presented.
To do so, it requires access to the remote API server. It is a core element as
it implements the network parameters exchange between clusters to set up the
TunnelEndpoint CRs, which are later used to keep track of the active peering
sessions and ensure remote pod-to-pod communication. The replicated CRDs are:

• NetworkConfig

• ResourceRequest

• ResourceOffer

• NamespaceMapping

The CRD Replicator architecture is quite complex, but essentially it is imple-
mented through a so-called reflector. This is a data structure that contains the
objects and data necessary to detect changes in local and remote namespaces (using

26

Liqo

local and remote informers), as well as to perform traditional CRUD operations
in those namespaces (using local and remote clients). When an object, such as
a NetworkConfig, is created in a namespace enabled for reflection and with the
appropriate metadata labels, the local reflector (i.e., the one belonging to the
cluster that created the object) performs the following steps:

• it detects a new object to be reflected.

• it creates a copy of that object in the remote namespace by using a pre-
configured client to access the remote API server.

• it listens to any changes occurring in the reflected object, which usually boils
down to a status update performed by the remote cluster controllers, as
happens with NetworkConfig to let the sender cluster know about possible
remappings.

• it listens to any changes occurring in the local original copy, such as a deletion
that needs to propagate to the remote cluster’s namespace so that the remote
copy gets deleted as well.

3.6.2 Virtual Kubelet
This component is a custom version of the Virtual Kubelet project [15]. Whenever
a peering session is established with a remote cluster, a dedicated instance of this
component is created. Once created, it is used to offload pods to remote clusters,
seen by the Kubernetes control plane as normal cluster nodes on which a normal
task can be scheduled. In addition, it is used to reflect core Kubernetes resources,
such as Services and Endpoints: once deployed in a Liqo-enabled namespace (i.e., a
namespace extended remotely) they will always be reflected to the selected remote
peers.

3.6.3 IPAM component
This component contains the logic that translates IP addresses back and forth and
keeps track of all possible remappings between the local cluster and the remote
peers. It is fundamental to Liqo because it knows all the NAT rules used to avoid
address conflicts.

3.6.4 Network manager
The network manager represents the control plane of the Liqo network fabric. It
is executed as a pod, and it is responsible for the negotiation of the connection
parameters with each remote cluster during the peering process.

27

Liqo

Figure 3.2: CRD Replicator

It features an IP Address Management (IPAM) plugin that handles potential
network conflicts by defining high-level NAT rules (enforced by data plane com-
ponents). It also expose an interface used by the reflection logic to handle IP
addresses remappings. In particular, this is leveraged to handle the translation
of pod IPs (i.e., during the synchronization process from the remote to the local
cluster), as well as during EndpointSlices reflection (i.e., propagated from the local
to the remote cluster).

3.6.5 Liqo Gateway
This component is responsible for managing connections with other clusters. All
traffic between two peered clusters must pass through this component. It is possible
to have more than just one Liqo Gateway, but only one can be active at a time and
the others can be used in case of failures. The connection between the clusters is

28

Liqo

managed with VPN tunnels and this component is responsible for managing these
tunnels. Liqo supports more VPN drivers (e.g., WireGuard, OpenVPN, IPSec) and
provides an interface to implement the logic. However, only the WireGuard driver
is implemented at the moment.

29

Chapter 4

Business Continuity in
Kubernetes

Business continuity in the context of cloud computing refers to the ability of an
organization to maintain its critical business functions and processes in the event
of a disruption. Cloud computing can provide the infrastructure, platforms, and
services necessary for organizations to maintain their operations during and after an
interruption. This includes providing a secure, resilient and scalable environment
to store and process data, as well as the ability to recover quickly from unexpected
events or outages. For example, if an organization’s data center is affected by a
power outage, the cloud computing provider can automatically reroute processing
and storage to another location, reducing downtime and minimizing the impact on
business operations. Cloud providers typically offer service-level agreements (SLAs)
that guarantee uptime and availability. This can provide additional assurance to
businesses that their critical systems will remain operational in the event of an
unexpected event. This can include identifying critical applications and data that
need to be replicated and backed up, and setting recovery time objectives (RTOs)
and recovery point objectives (RPOs). Business continuity is achieved through a
combination of technologies and best practices, such as disaster recovery planning,
data backup and recovery, high availability (HA), redundancy, DevOps, and CI/CD
techniques.

Business continuity can be divided into two main categories:

• Service Continuity: the ability to provide services or products 24/7, even
in the face of unforeseen events such as natural disasters, cyberattacks, power
outages, or spikes in demand.

• Disaster Recovery: the process of restoring critical systems and data after
a disruptive event. Disaster recovery planning involves identifying critical

30

Business Continuity in Kubernetes

systems and data, and establishing backup and recovery procedures.

The goal The goal is to analyze how business continuity is achieved in a Kuber-
netes [1] single-cluster, so that we can better understand and extend the analysis
in a multi-cluster topology in the next chapters. In this chapter, it is presented an
overview of the current state of the art solutions for achieving service continuity
and disaster recovery. Chapter 5 looks at service continuity in a multi-cluster
environment powered by Liqo [16], while chapter 6 describes a possible disaster
recovery solution that leverages the potential of Liqo to easily use peered clusters
as failover sites.

4.1 Service Continuity
In Kubernetes, service continuity is achieved through a combination of high avail-
ability and fault tolerance features.

Node recovery Kubernetes clusters typically consist of multiple nodes, which
are individual machines or virtual machines that host containers. Nodes are the
building blocks of a Kubernetes cluster and can be added or removed from the
cluster at any time. When a new node is added, Kubernetes can automatically
schedule pods to run on that node. When a node becomes unavailable, Kubernetes
detects the failure and reschedules the affected pods to other available nodes. This
process is called node recovery and ensures that workloads continue to run even if
a node fails.

Pod rescheduling Pods can be created, updated, or deleted independently of the
underlying nodes, enabling seamless deployment and management of applications.
Once created, pods can be updated, scaled, or deleted based on application needs.
Kubernetes also monitors the health of pods and can automatically restart them if
they fail or become unresponsive.

Control plane high availability In Kubernetes, the control plane refers to the
set of components that manage and control the cluster’s state, including the API
server, etcd database, kube-controller-manager and kube-scheduler. The control
plane is critical to the functioning of the cluster, and any failure can lead to
application outages and service interruptions.

To ensure high availability of the control plane, Kubernetes provides several
built-in mechanisms that allow control plane components to run on multiple nodes
and avoid single points of failure. These mechanisms include:

31

Business Continuity in Kubernetes

• replication: Kubernetes uses multiple replicas of each control plane component
to ensure high availability. Each replica is scheduled on a different node, and
replicas communicate with each other to maintain a consistent cluster state.

• self-healing: Kubernetes automatically monitors the health of control plane
components and can automatically detect and fix failures. If a component
fails, Kubernetes can automatically restart it or create a new replica to replace
it.

• backup and restore: Kubernetes provides backup and restore mechanisms for
the etcd database, which stores the state of the cluster.

Figure 4.1 shows an example of a HA control plane with a stacked etcd configuration.

Figure 4.1: High availability control plane with stacked etcd [1]

4.1.1 Pods and Nodes lifecycles
This section describes the lifecycle of nodes and pods in Kubernetes in detail.

32

Business Continuity in Kubernetes

Kubernetes uses a heartbeat mechanism to monitor the health of nodes in the
cluster. The node heartbeat mechanism is responsible for periodically sending a
signal from the node to the Kubernetes control plane indicating that the node is
still active and responding. This mechanism is implemented using a combination
of the Kubernetes lease API and the Node Controller, a process running on
the kube-controller-manager component that is responsible for managing the
lifecycle of nodes in the cluster. The following describes how the node heartbeat
mechanism works.

• When a node is added to the cluster, the Kubernetes Node Controller creates
a lease in the API server. The lease has a specific duration and is associated
with the name of the node.

• Each node’s kubelet periodically updates the lease to indicate that it is still
active and responding. It does this by updating the lease object with a
new timestamp. The lease is updated every node-status-update-frequency
seconds.

• In parallel, the kubelet also updates its status conditions [17], but at a lower
frequency.

• The node controller monitors the status of the node and updates the lease
every node-monitor-period seconds. It updates the Ready condition to:

– True if the node is healthy and ready to accept pods
– False if the node is not healthy and does not accept pods
– Unknown if the node controller has not heard from the node in the last

node-monitor-grace-period seconds

• If the status of the Ready condition remains Unknown or False for longer
than pod-eviction-timeout seconds, then the node controller triggers the
API-initiated eviction for all pods assigned to that node. In some cases
where the node is unreachable, the API server is unable to communicate
with the kubelet on the node. The decision to delete the pods cannot be
communicated to the kubelet until communication with the API server is
restored. For this reason, the pod is not deleted from the API server and it is
left in a Terminating state. In the meantime, pods scheduled for deletion may
continue to run on the partitioned node.

All of the above settings can be configured at cluster level and/or application
level. Tuning these parameters can be useful to better manage certain use cases
and guarantee certain SLAs. Table 4.1 shows an overview of these configuration
parameters with their default value and how they can be configured. Figure 4.2
shows a diagram of the overall process.

33

Business Continuity in Kubernetes

Setting Description Default Configurable
node-status-
update-frequency

Frequency with which the
kubelet updates its status

10 sec. Yes, in the the
kubelet of each
node

node-monitor-
period

Frequency with which the
kube-controller-manager
checks nodes status

5 sec. Yes, in the con-
trol plane

node-monitor-
grace-period

Maximum amount of time
which the node is allowed to
be unresponsive before it is
marked as unhealthy

40 sec. Yes, in the con-
trol plane

pod-eviction-
timeout

Interval before the kube-
controller-manager marks as
Terminating the pods as-
signed to a NotReady node

5 min. Yes, in the con-
trol plane and at
application level
using tolerations

Table 4.1: Main Kubernetes settings to manage pods and nodes lifecycles

Figure 4.2: Node failure diagram

34

Business Continuity in Kubernetes

4.1.2 Service Mesh solutions
Unfortunately, Kubernetes alone is not always enough to ensure service continuity.
K8s is a deployment platform that provides some basic service-to-service communi-
cation capabilities, such as DNS-based service discovery and L3/L4 load balancing.
This might be insufficient for critical workloads.

A widely used solution to improve service communication in a microservices-
based architecture is the Service Mesh. A service mesh is a dedicated infras-
tructure layer that abstracts away the underlying network topology and enables
service-to-service communication within a microservices architecture. Service mesh
solutions can improve service continuity in several ways:

• Load balancing: service mesh solutions can distribute traffic across multiple
instances of a service, improving availability and reducing the risk of service
disruptions due to a single point of failure.

• Service discovery: service mesh solutions can automatically detect and
route traffic to available instances of a service. This ensures that requests are
always routed to a healthy instance, even if others are experiencing issues.

• Circuit breaking: service mesh solutions can detect when a service is
unresponsive or slow to respond and can quickly disconnect it from the network.
This helps prevent cascading failures that can lead to service outages.

• Automatic retries: service mesh solutions can automatically retry failed
requests to a service, which can help improve availability and reduce the risk
of service disruptions due to temporary issues.

• Canary deployments: service mesh solutions can support canary deploy-
ments, where a new version of a service is rolled out incrementally to a small
percentage of traffic before being deployed to the entire service. This can
reduce the risk of service disruptions due to a faulty new version.

Depending on the technology, the service mesh infrastructure can be deployed
either as a per-host proxy or as a sidecar proxy. Istio [18] and Linkerd [19] are
some popular service mesh implementations for Kubernetes. Overall, service
mesh solutions provide a centralized way to manage and control service-to-service
communication, which can help improve service continuity and reduce the risk of
downtime in a microservices architecture.

4.2 Disaster Recovery
Kubernetes is the de facto platform for stateless applications, but it also natively
supports stateful workloads. In this context, it is necessary to include a disaster

35

Business Continuity in Kubernetes

recovery (DR) strategy to ensure business continuity in the event of a disruptive
event. The challenge is to provide a flexible environment capable of sustaining the
requirements of the business, while minimizing costs and complexity.

Metrics A good DR plan must define a set of business requirements that depend
on the type of application. The two most important metrics to optimize are:

• RTO, or Recovery Time Objective, is the maximum amount of time an
organization can tolerate for a system to be down before it negatively impacts
the business. It is the amount of time it takes to recover a system after a
disaster or disruption has occurred. RTO is typically measured in hours,
minutes or even seconds and is an important metric for disaster recovery
planning. RTO helps organizations understand how long they can be without
a particular system and guides the development of a disaster recovery plan that
includes strategies to reduce downtime and ensure systems can be restored as
quickly as possible.

• RPO, or Recovery Point Objective, is the maximum amount of data an
organization can afford to lose in the event of a disruption or disaster. It is
the point in time to which data must be recovered in order to resume normal
operations after a disruption. RPO is typically measured in hours, minutes or
even seconds and helps organizations understand the amount of data loss they
can tolerate before it starts to have a significant impact on their operations.
RPO is also an important metric in disaster recovery planning. It is used to
guide the selection of backup and recovery strategies that minimize data loss
and ensure that critical data can be recovered quickly.

Together, RTO and RPO help businesses understand how quickly they need to
recover from a disaster, and how much data loss they can tolerate.

Figure 4.3: RTO and RPO metrics [20]

36

Business Continuity in Kubernetes

Traditional vs cloud-era approach The most common approach to disaster
recovery is to use a failover site to restore the application state and data. In the
pre-container era, the traditional approach was to perform regular backups on the
running server and restore the backup on a new server. This led to a strong bond
between applications and the specific servers on which they were deployed. The side
effect is that additional technologies, configuration and coordination are required
to maintain these complex setups. Also, the time required to fully transition the
application to the recovery site is often not negligible, making it difficult to meet
RTO requirements. Several techniques have been introduced to shorten RTOs and
RPOs, such as:

• continuous replication instead of periodic backups

• recovery data center active and online (read-only mode) instead of idle and
offline

The advent of cloud technologies, such as virtual machines and containers,
allowed to decouple the applications deployment from the infrastructure on which
they run. Deployment platforms such as OpenStack [21] (VM-based) and Kuber-
netes (container-based) greatly simplify the deployment and management of these
infrastructures, overcoming the limitations of the traditional approach.

Figure 4.4: Disaster recovery: traditional vs cloud-era approach [20]

37

Business Continuity in Kubernetes

Kubernetes for DR Kubernetes as a platform can provide a flexible infrastruc-
ture to manage stateful deployments. The only stateful components are the etcd
database and PVs (Persistent Volumes). The former contain cluster-level data (i.e.,
cluster state), while the latter are volumes that contain application-level persistent
data. When talking about DR, it is important to distinguish between cluster-level
and application-level backups.

• Cluster-level backups. Many existing tools provide this feature, such as
Velero, an open source tool that can be used to backup and restore Kubernetes
cluster resources, including persistent volumes, namespaces, deployments and
more. Another approach is the one used by Argo CD, a GitOps continuous
delivery tool for Kubernetes. It can be used for backup and recovery of the
entire cluster.

• Application-level backups. Some CSI drivers implement the volume snap-
shots feature. This technique enables backup and restore of native stateful
Kubernetes resources such as PVs. A non-CSI approach is to use the built-in
redundancy replica sets offered by most modern databases.

This thesis focuses on analyzing disaster recovery techniques of application-
level data leveraging a Kubernetes multi-cluster environment. Chapter 6 analyzes
Percona [22], an open source operator for Kubernetes that can be used to easily
manage the deployment of a MongoDB [23] server on Kubernetes. Percona allows
to deploy multiple replicas of the database on multiple clusters, which are used
as failover sites to perform disaster recovery. Given the multi-cluster approach
used by Percona, the analysis is extended to leverage the potential of Liqo [14] to
simplify and accelerate the entire process.

38

Chapter 5

Service Continuity with Liqo

This chapter analyzes how to achieve business continuity in a multi-cluster environ-
ment where clusters are peered and interconnected with Liqo. Clusters can offload
resources to other clusters by delegating the actual execution of pods and/or the
storage and management of data to the peered cluster. In this scenario, unexpected
events or failures can occur at any time and must be accounted for.

5.1 Multi-cluster setup with Liqo
Thanks to Liqo, in a typical 2-cluster deployment, one cluster (the consumer) can
offload tasks to a remote cluster (the provider), but not the other way around. In
this case, we say that the consumer establishes an outgoing peering towards the
provider, which in turn is subject to an incoming peering from the consumer. The
peering is unidirectional, resulting in an asymmetric setup. However, bidirectional
peering is transparently supported by combining outgoing peering with incoming
peering. In addition, a cluster can offload to multiple clusters through multiple
peerings. Since a single peering is unidirectional and involves only two clusters, it
allows to consider only a simple consumer-provider setup, knowing that we can
safely extend the considerations to more complex setups involving bidirectional
peerings and/or multiple clusters. An example is shown in Figure 5.1.

As described in Section 3.3, the reflection logic replicates and synchronizes
all necessary resources in the remote cluster. Liqo supports the reflection of the
resources dealing with:

• service exposition: Ingresses, Services and EndpointSlices

• persistent storage: PersistentVolumeClaims and PersistentVolumes

• storage of data: ConfigMaps and Secrets

39

Service Continuity with Liqo

Figure 5.1: 2-cluster unidirectional deployment

Thus, when an application (or a client connecting to one of the clusters via an
external endpoint) wants to access a microservice running in the cluster, it contacts
the corresponding service, which has the IP endpoints of all the associated pods
(whether they are local or remote). Figure 5.2 shows an overview of the reflection
architecture for an application composed of three microservices (i.e., pods), namely
P1, P2 and P3, exposed through the respective service Si, in turn associated with
endpointslice Ei. P1 and P2 are executed on local workers, while P3 ≡ P ′

3 is
offloaded to a remote cluster through a virtual node.

Figure 5.2: Communication patterns between three microservices spread across
two different clusters through Liqo. Dashed polygons represent shadow resources,
while double circles indicate that the pod is actually in execution

40

Service Continuity with Liqo

5.1.1 Application use cases and policies
The virtual node abstraction enables workload offloading. During the peering
process, the virtual node is created in the consumer (i.e., local) cluster. It represents
(and aggregates) the subset of resources shared by the provider (i.e., remote) cluster.
This technique provides a transparent extension of the local cluster, allowing to
interact with the node via the standard Kubernetes API, enabling the interaction
and inspection of offloaded pods as if they were executed locally. The virtual
node is often referred to as "liqo-node" or virtual kubelet (abbreviated VK). It is
important to note that in the configuration described at the beginning, the virtual
node is only present in the consumer cluster (i.e., the one who does the offloading).
Only in the case of bidirectional peering do both clusters have the VK.

The first task that the VK performs concerns the creation and management
of the virtual node that abstracts the resources shared by the remote cluster. In
particular, it aligns the node status (i.e., whether it is ready and how many its
available resources it has) with respect to the negotiated configuration. Periodic
healthiness checks are performed to assess the reachability of the remote cluster,
marking the virtual node as not ready in case of repeated failures. Upon this event,
two possible policies are possible, depending on the application use case [24]:

1. Elastic cluster: standard Kubernetes logic is used to evict all pods hosted on
the failing cluster and reschedule them in a different location to ensure service
continuity. This can be used, for example, to balance and absorb load spikes
(cloud bursting). In this use case, it is often assumed that every other available
cluster potentially has the resources needed to run the application. Indeed,
clusters are said to be homogeneous because they can potentially perform the
same tasks.

2. Super cluster: disconnections are explicitly foreseen and shall be tolerated
(e.g., to account for edge devices in harsh environments). Existing workloads
can evolve independently through the remote orchestration logic, with the
virtual node no longer considered a valid scheduling target only for new
applications. This can be achieved by setting the appropriate taints and
tolerations.

5.1.2 High Availability (HA) Liqo components
In Liqo, critical components can be replicated across different nodes to achieve
HA. Two or more replicas (in an active/standby configuration) of the gateway
ensure that if one of the replicas is restarted, there is no cross-cluster connectivity
downtime. The controller manager, which embeds the Liqo control plane logic, can
also be replicated.

41

Service Continuity with Liqo

5.2 Failure scenarios
In real-world production environments, unexpected events or failures in the infras-
tructure are very common and cannot be neglected. A typical class of problems
concerns the health of a node in a cluster. A node might be not healthy in case of
saturation of one of its resources (e.g., disk, memory, number of processes, etc.)
or in case of physical hardware failure. Another class of problem is the loss of
connectivity: in our setup, it could be intra-cluster or, most often, inter-cluster,
especially in the case of high-latency WAN links that connect geographically distant
clusters. In the following, different failure scenarios are presented, considering how
they affect both the expected workload and the availability of the app (service
continuity).

5.2.1 Local worker node failure
In this scenario, a worker node in the local (i.e., consumer) cluster becomes not
ready or unreachable. Since it is a standard Kubernetes node, the pods scheduled
on it are not managed by Liqo. Consequently, their lifecycle is like described
in Section 4.1.1: if the node stay unresponsive for node-monitor-grace-period
seconds (usually tens of seconds), the kube-controller-manager in the control plane
marks the node as NotReady. Immediately, all endpoints served by the failed node
are invalidated (by updating the Ready condition of all endpoints in their respective
endpointslice). In this way, services do not redirect traffic to pods running on the
failed node, and service continuity is ensured (assuming there are enough pods
running on other healthy nodes to handle the load). After another grace period
called pod-eviction-timeout, all pods in the failed node are marked for deletion.
Since this timeout can be modified at the application level, it may be useful to
tune it accordingly to the needs of the application. In cases where the node is
unreachable, the API server cannot communicate with the kubelet on the node.
The decision to delete the pods cannot be communicated to the kubelet until
communication with the API server is re-established. The node controller does not
force the deletion of such pods until it is confirmed that they are no longer running
in the cluster. For this reason, pods with a DeletionTimestamp are not evicted by
the API server, but remain in status Terminating or Unknown indefinitely. In cases
where Kubernetes cannot determine if a node has permanently left a cluster, the
cluster administrator may need to manually delete the node object. Kubernetes
does not automatically force the deletion of pods, because in the eventuality that
the node returns ready again and the OS has never been restarted, all processes in
the pods become zombies. However, if pods remain Terminating indefinitely, new
pods on other working nodes are scheduled as replacements so that the expected
workload is guaranteed after the second grace period.

42

Service Continuity with Liqo

In summary, both service continuity and the expected workload are provided by
standard Kubernetes in a relatively short time. The downtime is configurable and
can be lowered if needed. However, reducing grace periods can lead to unintended
side effects where pods are frequently terminated and restarted due to temporary
and recoverable failures (e.g., intermittent connection losses).

5.2.2 Remote worker node failure
In this scenario, a worker node in the remote (i.e, provider) cluster becomes not
ready or unreachable.

The remote pod enforcement logic

Offloaded pods are not deployed directly on the remote cluster, but an intermediate
custom resource, the ShadowPod (Section 3.5.4), is created on the remote cluster
by the virtual kubelet. If pods were simply deployed remotely, split-brain scenarios
(e.g., a temporary loss of connectivity between clusters) could occur, causing service
disruption if the remote pods were deleted after a node failure or eviction. For this
reason, Liqo resorts to the remote creation of a ShadowPod, a CR wrapping the
pod definition and triggering the remote enforcement logic. Then, the ShadowPod
controller in the remote cluster creates the corresponding twin pod. In this
way, it transparently ensures execution resilience regardless of connectivity to the
originating cluster. To simplify, local pod operations (e.g., create, update, and
delete) are translated to the corresponding operations on remote ShadowPods. In
addition, the incoming reflection logic propagates pod status updates from the
remote pod to the local pod in the main cluster when appropriate. The overall
offloading process is summarized in Figure 5.3.

The problem

Given this architecture, the scenario where a remote worker node hosting offloaded
pods becomes unhealthy is a bit problematic. In a vanilla Kubernetes deployment,
the pod would be marked for deletion and a newly created pod (with a different
name) would be spawned in a different node. However, this cannot be applied
here as it would lead to race conditions in the reconciling logic between local and
remote clusters. For example, if the remote pod is marked for deletion (i.e., it
has the DeletionTimestamp label), the ShadowPod controller in the remote cluster
would create a new pod (with a different name) and leave the other one in status
Terminating indefinitely, leading to a situation where the ShadowPod would have
two children. The reconciliation in the local cluster is problematic because it would
be unclear which of the two child pods (having different names and statuses) needs
to be reconciled in the local cluster. It’s even more complex to handle in case of

43

Service Continuity with Liqo

Figure 5.3: Schematic representation of the pod offloading workflow. Solid lines
refer to liqo-related tasks, while dashed ones to standard Kubernetes logic. Double
circles indicate the pod in execution (i.e., whose containers are running) [24]

a StatefulSet, because the pod names are fixed and cannot be changed. For the
above reasons, Liqo does not create a new pod to replace the terminating pod, as is
the case with vanilla Kubernetes. As a result, if a node fails in the remote cluster,
the actual workload is less than expected and service continuity could be affected
if the load is too heavy for the remaining pods in the entire multi-cluster. Figure
5.4 shows a representation of the lifecycle of both offloaded and normal pods in the
event of a worker node failure.

An implementation of a possible solution to this problem is part of the work of
this thesis. It is presented in detail in Section 5.3.

5.2.3 Local cluster failure
This scenario includes all cases where the local cluster can be considered unhealthy,
i.e., the API server is unresponsive and/or unable to handle requests, or there
is no connection to the local cluster. There are a variety of reasons for this:
misconfigurations, power outages, saturation of resources in control plane nodes,
possible network partitions within the cluster or between clusters, etc. However, it
is possible that there is still an active network connection between the two peered
clusters, e.g. via the liqo-gateway (the VPN tunnel that handles pod-to-pod traffic).

The EndpointSlices reflection logic

This section explains the details of the Liqo EndpointSlices reflection to better
understand this scenario and its possible flaws.

When a new service is deployed in a namespace offloaded with Liqo, it is

44

Service Continuity with Liqo

Figure 5.4: Graphical representation of the lifecycle of pods during a worker node
failure

replicated verbatim to remote clusters, except for the ClusterIP, LoadBalancerIP,
and NodePort fields (if applicable), which are left empty (and therefore assigned
by the remote cluster) due to potential conflicts. In the local cluster, services
are transparently handled by the vanilla Kubernetes control plane, as it has full
visibility of all pods (even those offloaded), hence leading to the creation of the
corresponding endpointslice entries. In contrast, the control plane of each remote
cluster perceives only the pods running in that cluster. Therefore, the standard
endpointslice creation logic alone is not sufficient (as it would not include the pods
hosted by other clusters).

This gap is handled by the Liqo EndpointSlice reflection logic, which takes
care of propagating all endpointslice entries that are not already present in the
destination cluster. During the propagation process, the endpoint addresses are
appropriately remapped according to the network fabric configuration, to ensure
that the resulting IPs are reachable from the destination cluster.

With this approach, multiple replicas of the same microservice spread across
different clusters and backed by the same service are handled transparently. Each
pod, no matter where it is located, contributes with its own endpoint entry in
the associated endpointslice, either through the standard control plane or through
resource reflection, hence becoming eligible during the service load-balancing
process.

Figure 5.5 shows an example of the endpointslices replication in a 4-replica

45

Service Continuity with Liqo

deployment offloaded with policy LocalAndRemote, which equally balances the
spread of pods across clusters. As described above, the local cluster perceives
all 4 pods, although only 2 are actually running (indicated by double circles).
The remote cluster, on the other hand, perceives only the (two) running pods.
The kube-controller-manager present in each cluster has automatically created the
native K8s endpointslice(s) for all perceived pods (i.e., endpointslice A and C).
The virtual kubelet fills the gap in the remote cluster by creating a new custom
endpointslice with the endpoints of the pods hosted by the local cluster (i.e., P1
and P2).

To ensure that multiple entities can manage endpointslices without interfering
with each other, Kubernetes defines the label endpointslice.kubernetes.io/managed-
by, which specifies the entity that manages the endpointslice. The endpointslice
controller sets endpointslice-controller.k8s.io as the value for this label
on all endpointslices it manages. Liqo, on the other hand, sets the value to
endpointslice.reflection.liqo.io.

Figure 5.5: Graphical representation of the EndpointSlices reflection. Double
circles indicate that the pod is in execution (i.e., its containers are running). Dashed
squares indicate endpoints that point to pods in execution in a different cluster.

46

Service Continuity with Liqo

The problem

The described architecture works flawlessly when there is perfect communication
and cooperation between the two clusters. Unfortunately, problems occur when
the local cluster is unreachable or unhealthy.

The EndpointSlice abstraction, introduced in Section 2.5.8, allows to keep track
not only of all the endpoints network specifications of the pods associated with
a given service, but also of their current status (i.e., readiness). Therefore, each
endpoint has a condition ready that maps to the Ready condition of the associated
pods. This synchronization between the status of the endpoint and its associated
pod allows services to avoid redirecting traffic to unhealthy or terminating pods by
avoiding endpoints that are not ready.

This mechanism works well as long as the pod is present in the cluster and its
status can be reconciled in the endpointslice. In the scenario described earlier in
Figure 5.5, there is no associated pod in the cluster for the endpoint slice created
by Liqo. For this reason, the endpoint is always marked as ready since it is not
updated by any entity. The side effect is that in the event of a local cluster
disruption, services will redirect the traffic in a round robin fashion, including also
the endpoints that reference pods in the local cluster. Such requests will inevitably
fail and lead to service disruption. The possible causes of disruption are as follows:

• pod-to-pod connectivity: if the VPN tunnel is down, all requests are lost.

• local API server healthiness: if the local API server is down, requests
towards local pods can still reach the target if the VPN tunnel is still working
and the pod is running on a healthy worker node. However, the API server of
the local cluster being down means that the app cannot evolve and it is not
possible to know the current status of the pods, so requests may fail in this
case as well.

Figure 5.6 shows a graphical representation of this scenario. Ready endpoints
are colored green. The S ′ service load balance requests to all ready endpoints with
a round-robin policy. All requests to endpoints targeting pods in the local cluster
are not served. Depending on the pod distribution between clusters, requests fail
with a certain probability (50% in this particular example).

Section 5.4 presents a possible solution that ensures service continuity and
resiliency in this scenario.

5.2.4 Remote cluster failure
This scenario includes all cases where the remote cluster can be considered unhealthy.
Possible causes are the same ones described in Section 5.2.3, but applied to the
remote cluster.

47

Service Continuity with Liqo

Figure 5.6: Graphical representation of failed requests in the event of a local cluster
failure. Double circles indicate that the pod is in execution (i.e., its containers are
running). Dashed squares indicate endpoints that point to pods in execution in a
different cluster.

The remote cluster is represented in the local cluster by the virtual kubelet,
which periodically checks the health status of the remote cluster and updates its
status conditions [17] accordingly. The VK performs the following periodic checks:

1. remote API server readiness: it updates the current status with the results
of the liveness probe on the remote API server.

2. VPN tunnel network availability: it updates the current status by moni-
toring the TunnelEndpoint Connection condition.

3. resources availability: it updates the current status by monitoring the
ResourceOffer resource.

48

Service Continuity with Liqo

If the status is not ready or has not been updated in the last node-monitor-grace-
period (default: 40 seconds), the virtual node is marked respectively NotReady or
Unknown. Upon this event:

• all endpoints to pods in the remote clusters are invalidated immediately, so
that services do not redirect the traffic to those (service continuity)

• the standard API-initiated eviction is triggered for all pods in the (virtual)
node, which in this case represents the entire remote cluster: after a grace
period (pod-eviction-timeout), all pods are marked for deletion with a
DeletionTimestamp. New pods are spawned in the local cluster as replacements
(expected workload guaranteed).

Figure 5.7 shows an example of a remote cluster failure, considering the same
4-replica deployment. The virtual kubelet is marked as not ready. Service S does
not redirect the traffic to EP3 and EP4, because the associated pods P3 and P4 are
not ready. When pods become Terminating, the kube-controller-manager reacts by
creating the replacement pods P5 and P6 and thus the associated endpointslices
EP5 and EP6.

In summary, the presence of the virtual node allows the remote cluster to be
treated transparently as if it were a normal node, hence service continuity and the
expected workload are guaranteed by standard Kubernetes. In contrast, for local
cluster failures (Section 5.2.3), the virtual node is not present, so service continuity
cannot be transparently supported. Unfortunately, the local cluster may not be able
to handle all of the offloaded resources, resulting in excessive load and disruption.
Therefore, depending on the type of application being deployed, it is necessary to
carefully distribute the load between clusters by using the appropriate tolerations
and taints, topology selectors, node affinity constraints, and Liqo offloading policies.

5.2.5 Local control plane failure
This section analyzes all scenarios in which a control plane node of the local cluster
becomes unhealthy.

In Kubernetes, the control plane can have a single-node or multi-node topology.
The latter is referred to as HA (High Availability), and the number of nodes is
usually odd to facilitate leader selection in the event of a machine or zone failure.

• Single-node control plane: in this setting, the API server cannot function
if the single node of the control plane is unhealthy, and therefore the entire
cluster can be considered out of service. This is a special case of local cluster
failure (5.2.3) and is subject to the same considerations.

• Multi-node (HA) control plane: the control plane can tolerate the loss of
one or more nodes as long as at least one is still running. With this topology,

49

Service Continuity with Liqo

Figure 5.7: Graphical representation of a remote cluster failure. Double circles
indicate that the pod is in execution (i.e., its containers are running). Dashed
squares indicate endpoints that point to pods in execution in a different cluster.

the infrastructure is more robust and traffic is automatically redirected to
healthy nodes. Failures are prevented in most cases, but at the expense of
setup complexity and increased resource requirements.

5.2.6 Remote control plane failure
For this scenario, the same considerations as described in the previous section
apply, but applied to the remote cluster. Indeed, a failure in a single-node control

50

Service Continuity with Liqo

plane can be considered as a remote cluster failure (Section 5.2.4), while a HA
setup ensures service continuity in most cases.

5.2.7 Inter-cluster network failure
A split-brain scenario can occur when there is no direct connection between two
peered clusters, resulting in a network partition. This is one of the most common
failures, especially if the clusters are geographically distant from each other or
communicate via a public WAN.

In this case, both clusters are still alive (all nodes are healthy and both API
servers are responsive), but each believes it is the only one running. Due to the
nature of split-brain problems, it is necessary to analyze the situation independently
for both clusters:

• Local cluster: the remote cluster is unreachable. When the virtual kubelet
checks the status of the remote cluster, it also accounts for possible network
problems. If there are any, it marks the virtual node as NotReady or Unknown.
This scenario is a special case of remote cluster failure (Section 5.2.4). As a
result, service continuity is handled transparently by Kubernetes.

• Remote cluster: the local cluster is unreachable. All requests to services
with endpoints that redirect traffic to the local cluster fail. This scenario is a
special case of local cluster failure (Section 5.2.3). A possible solution to this
problem is explained in Section 5.4.

In Liqo, one or more endpoints may be exposed depending on the type of peering.
In a In-Band peering, all traffic flows in a single VPN tunnel: only one endpoint
is exposed, as shown in Figure 5.8. In a Out-Of-Band peering, three different
endpoints are exposed: the Liqo authentication service, the Liqo VPN tunnel, and
the Kubernetes API server. A schematic representation of the setup is presented in
Figure 5.9. Therefore, all scenarios where only a subset of the three endpoints are
down are also included in this section. For example, both clusters can communicate
with the foreign API server, but there is no pod-to-pod connectivity due to one of
the VPN endpoints being down. The solution proposed in Section 5.4 checks both
API server readiness and VPN tunnel connectivity, handling those particular cases
as well.

5.3 NodeFailure controller: resiliency to remote
worker nodes failures

Part of the work of this thesis was invested in implementing a solution to the
remote worker node failure problem presented in Section 5.2.4.

51

Service Continuity with Liqo

Figure 5.8: In-Band peering

Figure 5.9: Out-Of-Band peering

As described earlier, an offloaded pod running on a NotReady node remains
in a Terminating state indefinitely and is not automatically replaced by either
Kubernetes or Liqo. The main problem is figuring out who should handle the
offloaded pod and how. There are several possible solutions, each with their own
advantages and disadvantages.

1. Delegation to the remote cluster: the local cluster creates the remote
ShadowPod and delegates all responsibility for creating and running the actual
pod to the remote cluster. The ShadowPod controller is the component that
enforces the presence of the actual remote pod. Only the status is synchronized
from the remote to the local pod. This is essentially the process described in
Figure 5.3. When a remote node failure happens, a component in the cluster
must react and force delete all pods that are (1) offloaded, (2) terminating,
(3) scheduled on a failed node. In this way, the ShadowPod controller will
react to this event and enforces the presence of its remote pod by creating
a new one. This approach is easy to manage, very effective, and responds

52

Service Continuity with Liqo

quickly to failures. However, it is less compliant with Kubernetes standards,
as terminating pods are force deleted.

2. Delegation to the local cluster: the local cluster must manage the entire
lifecycle of the offloaded pod. Local and remote pods are synchronized directly
and no ShadowPod resource is created. The local cluster detects if a pod is
(1) offloaded, (2) terminating, (3) scheduled on a failed node. If all conditions
are met, the local pod is also marked as terminating. Then, the Kubernetes
ReplicaSet controller of the local cluster will leave the pod in a terminating
state and enforces the presence of a new pod, which will be scheduled either on
the local or on the remote cluster. This approach is the most compliant with
Kubernetes, but it is less resilient to network failures because all enforcement
logic is performed by the local cluster since the ShadowPod is not present.

3. Hybrid Approach: in this solution, the responsibility for managing the
offloaded pod is delegated to the remote cluster via the ShadowPod, but
the deletion of the pod in the event of a node failure is performed by the
local cluster. In this way, resilience to network issues and compliance with
Kubernetes standards are maintained. It is more complex to handle and the
responsibility is distributed between the two clusters.

From a pure service availability perspective, the first approach is the most
efficient, since the terminating pod is fully managed by the remote cluster and
less synchronization is required between the two clusters. This results in a clear
decoupling of responsibilities and a less complex setup. For these reasons, this
solution was implemented and merged in the official Liqo GitHub repository [16].
The next section analyzes in details the implementation design.

5.3.1 NodeFailure controller implementation
The adopted solution is a custom controller running in the liqo-controller-manager
pod and named NodeFailure controller. The main idea is to detect when a pod is
(1) offloaded, (2) terminating, (3) scheduled on a failed node. When a pod satisfies
all three conditions, it must be force deleted. Let’s break down all the conditions:

• offloaded: the controller has to watch only for pods that are directly managed
by Liqo (i.e., offloaded). The controller must not touch normal pods as their
lifecycle is handled correctly by vanilla Kubernetes even in case of node failure,
as described in Section 5.2.1.

• terminating: a pod needs to be evicted only if it has a DeletionTimestamp.
This is only added when the grace periods (node-monitor-grace-period
and pod-eviction-timeout) have expired. This is to prevent deleting pods

53

Service Continuity with Liqo

running on a temporarily failed node (e.g., intermittent loss of connection), as
they would likely be false positives.

• scheduled on a failed node: the controller handles only node failures. Offloaded
and terminating pods scheduled on a healthy node are deleted by the remote
cluster API server.

If a pod that meets all three conditions is detected and deleted by the NodeFailure
controller, its job is complete. It will be the ShadowPod controller’s job to enforce
the presence of the remote pod by creating a new one, which will be scheduled on
a healthy node. A schematic representation of the workflow with the NodeFailure
controller activated is shown in Figure 5.10. Note: the name of the new pod created
by the ShadowPod controller is the same as that of the deleted pod (i.e. A), since it
is extracted from the associated shadowpod. In contrast, the other (not offloaded)
pod created by the kube-controller-manager has a newly generated name (i.e. E).

Throughout the whole process, the local pod remains in the Running state
because it is synchronized with the ShadowPod. However, a feedback of the event is
provided in the local cluster by inferring additional restarts for each newly created
remote pod. Also, since the status is propagated from the remote to the local
cluster, it is possible to observe during the failure that the pod’s Ready condition
is set to False (until the pod is evicted by the NodeFailure controller).

Figure 5.10: Graphical representation of the lifecycle of pods during a worker
node failure, with the NodeFailure controller enabled

The NodeFailure controller implementation has been merged in the official Liqo

54

Service Continuity with Liqo

GitHub repository and can be enabled by passing to the liqo-controller-manager the
enable-nodefailure-controller argument. The source code of the Pull Request
can be found at https://github.com/liqotech/liqo/pull/1633

5.3.2 The algorithm
The controller reconciles objects of type Node, so it is configured to respond to node
create/delete/update events. It also watches for events on pod resources. Since
events on pods are very common, an event handler has been set up to filter only
meaningful events. In particular, it only reacts to update events and checks if the
pod is offloaded and terminating. If so, it adds the name of the node hosting the
pod to the controller workqueue so that it can be reconciled. The event handler’s
check is fast and efficient because all the required information is available in the
resource:

• a DeletionTimestamp as a Metadata field indicates that the pod is terminating

• the label "liqo.io/managed-by: shadowpod" (added by Liqo via the Shad-
owPod controller) indicates that the pod is offloaded

• the name of the node hosting the pod is set in the spec.nodeName field

The reconciliation logic is straightforward. The controller fetches the node
resource with a GET request to the API server. If the node is NotReady, it lists
all pods that are offloaded and scheduled on that node using the appropriate
LabelSelector and FieldSelector. If there are any, all terminating pods (i.e., the ones
with a DeletionTimestamp) will be force deleted. The spec.nodeName field is not
cached by default. Its field is added to the cache indexer to improve performance
and reliability.

5.3.3 Drawbacks
As mentioned earlier, this solution is a trade-off that prioritizes service availability
over compliance. But it also comes with some drawbacks. When the controller
force deletes the pod, the resource is removed from the K8s API server. This means
that in the (rare) case that the failed node becomes ready again and without an
OS restart, the containers in the pod will not be deleted by the API server because
it has already deleted the resource in the past and removed its entry from the
database. The side effect is that zombie processes remain in the node until the
next OS restart or manual cleanup. This is the reason why vanilla Kubernetes
leaves the pod pending in Terminating state, so that if the node becomes ready
again, the API server will gracefully delete the pod and release its resources.

55

https://github.com/liqotech/liqo/pull/1633

Service Continuity with Liqo

5.4 Shadow EndpointSlices: resiliency to local
cluster failures

This section describes the design and implementation of a possible solution to the
local cluster failure problem presented in Section 5.2.3.

As previously described, the EndpointSlice reflection logic of Liqo is not resilient
to the following conditions:

1. VPN tunnel down (no pod-to-pod connectivity): requests to pods
running in the local cluster will not be served

2. local API server broken or unreachable: the status of the app can’t
evolve or even be tracked. Endpoints could point to pods in the local cluster
who could have been deleted or modified, causing requests to fail again.

The basic idea is to delegate to some entity the task of dynamically updating
the status of all endpoints towards the local cluster, depending on the conditions
described above. Kubernetes itself does this job by mapping an endpoint status to
the pod status, but this is not possible in this case because there is no associated
pod in the remote cluster, as shown in Figure 5.5. As a result, Liqo itself must be
modified to handle this scenario.

A naive solution might be to implement a custom controller in the remote cluster
that periodically checks the status of the VPN tunnel and the local API server
and updates the endpoints accordingly. This solution can’t work because it would
lead to race conditions between the two clusters. If we consider a scenario where
only the tunnel is down (i.e., both API servers are live and can communicate),
the controller sets the endpoints to NotReady. This triggers the local API server
(actually the virtual kubelet) to reinforce the status to Ready, and the cycle repeats
infinitely since there is no single source of truth between the two clusters. Figure
5.11 shows a diagram of the race condition.

The solution

The proposed solution is to decouple the link between the local and the remote
endpointslices by introducing an intermediate resource, the ShadowEndpointSlice
CR. The idea is similar to the one adopted for the pods (i.e., ShadowPod). The
shadow object in this case is an abstraction that serves as a template for the desired
configuration of the remote endpointslice. The virtual kubelet task is to forge the
remote shadow resource of the reflected endpointslice and create it on the remote
cluster. If the local endpointslice changes (e.g., when some endpoints are added),
the remote shadow endpointslice is also updated. The responsibility of the local
cluster is limited to creating and updating the required ShadowEndpointSlices.

56

Service Continuity with Liqo

Figure 5.11: EndpointSlice enforcement race condition between two clusters

Note that the new ShadowEndpointSlice resource contains only the endpoints of
the pods running in the local cluster, just like the endpointslices managed-by Liqo
described earlier.

At the same time, a custom controller in Liqo must run in the remote cluster
and enforce the presence of the actual endpointslice, using the shadow resource as
a source of truth. The controller must also periodically check the status of the
local cluster, taking into account both the API server and the VPN tunnel.If the
local cluster is unhealthy, the controller updates all endpoints in the endpointslice
by setting them to NotReady. This way, services do not redirect traffic to these
endpoints, but only to the remaining ones served by the pods in the remote cluster.
This ensures service continuity (assuming there are enough pods scheduled on the
remote cluster to handle the load). When the local cluster eventually becomes
available again, the controller resets the endpoints to their default settings according
to the shadow template. Note: if the default status for an endpoint (specified in
the shadow resource) is NotReady, the remote endpoint is also set to NotReady,
regardless of the condition of the local cluster.

The following sections explain in more detail the design and implementation of
the new shadow CR and custom controller, as well as the potential limitations of
this solution in some application use cases.

5.4.1 The ShadowEndpointSlice CR
The ShadowEndpointSlice CRD has been defined in the virtualkubelet.liqo.io
API. It has the following fields:

• TypeMeta: specifies the name of the resource and the custom-defined API.

57

Service Continuity with Liqo

• ObjectMeta: must have the following set of labels:

– the name of the associated service
– the endpointslice.kubernetes.io/managed-by label key has

endpointslice.reflection.liqo.io as value, to prevent K8s from in-
terfering

– id of the origin cluster (i.e., local/consumer)
– id of the destination cluster (i.e., remote/provider)

• Spec.Template: same fields present on native endpointslices that describe
endpoints network parameters:

– AddressType, IPv4 or IPv6
– Endpoints[], array of endpoints, each containing their IPs, status, a

reference to the associated pod and its node)
– Ports[], array of ports, each containing port number and protocol

Listing 5.1 shows an example of a ShadowEndpointSlice resource:

Listing 5.1: Basic example of a ShadowEndpointSlice
1 ap iVers ion : v i r t u a l k u b e l e t . l i q o . i o / v1alpha1
2 kind : ShadowEndpointSlice
3 metadata :
4 creationTimestamp : "2023−02−22T17 : 4 9 : 2 6 Z"
5 gene ra t i on : 1
6 l a b e l s :
7 e n d p o i n t s l i c e . kubernetes . i o /managed−by : e n d p o i n t s l i c e . r e f l e c t i o n .

l i q o . i o
8 kubernetes . i o / s e r v i c e −name : he l l o −world
9 v i r t u a l k u b e l e t . l i q o . i o / d e s t i n a t i o n : <DEST_ID>

10 v i r t u a l k u b e l e t . l i q o . i o / o r i g i n : <ORIG_ID>
11 name : he l l o −world−dqbm7
12 namespace : he l l o −world
13 uid : a067f678 −8851−4fc3−b686−2ca7fb36c61d
14 spec :
15 template :
16 addressType : IPv4
17 endpoints :
18 − addre s s e s :
19 − 1 0 . 4 0 . 2 . 7
20 c o n d i t i on s :
21 ready : t rue
22 nodeName : node−1
23 ta rge tRe f :
24 kind : RemotePod

58

Service Continuity with Liqo

25 name : he l l o −world −744db8bd9−kdhjd
26 namespace : he l l o −world
27 uid : 03285 c05−e2b5−4b1b−81bb−e31b1d9bb8cd
28 por t s :
29 − name : http
30 port : 80
31 pro to co l : TCP

5.4.2 ShadowEndpointSlice controller implementation
The controller runs in the liqo-controller-manager pod. For simplicity, it is called
the "ShadowEps" controller here. It reconciles objects of type ShadowEndpointSlice,
so it responds to all events on these resources. For example, when the virtual kubelet
creates or updates a ShadowEndpointSlice, it creates or updates the associated
endpointslice and sets the shadow object as its OwnerReference. This way, when
the shadow object is deleted, the owned endpointslice is also automatically evicted.

To check the current status of the local cluster, the ShadowEps controller watches
for ForeignCluster (abbreviated FC) objects (see Section 3.5.3). This Liqo CR
is used to gather information about a peered cluster (doesn’t matter if outgoing,
incoming, or bidirectional peering) and contains in its status the updated conditions
that track the health of the local cluster. Specifically, the controller looks for the
following conditions:

1. TunnelEndpoint: status of the VPN tunnel for pod-to-pod connectivity.

2. APIServer : readiness of the local API server

Unfortunately, the API server condition was not originally present in the FC
CRD. The API server check was originally performed by the virtual kubelet, but is
not present in the remote cluster. For this reason, this check is now periodically
performed by a Go routine that is started by the ForeignCluster controller when
a new peering is established. The routine itself takes care of updating the status
conditions accordingly.

In the reconcile logic, the controller enforces the presence of the endpointslice by
using the shadow resource as a template. The only fields that are changed are Ready
conditions of the endpoints, which are updated with the current status of the local
cluster (again, by looking at the TunnelEndpoint and APIServer conditions in the
ForeignCluster resource). As mentioned earlier, an endpoint whose Ready condition
is set to False is kept unchanged regardless of the status of the local cluster.
To optimize and reduce the number of reconciliations, an event handler filters
the events on the watched ForeignCluster objects: only update events where the
TunnelEndpoint and/or APIServer conditions change are added to the controller’s
workqueue.

59

Service Continuity with Liqo

Figure 5.12: Graphical representation of the EndpointSlices reflection with the
added ShadowEndpointSlice controller. Dashed squares indicate endpoints pointing
to pods in execution in a different cluster

.

Figure 5.12 shows the workflow of the controller in the typical 4-replica deploy-
ment offloaded with a LocalAndRemote policy. The virtual kubelet creates/updates
the ShadowEndpointSlice. The ForeignCluster status conditions are updated peri-
odically. In the diagram, both checks are successful, so the ShadowEps controller
creates the endpointslice with the two endpoints EP1 and EP2 ready. Service S ′

load balances the traffic towards all four endpoints.
Figure 5.13 shows how the ShadowEps controller reacts in the event of a local

cluster failure. In the diagram, both the API server and TunnelEndpoint checks
have failed. As soon as the ForeignCluster updates its status conditions, the
ShadowEps controller reconciliation is triggered. It proceeds to invalidate all
endpoints of the endpointslices associated with the given ForeignCluster.

60

Service Continuity with Liqo

Figure 5.13: Graphical representation of the EndpointSlices reflection with
the added ShadowEndpointSlice controller, during a local cluster fail. Dashed
squares indicate endpoints pointing to pods in execution in a different cluster. Red
endpoints are NotReady

.

5.4.3 Limitations

The ShadowEndpointSlice implementation provides solid resilience against cluster
failures, but is not suitable for all use cases. The ShadowEndpointSlice controller
allows traffic not to be redirected to pods in the failed cluster, thus avoiding
requests from inevitably failing.However, this means that the cluster is temporarly
disconnected from other peered clusters and must handle the load by itself, and
all application logic (i.e., all the necessary pods) must be replicated in the cluster
to keep the app working. This is suitable for elastic cluster deployments (Section
5.1.1), where the entire application is replicated among peered clusters so that it
can run independently even during temporary failures. But for use cases where the

61

Service Continuity with Liqo

application logic is distributed across the peered clusters, the remaining healthy
clusters may not have the necessary logic (i.e., pods) to keep the application running
correctly. An example would be a deployment where one large cluster (the one who
does the offloading) has all the logic and computational power to store and process
huge amounts of data coming from multiple small edge clusters (acting as sensors,
for example). In this case, the edge clusters cannot function properly because they
require services that are only available in the local source cluster. This problem
cannot be fixed at the infrastructure level, nor by Liqo or a service mesh. The
solution is to implement a resilience mechanism in the application logic to deal
with temporary failures.

5.4.4 Performance evaluation
In this section, we evaluate the performance of the Shadow EndpointSlices imple-
mentation. Compared to vanilla Liqo, it introduces some overhead in the exposition
reflection: the remote endpointslices are not directly created by the virtual kubelet,
only the shadow resources. The actual endpointslices are created by successively
reconciliations of the ShadowEndpointSlice controller. The goal is to analyze how
much overhead this intermediate step entails and whether it can affect performance
in real-world use cases.

To perform the benchmark, we leverage an existing tool [25] already used by
the Liqo team to compare the performance of Liqo with vanilla Kubernetes and
other similar tools for multi-cluster deployments. For our scope, it is used to
compare vanilla Liqo to a custom version built with the Shadow EndpointSlices
implementation enabled. This customised version was built on top of Liqo v0.7.2.

The service exposition test The setup for the benchmark consists of two
clusters peered with Liqo, one playing the role of the resource provider and the
other of the resource consumer. A varying number of pods is started locally (i.e., on
the provider) and once they are ready, they are exposed through a single Kubernetes
service, making them accessible from the consumer thanks to the Liqo reflection
logic. The tool measures the time elapsed between the creation of a service on the
local cluster and the effective creation of all associated endpointslices on the remote
cluster. The experiment is run twice (with and without the Shadow EndpointSlice
implementation). Figure 5.14 shows a schematic representation of the setup.

The testbed The testbed consists of two Kubernetes clusters (k3s v1.21), one
provider and one consumer. The resource provider is implemented as a Kubemark
cluster [26] for scalability reasons. At a very high level, it consists of two parts: a
real master and a set of hollow nodes. Each of them is is backed by a component,
the HollowKubelet, which pretends to be an ordinary kubelet, but it does not start

62

Service Continuity with Liqo

Figure 5.14: Exposition benchmark setup

any container it is assigned to, it just lies it does. In this way, a huge number of
(fake) containers can be started, even tens of thousands, consuming few resources
in the cluster because the containers are not actually running.

The provider cluster consists of a large number of hollow nodes (≈ 50) to host
a large number of (fake) pods. Overall, the entire testbed is deployed on a real
cluster with 7 worker nodes and the given configuration:

• 1 worker node to host the master node of the consumer cluster

• 1 worker node to host the master node of the provider cluster

• 5 worker nodes to host ≈ 50 hollow nodes of the provider cluster

Each node has 8 GB of memory (RAM), 4 vCPU, and 50 GB of hard disk space.
In total, the cluster has 56 GB of memory, 28 vCPU, and 350 GB of disk space.
The control plane is not configured for high availability.

The benchmark The benchmark runs different deployments, varying the number
of replicas, so that we can evaluate the scalability of the solution. Considering that
a node cannot host more than 110 pods [27], we can spawn more than 5000 pods
using about 50 hollow nodes. The benchmark runs various tests, with the number
of pods ranging from 10 to 5000. To make it more robust, each test is repeated 10
times and the results are averaged. The bar plot in Figure 5.15 shows the results
of each test. The x-axis is the average time elapsed to expose all endpoints on the
remote cluster. The error bars represent the resulting standard deviation.

63

Service Continuity with Liqo

Figure 5.15: Liqo exposition benchmark: performance comparison with and
without ShadowEndpointSlices

As can be seen, there is little to no overhead between the two experiments, even
when deploying massive amount of pods. Increasing the number of pods has no
effect on performance. The standard deviation also remains fairly constant for all
experiments. With 5000 pods, a rather extreme and rare use case, all endpoints are
ready after ≈ 2.5 seconds, and the overhead caused by the Shadow EndpointSlice
logic is only ≈ 50 ms. In summary, the benchmark demonstrates the effectiveness
of the implemented solution even under the most challenging conditions.

The ShadowEndpointSlice abstraction and its controller have been merged in
the official Liqo GitHub repository and are enabled by default. The source code can
be found at the following GitHub issue: https://github.com/liqotech/liqo/
issues/1705.

64

https://github.com/liqotech/liqo/issues/1705
https://github.com/liqotech/liqo/issues/1705

Chapter 6

Disaster Recovery with Liqo

Chapter 4 introduced the idea of using a multi-cluster environment to perform
disaster recovery of application-level data. The idea is to leverage a Kubernetes
multi-cluster environment, with one cluster as the main site and the rest as failover
sites. As an example of this concept, this chapter presents the Percona Operator
for MongoDB [22]. Unfortunately, the implementation of this solution is tied to
the specific MongoDB [23] database and cannot be generalized to all DBs, but the
main architectural concepts are applicable to all modern DBs that support data
redundancy (e.g., replica sets in MongoDB).

6.1 Disaster Recovery with Percona Operator
Percona Operator for MongoDB supports multi-cluster or cross-site replication
deployments. This feature is extremely useful if you want to perform a disaster
recovery deployment or migration to or from a MongoDB cluster running in
Kubernetes. In a nutshell, it allows you to deploy Percona operators across different
Kubernetes clusters to manage and expand members of a replica set. In this
section, we present a POC of the disaster recovery strategy using the Percona
operator [28].

MongoDB Replica Sets A replica set in MongoDB is a group of mongod
processes that provide redundancy and high availability [29]. Members of a replica
set can be:

• primary: receives all write operations. There can be only one primary. The
primary records all changes to its data sets in its operation log (i.e. oplog).

• secondary: replicates operations from the primary to maintain an identical
data set. Secondaries replicate the primary’s oplog and apply the operations to

65

Disaster Recovery with Liqo

their data sets asynchronously. By having the secondaries’ data sets reflect the
primary’s data set, the replica set can continue to function despite the failure
of one or more members. Clients can only read from secondary members.

A member of a replica set is often referred to as a node (not to be confused with
Kubernetes nodes).

The setup For this POC, we consider a 2-cluster setup where one cluster is
the main site and the other is the failover site. However, it can also be extended
to an N-cluster configuration where only one cluster is the main site. Percona
Operator for MongoDB must be deployed on both clusters. The failover site runs a
MongoDB cluster in unmanaged mode. In this mode, nodes are not assigned to any
replica set and the operator does not control TLS certificates for authentication
and encryption. Figure 6.1 shows an overview of the setup.

DB Pod N Data
replication

Operator

Main site

ReplicaSet

Config Server
ReplicaSet

mongos

Replica site

Operator

ReplicaSet

Config Server
ReplicaSet

mongos

Figure 6.1: Cross-site Replication with Percona Operator [28]

Exposing Replica Set members between clusters A necessary requirement
is that each replica set member (node) is exposed via a dedicated K8s service. This
is required to ensure that replica set nodes (including Config Servers) on Main and
DR can reach each other, as in a full mesh (Figure 6.2).

ClusterIP services and Kubernetes DNS addressing cannot be used in this
context because members should be reachable from members outside the cluster.
Using an external LoadBalancer provider is the ideal solution, although it requires
allocating additional IPs for each member, which can be expensive, especially
without a private network.

66

Disaster Recovery with Liqo

Figure 6.2: Cross-site Replication Mesh [28]

Sharing secrets between clusters The next step is to copy all the secrets
required to manage the MongoDB deployment to the replica site cluster. This
includes the secrets containing the authentication credentials of DB users, the
TLS certificates used to encrypt communications between members, and the data
encryption key. Copying the secrets manually can be a tedious process from a
security perspective. Also, pre-sharing of the secrets must be properly managed
and requires additional infrastructure to securely distribute the keys out-of-band
(OOB). This problem is addressed with Liqo in Section 6.2.

Configuration of quorum votes for primary election In a MongoDB replica
set, the primary member is the node that receives all write operations and forwards
them to secondary nodes for replication. The election of a primary member is
automatic and handled by the replica set’s internal election protocol. When a
replica set is initialized for the first time, or when a primary member steps down
or cannot be reached by the other members, a new primary member must be
elected. Nodes that are eligible for election compare their priorities to determine

67

Disaster Recovery with Liqo

which node has the highest priority. By default, all nodes have a priority of 1, but
administrators can configure each node’s priority to reflect the relative importance
of that node in the replica set. Nodes with higher priorities have a greater chance of
being elected as the primary member. Each node in the replica set can be assigned
a certain number of votes, which are used to calculate the total number of votes
in the replica set. During an election, a node must receive a majority of the total
votes in order to be elected as the primary member.

An important step is to correctly configure the priority and the number of votes
of each member. Let’s consider a scenario with 3 members for each cluster (6 in
total). In the failover site there are 3 nodes, but only 2 are voters. This is done
to avoid split-brain [30] situations and not to start the primary election when
the DR site is down or there is a network disruption between the Main and DR
sites. Therefore, there will be three voters in the main cluster and two voters in
the replica cluster, as shown in Figure 6.3. This means that if the main cluster
fails, the replica nodes will not have a majority and will not be able to elect a new
primary. This allows to step in and perform a manual failover as part of the
disaster recovery plan.

Figure 6.3: Configuration of quorum votes for each replica set member [28]

Manual Failover In case of disruption of the main site, the replica site is the
next candidate to become the new main site. To account for split-brain scenarios,
members of the replica site do not have the quorum to elect a new primary. To
configure the new main site, manual intervention is required. Normally, you can
change the replica set configuration only from the primary node, but in such a
situation where you have no primary node and only a few surviving members,

68

Disaster Recovery with Liqo

MongoDB allows to force the reconfiguration from any alive member. After the
reconfiguration, the replica set will consist of only three members, two of which
will have votes and a majority. Thus, they will be able to elect a new primary.
Once the replica cluster becomes the main cluster, all clients connected to the old
main cluster should be reconfigured to point to the new main site.

Figure 6.4: Failover to DR site [28]

6.2 Using Liqo to automate and simplify the cre-
ation of failover sites

The cross-site replication can be a valid DR solution, but is complex to manage
and set up. The clusters are separate entities that need to share information (e.g.,
secrets) and communicate seamlessly. Vanilla Kubernetes does not provide enough
flexibility and features to manage a multi-cluster setup. This is where Liqo can
provide that flexibility and features to better automate and simplify the entire
process.

The idea is to use Liqo to connect main and failover clusters. The offload-
ing functionality allows to share secrets and expose all necessary endpoints for
communication between members of the replica set.

69

Disaster Recovery with Liqo

Exposing replica set members between clusters As explained in the previous
section, all members of the replica set must communicate with each other, forming a
full mesh. To do this, each member must be exposed with a cross-cluster service such
as NodePort or an external LoadBalancer. The former is built into Kubernetes,
but it lacks flexibility. The latter requires allocating the necessary IPs for all
members. This is not an easy solution for bare-metal deployments, especially when
clusters cannot communicate over a private network. Cloud provider solutions,
on the other hand, offer easy configuration but can be economically expensive. If
the cloud-provided LoadBalancer service does not provide name addressing (e.g.,
DNS), all IP endpoints must be hard-coded. With Liqo, the members of a replica
set can be exposed across clusters using Liqo service reflection. All you need to
do is peer the clusters and offload the required namespaces. This way, replica set
members can reach members in another cluster by contacting the offloaded services,
which will be simple ClusterIP services. Consequently, the built-in Kubernetes
DNS can be used, avoiding hard-coding the IPs in the resources: a member of a
replica set can be easily reached through a standard and fixed endpoint name (e.g.,
<RS-SERVICE>.<NAMESPACE>.svc.cluster.local). The following example shows
a possible CR definition for deploying 3 nodes on the main site + 3 external nodes
on the replica site.

1 − name : r s0
2 s i z e : 3
3 externa lNodes :
4 − host : r e p l i c a −c l u s t e r −rs0 −0. percona−r e p l . svc . c l u s t e r . l o c a l
5 p r i o r i t y : 1
6 votes : 1
7 − host : r e p l i c a −c l u s t e r −rs0 −1. percona−r e p l . svc . c l u s t e r . l o c a l
8 p r i o r i t y : 1
9 votes : 1

10 − host : r e p l i c a −c l u s t e r −rs0 −2. percona−r e p l . svc . c l u s t e r . l o c a l
11 p r i o r i t y : 0
12 votes : 0

Liqo essentially provides a built-in and secure private network (+ DNS address-
ing) to connect replicas across different clusters, avoiding the hassle of setting up
complex and/or expensive external solutions.

Sharing secrets between clusters Another useful benefit is the ability to
share secrets easily and securely thanks to the Liqo reflection. By default, Liqo
automatically reflects verbatim any secrets that exist in an offloaded namespace.
This allows one cluster to seamlessly access the TLS and encryption keys secrets of
the other cluster without the need for complex and risky OOB keys distribution.

70

Disaster Recovery with Liqo

The setup Let’s consider a 2-cluster setup with one main site and one DR
site. The Percona operator is deployed on both clusters. Both clusters deploy
a StatefulSet containing a number of replica set members, each backed by the
corresponding service. Then, both clusters offload the respective namespaces via
Liqo. It is convenient to use the Local policy as the pod offloading strategy, since
only the services and secrets need to be offloaded, not the pods. Now the pods in
the main site can reach the pods in the DR site (and vice versa) by contacting
the correct (offloaded) services. Figure 6.5 shows a graphical representation of
the setup. As evident, all members can reach each other, forming a full mesh as
required by the database. Note that a bidirectional peering is required, as each
cluster must offload its services to the other. This strategy can also be extended to
an N-cluster setup by establishing a bidirectional peering between each cluster.

Figure 6.5: Cross-site Replication with Percona Operator and Liqo

71

Chapter 7

Conclusions

The need for multi-cluster environments has increased dramatically in recent years
to meet the demands and to provide resources for modern businesses. The ability
to create a federation of clusters that share resources and computation is the way to
achieve this goal. However, multi-cluster topologies lead to increased infrastructure
complexity. The presented thesis examined the potential problems that can arise
in such setups.

The first part focused on analyzing service continuity in a multi-cluster environ-
ment powered by Liqo. Different scenarios were analyzed considering the failure of
key elements of the infrastructure such as worker nodes, control planes, the network,
etc. A new controller was introduced to better handle the failure of a worker node.
Then, a new abstraction, the Shadow EndpointSlice, was developed to provide
resilience in case of failures of the (local) cluster and/or the network connectivity
between peers. The feature was tested with several performance benchmarks to
evaluate its impact and overhead. Both works were implemented and integrated
into the official Liqo codebase.

Finally, a proof of concept is proposed for a disaster recovery strategy that
leverages a federation of Kubernetes clusters peered with Liqo. The idea is to
interconnect multiple clusters, one of which is used as the main site and the others
as failover sites for application data backup and recovery. In this context, Liqo’s
flexibility and functionality in multi-cluster environments can greatly simplify and
automate the entire process.

72

Bibliography

[1] Kubernetes official documentation. url: https://kubernetes.io/docs/
home (cit. on pp. 4, 13, 14, 16, 17, 21, 31, 32).

[2] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,
Eric Tune, and John Wilkes. «Large-scale cluster management at Google with
Borg». In: Proceedings of the European Conference on Computer Systems
(EuroSys). Bordeaux, France, 2015 (cit. on p. 4).

[3] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes.
«Omega: flexible, scalable schedulers for large compute clusters». In: SIGOPS
European Conference on Computer Systems (EuroSys). Prague, Czech Re-
public, 2013, pp. 351–364. url: http://eurosys2013.tudos.org/wp-
content/uploads/2013/paper/Schwarzkopf.pdf (cit. on p. 4).

[4] Ferenc Hámori. The History of Kubernetes on a Timeline. June 2018. url:
https://blog.risingstack.com/the-history-of-kubernetes (cit. on
p. 5).

[5] Kalyan Ramanathan. 5 business reasons why every CIO should consider
Kubernetes. Oct. 2019. url: https://www.sumologic.com/blog/why-use-
kubernetes (cit. on pp. 5, 11).

[6] Steven J. Vaughan-Nichols. The five reasons Kubernetes won the container
orchestration wars. url: https://blogs.dxc.technology/2019/01/28/
the- five- reasons- kubernetes- won- the- container- orchestration-
wars (cit. on p. 5).

[7] Eric Carter. Sysdig 2019 Container Usage Report: New Kubernetes and se-
curity insights. Oct. 2019. url: https://sysdig.com/blog/sysdig-2019-
container-usage-report (cit. on p. 7).

[8] Raft Consensus Algorithm. url: https://raft.github.io (cit. on p. 9).
[9] k8s Network Model. url: https://kubernetes.io/docs/concepts/cl

uster-administration/networking/#the-kubernetes-network-model
(cit. on p. 18).

73

https://kubernetes.io/docs/home
https://kubernetes.io/docs/home
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://blog.risingstack.com/the-history-of-kubernetes
https://www.sumologic.com/blog/why-use-kubernetes
https://www.sumologic.com/blog/why-use-kubernetes
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars
https://blogs.dxc.technology/2019/01/28/the-five-reasons-kubernetes-won-the-container-orchestration-wars
https://sysdig.com/blog/sysdig-2019-container-usage-report
https://sysdig.com/blog/sysdig-2019-container-usage-report
https://raft.github.io
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model
https://kubernetes.io/docs/concepts/cluster-administration/networking/#the-kubernetes-network-model

BIBLIOGRAPHY

[10] k8s CNI. url: https://kubernetes.io/docs/concepts/extend-kuberne
tes/compute-storage-net/network-plugins (cit. on p. 20).

[11] k8s Services. url: https://sookocheff.com/post/kubernetes/understa
nding-kubernetes-networking-model (cit. on p. 21).

[12] Kubebuilder git repository. url: https://github.com/kubernetes-sigs/
kubebuilder (cit. on p. 21).

[13] Kubernetes Operator pattern. url: https://kubernetes.io/docs/concept
s/extend-kubernetes/operator (cit. on p. 21).

[14] Liqo documentation. url: https://docs.liqo.io (cit. on pp. 22, 38).
[15] Virtual Kubelet GitHub repository. url: https://github.com/virtual-

kubelet/virtual-kubelet (cit. on p. 27).
[16] Liqo GitHub repository. url: https://github.com/liqotech/liqo (cit. on

pp. 31, 53).
[17] Kubernetes Nodes Conditions. url: https://kubernetes.io/docs/concep

ts/architecture/nodes/#condition (cit. on pp. 33, 48).
[18] Istio Service Mesh. url: https://istio.io (cit. on p. 35).
[19] Linkerd Service Mesh. url: https://linkerd.io (cit. on p. 35).
[20] Stakater AB. Effective disaster recovery strategies for Kubernetes. url: https:

/ / www . cncf . io / online - programs / effective - disaster - recovery -
strategies-for-kubernetes (cit. on pp. 36, 37).

[21] OpenStack. url: https://www.openstack.org (cit. on p. 37).
[22] Percona Operator for MongoDB. url: https://docs.percona.com/percon

a-operator-for-mongodb/index.html (cit. on pp. 38, 65).
[23] MongoDB. url: https://www.mongodb.com (cit. on pp. 38, 65).
[24] Marco Iorio, Fulvio Risso, Alex Palesandro, Leonardo Camiciotti, and An-

tonio Manzalini. «Computing Without Borders: The Way Towards Liquid
Computing». In: IEEE Transactions on Cloud Computing (2022), pp. 1–18.
doi: 10.1109/tcc.2022.3229163. url: https://doi.org/10.1109%2Ftcc.
2022.3229163 (cit. on pp. 41, 44).

[25] Liqo Benchmarks repository. url: https://github.com/liqotech/liqo-
benchmarks (cit. on p. 62).

[26] Kubemark hollow nodes. url: https://github.com/kubernetes/commu
nity/blob/master/contributors/devel/sig-scalability/kubemark-
guide.md (cit. on p. 62).

[27] Kubernetes: considerations for large clusters. url: https://kubernetes.io/
docs/setup/best-practices/cluster-large (cit. on p. 63).

74

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/network-plugins
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model
https://sookocheff.com/post/kubernetes/understanding-kubernetes-networking-model
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/kubernetes-sigs/kubebuilder
https://kubernetes.io/docs/concepts/extend-kubernetes/operator
https://kubernetes.io/docs/concepts/extend-kubernetes/operator
https://docs.liqo.io
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/virtual-kubelet/virtual-kubelet
https://github.com/liqotech/liqo
https://kubernetes.io/docs/concepts/architecture/nodes/#condition
https://kubernetes.io/docs/concepts/architecture/nodes/#condition
https://istio.io
https://linkerd.io
https://www.cncf.io/online-programs/effective-disaster-recovery-strategies-for-kubernetes
https://www.cncf.io/online-programs/effective-disaster-recovery-strategies-for-kubernetes
https://www.cncf.io/online-programs/effective-disaster-recovery-strategies-for-kubernetes
https://www.openstack.org
https://docs.percona.com/percona-operator-for-mongodb/index.html
https://docs.percona.com/percona-operator-for-mongodb/index.html
https://www.mongodb.com
https://doi.org/10.1109/tcc.2022.3229163
https://doi.org/10.1109%2Ftcc.2022.3229163
https://doi.org/10.1109%2Ftcc.2022.3229163
https://github.com/liqotech/liqo-benchmarks
https://github.com/liqotech/liqo-benchmarks
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-scalability/kubemark-guide.md
https://kubernetes.io/docs/setup/best-practices/cluster-large
https://kubernetes.io/docs/setup/best-practices/cluster-large

BIBLIOGRAPHY

[28] Percona Operator: disaster recovery for mongodb on Kubernetes. url: https:
//www.percona.com/blog/disaster-recovery-for-mongodb-on-kubern
etes (cit. on pp. 65–69).

[29] MongoDB Replication. url: https://www.mongodb.com/docs/manual/
replication (cit. on p. 65).

[30] Split-brain (computing). url: https://en.wikipedia.org/wiki/Split-
brain_(computing) (cit. on p. 68).

75

https://www.percona.com/blog/disaster-recovery-for-mongodb-on-kubernetes
https://www.percona.com/blog/disaster-recovery-for-mongodb-on-kubernetes
https://www.percona.com/blog/disaster-recovery-for-mongodb-on-kubernetes
https://www.mongodb.com/docs/manual/replication
https://www.mongodb.com/docs/manual/replication
https://en.wikipedia.org/wiki/Split-brain_(computing)
https://en.wikipedia.org/wiki/Split-brain_(computing)

	List of Figures
	Acronyms
	Introduction
	Introducing Liqo
	Goal of the thesis
	Structure of the work

	Kubernetes
	Kubernetes: a bit of history
	Evolution of workloads management
	Container orchestrators
	Kubernetes architecture
	Control plane components
	Node components

	Kubernetes objects
	Labels and Selectors
	Namespace
	Pod
	ReplicaSet
	Deployment
	DaemonSet
	Service
	EndpointSlice

	Kubernetes networking architecture
	Container communication within same pod
	Pod communication within the same node
	Pod communication on different nodes
	CNI (Container Network Interface)
	Pod to service networking

	Kubebuilder

	Liqo
	An overview of Liqo
	Liqo Peering
	Liqo Reflection
	Network Fabric
	Cross-cluster VPN tunnels
	In-cluster overlay network

	Liqo CRDs
	NetworkConfig CR
	TunnelEndpoint CR
	ForeignCluster CR
	ShadowPod CR

	Liqo components
	CRD Replicator
	Virtual Kubelet
	IPAM component
	Network manager
	Liqo Gateway

	Business Continuity in Kubernetes
	Service Continuity
	Pods and Nodes lifecycles
	Service Mesh solutions

	Disaster Recovery

	Service Continuity with Liqo
	Multi-cluster setup with Liqo
	Application use cases and policies
	High Availability (HA) Liqo components

	Failure scenarios
	Local worker node failure
	Remote worker node failure
	Local cluster failure
	Remote cluster failure
	Local control plane failure
	Remote control plane failure
	Inter-cluster network failure

	NodeFailure controller: resiliency to remote worker nodes failures
	NodeFailure controller implementation
	The algorithm
	Drawbacks

	Shadow EndpointSlices: resiliency to local cluster failures
	The ShadowEndpointSlice CR
	ShadowEndpointSlice controller implementation
	Limitations
	Performance evaluation

	Disaster Recovery with Liqo
	Disaster Recovery with Percona Operator
	Using Liqo to automate and simplify the creation of failover sites

	Conclusions
	Bibliography

