
1

POLITECNICO DI TORINO

MASTER OF SCIENCE IN ENGINEERING AND MANAGEMENT

MASTER’S THESIS TITLE

 Ethereum Smart Contract Analysis through Chat-GPT and
other NLP Techniques

Academic Advisor: Candidate:

Prof. Valentina GATTESCHI Muhammad Usama Akhtar
(S2898413)

MARCH-2023

2

Abstract

The objective of this thesis was to explore the capabilities of the OpenAI ChatGPT API in

analysing Ethereum smart contracts. The research involved using the API to read the text data

from the smart contracts and perform both topic analysis and sentiment analysis. The results of

this study showed that the ChatGPT API is capable of accurately extracting relevant

information from the smart contracts and performing a meaningful analysis. The topic analysis

identified the main themes discussed in the contracts, while the sentiment analysis provided

insights into the emotions and opinions expressed in the text. The findings of this research have

potential implications for the field of blockchain and smart contract analysis, as it demonstrates

the feasibility of using advanced NLP techniques for the automated analysis of blockchain-

based contracts.

The technique used in this thesis makes it easier for individuals who have no prior knowledge

of smart contract vulnerabilities to understand the risks associated with them. This is achieved

by utilizing the ChatGPT API to perform topic analysis and sentiment analysis on the text data

extracted from the smart contracts. The topic analysis provides a high-level understanding of

the key themes discussed in the contracts, while the sentiment analysis gives insight into the

emotions and opinions expressed in the text. This information can be used to identify potential

risks and vulnerabilities in the contracts, such as security or privacy issues, and to make

informed decisions regarding their use.

Furthermore, the automation of the analysis process using the ChatGPT API significantly

reduces the time and effort required to manually review and analyse the contracts. This is

particularly beneficial for individuals who may not have the technical knowledge or expertise

to manually review the contracts for potential vulnerabilities. By providing an easy-to-

understand representation of the risks associated with smart contracts, this technique has the

potential to increase transparency and trust in the use of smart contracts in various industries.

The results of this thesis demonstrate the feasibility and effectiveness of using advanced NLP

techniques, such as the ChatGPT API, to analyze and understand the risks associated with

Ethereum smart contracts. This approach can help to increase the accessibility and

understanding of smart contracts and promote their responsible use in various industries.

3

Acknowledgement

I am immensely grateful to have had the opportunity to undertake this thesis under the

guidance of Prof. Valentina Gatteschi, whose valuable insights and feedback have been

instrumental in shaping the outcome of my work. I also want to extend my heartfelt thanks to

my family and friends for their unwavering support and encouragement throughout my

academic journey.

Completing this master's program in Engineering & Management from Politecnico Di Torino

has been a challenging yet fulfilling experience, and I will always cherish the memories of

the knowledge gained, skills honed, and friendships made along the way. I am also grateful to

the faculty and staff of the university for their contribution to my academic and personal

growth.

4

Table of Contents
1. Introduction ... 7

1.1. Research Goals .. 7

1.2. The Problem .. 7

1.3. Overview of the Thesis Structure .. 8

2. Preliminaries ... 9

2.1. Blockchain and its Applications ... 9

2.2. Smart Contracts ... 10

2.3. Ethereum ... 11

2.3.1. Ethereum Virtual Machine .. 12

2.3.2. Solidity .. 13

2.3.3. Ethereum Smart Contract analysis and visualization .. 13

2.3.4. Vulnerabilities in the smart contracts .. 16

2.3.5. Introduction to Artificial Intelligence as application to read smart contracts. 25

2.3.6. Chat GPT API ... 25

2.3.7. Topic Modeling ... 26

2.3.8. Sentiment Analysis ... 27

3. Related Works ... 28

3.1. Research papers .. 28

4. Realized System .. 34

4.1. Proposed System ... 34

4.2. Dataset of smart contracts ... 35

4.3. Use of Chat-GPT API ... 36

4.4. Results from Chat-GPT ... 38

4.5. Topic Modelling .. 41

4.6. Sentiment Analysis ... 47

5. Evaluation ... 51

5.1. Word Cloud from Topic Modeling ... 51

5.2. Results from Topic Modeling ... 52

5.3. Intertopic Distance Mapping ... 56

5.4. Results from Sentiment Analysis .. 59

5.5. Comparative Analysis with Slither ... 60

6. Conclusion .. 63

6.1. Future works and application .. 63

6.2. Final Word .. 64

Bibliography ... 66

5

List of Tables

Table 1 Results from Chatgpt .. 40
Table 2 Table od Sentiment Analysis of results from Chatgpt .. 59
Table 3 Comparative Analysis of Contract 102 ... 61
Table 4 Comparative Analysis of Contract 107 ... 62
Table 5 Comparative Analysis of Contract 2908 ... 62

6

List of Figures

Figure 1 Block formation on bitcoin [2] .. 9
Figure 2 Ethereum Virtual Machine (EVM) [10].. 12
Figure 3 Development of Smart Contract [14] .. 13
Figure 4 Ethereum Smart Contract Analysis Tools [16] .. 16
Figure 5 Traditional Smart Contract Workflow ... 28
Figure 6 Proposed AI based Smart Contract ... 29
Figure 7 Smart Contract enabled with AI Use Case .. 30
Figure 8 DoS/DDoS countermeasure overview .. 31
Figure 9 Process Flow of our proposed system .. 35
Figure 10 Vulnerabilities found in the dataset ... 41
Figure 11 Intertopic Distance Mapping Visualization 1 ... 57
Figure 12 Intertopic Distance Mapping Visualization 2 ... 58
Figure 13 overall percentage of smartcontracts thar have positive and negative Overall Sentiments 60

7

Chapter 1
1. Introduction

1.1. Research Goals

This research project aims to evaluate the accuracy and effectiveness of the ChatGPT-3.5

(Davinci-003) in performing topic analysis and sentiment analysis on Ethereum smart

contracts. The study will investigate potential vulnerabilities and risks associated with

Ethereum smart contracts using the ChatGPT API, and compare the results with traditional

manual analysis methods. A tool or framework will be developed that integrates the ChatGPT

API with existing smart contract analysis tools, and its effectiveness will be evaluated in

identifying and mitigating potential risks.

In addition, this project aims to explore the potential use cases of using advanced NLP

techniques, such as the ChatGPT API and other NLP methods, for the automated analysis of

smart contracts in other blockchain platforms and industries. Ethical and legal implications of

using automated NLP techniques for the analysis of smart contracts will also be investigated,

and potential biases or limitations of the approach will be identified.

The scalability and performance limitations of the ChatGPT API in analyzing large volumes

of smart contract data will also be investigated, and potential solutions or optimizations will be

identified. By conducting this research, we hope to provide a better understanding of the

capabilities and limitations of the ChatGPT API for the analysis of smart contracts, and to

identify opportunities for improving the automated analysis of smart contracts using advanced

NLP techniques such as Topic Modeling and Sentiment Anlaysis.

1.2. The Problem

Understanding Ethereum smart contracts can be challenging for a layperson without experience

in programming and blockchain technology. Ethereum smart contracts are written in a

programming language called Solidity, which is different from natural language, making it

difficult to read and understand for non-technical people.

The complexity of smart contracts can lead to vulnerabilities, such as security loopholes or

logical errors. These vulnerabilities can cause smart contracts to behave unexpectedly, leading

to loss of funds or other undesirable outcomes.

8

There are various tools available for reading and analysing smart contracts, but they also

require some technical knowledge to use effectively. For example, static analysers can identify

potential security issues in the code, but they require an understanding of the potential

vulnerabilities that could exist. Similarly, debuggers can help identify logical errors or other

issues, but they require an understanding of how the code is structured.

Another challenge for laypeople is the lack of standardization in the way smart contracts are

written and documented. The naming conventions and organization of the code can vary widely

from contract to contract, making it difficult to quickly understand and identify potential issues.

1.3. Overview of the Thesis Structure

The following Chapter 2 gives a literature review of the Ethereum Blockchain technology and

Natural Language Processing techniques further used in this thesis. Moreover, it discusses

Ethereum smart contract analysis techniques and tools. It also identifies types of vulnerabilities

found in the smart contracts and how to overcome those issues.

Furthermore, Chapter 3 gives an overview of other related research papers which involve

Artificial Intelligence techniques with smart contracts.

Chapter 4 discusses the core work of the thesis. It explains the proposed system realized for

the research purpose of this thesis; The dataset of smart contracts is analysed through ChatGPT

API and further results are used to perform Topic Modeling and Sentiment Analysis. The

subsequent Chapter 5 evaluates the results and explains the outcomes of the research.

Finally, Chapter 6 summarises the whole research in a conclusion statement and talks about

the future works that maybe required for further advancements in the technology.

9

Chapter 2
2. Preliminaries

2.1. Blockchain and its Applications

Blockchain is a distributed ledger technology that enables secure and transparent record-

keeping of transactions and data. A blockchain is composed of blocks that store data, and each

block is linked to the previous one through cryptographic hashing. This creates an immutable

chain of records that is resistant to tampering and manipulation.

The most well-known application of blockchain technology is cryptocurrency. Bitcoin, the first

decentralized cryptocurrency, was created in 2009 and operates on a blockchain [1]. In this use

case, the blockchain serves as a decentralized ledger of all Bitcoin transactions. This allows for

secure and transparent transfers of ownership of the cryptocurrency without the need for a

central authority, such as a bank. Figure 1 explains how blocks are made once the user makes

transaction on the Blockchain.

Figure 1 Block formation on bitcoin [2]

One of the important applications of blockchain technology is in supply chain management [3].

By using a blockchain to record every step of a product's journey from production to delivery,

all participants in the supply chain can have a transparent view of the product's history and

provenance. This helps to increase accountability, reduce fraud and improve the efficiency of

the supply chain.

Blockchain technology can also be used in the voting process. By using a blockchain to record

and store voting data, it becomes possible to ensure the transparency, security and accuracy of

10

the voting process. This can help to reduce the potential for fraud and increase voter confidence

in the election results [4].

Another application of blockchain technology is in the creation of decentralized autonomous

organizations (DAOs) [5]. A DAO is a decentralized organization that is run through rules

encoded as computer programs on a blockchain. These programs are transparent, public and

cannot be altered, ensuring that the organization remains autonomous and decentralized. DAOs

have the potential to disrupt traditional organizational structures by enabling decentralized

decision making and increasing transparency.

In the field of digital identity, blockchain technology offers a secure and decentralized solution

for storing and verifying personal information. By using a blockchain to store personal data,

individuals have more control over their personal information and can ensure that it is being

used in a secure and transparent manner. This can help to reduce instances of identity theft and

fraud [6].

Finally, blockchain technology can be used in the creation of digital assets, such as collectibles

and non-fungible tokens (NFTs). By using a blockchain to record the ownership and

provenance of these digital assets, it becomes possible to ensure the authenticity and scarcity

of the asset. This has led to the creation of new markets for digital collectibles and NFTs, as

well as new opportunities for artists, musicians, and other creators to monetize their digital

creations [7].

2.2. Smart Contracts

Smart contracts are self-executing contracts with the terms of the agreement between buyer

and seller being directly written into lines of code. They are stored on the blockchain network,

which is a decentralized and distributed ledger technology, making them transparent, secure

and tamper-proof [8].

Smart contracts allow for the automation of various processes and the enforcement of specific

terms and conditions without the need for intermediaries. This eliminates the possibility of

fraud or interference and ensures that the terms of the contract are executed exactly as intended.

The code and the agreements contained in a smart contract are executed automatically when

certain predetermined conditions are met. For example, in a real estate transaction, the

ownership of the property could be transferred automatically to the buyer when the agreed-

11

upon payment is received. The terms of the contract are defined in the code and once both

parties agree to the terms, the contract is executed automatically when the conditions are met.

Smart contracts are written in programming languages such as Solidity, which is used for the

Ethereum blockchain, and can be deployed on blockchain platforms such as Ethereum, EOS,

and TRON.

One of the key benefits of smart contracts is their ability to increase the efficiency and

transparency of various types of transactions. They also have the potential to reduce the cost

of transactions, as intermediaries are not needed to enforce the contract.

2.3. Ethereum

Ethereum is a decentralized, open-source blockchain platform that enables the creation of

decentralized applications (dapps) and smart contracts. It was founded in 2014 by Vitalik

Buterin, a programmer and cryptocurrency researcher.

Ethereum operates on a blockchain, which is a decentralized and distributed ledger technology.

This allows for a more secure and transparent way of executing transactions and agreements

compared to traditional centralized systems.

One of the key differences between Ethereum and other cryptocurrencies, such as Bitcoin, is

that Ethereum was designed to be more than just a digital currency. Ethereum allows

developers to build decentralized applications (dapps) on its platform, using its native

programming language called Solidity. These dapps can run on the Ethereum network, which

is maintained by a decentralized network of computers around the world.

Ethereum also has its own cryptocurrency, called Ether (ETH), which is used to pay for

transactions on the Ethereum network and to compensate nodes for processing and verifying

transactions.

Smart contracts are a key feature of Ethereum. They are self-executing contracts with the terms

of the agreement between buyer and seller being directly written into code. Once both parties

agree to the terms, the contract is executed automatically when the conditions are met,

eliminating the need for intermediaries [9].

12

Ethereum also has a feature called gas, which is a unit of computation required to execute a

contract or perform a transaction on the Ethereum network. The cost of gas is determined by

the complexity of the computation and is paid in Ether.

2.3.1. Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is the runtime environment for smart contracts on the

Ethereum blockchain. It is responsible for executing the code of a smart contract and ensuring

that it operates as intended.

The EVM is a sandboxed environment that runs on each node in the Ethereum network,

allowing for the decentralized execution of smart contracts. It is responsible for executing the

code of a smart contract, keeping track of the state of the contract, and ensuring that the terms

of the contract are followed. Figure 2 shows components in an EVM machine.

The EVM is designed to be platform-agnostic and can run on any computer system, making it

possible for anyone to participate in the Ethereum network. This helps to ensure the

decentralized and secure execution of smart contracts on the Ethereum network [10].

One of the key benefits of the EVM is its ability to execute smart contracts in a secure and

transparent manner, as all nodes in the Ethereum network can verify and execute the code. This

makes it difficult for a single party to manipulate or alter the outcome of a contract, as all nodes

must reach consensus before a contract can be executed [11].

Figure 2 Ethereum Virtual Machine (EVM) [10]

13

2.3.2. Solidity

Solidity is the primary programming language used for writing smart contracts on the Ethereum

platform. It is a high-level, contract-oriented programming language influenced by C++,

Python, and JavaScript.

In Solidity, a smart contract is defined as a collection of code and data that resides on the

Ethereum blockchain. Once deployed, a smart contract becomes a permanent part of the

blockchain and can be executed by anyone on the network. The code and data within a smart

contract can be interacted with through transactions submitted to the Ethereum network [12].

The code in a Solidity smart contract defines the rules and conditions for executing the contract,

such as specifying the inputs and outputs, as well as the actions to be performed when the

contract is executed. Solidity also includes features such as inheritance, libraries, and user-

defined types, making it a powerful tool for creating complex decentralized applications [13].

When a transaction is submitted to the Ethereum network that interacts with a smart contract,

the Ethereum virtual machine (EVM) executes the contract's code. The result of the execution

is then recorded in the blockchain, making it transparent and tamper-proof. This allows for

trustless transactions and eliminates the need for a middleman, making smart contracts an

important building block for decentralized systems. Figure 3 demonstrate the flow process of

development of a smart contract from developer to the EVM.

Figure 3 Development of Smart Contract [14]

2.3.3. Ethereum Smart Contract analysis and visualization

Ethereum smart contracts are self-executing contracts with the terms of the agreement directly

written into code. They are stored and run on the Ethereum blockchain, making them

transparent, tamper-proof, and decentralized.

To analyse and visualize Ethereum smart contracts, there are several tools available. Some

popular tools are:

14

 Remix: A web-based IDE for writing, testing, and deploying smart contracts on the

Ethereum network. It also includes a debugger and contract deployment options.

 Etherscan: A blockchain explorer for the Ethereum network that provides information

about contracts, including the source code, transactions, and events.

 Mythril: A security analysis tool for Ethereum smart contracts that can identify

potential vulnerabilities in your code.

 DappHub: An open-source platform for Ethereum development that provides a suite

of developer tools, including a contract visualizer.

 Alethio: A blockchain data analytics platform that provides visualizations and insights

into smart contracts and transactions on the Ethereum network.

 Slither is an open-source tool designed to analyse Ethereum smart contracts for security

vulnerabilities and potential flaws. The tool is primarily used by developers and

auditors to identify potential vulnerabilities in smart contracts before they are deployed

to the Ethereum network.

Slither works by analyzing the Solidity source code of a smart contract and identifying

potential security issues such as potential reentrancy attacks, uninitialized storage, and

other common vulnerabilities. The tool can also detect potential performance issues,

such as inefficient code that could lead to high gas costs.

 SmartCheck uses symbolic execution, which means it analyzes the code paths of a

smart contract to find potential security risks.

SmartCheck can detect issues such as reentrancy, integer overflow/underflow, and

other common security risks. It also supports a variety of other checks, including gas

cost estimation and code complexity analysis.

SmartCheck provides a web-based interface that allows users to upload their smart

contract code for analysis. The tool generates an easy-to-read report that highlights any

security issues found in the contract, along with recommendations for fixing them.

 Honey Badger uses static analysis techniques to analyze smart contracts without the

need to execute them on the Ethereum network. Honey Badger can detect a variety of

security issues, including reentrancy, integer overflow/underflow, and other common

vulnerabilities. It also includes a feature that detects possible errors related to the

transfer and storage of Ether. Honey Badger provides a command-line interface and can

be used locally on a developer's machine. It generates a report that identifies any

security vulnerabilities found in the contract, along with recommendations for fixing

15

them. One of the key advantages of Honey Badger is its ability to analyze large-scale

contracts with many dependencies. It also supports the analysis of contracts written in

Solidity, Vyper, and other Ethereum smart contract programming languages.

 Smartbugs; The tool analyzes the Solidity source code to detect various types of

security issues, including common types of vulnerabilities such as integer

overflow/underflow, reentrancy attacks, and unprotected functions, as well as some

more specific ones related to smart contracts, like timestamp dependence, transaction-

ordering dependence, and denial-of-service attacks [15]. SmartBugs uses a combination

of static and dynamic analysis techniques to achieve its goal. It first performs a static

analysis of the source code to identify potential issues, and then it generates test cases

to execute the smart contract and verify the vulnerabilities. The dynamic analysis helps

to confirm the potential issues detected by the static analysis and ensures that the smart

contract behaves as expected under different conditions.

 Manticore is a symbolic execution tool designed to analyze smart contracts written in

the Solidity programming language, which is used to create smart contracts on the

Ethereum blockchain. Symbolic execution is a technique used in software testing that

explores the possible paths of execution of a program by treating program inputs as

symbolic expressions rather than concrete values. This allows for the exploration of all

possible execution paths of a program, which is especially useful for finding bugs,

vulnerabilities, and other security issues in smart contracts. Manticore uses symbolic

execution to analyze smart contracts and can generate test cases and find vulnerabilities

such as integer overflows, underflows, reentrancy bugs, and other issues that could lead

to unexpected behavior in a smart contract. It also includes a fuzzing engine to test for

security issues that may arise due to unexpected user input.

 Solhint is an open-source static analysis tool for Ethereum smart contracts written in

Solidity. It helps developers to identify potential issues in their code before deployment,

and ensures that the code conforms to best practices and industry standards. The tool

can be integrated into various development environments such as Visual Studio Code,

Sublime Text, and Atom, and can be used in continuous integration workflows to ensure

code quality and security. Solhint is highly configurable and allows developers to

customize the rules and settings to fit their specific needs. It is actively maintained and

regularly updated with new rules and features to improve its functionality and

effectiveness.

16

Figure 4 Ethereum Smart Contract Analysis Tools [16]

Figure 4 illustrates different Ethereum Smart Contract Analysis tools by categorizing them.

These tools can help you to understand how a smart contract works, its transactions and events,

and potential security risks. However, it's important to remember that even with these tools,

you still need to have a good understanding of the underlying code and the Ethereum platform

to properly analyse a contract.

2.3.4. Vulnerabilities in the smart contracts

Like any software, Ethereum Smart contracts can have vulnerabilities that could be exploited

by attackers. Here are some of the common vulnerabilities in Ethereum smart contracts:

17

 Reentrancy: This occurs when a contract allows an attacker to repeatedly call it,

resulting in unintended and potentially harmful behavior.

 Unchecked-send: This occurs when a contract fails to check the return value of a

transfer or send operation, which can result in lost funds if the operation fails.

 Integer overflow/underflow: This occurs when an integer value exceeds the maximum

or minimum value that can be stored in its data type, leading to unintended

consequences.

 Lack of access control: This occurs when a contract fails to restrict access to its

methods and data, allowing unauthorized actors to modify or extract sensitive

information.

 Unhandled exceptions: This occurs when a contract does not properly handle

exceptions that could occur during execution, resulting in unexpected and potentially

harmful behavior.

 Uninitialized storage pointers: This occurs when a contract does not initialize storage

pointers before use, which can lead to the use of uninitialized or invalid data.

 Race conditions: This occurs when two or more transactions attempt to modify the

same state simultaneously, leading to unintended and potentially harmful behavior.

 Timestamp dependence: This occurs when a contract relies on the current timestamp,

which can be manipulated by attackers, leading to unintended behavior.

 Dos attacks: This occurs when a contract is susceptible to denial-of-service (DoS)

attacks, which can be used to congest the network and cause the contract to stop

functioning.

These are just a few of the potential vulnerabilities in Ethereum smart contracts. It's important

to thoroughly review and test contracts before deployment to reduce the risk of exploitation

[16].

Reentrancy

A Reentrancy attack is a vulnerability that occurs when a contract allows an attacker to

repeatedly call it, resulting in unintended and potentially harmful behaviour. Here's an example

of a vulnerable code:

18

In this example, the Victim contract has a withdraw function that allows the owner to withdraw

their balance. However, the withdraw function is vulnerable to reentrancy attacks because it

calls msg.sender.call.value(balance)() before setting the balance to zero.

An attacker can create an instance of the Attacker contract and call its attack function, which

in turn calls victim.call.value(1 ether)(). This will trigger the Victim contract's fallback

function, causing its balance to be increased by 1 ether.

The withdraw function will then be executed, calling msg.sender.call.value(balance)() and

sending the entire balance back to the attacker's address. This allows the attacker to repeatedly

call attack and drain the Victim contract's balance.

To solve this issue, we can use a mutex (or a lock) to prevent reentrant calls. A mutex can be

implemented using a flag variable that is set during execution and checked before entering a

critical section of code. Here's an updated version of the Victim contract that is protected

against reentrancy attacks:

19

An "unchecked-send" attack refers to a security vulnerability in smart contracts that occurs

when the contract executes a transfer of funds to an address without properly checking the

validity of that address. This can result in funds being sent to an attacker's address instead of

the intended recipient, leading to loss of funds.

Here's an example of a vulnerable Solidity code:

In this example, the transferFunds function takes an address as an argument and transfers 1000

wei to that address. However, it does not check whether the address is a contract or not, or

whether the contract has a fallback function that can steal the funds. As a result, if an attacker

provides an address for a malicious contract that has a fallback function, the funds will be sent

to the attacker's address.

20

To mitigate this issue, it is recommended to perform a check on the address before making the

transfer, such as checking the balance of the address or verifying its code, to ensure that it is a

valid address and not a malicious contract.Here's an example of a fixed code;

In this example, the require statement checks whether the balance of the _to address is greater

than or equal to 1000 wei before making the transfer. This helps to prevent the funds from

being sent to an attacker's address.

Integer Overflow

Integer overflow and underflow are types of security vulnerabilities in software systems that

arise from the handling of integer values. An integer overflow occurs when a calculation

produces a value that is too large to be represented as an integer within the data type's storage

size. An integer underflow occurs when a calculation produces a value that is too small to be

represented within the data type's storage size.

Here's an example of code that is vulnerable to an integer overflow:

In this example, the code calculates the sum of two maximum values for a 32-bit signed integer,

which is 2147483647. The result of this calculation should be 4294967294, but because the

21

data type int is limited to 32 bits, the result will actually be -2147483648. This is because the

result overflows the int data type, and instead of being stored as the expected value, it wraps

around to the minimum value that can be represented with 32 bits.

To prevent integer overflow, you can use a larger data type to store the result of the calculation,

such as long long in C or int64_t in C++. Alternatively, you can perform the calculation in a

way that checks for overflow before it occurs, for example, by using an intermediate value to

store intermediate results.

Here's an updated version of the code that uses a larger data type to prevent the integer

overflow:

In this updated version of the code, the result of the calculation is stored in a 64-bit signed

integer, which has a larger range of values and can therefore represent the result without

overflow. The PRId64 macro is used with the printf function to print the value of z as a signed

decimal integer.

Timestamp dependencies

Timestamp dependency attacks are a type of vulnerability in which an attacker exploits the

relationship between a system's current time and the validity of certain data. For example, in

some systems, a user's session may be considered valid only if the current time is within a

specified range of the time that the session was established. If an attacker can manipulate the

system's notion of the current time, they may be able to bypass authentication or gain

unauthorized access.

22

Here's an example of code that is vulnerable to a timestamp dependency attack:

In this example, the code calculates the current time using the time function, and then checks

whether the current time is within a range of 60 seconds of the start time of a user session. If

the current time is within this range, the code considers the session to be valid and allows the

user to access protected resources.

However, an attacker could manipulate the system's notion of the current time to make it appear

as though the current time is within the valid session range, even if the actual current time is

outside of that range. For example, the attacker could set the system's clock back by 60 seconds

to make it appear as though the session has not yet expired.

To prevent timestamp dependency attacks, it's important to use secure mechanisms for

obtaining and storing the current time, and to validate timestamps in a way that is resistant to

tampering. For example, you can use secure methods such as the Network Time Protocol (NTP)

to obtain the current time from a trusted source, and you can store timestamps securely, such

as in a secure database or using cryptographic signatures. Additionally, you can use

cryptographic methods, such as secure hashing or encryption, to validate the integrity of

timestamps and prevent tampering.

Lack of Access Control

Lack of access control is a type of vulnerability in which a system does not properly enforce

authorization rules, allowing unauthorized access to protected resources. This can occur when

23

a system does not properly check the permissions of a user before allowing access to a resource,

or when a system does not enforce access controls consistently throughout the system.

Here's an example of code that is vulnerable to a lack of access control:

In this example, the code checks the value of user_role to determine whether the user should

be granted access to a protected resource with an ID of 42. If user_role is equal to 2, the code

grants access to the resource and prints a message indicating that access has been granted.

Otherwise, the code denies access and prints a message indicating that access has been denied.

However, this code is vulnerable to a lack of access control because the value of user_role can

be easily manipulated by an attacker. For example, an attacker could modify the value of

user_role to 2, effectively bypassing the access control check and gaining unauthorized access

to the protected resource.

To prevent lack of access control vulnerabilities, it's important to implement proper access

control checks throughout the system, and to validate the authenticity and integrity of any

inputs used to enforce access control rules. Additionally, you can use role-based access control

(RBAC) or attribute-based access control (ABAC) to enforce access control rules based on the

attributes or roles of a user. For example, you can use a database or an external service to store

the access control rules and roles for each user, and you can validate the user's role before

granting access to a protected resource.

24

Denial of Service (DoS)

A Denial of Service (DoS) attack is a type of attack that aims to make a system or network

resource unavailable to its intended users. This is often achieved by overwhelming the system

with a large volume of requests, traffic, or data, causing it to become slow, unresponsive, or

completely unavailable.

Here's an example of code that is vulnerable to a DoS attack:

In this example, the code runs an infinite loop that processes incoming requests and prints a

message indicating that a request has been received. The sleep function is used to simulate

processing time, but in a real-world scenario, this code would perform more complex and time-

consuming operations.

However, this code is vulnerable to a DoS attack because an attacker could easily send an

extremely high volume of requests to the system, causing it to become overwhelmed and slow

or unresponsive. This could result in the system becoming unavailable to its intended users.

To prevent DoS attacks, it's important to implement rate limiting and other traffic management

techniques to limit the volume of requests that a system can handle. For example, you can limit

the number of requests that a system can process per second, and you can implement

mechanisms to detect and block malicious traffic. Additionally, you can use caching and other

performance optimization techniques to reduce the processing time required for each request,

making it more difficult for an attacker to overwhelm the system.

25

2.3.5. Introduction to Artificial Intelligence as application to read smart

contracts.

AI refers to the development of computer systems that can perform tasks that would typically

require human intelligence, such as understanding natural language, recognizing objects,

making decisions, and solving problems.

NLP (Natural Language Processing) is a subfield of AI that focuses on the interaction

between computers and humans using natural language. NLP involves using machine learning

algorithms to analyse, understand, and generate human language.

One application of NLP in AI is in reading vulnerabilities in Ethereum smart contracts.

Ethereum is a blockchain platform that enables the creation and execution of decentralized

applications known as smart contracts. These contracts are self-executing and can be

programmed to perform various functions. However, like any other software, smart contracts

can contain bugs and vulnerabilities that can be exploited by malicious actors [17].

An NLP-based AI system can be trained to analyse the code of smart contracts and identify

potential security vulnerabilities. For example, the system could be trained on a large dataset

of past vulnerabilities and exploitations in smart contracts, allowing it to detect similar patterns

in new contracts. The AI system could also be trained to identify common coding patterns that

are prone to bugs and vulnerabilities.

By using NLP and AI, organizations and individuals can perform automated security audits on

their smart contracts, saving time and resources compared to manual audits. This can help

ensure the security and integrity of Ethereum-based decentralized applications and prevent

potential losses caused by exploitations [18].

2.3.6. Chat GPT API

ChatGPT is a state-of-the-art language generation model developed by OpenAI. It is trained on

a massive dataset of diverse text sources and has the ability to generate human-like text based

on the input provided to it.

Regarding the Ethereum smart contracts, the ChatGPT API could work as a tool for reading

the information stored in these smart contracts. Ethereum is a decentralized platform that

allows developers to build decentralized applications (dapps) and smart contracts. Smart

26

contracts are self-executing code that run on the Ethereum blockchain and contain the terms of

the agreement between the parties involved.

The ChatGPT API could be used to extract information from these smart contracts by

interfacing with the Ethereum blockchain. The API could access the smart contract code and

retrieve the relevant data, such as the terms of the agreement, the parties involved, and other

important information stored in the contract.

Once the data has been retrieved, the ChatGPT API could then generate a human-readable

summary or explanation of the information contained in the smart contract, making it easier

for users to understand and use the information stored in the contract.

ChatGPT API could serve as a valuable tool for developers, organizations, and individuals

looking to interact with Ethereum smart contracts and retrieve information from them in a user-

friendly and accessible way.

2.3.7. Topic Modeling

Topic modeling can also be applied to the analysis of smart contracts, which are self-executing

contracts with the terms of the agreement between buyer and seller being directly written into

lines of code. In the context of smart contracts, topic modeling can be used to extract

meaningful topics from the code and natural language descriptions of the contracts.

One application of topic modeling in smart contract analysis is to identify the key topics or

themes covered by a large collection of smart contracts. This can help to understand the overall

landscape of the smart contract ecosystem and the most common use cases for this technology.

Another application is to automatically classify smart contracts into different categories based

on their topics. For example, topic modeling can be used to categorize smart contracts based

on their intended purpose, such as financial contracts, voting contracts, or identity contracts.

Topic modeling can also be used to analyse the natural language descriptions of smart

contracts, which can be written in plain English or other languages, to understand the human-

readable provisions of the contracts. This information can be used to identify trends in the terms

and conditions of smart contracts, or to help automate the process of summarizing the key

provisions of a contract for a human reader [19].

27

2.3.8. Sentiment Analysis

Sentiment analysis is a subfield of natural language processing (NLP) that deals with

identifying and extracting opinions and emotions from text data. In the context of Ethereum

smart contracts, sentiment analysis can be applied to the natural language descriptions of the

contracts to understand the overall sentiment expressed in the contracts [20].

For example, sentiment analysis can be used to determine whether a contract description is

positive, negative, or neutral in tone. This information can be useful for several purposes, such

as understanding the overall sentiment of the smart contract ecosystem, identifying contracts

that are written in a contentious or controversial manner, or detecting potential risks associated

with a contract.

Sentiment analysis can also be applied to the code of the smart contracts to identify any

potential security risks or vulnerabilities in the code. For example, sentiment analysis can be

used to identify code comments that express frustration or concern about a particular aspect of

the code, which may indicate a potential security vulnerability.

Sentiment analysis can be performed using machine learning techniques, such as supervised

learning and unsupervised learning, and various algorithms, such as Naive Bayes, Support

Vector Machines (SVM), and Long Short-Term Memory (LSTM) neural networks. The choice

of algorithm will depend on the specific requirements of the sentiment analysis task and the

data being analysed [21].

28

Chapter 3
3. Related Works

Research in the past has explored the use of AI in smart contracts to improve their functionality

and automate certain aspects of their execution. One area of research has focused on using

machine learning algorithms to enable smart contracts to learn from past behaviour and make

more informed decisions. Another area of research has looked at using AI to verify the

correctness of smart contracts and ensure that they behave as intended. Additionally,

researchers have explored the use of AI in creating more efficient and scalable smart contract

systems. Some of the research papers are discussed as follows.

3.1. Research papers

Investigating the Role of Artificial Intelligence in Building Smart Contact on Block-Chain

[22]. The research paper investigates the role of artificial intelligence (AI) in the development

of smart contracts based on blockchain technology. The paper proposes using deep learning, a

specific AI approach, to make smart contracts on the blockchain more efficient and intelligent.

The research paper takes into account existing studies in the areas of blockchain and AI but

notes their limited scope and lack of accuracy and performance. The proposed work aims to

provide a better solution in terms of accuracy and performance.

The paper seeks to explore how AI can enhance the functionality and usefulness of smart

contracts in blockchain applications and provide a more robust and efficient approach to

blockchain-based smart contract development. Figure 5 explains the workflow of a traditional

smart contract.

Figure 5 Traditional Smart Contract Workflow

29

Working of the proposed system; If certain criteria are met based on past experience, a smart

contract will be activated. These contracts are automated, eliminating the need for a third party

and streamlining the process for both parties. An AI module checks the transaction's reliability

before using "if/when/then" instructions to build a smart contract on the blockchain. If past

experience indicates potential issues, the smart contract will not be executed, saving time and

resources. Figure 6 illustrates a proposed system of AI-based smart contract.

Smart Contract Privacy Protection Using AI in Cyber-Physical Systems: Tools,

Techniques and Challenges [23]

The abstract discusses the increasing use of Blockchain (BC) technology and Cyber-Physical

Systems (CPS), and the challenges associated with creating resilient and correct smart contracts

(SCs) for these systems. SCs are important in modernizing traditional processes because they

are self-executable, self-verifiable, and eliminate the need for trusted third-party systems,

ultimately reducing administration and service costs, improving efficiency, and reducing

security risks. However, SCs also present various security and privacy challenges that need to

be addressed. The paper presents a survey on SC security vulnerabilities in software code that

can be hacked by malicious users or compromise the entire BC network. The authors analyze

various Artificial Intelligence (AI) techniques and tools for SC privacy protection and discuss

open issues and challenges related to AI-based SCs. Finally, the paper presents a case study of

retail marketing that uses AI and SCs to preserve its security and privacy.

Figure 6 Proposed AI based Smart Contract

30

Case Study Retail Marketing.

The specific scenario focuses on a retail marketing use case for an Ice cream Retailing Store

(ICRS) based on blockchain (BC). Customers and ICRS are on the BC network, and customers

can order ice cream within 5000m range and make payment using cash, UPI, credit/debit card,

or internet banking. The ICRS promises delivery within 30 mins, or the full amount is refunded.

The SC executes the workflow between the customer and ICRS, verifying order feasibility, and

generating payment receipts.

To design and analyse complex SCs, AI algorithms are used to identify user preferences and

offer seasonal discounts. Logic-based programming language is used to reduce the complexity

of SCs, and AI uses dimensionality reduction techniques like principal component analysis to

increase security by hiding sensitive customer information. AI-enabled SCs are more efficient

and secure than traditional SCs. Figure 7 demonstrates a schematic diagram of the use case of

retail marketing and how the AI based smart contract will work in the system.

Countermeasure Based on Smart Contracts and AI against DoS/DDoS Attack in 5G

Circumstances [24]

The research paper discusses the vulnerability of servers to DoS/DDoS attacks in the context

of the development of 5G. The increased data processing capability of 5G networks has not

been matched by a corresponding enhancement in computer processing capability, which

makes servers vulnerable to being compromised by attackers who send a massive amount of

data. Further it proposes a solution that uses smart contracts and machine learning to protect

servers from DoS/DDoS attacks by hiding them in a blockchain network and restricting the

Figure 7 Smart Contract enabled with AI Use Case

31

scale of the attacks via transaction fees. The system also uses non-repudiation of smart

contracts to analyse users' behaviour and execute punishment for malicious communication.

The proposed scheme is more effective than existing defence mechanisms in 4G networks and

can counter DoS/DDoS attacks before they are launched. Furthermore, the proposed scheme

avoids backdoors where model trainers could compromise AI models to launch DoS/DDoS

attacks by considering the source trustworthiness of training samples.

Figure 8 DoS/DDoS countermeasure overview

The Figure 8 describes a proposed defence framework against DoS/DDoS attacks that is based

on AI-embedded smart contracts and runs on blockchain infrastructure. The framework

consists of two main modules - the Routing module and Smart Contract module - both of which

operate on the blockchain.

The protected server is hidden within the blockchain network, and external users interact with

it through the blockchain. The Routing module is responsible for transferring external data by

finding a route that connects external users and the server, while ensuring the integrity of data

and preventing tampering by malicious nodes. The Routing module also broadcasts data

packets to the blockchain to enable every blockchain node to extract and analyze the features

of the data packets.

32

The Smart Contract module combines three modules: Account Management, DoS/DDoS

Detection, and Punishment Execution. The Account Management module manages the

accounts of external users, hosting users’ records of balances and credits in the blockchain

ledger. The DoS/DDoS Detection module trains the detection model to classify DoS/DDoS

attacks and benign communication by analysing the features of the data and calculating the

confidence coefficient to indicate the possibility of a DoS/DDoS attack. The Punishment

Execution module calculates each transaction fee generated by miners’ calculations, adjusts

the fee rate of transactions based on the confidence coefficient provided by the DoS/DDoS

Detection module, and then deducts the user balance and transfers it to the corresponding miner

account.

The article proposes a solution to DoS/DDoS attacks in 5G circumstances using smart contracts

and AI. The scheme adopts transaction fees in smart contracts to limit the scale of DoS/DDoS

attacks and uses AI to calculate the confidence coefficient of attacks to increase the cost of

launching them. The advantages of this scheme are that it embeds an AI module into smart

contracts to ensure efficiency and trustworthiness, implements off-chain data routing with high

reputation to ensure the efficiency of 5G communication and detection accuracy of attacks, and

leverages the distributed infrastructure of the blockchain to prevent attackers from evading

auditing of smart contracts. Compared to conventional schemes, this solution can counter

attacks before they occur by amplifying the cost and forcing rational users not to launch attacks.

The article suggests that this scheme could motivate new ideas for detecting DoS/DDoS attacks

in 5G circumstances.

Comparison with the Previous Research Works

Compared to the previous research works, this thesis research uses new state of the art

technology i.e. ChatGPT for analysing Ethereum smart contracts, which is a new and

innovative approach to this field. Previous research has mainly relied on manual analysis

techniques or more traditional data analysis tools, which can be time-consuming and less

accurate.

The research utilizes advanced NLP techniques for analysing the text data extracted from smart

contracts. Previous research has primarily focused on analysing the code and structure of smart

contracts, rather than the text data contained within them. This approach allows for a more

comprehensive analysis of smart contracts and can provide insights into the emotions and

33

opinions expressed in the text, which can be crucial for understanding the risks associated with

smart contracts.

The research emphasizes the accessibility and understanding of smart contracts for individuals

who may not have technical knowledge or expertise. The use of the ChatGPT API for

automated analysis of smart contracts significantly reduces the time and effort required to

review and analyse them, making it easier for individuals with little to no technical background

to understand the risks associated with smart contracts. This approach can also help to increase

transparency and trust in the use of smart contracts in various industries.

34

Chapter 4
4. Realized System

In this part of the thesis, it will be discussed; the proposed system that caters the problems

associated in reading Ethereum smart contracts and the use of AI techniques to form our results.

4.1. Proposed System

To break it down the proposed system, here's how the system would work:

1. The system uses the ChatGPT-3.5 (Davinci-003) to read Ethereum smart contracts.

ChatGPT is a large language model that can be used for a wide range of natural

language processing tasks, including reading text.

2. A python script is developed that uses ChatGPT API to analyse the smart contracts for

weaknesses and vulnerabilities, results are stored in a CSV file.

3. With the results stored in the CSV file, then topic modeling analysis was performed.

Topic modeling is a technique for identifying topics or themes in a set of documents (in

this case, the smart contract weakness results). This could help identify patterns or

trends in the types of weaknesses that are present in the contracts.

4. Finally, sentiment analysis on the results was performed. Sentiment analysis is a

technique for identifying the emotional tone of a piece of text. In this case, we used

sentiment analysis to determine whether the results are generally positive (i.e., few

weaknesses), negative (i.e., many weaknesses), or neutral.

This proposed system would allow to analyse Ethereum smart contracts for potential

weaknesses and then gain insights into the patterns and trends present in the weaknesses that

are identified. This could be useful for identifying areas where improvements could be made

in smart contract development and for monitoring the security of smart contracts over time.

35

Figure 9 illustrates the workflow of the proposed system for this thesis.

Figure 9 Process Flow of our proposed system

4.2. Dataset of smart contracts

Dataset of Ethereum smart contracts from a repository [25] is used in the thesis. The repository

consists of 40,000 smart contracts which has about 4 types of vulnerabilities in them. The

author developed a python script for testing each type of vulnerability individually, however

in this thesis the dataset was downloaded and stored in a folder which was further read by a

python script that uses Chat-GPT API to analyse all types of vulnerabilities in the smart

contract in a single batch process. Overall, 5000 smart contracts were analysed using Chat-

GPT API from which approximately 3000 smart contracts were read properly, and results

acquired due to some limitation in Chat-GPT.

36

The Annotated Dataset

The annotated dataset is classified by the types of vulnerabilities found the in smart contracts.

The classified vulnerabilities in the dataset were Delegate call, Reentrancy, Integer Overflow

and Timestamp.

 The total smart contracts which had issue of Delegate call were accounted of total 196

contracts.

 The total smart contracts which had issue of Integer Overflow were accounted of total

275 contracts.

 The total smart contracts which had issue of Reentrancy were accounted of total 273

contracts.

 The total smart contracts which had issue of Timestamps were accounted of total 349

contracts.

4.3. Use of Chat-GPT API

A python script is developed that uses Chat-GPT API to read Ethereum smart contracts.

import os

import openai

import csv

openai.api_key = "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"

path='C:/Users/39349/Desktop/contract_dataset_ethereum/contract5/'

file_names= os.listdir(path)

ask="what is the weaknesses in the following smart contract solidity

code?\n\n"

if not file_names:

 print("Directory is Empty")

else:

 with open("resultscontract5.csv", "w", newline="") as f:

 writer = csv.writer(f)

 writer.writerow(["File Name", "ChatGPT Response"])

 for i in file_names:

 try:

 print('\nChatGPT Response for file '+i)

 with open(path+i) as my_file:

37

 response = openai.Completion.create(

 model="text-davinci-003",

 prompt=ask+ my_file.read(),

 temperature=0.9,

 max_tokens=2048,

 top_p=1,

 frequency_penalty=0,

 presence_penalty=0.6,

 stop=[" Human:", " AI:"]

)

 text = response['choices'][0]['text']

 print (text)

 writer.writerow([i, text])

 except:

 pass

This code is written in Python and its purpose is to use OpenAI's API to generate responses

from a language model called "text-davinci-003". The goal is to analyze a set of smart contract

solidity code files and generate a response for each file that highlights any weaknesses or

vulnerabilities in the code.

The first three lines of the code import three Python modules: os, openai, and csv. The os

module provides a way to interact with the operating system, the openai module provides an

interface to the OpenAI API, and the csv module is used for reading and writing CSV files.

The fourth line sets the API key for the OpenAI API, which is required to access the service.

The next line defines the path to the directory where the smart contract solidity code files are

located. The os.listdir function is then used to create a list of the names of all the files in the

directory.

The next line defines a string variable called ask, which is used as the prompt for the language

model. The prompt is the initial text that is given to the model as input, and it is customized in

this case to ask for weaknesses in the code.

The if not file_names statement checks if the list of file names is empty, which would indicate

that there are no files in the directory. If the directory is empty, the program prints a message

indicating this. If the directory is not empty, the program proceeds to analyze each file.

38

The with open statement creates a new CSV file called "resultscontract5.csv" and defines the

headers for the file as "File Name" and "ChatGPT Response". The for loop iterates over each

file in the directory, and the try block attempts to generate a response for each file using the

OpenAI API.

Inside the try block, the open function is used to open the file and read its contents. The

openai.Completion.create function is then used to generate a response from the language

model, which is based on the prompt ask concatenated with the contents of the file. The

function is called with several arguments to specify various parameters for the response, such

as the temperature, max tokens, and penalties.

The response from the language model is stored in the text variable, and it is printed to the

console. The response is also written to the CSV file using the writer.writerow function.

The except block is used to handle any exceptions that may occur during the analysis of a file,

such as a file not being found or an error with the OpenAI API. If an exception occurs, the

program simply skips the file and continues to the next one.

This code is a useful example of how to use OpenAI's API to generate responses from a

language model, and it demonstrates how this can be used to analyze a set of files in a specific

domain.

4.4. Results from Chat-GPT

The below table shows some of the results extracted from Chat-GPT

Smart Contracts number Chat-GPT responses

101

The weaknesses in the above smart contract

Solidity code are:

1. There is no check for totalSupply against

the maximum of 2^256 - 1.

2. The function approveAndCall is

potentially vulnerable to a reentrancy attack.

3. The balances are updated before

fundsWallet.transfer(msg.value) is called,

which could result in the funds being lost if

the withdrawal fails.

39

102

1. The contract does not include any

protection from replay attacks.

2. No authorization is checked before

setting or getting data, anyone could change

the reference or get the reference value.

3. No validation for the reference values are

present.

4. There is no mechanism to safely delete or

update the data stored in the audit log.

5. There is no method to check the integrity

of the stored data since there is no hash or

signature verification.

104

1. The contract does not include any safety

measures to prevent the Gastoken contract

from being abused.

2. The contract does not check that the

_merkleMineContract address, _recipients,

and _merkleProofs are valid before

proceeding.

3. There is no limit on the amount of tokens

that can be burned and freed.

4. There is no enforcement of any specific

standards when approving tokens to be

freed and/or transferred.

5. The Livepeer address is hardcoded, and

could potentially be exploitable.

107

1. There is no restriction on how much

ERC20 tokens can be minted, allowing for

inflation.

2. No safety mechanism is built into the

contract to check for overflow/underflow

when subtracting or adding values.

3. No way to freeze accounts

40

4. There is no way to ensure funds are used

properly as there is no audit trail of the

transactions.

5. The transfer() and transferFrom()

functions are not restricted to a certain

amount of tokens, allowing for unlimited

transfers.

113

Some of the weaknesses in this contract:

1. The total supply is hardcoded.

2. The new owner address is stored in a

publicly visible variable which could

be read and changed by attackers.

3. No function to mint more tokens has

been defined which means the total

supply will remain fixed forever.

4. No functionality for pausing or

freezing accounts has been defined.

Table 1 Results from Chatgpt

Table 1 illustrates results from ChatGPT of few smart contracts that were analysed out of total

of 2500 approx smart contracts that were read and the results were saved in a csv file. 17 smart

contracts had no vulnerabilities, however ChatGPT suggested some improvements in almost

every smart contract.

41

Figure 10 Vulnerabilities found in the dataset

Figure 10 shows the percentages of the major vulnerabilities found in the smart contract dataset

analysed by ChatGPT, About 17 contracts were free of any vulnerability. The main

vulnerability was found to be the attacks of Reentrancy 6% and Lack of access control 5%..

However, ChatGPT proposed some kind of improvements in the code of 84% of the remaining

smart contracts.

4.5. Topic Modelling

In this thesis we used Latent Dirichlet Allocation (LDA) that is a generative statistical model

used for topic modeling. The model represents each document as a mixture of topics and each

topic as a distribution over words. In other words, LDA is a way to automatically discover

topics that are present in a collection of documents.

Gensim was used; a popular open-source Python library for topic modeling and natural

language processing. It provides an implementation of LDA and other algorithms for topic

modeling [27].

Here is the breakdown of the code used;

The code is a Python script that reads a CSV file, performs text pre-processing on the data, and

trains an LDA (Latent Dirichlet Allocation) model using Gensim.

Reentrancy
6%

timestamp
1%

delegatecall
0%integere overflow

2% Dos
1% Access Control

5%

no weakness
1%

smart contracts with
other improvements

84%

Vulnerabilities found in the dataset

Reentrancy

timestamp

delegatecall

integere overflow

Dos

Access Control

no weakness

smart contracts with other
improvements

42

Specifically, the code does the following:

It imports the necessary libraries, such as Pandas, Gensim, and NLTK, and loads the dataset

from a CSV file using Pandas.

43

44

It pre-processes the text data by tokenizing the text, removing stop words, and lemmatizing the

remaining words.

45

It creates a dictionary from the pre-processed text data using Gensim's Dictionary class.

46

It creates a bag-of-words model for each document, where the bag-of-words model reports how

many words and how many times those words appear.

.

47

It creates a Tf-idf (term frequency-inverse document frequency) model object using Gensim's

TfidfModel class and applies the transformation to the entire corpus

Further, It trains an LDA model using Gensim's LdaMulticore class on the tf-idf transformed

corpus.

Overall, the code demonstrates how to perform text preprocessing and train an LDA model

using Gensim.

4.6. Sentiment Analysis

Further sentiment analysis was performed on the responses from Chat-GPT. This code

performs topic modeling and sentiment analysis on a CSV file containing text data. Here's a

brief explanation of what each part of the code does:

 Import necessary libraries

import pandas as pd

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.decomposition import LatentDirichletAllocation

48

from nltk.sentiment import SentimentIntensityAnalyzer

import csv

This code imports the necessary libraries for performing topic modeling and sentiment analysis.

 Load the data from the CSV file

data =

pd.read_csv('C:/Users/39349/PycharmProjects/pythonProject2/combined.csv'

,encoding='latin-1', on_bad_lines='skip', engine='python')

data = data.dropna()

text = data['Responses']

This code loads the CSV file using pandas, drops any rows that contain missing data, and

assigns the column 'Responses' to the variable text.

 Perform topic modeling using Latent Dirichlet Allocation

vectorizer = CountVectorizer(max_df=0.95, min_df=2,

stop_words='english')

doc_term_matrix = vectorizer.fit_transform(text)

lda = LatentDirichletAllocation(n_components=10, random_state=42)

lda.fit(doc_term_matrix)

This code performs topic modeling using Latent Dirichlet Allocation. It uses the

CountVectorizer class to create a document-term matrix from the text data, and then fits an

LDA model to the matrix.

 Extract the topics and their corresponding weights

topics = lda.components_

topic_weights = lda.transform(doc_term_matrix)

This code extracts the topics and their corresponding weights from the LDA model.

 Perform sentiment analysis using the NLTK library

sia = SentimentIntensityAnalyzer()

sentiments = []

49

for doc in text:

 sentiments.append(sia.polarity_scores(doc))

This code performs sentiment analysis using the SentimentIntensityAnalyzer class from the

NLTK library. It creates a list of sentiment scores for each document in the text data.

 Print the topics and sentiments.

for i, topic in enumerate(topics):

 print("Topic ", i, ": ",

[(vectorizer.get_feature_names_out()[index], weight) for index, weight

in enumerate(topic)])

 Write the topics and sentiments to a CSV file

with open('topics_sentiments3.csv', 'w', newline='') as file:

 writer = csv.writer(file)

 writer.writerow(["Topic", "Words", "Sentiments"])

 for i, topic in enumerate(topics):

 for index, weight in enumerate(topic):

 writer.writerow([i,

vectorizer.get_feature_names_out()[index], weight])

 for sentiment in sentiments:

 writer.writerow(["Sentiment", sentiment])

This code writes the topics and sentiments to a CSV file. It first opens the file using the open

function and creates a csv.writer object. It then writes the topic and word weights to the file,

followed by the sentiment scores for each document.

This code performs topic modeling and sentiment analysis on a CSV file containing text data,

and produces the following results:

 Topic modeling using Latent Dirichlet Allocation (LDA): The code uses LDA to extract

10 topics from the text data, along with their corresponding weights. For each topic, the

code prints the top words with the highest weights in that topic.

 Sentiment analysis using the NLTK library: The code uses the

SentimentIntensityAnalyzer class from the NLTK library to perform sentiment analysis

on each document in the text data. The code creates a list of sentiment scores for each

50

document, including the polarity scores for positive, negative, and neutral sentiment, as

well as the compound score, which represents an overall score for the sentiment of the

text.

 Writing the topics and sentiments to a CSV file: The code writes the topics and their

corresponding words and weights, as well as the sentiment scores for each document,

to a CSV file named 'topics_sentiments3.csv'. The file has three columns: 'Topic',

'Words', and 'Sentiments'. The 'Topic' column contains the topic number (0-9), the

'Words' column contains the top words with the highest weights in the topic, and the

'Sentiments' column contains the sentiment scores for each document.

 this code allows for the exploration of the main topics present in the text data and the

sentiment associated with each document. This information can be useful for

understanding the themes and emotions present in the data and can inform further

analysis or decision-making.

51

Chapter 5
5. Evaluation

5.1. Word Cloud from Topic Modeling

Word clouds are a visual representation of text data in which the size of each word is

proportional to its frequency in the text. They are often used to highlight the most important or

frequent words in a large corpus of text, and can be a useful tool for exploring and summarizing

textual data.

This code is used to generate word clouds for topics in a topic modeling analysis, specifically

using the Latent Dirichlet Allocation (LDA) algorithm.

First, the necessary modules are imported: matplotlib.pyplot for visualizations and %matplotlib

inline for inline plotting in Jupyter notebooks; and WordCloud and STOPWORDS from the

wordcloud module for generating the word clouds.

Then, a function named word_cloud is defined with two arguments: topic and model. The topic

argument is the index number of the topic to generate the word cloud for, and the model

argument is the LDA model object.

The function creates a new figure with a specific size, generates a list of the top 75 words for

the specified topic using the LDA model's print_topic method, and then creates a word cloud

52

from those words using the WordCloud function. The STOPWORDS argument is used to

remove common English words from the word cloud. Finally, the function displays the word

cloud using imshow and show functions from matplotlib.pyplot.

The for loop iterates over 10 topics, calling the word_cloud function for each topic to generate

a corresponding word cloud.

5.2. Results from Topic Modeling

 Word cloud for Topic 0

 Word Cloud for Topic 1

53

 Word cloud for Topic 2

 Word Cloud Topic 3

54

 Word Cloud for Topic 4

 Word Cloud for Topic 5

55

 Word Cloud for Topic 6

 Word cloud for Topic 7

56

 Word Cloud for Topic 8

 Word Cloud for Topic 9

5.3. Intertopic Distance Mapping

The intertopic distance map is a visualization technique used to understand the relationships

between topics in a topic model. It is a scatter plot that shows the distance between topics in a

two-dimensional space, based on the similarity of the words they contain.

57

the intertopic distance map is generated using the pyLDAvis library. This library provides a

convenient way to visualize topic models, and is specifically designed to work with models

trained using the Gensim library.

The first step in generating the intertopic distance map is to prepare the data for visualization

using the pyLDAvis.gensim_models.prepare() function. This function takes three arguments:

lda_model: The trained LDA model.

bow_corpus: The bag-of-words corpus used to train the model.

dictionary: The dictionary used to create the bag-of-words corpus.

Once the data has been prepared, the pyLDAvis.enable_notebook() function is called to

enable notebook output. This allows the visualization to be displayed directly in a Jupyter

notebook.

Finally, the vis variable is assigned the result of calling pyLDAvis.gensim_models.prepare()

with the appropriate arguments. This variable can then be displayed to generate the intertopic

distance map.

Figure 11 Intertopic Distance Mapping Visualization 1

58

Figure 12 Intertopic Distance Mapping Visualization 2

Figures 11 and 12 are the Intertopic Distance Mapping Visualization which illustrates

closeness of topics to each other and relationships between different topics that emerge from

a corpus of text. The resulting map can be used to explore the relationships between topics

and to identify clusters of related topics. It can also be used to identify gaps in the topics

being discussed and to suggest new areas of research or inquiry.

Intertopic distance mapping is a powerful tool for visualizing and understanding complex

relationships between topics in large collections of text.

In the pyLDAvis interface, there is a left panel that displays the topics in a model as circles.

The size of each circle reflects the relative statistical importance of the topic. If you click on a

circle or type in a topic number in the search field, you can select a particular topic to

investigate. This left panel is also referred to as an "intertopic distance map

(multidimensional scaling)." It helps users visualize how closely or distantly related the

topics are to each other in statistical terms.

The right panel of the pyLDAvis interface displays the top words related to the selected topic

on the left panel, accompanied by bar graphs that indicate their weight. The blue bar denotes

the frequency of the word in the overall topic model, while the red bar signifies the frequency

59

of the word within the selected topic. The right panel also features a relevance metric slider at

the top, which arranges the words for a topic based on their importance.

One way to measure the association of a word with a topic is to consider its frequency in that

specific topic. In other words, if the word appears more frequently in the topic, it is highly

associated with that topic. The slider in pyLDAvis has a lambda (λ) value, which is initially

set to "1." This setting arranges the words in the topic by their frequency, with longer red bars

indicating higher frequency.

5.4. Results from Sentiment Analysis

The Table 2 shows the outcome form sentiment analysis the code prints the topics and their

corresponding words and weights and writes them to a CSV file along with the sentiment

scores. The table illustrates the negative, neutral and positive scores of the contracts. The

compound score is calculated by normalizing the scores of the other three categories and then

computing a sum using specific weights. The compound score is a weighted average of the

normalized scores, where the weights are designed to place more emphasis on the most

extreme scores. the SentimentIntensityAnalyzer module from NLTK is used to compute the

polarity in the text which makes is easy to pick up which contracts seems more vulnerable.

Table 2 Sentiment Analysis Results

Contract
Number

Results from Sentiment Analysis
Negative Neutral Positive Compound

0 0.049 0.883 0.067 0.25
1 0 0.934 0.066 0.4019

100 0.141 0.818 0.042 -0.6874
101 0.229 0.712 0.059 -0.875
102 0.172 0.714 0.114 -0.5423
104 0.139 0.789 0.072 -0.7212
107 0.184 0.695 0.121 -0.6033
108 0.04 0.96 0 -0.1531
113 0.024 0.935 0.041 0.1531
114 0.142 0.826 0.032 -0.8074
115 0.077 0.824 0.099 0.2658
117 0.106 0.872 0.022 -0.8122
118 0.087 0.722 0.191 0.7717
119 0.049 0.951 0 -0.3818
120 0.048 0.889 0.063 0.1842
121 0.062 0.889 0.049 -0.3523
122 0.075 0.859 0.066 -0.211
123 0.067 0.889 0.043 -0.4215
126 0.078 0.892 0.03 -0.4829

60

From Figure 13 it can be inferred that 74% of smart contracts from our dataset that have

overall sentiment as negative from sentiment analysis and are most likely to be vulnerable to

attacks. The overall sentiments are the compound scores calculated as shown in the table, it is

a single number between -1 and 1 that represents the overall sentiment of the text, with -1

indicating very negative sentiment and 1 indicating very positive sentiment.

5.5. Comparative Analysis with Slither

To check our results from ChatGPT and sentiment analysis, a comparative analysis was

carried out on three smart contracts. Slither a very popular smart contract analysis tool was

used to analyse these contracts and the results are compared as follows in tables 3,4 and 5.

Contract
No.

Chat GPT Results Sentiment
Analysis

Results from Slither

102 Weaknesses:
1. The contract does
not include any
protection from replay
attacks.
2. No authorization is
checked before setting
or getting data,
anyone could change
the reference or get
the reference value.
3. No validation for
the reference values
are present.
4. There is no
mechanism to safely

Negative: 0.172
Positive: 0.114
Neutral: 0.714
Compound: -0.542
Overall: Negative

1. high-confidence warning about
a variable named "reference" in
the SimpleAudit contract.
Slither has detected that this
variable name is already a
built-in symbol in Solidity and
advises the developer to avoid
using such names to prevent
potential naming conflicts.

2. high-confidence warnings
about the SimpleAudit.set and
SimpleAudit.get functions.
Slither has identified that these
functions should be declared as
external functions, which can

Figure 13 overall percentage of smartcontracts thar have positive and negative
Overall Sentiments

61

delete or update the
data stored in the
audit log.
5. There is no method
to check the integrity
of the stored data
since there is no hash
or signature
verification.

improve the security and gas
efficiency of the contract.

3. high-confidence warning about
naming conventions. Slither
has detected that the
parameters
"goeureka_audit_ref" in the
SimpleAudit.set and
SimpleAudit.get functions are
not in mixed case, which can
make the code less readable
and harder to maintain.

Table 3 Comparative Analysis of Contract 102

Table 3- The analysis from this contract seems quite accurate from chatgpt as it aptly points

out the issue of the integrity of the code and the way the code is written which is confirmed

by Slither in last findings that the code is less readable and harder to maintain. Moreover the

sentiment analysis gives overall rating as negative as the contract has high confidence

warnings confirmed with Slither.

Contract
No.

Chat GPT Results Sentiment
Analysis

Results from Slither

107 1. There is no
restriction on how
much ERC20 tokens
can be minted,
allowing for
inflation.
2. No safety
mechanism is built
into the contract to
check for
overflow/underflow
when subtracting or
adding values.
3. No way to freeze
accounts
4. There is no way to
ensure funds are used
properly as there is
no audit trail of the
transactions.
5. The transfer() and
transferFrom()
functions are not
restricted to a certain
amount of tokens,
allowing for
unlimited transfers.

Negative: 0.184
Positive: 0.121
Neutral: 0.695
Compound:-0.6
Overall: Negative

1. TokenERC20.decimals should be
constant": this is an informational
issue, indicating that the decimals
variable in the TokenERC20
contract should be declared as a
constant.

2. "TokenERC20.transfer should be
declared external": this is an
informational issue, indicating
that the transfer function in the
TokenERC20 contract should be
declared as external.

3. "TokenERC20.approveAndCall
should be declared external": this
is an informational issue,
indicating that the
approveAndCall function in the
TokenERC20 contract should be
declared as external.

4. "TokenERC20.burn should be
declared external": this is an
informational issue, indicating
that the burn function in the
TokenERC20 contract should be
declared as external.

5. "Function
'TokenERC20.TokenERC20' is
not in mixedCase": this is an
informational issue, indicating

62

that the TokenERC20 constructor
in the 107.sol file should follow
the mixedCase naming
convention.

Table 4 Comparative Analysis of Contract 107

Table 4-In this case the results from ChatGPT identifies more dangerous vulnerabilities like

that there is no restriction on how many TokensERC20 can be minted that can lead to

Reentrancy attacks and their vulnerabilities like Integer overflow/underflow. However,

Slither addresses these issues technically.

Contract
No.

Chat GPT Results Sentiment
Analysis

Results from Slither

2908 There are no
weaknesses in the
given code. However,
there are some areas
that could be improved
upon in terms of
readability and
maintainability. For
example, functions
such as balanceOf,
transferFrom, approve
and allowance could
be consolidated into a
single function to
reduce complexity,
and comments can be
added for better
readability.

Negative: 0.081
Positive: 0.104
Neutral: 0.815
Compound: 0.378
Overall: Positive

The findings relate to several
functions and properties within the
contract, including totalSupply,
balanceOf, allowance, transferFrom,
approve, and transfer.

The findings suggest that these
functions should be declared as
external and that certain properties,
including Totalsupply and
no_of_tokens, should be declared as
constant.

Table 5 Comparative Analysis of Contract 2908

As for the case depicted in Table 5; a contract for which results from ChatGPT showed that

the contract has no major vulnerabilities was selected and the sentiments were also positive,

the results were accurately confirmed by Slither as it also did not show any major high

confidence warnings in the smart contract.

63

Chapter 6
6. Conclusion

6.1. Future works and application

While this thesis has demonstrated the potential of using the OpenAI ChatGPT API for the

analysis of Ethereum smart contracts, there are several avenues for future research that could

improve the effectiveness and accuracy of the analysis.

Firstly, it would be useful to investigate the use of other NLP techniques, such as Named

Entity Recognition (NER) and Coreference Resolution, to improve the accuracy of the topic

and sentiment analysis. These techniques can help to identify specific entities mentioned in

the contracts and resolve references to them, which can provide more detailed insights into

the content of the contracts and the sentiments expressed towards them.

Secondly, it would be beneficial to explore the use of more advanced machine learning

models, such as Transformer-based models like BERT or GPT-3, which have demonstrated

state-of-the-art performance in NLP tasks. These models can provide more accurate and

nuanced analysis of the text data and can potentially identify more subtle patterns and trends

in the contracts [26].

Another potential area for future research is the development of a more comprehensive and

diverse dataset of smart contracts for analysis. The current study used a limited dataset of

Ethereum smart contracts, but expanding the dataset to include smart contracts from other

blockchain platforms and industries can provide a more comprehensive understanding of the

risks and vulnerabilities associated with smart contracts.

Additionally, it would be useful to investigate the potential of using the ChatGPT API for the

analysis of other blockchain-related data, such as transaction data or network activity. This

can provide insights into the behaviour and patterns of blockchain networks and can

potentially identify anomalies or malicious activity.

Finally, it would be beneficial to develop a user-friendly interface or tool that can integrate

the analysis capabilities of the ChatGPT API and provide a more accessible and streamlined

approach to analysing smart contracts. This can help to promote the responsible use of smart

contracts and increase transparency and trust in their use in various industries.

64

6.2. Final Word

In conclusion, while this thesis has demonstrated the potential of using the OpenAI ChatGPT

API for the analysis of Ethereum smart contracts, there are several avenues for future

research that can improve the accuracy and effectiveness of the analysis. These include the

use of other NLP techniques, more advanced machine learning models, a more diverse

dataset, the analysis of other blockchain-related data, and the development of a user-friendly

interface or tool. Further research in these areas can help to promote the responsible use of

smart contracts and increase transparency and trust in their use in various industries.

In conclusion, this thesis has demonstrated the effectiveness of the OpenAI ChatGPT API in

analysing Ethereum smart contracts through the use of advanced NLP techniques, such as

topic analysis and sentiment analysis. The findings of this research have potential

implications for the field of blockchain and smart contract analysis, as it shows the feasibility

of using automated NLP techniques to increase transparency and trust in the use of smart

contracts in various industries.

The use of smart contracts has grown rapidly in recent years, offering numerous benefits to

businesses across a range of industries. However, the potential for vulnerabilities and errors

in these contracts means that there is a need for effective methods to identify and mitigate

these risks. The approach presented in this thesis provides an automated and accessible

solution to the problem, utilizing the power of NLP to extract relevant information and

provide insights into the risks associated with smart contracts.

One of the key advantages of this technique is its ability to make smart contract analysis

accessible to individuals who may not have prior knowledge or technical expertise in the

field. By utilizing the ChatGPT API to perform topic and sentiment analysis, the risks

associated with smart contracts can be easily understood and communicated to a wider

audience. This has the potential to increase transparency and trust in the use of smart

contracts, making them a more widely accepted solution for businesses across various

industries.

Furthermore, the automation of the analysis process using the ChatGPT API significantly

reduces the time and effort required for manual review, allowing for a more comprehensive

analysis of smart contracts. This approach has the potential to save businesses time and

resources in the long term, while also improving the overall security and reliability of smart

contracts.

65

The findings of this thesis also demonstrate the effectiveness of using advanced NLP

techniques to analyze and understand the risks associated with smart contracts. Through the

use of topic analysis, the main themes discussed in the contracts can be identified, while

sentiment analysis provides insight into the emotions and opinions expressed in the text. This

information can be used to identify potential risks and vulnerabilities in the contracts, such as

security or privacy issues, and to make informed decisions regarding their use.

The potential implications of this research extend beyond the field of blockchain and smart

contract analysis, with the technique presented having the potential to be applied to a range of

text-based data analysis problems. The success of this approach highlights the potential of

advanced NLP techniques to offer valuable insights into large volumes of text data, opening

up new possibilities for automated analysis and decision-making in a range of industries.

In summary, this thesis has shown the potential of using the OpenAI ChatGPT API to analyze

Ethereum smart contracts through the use of advanced NLP techniques. By providing an

accessible and automated solution to the problem of smart contract analysis, this approach

has the potential to increase transparency and trust in the use of smart contracts in various

industries. The findings of this research demonstrate the capabilities of advanced NLP

techniques to provide valuable insights into large volumes of text data, opening up new

possibilities for automated analysis and decision-making in a range of fields. As the use of

smart contracts continues to grow, the importance of effective risk analysis and mitigation

strategies will only increase, making the findings of this research even more relevant and

impactful.

66

Bibliography

[1] Bonneau, Felten, Narayanan, “Bitcoin and Cryptocurrency Technologies: A Comprehensive
Introduction. Princeton University Press.”.

[2] Tschorsch, Scheuermann, Bitcoin and Beyond: A Technical Survey on, IEEE COMMUNICATIONS
SURVEYS & TUTORIALS, VOL. 18, NO. 3, THIRD QUARTER 2016.

[3] Maher, Kumar “Blockchain and the Transformation of the Supply Chain : An integrated
theoretical perspective of organizational adoption.,” no. Journal of Business Research, 98, 365-
380..

[4] Kumar, Hasan, Rashid “Blockchain in Healthcare: A Review, MDPI -”.

[5] M.Swan, “Blockchain: Blueprint for a New Economy. O'Reilly Media, Inc.”.

[6] Christin, Edelman, Böhme, “Bitcoin: Economics, Technology, and Governance. Journal of
Economic Perspectives, 29(2), 213-238.,” (2015).

[7] M. Pilkington, “Blockchain Technology: Principles and Applications. Research Handbook on
Digital Transformations, Edward Elgar Publishing, pp. 225-253.,” (2015).

[8] Verma, Pattanayak, Crosby, “Blockchain technology: Beyond bitcoin. Applied Innovation, 2(6-
10), 71-81.,” (2016).

[9] V. Buterin, “thereum: A Secure Decentralized Generalized Transaction Ledger. Ethereum
Foundation.,” (2014)..

[10] Ethereum., “Ethereum Virtual Machine.,” (2022). . [Online]. Available:
https://ethereum.org/en/developers/docs/evm/.

[11] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger. Ethereum Project
Yellow Paper, 151, 1-32.,” 2014.

[12] “Solidity documentation:,” [Online]. Available: https://docs.soliditylang.org/en/v0.8.11/.

[13] R. Modi, “Solidity Programming Essentials: A beginner's guide to smart contract development
on the Ethereum blockchain,” Packt Publishing, 2018.

[14] [Online]. Available: https://www.naukri.com/learning/articles/solidity-programming-
language/.

[15] “SmartBugs A Framework to Analyze Solidity Smart Contracts for Security Vulnerabilities.,”
2018. [Online]. Available: : https://arxiv.org/abs/1805.07501.

[16] Atzei, Bartolleti, Cimoli “ A survey of attacks on Ethereum smart contracts (No.
arXiv:1710.06169),” no. Cornell University, 2017.

67

[17] Makhija, “Ethereum smart contract security using natural language processing. In 2019
IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB) (pp. 22-29). IEEE.,” 2019.

[18] Ramedar, Angelo, Salzer “Review of Automated Vulnerability Analysis of Smart Contracts on
Ethereum,” 2020.

[19] Zheng, Xie, Ning Dai, Chen “A review on blockchain-based smart contracts: Challenges and
opportunities. Future Generation Computer Systems, 102, 475-491.,” 2020.

[20] Arif Furkan Mendi, “A Sentiment Analysis Method Based on a Blockchain-Supported Long
Short-Term Memory Deep Network. MDPI.,” 2020.

[21] Alzubi, Amed, Kahtan, Ashraf “Internet of Things and Blockchain Integration: Security, Privacy,
Technical, and Design Challenges” 2021.

[22] A. S. N. Lodha, “Investigating the Role of Artificial Intelligence in,” no. 2022 International
Conference on Emerging Smart Computing and Informatics (ESCI).

[23] RAJESH GUPTA 1, “Smart Contract Privacy Protection Using AI in Cyber-Physical Systems:
Tools,Techniques and Challenges”.

[24] Zha, Li, Liu, Meng, Fang, “Countermeasure Based on Smart Contracts and AI against DoS/DDoS
Attack in 5G circumstances”.

[25] “Smart-Contract-Dataset,” [Online]. Available: https://github.com/Messi-Q/Smart-Contract-
Dataset#download-dataset.

[26] https://www.coding-bootcamps.com/blog/how-ethereum-virtual-machine-works.html.

[27] D.Caldarini,“Topic Modelling con Gensim,” [Online]. Available: https://techblog.smc.it/it/2021-
10-22/topic-modelling.

