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Abstract

Modern communication systems require sophisticated channel coding to enable
high performance and low complexity trade-off implementations. A wide variety
of decoding techniques have been proposed throughout the years to meet these
requirements, while Moore’s law slows down and the improvements in silicon
process technology are not sufficient to reach the desired data rates. Low-density
parity-check (LDPC) codes are one of the most promising techniques in terms of
error-correcting capabilities and throughput performance, but the abundance of
existing architectures makes difficult to choose optimal solutions.

For this reason, this master thesis proposes a design space exploration tool,
having the goal to offer a wide range of possible LDPC decoder architectures,
comparing their performances and guiding an hypothetical decoder designer towards
an effective implementation.

The tool’s scope includes partially-parallel architectures implementing Min-sum
algorithm and decoding Quasi-cyclic LDPC codes compliant with the 5G New
Radio standard, based on base-graph 1. Results are obtained on a 45 nm technology
library. The design space variables concern design choices such as scheduling scheme,
building blocks’ architectures, and techniques such as loop unrolling and pipelining,
along with a few system parameters.

Estimations of the decoders’ characteristics such as area, operating frequency
and throughput are provided by the tool, exploiting an architectural model of
the decoders, and either the direct synthesis results or an empirical model of the
fundamental components of these architectures. The output obtained is a rapid
and accurate overview of the decoder architectural solutions, highlighting their
advantages and disadvantages.
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Chapter 1

Introduction

Digital communications permeate everyday tasks in modern society. Work, study,
entertainment, almost every field of human activity heavily uses communication
or at least obtains great benefits from it. This is reflected in the continuously
increasing number of connected devices, wireless applications, and ultimately the
increasing of communication requirements. As a matter of fact, data rates has
increased with every new mobile communication generation, going from 1 Gb/s in
LTE-A, to a range between 10 to 100 Gb/s in 5G, and towards 1 Tb/s is foreseen in
Beyond-5G. Moreover, as new applications arise, many other features are required.
Suffice it to consider Internet of Things, Virtual Reality, Memory Storage, all have
very different needs in latency, throughput, area and power constraints.

Improvements in the silicon process technology has served for many years the goal
of achieving better throughput, latency and power consumption. Unfortunately, as
the Moore’s law slows down, these are not sufficient to meet the future requirements,
thus an approach which also includes algorithms and hardware implementations is
needed. This issue impacts in particular forward error correction (FEC) techniques
and the corresponding decoders since their complexity at high data rates makes
their implementation a critical issue.

Low-density parity-check (LDPC) codes were proposed by R. Gallager in the
1960s [1], but were long ignored due to the considerable hardware requirements
and decoding complexity. Following the development of Turbo-codes [2], they
were rediscovered in 1992 by MacKay [3]. The excellent performances of LDPC
compared to their relatively low complexity, made them suitable for a vast amount
of applications. In fact, they are currently adopted in many standards, such as
DVB-S2, 10GBASE-T Ethernet, Wi-Fi 802.11n, 802.11ac, 802.11x, and not least
5G New Radio (NR).

The design of LDPC decoders can be challenging because of the complexity of
iterative decoding and the vast solution space that derives from it.

1



2 Chapter 1. Introduction

1.1 The proposed design space exploration tool
This work proposes a design space exploration tool capable of modeling several
LDPC decoders, distinct in the combination of the design choices within the
considered design space. For each of the modeled architecture, the tool provides
area, frequency and throughput estimations.

This analysis is based on the area and delay characteristics of the building blocks
of the considered architectures, which can either be retrieved from the syntheses
of the exact designs needed in the LDPC decoder, or from a mathematical model
built from fitted data.

The proposed approach consists in finding all the valid combinations, creating
a database of LDPC decoder architectures. An architectural-algorithmical model
provides for each of them an analysis which includes: critical path and maximum op-
erating frequency estimations, analysis of the components list, memory requirements
analysis, latency cycles and eventually area and throughput estimations.

This methodology constitutes a fast and low-investment analysis, while also
easy to customize. It provides an overview of the possibilities that LDPC decoders
can offer, thus it could guide a designer towards the most interesting solutions for
their use case. On the other hand, it is not intended as a deep analysis on each
solution and results must be considered as estimations to narrow down the solution
space to a more contained subset. Finally, the tool can be easily customized to
retrieve specific information on each studied architecture (e.g., the amount of units
employed, or the percentage of area occupied by the memories), or to include
different components’ designs.

1.2 Organization
This thesis is organized as follows.
Chapter 2 - LDPC codes Presentation and description of the LDPC codes,

Quasi-cyclic LDPC and LDPC in 5G NR standard.

Chapter 3 - LDPC decoding Description of LDPC iterative decoding. De-
coding algorithms, parallelism, scheduling schemes and the corresponding
architectures are presented.

Chapter 4 - Architectures in the design space Details on the architectures
in the design space, including processing elements, routing networks and
memories.

Chapter 5 - A design space exploration tool Presentation on the DSE tool,
the proposed approach and its validation.
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Figure 1.1: Organization of the tool’s approach.





Chapter 2

LDPC codes

Low-density parity-check (LDPC) codes are error-correcting codes capable to
approach the channel capacity.

This chapter provides the fundamentals required to understand the LDPC
decoding. First, a brief background on channel coding is presented. Then, LDPC
codes are introduced along with their description with parity-check matrices and
Tanner graphs. Lastly, Quasi-cyclic LDPC and 5G NR standard are detailed, as
they are of particular interest in the design space exploration tool application.

2.1 Background on channel coding
Transmitting a signal over a real communication channel inevitably introduces
a noise, which is received with the proper signal. This perturbation can lead to
transmission errors when retrieving the original information, interpreting bits by
their opposite values.

A general communication system is composed as in Figure 2.1. The encoder and
the decoder are used to employ a forward error correction technique, which is capable
of detecting and correcting most of the errors that can happen during transmission
over a noisy channel. In particular, given a K-bit message m = m1 m2 ... mK , the
encoder computes M redundancy bits, concatenating them to the original message
and obtaining the N -bit codeword c to be modulated and transmitted.

A simple example of modulation is the Binary Phase-Shift Key (BPSK), which

Encoder DecoderModulator Demodulatorchannelm c x y ĉ m̂

Figure 2.1: A general communication system.
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6 Chapter 2. LDPC codes

consists in computing each modulated symbol xi according to

xi =

+
√

Es, if ci = 0
−

√
Es, if ci = 1

(2.1)

where Es is the energy transmitted per symbol.
The x signal is sent through the noisy channel, usually modeled as an Additive

White Gaussian Noise (AWGN) channel, which entails that the signal at channel
output is given by

yi = xi + ε, (2.2)
where ε ∼ N (0, N2

0 ) is the additive white noise contribution with normal distribu-
tion and noise power spectral density N0.

The demodulator retrieves the codeword ĉ from the received y signal. This can
consist in a hard decision according to the sign of the yi value, but soft decision
provides better error correcting capabilities of the decoder. In particular, it is
usually implemented by using fixed point representation of log-likelihood ratios
(LLR), which are presented and motivated in Section 3.1.

The decoder’s task is to recover the message m̂ detecting and correcting the
errors contained in the received codeword ĉ. If m̂ = m, then the message is
successfully being recovered and received. Some coding techniques are capable of
just detecting errors, which requires a re-trasmittion of the codeword, but LDPC
codes are also capable of correcting most of the errors, thus increasing performances
and transmission throughput.

2.2 LDPC codes description
Low-density parity-check (LDPC) codes are forward error correction (FEC) codes,
capable to approach the channel capacity. LDPC are also linear block codes, which
means that when K information bits must be transmitted, M parity bits are
computed as linear combinations of the information bits. Hence, the total number
of transmitted bits is N = K +M . The code rate R is defined as R = K/N = N−M

N
.

This set of equations defines the parity-check matrix H, where each row represents
a parity-check equation and each column represents a transmitted bit (whether it
be an information bit or a parity bit). If the element H(i, j) = 1 it means that
the j-th bit is present in the i-th equation. LDPC codes are characterized by a
parity-check matrix H of dimensions M × N , which is sparse, hence the name
low-density.

A received message c = c1 c2 . . . cN is considered a codeword if the parity-check
equations:

H cT = 0 (2.3)
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v2v1 v3 v4

c1 c2 c3

Figure 2.2: An example of Tanner graph

are satisfied in modulo 2 arithmetic. An example of a parity-check matrix is the
following:

H =

1 1 1 0
0 1 1 1
1 0 0 1

 (2.4)

The number of ones in a row is called the row degree, while the number of
ones in a column is the column degree. If the row degree is the same for each row
and the column degree is the same for each column the code is said to be regular,
otherwise it is irregular. In order to have a good error correcting performance,
the H matrix must be sparse, as previously said, and the code length should be
of at least hundreds or thousands of bits. LDPC codes with lower code length
are outperformed by other codes such as Turbo codes. Better performances are
generally achieved in randomly constructed codes, but they are more difficult to
implement in hardware. A good trade-off is achieved with Quasi-cyclic LDPC
codes, presented in Section 2.3.

A popular description of LDPC codes consists in the Tanner graph [4]. This
is a bipartite graph, which graphically represents the parity-check equations. The
Tanner graph in Figure 2.2 corresponds to the same code of the parity check matrix
in Equation (2.3). With reference to Figure 2.2, the circular vertexes are variable
nodes, which represent indiscriminately either data bits or parity bits; the squared
vertexes are check nodes, which represent the parity-check equations. An edge
connects a variable node to a check node if the corresponding bit is present in the
corresponding equation. Thus, there is a direct correspondence between the edges
in the Tanner graphs and the ‘1’ elements in the parity-check matrix H.

This graphical representation is useful to understand the idea behind the LDPC
decoding, in particular message-passing algorithms. The matrix representation is
going to be used in particular to understand the scheduling schemes.
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1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

(a) QC-LDPC parity-check matrix H.

2 -1 3 -1 0 -1

-1 0 -1 3 -1 1

-1 2 -1 1 2 -1

1 -1 0 -1 -1 2

(b) Corresponding base matrix Hp

Figure 2.3: Example of a QC-LDPC matrix description. Here Np = 6, Mp = 4,
Z = 4. Zeroes are omitted in (a) for clarity.

2.3 QC-LDPC codes

Quasi-cyclic LDPC (QC-LDPC) codes are characterized by a parity-check matrix
H of dimension M × N composed of Z × Z sub-matrices which can either be null
or circularly shifted identity matrices, also called permutation matrices. In order
to compress the description of such a parity-check matrix, a base matrix Hp is
used, where each element corresponds to a sub-matrix in H. In particular, a null
matrix is represented by a negative element (usually -1), while the circularly shifted
identity matrices are represented by the shift value, including possibly 0. The base
matrix Hp has dimensions Mp × Np, which are in relation to the dimensions of the
parity-check matrix H according to N = Np · Z and M = Mp · Z. An example of
this is shown in Figure 2.3.

The utilization of such permutation matrices is particularly advantageous in
hardware implementations since the code length can be very large, while having
Z consecutive rows or columns which do not share ones in the same columns or
rows, respectively. In other words, parallelism can be easily exploited guaranteeing
no common elements in the parity equations. This is especially useful in the
decoding of QC-LDPC, increasing throughput and achieving good error correcting
performances. Moreover, the matrix structure can be more efficiently stored in
memory using the base matrix representation Hp.
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A B 0

C I

Figure 2.4: Base graph 1 structure

2.4 5G New Radio standard
5G New Radio (NR) is the standard defined by the 3GPP1 for 5G networks. The
first definition was published with release 15, where LDPC codes and Polar codes
were chosen as channel coding schemes for data and control channels, respectively.
An overview on LDPC codes compliant with the 5G NR standard is given in [5].

5G NR standard employs QC-LDPC codes, whose base matrix is officially called
base graph, since it derives from the lifting procedure of a protograph. There are
two predefined base graphs, namely base graph 1 (BG1) and base graph 2 (BG2),
which are expanded by a lifting size Z chosen within a specific set, grouped by
permutation matrix design. In [6], the description of the base graph corresponding
to the permutation matrix design can be found.

Base graph 1 and 2 are distinct according to the desired code rate or code
length. In particular, BG1 is best suited for larger code rates and longer block
lengths. In fact, base graph 1 has a size of 46 × 68, obtaining code rate of 1/3,
while base graph 2 has size 42 × 52 and code rate 1/5. In both cases, the first two
information bits are not transmitted, as they are always punctured2. This work
focuses on BG1.

The structure of BG1 is shown in Figure 2.4, where it is portioned in six sub-
matrices. A is an irregular code and B has a dual-diagonal structure. Combined,
they form the high-rate irregular repeat accumulate (IRA) code, with sub-matrix
of size 4 × 26, code rate R = 11/12, and first two information bits punctured. The
maximum row degree dmax

c = 19 is in this region. The sub-matrix C corresponds

13rd Generation Partenership Project
2punctured bits are not considered in the code rate computation
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Parameter Value
Np 68
Mp 46
R 1/3

tot_edges 316 · Z
dmax

c 19
dc 6.87

dmax
v 30
dv 4.65

Table 2.1: BG1 parameters needed in the presented work’s analysis

to the extension code. Along with the identity matrix I and the null matrix 0,
they are used to support the IR-HARQ (incremental redundancy-hybrid automatic
repeat request).

The punctured bits are information bits, thus they must be recovered from the
decoder (as opposed as if they were parity bits). In fact, the first two columns
present a much higher column degree dmax

v = 30, which increases the chances of
retrieving the correct values.

The base graph 1 was chosen in this work. Summarized in Table 2.1, the
corresponding parameters necessary for the proposed analysis are: the base graph
dimensions Np and Mp, the total number of edges, the maximum and the average
row degree, the maximum and the average column degree.



Chapter 3

LDPC decoding

LDPC decoders convert the channel information y in the binary message ĉ, which
must satisfy the parity equations in (2.3) in order to have the codeword detected.
The traditional decoding technique for LDPC codes is an iterative decoding based
on a message-passing algorithm, where check nodes and variable nodes exchange
messages in the form of soft-information. This proved to enable better performance
compared to decoding with hard-decision bits.

The decoding process of LDPC codes is often visualized exploiting the Tanner
graph representation mentioned in Chapter 2, Section 2.2. During the decoding,
variable nodes and check nodes exchange messages with their neighbouring vertexes,
computing at each iteration the log-likelihood ratio (LLR) values on which hard-
decisions are performed. With each iteration, LLR values become more accurate
until the parity check equations are satisfied. Usually, early-stop techniques can be
used to halt the sequence of iterations when a valid codeword is found, otherwise
the iterations are repeated up to a fixed number of iterations.

Several decoding algorithms have been proposed, defining the operations that
must be performed, in particular by check nodes and variable nodes, to decode
the codeword. Parallelism determines how many processing units are employed
and the scheduling schemes indicate the order with which these operations are
performed.

LDPC decoding is presented in this chapter. Firstly, a brief recall on log-
likelihood algebra is given. Belief propagation and Min-sum algorithms are then
introduced, with emphasis on LLR domain. Additionally, the architectures’ paral-
lelism are defined. Then scheduling schemes are detailed, in particular flooding,
sliced message-passing and row-layered schemes.

11



12 Chapter 3. LDPC decoding

3.1 Log-likelihood algebra
When a symbol is demodulated, the received information could be expressed as hard
decision or soft decision. While hard decision may seem the most intuitive solution,
iterative decoding exploits soft values to enhance the decoding performance by
exchanging information between decoding units. Usually, log-likelihood ratios are
used as soft value

Log-likelihood ratios were first used in [7], where it is shown how the multi-
plicative operations needed in the iterative decoding can be avoided by moving to
the logarithm domain, using additions instead, which are easier to implement in
hardware.

Given a binary random variable x which can take the values in {0, 1}, the
log-likelihood ratio L(x) expresses how likely is that x = 0 over x = 1, and it is
given by

L(x) = log P (x = 0)
P (x = 1) .

The sign of L(x) can be used as hard decision on the most likely value of x, and
the magnitude of L(x) expresses the confidence of this decision. Using the Bayes
theorem, the LLR value on conditioned likelihood is given by:

L(x|y) = log P (x = 0|y)
P (x = 1|y)

= log p(y|x = 0)
p(y|x = 1) + log P (x = 0)

P (x = 1)
= L(y|x) + L(x).

(3.1)

In [7] it is shown how to compute the LLR value L(x1 ⊕ x2)

L(x1 ⊕ x2) = log 1 + eL(x1)eL(x2)

eL(x1) + eL(x2) ,

which can be extended in the general case:

L

AØ
i

⊕xi

B
= 2 tanh−1

AÙ
i

tanh (L(xi)/2)
B

. (3.2)

This expression is fundamental for the extrinsic information calculation as detailed
below.
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Figure 3.1: The Tanner graph in (a) highlights the set Sv(2) of variable nodes
connected to check node 2. Similarly does the Tanner graph in (b) for the set Sc(3)
of check nodes connected to variable node 3.

3.2 Decoding algorithms
Message-passing algorithms are usually employed in LDPC decoding, consisting
in an iterative decoding technique where information is exchanged between check
nodes and variable nodes, as defined in the Tanner graph (see Chapter 2, Section
2.2). Here the decoding process is briefly presented, but a more detailed and
rigorous elaboration on the theory behind it can be found in [8].

Assuming K is the message length, M is the number of parity bits and N =
K + M is the length of the codeword. Let c = (c1, c2, . . . , cN ) denote the codeword
to be modulated and sent through the channel, and y = (y1, y2, . . . , yN) the
received values. The soft value yn at the channel output is related to the n-th bit
cn transmitted. The variable-to-check message sent from variable node n to check
node m is indicated with αm,n, while the check-to-variable message sent from check
node m to variable node n is denoted with βm,n. The set of check nodes connected
to variable node n is indicated with Sc(n), while the set of variable nodes connected
to check node m is indicated with Sv(m).

Considering the soft input yn to a decoding unit, it is possible to express the
likelihood of receiving that signal value given the transmitted bit was cn = 0 or
cn = 1 as p(yn|cn = 0) and p(yn|cn = 1), respectively. The a posteriori likelihood
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of the sent bit can be computed according to the Bayes theorem as:

P (cn|y) = p(yn|cn) P (cn|{yi, i ̸= n})
p(yn) . (3.3)

Moving to the logarithm domain, this relation can be expressed using Equation
(3.1) as

γ̃n = log P (cn = 0|y)
P (cn = 1|y)

= log p(yn|cn = 0)
p(yn|cn = 1) + log P (cn = 0|{yi, i ̸= n})

P (cn = 1|{yi, i ̸= n})
= γn + L(cn).

(3.4)

This quantity is the a posteriori LLR information of bit cn. The sign expresses
whether the bit was most likely a 0 or a 1, while the magnitude expresses the confi-
dence of this guess. Two contributions can be identified: the channel information
γn and the a priori information L(cn). The channel information is only determined
by the measure of yn and the channel characteristics. For example, in case of an
AWGN channel γn = 2

√
Es/σ2 yn.

Assuming P (cn = 0) = P (cn = 1), the a priori probability is initially zero. In
iterative decoding, extrinsic information is exchanged among decoders and is used
as a priori information in the next iteration. This process can either increase the
likelihood magnitude, reinforcing the confidence on the guess, or reduce it until γ̃n

changes sign, which is an error correction.
The extrinsic information is derived from all the parity check equations, taking

into account the information on bit cn that can be retrieved from the channel values
of the remaining bits. For this reason, check-to-variable message βm,n is computed
using the information from the messages αm,j, j ∈ Sv(m), j ̸= n, as shown in
Figure 3.2. Likewise, this information comes from the a posteriori probabilities
computed in the variable nodes, which include the channel information. The
iterations would accumulate the channel information incurring into a bias, thus it
is excluded in the variable-to-check message αm,n computation, taking into account
βi,n, i ∈ Sc(n), i ̸= m. This is shown in Figure 3.3.

3.2.1 Belief propagation algorithm
Also known as Sum-product, Belief propagation (BP) algorithm ([9], [10]) is the
traditional decoding method in LDPC codes. The usage of LLR values greatly
simplifies the implementation of this algorithm. In fact, several multiplications
and additions would be required in BP, both for the check node and variable
node operations. Thus, opting for the logarithm domain, multiplications become
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Figure 3.2: Example of check-to-variable message computation β2,3. Check node
2 computes this message considering the α2,j, excluding the one that comes from
the recipient variable node 3.
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Figure 3.3: Example of variable-to-check message computation α2,3. Variable
node 3 computes this message considering the βi,3, excluding the one that comes
from the recipient check node 2.
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additions and both the α and β-messages computations are simplified. More
information can be found in [7] and [11].

At the start of the decoding, no a priori information is available, thus the input
to the decoder consists solely in the LLR channel information

γn = log p(yn|cn = 1)
p(yn|cn = 0) ,

where yn is the value received from the channel. This information is used to
initialize the variable-to-check messages αj,n, where j ∈ Sc(n).

The check-to-variable message βm,n from check node m to variable node n is
computed using the variable-to-check messages αm,j, j ∈ Sv(m), j ̸= n as

βm,n = 2 tanh−1

 Ù
j∈Sv(m),j ̸=n

tanh (αm,j/2)
. (3.5)

This calculation can be implemented in hardware using lookup tables (LUTs),
but the large number of units required to achieve high-throughput dramatically
increases the complexity and is therefore very limited [11].

Variable node n receives the messages βj,n, j ∈ Sc(n), and uses them to com-
pute the variable-to-check messages. Symmetrically to the check node, the αm,n

computation excludes the message βm,n from its calculation:

αm,n = γn +
Ø

i∈Sc(n),i ̸=m

βi,n. (3.6)

Moreover, the a posteriori information is computed as:

γ̃n = γn +
Ø

i∈Sc(n)
βi,n.

Here it is possible to notice the reformulation

αm,n = γ̃n − βm,n,

which can be exploited in some architectural solutions. The a posteriori information
γ̃n expresses the confidence on bit cn and its sign can be used as a hard decision.
This can be used against the parity check equations in (2.3). Therefore, the
decoding is repeated either until a valid codeword is obtained or up to a fixed
number of iterations.
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3.2.2 Min-Sum algorithm
A simplification on the Belief propagation algorithm can be obtained in the com-
putation of the βm,n messages. In [7] the following approximation is proposed for
Equation (3.2):

L

AØ
i

⊕ ci

B
= 2 tanh−1

AÙ
i

tanh L(ci)/2
B

≈
IÙ

i

sign[L(ci)]
J

· min
i

{|L(ci)|}.

The Min-sum (MS) algorithm uses this approximation in the calculation of the
check-to-variable messages βm,n, obtaining

βm,n =

 Ù
j∈Sv(m),j ̸=n

sign(αm,j)

 · min
j∈Sv(m),j ̸=n

{|αm,j|}. (3.7)

The αm,n and γ̃n remains the same as in the BP algorithm.
This approximation leads to a great reduction in the complexity of the decoding

algorithm. In particular, it now consists in the search for the minimum magnitude
|αm,j|, j ∈ Sv(m), j ̸= n and the product of the signs. This is an important
improvement with respect to the expression in Equation (3.5).

3.2.3 Improvements of Min-sum algorithm
The Min-sum algorithm reduces the complexity of the Belief propagation algorithm,
but this improvement comes with the cost of error correcting performance, usually
measured in bit error rate (BER). Two solutions were proposed to mitigate this
loss: one is known as the Normalized Min-sum (NMS), while the other is known
as the Offset Min-sum (OMS) algorithm [12]. Normalized Min-sum algorithms
correct the check-to-variable message computation in Equation (3.7) by scaling of
a factor S < 1,

βm,n = S ·

 Ù
j∈Sv(m),j ̸=n

sign[αm,j]

 · min
j∈Sv(m),j ̸=n

{|αm,j|}.

In Offset Min-sum, the magnitudes of variable-to-check messages are reduced by
an offset λ > 0 before being compared, thus obtaining

βm,n =

 Ù
j∈Sv(m),j ̸=n

sign[αm,j]

 · min
j∈Sv(m),j ̸=n

{|αm,j| − λ, 0}.
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In either case, the S and λ values must be derived by simulations. Hardware
implementations may consider to approximate these values in order to simplify
their operations. For example, NMS may exploit a shift operation to scale by a
factor S = 2−k, k ∈ {1, 2, . . . }, or an efficient implementation for S values with
a small number of ones in their binary representation [11]. With the optimized
factors, NMS and OMS reach BER very close to the BP algorithm, while being
only a little more complex than MS.

3.3 Decoding parallelism
Check nodes and variable nodes are processed by computing the messages as detailed
in Section 3.2. These computations are performed by specialized processing elements
denoted check node units (CNUs) and variable node units (VNUs), respectively.
The number of instances of these units determines the architecture parallelism,
which is a critical parameter for the overall decoder performance.

Three categories of architectures are discriminated according to their parallelism:
fully-parallel, serial and partially-parallel. Also, unrolled fully-parallel architectures
have been proposed to increase the achievable throughput, as required in future
standards [13].

Fully-parallel architectures have as many CNUs and VNUs as the number
of rows and columns of the parity-check matrix H, respectively. This can also
be thought as a direct correspondence between the nodes in the Tanner graph
and the CNUs and VNUs in the decoder. The advantages of this architecture are
granted by having a dedicated processing element for each node, thus providing
the highest parallelization degree, very high throughput and no penalty brought
by irregular codes. On the other hand, it lacks in flexibility as it can only decode
one specific code. Moreover, the hardwired connections among the units lead to
routing congestion problems.

Unrolling and pipelining this architecture allows to reach even higher throughput,
possibly over the 1 Tb/s mark, making it the high throughput solution for Beyond-
5G LDPC codes in the European Horizon 2020 EPIC project as discussed in
the EPIC deliverable [13]. This parallelism also alleviates the routing congestion
problem thanks to the usage of local connections.

Serial architectures have one CNU and one VNU, which implement the check
node and variable node operations in a time-multiplexed way. The two processing
elements exchange messages through a single memory. This solution is extremely
flexible, but achievable throughput is too limited and it is not sufficient for most
applications.

Partially-parallel architectures are a trade-off between the two, and is the
most popular solution in today’s decoders. They consist in multiple CNUs and
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VNUs, but still different nodes need to share the same unit. This solution requires
a scheduling of the operations, meaning the order with which rows and columns are
processed. A critical part of these architectures is the interconnections among these
units, which must be routed according to the nodes being processed. They can be
complex and occupy a large portion of the total area, but are still less problematic
than the fully-parallel hardwired interconnections. These routing networks can
be simplified in the case of QC-LDPC codes, implementing the circularly-shifted
identity matrix as barrel shifters, each taking care of one sub-matrix. This also
enables a higher parallelization within block rows and block columns corresponding
to a sub-matrix of the complete parity-check matrix.

The proposed design space exploration tool focuses on partially-parallel archi-
tectures and on QC-LDPC codes compliant with 5G NR standard.

3.4 Scheduling schemes
By definition, partially-parallel decoders have a certain number of CNUs and
VNUs which are not sufficient to process all check and variable nodes at the same
time. For this reason, a scheduling scheme must be employed, determining
which operations are served and when. It also determines which operations can be
scheduled in parallel, affecting latency, memory requirements, convergence speed
and more. The scheduling schemes presented in this section are considered in the
design space of the proposed tool. The parity-check matrix representation of a
QC-LDPC code is used throughout this section, where each block row and block
columns correspond to a row and column of sub-matrices. In other words, each row
of the shown matrices corresponds to Z rows, where Z is the lifting-size. Similarly
with columns. Thanks to the QC-LDPC codes construction, each block row and
column elaboration can be parallelized granting no conflict. Thus it is possible to
simplify the analysis considering the base matrix and then expanding rows and
columns in sub-matrices.

3.4.1 Flooding scheme
The simpler scheduling is called the flooding scheme [14]. According to this
scheduling scheme, the decoding iteration is divided in two phases: firstly, all
check nodes are processed by the CNUs, while the VNUs are idle; then all variable
nodes are processed by the VNUs, while the CNUs are idle. This scheduling is
also the only possible for fully-parallel architectures, since the VNUs must wait
for the β-messages before computing the α-messages and vice versa. An example
of this type of scheduling is shown in Figure 3.4a, where the scheduling of check
node operations in the first phase is shown. During this phase, VNUs are all idle.
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...

(a) Example of check node processing

...

(b) Example of variable node processing

Figure 3.4: Flooding scheme. Check nodes and variable nodes are processed
alternately. In this example, in the first phase (a) check nodes are processed one
block row at the time. In the second phase (b) variable nodes are processed two
block columns at the time.

Similarly, Figure 3.4b shows the second phase of the decoding iteration, during
which CNUs are idle and variable nodes are processed. At this point, the input
parallelism of either CNUs or VNUs is not specified yet, which could entail that
multiple cycles are needed to elaborate each row/column.

An improvement could be obtained by interleaving two frames, so that when
the CNUs are elaborating frame 1 the VNUs elaborate frame 2, and then exchange
messages at the same time. This is more efficient if check node and variable node
processing have the same latency, considering both the number and the latency of
the processing elements. In this work, interleaving is not considered.

The flooding scheme can be implemented with the simple architecture shown
in Figure 3.5, which defines the first building blocks of any LDPC decoder. In
particular, the following elements can be distinguished:

CNUs and VNUs These are the processing elements that compute the α and β-
messages required in the Min-sum algorithm. The number of these components
and their input parallelism determine the latency in both check nodes and
variable nodes processing.

Routing networks There are two sets of networks, which perform reciprocal
routings. The one denoted routing network is used to drive the variable-to-
check messages towards the appropriate check node, while the reverse routing
network drives back the check-to-variable messages towards the variable
nodes. This routing operations are implemented exploiting barrel shifters to
reproduce the circularly-shifted identity matrix in the QC-LDPC code. Note
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Figure 3.5: Decoder architecture with flooding scheme scheduling.

that the shifting coefficient must be read from a read-only memory which
stores the parity-check matrix compact representation.

Memories Here three types of memories are shown. The γ-memory is used to store
the channel information, which is required throughout the whole decoding
to compute the variable-to-check messages according to Equation (3.6). The
α-memory and the β-memory store the variable-to-check α messages and
check-to-variable β messages, respectively. In different scheduling schemes,
the a posteriori information γ̃ could be stored instead of the γ values.

3.4.2 Sliced message-passing scheme
Sliced message-passing scheme was presented in [15], proposing a scheduling
where check nodes and variable nodes of successive iterations are processed in
parallel. In particular, during the decoding iteration i, VNUs may have completed
the processing of a few columns, thus the corresponding α-messages have been
completed and are typically stored in the α-memory, but some more variable-to-
check messages are still to be computed. If CNUs read only some input messages
per cycle, they could start to elaborate these α-messages for the next iteration
i + 1 while other variable nodes are still being processed. Then, they complete the
β-messages when the last α-messages are delivered.
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Figure 3.6: Sliced message-passing. In this example, there are as many CNUs as
check nodes, elaborating up to two input messages per cycle. VNUs process the
complete block column in one cycle and computes up to two α-messages per row
in each cycle.

An example of this scheduling is reported in Figure 3.6, where the evolution
of check nodes and variable nodes processing is highlighted in green and blue,
respectively. Here two block columns are elaborated at a time by the VNUs. After
the first cycle, the generated α-messages are immediately consumed by the CNUs.
In this example, there are as many CNUs as the check nodes, thus elaborating all
the rows in parallel for the next iteration, reading only up to two input per cycle.
After the last α-messages are computed, the CNUs complete the β-messages for
iteration i + 1, and VNUs can start the processing for iteration i + 1 with only one
cycle of idle.

It is worth noting that the decoding iteration starts with check node processing,
thus VNUs are idle for the whole first phase. Then, the overlapping between VNUs
processing iteration i and CNUs processing iteration i+1 have each of them idle for
one cycle per iteration. Eventually, variable nodes are processed while CNUs are
idle for the last iteration. Nonetheless, the idle cycles are greatly reduced compared
to flooding scheme, increasing the achieved throughput.

The architecture for this scheduling scheme is very similar to the flooding
scheme, except that the β-memory must be doubled in size in order to permit to
write the β-messages for iteration i + 1 and to read the ones from iteration i at the
same time, instead of overwriting the same memory location. Nonetheless, if all the
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Figure 3.7: Decoder architecture with sliced message-passing scheme

α-messages are immediately consumed, then they do not need to be stored, thus
the memory requirement increase can be attenuated by removing the α-memory.
Such architecture is shown in Figure 3.7.

3.4.3 Row-layered scheme
The most popular decoding scheme is the layered approach. This is the solution with
lower complexity, but still very high throughput thanks to its higher convergence
speed. These properties made LDPC decoding suitable for multiple applications,
proved by its inclusion into several communication standards. In this work, only
row-layered scheme is considered, but also a column-based approach exists.

Row-layered scheme [16] consists in alternating the processing of check nodes
and variable nodes in layers. In particular, in row-layered scheme, one block row is
a layer. This is processed generating check-to-variable messages which are used to
update the variable-to-check messages, immediately used in the next layer.

In QC-LDPC codes, layers traditionally correspond to the rows of the sub-
matrices, exploiting their property of either being a circularly shifted identity
matrix or a null matrix. This entails that there are no columns with two or more
ones. In Tanner graph terms, each variable node is connected at most to one
check node. Such property enables parallel processing as the α-messages should
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only update at most one β-message. As previously, henceforth the base matrix is
analyzed for simplicity.

The idea behind this type of scheduling is to update the variable-to-check
messages every time a new β-message is computed. The new α-message is used in
the new layer, instead of the next iteration. Let us denote the variable-to-check
message α(k,l) and the check-to-variable message β(k,l) computed in layer l, during
the decoding iteration k. Using Equation (3.6), this translate to the computation:

α(k,l) = γ +
l−1Ø
j=0

β(k,j) +
Mp−1Ø
j=l+1

β(k−1,j)

= γ +
l−2Ø
j=0

β(k,j) + β(k,l−1) +
Mp−1Ø

j=l

β(k−1,j) − β(k−1,l)

= α(k,l−1) + β(k,l−1) − β(k−1,l)

This relation shows that the α-message at each layer can be computed as the
α-message at the previous layer, adding β(k,l−1) computed in the previous layer,
and subtracting β(k−1,l), which is the message of the current layer computed in
the during the last iteration. It is worth noting that the a posteriori LLR can be
computed as

γ̃(k,l−1) = α(k,l−1) + β(k,l−1), (3.8)

thus finally

α(k,l) = γ̃(k,l−1) − β(k−1,l), (3.9)

as already stated previously. Updating the α-messages more often, the convergence
speed with this scheduling scheme increases, requiring about 50% of the iterations.

An example of the row-layered scheduling is shown in Figure 3.8. The first two
matrices shows the VNU and CNU elaborations of the first layer. The α-messages
computed are used within the same layer immediately. The CNUs compute the
β-messages which are used to update the a posteriori information addressed to
the next layer. These sub-iterations are repeated through the whole matrix, using
the information derived from the last layer as input to the first layer in the next
iteration.

Figure 3.9 shows the architectural overview of a decoder with row-layered
scheduling scheme. It presents a few different elements than the previous archi-
tectures, in particular due to the variable node processing. The γ̃-memory is
initialized with the channel information γ. These values are used to initialize the
variable-to-check messages, but they are not needed in the successive variable node
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Figure 3.8: Row-layered scheme. The first two layers elaboration is shown,
in particular the α-messages are updated and immediately sent to the CNUs,
computing the β-messages. These are used in to update the γ̃ and in turns the
α-messages in the next layer.
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Figure 3.9: Decoder architecture with row-layered scheduling scheme

elaborations, as their information is contained in the a posteriori LLR probabilities,
used in Equation (3.9). Thus, γ̃ values are updated and stored in the corresponding
memory for each layer.

The VNU computes the α(k,l) according to Equation (3.9), which is sent to
both the CNU and a FIFO. This buffer stores the messages for the same number
of cycles as the CNU latency, namely until they are needed for the a posteriori
information update. The a posteriori update unit (APU) computes Equation (3.8),
as it performs the addition of α(k,l−1) and β(k,l−1) messages. This message is stored
in the γ̃-memory, as previously stated.

The β-messages are stored in the β-memory as before, and are read when
the same layer is elaborated during the next iteration from the VNU, which only
computes Equation (3.9), where a simple subtraction is needed. In other words, the
overall variable node processing is divided in two steps, each implemented with a
simple addition/subtraction. This greatly simplifies the VNU operation compared
to the Min-sum operation in Equation (3.6).



Chapter 4

Architectures in the design
space

The design space exploration (DSE) tool exploits the area and delay characteristics
of the building blocks which compose the final LDPC decoders. These values
are obtained by synthesis of the HDL designs via Synopsys Design Compiler.
Alternatively, a few synthesis can be performed to extract a mathematical model of
the area and delay characteristics of certain building blocks against some parameter.

Regardless of the method employed, the main building blocks must be designed,
tested and synthesized at least a few times. Each component may have a few
possible design choice, thus in the following sections the explored architectures
are presented. Check node units (CNU) are chosen with three different input
parallelism: single-input, full-row or half-row. Variable node units (VNU) are
designed either full-column for the flooding and sliced message-passing scheduling,
or the special VNU architecture for layered scheme. These scheduling schemes are
presented in Chapter 3, Section 3.4. Routing networks are modeled exploiting the
synthesis of barrel shifters, which are the predominant part of these structures.
Lastly, memories are modeled taking into account the memory organization needed
to avoid memory access conflicts.

All these architectures are designed to be compliant with the 5G New Radio
standard, presented in Chapter 2, Section 2.4. Some parameters of interest are the
number of columns of the base matrix Np, its number of rows Mp, the maximum
row degree dmax

c , the maximum column degree dmax
v and lifting size Z. It is worth

noting that it is possible to design different components’ architectures and to
integrate their characteristics within the tool, in case the user wants to expand the
evaluated design space or they are interested in different architectures from those
presented.

27
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4.1 CNU architectures
The proposed DSE tool considers three CNU architectures according to their
input parallelism: single-input, full-row and half-row. According to the employed
architecture, the overall check node operation latency is affected and the DSE tool
must consider how each solution impacts the whole circuit.

The CNU must perform the check node operations as presented in Chapter 3,
Section 3.2.2. The variable-to-check α messages are provided in sign-magnitude
representation in order to simplify the check node operation. Moreover, to reduce
the memory requirements, the check-to-variable β messages are stored in compressed
form, meaning that for each check node, the CNU must compare all the α-messages,
finding its minimum, second to minimum, index of the first minimum and the signs
of the β-messages. Before the actual VNU, a decompression unit followed by a
sign-magnitude to two’s complement conversion unit will take care to retrieve the
actual check-to-variable message starting from the variable node index.

The memory saving is effective. In fact, considering a row weight dmax
c and

word length of the message w, the total memory required to store the complete
check-to-variable messages would be of dmax

c w bits for each check node. Using
compressed messages, only 2 (w − 1) + ⌈log2 dmax

c ⌉ + dmax
c bits are needed for each

check node. Using as an example the maximum row weight in 5G NR standard
dmax

c = 19, a word length of w = 5 bits, the non compressed messages would
need 95 bits against the 32 bits needed for the compressed messages. It is worth
noting that a further compression is possible storing only the sign product of the
α-messages, but this implies that if the variable-to-check messages are not stored,
their signs are still needed to recover the actual check-to-variable messages in the
VNUs.

In this section, the CNU architectures are presented, focusing on the calculation
of min1, min2 and idx1. The signs computation is omitted for simplicity, since its
computation is trivial.

4.1.1 Single-input CNU
At each clock cycle, the CNU takes one variable-to-check message, compares its
magnitude to the temporary first and second minimums, possibly updating the
new minimums and/or the corresponding variable node index. When a new input
is received, its magnitude can be smaller than min1 and min2, between these two
values, or larger than min2. These three cases can be easily distinguished with two
comparisons as in the architecture shown in Figure 4.1. Two compare units, each
taking the input variable-to-check message magnitude and either min1 or min2,
are used to select the proper input to the minimum registers. Also the minimum
index idx1 is updated when a new min1 is found.
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Figure 4.1: Single-input sorter CNU.

4.1.2 Full-row CNU

This architecture must compare all the variable-to-check messages at the same
time, computing the compressed check-to-variable message. This operation is often
implemented exploiting comparisons in a tree organization. In particular, the two
most popular solutions are compared in [17].

The solution implemented in this work is the one proposed in [17], where it
is referred to as the tree structure approach, and it is showed how it uses more
comparisons with respect to the conventional solution ([18]), but greatly simplifies
the min2 computation. The idea behind this architecture is to compare two variable-
to-check message values in the two-input compare and switch unit (CS2), ordering
them in ascending order. From then on, two pairs of ordered values are compared in
the four-input compare and switch (CS4) units, extracting a new pair of minimums.
These units are then organized in a tree structure, obtaining at the root node the
first and second absolute minimums. The results of the comparisons in both CS2
and CS4 units are combined through the tree and eventually used to select the
proper variable node index.

An 8-input binary tree is shown as an example in Figure 4.2. Messages min1
and min2 computed from each node are passed to the parent node along with a
sequence of bits idx0, idx1, ..., idxl, where l is the height of the node. This sequence



30 Chapter 4. Architectures in the design space

CS4

CS2 CS2 CS2 CS2

CS4

CS4

x1 x2 x3 x4 x5 x6 x7 x8

min1
min2
idx0

min1
min2

idx1 idx0

min1
min2

idx2 idx1 idx0

Figure 4.2: Example of a 8-input binary tree in full-row CNU architectures.
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Figure 4.3: CS2 architecture.

is computed in each node, adding one bit in each level according to the provenance
of the minimum between its child nodes. For example, the leftmost CS4 node
subtending the input values from x1 through x4, is going to insert a bit idx1 = 0 if
min1 is from the leftmost CS2, which compares x1 and x2. Otherwise, min1 is one
among x3 and x4, thus idx1 = 1.

The CS2 unit is shown in Figure 4.3. It needs a simple compare unit, using the
result to switch the positions of the two messages at output. The two minimums
along with the comparator output are passed to the parent node, the CS4 unit.

The CS4 unit is shown in Figure 4.4, assuming that min1A, min2A and idxA are
respectively the min1, min2 and index from child node A. Similarly, min1B, min2B
and idxB are the output of child node B. This structure has to select the absolute
minimum and second minimum among the four magnitudes at input. In order to



4.1. CNU architectures 31

min1A
min1B

min2A

min2B

idxA
idxB

0

1

0

1

min1

min2

idx(n-1)

idx(n-2,...,0)

CSel

CSel

CSel

Figure 4.4: CS4 architecture.
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Figure 4.5: CSel architecture.

complete this operation, three comparisons are required: one between the two first
minimums to find the absolute minimum, and two between the first minimum and
the second minimum from different nodes. The result of the first comparison is
used to select which of the other two is going to deliver the overall second minimum.
These comparisons are similar to CS2, but only the actual minimum is needed at
the output. For this reason, a compare and select (CSel) unit is employed. Lastly,
the index is selected between idxA and idxB, concatenating the min1 comparison
result. This hierarchy is reflected in the HDL design since it provides an easy and
immediate view of the architecture.

Unfortunately, these units are sufficient only in perfect binary trees, but an
arbitrary number of inputs may need some attention. In particular, 5G NR code
has a maximum row degree of 19, thus a full-row CNU must have 19 inputs. An
easier implementation can be achieved using a code generator, which exploits the
programming language flexibility to compute the correct number and type of nodes
of the tree. Moreover, the same generator can be used in half-row CNU design as
explained in the following Section. A Python code generator was employed in this
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Figure 4.6: Example of an 11-input tree in full-row CNU architectures.

work.
In a generic tree, two more kind of nodes must be considered: CS3 and index

extend nodes. CS3 nodes take as input a pair of min1 and min2 to be compared
with a single input, thus it is a simplified version of CS4. The index extend is a
node without comparisons, taking as input one single value or a pair of min1 and
min2. In both cases, this kind of node only needs to extend the index value as if
a comparison would have been made. In fact, even if there are no comparisons,
the messages are passed to the next level of the tree, thus an index bit must be
computed. These nodes do not translate into any unit since there is no logic other
than the index assignment, which is fixed to ‘0’ independently from the input
values. Figure 4.6 shows an example of a binary tree with 11 inputs.

4.1.3 Half-row CNU

Reading only half of the variable-to-check messages, this CNU architecture must
work in two cycles. In the first cycle it elaborates the first half of the messages and
stores the temporary min1, min2 and idx1. In the second cycle, it reads the second
half of the messages, find the minimums among those values and compares them
with the ones of the previous cycle. In the proposed architecture, the half-row
CNU uses the same tree structure seen in full-row CNUs with a number of inputs
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Figure 4.7: 10-input half-row CNU architecture

equal to ⌈dmax
c /2⌉, and uses a register to store the results to be compared as seen

in the single-input CNU.
For this purpose, the code generator developed for the full-row architecture can

be reused setting the proper number of input values. The resulting design can be
then wrapped in a VHDL entity which includes the output registers and the final
comparison. Since this comparison must find min1 and min2 among the four values,
and update the final index selector by adding the last bit, this unit corresponds to
a CS4. The final architecture for a 10-input half-row CNU is shown in Figure 4.7.
This architecture is compliant with the 5G NR standard since the maximum row
degree is dmax

c = 19.

4.2 VNU architectures
Variable nodes are processed according to the Min-sum algorithm presented in
Chapter 3, Section 3.2.2. This computation is modified in the layered scheduling
scheme as shown in the same Chapter, Section 3.4.3, thus a specific architecture is
needed in that case.

In both cases, check-to-variable messages must be first retrieved from the
compressed messages, thus decompression units are employed. Then, these messages
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data
bits

min1 min2 idx1 signs
w − 1 w − 1 ⌈log dmax

c ⌉ dmax
c

Table 4.1: Compressed β-message.

must be converted from the sign-magnitude representation to two’s complement,
which is more suitable for the sum operations to be performed [11]. In order to
optimize the variable node processing, first the a posteriori LLR value is computed,
and then the variable-to-check messages are retrieved subtracting the check-to-
variable message to the LLR value.

VNUs also performs hard-decision based on the sign of the a posteriori LLR
value, which can be used to determine whether a codeword is found and potentially
early terminate the decoding.

4.2.1 Decompression unit
The check-to-variable β messages are stored in compressed form, meaning that all
the β-messages related to a specific check node are compacted in one message. This
form stores the magnitude of the absolute minimum min1, of the second minimum
min2, the index of the first minimum and the signs of the actual β messages, as
shown in Table 4.1. Storing all of the signs removes the necessity to store the signs
of the α messages, which would be needed during the decompression.

According to the Equation (3.7), the β message magnitude is the minimum
of the α messages magnitudes, excluded the one coming from the same variable
node. In other words, the β message magnitude is equal to the min1 value, except
when idx1 corresponds to the variable node the β message is addressed to. Only in
that case, |β| equals the min2 value. The implementation is straightforward with a
multiplexer whose selection signal is the output of a compare unit, which compares
idx1 with the variable node index.

4.2.2 VNU standard architecture
Variable node n is elaborated by this VNU architecture exploiting the variable-to-
check message reformulation shown in Chapter 3, here reported for convenience:

γ̃n = γn +
Ø

i∈Sc(n)
βi,n

αm,n = γ̃n − βm,n.

This architecture takes as input the βi,n, i ∈ Sc(n), that is the set of β-messages
addressed to variable node n. Firstly, the a posteriori LLR value γ̃n is computed
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Figure 4.8: Standard VNU architecture. This is a full-column architecture as it
reads all the β-messages and produces all the α-messages related to the processed
variable node.

by summing all the β-messages along with the LLR channel information γn. Then,
each βi,n message is subtracted to the result in order to compute each αi,n. Also,
the sign of γ̃n is used as hard decision.

The described architecture is shown in Figure 4.8. The α-messages computation
is more efficient in two’s complement [11], while the β-messages are easier to compute
in sign-magnitude representation, thus a sign-magnitude to two’s complement (SM-
to-2C) conversion is employed. The computed α-messages are converted back with
a two’s complement to sign-magnitude (2C-to-SM) conversion.

This work focuses only on Min-sum algorithm, but Normalized Min-sum and
Offset Min-sum can be implemented by applying the proper modification at the
end of the α computation.

4.2.3 VNU architecture for layered scheme

Row-layered scheduling is described in Chapter 3, Section 3.4.3, where it is shown
how the variable-to-check message computation can be modified to take into account
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Figure 4.9: VNU architecture in the layered scheme. This architecture includes
the APU block and the conversion units. The VNU output goes to the CNUs and
the FIFO, which provide the input to the APU. The APU updates the VNU input
in the next layer.

the β-messages computed in each layer, in order to use the updated information
in the next layer. This entails to separate the α-message computation from the
γ̃n update. The general architecture in Figure 3.9 uses two blocks: one VNU and
one A posteriori probability update unit (APU). The VNU block takes care of the
α-message computation as expressed in Equation (3.9). The APU block uses the
update mechanism detailed in the layered scheduling scheme section and expressed
in Equation (3.8). These two equations are reported here for convenience:

γ̃(k,l) = α(k,l−1) + β(k,l−1),

α(k,l) = γ̃(k,l) − β(k−1,l).

Therefore, the VNU block consists in a subtractor, while the APU block is an
adder. Similarly to the VNU standard architecture, these computations are easier
in two’s complement, thus SM-to-2C and 2C-to-SM conversions are necessary.

Figure 4.9 shows both the VNU and APU. On the left, the VNU reads the
β-message from the β-memory and computes the α-message. This is output both
in sign-magnitude and in two’s complement representation since the first goes to
the CNU and the latter is stored in the FIFO, which holds it until it is consumed
in the APU update operation. On the right, the APU is shown, which reads the
α-message held in the FIFO and the β-message computed in the CNU.
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4.3 Routing networks
One of the most complex components in partially-parallel decoders is the routing
network. This is necessary to route correctly the messages between variable and
check nodes. In fact, in general there are two reciprocal routing networks. If the
parallelism of either CNUs or VNUs is fully-parallel (that is to say that there are
as many of this processing element as the nodes) and all their input messages are
read simultaneously, the corresponding routing network can be removed in favour
of hardwired connections.

An important simplification is given by the employment of Quasi-cyclic LDPC
codes, presented in Chapter 2, Section 2.3. In fact, these codes let us gather
both variable-to-check α messages and check-to-variable β messages in groups
of Z messages, which must switch their position with the same degree as the
circular shift of the identity matrix in the corresponding sub-matrix. In other
words, the messages must circularly shift n times, where n is the coefficient from
the base-matrix.

The implementation of such routing network exploits some barrel shifters, which
produce exactly this behaviour. The number of barrel shifters depends on the
decoder architecture. For example, row-layered decoders with full-row CNU need
dmax

c barrel shifters, where dmax
c is the maximum row degree of the parity check

matrix. This number can be obtained according to the scheduling scheme, the
number of units and their input parallelism, as discussed in Section 4.5.2.

4.4 Memory organization
Memories and routing networks can easily occupy the majority of the decoder area.
For this reason, memory requirements are a crucial part of the decoders analysis.
According to the scheduling and code parameters, memory types, requirements and
access policy can be defined. As discussed in Chapter 3, the scheduling schemes
may require different memories, which can be summarized as:

α-memory This memory records the α messages while they wait to be consumed
from a CNU.

β-memory Symmetrically to the α-memory, it stores the β compressed messages
produced by the CNUs and read by the VNUs. For simplicity, the compressed
message length will be indicated by w_cmp = 2(w − 1) + ⌈log(dmax

c )⌉ + dmax
c .

γ-memory Stores the LLR channel information for the whole duration of the
codeword decoding if the γ values are needed in the VNU computations.



38 Chapter 4. Architectures in the design space

γ̃-memory Replacing the γ-memory in layered architectures, it stores the updated
a posteriori LLR information γ̃.

FIFO This special memory element is exclusively employed in layered architectures
in order to hold the α-messages during the layer elaboration, and until this
information is consumed in the a posteriori LLR information update.

The combination of scheduling scheme and processing elements’ architecture
determines the memory access policy and the memory requirements. In turns, this
also indicates the most appropriate memory type.

As discussed in Section 4.5.2, In the presented work, each scheduling scheme
has a specific node parallelism, that it is to say the number of CNU or VNU against
the number of edges per column or row, respectively. In particular, the flooding
and sliced message-passing schemes have M = Mp · Z CNUs, and Z VNU. In other
words, all the rows are processed in parallel, while one block column corresponding
to one sub-matrix is elaborated per cycle. Layered architectures have Z CNUs,
while the number of VNUs depends on the input parallelism of the CNU, as needed
in this scheduling scheme. All LLR values are represented with w bits.

4.4.1 Memory requirements
Flooding scheme adopts the γ-memory to store the channel information, reading
Z values per cycle during the VNU elaboration. Thus this memory must be able to
store N = Np · Z words, each of w bits, for a total of Np · Z · w bits. The β-memory
must store M = Mp · Z compressed messages, each of length w_cmp. The last
memory employed in flooding scheme architectures is the α-memory, which must
store up to dmax

v messages per variable node, for a total of dmax
v · Z · Np messages

with w bits.
Sliced message-passing scheme requires the same γ-memory as in flooding

scheme architectures, but it doubles the β-memory size in order to be able to
store the check-to-variable messages for iteration i + 1 at the same time as to
read the β-messages of iteration i. Nevertheless, the α-memory can be removed
if the α-messages are consumed immediately when they are computed. For this
reason, the number of VNUs employed depends on the CNU’s input parallelism
and the parity-check matrix organization. Decompression units may still need
the α-messages’ signs if the check-to-variable compressed messages do not store
the β-messages signs, but only the total sign product. This is not needed if the
compressed messages explicit all the β signs.

Row-layered scheme architectures replace the γ-memory with the γ̃-memory,
which is initialized with the LLR channel information and then stores the updated
a posteriori LLR probabilities γ̃. The difference between γ- and γ̃-memory is
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Scheduling Flooding Sliced MP Layered
γ-/γ̃-memory N · w N · w N · w
β-memory M · w_cmp 2 · M · w_cmp M · w_cmp
α-memory dmax

v · N · w - -
FIFO buffer - - Z · CNU_lat · #CNU_in · w

Table 4.2: Memory requirements.

merely functional, as the memory requirements and access policies are identical.
The β-memory has the same storage requirements as previous scheduling schemes.
Finally, the α-memory is removed as the α-messages are computed and immediately
consumed by the CNU. On its place, a FIFO buffer is employed to store these
messages until they are needed in the APU for the γ̃ update operation. This
memory needs to store as many α-messages as they are computed in one processed
layer, and for as many cycles as the CNU latency.

The memory requirements are summarized in Table 4.2.

4.4.2 Memory access policy

According to the scheduling schemes and the CNU input parallelism, memory
access policies can vary, entailing different memory types. In this work, the input
parallelism of VNUs is not a free parameter, otherwise it should be considered as
well.

In flooding scheme, the γ values are read in two occasions: in the first check
node iteration, and in all variable node elaborations. Since the chosen decoder
architectures have Z VNUs, they always read a group of Z consecutive w-bit values,
corresponding to one sub-matrix in the QC-LDPC code. Nevertheless, the CNU
input parallelism may require to read more γ-values in the same cycle. In particular,
single-input CNUs read one group of Z LLR values per cycle; full-row CNUs read
all N γ channel information; half-row CNUs at least N/2 γ, but this number can
increase according to the positions of ones in the parity-check matrix.

Since M CNUs work in parallel, the β-memory must be able to write all M
messages at the same time at the end of the check nodes processing, independently
on the input parallelism. VNUs read in each cycle up to dmax

v random groups
of Z consecutive compressed messages, according to the position of the non-zero
elements in the corresponding block column of the parity-check matrix (or base
matrix).

After the first iteration, CNUs receive their input values from the α-memory,
hence it must be able to be read similarly to the γ-memory, i.e. according to the
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Figure 4.10: Relation of the γ/γ̃-memory, α-memory and β-memory to the parity
check matrix.

CNUs’ architecture, but also extending the word parallelism to the dv
1 messages.

In fact, single-input CNUs need to read up to Z · dmax
v messages per cycle; full-row

CNUs reads all the α-messages; and half-row CNUs need to read about half the
α-messages. The write operation parallelism is given by the Z VNUs, each writing
up to dmax

v messages.
In sliced message-passing, the γ-memory access is the same as in the flooding

scheme. As previously, M of the β messages must be written all in parallel by the
CNUs, while at the same time up to dmax

v random groups of Z messages are read
from the VNUs.

Layered scheme employs the γ̃-memory which must be updated with each
layer elaboration, thus reading and writing dmax

c random groups of Z LLR values,
according to the non-zero elements in the corresponding row of the parity-check
matrix (or the base matrix). On the other hand, the β-memory only reads and
writes Z consecutive compressed messages corresponding to the processed layer,
updating the β messages for the next iteration. Lastly, the FIFO buffer must be able
to read and write all produced α messages in each cycle. The CNU input parallelism
determines the number of VNUs, thus the number of α messages produced in one
cycle, the number of cycles needed to process one layer and at last, the size of this
buffer. Full-row CNUs may avoid to use the buffer at all being a combinational
circuit.

1dv denotes the average row degree.
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Scheduling CNU architecture Memory
Flooding

γ-memory
single-input SRAM: Np × Z · w bits
full-row Np regs of Z · w bits
half-row Np regs of Z · w bits

β-memory all Mp regs of Z · w_cmp bits

α-memory
single-input SRAM: Np × Z · dmax

v · w bits
full-row Np · dv regs of Z · w bits
half-row Np · dv regs of Z · w bits

Sliced MP

γ-memory single-input SRAM: Np × Z · w bits
half-row Np regs of Z · w bits

β-memory all 2 · Mp regs of Z · w_cmp bits
Row-layered
γ̃-memory all Np regs of Z · w bits

β-memory all SRAM: Mp × Z · w_cmp bits

FIFO buffer single-input Z buffers of dmax
c × w bits

full-row -
half-row Z buffers of w bits

Table 4.3: Memory types.

4.4.3 Memory choice and results

Summarizing, QC-LDPC codes allow to group Z consecutive values to be read from
and written to all memories, while routing networks will take care of exchanging
their position within the same group. The actual memory type employed heavily
depends on the required access policy. SRAM would be more preferable for the
superior area efficiency, but the small number of ports considerably limits the
parallel accesses. Thus, usually dual-port SRAM memories are used whenever
possible, in order to ensure write and read operations within the same cycle.
However, if random access of several groups of Z values are needed, registers
become unavoidable. The chosen memory types are summarized in Table 4.3.
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4.4.4 Memory conflicts in layered architectures

Architectures with the layered scheduling scheme can incur into memory conflicts
because of the presence of a pipeline between the variable or check nodes elaboration
and the a posteriori LLR update. In fact, if two successive layers have nonzero
overlapping columns, the APU elaborating layer i is updating the γ̃ values that
should be used during the same cycle by the VNUs and CNUs to elaborate layer
i + 1. This problem is described in [19] and [20]. The baseline solution for the
conflict is the insertion of idle cycles, which decrease the decoder performance.
These papers analyze the problem, proposing a mitigation of the performance loss
by rescheduling the matrix operations, rearranging the column and the rows of
the matrix. Both propose to model the optimal scheduling research as a Traveling
Salesman Problem and solve it with a genetic algorithm, simulated annealing
algorithm or similar. This approach can reduce the idle cycles without overhead in
the circuit complexity.

Furthermore, the same effects occur during the conventional decoding of a layered
architecture whose CNUs require multiple cycles to perform their operations. In fact,
the a posteriori update operation must wait for the CNUs’ to have terminated their
processing, since the valid β is obtained only after the last cycle. Again, during the
APU processing, the VNUs and the CNUs should be in idle waiting for the update
process to compute, which takes as many cycles as the CNU to complete. This
problem is tackled in [21], which, in addition to the matrix reordering previously
implemented, also propose to modify the a posteriori update scheduling to be
performed right before VNUs processing. The presented decoder architecture moves
away from the conventional solutions and is compliant with the 5G NR standard.

The authors of [22] propose a decoder architecture employing both layered and
flooding scheduling schemes, in order to switch when a memory conflict would
occur. Moreover, also in this case a genetic algorithm is used to find an optimal
matrix rescheduling.

4.5 Decoder architectures in the design space
The design space of LDPC decoders can be extremely wide. For this reason, the
proposed tool’s scope is limited by a few design choices. For each scheduling scheme
a main architecture topology is defined, fixating the number of CNUs and VNUs,
routing networks and, as discussed, memory units. Loop unrolling is considered
for each architecture, with unrolling degree equal to the maximum number of
iterations. This design choice enables the possibility to implement pipelining also
in flooding and sliced message-passing schemes, which otherwise would not increase
throughput due to the iteration loop.
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4.5.1 Quantization

The channel information, the a posteriori LLR probabilities, the α and the β
messages are all soft-information represented in fixed point. The number of bits
used for this representation is the quantization and it is denoted with w. A large
number of bits would increase the performance, but it also increases the hardware
complexity and memory requirements, while reducing the maximum achievable
frequency, as stated in [11]. Here, it is claimed that good error-correcting capabilities
can be achieved in Min-sum decoders with w = 5. For this reason, the present
work sets the word length to this value.

4.5.2 Architectures’ topology

The scheduling scheme is used to determine the general architecture’s structure,
shown in Chapter 3, Section 3.4. It entails the number of processing elements
employed, routing networks and memories. A few details may depend on whether
or not loop unrolling is applied. The memory organization was discussed in Section
4.4, thus it will not be repeated in this section.

Flooding scheme The general architecture for this scheduling scheme entails
M CNUs, Z VNUs. With this organization, check nodes are processed in a
fully-parallel way, while variable nodes are processed one block column per cycle.
VNUs are implemented with the standard architecture, thus one clock cycle is
sufficient to elaborate the whole block column. To complete the variable node
processing, Np cycles are needed. CNUs can be implemented with any architecture
in the considered design space. If single-input CNUs are employed, the α-messages
corresponding to one block column are read per cycle, thus a total of Np cycles are
needed to complete the check node processing for one iteration. Full-row CNUs
process the whole matrix in one cycle, thus one cycle is sufficient. Half-row CNUs
read half of the α-messages, thus a total of two cycles are needed.

The routing network that drives the inputs of the CNUs is implemented with a
number of barrel shifters that depends on the CNUs’ architecture. It is equal to
dmax

v for single-input CNUs (since it is the maximum number of α-messages read
per cycle) and ⌈tot_edges/(2 Z)⌉ in half-row CNUs. Full-row CNUs do not need
routing networks because of the fully-parallel processing of check nodes. Hardwired
interconnections must be placed instead. On the other hand, the reverse routing
network is always present with a fixated number of barrel shifters in the considered
design space, which is equal to the number of VNUs times the number of their
input divided by Z, thus they are equal to dmax

v .
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Sliced message-passing scheme Similarly to the previous case, architectures
with single-input CNUs have M CNUs and Z VNUs. Considerations on the VNUs’
latency are identical, while the CNUs only bring one extra cycle to complete their
elaboration. CNUs cannot be implemented in full-row since this scheduling scheme
entails to compute only a portion of the input α-messages per cycle. Moreover, in
order to remove the α-memory in decoders with half-row CNUs, VNUs should be
able to compute all the α-messages addressed to the CNUs in one cycle, for an overall
of two cycles. This implementation is not feasible in most parity-check matrices,
thus it is excluded from the design space. If a matrix rearrangement is considered,
then ⌈N/2⌉ VNUs could be employed to elaborate the whole parity-check matrix
in two cycles, computing half of the total α-messages per cycle.

The same considerations on routing networks for flooding schemes can be
repeated in this case.

Row-layered scheme Layered architectures typically elaborate one layer per
sub-iteration, corresponding to one row of sub-matrices in the QC-LDPC code,
that is Z consecutive rows of the parity-check matrix. For this reason, in this work
Z CNUs are employed to elaborate the same number of check nodes, while the
number of VNUs depends on the CNUs’ input parallelism. In fact, according to the
row-layered scheduling scheme, the VNUs are implemented with the corresponding
architecture, to compute the needed α-messages right before the check nodes
processing. Therefore, the number of VNUs is given by the number of CNUs
multiplied by the number of their input messages. Moreover, there are as many
APUs as VNUs, updating the corresponding a posteriori LLR probabilities. Lastly,
also the routing networks must be capable of driving the same number of messages.
Since there are Z CNUs elaborating one layer and each barrel shifter drives one
input of each CNU, the number of barrel shifters employed corresponds to the
CNUs’ input parallelism.

In this case, since all the check nodes are not (and cannot be) elaborated
in parallel, the routing networks are always needed, regardless of the number of
inputs of the CNUs. That is because with every layer, the input messages for each
CNU change also in full-row architectures. On the other hand, the reverse routing
network can be removed using the offset permutation scheme proposed in [23],
which can be computed offline. With this solution, the critical path can be reduced,
reaching higher frequency and better performances.

4.5.3 Loop unrolling and pipelining techniques
The loop unrolling technique involves the allocation of multiple instances of the
same sub-decoder, formed by the processing elements that are needed in the
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Figure 4.11: Unrolled decoder architecture with flooding scheme. Each sub-
decoder has the same number of components as the basic architecture.

elaboration of one decoding iteration. These include CNUs, VNUs and memories.
The LDPC architectures considered in the DSE tool are unrolled against the
main iteration loop with unrolling coefficient equal to the number of maximum
decoding iterations, or fully-unrolled. With this configuration, the information
on the codeword passes through the sub-decoders in a pipeline-fashion, letting
each sub-decoder to continuously elaborate a new set of data. Because of this,
the CNUs’ and VNUs’ operations can be overlapped in any scheduling schemes,
as they are working on different data. The result is that the number of cycles
needed to complete one decoding iteration can be improved. In Chapter 5, Section
5.3.3 it will be discussed how the number of cycles can be redefined in view of the
throughput estimation.

It is worth noting that the layered scheduling scheme uses the information
from previous iterations progressively during the layers elaboration. Since the
unrolling is only performed against the main decoding iteration, the sub-iteration
(i.e., the sequence of layers) is maintained. This entails that with each iteration,
the β-memories should be shared and routed accordingly. This is more efficient if
multiple, separated layered decoders process in parallel different codewords, rather
than resort to loop unrolling.

In decoder architectures without loop unrolling, the presence of the feedback
loop prevents the advantages of applying the pipeline technique. In particular,
the frequency can be doubled, but so does the latency, without the possibility to
process multiple data in different stages of the pipeline2. This is especially true for
the architectures in the considered design space. Layered decoders are an exception,

2interleaving is not considered in this work
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since successive layers can be processed before the last one has been completed.
This can lead to hazards and performance loss, as discussed in Section 4.4.4.

On the other hand, fully-unrolled architectures have no feedback loop, thus the
decoding operations can be pipelined, having different codeword being decoded in
successive pipeline stages.



Chapter 5

A design space exploration
tool

The proposed design space exploration (DSE) tool aims at providing a fast and low-
investment overview of the LDPC decoder solutions to a hypothetical designer, who
is going to further investigate the solutions most appealing for their use case. This
goal is tackled by building an algorithmic-architectural model of several decoder
architectures, exploring the many combinations of the free parameters determined
in the scope. For each architecture, area, working frequency and throughput are
estimated exploiting either the direct results of building blocks’ syntheses, or a
mathematical model that can be obtained empirically from simpler syntheses.

The check node units (CNU) and variable node units (VNU) are synthesized with
the exact architecture needed from the tool, retrieving the area and throughput of
these main components. Routing networks are too large to be synthesized, therefore
they are estimated exploiting an empirical model obtained from smaller barrel
shifter syntheses, in particular against the lifting size parameter. In this way, it
was possible to find a function of the area and delay of the barrel shifters given any
lifting size. Similarly, the same procedure was used for memories implemented with
registers, while SRAM models were extracted from the library and a mathematical
model was retrieved from those.

The DSE tool was implemented in Python, while the components designs were
described in VHDL, tested and synthesized employing a 45 nm technology library.

In this chapter, firstly the considered design space is discussed and the bound-
aries are motivated. Then, the building blocks’ models are discussed. The actual
DSE tool architecture is presented, detailing the proposed approach. Lastly, the
model is validated comparing its results with the ones found in published decoder
architectures, applying a normalization only when strictly necessary.

47
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Parameter Fixed value
Parallelism Partially-parallel
Decoding algorithm Min-sum
LDPC code 5G NR, BG 1
Technology library 45 nm

Table 5.1: Fixed parameters in the design space exploration.

5.1 Design space’s scope
The design space of LDPC decoders is extremely wide. For this reason, the proposed
tool’s scope restricts a few parameters to the most prevalent values, summarized
in Table 5.1. Partially-parallel LDPC decoders are the most popular solutions
thanks to their excellent low-complexity and high-throughput trade-offs. Similarly,
Min-sum decoding algorithm is widely used. Quasi-cyclic LDPC codes offer great
performance, while allowing several simplification in the architecture compared to
randomly constructed codes. In particular, the chosen QC-LDPC code is compliant
with the 5G NR standard, using base-graph 1 (BG1). From the technological point
of view, a 45 nm node technology library is selected in the synthesis of the building
blocks.

On the other hand, the free parameters can be chosen among specific options,
as shown in the following list and summarised in Table 5.2. These values are often
not numerical, but descriptive of a design choice.
Scheduling scheme Flooding, sliced message-passing and layered schemes are

considered. They are presented in Chapter 3, Section 3.4.

CNU architecture Check node units (CNUs) can be implemented with single-
input, full-row or half-row architectures. These designs are described in
Chapter 4, Section 4.1.

VNU architecture According to the scheduling scheme, variable node units
(VNUs) are implemented with the standard architecture or with the layered
version, both detailed in Chapter 4, Section 4.2.

Loop unrolling and pipelining All the architecture are considered with or with-
out loop unrolling against all the decoding iterations. Pipelining is considered
only in unrolled architectures or in layered schemes. These techniques are
presented in Chapter 4, Section 4.5.3.

Numerical parameters The architectures are studied against some numerical
parameter, specifically the number of iterations I and the lifting-size Z.
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Figure 5.1: Free explored parameters tree. Some parameters can take on
qualitative values (scheduling schemes, CNU architectures, etc.), while others can
take numerical values (Number of iterations, lifting-size)
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Parameter Possible Values
Scheduling scheme Flooding, sliced message-passing, layered
CNU architecture single-input, full-row, half-row
VNU architecture standard, layered
Loop unrolling yes, no
Pipelining yes, no
Numerical parameters lifting-size, number of decoding iterations

Table 5.2: Free parameters in the design space exploration.

5.2 Architectures modeling

The idea at the heart of the proposed tool is to exploit the characteristics of
area and delay of the building blocks that form the decoder in order to make
assumptions on the overall architecture. These characteristics can be obtained in
two ways: either the synthesis of the exact component architecture is performed,
or a mathematical model is exploited. For example, several, smaller architectures
of the component can be synthesized, retrieving an empirical model to predict the
bigger architecture’s characteristics. The first method is used for all the CNU and
VNU architectures, as the exact syntheses are not too time-consuming. Moreover,
they do not depend on the explored parameters. The same cannot be said in
general for the routing networks or the memories, which represent the biggest part
of the decoder area.

In order to reduce the computational time in the routing network’s synthesis,
the overall architecture is approximated by the barrel shifters that form it. In
other words, the delay of the routing network is assumed to the delay of one barrel
shifter, while the area is assumed to be the sum of the barrel shifters’ area. With
this approach, a singular barrel shifter’s synthesis is sufficient to characterize the
complete routing network.

Even with this simplification, syntheses of barrel shifters with the maximum
lifting size Z provided in the 5G NR standard are extremely long. This is also
true for the block memories. Additionally, these two components are the only ones
influenced by the lifting size parameter, while the CNUs and VNUs only change
in number of instances. This led to the possibility to extend the design space
exploration to any desired value of the lifting size Z, applying a mathematical
model.
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Figure 5.2: Barrel shifter’s area against different lifting sizes Z.

5.2.1 Barrel shifter’s empirical model

As previously mentioned, the barrel shifter synthesis with large lifting sizes Z is a
very time-consuming task for the synthesis tool. In fact, this parameter defines
the number of input and output signals in the component, which must be able to
perform circular shifting among them. The complexity of the barrel shifter related
to the lifting size is expected to be quadratic in the area, and logarithmic in the
delay. Therefore, a few syntheses with smaller lifting sizes can be used to retrieve
a few points in the area and delay characteristics, which once fitted can provide a
mathematical model to estimate these values with different lifting size Z.

The area data collected during the syntheses are shown in Figure 5.2. Here it
is possible to notice the quadratic behaviour of the area with respect to the lifting
size Z. Noticing that, one additional synthesis with the maximum lifting size in
5G NR standard Z = 384 was completed in order to have a more reliable model.

The same methodology is employed for the delay estimation, where the fitting
curve was less accurate. Nonetheless, the results obtained and shown in Figure 5.3
were fitted with an expression in the form a ln(x) + c. These empirical models can
be applied during the tool’s analysis to estimate the area and delay characteristics
of a barrel shifter for any used Z, and in turns of the whole routing network.
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Figure 5.3: Barrel shifter’s delay against different lifting sizes Z.

5.2.2 Memories’ mathematical model
In LDPC decoders, two main types of memories are employed: registers and
SRAMs1, as discussed in Chapter 4, Section 4.4. By changing the lifting size Z,
only the word length of memory locations or registers is extended proportionally.

Two models are provided for two register sizes, Z · w bits and Z · w_cmp bits,
where w_cmp is the length of the compressed check-to-variable message. These
could be compacted in a unique model, but they are kept distinct in the tool. The
syntheses results are shown in Figure 5.4 for both types of registers, where the
fitting curve of the data led to two linear equations.

The memory analysis showed the necessity to model two sizes of SRAMs: one
with Np words and one with Mp words. In other words, the DSE tool needs an
SRAM model that takes into account both the number of words and the word
size, denoted with words and bits, respectively. SRAM blocks’ dependency on the
number of words is not linear because of the peripheral circuitry. Assuming the
memory area model can be expressed as

Atot = Acell · words · bits + overheadtot,

1Since FIFOs change with the lifting size Z in the number of units employed and not their
sizes, they are excluded from this analysis. Moreover, they are rapidly synthesized with the exact
requirements, thus not needing a mathematical model.
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Figure 5.4: Z · w bits (red) and Z · w_cmp bits (purple) registers’ area against
different lifting sizes Z.

the area density can be defined as

Atot/bit := Atot

words · bits
= Acell + overheadµm/bit. (5.1)

Using the double-port SRAM models in the 65 nm library and the corresponding
SRAM cell area Acell, the peripheral circuits’ overhead can be computed with:

overheadµm/bit = Atot/bit − Acell

obtaining the values collected in Figure 5.5. These values are fitted against the
number of words with the expression

overheadµm/bit = 1
a ln (b + c · words) .

Finally, the memory area can be computed combining the overhead model with
the area density definition in Equation (5.1):

Atot/bit = Acell + 1
a ln (b + c · words)

Atot = Atot/bit · words · bits.
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Figure 5.5: SRAM peripheral circuits’ overheadµm/bit fitting against different
word sizes words.

In order to apply this model to the 45 nm technology, a scaling is necessary. The
factor (45/65)2 is typically suggested in device scaling [24], [25], but a correction is
proposed in [26] using the more accurate factor 1.5.

The obtained model can be employed to take into account both the number of
words and the word length, thus it can be used to study the memory characteristics
against Z. The number of words is selected according to the memory modeled,
that is Np in the case of the γ-memory and of the α-memory, and Mp in the case
of the β-memory.

5.3 Tool’s architecture
The tool is initialized by defining the fixed decoder parameters, the QC-LDPC
code parameters, and reading the input file containing the building blocks’ area
and delay characteristics. Then, the core algorithm of the tool works in two phases:

1. Exploring the combinations of valid design choices

2. Analyzing each LDPC decoder architecture obtained
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The first part defines the possible design choices, creating a database of LDPC
decoder architectures to be analyzed in the second part. This database is composed
by the Cartesian product of the free parameters, and associates to each parameter
(e.g., scheduling) the corresponding design choice (e.g., layered scheme). Since not
all combinations of design choices are possible, the invalid LDPC architectures are
discarded. For example, decoders with layered scheduling must employ layered
VNU architectures, or sliced message-passing schemes are incompatible with full-
row CNUs. Once the database holds only valid LDPC decoders, it is analyzed
in the second phase, adding both the building blocks’ and the overall decoder’s
characteristics. The implementation of the database is straightforward as Python
dictionaries.

The second part of the algorithm studies each LDPC decoder instance in the
database, estimating its characteristics. The approach of the proposed DSE tool
is to employ an algorithmic-architectural model of the decoder under analysis,
considering the taken design choices in order to select the proper modeling strategy
and building blocks’ characteristics. In particular, this problem is unpacked and
solved in the following stages:

Critical path delay and frequency Estimations on the minimum clock period
and maximum operating frequency. The latter is also used in the throughput
estimation.

Memory analysis Study of the number of memory units, their typology, require-
ments and occupied area.

Number of components, latency and processed edges Elaboration on the
decoder architecture which determines the number of CNUs, VNUs and barrel
shifters, as well as latency cycles and, eventually, the average processed edges.
The latter is another fundamental parameter in the throughput estimation.

Loop unrolling Correction of the previous computations according to a possible
loop unrolling.

Area Estimation on the overall decoder area

Throughput Estimation on the decoder throughput

The rest of this section details in depth these stages of the decoders’ model
analysis.

5.3.1 Critical path and operating frequency
The topology of the decoder architecture is determined above all by the scheduling
scheme adopted. Starting from the employed building blocks’ delay characteristic
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Figure 5.6: Main combinational paths in a flooding decoder.

and the topology of the architecture under analysis, it is possible to define the
combinational paths and the associated overall delay. Additionally, the position of
possible pipelining registers is taken into account while finding these combinational
paths. Specifically, they can either be between two components, e.g. routing
networks and VNUs, or in the middle of a component, e.g. a pipelined full-row
CNU. For the latter, ad hoc pipelined HDL designs are synthesized, and during
this stage the tool draws the characteristics of the appropriate building block’s
architecture. Also, single-input and half-row CNUs can split a combinational path,
since they involve a register to store the temporary output values.

By evaluating the maximum among the combinational paths’ delays, which
corresponds to the minimum clock period, the operating frequency can be estimated
as its reciprocal. An example of combinational paths in a simplified flooding scheme
is shown in Figure 5.6. The multiplexer is removed since its impact is minimal. A
more complex example is shown in Figure 5.7, where the two main combinational
paths in a layered decoder with full-row CNUs and one pipeline stage are indicated.

5.3.2 Memory analysis

According to the decoder’s architectural parameters, the DSE tool performs a
memory analysis as detailed in Section 4.4, selecting the proper number of memories,
their types and sizes, whether it be registers or SRAMs. FIFOs are already included
in the VNU’s design, thus they are not taken into account during this analysis.
This stage must consider the code parameters, for example to evaluate the number
of registers, included the lifting size Z.
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Figure 5.7: Main combinational paths in a layered pipelined decoder.

5.3.3 Topology analysis and latency

As previously described, the decoder architecture’s topology strongly depends
on the scheduling scheme and secondarily on the CNU architecture. This stage
determines the node parallelism, as it evaluates the number of processing elements
and the overall decoding latency. Latency is lastly used to estimate the average
number of processed edges of the Tanner graph. This parameter is useful for the
throughput estimation.

This stage selects the proper number of CNUs, VNUs and barrel shifters
employed in the routing networks, according to both the scheduling scheme and
the CNUs’ input parallelism. In particular, flooding and sliced message-passing
schemes employ Z VNUs and M CNUs. The number of barrel shifters is dmax

v for
the reverse routing network (towards VNUs) and depends on the input parallelism
of CNUs for the routing network. Layered schemes employ Z CNUs, and the
number of both VNUs and barrel shifters depends on the CNUs’ input parallelism.

Furthermore, the number of cycles spent to perform one decoding iteration are
computed. For example, a flooding scheme decoder with M single-input CNUs
and Z VNUs takes Np cycles to complete the CNUs’ phase, and Np to complete
the VNUs’ operations, for a total of 2 Np. On the other hand, full-row CNUs takes
only one cycle, for a total of Np + 1.
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Latency must also take into account if the loop unrolling technique is applied. In
fact, in flooding and sliced message-passing schemes, the CNU and VNU operations
can be overlapped when the architecture is fully-unrolled, as each decoding iteration
is computed by separated elements. In other words, a pipeline approach results
from the unrolling operation, given by the presence of the α and β-memories
between each stage of VNUs and CNUs. As a matter of fact, flooding and sliced
message-passing schemes can be considered ALAP and ASAP approaches of the
same scheduling for unrolled architectures.

It can be noted that without loop unrolling, pipelining technique solely does
not increase the number of average processed edges in architectures with flooding
and sliced message-passing schemes, since the iteration loop prevents the pipelining
of the operations. As discussed in 4.5.3, this is solved in loop unrolled architectures
as long as the iterations are fully-unrolled. Also, layered decoders can be pipelined
without loop unrolling. That is due to the sub-iterations of the layers, but hazards
might occur, thus reducing the throughput performance.

Finally, latency cycles can be used to evaluate the average number of processed
edges of the Tanner graph. Since the latency cycles are the cycles needed to perform
one decoding iteration, the average number of processed edges avg_edges can be
computed as

avg_edges = tot_edges

latency
,

where tot_edges is the total number of edges in the Tanner graph and latency
is the number of latency cycles. If the architecture is unrolled, the parameter
latency can be used to represents the number of cycles needed to elaborate the
same number of edges as in the Tanner graph. With this reinterpretation, it is
possible to account for the improvements in performance due to the unrolling and
pipelining techniques.

5.3.4 Loop unrolling correction
During this stage, the DSE tool multiplies the number of processing elements and
memory instances by the unrolling coefficient, namely the maximum number of
decoding iterations. This is particularly convenient in layered architectures since
they only require about half decoding iterations, thus also the unrolling coefficient
can be halved without losing performance. As already mentioned in Section 4.5.3,
barrel shifters can be removed.

It is worth noting that the β-memories in layered architectures should be read
and written by successive sub-decoders as the data flow travels through the decoding
iterations in order to use the messages from previous iterations. As mentioned in
Section 4.5.3, it is more efficient to use multiple decoders rather than loop unrolling.
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5.3.5 Area estimation
One of the main characteristics of the analyzed LDPC decoders is the area. The
approach of the presented tool estimates the overall circuit’s area as the sum of its
parts, counting the number of building blocks employed in the desired architecture
and extrapolating the area for each of those components either from the synthesized
architecture or by applying the mathematical model as explained in Section 5.2.

In particular, using the results of the topology analysis presented in Section
5.3.3 and Section 5.3.4, the number of CNUs, VNUs and barrel shifters is multiplied
by the corresponding building block’s area. The processing elements’ characteristics
are estimated using the exact syntheses results in the input file, while barrel shifters’
area can be estimated with the empirical model presented in Section 5.2.1. The
memory analysis referred in Section 5.3.2 returns the number and types of memories,
which can be studied with the models presented in Section 5.2.2, obtaining the
associated area. Adding up all these contributions, an estimation of the overall
area requirement is obtained.

5.3.6 Throughput estimation
Throughput is estimated according to the formula presented in the European
Horizon 2020 EPIC project [13],

T = avg_edges

tot_edges

1
I

Np Z R f

where tot_edges is the number of edges in the Tanner graph, avg_edges is the
average number of edges processed per clock cycle, I is the number of decoding
iterations, Np is the number of columns in the base-matrix, Z is the lifting-size, R
is the code rate and f is the working frequency.

The average number of processed edges is obtained from the algorithm’s stage
presented in Section 5.3.3, while the frequency f is estimated with the approach
proposed in Section 5.3.1. The remaining factors depend on the code structure, e.g.
Np, R, or Z; or on the number of decoding iteration I.

This approximate formula can be applied to all the decoder architectures,
enabling a common analysis and comparison among them. In particular, since only
partially-parallel architectures are considered, the ratio avg_edges/tot_edges can
be simplified as 1/latency_cycles, where latency_cycles is the number of cycles
necessary to complete one decoding iteration. In case of unrolled architectures,
this can also be seen as the number of cycles needed to elaborate the same number
of edges as tot_edges. This interpretation can easily demonstrate how unrolling
not only affects the operation overlapping in various scheduling schemes, but also
increment the throughput of the same factor.



60 Chapter 5. A design space exploration tool

5.4 Model validation
The proposed DSE tool aims at providing a fast overview on the otherwise over-
whelming offering of LDPC decoder architectures. Its algorithm takes advantage
of a divide et impera approach, exploiting the building blocks’ characteristics to
estimate the overall decoder’s area, frequency and throughput. This section tries to
prove the validity of the developed model by extracting some LDPC decoder archi-
tectures from the scientific literature, and comparing the declared characteristics
against those provided by the tool in the corresponding architecture. Since the tool
strongly uses the assumption of a QC-LDPC code, all the selected architectures
are compliant with this family of LDPC. A normalization could be necessary.

The methodology adopted implies to:

(i) set the tool’s parameters to the characteristics of the decoder and the targeted
code, as close as possible to the ones used in the article;

(ii) produce the results of the design space exploration and select the most
appropriate architecture, extracting its characteristics;

(iii) normalize the characteristics of the provided architectures with respect to
the possible remaining parameters. A general idea is given in [25].

Some parameters that can be set in the tool are the number of rows Mp and
columns Np of the base matrix, the lifting size Z, the total number of edges in the
Tanner graph, the maximum row degree dmax

c , the maximum column degree dmax
v ,

and the number of decoding iterations. All these parameters either have no impact
on the building blocks’ HDL designs, or it is limited and can be estimated with
small corrections. It is worth noting that the lifting size would be a very impacting
parameter, but employing the barrel shifter’s and memories’ models solves this
issue, being the only influenced components2.

It is possible that there are still unmatched features between the tool’s modeled
decoder and the one proposed in literature, which cannot simply be corrected
upstream of the DSE analysis. Those differences must be corrected with a few
normalization factors. They include the technology node, quantization, and others
architectural differences (for example the number of routing networks).

The technology node is normalized using the scaling factor correction proposed
in [26]. In the present work, of particular interest are the area and delay scaling of
a given technology against the 45 nm node employed in the DSE tool’s analysis.
For example, to scale an architecture from 45 nm to 65 nm, the area scaling factor
is 1.5. In addition, passing from 65 nm to 45 nm, the delay is multiplied by 0.712.
The quantization w of LLR information influences all the building blocks designs,

2CNUs and VNUs only change in number of units deployed
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thus all synthesis should be adapted for a correction upstream of the tool’s analysis.
In [25], the authors stated that a linear scaling factor of the overall area is sufficient,
which is reasonable given that w increases the size of all messages and units.

Some differences cannot be corrected by normalizing the article’s architecture,
since it may concern only a portion of the circuit, whose percentage is not given. To
be more clear, let us assume the article’s decoder uses two routing networks, while
the tool’s proposed decoder presents only one of it. It is not possible to double the
area contribution of the article’s routing network, given that its single contribution
is not given. For this reason, the proposed solution is to adapt the tool’s prediction
to the article’s architecture, since it is extremely easy to distinguish the several
contributions of the various building blocks in the proposed architectures. In the
example, it is sufficient to know the percentage of the routing network’s area on the
total, and multiply the total area by a factor of 2·RN%+(1−RN%). This correction
is compliant with the DSE tool’s approach, since this is the same computation as
if the tool’s considered two routing networks upstream of the DSE analysis.

Given these considerations, the following comparisons normalize the article’s
architectures’ frequency and throughput, while the area of the tool’s prediction
will be adjusted to the architectures’ features when strictly necessary. All of these
normalizations are kept as minimal as possible. A relative error is provided, where
the plus (+) sign indicates an overestimation, and the minus (-) sign indicates an
underestimation. It is worth noting that a worst case analysis implies an overesti-
mation on the area characteristics, and an underestimation on the frequency and
throughput. In order to isolate the frequency mismatch effects on the throughput,
a normalization with respect to the tool’s proposed frequency is also provided,
along with the associated relative error.

5G New Radio decoder The first architecture is a decoder compliant with the
5G NR standard, presented in [27]. This decoder employs a layered scheduling
scheme in a pipelined architecture. The pipeline registers are positioned after the
CNUs, while the tool’s pipeline registers in layered architectures are between VNUs
and CNUs. Moreover, the CNUs’ architecture proposed is a simplified, two-phase,
full-row CNU, thus it is smaller, but requires twice the latency cycle per pipeline
stage. The results are shown in Table 5.3.

Wi-MAX decoder Even though the difference between LDPC code in 5G
NR and Wi-MAX is considerable, the corresponding architectures are not deeply
dissimilar. The differences in the code parameters have a very limited impact in
the building blocks’ designs, except for the full-row CNU, whose number of input
and therefore the whole tree construction depends on the maximum row-degree
dmax

c . In particular, 5G NR implies dmax
c = 19, while the Wi-MAX dmax

c = 7. This
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Architecture [27] Tool’s prediction
technology 65 nm 45 nm
Parameters declared norm. estimated norm. rel. error (%)
frequency (MHz) 750 263.3 247.1 – - 6.16 %
area (mm2) 1.49 – 1.15 1.87 + 25.2 %
throughput (Gbps) 3.04 1.42 1.32 – - 7.00 %
Throughput normalized w.r.t. tool’s frequency (Gbps): 1.34 - 0.89 %

Table 5.3: Comparison of the tool results with LDPC decoder compliant with
5G NR, presented in [27].

Architecture [28] Tool’s prediction
technology 65 nm 45 nm
Parameters declared norm. estimated norm. rel. error (%)
frequency (MHz) 250 175.6 159.9 – - 8.94 %
area (mm2) 0.86 – 0.78 1.27 + 47.8 %
throughput (Gbps) 1.2 3.37 3.07 – - 8.94 %
Throughput normalized w.r.t. tool’s frequency (Gbps): 3.07 –

Table 5.4: Comparison of the tool’s results with LDPC decoder compliant with
Wi-MAX, presented in [28].

correction can be estimated by counting the number of CS2, CS3 and CS4 units in
the two cases and scaling accordingly. From the tool’s results it is evident that the
CNUs’ area is very limited, thus this approximation is acceptable. The remaining
parameters can be set accordingly in the tool, before the results are generated.

The decoder presented in [28] is a layered scheme, non-pipelined architecture.
Similarly to the one in [27], the CNU architecture is a two-phase, simplified, full-row
unit, thus the same corrections can be considered. Moreover, the APU units were
removed in favour of a dual-task VNU/APU unit. The comparison results are
shown in Table 5.4.

Pipelined decoder The Min-sum decoder proposed in [29] presents a pipelined
architecture similar to the one studied by the DSE tool, where the pipeline reg-
isters are placed between the VNUs and the CNUs. Moreover, this architecture
implements a Wi-MAX decoding assuming a matrix reordering to avoid stall cycles
due to the pipeline, as discussed in Chapter 4, Section 4.4.4. The components are
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Architecture [29] Tool’s prediction
technology 65 nm 45 nm
Parameters declared norm. estimated norm. rel. error (%)
frequency (MHz) 161 226.1 263.2 – + 16.4 %
area (mm2) 0.77 – 0.81 0.88 + 14.9 %
throughput (Gbps) 1.54 4.32 5.05 – + 16.9 %
Throughput normalized w.r.t. tool’s frequency (Gbps): 5.03 + 0.43 %

Table 5.5: Comparison of the tool’s results with pipelined LDPC decoder
compliant with Wi-MAX, presented in [29].

implemented with the conventional architectures, similar to the ones used in the
DSE tool. In fact, the results show a more adherent area prediction.
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