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Summary

Interplanetary exploration and, in particular, Mars exploration have, nowadays, gained in-
terest in more and more technical and scientific research fields, from aerospace engineering
to computer science and data science ones. Indeed, the latter can improve and comple-
ment the first, speeding up and making processes more efficient. This is now our science
frontier and there is an evident need for this scientific and technical field to penetrate
each other and work together. This Master Thesis work fits perfectly into this context,
as a matter of fact our aim is to enhance Mars exploration and navigation, processing
satellite data and images with Deep Learning algorithms with an ultimate goal of tenfold
the Martian rovers traveling speed. This happens in the context of the SINAV project,
required by ASI and led by ALTEC S.p.A., with the participation of Politecnico di Torino
and other partners, leaders in the Italian space economy scenario.

The processing of satellite images is then approached with semantic segmentation meth-
ods. Starting from the supervised approach, going through the challenging labeled dataset
issue, we are approaching the unsupervised one. This work presents both the approaches
with their strengths and issues, underlining the reasons that led us to the choice of the
Unsupervised Semantic Segmentation.

Neural Networks are the most suitable tool to approach this kind of processing. Within
this work we present the use of a CNN (Convolutional Neural Network) firstly, and the
use of a Visual Transformer with the aid of a “head” secondly, to distinguish different
types of terrain and help the definition of the path for martian exploration by rover. Both
the networks need to be tweaked to adapt to peculiarities of Mars terrain images, rarely
approached with these kinds of algorithms.

The dataset is provided by HiRise images (High Resolution Imaging Science Experi-
ment) catalog, in particular the images are mostly from the Jezero crater and Gale crater
area, and preprocessed to best fit our neural network and GPUs constraints.
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Chapter 1

Problem presentation

1.1 Sinav project

This Master Thesis work is born inside the Italian project SINAV, financed by ASI (Agen-
zia Spaziale Italiana). It is led by Altec s.p.a. with the participation of Politecnico di
Torino and two other partners, leaders in the Italian Space Companies scenario. ALTEC –
Aerospace Logistics Technology Engineering Company – is the Italian center of excellence
for the provision of engineering and logistics services to support operations and utilization
of the International Space Station and the development and implementation of planetary
exploration missions, in which I had the chance to develop this work.

SINAV project has four main targets to be pursued:

• A tenfold increase in the travel speed of current space rovers from 10-20 m/hour up
to 100-200 m/hour.

• Proposal of an autonomous system not dependent on lighting conditions and there-
fore capable of operating at night through the use of active sensors, currently being
space qualification, for autonomous navigation (i.e. TOF camera or laser strips).

• Investigating collaborative exploration scenarios between rover and satellite/drone.

• Processing of images acquired by the rover and aerial/satellite systems in line with
the most recent approaches proposed in the field of Artificial Intelligence based on
the semantic analysis of images, in this process Deep Learning is an essential element.

Nowadays scientists are very interested in exploring steep ravines or caves in search of
possible traces of current or past life. Furthermore, the use of satellite data is critical in
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Problem presentation

Figure 1.1: Drawing of the SINAV project acrchitecture.

route planning and target selection during the execution and planning of robotic missions.
Although the complexity of management precludes near-real-time execution, some collab-
orative processing procedures between scientific data and satellite and rover operational
teams have already been proposed and studied.

Therefore, the study of specific algorithms and data processing is proposed to increase
the extension of the area explored within the same mission duration. This also means
a greater speed of movement of the rover and a fully autonomous path planning. In
addition it also aims to achieve more autonomy in the search for interesting microhabitats
and targets and in determining soils or rocks that might be of interest for the mission.

Although the scenario envisaged for this study is Mars, the results obtained could be
used for other future interplanetary missions such as Lunar exploration, nowadays center
of interest in this field.

The studied scenario involves a satellite or aerial platform that will acquire images of
the rover and the surrounding terrain, which will be pre-processed by the platform itself
and/or a lander that, possibly after releasing the rover, will perform the task of ground
station for data-relay and ’calculation node’. The aim is, again, to demonstrate that by
preprocessing satellite images, it is possible to determine inaccessible and dangerous areas
or evening interesting ones, before the rover itself could have seen them.

16



1.2 – Approach and methodologies

Figure 1.2: Operational diagram of a possible future exploration mission equipped with
wide-ranging fast navigation systems.

1.2 Approach and methodologies

Hence inside this Master Thesis work we want to develop and deepen a neural network to
perform image semantic segmentation on satellite captures from Mars surface.

1.2.1 Semantic segmentation

Image segmentation is a computer vision task that aims at an understanding of images,
it involves various levels of granularity and the coarsest is the image classification.

With image classification we ask the computer to return a discrete label that identifies
the principal object in the image. In order to classify an image, we presume that it
contains just one object, not several.

If we ask for a localization too, we expect the algorithm to return some parameters
to identify a bounding box. Even in this case we presume the image contains only one
object.

Moving to a finest problem we find object detection: object detection takes localization
to a higher level by allowing the image to contain multiple objects rather than just one.
All of the objects in the image must be classified and located. Again, the concept of
bounding boxes is used for localization.

17
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Figure 1.3: Classification vs Object detection

Image segmentation is then the next step and the finest one. The final result is a mask
or a matrix with different elements indicating the object class or instance that each pixel
belongs to.

I now wish to specifically deepen two approaches to image segmentation, one without
the usage of a neural network and the other with it, and we’ll also look into some particular
methods that are relevant for space applications.

Image segmentation without the use of Neural Networks

Threshold segmentation The simplest technique for segmenting images is called thresh-
old segmentation. It is a typical segmentation algorithm that splits the processing of image
gray scale information depending on themultiple targets varying gray values. There are
two types of threshold segmentation: local threshold method and global threshold method.
With the global threshold method the target and background are separated, to get two
parts of the image, by a single threshold. On the other hand, the local threshold approach
separates the image into numerous target regions and backgrounds by multiple thresholds,
and requires the user to pick multiple segmentation thresholds.

The threshold technique has the advantages of being faster and having a simpler cal-
culation with respect to other techniques.The segmentation can be well produced, in
particular, when the target and the background have significant contrast. The drawback
is that it is challenging to produce reliable findings for images where there is little to no
grayscale difference or high grayscale overlap in the image. Due to its sensitivity to noise
and uneven grayscale, which results from simply taking into account the image’s gray
information and ignoring its spatial information, it is frequently supplemented with other
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1.2 – Approach and methodologies

approaches.
Otsu N. [1979] is an interclass variance method and the most used threshold segmen-

tation algorithm. The algorithm will be able to recognize each of the pixels in the image
as a single entity using this method if their values are lower or higher than the threshold
value that is set on the image histogram. The image returned in this instance is a binary
image.

In this case it aims to find the threshold value that maximizes the variance between
the two classes:

σ2
B(k∗) = maxσ2

B(k)

considering:

σ2
B = ω0(µ0 − µT )2 + ω1(µ1 − µT )2 = ω0ω1(µ1 − µ0)2

This method can be extended to multi thresholding situations, but as the number of
classes to be distinguished rises, the selected thresholds tend to lose some of their validity.

Kmeans K-means clustering is a machine learning method but it does not employ neural
networks. It is also an unsupervised algorithm, therefore it doesn’t require a ground truth
to use. A cluster is an aggregation of data points with related characteristics.

First of all, k-means needs the definition of the number of clusters we want and conse-
quently the number of centroids, i.e. the locations of the clusters center. Each datapoint
is then allocated to the closest cluster. At the beginning, the centroids are randomly
selected, then, in each iteration they are defined with calculations to optimize the posi-
tion. Indeed, finding the centroid is what "means" in the K-means algorithm indicates:
averaging the data each iteration.

This type of segmentation is fast, simple, high efficient and scalable on large dataset
but it has also some drawbacks, for example the number k no explicit selection criteria
and difficult estimation, very expensive time of the algorithm and finally the fact that it
is applicable only to convex dataset.

Here are some examples of K-means clustering segmentation I produce during my first
approach to image segmentation. The image to be segmented is part of the HiRise product,
in particular it represents the Jezero crater.
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Figure 1.4: Image from HiRise database, Jazero2020

Figure 1.5: 3 clusters segmentation

Figure 1.6: 4 clusters segmentation
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1.2 – Approach and methodologies

Figure 1.7: 5 clusters segmentation

Image segmentation with the use of neural networks

Neural network image segmentation can be divided into 2 different types: semantic seg-
mentation and instance segmentation.

With the use of semantic segmentation, we aim to label each pixel of an image with
a class that defines which one that pixel is representing. This means that the boundary
of my object is no more a box, but a clear and defined contour. The output of this task
is an image with the same high resolution of the input image, that is different from the
only labels and bounding boxes output seen in the previous tasks. We can define this as
a pixel level image classification.

On the other hand, instance segmentation makes a further distinction, identifying each
example object separately. More easily, we define each single instance rather than the
generic class of semantic segmentation.

Figure 1.8: Semantic segmentation vs Instance segmentation

We can leave the manual approach to image segmentation thanks to neural networks
architectures.
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1.2.2 Artificial Intelligence and Deep Learning

In terms of techniques and approaches that can be used, the field of Artificial Intelligence
is extremely broad. Machine Learning is a particularly active field and its name refers
to a rather diverse set of algorithms, including kNN, K-Means, SVM, Kalman filter, and
ANN. These enable the classification or processing of input data in probabilistic terms.
The SINAV project and this thesis focus in particular on the use of ANN (Artificial Neural
Networks) and more precisely on DNN (Deep Neural Networks).

A neural network is a series of algorithms that want to replicate the operations of a
human brain. It consists of layers of interconnected artificial neurons and as in traditional
machine algorithms, neural networks can learn in the training phase certain values.

The first Deep Learning (DL) approach was presented in 2010 and then in 2013 as a
participant to the ImageNet competition. It was the winner of the competition with a 15%
percentage of enhancement compared to all the other algorithms. It is able to categorize,
for example, a dataset of 1.2 million of images with a 96% accuracy. These percentages
are even higher than the human ones.

Such algorithms are extremely efficient at performing tasks and can greatly help in
the optimization of space mission processes, from the initial operation to the final results.
However, no space missions with this type of application, such as the use of DL to help
path planning and merge the global information to the local one, are currently scheduled.
The information we expect from this kind of DNN (Deep Neural Networks) is qualitative,
and it is similar to the information we humans have of our distant surroundings when we
move.

The approach we take begins with a review of the state of the art, which has relevant
research studies that helped us and guided us in the selection of two NN to adapt to our
case study, one supervised and the other not, culminating in some result comparison and
visualization.
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Chapter 2

State of the art

In this chapter we want to present the state of the art for what concerns the use of DNN
in particular for Mars terrain segmentation studies. It was not easy to find examples
in the field of interplanetar exploration due to the fact that most of the applications of
Deep Neural network architectures are in the fields of biomedical images analysis and
autonomous driving on Earth, for which it was born. We choose the following papers as
the most relevant in terms of approach they used and as the ones with the most notable
results. They are going to be presented with a lunge regarding neural network architecture,
training and validation dataset, preprocessing on the images, metrics and results.

This State-of-the-Art research paved the way for the definition of the approach to
follow to reach our objectives, we are going to explain in the next chapters.

2.1 Segmentation Convolutional Neural Networks for
Automatic Crater Detection on Mars

This study, by DeLatte et al. [2019], takes into account the problem of optimization with
the aid of DL for semantic segmentation for the crater detection and identification on
the surface of a planetary body, and finally the measurement of its size. Craters can
be caused by impacts or erosion and their identification and location could help for age
dating, positioning, and hazard avoidance. Dataset of large dimension for crater counting
have been published in the last years and are available to be used with machine learning
techniques and to automate the recognition process. The best technique is the one that
uses neural networks, in fact these kind of architecture are able to do complex pattern
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recognition on their own. In particular, they chose the U-net architecture, a modified
CNN, whose structure you can see in the figure 2.1 and we are going to discuss in next
chapters.

Figure 2.1: Default Crater U-Net structure

U-net is a supervised architecture so it needs a labeled dataset. The choice fell on the
one created by Robbins and Hynek [2012a] that identifies craters down to 1 kilometer.
They use circular representation of craters to create all annotations and targets, without
taking care of crater degradation level. In particular, those images were chosen for the
high resolution they have and they only used a ±30° latitude range to simplify processing,
indeed in that latitudes the projection of craters remains circular and doesn’t stretch into
ellipses. Moreover, using only a specific dataset, the network will be able to find craters
only in that specific style. The dataset contains 24 tiles of 30° by 30°, each is 7680x7680
px then split into 512x512 px sub-images which will be stitched together again after the
prediction.

Figure 2.2: Mars in the mid-latitudes, original THEMIS dataset. The top row consists of
0° to 30° latitude, and the bottom row consists of –30° to 0° latitude. The left edge is 0°
longitude. Each tile is 30° by 30° (7680 by 7680 px) with a resolution of 256 px per degree
(231.55 m/px).
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2.1 – Segmentation Convolutional Neural Networks for Automatic Crater Detection on Mars

For this type of application the image segmentation to be used is the instance segmen-
tation. Indeed, it is the most appropriate approach for counting crater in an automatic
way, as told in the previous chapter it identifies each example object separately. Crater
U-Net is the network used in this study and differs from the classic U-Net only in:

• the output image dimension, that is equal to the input one,

• the use of average pooling instead of max pooling,

• the presence of a pooling layer right after each convolutional layer, instead of having
two in a row.

In order to evaluate the predictions of the neural networks, the output images are
compared to the human annotation/labeling. Some metrics should then be defined as, for
example, precision, recall and F1, for which we need the definition of TP, true positive,
FN, false negative, and FP, false positive. They test the network with two types of target
and the results are made up comparing loss and accuracy. The first targets are the solid
circles and the second targets are the edge targets that allow craters within craters to be
detected.

Figure 2.3: Comparison of solid and edge targets. Craters of interest are highlighted in
red boxes.
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2.2 Automatic Detection and Segmentation of Barchan
Dunes on Mars and Earth Using a Convolutional
Neural Network

The characteristics of a barchan dunes are, first of all, the horn shape pointing downwind
and secondly a steep angle of repose slipface in their lee, while the orientation is nor-
mally in the dominant wind direction. Before this study was published, dunes have been
vastly analyzed using aerial and satellite images, but only with a manual approach to the
problem, due to the fact that automatic detection techniques were not accurate enough.
Indeed, the difficulties were separating the features of interest from the background. Dig-
ital Elevation Model (DEM) could be useful in this task but they are often with a lower
resolution than the required.

To demonstrate the efficacy of Deep Learning in solving this task, Rubanenko et al.
[2021] present the use of a Mask R-CNN, an instance segmentation neural network whose
schematic is shown in figure 2.4.

Figure 2.4: Mask R-CNN schematic

Inside a Mask R-CNN we have three stages. The first is the backbone, a CNN that
extracts from the input image a future map, usually a well-studied architecture is chosen.
The second stage involves the RPN, a region proposal network, that proposes positive
and negative anchors after scanning the feature map, where with anchors we intend parts
of the image that can contain objects or background. In particular, the positive anchors
bounds were defined with the ratio between the intersection and the union of the predicted
bounding box with the manually labeled one. After that, they join the positive anchors,
filtering them too, and they create regions of interest (ROIs). In the last stage a pyramid
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network examines the ROIs and determines their classification and their masks, thanks
to the use of several loss functions.

To evaluate the model, the used metric is mAP, the mean Average Precision, where
true positive (TP), false positive (FP) and false negative (FN) are considered.

Then, two options were taken into account to initialize the model weights, one with
random values and the other one with values already optimized for a different dataset,
the second process is best known as transfer learning. For the optimization of the hyper-
parameters, in contrast to model weights that are optimized during training,they are only
prescribed at one set. By hyperparameters we mean for example, the number of layers
of the backbone (its depth) or parameters that regard the training itself (learning rate,
convergence rate). Above all the detections, all the images containing less than two dunes
were discarded because barchan dunes usually appear in fields of isolated dunes and rarely
as solitary landforms; they did so to avoid the inclusion of spurious detections.

The resulting distribution of barchan dunes on Mars is shown in the map (a) that
displays the number density of detected objects per 100 km. With white contours dune
fields of all types are indentified and we can notice that in the northern polar region
most of them are barchan dunes, in marked contrast with the southern polar region. We
can also see in figure (c), (d) and (e) some examples of what objects the neural network
recognized to be a barchan dune, in particular a true positive detection in (c), a false
positive in (d) and a true negative of South Crater dunes in (e). At the end they also
tested this network, trained with martian satellite images only, with terrestrial barchan
dunes images reaching an accuracy of 50 - 70%.

Figure 2.5: The global number density of barchan dunes on Mars
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Figure 2.6: Dune identification samples

2.3 Benchmark Analysis of Semantic Segmentation
Algorithms for Safe Planetary Landing Site Se-
lection

Nowadays, safe landing is still the most critical part of every space mission that wants
to reach the ground to conduct experiments, even if it has already switched to fully
autonomous thanks to the exploration of Mars. The problem is also that the outcome
can only be seen with a delay due to communications and in the case of Mars this means
having news only after the landing has already occurred. Moreover, the Martian surface,
and particularly the surface of regions of scientific interest, is plenty of cliffs, craters,
cracks, jagged boulders that are for all intents and purposes landing obstacles. For these
reasons high requirements on the safety level prediction accuracy are needed.

Generally this study, by Claudet et al. [2022], wants to contribute in 3 different points,
but the one that caught our interest was the one that benchmarks some algorithms and
neural network architectures using metrics to evaluate their performance.

Seven architectures have been taken into account:

1. SegNet

2. FCN

3. ICNet

4. U-Net and TransUNEt

5. ENet
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6. ConvDeconv

7. DeepLabV3 with a ResNet backbone

SegNet, which schematic you can see in figure 2.7, is an encoder-decoder network
with a pixel-wise classification layer. It stores the pooling indices and uses them in the
upsampling phase.

Figure 2.7: SegNet Network architecture

Fully Convolutional Network has the encoding process similar to the one in SegNet
but differs in the fact that it doesn’t store the pooling indices. Three FCN are taken into
account, 32s, 16s, 8s going respectively from the one where the most information is lost
to the final where the accuracy is higher as it loses less information. The last one is also
the heaviest on a computational level.

Figure 2.8: Fully Convolutional Network

The Image Cascade Network (ICNet), depicted in 2.9, operates in a series of steps.
First, the low-resolution images reach the network’s endpoint and a preliminary mapping
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is obtained. Furthermore, medium and high resolution features are available. It can be
improved with a cascade feature fusion unit and a cascade label guidance strategy.

Figure 2.9: Image Cascade Network

U-NET is an upgrade of the FCN providing higher precision with a smaller number of
training images. The core is replacing pooling operation with upsampling to reach a better
resolution of the output. It also integrates the use of skip connections that allows U-Net
to copy the image matrix from the earlier layers and to use it in the later layers. Doing
this, the model reduces information loss. It also has many channels inside the decoder
to better propagate context information to layers with high resolution, this is what gives
U-Net its characteristic shape.

Figure 2.10: U-Net

Efficient Neural Network (ENet) uses an encoder-decoder structure as well but it is
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more well fitted with real-time uses. It down-sample in the decoder in the early phase to
cut the cost due to large input frames processing. It uses the PReLUs activation function.

ConvDeconv takes its cues from SegNet, using a smaller kernel size and reducing the
number of layers. On the other hand, it saves the pooling indices as SegNet does.

DeepLabV3 with a ResNet backbone uses convolution in parallel or sequentially to do
segmentation at multiple scales. ResNet is used as a features extractor but it could be
substituted with ther different backbones.

The metrics they used to evaluate the performance are recognition accuracy, computa-
tional complexity, model complexity and inference time. With regard to the Dataset, data
and images from Mars HiRise camera are used, their resolution is 1m/px and they were
upsampled to 128x128px. The ground-truth was instead generated from DTMs measuring
slope and roughness. The dataset was composed of 1000 normalized DTMs and was then
divided into training dataset (800), validation dataset (100) and testing dataset (100). It
is also useful to remember the fact that they didn’t use any data augmentation. Finally
they used the Adam optimizer and set the learning rate to the value of 0.00001.

Training and analysis came up with these results:

Figure 2.11: s the accuracy of each model with respect to its computational complexity
on the X-axis, and its model complexity (number of parameters) as the size of the ball
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Figure 2.12: The accuracy density by the number of parameters to achieve that result

Figure 2.13: Inference time vs accuracy

Looking at the first plot, it is evident that ConvDeconv is the best network, reaching
95% pixel accuracy with the least amount of parameters, indeed to have lots of parameters
cannot assure us a better accuracy.

In the second plot instead we consider the accuracy density which is the ratio of the
recognition performance by number of parameters. Even in this case ConvDeconv is one
of the best, making a better use of the model complexity compared to DeepLabv3s and
TransUNet, for example it uses 5 times more efficiently its parameters than SegNet.

In the third plot there is accuracy-rate vs inference time comparison. Again we have
that ConDeconv develops the best accuracy with the smallest inference time.

After ascertaining that ConvDeconv gives the best performances we can better visualize
its specific training results in terms of loss function, mean intersection over union and
pixel accuracy.
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Figure 2.14: Loss Function, mean Intersection over Union, Pixel Accuracy

2.4 Mars with less labels

A semi-supervised learning framework is proposed in this research by Goh et al. [2022]
to do segmentation on Mars terrain images captured from rovers. Planetary rovers are
nowadays the means by which we as humans are allowed to explore other planets or in
general other celestial bodies. As already said, to be able to perform image segmentation
is important to improve rovers independence and increase the travel distance and velocity.
Indeed, segmentation will help avoid obstacles and estimate traversability. Due to the lack
of annotating training data and the fact that the phase of data acquisition is too expansive
and consuming, they decided to use and take advantage of transfer learning techniques
and a semi-supervised approach.

AI4Mars is the dataset they chose and it is composed of NAVCAM (Curiosity rover’s
navigation camera) images. The train set is made up of 16064 images, labeled with a
modern approach that leverages the work of citizens that volunteer, in particular they
identified four classes: soil, big rocks, bed rocks and sand plus a null class, a rover class
and a background class. These images and the respective masks have been resized to
512x512 px, while the originals were 1024x1024 px, and they have been also normalized
to 0-1 values after being brightened uniformly by 50% (multiplying all pixels by 1,5).

The architecture consists of three components. The first one is a backbone/encoder
that is pre-trained with a self supervised approach, more precisely the network used is the
ResNet one. The second is a MLP projection head that maps the latent embedding space
to the one in which contrastive loss is used during self-supervised pre-training. Finally
the third one is another head that can be attached to the encoder or to a middle layer of
the second component, and it does supervised fine tuning.

In the self supervised pre training, the network is trained to learn that two augmented
version of the same image have similar embeddings and this is done by minimizing this
contrastive loss, where sim is the cosine similarity between two vectors, τ is a temperature
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Figure 2.15: Loss Function, mean Intersection over Union, Pixel Accuracy

scalar, and N is the batch number of images (for contrastive learning is preferred to be
big). As the network learns to generate similar embeddings from augmented views of
the same image and distant embeddings from augmented views of different images, loss
decreases. To train on unlabeled data and to use a large batch size means, however, that
a large computational capacity is needed.

In the Supervised Finetuning, that happens in the segmentation head attached to the
encoder, convolutions with 256 filters are applied. These filters are then passed through
a 1x1 convolutional layer that gives us the final logits, but only after being concatenated
and resized to the original size.

In this work a pixel-wise cross entropy loss function is also used to ignore unlabeled
pixels and the number of epochs for each experiment is 50. It is worth noting that each
run needs 4 Nvidia V100 GPUs.

Some visual results are plotted in figure 2.16.
These predicted masks are here compared to the plain supervised model that uses only

a very small percentage, 1%, of the training data.

2.5 STEGO

As said before, one of the major issues in semantic segmentation is the difficulties in
labeling data, and recently many works introduced the learning from weaker labels such
as bounding boxes or classes for example. This work by Hamilton et al. [2022] wants to
introduce, instead, the semantic segmentation without any cue or form of supervision.

This is possible using pre-trained features learning frameworks and with the aim of
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Figure 2.16: Some predictions

distilling them into discrete structures remembering their relations across the image. The
name of the proposed head is STEGO and stands for Self-supervised Transformer with
Energy-based Graph Optimization.

Moreover, a pre-trained backbone is taken into account, whose name is DINO, to refine
its features with STEGO, but it could work with any other deep network architecture.
DINO does classification with a Visual Transformer (ViT) but its features, that detects
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salient objects, are also meaningful for the extraction of correspondences between images.
To let feature correspondences predict class co-occurrence we focus on intermediate

dense features that we know are relevant semantically speaking. Feature correspondence
tensor is then created as follow:

Fuwij =
Ø
n=1

fchw ∗ gcij

|fhw ∗ gij |
.

The elements inside the formula are cosine similarities between the feature at spatial
position (h,w) of tensor f and position (i,j) of tensor g. If the similarity is computed
between two regions of the same image, there will be f = g. In this way, it is possible
to see how 2 images are correlated as shown in the example below where there is also a
comparison with the K-nearest neighbors (KNN). KNN is an algorithm that determines
the classification of a point combining classes of the K-nearest points, it computes the
likelihood of that point to belong to a class and sent it to the most common class between
its neighbors.

This feature correspondence tensor is also linked to the true label co-occurence tensor

Lhwij =

1, if lhw = kij

0, if lhw /= kij

.

where k and l are ground-truth semantic segmentation labels, this means that I can
compute L only if I have labels available. It came up that DINO made already very good
predictions of label co-occurrence even if it never saw the labels.

Then a loss function needs to be built, its aim is pushing the items of s and t together
if there is a pairing between two f and g corresponding items. Where we consider f and g
two feature tensors form a pair of images and s and t are their corresponding segmentation
features. Unfortunately balancing small object learning signals is not easy, for this reason
a Spatial Centering operation and zero clamping are added.

In the end the loss function is as follows:

Lcorr(x, y, b) = −
Ø
hwij

(F SC
hwij − b)max(Shwij ,0).

STEGO is evaluated on CocoStuff and Cityscapes datasets, both containing 27 classes.
The images were resized to 320x320 px doing a simple center crop and the metrics used
were mIoU and Accuracy. At last a comparison based on the Potsdam-3 dataset was
added.

36



2.5 – STEGO

MODEL UNSUP. ACCURACY UNSUP. MIOU
ResNet50 24.6 8.9
MoCoV2 25.2 10.4
DINO 30.5 9.6
DeepCLuster 19.9 -
SIFT 20.2 -
Doersch et al. 23.1 -
Isola et al. 24.3 -
AC 30.8 -
InMARS 31.0 -
IIC 21.8 6.7
MDC 32.2 9.8
PiCIE 48.1 13.8
PiCIE+H 50.0 14.4
STEGO 56.9 28.2

Table 2.1: Comparison of unsupervised segmentation architectures on 27 class CocoStuff
validation set

Figure 2.17: Comparison of ground truth labels (middle row) and cluster probe predictions
for STEGO (bottom row) for images from the Cityscapes dataset.

37



State of the art

Figure 2.18: Qualitative comparison of STEGO segmentation results on the Potsdam-3
segmentation challenge.
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Chapter 3

Deep Learning for image
segmentation

To better understand how the previous studies reached those results and which are the
tools we chose for our work, we are going to deepen some Deep Learning techniques and
Neural Networks architectures. We are starting again from the supervised architectures
going then through the unsupervised one, trying to explain with details each of the meth-
ods adopted. The next sections we are now going through are the following:

1. Convolutional Neural Networks

2. Specific case study: ConvDeconv architecture

3. Visual Transformers (ViT)

4. Specific case study: DINO+STEGO

3.1 Convolutional Neural Networks

Convolutional Neural Networks base their actions in the simple process of convolutions.
A convolution is how a filter modifies an input, moving across it from left to right and
from up to bottom. Taking into account images, both 2D (gray scale) and 3D (RGB),
that are actually matrices in which each element is a pixel with values from 0 to 255, we
can show some examples of how a convolution works.
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In a 2D case, the filter slides along the input and each region it is passing through will
be multiplied to the filter itself, the result of this operation is then saved in the output,
like this image is showing here below. It is to notice the fact that the output is typically
smaller in size than the input.

Figure 3.1: Input - Filter - Output.

After that, we can focus on the 3D case study, in which the procedure is the same but
with an input and a filter with more than one channel. Even in this case the output is
normally smaller than the input.

If we don’t want the output to be smaller compared to the input, what we should do
is introduce padding. Padding is an external frame of zeros pixel we can add to our input
to increase the size of our output. Moreover, if we use more than one filter we will have
more than one channel in the output, and exactly one per every single filter we are using.
Each of these output channels are the features map, i.e. an evidence of the presence or
absence of the specific feature we are investigating. Each convolution can be considered
as a layer of the network.

(a) 3D convolution (b) Padding (c) 3D convolution output

Figure 3.2

The pooling is another step in a common CNN architecture. Indeed, it is used to
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decrease the width and the height. Max pooling for example reduces the size of a region
by taking only the maximum value in that region. The average-pooling layer is instead
a variation of the max-pooling layer; it differs in the fact that it takes the average of the
values in that region rather than the maximum value.

The flatten layer and the dense layer are other types of layers commonly used in
building a CNN. The former, as already told by its name, is used to transform our data
into a 1-dimensional array whilst the latter is a layer in which each neuron of the previous
layers gives input to neurons of that layer. The aim of the dense layer is to classify the
image based on convolutions output. Additionally the dense layer can only receive 1d
array as input and that is why it is always coupled with the flatten one.

We can then divide the layers of a network in three types: the input layer, the hidden
layers and finally the output layer. The input layer takes raw data directly from the
domain, without doing any kind of computation but only passing on data; the output
layer is the one that actually makes predictions and the hidden layers are all the layers
between input and output.

Neural Networks require activation functions, that are the ones that define the output
of a neuron given one or more inputs and most importantly, it adds non linearity to the
model. We want non linearity particularly to be able to manage and execute complex
tasks. All the hidden layers usually operate with the same activation function that should
be different from the one used by the output layer. Many types of activation functions
exist and they are often differentiated according to the type of layer they are working with.
There exist three types of activation functions: binary, linear and nonlinear. Binary is the
simplest, indeed the activation function is compared to a threshold and then if the input
overcomes the threshold the neuron will activate, otherwise it will stay deactivated. On
the other hand we have the linear one which is also known as the no-activation, in fact
it is proportional to the input. The drawback is that all the layers will break down into
only one because the last layer will still be linear compared to the first one. With respect
to nonlinear activation functions, the most known are: Sigmoid, Softmax, Tanh e ReLu.

Sigmoid takes as input any real value and then gives as output a value in the range
(0,1). The more positive my input is, the closer the output will be to 1 and on the contrary,
the more negative the input, the closer to 0 will be the output. Mathematically speaking
we can write it like this:

f(x) = 1
1 + e−x

.
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Thanks to its output range from 0 to 1, it perfectly fits the needs of a model that predicts
probabilities. The drawbacks are that it makes the training of the neural networks unstable
and difficult and it has a valuable gradient only between -3 and 3 values.

Softmax is equivalent to the union of more sigmoids, it also returns probability for
each class. It is mostly used for output layers and multi-class classification.

Tanh activation function is similar to sigmoid but with output values between -1 and
1. It also has similar problems for vanishing gradients. The mathematical formulation
could be

f(x) = ex − e−x

ex + e−x
.

We can take advantage of Tanh activation function thanks to the fact that it is Zero-
Centered and this helps mapping the values as strongly negatives, neutrals or strongly
positive (this was not possible with sigmoid whose output values were only in the range
(0,1)).

ReLU activation function has the peculiarity of not activating all the neurons at the
same time. ReLU means Rectified Linear Unit and it activates the neurons only if the
output value is greater than 0. The mathematical expression of ReLU is

f(x) = max(0, x).

The point that ReLU only switches on some neurons, led it to be the most computationally
efficient among the other activation functions here represented. On the other hand the
drawback is due to the zero gradient in the case of outputs with value less than 0. Thereby
the process of backpropagation, i.e. when weights and parameters of the neural networks
are updated, is impossible with the risk of having neurons never activated too. ReLU
is also the most used activation function for hidden layers of a Convolutional Neural
Network.

(a) Sigmoid (b) Tanh (c) ReLU

Figure 3.3

Generally the neural networks are trained thanks to an optimizer, the most common
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is the stochastic gradient descent algorithm. It estimates the error gradient and then
updates all the weights using back-propagation of the error algorithm, better known as
back-propagation. But to know how much these weights are updated we need to look
for the value of the learning rate. Learning rate is usually defined in the range (0,1)
and actually measures how quickly our model adapts to the problem. So the bigger the
learning rate, the more rapid the changes will be. However a learning rate too large can
cause some drawbacks, e.g. suboptimal solutions, and on the other hand, a learning rate
too small may result in the process being stuck.

This is why learning rate is one of the most important hyperparameters to tune.
Finally we define what is the meaning of batch, number of iterations and epochs, which

are parameters that define how the training is performed. An epoch is a back and forth
passage on the entire dataset, this is not possible considering at a single time in only
one step all the images, indeed they are fed to the network in smaller groups, whose size
is defined by the batch size, in this way iterations are the number of batch needed to
complete a single epoch.

3.2 Specific application: ConvDeconv Architecture

ConvDeconv is the architecture that won each benchmark analysis within the case study
of section 2.3. As already said it was developed in 2017 to be applied in image processing
tasks, more specifically for semantic segmentation tasks and it was written using PyTorch
library. This model is a simplified version of SegNet and it is actually composed of a
symmetric structure made up of two neural networks that we can call as an encoder and
a decoder, as many other known network architectures do. At the same time though it is
much more simple than SegNet.

The two neural networks usually use the same structure, but the first works in the
conventional way whilst the second in a reverse way. In the encoder of ConvDeconv
the input passes through, in order, a convolution layer with three channels in input and
sixteen in output, a pooling layer with a kernel equal to two, a second convolutional layer
with sixteen channel in input and thirtytwo in output, a second pooling layer similar to
the previous one and then again a convolutional layer with sixtyfour channels in output.
Following the symmetry, in the decoder we have three deconvolutional layers alternating
with two max unpooling layers. The activation function is the ReLu function we just
explained in the previous chapter, and it is always the same, even in the last layer.
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Moreover, the Adam algorithm is the optimizer chosen for the network. The optimizer
is the algorithm that decides in which way to update the weights of the network during
the training, based on its data, as we already saw previously. In the classic stochastic
algorithm the learning rate has always a constant value between all the weights, and
doesn’t change during the training, while Adam optimizer uses the squared gradients to
scale the learning rate. The initial learning rate was 0,001.

Finally the batch size is equal to ten, the fixed number of iteration is 10000 and the
number of epochs is calculated as follow:

nepochs = niter

len(traindataset)
batchsize

.

Figure 3.4: ConvDeconv architecture
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3.3 Vision Transformer - ViT

Vision Transformer (ViT) architecture comes from the concept of Transformer that was
actually born for Natural Language Processing (NLP) to comprehend the content of the
text and do meaningful deductions from it. Transformers for NLP firstly split the text in
words or groups of words called tokens and then convert these tokens into encoded vectors
to feed them into an encoder. In the encoder each token receives by the Multi-Layer Self-
Attention Network (MSP) a weight that corresponds to the importance they have in the
sentence, that is in fact how they relate with other tokens. After that, another network,
the Multi-Layer Perceptron, encodes the output from the previous one. It is possible to
have more blocks of MSP and MLP and then finally an MLP head layer is added outside
the encoder. This is the layer that provides the final logits that according to need might
be converted to probabilities applying an activation function, e.g. softmax.

It should be noted that this network is essentially a generic network, in fact the output
of the encoder was not developed for a specific task, but at the same time, applying after
it a specific head it could adapt to many different applications. This characteristic lets
Transformers be really useful in the task of transfer learning, by which we mean the reuse
of an already trained model, developed for a specific task as the starting point for a second
model whose objective is another different task.

Going back to Vision Transformer, they fundamentally use the same approach with
some cautions and adjustments due to the different nature of the input, that in this case
is an image with at least two-dimensions and not a sentence. First of all it is useful to
make the image shape resemble as closely as possible the shape of the phrase. To do
that the image is divided in smaller patches in a quantity equal to N = H∗W

P 2 where H
and W are the height and the width of the initial image and (P,P) is the resolution of
one of the final patches. After that and before entering the decoder each patch is also
flattened to a vector of length P 2 ∗ C where C is the number of channels of the image (i.e.
three if it is an RGB image, one if it is a grayscale image etc.). Then using a trainable
linear projection, the flattened patches are mapped and before them a Learnable Class
Embedding is prepended, to predict the input image class. Finally a positional embedding
is added to patch embeddings to add positional information to the input. From this
moment on the procedure beginning with the entrance in the Transformer encoder is the
same as for NLP.

Usually ViTs are pre-trained on larger and well known dataset, for example one could
be ImageNet, and only after that they will be fine-tuned on smaller dataset; this is exactly
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the meaning of transfer learning we name previously.

Figure 3.5: “An Image is Worth 16×16 Words: Transformers for Image Recognition at
Scale“

3.4 Specific application: Dino + Stego

Dino is a self-supervised system, developed by Meta AI, which makes use of self-distillation,
that is also from where it took its name: self-DIstillation with NO labels. Self-distillation
is a method that creates two networks, we are going to call them student network and
teacher network, but they both share the same architecture.

The image we are giving the network as input is divided in patches, one patch is fed to
the student and another one to the teacher. The difference between the two stays in the
outputs, indeed teacher network output receives a centering operation on it that student
network output doesn’t have. After that both of the outputs are normalized with the use
of softmax function and consequently are fed into the cross-entropy loss function. At first
only student network weights are updated so that teacher weights can be updated using
exponential moving average (EMA) on students weights. Where with EMA, we mean an
average whose weights and significance are greater if the data points are the most recent
ones.

The architecture used by the student and the teacher network is not fixed, it could be
either a ViT or ConvNet, but it is useful to underline that DINO reaches the best results
with the application of ViT and particularly of ViT-B/8. It also works really well for
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classification, reaching high accuracy for self supervised architectures, with values that
reach in the best case 80.1%.

Figure 3.6: “Emerging Properties in Self-Supervised Vision Transformers“

Figure 3.7: “Emerging Properties in Self-Supervised Vision Transformers“

To improve the classification results obtained by DINO and trying to move the task
to image segmentation, a STEGO head can be added.

Going into detail, STEGO objective is to distill feature relationships between the input
image and its K-nearest neighbors, other images and even itself. It can do this instantiating
for times the contrastive loss function described in section 2.5 and shown here:

Lcorr(x, y, b) = −
Ø
hwij

(F SC
hwij − b)max(Shwij ,0).

Stego uses a backbone “frozen”, i.e. without any type of fine tuning, and this is
the input of the segmentation head with which it predicts distilled features. First of
all some global image features are extracted using global average pooling (GAP). Then
each batch of the training is made up of random images and random nearest neighbors
checking, however that no image matches itself. The output are feature correspondences
but they are actually handled like they were probabilities. Doing so is useful to verify the
efficaciousness of features and at the same time to compare it with other kinds of networks
that use probability logits.
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After the segmentation head, a cluster and a CRF are applied too. CRF is a model
that fits perfectly with applications in which predictions are influenced by information
and state of the neighbors.

Figure 3.8: “STEGO architeture“
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Chapter 4

Code implementation and
Dataset preparation

In this chapter we are going to present the choices made in terms of dataset and coding,
which are the steps that led us in the selection of a type of data instead of others and
the reasons that guide me in correcting and adapting to our needs some neural networks
architectures.

4.1 Dataset

Even if in these last decades the number of experiments and missions on Mars increased,
there is an evident problem in the collections of useful data for artificial neural networks
purposes, particularly for the case of satellite images. The only free source available
is, indeed, the one supplied by High Resolution Imaging Science Experiment (HiRise)
that is a camera on board of the Mars Reconnaissance Orbiter that can also reach 30
centimeter per pixel resolution. Its raw data, the Experiment Data Records (EDRs), are
in 28 channels for each image, but only users with a high level of specialization will have
the need to access them. On the other hand we have RDRs, Reduced Data Records, that
are radiometrically calibrated, geometrically mapped images saved in a .JP2 extension
not to lose any data.
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4.1.1 HiRise DTM

At the initial stages of this thesis study, during which we were investigating the hypothesis
of developing a supervised neural network model, we took into consideration the use of
DTM products. In fact these are one of the most used products from HiRise thanks to
the fact that they contain inside themselves also information about altitude. But starting
from the beginning we firstly want to clarify what a DTM is. DTM stands for Digital
Terrain Models and together with Digital Elevation Models (DEM) and Digital Surface
Models, it is a way to model elevation.

A Digital Elevation Model referred to Earth is a raster grid of our planet surface with
respect to a surface datum, i.e. a surface commonly considered of zero elevation from the
scientific and academic world. Moreover, a DEM data file’s information becomes more
detailed the smaller the grid cells are. In general, this type of data is generated thanks to
acquisitions by satellites, drones etc.

A DEM model can be divided and segmented into DSM and DTM. The former captures
both natural and human-made structures, for example trees and buildings, while the latter
represents the evolution of the geodesic surface.

If we can already confuse DTMs with DEMs in the Earth study thanks to its definition,
this is even more justified taking into consideration Mars terrain studies, where vegetation
and human buildings are maybe no more, or not yet present. This is also why from now
on we will use indistinctly DTM and DEM to talk about HiRISE DTM products.

HiRISE DTMs are created using two images taken from different angulations of the
same area on mars surface, these images are called stereo-pairs, and passed through a long
and difficult process to create the elevation model. The resolution of DTMs is around 1-
2 meters per pixel. After this process it is also possible to develop products such as
orthoimages, which are images in which pixels have been projected in such a way that it
seems like you are looking directly down at the terrain.

DTM product respect the standard PDS (Planetary Data System) image object format
.IMG and contains also some metadata with informations about:

• File format and length

• Identification Information

• Valid minimum and valid maximum

• Map projection information to associate pixel to latitude and longitude
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To navigate inside these files a specific library is needed: Rasterio, it indeed allows us
to convert spatial location to pixel location and easily browse inside this PDS image that
is actually a matrix in which each element/pixel contains the altitude data with respect
to a zero level reference surface.

In addition to the effective DTM, we have many other products associated to it, starting
with many version of the orthoimages (same resolution of DTM in JP2 format, same
resolution of original image in JP2 format, both with version in 1 RED band and 3
IR, RED, BG band), up to some DTM extras, .jpg browsable. These .jpg products are
grayscale images, lower resolutions orthoimages, colorized altimetry pictures and a shaded
relief version of the image, i.e. a map where region with no or very few features are smooth
and on the other hand represents slopes and mountain as they were defined by a light
source chosen by the user.

These products could be used for this study as a trainable dataset and as the ground
truth to which the network should refer during the training process. Adapting the product
to be used as a ground truth was however time consuming and long processing and this
was one of the reasons that brought us to the choice of switching to an unsupervised
architecture as I am going to explain later, in next chapters.

Figure 4.1: “HiRISE DTMs interface and products“

4.1.2 HiRise realeses

In addition to the DTM product, HiRISE offers simple RDRs and its correlated extra
products. The extension of the RDR file is .JP2 in this case too and similar to DTMs it
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(a) Colorized altimetry (b) Shaded Relief

Figure 4.2: DTMs extra products

has a label attached with information regarding map projections and viewing information.
These files are generally very large in dimensions, with a size close to 1 GB. That is why
some extra products are generated with reduced scale and a more compressed format, to
be more easily controllable and usable.

Extra products are available in .JP2 if the image is at its full spatial scale and in .jpeg
if we are dealing with a browser image, that is a reduced scale one. In addition to this
we can also find a map-projected and a nomap-projected which are recognizable looking
at the presence or absence of “NOMAP” in the name. The no-map products have the
same geometry as raw images and due to the characteristics of the Mars Reconnaissance
Orbiter orbit, the majority of the images have the north pointing down.

To better examine and take into consideration those images it is useful to better look
at the colors represented in these. Even if the color band is adaptable to each image to
better underline the contrast, some general consideration can be made. For example it is
to note that dust, that is the reddest material, looks like red in RGB but yellow in IRB.
Rocks and coarse material are typically blue, and at the same time ice and frost are blue
too, but with a bright nuance. Even if sometimes it could be difficult to read and interpret
the colors, these images are pretty helpful to avoid ambiguities present in the grayscale
images, indeed in color images different materials should also have different colors.
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Once this dataset with all its products has been analyzed and the DTM product was
already discarded, we focused our attention on the extra products. In particular, as first
step we decided not to consider map-projections images that however are important for
future Mars referentiations, but at that moment were unnecessary considering our goals
and the necessity of having images without any form of added black frame. In addition
to this, the .jpeg is a file format much more easier than .JP2 to manipulate and finally
RGB was the color model we had already the chance to work with. All these reasons led
us to the choice of a product of the type of figure 4.3.

4.2 Method and code implementation

The first stage was focused on finding the best supervised architecture with the following
characteristics, looking at the scholarly literature at our disposal: it should reach good
results in an interplanetary environment, it should have applications on satellite images
and finally it should perform tasks with semantic segmentation. For these reasons all the
instance segmentation and classification applications were excluded. Going back to the
benchmark analysis faced on chapter 2.3, it came up that ConvDeconv network met all of
our requirements. Therefore in the next section we are going to frame all the parameters
and fundamental characteristics we change to adapt the network to this thesis work.

During this first code development we carried on the study of the Dataset already
explained in previous chapters. First of all, DTM needed many preprocessing steps to be
used as a ground truth or just as a training set. Indeed to use it as a valuable data it
should represent not the altitude itself, which alone brings little useful information for the
rover movement and path, but the slope or the roughness of the terrain that represent
much better its traversability. Thus, many more computations were needed.

For the reasons explained above the DTMs were discarded in favor of HiRISE extra
releases in NOMAP-RGB.jpg format, that were reliable as well and at the same time more
accessible in terms of manipulation.

This decision involved also an in-depth analysis of some labeling tools available on the
web. Summarizing their main features:

• Labelbox : fully manual labeling, no tools that follow boundaries (e.g. Lazo in Adobe);
the export file could be an annotation object or a Json file.

• Studiolabel: fully manual labeling but also a polygonal border tool and a magic wand
tool; the file can be exported with many different file formats, among them Json,
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Json-min, CSV, TSV, and, with a premium version, png image and numpy array
too.

Unfortunately, even with studio label, which we chose as the tool that best fitted our
objectives, the time needed just to label just one NOMAP-RGB.jpg image was about 1
hour. This time was not reasonable compared to our timeline. In addition to this it was
pretty difficult to reach the adequate level of detail, even with the aid of these tools, and it
is evident that for this kind of works an expert in this field, planetary terrain morphology
for example, is strongly recommended. To distinguish only by eye, and in particular
unexeperties eyes, would have drove us to mistakes and inaccuracy. This awarenesses led
us to change roadmap and head to an unsupervised network.

Once we studied the state-of-the-art for selfsupervised and unsupervised networks, we
focused on two architectures we found were relevant for this field and which studies we
already presented in chapter 2, section 2.4 and 2.5. The strength of the former was in its
native interplanetary application, and more specifically its Mars terrain application, whilst
the latter with its achievements was actually the state-of-the-art for total unsupervised
segmentation. At the same time the images segmented within the first work were only
rover camera images from AI4MARS dataset, which are slightly different from our satellite
images, and the computational power required was equivalent to the use of four GPUs.
On the other hand STEGO training lasted only two hours on a single GPU and even if it
has never been trained on Mars images, it was tested on Earth satellite images from the
Potsdam dataset.

Having established this and taking into account that our availability in terms of com-
putational power were restricted on the GPUs provided by Google Colab and eventually
on a local 16 Gb GPU, the choice fell on STEGO architecture backed by DINO archi-
tecture. Moreover STEGO is the state-of-the-art for what concerns total unsupervised
segmentation with very good results with dataset such as COCOStuff, Cityscapes and
even with Potsdam, a Hearth Satellite Images dataset. This was then an attempt to
verify the worthiness of this method on data such as ours.

We are going now into details on how we first tailored the supervised network, Con-
vDeconv, and then the total unsupervised one, STEGO, to our needs.

4.2.1 ConDeconv adaptation

ConvDeconv source is available and accessible to all users at Garg and Jain [2022] and it
is written in Python with the use of the PyTorch library. Due to company and project
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needs the first step was to translate the code to a Tensorflow/Keras written code trying
to keep the neural network consistent in its evolution.

The structure of the network is defined in a specific class where parameters for con-
volutions and pooling are specified. The adjustments made were mainly about the last
layer, which of course need to be adapted to the task, indeed the number of this layer
filters was modified to be equal to the number of classes to look for in the segmentation.
Moreover, its activation function was changed moving from ReLU to Softmax, which is
perfect to output probabilities and especially for multiclass classification. In this way the
output is a matrix with as many channels as the number of classes we want and with a
value in each element that represents the probability of that specific pixel to be assigned
to the corresponding class of the channel we are looking into.

To define the convolution, deconvolution and pooling layers we relied on functions
already existing in Tensorflow and Keras, while for the unpooling a specific function
needed to be defined. The code for the Network Class and for the Unpooling Function is
here reported.

1 class conv_deconv ():

2 def __init__ (self):

3 # ENCODER

4 #conv1

5 self.conv1=keras. layers . Conv2D ( filters =16, kernel_size =4, strides =1,

activation =’relu ’)

6 #conv2

7 self.conv2=keras. layers . Conv2D ( filters =32, kernel_size =5, strides =1,

activation =’relu ’)

8 #conv3

9 self.conv3=keras. layers . Conv2D ( filters =64, kernel_size =3, strides =1,

activation =’relu ’)

10

11 # DECODER

12 # deconv1

13 self. deconv1 =keras. layers . Conv2DTranspose ( filters =32, kernel_size =3,

activation =’relu ’)

14 # deconv2

15 self. deconv2 =keras. layers . Conv2DTranspose ( filters =16, kernel_size =5,

activation =’relu ’)

16 # deconv3

17 self. deconv3 =keras. layers . Conv2DTranspose ( filters =24, kernel_size =4,

activation =’softmax ’)
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18

19 # POOLING AND UNPOOLING LAYERS

20 # maxpool1

21 def maxpool1_indices (self , input_ ):

22 self. maxpool1_value , self. maxpool1_index =tf.nn. max_pool_with_argmax (

input_ , ksize =2, strides = 2, padding = ’VALID ’)

23 return self. maxpool1_value

24 # maxpool2

25 def maxpool2_indices (self , input_ ):

26 self. maxpool2_value , self. maxpool2_index =tf.nn. max_pool_with_argmax (

input_ , ksize =2, strides =2, padding =’VALID ’)

27 return self. maxpool2_value

28 # maxunpool1

29 def maxunpool1_ (self , value , index , shape2 , input_ ):

30 self. maxunpool1 = up_sampling (value , index , shape2 , 10, name= "

unpool1 ")#( input_ )

31 return self. maxunpool1

32 # maxunpool2

33 def maxunpool2_ (self , value ,index , shape1 , input_ ):

34 self. maxunpool2 = up_sampling (value , index , shape1 , 10, name=" unpool2

")#( input_ )

35 return self. maxunpool2

36

37 def call (self ,x):

38 out=self.conv1(x)

39 shape1 =out.shape

40

41 out=self. maxpool1_indices (out)

42 index1 =self. maxpool1_index

43 value1 =self. maxpool1_indices (out)

44

45 out=self.conv2(out)

46 shape2 =out.shape

47 print( shape2 )

48

49 out= self. maxpool2_indices (out)

50 index2 =self. maxpool2_index

51 value2 = self. maxpool2_indices (out)

52

53 out=self.conv3(out)

54
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55 out=self. deconv1 (out)

56

57 out=self. maxunpool1_ (out ,index2 ,shape2 ,out)

58 out=self. deconv2 (out)

59

60 out=self. maxunpool2_ (out , index1 , shape1 , out)

61 out=self. deconv3 (out)

62 model = tf.keras.Model( inputs =x, outputs =out)

63

64 return model

Here is instead how the unpooling function is defined.

1 def up_sampling (pool , ind , output_shape , batch_size , name=None):

2 """

3 Unpooling layer after max_pool_with_argmax .

4 Args:

5 pool: max pooled output tensor

6 ind: argmax indices

7 ksize: ksize is the same as for the pool

8 Return :

9 unpool : unpooling tensor

10 :param batch_size :

11 """

12 with tf. compat .v1. variable_scope (name):

13 pool_ = tf. reshape (pool , [ -1])

14 batch_range = tf. reshape (tf.range(batch_size , dtype=ind.dtype),

[tf.shape(pool)[0], 1, 1, 1])

15 b = tf. ones_like (ind) * batch_range

16 b = tf. reshape (b, [-1, 1])

17 ind_ = tf. reshape (ind , [-1, 1])

18 ind_ = tf. concat ([b, ind_], 1)

19 ret = tf. scatter_nd (ind_ , pool_ , shape =[ batch_size , output_shape

[1] * output_shape [2] * output_shape [3]])

20 ret = tf. reshape (ret , [tf.shape(pool)[0], output_shape [1],

output_shape [2], output_shape [3]])

21 print(type(ret))

22 return ret

For what concerns the training parameters, the chosen batch size is equal to 10 and
the total number of iteration is 1000, the number of epochs will then be computed based
on them and on the size of the dataset.
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Adam was retained as the optimizer but the learning rate was adjusted to be constant
at a value of 0.001. To fulfill our objectives the Crossentropy was the chosen loss function
and the metrics chosen to be monitored and which it is useful to take track of are Accuracy,
Precision, Recall and Intersection over Union (IoU). These metrics can be calculated as
follows:

Accuracy = NT P + NT N

NT P + NF P + NT N + NF N

Precision = NT P

NT P + NF P

Recall = NT P

NT P + NF N

IoU = NT P

NF P + NT P + NF N
.

Where TP stands for true positive, that are pixels belonging to a class and predicted in
the same class, FP stands for false positive, which are pixels predicted in that class but not
actually belonging to it, TN stands for true negative, i.e. pixels not belonging to that class
and not predicted in that class and finally FN, false negative, pixels that are not predicted
to be in that class but that actually belong to it. All these definitions means that Accuracy
is indeed how many predictions are correct above all the predictions, Precision indicates
how many positive predictions were correct with respect to all the positive predictions
made, Recall represents how many positive predictions were correct compared to all the
predictions that should have been positive.

To better visualize these metrics a classification report and a confusion matrix were
prepared. The former is a table where it is easier to compare how the metrics values are
varying in each class and the latter is useful to evaluate the general performance of the
supervised network.

To test this network end-to-end, a terrestrial drone images dataset available on Kag-
gle.com was used: Semantic Drone Dataset. It contains 24 classes for objects, vegetation
and people and it allowed monitoring of operation for our updated version of ConvDeconv
supervised network.

4.2.2 STEGO adaptation

Once head to an unsupervised model, STEGO in this specific case, it was needed an
understanding and mastery of the code. The model is pretty complex and this fact
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Table 4.1: Confusion matrix example

required a further study of the theories behind it to learn then how to adapt it to our
dataset and needs. Firstly, due to the large dimensions of the HiRISE products and not
to lose resolution, a crop strategy should be defined. The strategy proposed by STEGO
developers was mainly based on the five − crops function from pytorch. In particular
from each corner the image is cropped following the dimensions given by the user, for
example those could be half of the initial dimensions of the pictures, and then a final crop
is applied to the center. This strategy doesn’t really fit our study needs, in fact images
from HiRISE - NOMAP.RGB.jpg format have 3 channels, a fixed dimension of 512 px
and the height variable but at least in the range of 5000-10000 px. For this reason the
strategy adopted was to crop images in 512x512 px patches saving information about the
number of crops, the column and the row and the source name in a dedicated dictionary,
to be able then to reconstruct them. This procedure should be always applied to each
image we want to feed to the model, either for the training, the validation and for future
predictions. The code of the two functions we developed to crop the images and save the
dictionary is reported here.

Crops:

1 def multi_crop2 (img , input_dim , patches , filenum , count , filename ):

2 h,w,c = img.shape

3 imgs_crop =[]

4 num_row = h// input_dim

5 num_col = w// input_dim
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6 patches [ filenum ]={ ’row ’: num_row , ’col ’: num_col , ’count ’: count , ’

source ’: filename }

7

8 for i in range( num_row ):

9 for j in range( num_col ):

10 imgs_crop . append (img[ input_dim *(i): input_dim *(i+1) ,input_dim *j:

input_dim *(j+1) ])

11

12 return imgs_crop , patches , num_row * num_col +count # new count

Saving:

1 def save_crops (img , imgs_crop , input_dim , filenum , newfolder ):

2 h,w,c = img.shape

3 for row in range(int(h/ input_dim )):

4 for column in range(int(w/ input_dim )):

5 filename = "{}. jpg". format (str( filenum ).zfill (4) + ’_’ + str(row).

zfill (4) + ’_’ + str( column ).zfill (4) + ’_’ + ’val ’)

6 PIL.Image. fromarray ( imgs_crop [row*int(w/ input_dim )+ column ]).save(

os.path.join(newfolder , filename ), ’JPEG ’)

After cropping data, a mandatory step is the precomputation of some KNN informa-
tion; as already explained, those are useful for future comparisons and similarities and
needed some changes in the code. In particular the DataLoader had to be modified due
to Colab GPU constraints: the batch size was then set to 128, while at the beginning it
was equal to 256.

Once we reached the training phase we got to interface with Hydra, a framework born
to simplify the management of hyperparameters that takes advantage of configuration
files. In this way it is possible to change and tune hyperparameters without modifying
the structure or the core of our model. Moreover, the LightningModule from PyTorch
Lightning with its characteristic structure, is adopted as the parent class to define our
network and is then integrated in the Trainer, from PyTorch Lightning too, to automate
our code once more. Within the Lightning Module is indeed present a defined structure
which allows the organization of the code in six sections: initialization and set up, training
step, validation step, test step, predict step and finally optimizers configuration. However
in our model structure the test step and predict step are not integrated in this module
but they will be, later separately.
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Images pre-processing

Before being fed to the network each of the images, already cropped in 512x512 px patches
passes through some more transformations, in particular it is resized to 224x224 px during
the training or to 320x320 px if it is during the validation as defined in the configuration
file, then it is converted from PIL Image to a torch Tensor and finally it is normalized
with mean and standard deviation.

After that we also apply two types of image augmentation, right before loading the
dataset, that is actually a ContrastiveSegDataset object, a class whose parent is Dataset
from PyTorch, into the DataLoader. The first exploits some geometric transformations
and the second one uses photometrics transformations. These transformations are all ran-
domic, this is why we need to save a coefficient, the ‘seed’, to replicate that exact action in
case of need. When we applied geometric transformations we applied random horizontal
flips with a 0.5 probability, then a randomic crop of an image with a resize immediately
following to come back to the wanted shape. On the other hand, for photometric augmen-
tation we applied some random jitter to the colors, i.e. we randomly changed contrast,
saturation, brightness and hue with a probability of 0.3, 0.3, 0.3, 0.1 respectively. Then
some images are randomly converted into grayscale images, preserving the initial number
of channels, with a probability of 0.2. Finally some Gaussian Blur is applied to some
of the images too. All these processing transformations can be resumed in the following
scheme.

Figure 4.4: Images pre-processing
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Training parameters

Once data has been prepared, both for validation and training dataset, the network is
finally trained.

Even in this case we sewed the code on our needs, we indeed changed some of the
training parameters already defined. First of all we ascertained that 5000 iterations were
too few to be setted as the stopping parameter for the training, taking into account the
dataset we were using. In fact, the network was completing less than 10 epochs following
that criterion. In order to overtake this limit we substituted that constraint with one that
set a max number of epochs equal to 60. We also changed the logic behind the saving
of the model in the so called checkpoints. From checking each 400 steps and saving the
top 2 checkpoints in terms of mIoU, we switched to checking each epoch and saving only
the last one. This decision is due to the fact that without having labels no metric can
be computed and hence the model has no metric to monitor to decide which is the best
checkpoint to save. The point that we do not have any kind of label is also the reason that
led us to exclude the validation dataset from the training process at a certain time, even
if it is usually included, and that ended in no metric, neither linear and cluster, mIoU or
accuracy, computed in the trainer.fit process.

Image Reconstruction

At the end of the training, we evaluate the model feeding it with the validation dataset
already prepared, to have at least some visual results. The predictions are by patches, as
the dataset we fed to the network. The need was then to reconstruct the initial image.
It was possible to do this thanks to the strategy we adopted in renaming the patches
once cropped and to a dictionary we created during the initial 512x512 cropping and
in which we saved information about the number of columns and rows, i.e. how many
patches each image has and how they are located inside it, the total number of cuts done
in the whole dataset and the name of the initial source image. Using this information and
applying some post processing such as reshaping and permuting, we finally obtained back
the original reconstructed image and its respective prediction mask. The code developed
to do this is here reported.

1 img_num = 137 # image whose mask prediction I want to visualize

2 outputs = {k: torch.cat(v, dim =0)[ patches_info [ img_num ]["count"]:

patches_info [ img_num ]["count"] + patches_info [ img_num ][’row ’] *

patches_info [ img_num ][’col ’]] for k, v in outputs .items ()}
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3

4 full_image = outputs [’img ’]. reshape ( patches_info [ img_num ][’row ’],

patches_info [ img_num ][’col ’], 3, cfg.val_res , cfg. val_res ) \

5 . permute (2, 0, 3, 1, 4) \

6 . reshape (3, cfg. val_res * patches_info [ img_num ][’row ’], cfg. val_res

* patches_info [ img_num ][’col ’])

7

8 full_cluster_prob = outputs [’cluster_prob ’]. reshape ( patches_info [ img_num

][’row ’], patches_info [ img_num ][’col ’], cfg. dir_dataset_n_classes ,

cfg.val_res , cfg. val_res ) \

9 . permute (2, 0, 3, 1, 4) \

10 . reshape (cfg. dir_dataset_n_classes , cfg. val_res * patches_info [

img_num ][’row ’], cfg. val_res * patches_info [ img_num ][ ’col ’])

11

12 crf_probs = full_cluster_prob .numpy ()

13

14 reshaped_label = outputs [’label ’]. reshape ( patches_info [ img_num ][’row ’],

patches_info [ img_num ][’col ’], 320, 320) \

15 . permute (0, 2, 1, 3) \

16 . reshape (cfg. val_res * patches_info [ img_num ][’row ’], cfg. val_res *

patches_info [ img_num ][’col ’])

17 reshaped_img = unnorm ( full_image ). permute (1, 2, 0)

18 reshaped_preds = model. test_cluster_metrics . map_clusters (np. expand_dims (

crf_probs . argmax (0) , 0))

19

20 reshaped_preds = reshaped_preds .type(torch.int64) # float32 )

21 reshaped_preds =( reshaped_preds ) *255/3 # /2 # /3 #

22 reshaped_preds = reshaped_preds .type(torch.int32)

23

24 reshaped_img = reshaped_img . permute (2, 0, 1)

Saving

To save the prediction to our previously chosen directory we take advantage of some
existing functions such as PIL.image.save and imageio.imwrite. We use the former to save
the image itself while the latter to save the predictions. The choice fell on imageio.imwrite
for predictions because it allowed us to keep a one channel, grayscale format image,
without adding any other unique values, as was unlikely happening with PIL, that could
lead to some misunderstanding in case of reuse of the mask.
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End-to-end

Finally an interface for a possible external user is created. It is actually the end-to-end
of our study and puts together the preprocessing steps needed on the image to prepare
the input, the loading of the best model obtained from a checkpoint, the evaluation of the
results and finally the saving and the visualization of them.

It is clear that at the beginning some parameters are required to be added by the user.
In particular we are asking for the path of three folders, the first where we can find the
image to segment, the second where to save the results and the third which represents
where to create the directory required in this form: /datasetname/imgs/val/. Then we
ask for the name of the dataset they are feeding to the network, for the number of classes
the network should look for and for the number of the image in their dataset for which
they want to visualize the prediction.

This is actually how the process will be implemented inside the generic pipeline of the
SINAV project.

Figure 4.5: “End-to-end schematic process“
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Figure 4.3: “HiRISE RGB - NOMAP product“
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Chapter 5

Results

The results we obtained from STEGO predictions on HiRISE images are critical to com-
ment mostly because metrics above predictions from unsupervised semantic segmentation
models are pretty difficult to evaluate. This depends on the fact that nearly all the al-
ready existing metrics are based on the presence of a Ground Truth to compare with and
that the few metrics that follow different procedures are specifically related to clustering
models such as K-means.

From a visual examination our results clearly match the purpose of this study, but to
find some quantitative measures we needed a step back. First of all we would like to recall
the good results presented together with the STEGO code, which we are reporting here,
and that was the point that brought us to choose this network, to get then to test and
verify this application with a different and unusual set of data. In fact this network shows
improvement as well as the Coco and Cityscape dataset, also for Potsdam images, reaching
a +12% with respect to the previous state-of-the-art. Secondly we took advantage of a
synthetic dataset of a virtual Martian environment obtained by simulation in Unity of a
drone camera generated within another Master thesis student project whose usage we are
now going to deepen.

5.1 STEGO validation with Syntethic dataset

In this Syntethic Dataset there are 1008 images and they have a resolution of 1000x1000px,
in addition they are taken in six different altitudes (5m, 7m, 9m, 11m, 13m, 15m) and
four different brightening conditions:
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• Zenith

• Low West, 20 degrees over the horizon

• Low East, 20 degrees over the horizon

• High East, 70 degrees over the horizon

Moreover, masks are available and will be used in order to plot some metrics after
having trained the network in an unsupervised way with this synthetic dataset. In the
GT four distinct classes are present: Soil, BigRock, BedRock and Sand where we can
identify BigRocks as the most dangerous for the Rover between all the others.

To test our unsupervised network with this dataset some adjustment were needed both
for the data and for the network itself. In particular we did:

1. cropping of the images in 500x500 patches, 2 rows and 2 columns

2. inclusion of the validation dataset during the training

3. addition of the best two checkpoints saving based on mIoU, maximizing it

4. inclusion and application of the Hungarian algorithm to each prediction and before
the computation of the metrics.

We tried to find the best configuration for the training, thus we tested different batch
sizes from 10 to 32 stopping at this value because of computation constraints. It also
happened not to be able to end the training for GPUs limits but thanks to the fact that
the checkpoints are saved monitoring a metric, and they were always saved after a few
epochs, we considered those results as valuable too. As a matter of fact we ended up
choosing as the best model the one who trained with a batch size of 16.

We needed also to check the correlation between the label and the GT itself which had
been realized with some post processing on the predicted mask before the computation of
the metrics. This step is needed to ensure the correct correspondence between the assigned
class inside the prediction and the one present in the ground truth which otherwise was
not guaranteed. What we actually were looking for was a pattern in predicted and true
label correspondence that could possibly be applied with other dataset too.

We initially started, just to find some confirmations, checking by our eye for some
correspondence, but soon we moved on for a more scientific approach. We then decide to
verify if each specific class was associated to a characteristic mean value of pixel. To do
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that we firstly convert the source images to Grayscale pattern and then we computed the
mean of all the pixels in an image, allocated to each class.

What we found is reported in figure 5.1: it can be noted that as expected the curves
fluctuates depending on whether the image was captured with the Sun high on the horizon
or low over it, in addition means for each of the classes are mostly superposed and this
happened due to the fact that the color gradation is well and truly the same or at least
very close pixel to pixel. This means unfortunately that it was almost impossible to isolate
one single curve into a specific interval of mean values, with that interval different from
the other curves’ one and to get then to find a characteristic relation.

Figure 5.1: Classes mean pixel value

The other try that was made, looking for pattern, was about implementing a form of
Hungarian algorithm with which we reassigned a class in the prediction mask based on
the one with the highest correspondence in the Ground Truth, to finally check whether
or not the network already worked well and then compute again mIoU and accuracy.

Generally, with the presence of the labels it was possible to better valuate the total
unsupervised predictions of the STEGO network, working for example with precision,
recall, F1, in addition to accuracy and Jaccard index, both mean value and single class.
We are reporting here in tables some of the results obtained, even if they are not fulfilling
they are for sure the starting point for real dataset evaluation and future steps in the
project.

We reached indeed with one of our configurations an accuracy for the BigRocks class,
the one we are interested the most in, of 0.45 which was in line and acceptable to come
back to test and to evaluate HiRISE images with a higher degree of reliability than before.

Looking at the results on the synthetic dataset we can say it clearly recognized each
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METRICS FOR SYNTHETIC
DATASET

bat=16,hungin,ep=50 bat=16,hungin,ep=300
best
clus/mIoU

last
epoch

best
clus/mIoU

last
epoch

Jaccard(IoU) 0.09728 0.09810 0.11936 0.11949

Accuracy

mean 0.24819 0.24790 0.29396 0.29590
SOIL 0.14720 0.19030 0.23470 0.22910

BIGROCKS 0.44970 0.11850 0.11050 0.11910
BEDROCKS 0.21790 0.57830 0.62340 0.61100

SAND 0.17790 0.10450 0.20720 0.22440

Precision

mean 0.25045 0.24839 0.28369 0.28439
SOIL 0.67890 0.68480 0.76080 0.76120

BIGROCKS 0.13740 0.12200 0.16490 0.16450
BEDROCKS 0.12320 0.12160 0.16780 0.17120

SAND 0.06230 0.06520 0.04130 0.04060

Recall

mean 0.24819 0.24790 0.29396 0.29590
SOIL 0.14720 0.19030 0.23470 0.22910

BIGROCKS 0.44970 0.11850 0.11050 0.11910
BEDROCKS 0.21790 0.57830 0.62340 0.61100

SAND 0.17790 0.10450 0.20720 0.22440

F1

mean 0.17555 0.17481 0.20609 0.20667
SOIL 0.24200 0.29780 0.35870 0.35220

BIGROCKS 0.21050 0.12020 0.13240 0.13820
BEDROCKS 0.15740 0.20100 0.26450 0.26750

SAND 0.09230 0.08030 0.06880 0.06880

Table 5.1: Synthetic Dataset metrics and configurations

relevant object in the scene but has some trouble with the distinction between bed rocks
and big rocks which usually are assigned both to the big rock category, as we can see in
the following pictures.
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5.2 – Results and prediction on HiRISE

(a) Source image
119

(b) Predicted mask
119

(c) Source image
120

(d) Predicted mask
120

Figure 5.2: Respective prediction for validation images n° 119 and n° 120

Looking at those images it is also to notice how sometimes the brightening conditions
affect the prediction, and particularly they do it when the Sun is low over the horizon.
This happens usually when objects inside the scene projected their shadow or when the
low light incurs in the pattern of the ground. At the same time bounders and contours
are well recognized, as proof of the goodness of the model.

5.2 Results and prediction on HiRISE

We then examined and looked at the real HiRISE dataset predictions, which actually can
only be evaluated in a visual way, but at this point having established the validity of
the STEGO model. The training parameters used are the one reported in the previous
chapter.

The identified classes are three: smooth terrain, uneven/irregular terrain and relief,
between which we consider as practicable the smooth terrain only. In the following pre-
diction the smooth terrain class is represented by gray pixels, with consistency among all
the predicted masks.

Comparing these example figures, what we obtained is an almost total non-practicability
for image 21, a good traversability depending on the area for the image 11 and a fully
traversability for what concerns image 16.
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(a) n° 16 (b) n° 11 (c) n° 21

Figure 5.3: Source images and predicted masks
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Chapter 6

Conclusions and further steps

The purpose of this Master Thesis work was to develop and deepen a neural network
to perform image semantic segmentation on satellite captures from Mars surface. The
semantic segmentation on Mars terrain images paves the way for the path planning the
rover will perform, its goal is to give indeed initial recommendations on whether or not an
area is traversable. We investigated either supervised and unsupervised models to perform
this task and we came up with the development of a modified version of a ConvDeconv
and a STEGO network. We then ended up choosing the latter since it best fitted our
needs in terms of availability of a ground truth, GPUs availability, and results obtained
previously with satellite images. No Mars application existed already and no ground truth
was available for our dataset from HiRISE cam, that is why we validate the network with
the aid of a synthetic Mars drone dataset.

To use a totally unsupervised approach for sure opened new possibilities and roadmaps
for the future thanks to the fact that the effort in manual labeling to create ground truth
masks is no more needed, but at the same time requires some more work to refine and
improve either the results and the model itself. Predictions were fulfilling if examined in a
visual and qualitative way, but the ordinary metrics were not appropriate to assess these
results as we are used to, hence is highly necessary as a further improvement to develop
a proper unsupervised metric for semantic segmentation.

Moreover, as part of the SINAV project, to better integrate the network in its pipeline
and to enhance mask predictions and ensure then the creation of an adequate traversability
map, we strongly recommend the development of an additional head. The head, together
with the inclusion of a manual labeled small dataset, should be supervised so that by
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training it, it will be possible to refine the very final output. The training of the unsuper-
vised model should be performed on a big amount of data, in our case images, to better
extract low level features and should aim after that at mapping to the class required,
that will happen thanks to the addition of these few layers inside the head. For these
layers in fact the training will be supervised and the network will be refined thanks to the
comparison with the ground truth labels.

It is anyway important to be careful not to forget that in this way the smaller the
labeled dataset will be the higher the network is specifically characterized in recognition
of that few and particular features.

Furthermore and consequently to the previous point, a significant dataset should be
labeled, at least while waiting for the definition of new appropriate metrics for this kind
of tasks.

Finally a further study is needed to better define and perfect the strategy behind the
choice of the classes to look for, even in their numbers. This study should take place
possibly with the support of scientists with expertise in the field of planetary morphology
and martian rover engineers. This final sentence remarks once more how this field is able
to put together different scientist figure to work together and join their expertise mutually
enhancing each other.

74



Bibliography

Salem Saleh Al-amri, Namdeo V. Kalyankar, and Khamitkar S. D. Image segmentation
by using threshold techniques. CoRR, abs/1005.4020, 2010. URL http://arxiv.org/

abs/1005.4020.

A.S.I. Proposta tecnico programmatica. sinav, soluzioni innovative per la navigazione
autonoma veloce. Bando pubblico ASI Tecnologie Abilitanti Trasversali. Area tematica
Tecnologie Spaziali, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision trans-
formers. CoRR, abs/2104.14294, 2021. URL https://arxiv.org/abs/2104.14294.

T. Claudet, K. Tomita, and K. Ho. Benchmark analysis of semantic segmentation algo-
rithms for safe planetary landing site selection. IEEE Access, 10:41766–41775, 2022.

D.M. DeLatte, S.T. Crites, N. Guttenberg, E. J. Tasker, and T. Yairi. Segmentation
convolutional neural networks for automatic crater detection on mars. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 12(8):2944–2957,
2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. CoRR, abs/2010.11929, 2020. URL https://arxiv.

org/abs/2010.11929.

P. Garg and S. Jain. Convolution-deconvolution-network. 2022. URL https://github.

com/pgtgrly/Convolution-Deconvolution-Network-Pytorch.

75

http://arxiv.org/abs/1005.4020
http://arxiv.org/abs/1005.4020
https://arxiv.org/abs/2104.14294
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://github.com/pgtgrly/Convolution-Deconvolution-Network-Pytorch
https://github.com/pgtgrly/Convolution-Deconvolution-Network-Pytorch


BIBLIOGRAPHY

Edwin Goh, Jingdao Chen, and Brian Wilson. Mars terrain segmentation with less labels.
CoRR, abs/2202.00791, 2022. URL https://arxiv.org/abs/2202.00791.

Eric Guérin, Killian Oechslin, Christian Wolf, and Benoît Martinez. Satellite image se-
mantic segmentation. CoRR, abs/2110.05812, 2021. URL https://arxiv.org/abs/

2110.05812.

M. Hamilton, Z. Zhang, B. Hariharan, W. T. Freeman, and N. Snavely. Unsupervised
semantic segmentation by distilling feature correspondences. ICLR, 2022.

Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on
Systems, man and Cybernetics, 9:62–66, 1979.

S. J. Robbins and B. M. Hynek. A new global database of mars impact craters 1 km:
1. database creation, properties, and parameters. J. Geophys. Res.: Planets, 117(5),
2012a.

S. J. Robbins and B. M. Hynek. A new global database of mars impact craters 1 km:
2. global crater properties and regional variations of the simple-to-complex transition
diameter. J. Geophys. Res.: Planets, 117(6), 2012b.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.

org/abs/1505.04597.

L. Rubanenko, S. Pérez-López, J. Schull, and M. G. A. Lapôtre. Automatic detection and
segmentation of barchan dunes on mars and earth using a convolutional neural network.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
14(8):9364–9371, 2021.

Kristina P. Sinaga and Miin-Shen Yang. Unsupervised k-means clustering algorithm.
IEEE Access, 8:80716–80727, 2020. doi: 10.1109/ACCESS.2020.2988796.

Humera Tariq and S.M.Aqil Burney. K-means cluster analysis for image segmentation.
International Journal of Computer Applications, 96, 06 2014. doi: 10.5120/16779-6360.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017. URL http://arxiv.org/abs/1706.03762.

76

https://arxiv.org/abs/2202.00791
https://arxiv.org/abs/2110.05812
https://arxiv.org/abs/2110.05812
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1706.03762


BIBLIOGRAPHY

Grace Vincent, Alice Yepremyan, Jingdao Chen, and Edwin Goh. Mixed-domain training
improves multi-mission terrain segmentation, 2022.

Wenjing Wang, Lilang Lin, Zejia Fan, and Jiaying Liu. Semi-supervised learning for mars
imagery classification and segmentation, 2022.

Song Yuheng and Yan Hao. Image segmentation algorithms overview. CoRR,
abs/1707.02051, 2017. URL http://arxiv.org/abs/1707.02051.

77

http://arxiv.org/abs/1707.02051

	List of Tables
	List of Figures
	Acronyms
	Problem presentation
	Sinav project
	Approach and methodologies
	Semantic segmentation
	Artificial Intelligence and Deep Learning


	State of the art
	Segmentation Convolutional Neural Networks for Automatic Crater Detection on Mars
	Automatic Detection and Segmentation of Barchan Dunes on Mars and Earth Using a Convolutional Neural Network
	Benchmark Analysis of Semantic Segmentation Algorithms for Safe Planetary Landing Site Selection
	Mars with less labels
	STEGO

	Deep Learning for image segmentation
	Convolutional Neural Networks
	Specific application: ConvDeconv Architecture
	Vision Transformer - ViT
	Specific application: Dino + Stego

	Code implementation and Dataset preparation
	Dataset
	HiRise DTM
	HiRise realeses

	Method and code implementation
	ConDeconv adaptation
	STEGO adaptation


	Results
	STEGO validation with Syntethic dataset
	Results and prediction on HiRISE

	Conclusions and further steps

