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Abstract
The present study proposes the use of Machine Learning to model turbulent heat
transfer in liquid metal cooled nuclear reactors. Traditional modelling methods are
found to have limitations, and the availability of high-fidelity data for low Prandtl
number fluids motivates the use of advanced regression techniques.

The work is based on the analysis and the extension of the data-driven model
developed by M. Fiore [1] to simulate liquid metal heat transfer which is described in
subsection 2.2.1. The original Neural Network model was trained with high-fidelity
data only. This approach was found to be limiting when the model is coupled with
common momentum Reynolds Averaged Navier Stokes (RANS) closures due to the
inconsistency between Direct Numerical Simulation (DNS) and RANS turbulence
input data. In particular, the accuracy of the data-driven model dramatically
decays when the network is applied in combination with momentum models based
on the Boussinesq hypothesis e.g. the k − ϵ turbulence model.

In chapter 3 datasets obtained from RANS simulations and DNS for the same flow
conditions were compared and dimensional reduced with a Principal Component
Analysis (PCA) algorithm. An artificial neural network model for turbulent heat
flux prediction was trained using the PyTorch framework. The accuracy of the
predictions is evaluated through a loss function that considers the results from
both input datasets, with the Pareto front constructed from multiple training runs
(chapter 4). This analysis showed the possibility to train a network that is able to
identify the nature of the input database and gave reasonable predictions with both
sets of input data. In chapter 5 an a priori and a posteriori validation were carried
out to test the model’s performances. In particular, the newly trained network
was implemented in OpenFoam which is a Computational Fluid Dynamic (CFD)
software.

Finally, an interpretability analysis with the Shapley values algorithm was
performed in chapter 6 to understand the peculiarity of the models trained with
hybrid DNS-RANS input datasets.
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Chapter 1

Machine Learning for Fluid
Mechanics and Turbulent
Flows

The field of fluid mechanics is in a state of rapid evolution, led by unprecedented
volumes of data from experiments, field measurements, and large-scale simulations
at multiple spatiotemporal scales. Machine learning provides a set of tools to
extract information from data that can be translated into knowledge. Moreover,
machine learning algorithms can augment domain knowledge and automate tasks
related to flow control and optimization [2].

In this chapter, the current techniques and the emerging opportunities of
machine learning in fluid mechanics are presented. At the end of this chapter, a
short description of turbulent flows will be done.

1.1 Introduction
The High-Performance Computing (HPC) architecture made it possible to work
with large amounts of data. Over the last 50 years, many techniques were developed
to handle such data, ranging from advanced algorithms for data processing and
compression to fluid mechanics databases.

According to [2] can be observed a trend in :

• A vast and increasing volumes of data;

• Advances in computational hardware and reduced costs for computation, data
storage, and transfer;

• Sophisticated algorithms;
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1.2. HISTORICAL OVERVIEW

• A growth of open source software;

• Big investments from industry on data-driven problem-solving.
All of these advances have fueled interest in machine learning to extract informa-

tion from this huge amount of data. These learning algorithms may be categorized
into supervised, unsupervised and semisupervised learning as shown in Figure 1.1.

Supervised learning is defined as learning from data labeled with expert knowl-
edge by providing correct information to the algorithm; unsupervised learning is
defined as learning without labeled data and semisupervised learning is defined
as learning with partially labeled data or by interaction of the machine with the
environment [2].

Figure 1.1: Categorization of the machine learning algorithms [2].

1.2 Historical overview
The interface between machine learning and fluid dynamics has a long history. Kol-
mogorov, a founder of statistical learning, in the early 1940s, considered turbulence
as one of the prime applications of machine learning.

Ingo Rechenberg and Hans-Paul Schwefel at the Technical University of Berlin
in the 1960s performed experiments in a wind tunnel on a corrugated structure
composed of five linked plates with the goal to find the optimal angle in order to
reduce the drag [2].

The interest in machine learning and neural network, which is a computational
architecture based loosely on a biological network of neurons used for non-linear
problems, increased with the development of the backpropagation algorithm. This
one allows the training of neural networks with multiple layers. In the 1990s a lot
of work using neural networks was made in the context of trajectory analysis and
classification.

The link between proper orthogonal decomposition (POD) and linear neural
networks was exploited in order to reconstruct turbulence flow fields and the flow

2



1.3. MACHINE LEARNING FUNDAMENTALS

in the near wall region of a channel flow starting from DNS results [3]. Tracey et al.
[4] used machine learning algorithms to model the Reynolds stress anisotropy tensor
and also to mimic the source term of the Spalart-Allmaras model. Duraisamy
et al. [5] used neural networks and Gaussian processes to model intermittency
in transitional turbulence and Zhang et al. [6] used these algorithms to model
turbulence production on a channel.

1.3 Machine Learning fundamentals

"Learning is the process that aims to estimate an unknown (input, output) depen-
dency or structure of a system using a limited number of observations" (V.Cherkassk)
in [7]. The general learning scenario involves three components: a generator, a
system, and a learning machine as shown in Figure 1.2.

• The Generator produces random vectors x⃗ drawn independently from a random
probability density p(x⃗) which is unknown;

• The System produces an output value y⃗ for every input x⃗ according to the
fixed conditional probability density function p(y⃗ | x⃗) which is also unknown;

• The Learning Machine (LM) is able to implement a set of functions Φ(x⃗, y⃗, w⃗)
where w⃗ are a set of abstract parameters (called weights in the neural network
framework) of the LM that need to be found in the training process [7].

The learning process of the machine can be summarized as the minimization of
risk functional:

R(w⃗) =
Ú

L [y⃗, Φ(x⃗, y⃗, w⃗)] p(x⃗, y⃗)dx⃗dy⃗ (1.1)

where x⃗ are the inputs; y⃗ are the samples from a probability distribution p; Φ(x⃗, y⃗, w⃗)
define the structure of the learning problem; w⃗ represent the parameters of the LM
and L the loss function that balance the various learning objectives (e.g. accuracy
and simplicity).

3



1.4. SUPERVISED LEARNING

Figure 1.2: The Learning problem: a learning machine uses inputs generated
from the sample generator and the observation from the system to approximate
the inputs [2].

The learning problem can be split into three categories as it can be noted in
Figure 1.1: supervised, semisupervised, and unsupervised learning. The next
sections will take a closer look at these categories.

1.4 Supervised Learning
In supervised learning, models are trained with labeled datasets and the model
learns about each type of data. The minimization of the cost function, which
depends on the training data, will determine the unknown parameters of the LM.
A common loss function can be defined as:

L [y⃗, Φ(x⃗, y⃗, w⃗)] = |y⃗ − Φ(x⃗, y⃗, w⃗)|2 (1.2)

1.4.1 Neural Network
Neural networks are probably the most well-known methods in supervised learning.
They are fundamental nonlinear function approximators, indeed following the
universal approximation theorem any function can be approximated by a such deep
neural network.

The key properties of these networks are their flexibility and modularity. They
are composed of neurons and each neuron receives an input, processes it through
an activation function, and produces an output. Multiple neurons can be combined
into different structures that reflect knowledge about the problem and the type of
data [2].

Neural network architectures have an input layer that receives the data, one or
more hidden layers, and an output layer that produces a prediction. Each node,
or artificial neuron, is connected to another and has an associated weight and

4



1.4. SUPERVISED LEARNING

threshold. The node is activated and can send data to the next layer if the output
of a neuron is above the defined threshold. Otherwise, no data is passed along to
the next layer of the neuron [8].

Output

Hidden

Input

Figure 1.3: Example of a neural network with one hidden layer.

Each individual node can be seen as its own linear regression model, composed of
input data, output data, weights, and a bias (threshold) the formula would look
like this:

z =
mØ

i=1
wixi + bias = w1x1 + w2x2 + w3x3 + bias (1.3)

In Equation 1.3 it’s clear that these weights help determine the importance of any
given variable, larger weights contribute more, lower weights less. The result of
Equation 1.3 is then passed through an activation function which determines the
output. An example of what has just been stated is shown in Figure 1.4

Figure 1.4: At the left the input of the selected neuron, the weights are represented
as the connection and the activation function as f(z) [9]

It’s now important to define two essential terms: feedforward propagation and
backpropagation. Feedforward propagation means that the flow of information
occurs in the forward direction, starting from the input layer then to the hidden
layers, and at the end to the output layer. Backpropagation is the action taken by
the algorithms to repeatedly adjust the weights and biases in order to minimize the

5



1.4. SUPERVISED LEARNING

difference between the prediction and the real value (cost function). To minimize
the cost function, the algorithm must compute the gradient referring to each weight
in order to see which of these weights actually makes it change the most.

The purpose of the activation function is to add non-linearity to the neural
network. The activation function introduces an additional step at each layer,
although the computation time increases it is still worth it In fact, let’s suppose
that a neural network is without an activation function. In this case, the neurons
will only perform a linear transformation on the inputs. It doesn’t matter how
many hidden layers are present, because all layers will behave the same way, since
a composition of linear functions is also a linear function.

There are many activation functions but for simplicity’s sake, are listed only
three of them: the binary step, the sigmoid function, and the ReLU function.

Binary Step Function

The binary activation function is based on a threshold value and it is a linear
activation function. The neuron is activated if the input is greater than a specified
threshold value or else it gets deactivated. The binary step function is the simplest
activation function that exists and can be implemented with only an "if " statement
a can be seen in Equation 1.4 [10]. While creating a binary classifier a binary
activation function is used but on the contrary, this type of function cannot be
used in the case of multiclass classification. Another problem of this type of
activation function is that the gradient is zero which can cause hindrance in the
backpropagation. [10].

The function can be written as:

f(x) =
0 if x < 0

1 if x ≥ 0
(1.4)

Sigmoid/Logistic Activation Function

The sigmoid is a non-linear activation function that can allow using the backpropa-
gation algorithm because its derivative is now related to the inputs and it can allow
an understanding of which weights in the input neurons bring the best prediction.
The sigmoid function transforms the values in the range 0 to 1. It can be defined
as [9]:

δ(x) = 1
1 + e−x

(1.5)

The sigmoid or the logistic function according to [9] is one of the most widely used
function because :

6



1.4. SUPERVISED LEARNING

Figure 1.5: Representation of the binary activation function [9].

• It is commonly used for models where one has to predict the probability of an
output. Since the probability of something exists only between 0 and 1, the
sigmoid is the correct selection due to its range;

• As shown in Figure 1.7, the function is differentiable and provides a smooth
gradient. This is expressed as an S-shape of the sigmoid activation function

The limitations of the sigmoid function are:

• its derivative, since the gradients values are only significant for the range
[−3,3] It implies that outside of this region the gradient is very small and the
network stops learning (vanishing gradient problem);

• the asymmetry of the output close to zero. The output of the neurons will be
of the same sign. This makes the training of the neural network more difficult.

ReLU function - Rectified Linear Unit

The ReLU function looks like a linear function and admits a derivative function.
This allows for backpropagation and makes it computationally efficient.

The catch is that the ReLU function doesn’t activate all neurons simultaneously.
The neurons will be deactivated only if the output is less than zero. Figure 1.8
shows the ReLU function and mathematically it can be represented as:

f(x) = max(0, x) (1.6)

7
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Figure 1.6: Sigmoid function [9]. Figure 1.7: Derivative of the sigmoid
function [9].

Figure 1.8: Representation of the ReLU function [9].

The advantages of using a ReLU as an activation function are:

• A greater efficiency since only a certain number of neurons are activated by
this function;

• Due to its linearity and non-saturation property, ReLU accelerates the conver-
gence of gradient descent to the global minimum of the loss function.

The big problem with ReLU is that its derivative before zero is zero. This
means that it has a zero gradient. Because of that, the weights and biases for some
neurons are not updated during the backpropagation process.

To face this problem other activation functions exist such as the leaky ReLU,
the parametric ReLU, and exponential ReLU (ELUs) [9].

8
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Gradient Descent

The gradient descent algorithm is used in supervised learning and involves adjusting
the network weights and biases by propagating back the error from the output to
the input layer. The basic idea behind the gradient descent algorithm is to minimize
the difference between the current solution and the actual network solution. This
is enabled by changing the network weights through an optimization algorithm.

Two main phases can be observed in the optimization algorithm. The forward
pass is the first phase, the network is fed with input data, and the current output
for these inputs is calculated with the current weights. The second phase, on the
other hand, is based on the comparison of the current output (computed in the
forward pass) and the output that would have been expected (which can come from
a dataset, for example). The error between the two solutions is first calculated
in the output layer and secondly propagated backward towards the other layers.
Based on the error, each layer’s weights are updated in order to minimize it. This
process is repeated many times until the error is minimized.

The method used to compute the gradient backward is named backpropagation
and is a part of the gradient descent. The cost function is defined as the difference
between the two outputs. The gradient computed is the cost function gradient
with respect to the inputs.

Gradient descent is a powerful technique but it can suffer of slowness and
very high computational costs. It can also experience overfitting if not properly
regularized.

Learning Rate

One of the most important hyperparameters that should be set is the learning
rate. Hyperparameters are set before the training starts and are able to control the
behavior and performance of the network. Some hyperparameters are the number
of hidden layers, the number of neurons in each hidden layer, the batch size, and
the learning rate.

The learning rate scales the magnitude of the weights update which aims to
minimize the loss function. If the learning rate is too low the training process will
take a long time and if is too high can lead to non-convergence in the loss function.
In Figure 1.9 it is shown what was previously said. In Equation 1.7 is shown the
weights update with the learning rate (η).

9
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Figure 1.9: Learning rate effects for the convergence [11].

wi+1 = wi − η∇wJ(w) (1.7)
where η is the learning rate, wi+1 are the updated weights, wi are the previous
weights and ∇wJ(w) is the gradient of the loss function. This process can add also
some momentum to speed up and decrease the convergence but since the discussion
is very long please refer to reading in the literature.

1.4.2 Classification: support vector machines and random
forests

Classification is a fundamental task in machine learning, which allows obtaining
the labels or categories of a set of measurements from an a priori labeled dataset.
To solve this problem two popular algorithms are Support Vector Machines (SVMs)
and Random Forests. According to [2], the problem can be specified by the following
loss function for both:

L [y⃗, Φ(x⃗, y⃗, w⃗)] =
0, if y⃗ = ϕ(x⃗, y⃗, w⃗)

1, if y⃗ /= ϕ(x⃗, y⃗, w⃗)
(1.8)

Support vector machines is a powerful learning algorithm that can be used for
both regression and classification. SVMs work by searching for the hyperplane that
best separates the data into different classes. The plane is chosen to maximize the
margin between these classes. SVMs are good for high-dimensional data and can
deal with both linear and nonlinear separations using kernel functions. Typically
SVMs are used for image and text classification.

Random forests, on the other hand, are ensemble learning methods that combine
multiple decision trees in order to improve accuracy. Each tree is constructed using
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a subset of features and a random subset of training data. The output will be
given by the most common vote among all the decision trees. In other words, each
decision tree predicts a class and vote, and the class with the most votes is the
most likely. Random forests are effective in dealing with noisy data and are less
prone to overfitting than a single decision tree.

1.5 Unsupervised Learning
Unsupervised learning is a type of machine learning in which the algorithm is
not provided with labeled data. In contrast to supervised learning, in which the
algorithm was given labeled data in this case it is the algorithm that has to find
patterns and structures in the input dataset provided without an a priori knowledge
of what the output should look like. Unsupervised learning aims to extract and
identify meaningful patterns in the input dataset that can be used to extract
information, such as hidden relationships between variables or clusters of similar
data points. This technique, therefore, is principally used for dimensional reduction,
clustering, and anomaly detection [2].

1.5.1 Dimensional reduction: proper orthogonal decomposi-
tion, principal component analysis, and auto-encoders

The extraction of flow features from experimental data and large-scale simulations
is very important in the fluid dynamic framework. Even, the identification of
low-dimensional structures for high-dimensional data can be used as preprocessing
for all other tasks in the supervised learning context.

Proper Orthogonal Decomposition (POD) is a mathematical technique that
aims to decompose the dataset into a base of orthogonal vectors. This technique is
used to represent the data in a smaller dimensional space while preserving as much
information as possible. This technique can be used to analyze data with a spatial
and temporal structure.

Principal Component Analysis (PCA) is another popular technique for dimen-
sionality reduction. This technique works to find the principal components of
a dataset, which are the directions in which the data varies the most. These
components can be used by projecting the dataset data into this new lower-order
dimensional space preserving as much variance as possible. The PCA algorithm
will be further explained in subsection 3.4.2.

Auto-encoders are a particular type of neural network (they can be seen as a
two-layer neural network). They consist in an encoder which maps the input data
to a low-order dimensional space and a decoder, which maps the encoded data
back to the original space.

11
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While each of these techniques has its strengths and weaknesses, they share the
goal of reducing the complexity of a dataset while preserving its most important
information. In recent years, the machine learning community has developed a wide
number of autoencoders that, when properly matched with the possible features of
the flow field can lead to significant insight for reduced-order modeling of stationary
and time-dependent data [2].

1.5.2 Clustering and vector quantization
Clustering is a common technique in unsupervised machine learning which aims
to identify similar groups in the data [2]. The most widely used algorithm is the
k-means clustering which partitions data into k clusters.

Vector quantizers identify representative points for data that can be partitioned
into a pre-determined number of clusters. In the latter, this point can be used
instead of the full dataset for future samplings. The vector quantizer Φ(x⃗, w⃗)
provides a mapping from the data x⃗ and the coordinate of the clusters. The loss
function, according to [2], in this case, can be written in order to minimize the
distance from the data to the cluster center, as follows:

L [Φ(x⃗, y⃗, w⃗)] = ||x− Φ(x⃗, w⃗)||2

Clustering and vector quantization are powerful techniques that can be used to
gain insights and make predictions from large datasets. By grouping similar data
points into clusters, these techniques can reveal hidden patterns and structures in
the data that may not be apparent from the raw data alone.

1.6 Semisupervised Learning
Semisupervised learning operates under partial supervision, it works with both
labeled and unlabeled data. In semisupervised learning, the model is trained with
mixed input data whose goal is to learn a general representation of the data. This
representation is used to make predictions about new ones.

A common approach is to use a combination of supervised and unsupervised
learning techniques. For example, a popular approach is to use a deep neural
network (seen in subsection 1.4.1) that is trained with a combination of labeled
and unlabeled data. The supervised objective is used to maximize the model’s
predictions on labeled data, and the unsupervised objective is used to help the
model to learn a good representation of the data distribution.

In the fluid dynamics context, two algorithms can be found: generative adver-
sarial networks (GANs) and Reinforcement Learning (RL).

12
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1.6.1 Generative Adversarial Networks (GANs)

This type of network was first introduced by Goodfellow in [12]. The basic idea
of this method is to train two neural networks that compete with each other
simultaneously: a generator and a discriminator. The generator takes random
inputs and produces a sample with the respective inputs. The discriminator is
acting as a classifier that evaluates the generator’s work. The goal is for the
generator to find a way to create more realistic samples and for the discriminator
to try to improve its ability in classifying what is true and what is a synthetic
sample. The optimal point is achieved when the synthetic samples produced by
the generator are very similar to the real ones and the discriminator can’t work
anymore. The weights are obtained in a process which is inspired by game theory,
called adversarial learning. The discriminator is first fed with trained data, this is
why this procedure is often called self-supervised [2].

GANs can be used to generate realistic simulations of turbulent flows [13] or to
control and optimize a fluid system.

1.6.2 Reinforcement Learning (RL)

Reinforcement Learning (RL) is a mathematical framework for problem-solving and
focuses on the development of algorithms that can learn how to make decisions in a
dynamic environment. It is composed of an agent who is not provided with labeled
information but learns to interact with the environment in the form of rewards or
penalties. The agent’s goal is to learn a policy that maximizes the reward.
The key components of the RL systems are:

• The State which is the state of the environment that is used by the agent to
decide what action should be taken;

• The Action which is the decision made by the agent with the given state.
After the action the state will be changed;

• The Reward which is the feedback given to the agent if an efficacious action is
carried out;

• The Policy which is the final strategy learned. From any given state the policy
decides what action should be taken. The goal is to learn this policy for the
agent.

Reinforcement learning was applied in several fluid dynamics problems such as it
was used to learn a policy to reduce the drag in a turbulent boundary layer in [14].
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1.7 Turbulent Flows Introduction
Most flows encountered in engineering practice are turbulent [15]. Turbulent flows
are characterized by the following properties:

• Turbulent flows are unsteady. In a plot, for example, of the velocity profile as
a function of the time can be noted clearly the chaotic nature of the turbulence
[16];

• Is a three-dimensional flow. The instantaneous field fluctuates into 3 di-
mensions although the time average can be done in only two dimensions.
For a strictly two-dimensional flow, vortex stretching cannot be done and
consequentially energy cascade to the smaller scales cannot take place [15];

• Turbulent flows contain a great deal of vorticity. Indeed vortex stretching
mechanism is the main actor to increase the intensity of the turbulence;

• Turbulent flows dissipates energy. The dissipation zone is located mostly on
the fine scales instead of on the larger scales where there is the majority of
turbulent kinetic energy;

• Turbulent flows fluctuate on a broad range of lengths and time scales. This
property makes direct numerical simulation very difficult;

• Turbulence increases the rate at which conserved quantities are stirred. The
eddy motion produces the transport of momentum and energy much higher
than the molecular motion. The actual mixing is accomplished by diffusion
(turbulence diffusion).

In the past, the primary approach to studying turbulence flows was experimental.
Overall parameters such as the time-averaged drag or the heat transfer are relatively
easy to measure. Other types of measurements are impossible to make such as
measuring the fluctuating pressure. Numerical methods can be helpful to get this
type of information. There are some approaches to predict turbulent flows:

• The first one is based on the integral equations which can be derived from the
equation of motion by integrating over one or more coordinates;

• The second approach is based on decomposing the equation of motion into a
mean and fluctuating part. Unfortunately, these decomposed equations do not
form a closed set of equations and these methods require the introduction of
approximation (Turbulence models). Some turbulence models can be observed
in chapter 2. The actual approach to handling the turbulence models is dictated
by the nature of the process used to obtain the mean and the fluctuating
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equations. A set of partial differential equations called Reynolds - Averaged
Navier Stokes (RANS) can be obtained if the process to create the mean
is averaging (over time or an ensemble of realizations) or a set of equations
called Large Eddy Simulation LES can be obtained when the mean is achieved
averaging or filtering over finite volumes in space. An accurate description of
these types of simulations was taken into account in section 2.1

• The last approach is the Direct Numerical Simulations (DNS) in which the
Navier Stokes equations are solved for all the motions in turbulent flows. This
approach is described below.

Direct Numerical Simulations (DNS)

This method consists in solving the Navier Stokes equations without averaging or
approximation. It is also the simplest approach from the conceptual point of view.

In a direct numerical simulation, to assure all of the structures of the turbulence
have been captured, the domain considered should be at least large as the largest
eddy [16]. A useful measure for the larger scale is the integral scale (L) which is the
distance over which the fluctuating component of the velocity remains correlated
[16].

According to [15], denoting L11 as the longitudinal integral length scale, for an
isotropic turbulence with a given spectrum, the reasonable lower bound on the box
size is L = 8L11. In term of the lowest wavenumber k0 implies that [15]:

k0L11 = 2π

L
L
8 ≈ 0.8 (1.9)

Since it is necessary to capture all of the kinetic energy dissipation that occurs
at the smallest scale a good simulation must have a fine enough grid. This scale is
called the Kolmogorov scale (η). Usually, the resolution required for the smallest
scales or the maximum wavelength is:

kmaxη = π

∆x
η ≥ 1.5 (1.10)

where kmax is the largest wavenumber, ∆x is the grid size and η the dimension of
the Kolmogoroff scale.

The time step in a DNS simulation is also important, the particles must move
only in a fraction of the grid spacing (∆x) in the time step (∆t). The Courant
number, in according to [15], is imposed:

CFL = k1/2∆t

∆x
(1.11)

The computational cost increases as Re3
L (Reynolds number based on the mag-

nitude of the velocity fluctuation and the integral scale) and about Reλ (Reynolds
number based on the Taylor scale).
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Chapter 2

Machine Learning at Low
Prandtl Numbers

In the research group in which this thesis work was developed, the objective was
to characterize the thermal-hydraulics of a liquid metal-cooled nuclear reactor.
Dealing with this topic, the study of heat transfer turns out to be very interesting
since the nominal operating conditions induce the Prandtl number of the liquid
metals (lead or sodium) to be very low. In this system, the thermal-hydraulics in
normal and transient conditions must be carefully analyzed first for the system’s
safety and then for the project design.

In this respect, Computational Fluid Dynamics (CFD) is regarded as a valuable
tool to tackle the challenges associated with the thermal-hydraulic behavior of
nuclear systems [17]. In the Reynolds-Averaged Navier-Stokes (RANS) framework,
a large number of models for the closure of the turbulent momentum flux exist.
On the other hand, limited availability of RANS thermal models are present in
commercial codes since a common use is to introduce a constant turbulent Prandtl
number (Prt) by applying the so-called Reynolds analogy to obtain the thermal
diffusivity.

In the presence of forced convection of common fluids, such as water or air,
which have Prandtl numbers close to or greater than unity, this approach is widely
accepted. However, in the case of liquid metals, which are characterized by a
low Prandtl number, the hypothesis of similarity between the momentum and the
thermal turbulence is less justified.

This chapter will first show how to solve this problem with modern CFD
techniques suitable for low Prandtl fluids and then how it could be solved using a
machine learning technique.
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2.1 CFD techniques at Low Prandtl numbers
CFD methods can be grouped into three categories: Direct Numerical Simula-
tion (DNS), Large Eddy Simulation (LES), and Reynolds-Averaged Navier–Stokes
simulation (RANS). While DNS and LES offer high calculation accuracy, they
require significant computational resources and are only suitable for certain, simple
geometric models.

Since the computational cost of the RANS approach is much lower than that
of DNS and LES, the RANS approach is the most widely used CFD method in
engineering calculations. The Reynolds decomposition to the velocity and the
temperature can be applied in this way :Û = U + u′

θ̂ = θ + θ′ (2.1)

where U and θ represent respectively the mean velocity and the mean temperature
and u′ and θ′ represent respectively the fluctuating velocity and temperature.

For incompressible turbulent flows with constant physical properties and no
gravity the Reynolds averaged equations are shown in Equation 2.2:

∂Ui

∂xi

= 0
∂Ui

∂t
+ Uj

∂Ui

∂xj

= −
1
ρ

∂P

∂xi

+
∂

∂xj

A
ν

∂U

∂xj

B
−

∂u′
iu

′
j

∂xj

Dθ

Dt
= α

∂2θ

∂xj∂xj

−
∂u′

iθ
′

∂xj

(2.2)

where ν, Ui, P, θi and α are respectively the molecular viscosity, the Reynolds-
averaged velocity, the pressure, the Reynolds-averaged temperature, and the molec-
ular diffusivity. u′

iu
′
j is the so-called Reynolds stress tensor and u′

iθ
′ is the turbulent

heat flux.
This problem is not closed since more unknowns than equations are present, it

is necessary to introduce a closure for the momentum field and one for the thermal
field.

In the RANS framework, to accurately predict the momentum transport of
various fluids, the linear eddy viscosity k − ϵ or k − ω turbulence model is usually
sufficient [18]. On the other hand, the Reynolds analogy hypothesis (constant
turbulent Prandtl number Prt ≈ 0.85− 0.9) is used to reproduce the heat transfer
in almost all commercial codes [19]. For the simulation of fluids like water and
hair (with a relatively high Pr number), rational results can be obtained with a
constant Prt. However with high thermal diffusivity and low viscosity, resulting
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in a low Pr number (Pr ≈ 0.01− 0.025), the Reynolds analogy hypothesis is no
longer appropriate (Figure 5.8).

Subsequently, this section will discuss the most frequently used methods for
closing the thermal and moment part.

2.1.1 Turbulence Model for Momentum Field
For the momentum part, the Reynolds stresses are modelled in the terms of the
eddy viscosity as follows:

−ρu′
iu

′
j = µt

A
∂Ui

∂xj

+ ∂Uj

∂xi

B
+ 2

3ρkδij (2.3)

where µt is the eddy viscosity, k is the turbulent kinetic energy and δij the Kronecker
delta.

As it can be seen in Equation 2.3 the unknown was shifted from the Reynolds
stresses tensor to the eddy viscosity. The eddy viscosity is defined as a function of
the turbulent kinetic energy k, and the turbulent dissipation rate ϵ as :

µt = cµfµρ
k2

ϵ
(2.4)

where cµ is a constant determined in the equilibrium analysis at high Reynolds
numbers and the dumping function fµ will be a function of turbulence Reynolds
numbers Ret = ρk2/ϵµ.

Other two equations should be added: one for turbulent kinetic energy k and
one for the turbulent dissipation ϵ as follows [20]:

∂ρk

∂t
+

∂

∂xj

C
ρuj

∂k

∂xj

−
A

µ +
µτ

σk

B
∂k

∂xj

D
= τ turb

ij Sij − ρϵ + ϕk

∂ρϵ

∂t
+

∂

∂xj

C
ρujϵ−

A
µ +

µτ

σϵ

B
∂ϵ

∂xj

D
= cϵ1

ϵ

k
τ turb

ij Sij − cϵ2f2ρ
ϵ2

k
+ ϕϵ

(2.5)

where cϵ1, cϵ2, cµ , σk and σϵ are the model constants, fµ, f1 and f2 are the damping
functions and Sij = 1

2

1
∂Ui

∂xj
+ ∂Uj

∂xi

2
is the rate of strain tensor. All of these constants

and functions are defined as [20]:

• cϵ1 = 1.45;

• cϵ2 = 1.92;

• cµ = 0.09;

• σk = 1;
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• σϵ = 1.3;

• fµ = exp (−3.4/(1 + 0.02Ret)2);

• f2 = 1− 0.3 exp (−Re2
t );

• ϕk = 2µ

∂
√

k

∂y

2

;

• ϕϵ = 2µ
µt

ρ

A
∂2us

∂y2

B2

where us is the flow velocity parallel to the wall. At this point, the problem is
closed since a sufficient number of equations are present.

2.1.2 Turbulence Models for Thermal Field

For the thermal part, the turbulent heat flux u′
iθ

′ can be modeled in many ways.
The most common one, in the case of a unitary Pr number, is to apply the Reynolds
analogy which cannot be applied in the case of low Prandtl number. Other closure
models were applied such as the Manservisi and Menghini model [19].

Both the Reynolds analogy and the Manservisi model start from the Simple
Gradient Diffusion hypothesis (SGD) shown in Equation 2.6:

u′
iθ

′ = −αt
∂θ

∂xi

(2.6)

where αt is the turbulent diffusivity that should be modeled.

Reynolds Analogy closure model

The Reynolds analogy assumption is made to model the turbulent diffusivity αt

and allows the closure for the turbulent heat flux.

αt = − νt

Prt

(2.7)

where νt = µt

ρ
can be obtained from Equation 2.4 and the turbulent Prandtl number

is supposed to be a constant value i.e. Prt ≈ 0.85. The Equation 2.6 is closed and
the problem can be solved.
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Manservisi and Menghini closure model

The Manservisi and Menghini closure model is a two-equation (kθ and ϵθ) problem.
This closure model is vastly used in the thermohydraulic of lead-cooled fast reactors
which include the average square temperature fluctuation kθ and its dissipation ϵθ.

In the Manservisi kθ − ϵθ model the SGD hypothesis was applied and αt is
computed as follows [18]:

αt = Cθkτlθ (2.8)
where Cθ is an empirical constant, τθ is the local thermal characteristic time
modelled as follows [18]:

τlθ = f1θB1θ + f2θB2θ (2.9)
in which: 
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(2.10)

where Rδ = δ ϵ0.25/ν0.75, τu = k/ϵ, Rt = k2/νϵ and R = τθ/τu. The equation for kθ and
ϵθ can be written as follows [18]:
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where:

Cd2 =
I

1.9
C
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−
3

Rt
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42BD
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J5
1− exp

3
−Rδ
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(2.12)
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All the constants applied in the above equations can be found in Table 2.1.

Cθ Cγ σkθ
σϵθ

Cp1 Cd1 Cpw

0.1 0.3 1.4 1.4 0.925 1 0.9

Table 2.1: Manservisi and Menghini closure coefficients

Figure 2.1: Comparison of momentum δm and thermal δt boundary layer in
different working fluids [21].

It is shown in Figure 2.1 that applying the Reynolds analogy in a liquid metal
cooled nuclear reactor is a very strong assumption since there is no equality in the
momentum and the thermal boundary layer [21].

Models such as Manservisi and Menghini, shown above, were created to overcome
this problem. Although these models can produce outstanding results, they are
challenging to implement, so a machine learning model was sought in this thesis to
overcome this problem.

2.2 Machine learning techniques at Low Prandtl
numbers

This section presents an alternative way to solve the problem using an algebraic heat
flux model obtained from a data-driven artificial neural network. This is because
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current CFD techniques cannot be applied at low Prandtl numbers (Reynolds
analogy) or are very difficult to implement (Manservisi and Menghini).

Recent developments in machine learning have brought excellent tools for sum-
marising and translating DNS data into mathematical forms. However, the accuracy
of these models depends very much on the way the data is selected and processed,
the algorithm, and the training procedures [1].

Artificial Neural Networks (ANNs) have become a popular technique for solving
high-dimensional and highly non-linear regression problems in turbulence modelling.
However, the ANN approach presents challenges related to generalization and
practical applicability and, if not properly trained and regularised, can lead to
non-physical results. To increase the robustness of the model, essential physical
and mathematical properties should be incorporated indirectly or by construction,
such as the invariance under rotation, the realizability of the Reynolds stresses,
and the consistency with thermodynamics [1].

The formulation of the inputs and the structure of the neural network was
previously carried out by M. Fiore in the paper [1] and I will limit myself only to
a description of the past work as an introduction of work described in the next
chapters.
In this section the formulation and the tuning of the network will be covered.

2.2.1 Mathematical formulation
It is required a model for the turbulent heat flux u′

iθ
′ which is a three components

vector. The averaged Reynolds equation for incompressible flows with constant
properties for the temperature is the following:

Dθ

Dt
= α

∂2θ

∂xj∂xj

−
∂u′

iθ
′

∂xj

(2.13)

which is the same as Equation 2.2 remembering the notation for the velocity and
the temperature in Equation 2.1. The regression problem consists in finding the
value of the neural network structure (weights and biases) that minimizes the value
of the turbulent heat flux in comparison with the DNS value.

The algebraic equation for the turbulent heat flux was derived as a function of
scalars, vectors, and tensors quantities in this way [1]:

u′θ′ = f (b, S, Ω,∇θ, g, k, ϵ, kθ, ϵθ, α, ν) (2.14)

where the tensors b, S and Ω are defined in Equation 2.15, g is the gravity vector, k
is the turbulent kinetic energy, ϵ is the turbulent dissipation rate, kθ is the thermal
variance, ϵθ is the thermal dissipation rate, α the molecular diffusivity and ν the
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molecular viscosity.

bij =
u′

iu
′
j

k
− 2

3δij

Sij = 1
2

A
∂Ui

∂xj

+ ∂Uj

∂xi

B
(2.15)

Ωij = 1
2

A
∂Ui

∂xj

− ∂Uj

∂xi

B

Equation 2.14 implies :

• Locality and instantaneously as a consequence of the algebraic structure. It
can also be convenient since it avoids a second-order closure for the turbulent
heat flux [1];

• Turbulence equilibrium since is assumed that no gradients of k, kθ and bij are
involved [1].

In addition, the dependence on gravity can be removed since the study can be limited
to forced convection flows. The model being algebraic and explicit implies that
can be written as the product of a dispersion tensor D and the mean temperature
gradient (∇θ):

u′θ′ = −D∇θ (2.16)
where from Equation 2.14 the dependency can be shifted into D assuming also
that the anisotropic part of D is a function only of the anisotropic part of the
momentum field [1]. D can be written as follows:

D = F (b, S, Ω, ||∇θ||, k, ϵ, kθ, ϵθ, α, ν) (2.17)

where || · || is the norm.
Since the quantity to be modelled is physical the model should respect the

invariance under the rotation property of the coordinate system. This property
can be applied in the following way:

QDQT = F
1
QbQT , QSQT , QΩQT , ||∇θ||, k, ϵ, kθ, ϵθ, α, ν

2
where Q is any rotational matrix.

Considering a new set of general tensors T i that are formed through the product
of the tensors b, S and Ω a linear mapping between D and T can be made as
shown in Equation 2.18 where the coefficients ci are isotropic functions.

QDQT =
nØ

i=1
ciQT iQT (2.18)
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An infinite number of tensors product can be formed with b, S and Ω leading
to an infinite expansion series. However, the tensor representation theory [22]
demonstrated that exists a finite set of independent invariants under the proper
orthogonal group for a finite tensorial set.

Can be shown in Fiore et al. [1] that the minimal tensors basis is formed by the
following set:

I, b, S, Ω, bS, SΩ, bSΩ

and the corresponding minimal basis of invariants is the following:

{b2} , {b2}, {S2}, {Ω2}, {bS}, {bSΩ}

where the notation {·} indicates the trace of the tensor and b2 is defined in
Equation 2.19 where bij was defined in Equation 2.15 .

b =

b11 b12 0
b12 b22 0
0 0 0

 (2.19)

From Equation 2.18 the coefficients ci can be deducted as:

ci = fi

1
{b2} , {b2}, {S2}, {Ω2}, {bS}, {bSΩ}, ||∇θ||, k, ϵ, kθ, ϵθ, α, ν

2
and applying the Buckingham theorem, 10-dimensional independent groups were
formed, and then the coefficients ci can be written as follows:

ci = fi (πi, Ret, P r) (2.20)

The complete formulation of each one of the ci coefficients can be seen in Table 2.2.
It is of fundamental importance to observe the second thermodynamics principle,

which requires the real part of the eigenvalues of D to be positive. In forced
convection regimes, this characteristic averts counter-gradient heat fluxes. To
satisfy this requirement a Cholesky decomposition of the symmetric part of D
should be enforced. D can be written as:

D =
C1

A + AT
2 1

A + AT
2

+ k

ϵ0.5

1
W −W T

2D
(2.21)

where A and W can be written as a functions of the tensors basis T i and the
coefficients ai and wi in following equations:

A = qn
i=1 aiT

i

W = qn
i=1 wiT

i

(2.22)
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and the coefficients ai and wi can be derived from ci.

Invariant Basis Tensor Basis

π1 =
k2

ϵ2{S
2}, π2 =

k2

ϵ2{Ω
2}, π3 =

1
{b2}

, T1 =
k

ϵ0.5I, T2 =
k

ϵ0.5b, T3 =
k2

ϵ1.5S

π4 =
k

ϵ
{bS}, π5 = {b2} , T4 =

k2

ϵ1.5Ω, T5 =
k2

ϵ1.5bS,

π6 =
k2

ϵ2{bSΩ}, π7 =
||∇θ||√

kθ

k1.5

ϵ
, T6 =

k2

ϵ1.5bΩ, T7 =
k3

ϵ2.5SΩ,

R =
kθϵ

kϵθ

, Ret =
k2

ϵν
, Pr =

ν

α
, T8 =

k2

ϵ2.5bSΩ,

Table 2.2: Basis tensors and invariants formulation, computed according to [1]

2.2.2 Neural Network structure
Once the inputs had been derived, it is necessary to observe the artificial neural
network structure. The coefficients ci (a1:8 and w1:8) are modelled by the artificial
neural network, which takes the input vector X constituted by the invariant basis
shown in Table 2.2:

X = [π1, . . . , R, Ret, P r] (2.23)
and gives as output the coefficients ai and wi:

Y = [a1, . . . , a8, w1, . . . , w8] (2.24)

with a function (M) that depends on the network’s weights and the biases in this
form:

Y =M(X,W) (2.25)
where W is the array representing all the weights and biases of the network.

M(X,W)

X Y

Figure 2.2: Simple representation of the ANN: take as inputs X and with the
function M produce Y .
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Once the 16 coefficients ai and wi have been computed applying Equation 2.22 and
Equation 2.21 the turbulent heat flux can be obtained.

The neural network structure, depicted in Figure 2.3, was created in the PyTorch
framework and more in detail:

• Consists of two branches of which the first takes as inputs all the πi groups,
Re and R and the second one takes only the Pr number as input;

• All the inputs were logarithmically transformed;

• The first branch is constituted of six hidden layers with 100 neurons each
which have a rectified linear unit as an activation function and an output layer
with a hyperbolic tangent activation function;

• The second branch consists of two hidden layers with 100 neurons and each
one with a ReLU function and the output layer has a hyperbolic tangent
activation function;

• The output layer is a merge between the two output of the two branches by
multiplication;

• The 16 coefficients ai and wi are computed and the turbulent heat flux can be
obtained.

...

ReLu

ReLu

Tanh

Tanh

...... ...

...

ReLu

ReLu

Tanh

Tanh

...... ...

...

Input
Layers

Hidden Layers
Output Layers

Merge Layer

eq. (12)eq. (15)Eq. (3.21)(Eq. 2.21)

Figure 2.3: Neural network structure used to predict the turbulent heat flux from
the invariants basis and the molecular Prandtl number [1].
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The network was trained using the Adaptive Moment Estimator (ADAM) optimizer
with a learning rate of 5 × 10−4 and a weight decay of 1 × 10−5. The learning rate
gives information about how much the weights are updated, a higher learning rate
can speed up the convergence but can also escape from the minimum and diverge,
and a lower learning rate increases the stability but decreases the convergence time
(Figure 1.9). To address these issues, an inertial term, called momentum, that
depends on the speed of descent was added to the optimizer. Weight decay is an L2
norm regularization that helps prevent overfitting. Specifically about overfitting, in
the previous work [1] the network was tuned to avoid it. The network was trained
with 25, 50, 100, and 200 neurons for each hidden layer and the results showed
that the best choice is to have 100 neurons for each hidden layer to avoid both
overfitting and underfitting.

2.2.3 Training of the neural network
The training phase of the neural network plays a crucial role. In this phase, the
neural network learns how to make predictions based on input data. This process
is made possible by updating the weights and biases, which then lead to different
outputs. The weights and biases are constantly modified to reduce the error between
the predicted output and the correct one (which in the present case is the DNS
one).

In the present case, the training phase, as shown in Figure 2.4 consists, first, in
a random initialization of the weights and the biases (W), second, in evaluating the
forward pass (Y =M(X,W)) of the neural network, third, in computing the error
between the predicted value of the neural network and the correct value coming
from the DNS simulation, and, finally, in modifying the weights and the biases in
order to minimize the previously computed error.

M(X,W)

X Y u′θ′
NN − u′θ′

DNS

W update
L

Figure 2.4: Training process of the artificial neural network.

It is of crucial importance to understand how to structure the loss function both
in order to get around the minimum and also because one must guarantee the
smoothness of the turbulent heat flux. The smoothness is required since the
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turbulent heat flux enters the averaged energy equation through its divergence as
in Equation 2.13.

Based on what has been said, the loss function was obtained with the formulation
shown in Equation 2.26 [1]:

L = 1
N

 NØ
i=1

3Ø
j=1

(q̂i,j − qi,j)2

+ λ

N

 NØ
i=1

3Ø
j,k=1

-----∂q̂i,j

∂xk

− ∂qi,j

∂xk

-----∆xk

 (2.26)

where i ∈ [1, . . . , N ] is the index spanning across all the N data points contained
in the mini-batch; qi,j = u′

jθ
′ is the turbulent heat flux prediction of the network,

q̂i,j = u′
jθ

′
DNS is the DNS turbulent heat flux and j is the index spanning in the 3

dimensions of the turbulent heat flux. In Equation 2.26 on the left is computed
the difference between the true and the predicted heat flux and on the right the
difference between the derivatives of those quantities with a regularizing parameter
λ = 10 that is mesh independent.

2.2.4 State of the Art
The results obtained in Fiore et al. [1] are very accurate even when compared with
different turbulent heat flux models. However, the trained neural network turns
out to be very sensitive to the momentum turbulence model applied. Indeed, high
accuracy is observed only with all momentum models that can accurately predict
the Reynolds stresses i.e. with DNS data or the Elliptic-Blending Reynolds-Stress
(EBRSM) model. On the contrary, if the neural network model is coupled with a
momentum model that applies the Boussinesq hypothesis, inaccuracies are observed
and can be seen in Table 2.3.

ANN Coupling State of the Art

Momentum Thermal Accuracy
Closure Closure

DNS + Neural Network = Very High
EBRSM + Neural Network = Very High
k − ϵ + Neural Network = Very Low

Table 2.3: State of the art of the coupling between momentum closure models
and the artificial neural network trained in [1]. Good results had been achieved
only if the artificial neural network was coupled with a very accurate momentum
model.
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Since the data-driven formulation does not seem to be robust enough against
the deficiencies of the momentum modeling, a more robust model will be the goal
of the present work. The new model must therefore be able to predict the correct
value of the heat flux with good accuracy, even with inputs from a k− ϵ momentum
turbulence model. The robustness, as can be observed in the following chapters,
will be improved by perturbing the quality of the dataset by adding RANS data
that apply the Boussinesq approximation.
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Chapter 3

Input Computation and
Analysis

In subsection 2.2.1 the correct formulation of the scalar inputs and for the tensor
basis was demonstrated.

First, one must proceed in their calculation by also describing the database
that will be used. Secondly, an analysis needs to be done to look at their shape
and understand their location in space computing all the statistical values such
as (mean, variance, skewness, and Kurtosis). A Principal Component Analysis
(PCA) was also performed to see if it was possible to reduce the input space to use
a reduced-order input dimension.

At the end of this chapter, a hyperparameter of the neural network will be tuned.
This is the one responsible for the behavior of the network in presence of inputs
coming from a DNS or RANS simulation

3.1 Database descriptions
As mentioned earlier the goal of this thesis is to obtain a closure of the thermal
equation from inputs that are both DNS and especially RANS. In this situation,
the database will consist of both DNS and RANS simulations related to different
forced convection flows at various Reynolds and Prandtl numbers.

In the DNS case, the authors provided the momentum and the thermal statis-
tics after time averaging the simulation results in a time interval related to the
characteristic time of the flows.

In the RANS case, the simulations were performed by M.Fiore in the same
conditions as the DNS case. Since we don’t want to introduce errors in the RANS
simulations due to a wrong thermal turbulence closure model, the temperature T ,
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the thermal variance kθ and the thermal dissipation rate ϵθ were taken from the
DNS simulations in the same Reynolds and Prandtl conditions.

DNS Author Flow Reynolds Prandtl
and Ref. configuration number number

Kawamura et al. [23] Channel Flow Reτ = 180 Pr1= 0.025 - 0.71
Kawamura et al. [23] Channel Flow Reτ = 395 Pr2= 0.025 - 0.71
Kawamura et al. [23] Channel Flow Reτ = 640 Pr2= 0.025 - 0.71

Tiselj et al. [24] Channel Flow Reτ = 180 Pr = 0.01
Tiselj et al. [24] Channel Flow Reτ = 395 Pr = 0.01
Tiselj et al. [24] Channel Flow Reτ = 640 Pr = 0.01
Oder et al. [25] BFS Reb = 3200 Pr = 0.01

Pr1 = [0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.71], Pr2 = [0.025, 0.71]

Table 3.1: DNS databases for forced convection at different Re and Pr numbers
that were used in the training and the validation of the neural network [23, 24, 25].

Channel flow test case

Kawamura and Tiselj provided two databases related to the isothermal channel
flow configuration.

Kawamura et al. in [23] presented DNS results for a channel flow in these 4
configurations:

• Case 1 Poiseuille flow with constant wall heat flux heating,

• Case 2 Poiseuille flow with constant wall temperature difference,

• Case 3 Couette flow with constant wall heat flux heating,

• Case 4 Couette flow with constant wall temperature difference.
Only the Poiseuille flow with a constant wall heat flux for the Reynolds numbers
and Prandtl numbers given in Table 3.1 was taken.

Figure 3.1: Computational domain and thermal boundary condition. [23]
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The computational domain can be seen in Figure 3.1 and the flow was assumed to
be fully developed. The coordinates and the flow variables were normalized by the
channel half width δ, the friction velocity uτ , the kinematic viscosity ν, and the
friction temperature Tτ due to the constant heat flux condition [23].

The fundamental equations which are the continuity, the momentum, and the
energy equation are shown as follows:



∂u+
i

∂x∗
i

= 0,

∂u+
i

∂t∗ + u∗
j

∂u+
i

∂x∗
j

= −
∂p+

∂x∗
i

+
1

Reτ

∂2u+
i

∂x∗
j

2

∂θ+

∂t∗ + u+
j

∂θ+

∂x∗
j

=
1

Reτ · Pr
∂2θ+

∂x∗2
j

+ u+
1

∂
e
T̄ +

m

f
∂x∗

1

(3.1)

where the ( )∗ superscripts means a normalization with δ, the ( )+ superscripts
means a normalization with the friction velocity ν, uτ =

ñ
τw/ρ and Tτ = qw/ρcpuτ ,

the ⟨ ⟩ superscripts mean an averaging over the channel section, Reτ = uτ δ/ν
the Reynolds number, θ the transformed temperature and Tm the bulk mean
temperature [23].

The inputs for the neural network were computed according to Table 2.2 and
shown in Figure 3.2 and 3.3.

In Figure 3.2 and 3.3 can be distinguished: the DNS inputs computed, with
the Kawamura database and, the RANS inputs, computed with the results of an
OpeanFoam simulation with a k− ϵ momentum turbulence model and, the thermal
part (T , ϵt, kt), from the DNS corresponding simulation.

As can be seen in Figure 3.2 the inputs π1 and π2 are the same. This is due to
the 1D hypothesis applied in the channel flow case which has been presented in
section A.2. It can be noted also in Figure 3.3, that the inputs differ significantly
between the DNS and RANS cases. This phenomenon is not due to an error in the
calculation of the inputs, but to the fact that Boussinesq’s hypothesis was applied
in the RANS case since the k − ϵ turbulence model was applied, which leads to
a totally different Reynolds stress tensor in the two cases. This behavior can be
explained in section A.1 and will be the reason why a principal component analysis
was done on the input space (subsection 3.4.3) and a feature importance analysis
(section 6.3) was performed in both cases (DNS and RANS).
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Figure 3.2: DNS and RANS inputs (π1, π2, π4, R, π7) comparison.

Figure 3.3: DNS and RANS inputs (π3, π5, π7) comparison.
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Backward Facing Step

The backward-facing step (BFS) is one of the simplest upgrades to the channel
geometry. The DNS simulation for this test case was made by Oder et al. in [25]
and the sketch of the geometry can be seen in Figure 3.4.

Figure 3.4: A representation of the BFS domain. The cyan part is the wall and
the red one is the heater [25].

In the dimensionless unit the inflow is 12×1.6×3.6 and the outflow is 22×3.6×3.6.
Considering a length unit h = 25 mm the inflow has dimensions of 40 mm× 90 mm
and the outflow of 90 mm× 90 mm.

The inverse viscosity, marked with Reb is calculated from the mass flow rate as:

Reb = ṁ

LzLyµ
h (3.2)

where ṁ is the mass flow rate thought the domain, Lz and Ly are the dimensional
width and height of the inflow and µ is the dynamic viscosity. The viscosity in this
case is constant and does not depend on the temperature. The inverse viscosity
Reb is connected to the Reynolds number based on the hydraulic diameter of the
inflow and the bulk velocity as shown in Equation 3.3.

Re = 2LyLz

h(Ly + Lz)Reb (3.3)

In the simulation conducted the inverse viscosity was equal to Reb = 3200 and the
Prandtl number was Pr = 0.005 that corresponds to the sodium Prandtl number
and Pr = 0.1 which corresponds to the upper limit of Prandtl numbers of liquid
metals.

In Figure 3.5 are represented the inputs for x = 2.
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Figure 3.5: Backward facing step inputs representation at x = 2.

It can be seen in Figure 3.5 that, π5 and π6 are very different from the DNS and
the RANS cases. This is caused by Boussinesq’s hypothesis applied in the k − ϵ
momentum turbulence model demonstrated in Appendix A.

3.2 Input space visualisation
It is easy to observe that since the input features are 10, a 10-dimensional space will
be created and more specifically, a 10 dimensions hypercube. Taking a closer look
at the formulation of the inputs from Table 2.2, it can be seen that, for example, π1
and π2 are mostly related to the momentum field (U, k, ϵ are in the formulation),
π3 and π5 are a function of the anisotropic part of the Reynolds stress tensor
and, π7 has the temperature quantity inside. It should be noted that the linear
relationship between u′θ′ and ∇T , which is at the basis of the simple gradient
diffusion hypothesis, will be altered since the gradient of the temperature is now a
neural network input.

It turns out to be of fundamental importance to observe the space in which the
inputs lie in order to observe first how this n-dimensional space is populated and
secondly to understand if there are dimensions that collapse into vertices of this
10-dimensional hypercube.
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To recap, each input of the neural network consists of 10 dimensions (π1, π2, π3,
..., Pr). Therefore, only one scalar value for a single computational point will be
obtained for each dimension.

A visualization of this kind is impossible to obtain with a simple plot since it
would be limited only to the three dimensions so a parallel plot was made in order
to see all the dimensions. This kind of plot is represented in Figure 3.6. Each
individual line of the parallel plot is a computational point that has a different
value for each input dimension and is connected to all the dimensions to show their
numerical value.

A representation of the input space has been made in Figure 3.6 for the channel
flow input in order to compare DNS (red line) and RANS (green line) inputs.

Figure 3.6: Parallel plot for 50 random samples for each channel flow simulation.
Red lines are the DNS inputs and green lines are the RANS inputs.

From Figure 3.6 it can be noted that:

• π1 and π2 assume the same values for each samples. This is a particular
behavior of the channel flow since is a 1D simulation and demonstrated in
section A.2;

• π3 is more dispersed with RANS inputs than DNS ones,

• π5 is collapsing into a single point for both DNS and RANS inputs;

• π6 is always zero for the RANS inputs, on the contrary, is highly dispersed for
the DNS case (Figure 3.7);
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• Prvv is always a certain value since all the samples come from a constant
Prandtl number;

• The ratio R is strictly connected to the Prandtl number. For every Prandtl
number exists a related range for R.

A dispersion analysis turns out to be very useful to see how datasets inputs are
dispersed into the 10-dimensional hypercube.

3.3 Dispersion Analysis
This analysis was made in order to see if some dimensions collapse to a single point.
In this analysis, the dispersion index was used. This index can be computed as
follows:

Dispersion index = σ2

µ
(3.4)

where σ2 is the variance and µ is the mean of the dataset.
The dispersion index or coefficient of dispersion is a normalized measure of the

dispersion of a probability function. It’s a powerful indicator that quantifies the
clustering or dispersion of a set of observed occurrences relative to a standard
statistical pattern.

The dispersion index chart is shown in Figure 3.7.

Figure 3.7: Dispersion index (computed in Equation 3.4) for the channel flow
inputs.
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From Figure 3.7 what can be observed is that:

• π1 and π2 are more dispersed in the DNS dataset and they have the same
value due to the 1D approximation (section A.2);

• π3 is more dispersed in the RANS dataset, this behavior can also be seen in
Figure 3.6;

• π5 and π6 for the RANS dataset are collapsing into a single point for (sec-
tion A.1);

• π6 in the DNS dataset has a dispersion index D ≈ 1 which means that it has
similar variance and mean value (Poisson distribution);

• For the remaining inputs the dispersion is not zero which means that the
dimension is not collapsing to a single point.

A statistical analysis of all the dimensions was made to analyze the statistical
indexes. This analysis can be seen in Figure 3.8.

Figure 3.8: Statistical indexes for the channel flow test case in the DNS and
RANS dataset.

As can be seen in Figure 3.8, π5 has a strong skewness and Kurtosis, leading to
the assumption that this type of distribution is not a normal distribution. In
addition, a skewed dataset means that the distribution of data is not balanced
or symmetrical. This fact can cause problems in the training phase of the model
since the model is also sensitive to data distribution. Let’s imagine a dataset
with a skewed distribution toward a value, the model, in this case, may tend
to overemphasize the predicted value toward the skewed data. High oscillations
around the mean are observed for π1 and π2 since they have the largest value of
variance.

A principal Component Analysis (PCA) on the dataset was performed in order
to, first interpret the two datasets and after to reduce their dimensionality.
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3.4 Principal Component Analysis (PCA)
This section firstly describes the methodology used to carry out a Principal Compo-
nent Analysis (PCA) and secondly describes how it was applied to the mixed dataset
(DNS, RANS) to observe whether correlations were created between features and
to reduce their dimensionality.

3.4.1 Introduction
Existing datasets have more and more features. The interpretation of these datasets
requires methods that are able to reduce their dimensionality while preserving
most of their information. Therefore many techniques have been developed to
accomplish this problem and Principal Component Analysis (PCA) is one of the
oldest and most widely used. The idea is simple: reduce the dimensionality of the
dataset while preserving the variability as much as possible [26].

Preserving as much variability means finding variables, which are linear functions
of features in the original dataset that maximize the variance and are uncorrelated
with each other. Finding these variables leads us to solve an eigenvalues and
eigenvectors problem [26].

Pearson K. (1901) [27] and Hotelling H. (1933) in [28] are the first in the
literature who talk about PCA. In more recent times, entire books have also been
written about many possible variants developed of the algorithm [29, 30].

In subsection 3.4.2 it can be seen the formal definition of the PCA which can
be achieved as the solution to the eigenproblem or, alternatively, from the Singular
Value Decomposition (SVD) of the data matrix.

3.4.2 Methodology
The data matrix consists of n × p entries where n is the number of samples/en-
tities/individuals and p is the number of features/variables (e.i. πi groups in our
case). This data matrix can be called X, and it is thus necessary to seek a linear
combination between the column of the matrix X that accomplishes the maximum
variance.

X =


x11 x12 · · · x1p

x11 x12 · · · x1p
... ... . . . ...

xn1 xn2 · · · xnp


This linear combination can be written in Equation 3.5 following [26]:

Xa =
pØ

j=1
= ajxj (3.5)
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where a is a vector of constants a1, a2 . . . , ap. In this case, the variance of any linear
combination is given by:

var (Xa) = a′Ka (3.6)

where K is the sample covariance matrix associated with the dataset and ’ denotes
transpose. The aim is to obtain a p-dimensional vector a that maximizes a’Ka with
the constrain that a’a=1 for the reason that the problem should be well-defined
[26].

The problem is equivalent to maximizing:

a’Ka− λ(a’a− 1) (3.7)

where λ is the Lagrange multiplier. To maximize Equation 3.7 a differentiation
with respect to a and the equalization with the null vector should be done:

Ka− λa = 0 ⇐⇒ Ka = λa (3.8)

As a consequence of Equation 3.8 for the definition 1: a must be a unit-norm
eigenvector, λ will be the eigenvalue of the covariance matrix K. From Equation 3.6
and 3.8 can be obtained what follows:

var (Xa) = a′Ka = λa′a = λ

It’s clear that it is interested in the highest eigenvalue (λ1) and the corresponding
eigenvector (a1) to maximize the variance.

A real symmetric matrix p × p, such as K, has exactly p real eigenvalues
λk(k = 1, . . . , p). The corresponding eigenvectors are established to make an
orthonormal set of vectors. In this case, it is obtained a set of eigenvectors with a
maximum of p linear combinations Xa = qp

j=1 ajkxj that maximize the variance
with the constrain to be uncorrelated with the previous linear combinations [26].

The uncorrelation feature can be explained since the eigenvectors are made
with an orthonormal set e.g. a′

kak′ = 1 if k = k′ and zero otherwise. Writing the
covariance for the two possible linear combinations:

cov (Xak, Xak′) = a′
k′Kak = λka′

k′ak = 0 if k′ /= k (3.9)

the uncorrelation between two different linear combinations is demonstrated.
Xak combinations are the so called principal components of the dataset. The

elements of ak vector are called in the common terminology PC loadings and the
elements of the linear combination Xak are called PC scores.

1Eigenvectors (vi) of the matrix A are specified as Avi = λi vi with λi the eigenvalues
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PCA is a dimensionality reduction method since an original set of variables p
can be replaced by q derived optimized variables. For example, if one wants to
represent the dataset in a more "understandable" way q = 2 or q = 3 is preferred
since can be easily plotted. In order to understand better how many dimensions
can be reduced without losing too much variance a parameter can be defined to
measure the quality of a given j-principal component as follows:

πj = λjqp
j=1 λj

= λj

{K}
(3.10)

where {K} is the trace of the covariance matrix which is the measure of the total
variance. The fact that the variance can be summed allows talking about the
proportion of total variance explained by a set of PC components. A common
cut-off is a threshold of 70% of the total variance. It means that the first q PCs
components should be found to accomplish together this value.

3.4.3 PCA algorithm in the Channel Flow Dataset

The PCA algorithm described above in subsection 3.4.2 was applied to the channel
flow (1D flow) in the mixed dataset with DNS and RANS data. This mixed dataset
can be visualized in Figure 3.6 in all of its dimensions, and the goal is to try to
reduce its dimensionality from 10 dimensions to a size that can represent at least
70% of the variance.

Mixed Database Size for 1D channel flow

17 DNS simulations × 1000 computational points +
17 RANS simulations × 1000 computational points =

34 TOTAL simulations × 1000 computational points

Table 3.2: The table shows the size of the channel flow 1D database. It is clear
that the size of the database is composed of 34 000 computational points coming
from the 17 DNS and 17 RANS simulations with specific Reynolds and Prandtl
numbers according to Table 3.1.

From Table 3.2 is evident that the computational points for each simulation are
1000, resulting in 34 000 points with all the 34 simulations.
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34000 34000

10 3

PCAX X̃

Figure 3.9: Input dimensional reduction from 10 dimensions to 3

Spatial reduction, in this case, can be performed with the following method:

1. Standardization of the dataset to remove the mean and to scale to unit variance.
The formula applied is X ′ = X−µ

σ
where X ′ is the scaled dataset, X is the

old dataset, µ is the mean and σ is the standard deviation of the dataset.
Standardization is a common technique for many machine learning estimators:
they can behave badly if the individual features don’t look like a normal
distribution. In this case was applied the StandarScaler function from scikit
learn;

2. Computing the covariance matrix of the dataset;

3. Computing the eigenvectors and eigenvalues;

4. Choosing the q new dimensions that one want to keep, and creating the
transformation matrix;

5. Transform the original dataset into the new one with reduced dimensions.

The steps from 2 to 5 are done in the PCA algorithm in the scikit learn package.
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Figure 3.10: Variance explained by each component of the PCA algorithm. In
the bar plot, the variance explained by each new dimension of the decomposition
can be observed. The dotted blue line shows the cumulative sum of the variance
explained.

In Figure 3.10 is shown the variance explained for each component. It’s clear that
if only 3 components are chosen (PC1, PC2, PC3) only the 77.5% of the total
variance can be explained, according to Equation 3.10. 77.5% of the total variance
is a good value, allowing it to represent the new dataset in a more understandable
way. The first three components were chosen to represent the reduced datasets and
in Figure 3.11 it is represented how each one of these new component explains the
variance of every single feature.
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Figure 3.11: Explained variance for each principal component for each feature.
On the top PC1 explains most of the inputs related to the momentum part, on the
bottom left PC2 that explains most all the features related to the thermal part,
and on the bottom right PC3 explains mostly all the features related to the closure
term (the one that differs from DNS to the RANS datasets).

PC1 PC2 PC3
π1 = 45% Pr = 55% π5 = 69%
π2 = 45% R = 47% π3 = 44%
π4 = 42% π7 = 33% π6 = 27%
π6 = 37% ...<30% ...<25%
π7 = 36% ...<30% ...<25%
...<33% ...<30% ...<25%

Table 3.3: Features variance explained by each principal component.

Table 3.3 represent what was previously observed in Figure 3.11 in a tabular way.
From Figure 3.11 and Table 3.3 can be stated what follows:

1. Only three components are able to explain the 77.5% of the total variance
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of the dataset which is a good number to enhance the interpretability and
the visualization. This also means that the original set of input features was
redundant;

2. The first Principal Component (PC1), according to Table 2.2, explains most
of the features related to the momentum part such as i.e. U, k, ϵ and the
mean strain rate;

3. The second Principal Component (PC2), according to Table 2.2, explains most
of the features related to the thermal part such as i.e. Pr, R, π7;

4. The third Principal Component (PC3), as seen in Table 2.2, explains most of
the features that differ from the DNS and the RANS frameworks i.e. π3, π5,
which are functions of the anisotropic part of the Reynolds stress tensor.

A visualization of the complete dataset can be made for the channel flow test case
with the new base obtained from the PCA analysis, which is shown in Figure 3.12

Figure 3.12: Representation of the full channel flow database (Table 3.2) in
the PCs axes. Can be stated clearly that the two databases differ mostly in the
PC1 axes instead of the PC2. This behavior is due to the fact that the RANS
thermal part (the one mostly explained by PC2) is the same in the DNS and RANS
framework as told in section 3.1.
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In Figure 3.12 is shown a representation of PC1 and PC2 of the full database, the
one mentioned in Table 3.2. As can be seen, the points computed with the DNS
database differ a lot in the PC1 axis instead of the PC2 axis. This is due to the
fact that PC2 is mostly related to the thermal features and these features are the
same in the DNS and RANS framework as told in section 3.1 for the construction
of the database.

In order to enhance the interpretability of the explained components, a plot
with only one single point of each simulation (34 in total) has been made which
relates the first and the third principal components. A representation of this chart
was made in Figure 3.13, where it’s easy to observe a broad division from DNS
and RANS computed inputs. This division is made by π3 and π5 features that are
explained by the PC3 component. These two features are the ones that, as written
before, are very different from the DNS and the RANS database, in addition, they
are the ones that can allow the network to detect what kind of momentum model
has been applied and improve its compatibility with a thermal model. Looking
at it in another way; it is like having a classifier inside of the network that knows
exactly, just looking at π3 and π5, in which starting conditions it is.

Figure 3.13: Representation of just one point for each channel flow simulation
(34 in total) for the first and the third principal components. A huge division can
be observed since PC3 is mostly related to π5 and π3.
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3.5 Input Analysis conclusion
In this chapter, the inputs from DNS and RANS simulations were computed,
analyzed, and compared. In section 3.1 it was observed that some inputs changed
a lot between DNS and RANS datasets. In particular, these inputs were π3 and π5
and π6, as it can be noted in Figure 3.6.

After visualizing the 10-dimensional space in which the inputs lie, a PCA analysis
was performed in order to try to reduce the dimensions of the input for better
interpretability of the input space.

By observing the PCA analysis, the following can be determined:

• With only 3 components (PC1, PC2, PC3) can be explained the 77.5% of the
total variance. This means that performing a training of this model with a
reduced order of inputs, 22.5% of the variance of the dataset will be lost;

• The new principal components were able to "cluster" the old ones since it
was observed that the first principal component is more related to all the
momentum inputs (depending mostly on k, ϵ); the second principal component
is mostly related to the thermal part (Pr, R, π7) and the third component is
the one that is composed by all the therm that differs a lot from the DNS and
the RANS framework;

• It is due to the third component that one can state to be able to train a model
that can perform well with both inputs

Now that the input space has been observed, it is necessary to proceed to train
the model. To do this, the diversity of the two datasets studied above must be
taken into account. In addition, it must be also considered how to evaluate the
loss function previously written in Equation 2.26 in the best way.
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Chapter 4

Multi-objective optimization

Multi-objective optimization is a well-known technique for dealing with complex
optimization problems involving conflicting variables. In real applications, some-
times, it is not possible to optimize a single target without others being affected.
That is why the multi-object optimization technique has become widely used. An
excellent technique to visualize this trade-off between two or multiple possible
objectives is the Pareto front. The Pareto front, therefore, can be seen as a map in
which all possible solutions are depicted that can no longer optimize one objective
without sacrificing the performance of the others. The Pareto Front thus manages
to provide an intuitive and clear way to help the decision-maker choose the optimal
way.

This chapter focuses on the application of multi-objective optimization to the
redesign of the network and especially the loss function previously used and shown
in Equation 2.26. In particular, the focus will go firstly on the formulation of the
loss function and secondly on its minimization with the two conflicting objects
(DNS and RANS inputs).

Neural Network
DNS

RANS L ?

Figure 4.1: The above figure shows the problem of the mixed inputs computing
the loss function (L) that will be faced in section 4.1.
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4.1 Trade-Offs and Considerations in Loss Func-
tion Design

Since the goal of the neural network is to manage input data of different levels of
accuracy, the loss function should be designed to account for the multi-objective
optimization of both DNS and RANS inputs. To achieve this, a multi-objective loss
function is proposed which is based on multiple terms. Recalling the loss function
formulation of Equation 2.26 and generalizing to a generic mini-batch (b):

Lb = 1
N

 NØ
i=1

3Ø
j=1

(q̂i,j − qi,j)2

------
b

+ λ

N

 NØ
i=1

3Ø
j,k=1

-----∂q̂i,j

∂xk

− ∂qi,j

∂xk

-----∆xk

------
b

(4.1)

In agreement with what was said in section 3.1 the database is constituted by DNS
and RANS inputs both 1D (from the channel flow simulation) and 2D (from the
backward facing step simulation). The loss function can be written in the following
way:

L = L1DNS + L2DNSü ûú ý
LDNS

+α

L1RANS + L2RANSü ûú ý
LRANS

 (4.2)

where α is a hyperparameter that should be tuned and represent the weight of the
DNS and RANS losses. In fact, if α is very small the optimizer will minimize only
the DNS losses and, on the contrary, if α is very high, only the RANS losses would
be minimized.

The goal is to obtain the best α value that minimizes both DNS and RANS losses.
To achieve this, many trainings must be carried out with different α values. This
operation will be computationally intensive since the network should be trained
with 7 different values for α and, at least 30 times for statistical purposes. For this
reason, the network was trained through the graphics card (GPU), reducing the
computational time by more than six times as seen in Table 4.1.

Neural Network
DNS (1D + 2D)

RANS (1D + 2D) L = LDNS + α LRANS

Figure 4.2: In this figure a schematic view of the training process can be seen and
how the new loss function is being computed. This picture will be more completed
and further recalled.
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4.2 GPU acceleration in Machine Learning
The more the complexity and size of the network grow, the training can become
more and more prolonged and intense. To address this problem, graphics cards
(GPUs) emerged, which enabled faster trainings and better energy efficiency for
them.

Firstly is necessary to know what is a CPU and how it works. The CPU or
central processing unit is the primary processing component of a computer. The
CPU is a key element in the computer architecture since is responsible to execute
instructions that allow its working. The classic job of the CPU is to receive data
from the computer’s RAM memory, process them with logical and/or arithmetic
operations, and finally save the results back into memory. The CPU is classified as
the "brain" of the computer since is responsible for most of the computer’s tasks.
Traditionally, CPUs were single-core but nowadays they are multi-core with, in
general, more than 2 cores and less than 32. This multicore architecture can allow
performing tasks in a parallel way which will be a key element in the neural network
training.

The GPU or graphics processing unit is a computer processor that is designed to
work with complex graphics calculations. The GPU is a high-performance processor
that is able to execute multiple calculations in parallel, making this well-suited to
accelerate tasks such as neural network training.

The reason why GPUs are more used in machine learning is due to the memory
bandwidth. First of all, CPUs are latency-optimized and GPUs are bandwidth
optimized they can be visualized as a CPU being a fast racing car and GPU as
a huge truck. They both have to transfer packages between points A and B, the
CPU (racing car) will transport fewer packages but in a very fast way, and the
GPU (the truck) will carry a higher number of packages but very slowly. However,
the CPU needs to go back and forth many times to do the same job as the GPU.
In order words, CPUs are really good to fetch a small amount of memory in a fast
way (i.e. doing 2× 3× 6 ) and GPUs are really good to fetch a large amount of
memory (i.e. matrix multiplication like A×B ×C)

With CPU A
2X−−−−−→ B

With GPU A
100X−−−−−→ B

It’s clear that GPUs carry more data at the same time but the problem still remains
if the transport is too slow due to the fact that the "truck" will need to come back
every time. To fix this problem "thread parallelism" can be used. It means using a
fleet of "trucks" that can carry a lot of memory that leaves at different times. In
this case, one has to wait a little bit only for the first truck. Thread parallelism
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can in this way hide the high latency of the GPU and at the same time allows it to
have high bandwidth.

Is then evident that in the machine learning framework, big matrix multiplica-
tions are to be faced, proceeding with GPU instead of CPU will be faster and this
has been proved on the following charts made varying the neural network neurons
number.

Figure 4.3: Computational time of 10 iterations (epochs) with a different number
of layers and neurons each hidden layer with a CPU and GPU architecture.

Figure 4.4: GPU improvement time with the number of layers and neurons. It’s
clear from this figure that with the bigger architecture, the computational time
can be boosted of 25×.

51



4.3. PARETO FRONT

In Figure 4.3 and 4.4 can be seen clearly that for larger networks the training with
the GPU can be 25 times faster than the CPU. With a low number of neurons,
the computational time of the CPU and GPU are mainly the same. To create this
chart the GPU used was the NVIDIA 3090 TI and the CPU used had 16 cores.

The previous chart was made with a simple test case in order to compare
the improvement made with the GPU instead the CPU. Table 4.1 will show the
improvement that was obtained in the network architecture of Figure 2.3.

GPU vs CPU performances in the network

Architecture Single Pareto Front
Type Training Time Training Time

CPU 32 Threads 253 min [≈ 4.23h] ≈ 50 days
NVIDIA RTX 3090 Ti 40 min [≈ 0.66h] ≈ 8 days

Table 4.1: Training time for the network in the two different architecture structures
for a single training and for the Pareto front that is composed of 280 total trainings

The speed up in the training phase has been critically important for tuning the α
parameter through the Pareto front. This made it possible to conduct many more
trainings and enhance the statistical analysis.

4.3 Pareto Front
In this section, the discussion covered in section 4.1 will be continued. The main
goal of this analysis is to perform a multi-objective optimization to get the best
choice on the α parameter.

Firstly a vector with 7 values of α was created. This vector is the following:

α = [0.001, 0.01, 0.1, 1, 10, 100, 1000] (4.3)

initialized in this way to explore possible combinations of the α weight of Equa-
tion 4.2. The procedure to obtain the Pareto front shown in Appendix B can be
summarized as:

1. Select αk in Equation 4.3;

2. Compute the four forward pass Y t
i =M(Xi,W t) as shown in Figure 4.5;

3. Evaluate the loss function according to Equation 4.2 (Lt);
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4. Change the weights and the biases W t+1 of the network in order to minimize
the loss function Lt

5. Repeat steps 2-4 for each epoch and save Lt
DNS and Lt

RANS

6. Take the mean of the last 400 values of the DNS and RANS losses for each α:
LDNS,k and LRANS,k for each α and create the Pareto front seen in Figure 4.6
(left);

7. Repeat steps 1-6 for 30 times for statistical purposes and computes the centroid
of the points plotted in step 6. The results can be seen in Figure 4.6 (right).

The training procedure (2-4) is composed as described in subsection 2.2.2 with an
ADAM optimizer, with a constant learning rate of 5 × 10−4 and a weight decay of
1 × 10−5 for 30 epochs and a batch size of 400.

DNS 1D

DNS 2D

RANS 1D

RANS 2D

L = LDNS + αk LRANS

LDNS

LRANS

Wi

Figure 4.5: In this Figure is represented a schematic view of the training process.
For every αk selected from Equation 4.3, four forward passes and the loss function
L have been computed. The value of LDNS and LRANS are computed in accordance
with Figure 2.4 and Equation 2.26 for each α. Results in Figure 4.6.
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Figure 4.6: Pareto front optimization. On the left are plotted all the values
LDNS,k and LRANS,k for each value of αk represent by a colour. For every αk, for
statistical purposes, a cloud of points is computed as can be seen. On the right,
the centroid through the 30 statistical training for each αk has been computed.
The red dot on the right figure is the closest point to the origin.

In a Pareto front optimization, according to [31], three sets of points can be defined:

• The Utopia point which is the location in the Pareto front that represents the
lower bound among all possible objectives taken individually. This point can
also be referred to a non-existent solution. In this case, the utopia point is
the origin of the axis since is the minimum for both losses;

• The Nadir point which is the location in the Pareto front that represents the
upper bound among all possible objectives taken individually. In this case, is
the point in the space composed by [LRANS; LDNS] with components [MAX
(LRANS); MAX(LDNS)];

• The Optimal point which is the location in the Pareto front that is the trade-off
between the 2 objective variables. It can be mathematically expressed as
the nearest feasible point to the utopia one. In Figure 4.6 is approximately
[0.17; 0.15]
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In Figure 4.6 is shown the result of the Pareto front optimization. As can be
seen the two variables LDNS and LRANS are conflicting, when one decreases the
other one increases. The α optimal point was computed by interpolating along the
line and finding the point that is closest to the utopia point.

This type of analysis showed that the best value for α is equal to one, which
means that an equal weight to the DNS and the RANS part should be done. The
network used for future analysis will be the one with α = 1.

In Figure 4.7 is represented the α value interpolation. It’s clear that the closest
point to the utopia point is the one shown with the red rhombus. The red circle
shows this distance. In Figure 4.7 can be stated that for a vast range of α the
distance from the utopia point doesn’t change a lot. This behavior is due to the
fact that the Pareto front obtained is sharp.

Figure 4.7: The figure shows another visualization of the Pareto front, with the
α interpolation inside. This plot shows very clearly, with the red circle, that the
optimal value for α is equal to 1 since it minimizes the distance from the utopia
point.

Figure 4.8 shows the DNS and RANS values for the loss function varying α. In
this figure can be seen clearly that by increasing the value for α the RANS losses
decrease and the DNS ones have an opposite trend.
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Figure 4.8: The figure on the left shows the loss trend computed with DNS inputs,
the dotted red line is the move mean. The figure on the right shows the RANS
losses with the increasing α value.

4.4 Pareto Front - No Thermal Part

Among the inputs introduced in Table 2.2, π7 is the most critical one since it alters
the linear dependency between the heat flux and the temperature gradient and
makes the model non-linear with respect to the temperature. Hence, a new Pareto
front analysis was carried out to understand the influence of this parameter on the
results.

The training procedure is the same as section 4.3 performing 32 trainings for
each α. Considering a new vector for α composed by:

α = [0.05, 0.25, 0.5, 1, 2.5, 5, 50] (4.4)

the total number of trainings performed was 224.
This new optimization was performed by removing the parameter π7. The

definition of π7 according to Table 2.2 is the following:

π7 =
||∇θ||√

kθ

k1.5

ϵ

This has been done by placing the π7 input at zero because it is the only parameter
that contains ∇T . By looking at how the Pareto changes it is possible to evaluate
the importance of this parameter on the DNS and RANS losses.
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Figure 4.9: On the left-hand side is represented the mean of the last 400 DNS and
RANS losses values. On the right is shown the computed centroid of the previous
values. It can be seen also that the optimal point was for α = 2.5.

In the new Pareto front, shown in Figure 4.9, is evident that the new optimal
point is for an α = 2.5. As the loss function is the following:

L = LDNS + α LRANS

can be stated that if the optimal α value increased, the DNS part is more sensitive
to the thermal part. This statement can also be explained as a greater increase in
the DNS losses, with respect to the RANS ones. Hence, the network to compare
both inputs should increase the RANS losses by this α value.

The fact that the DNS inputs are more sensitive to the thermal part is something
that can be seen later in chapter 6. The main reason for this behavior is due to the
fact that all the DNS inputs are more accurate and the network will trust them
much more than the RANS one.
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Figure 4.10: In this figure the interpolation zone of the α value is shown for the
case without the thermal part. Clearly, α = 2.5 is the nearest point to the utopia
one.

4.5 Multi-objective optimization conclusions
Summarizing in this chapter the network loss function was firstly rewritten and
secondly, the right trade-off between losses with DNS and RANS input was found.
It was observed that the best α value that can minimize the losses obtained with
DNS and RANS inputs, is equal to one. This means that an equal contribution
should be attributed to both input categories. One notable result is that the
network is able to behave correctly with both inputs, this is due to the fact that
it is able to create connections to simulate a classifier and subsequently predict
the correct output by giving weight to different inputs. In the meantime, it was
also analyzed how the trainings and the Pareto front changed by removing the
parameter π7 from the inputs.

The next chapter will show the a priori validation (section 5.1) which consists
in computing the heat flux in a database not used in the training phase and the a
posteriori validation (section 5.2) which consist in the validation of the results into
the CFD solver which is OpenFoam.
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Chapter 5

Model Validation

This chapter presents and discusses the results obtained with the previous [1]
and the new network architecture with DNS and k − ϵ RANS inputs. The a
priori validation consists in computing the turbulent heat flux with inputs that are
excluded from the training set. The a posteriori validation consists of integrating
the model into a CFD solver like OpenFoam.

This chapter will be subdivided into two sections: the first one will deal with
the a priori validation of the new model obtained in section 4.3 with α = 1, and
the second one will deal with the a posteriori validation again with the new model.

Recalling the formulation of the loss function as follows:

L = LDNS + α LRANS

it is clear that the previous model that was trained with only DNS data corresponds
to say α = 0 and the new model that was trained with both DNS and RANS data
corresponds to α = 1.

5.1 A Priori Validation (α = 1) model
To carry out the a priori validation, some simulations for the channel flow 1D,
and some random points in the backward facing step 2D simulation were excluded
from the training set to test the model’s accuracy with new data. It’s important to
point out that for this validation the input set (Table 2.2) is composed as follows:

• DNS inputs: both the momentum (U, k, ϵ and νt) and thermal (θ, kθ and ϵθ)
came from a high fidelity (DNS) simulation;

• RANS inputs: the momentum part (U, k, ϵ and νt) came from a RANS simu-
lation with the k − ϵ turbulence model and the thermal variables came from
the corresponding DNS simulation with the same flow conditions (Re, Pr).
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This section will be subdivided into 4 subsections: 2 for the validation of the
channel flow with DNS and RANS inputs and 2 for the validation of the backward
facing step with DNS and RANS inputs. It’s important to point out that good
accuracy in all cases must be achieved since the model was trained with α = 1.

5.1.1 Channel Flow 1D with DNS inputs
In general, in a DNS simulation that aims to solve the three fluid dynamics
equations (continuity, momentum, and thermal) it would not make sense to include
a turbulence model to avoid one of the three equations. This validation, but also
the training, in the DNS case study was therefore carried out in order to couple the
neural network (closure for the thermal part) to a very precise momentum closure
model such as the EBRSM (Elliptic-Blending Reynolds-Stress Model)

The results achieved in this case are shown in Figure 5.1. Where for three
different Reynolds numbers and two different Prandtl numbers the turbulent heat
fluxes were plotted. It’s clear that the artificial neural network is able to fit the
DNS heat flux value for both Pr = 0.01 and Pr = 0.025.

Figure 5.1: DNS inputs and α = 1 network. On the left are shown the three
Reτ numbers for Pr = 0.01 and on the right with Pr = 0.025. In both figures,
the solid line is the reference DNS heat flux, with the dotted line is represented a
simulation that was in the training set and with the dash-dotted line is represented
a simulation that was not in the training set. On the top of each figure is plotted
the stream-wise heat flux (uθ) and on the bottom the wall-normal (vθ).
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5.1.2 Backward Facing Step 2D with DNS inputs

In the backward facing step test case, random samples were taken as training inputs
and validation. The test case geometry is the same of Figure 3.4 and the validation
was made with Reb = 3200 and Pr = 0.01. The Reynolds number is computed in
Equation 3.3. Figure 5.2 shows respectively the stream-wise and the wall-normal
turbulent heat flux.

Figure 5.2: Stream-wise and wall-normal turbulent heat flux with DNS inputs
and α = 1 network in the BFS configuration with Reb = 3200 and Pr = 0.01. The
solid black line is the DNS reference heat flux. The blue dotted line is the ANN
heat flux computed with inputs that are in the training set and the red dotted line
is with inputs excluded from the training set.
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The predicted value for the stream-wise heat flux shows small inaccuracies in the
lower wall zone. This behavior is due to the limitation of the algebraic mathematical
structure of the model which is inherently local and makes it very difficult to follow
the evolution of the thermal field [1]. In particular, in this zone, the data-driven
approach overestimates the extension of the thermal separation region.

5.1.3 Channel Flow 1D with RANS inputs
In this section are shown the results achieved for the turbulent heat flux starting
from RANS inputs. The inputs were computed with a momentum model that
applies the Boussinesq hypothesis, the k− ϵ in this case. Only inputs related to the
momentum have experienced an approximation due to the momentum turbulence
model. The thermal part has not been changed. The results made with these
inputs are shown in Figure 5.3

Figure 5.3: RANS inputs and α = 1 network. On the left are shown the three
Reτ numbers for Pr = 0.01 and on the right with Pr = 0.025. In both figures,
the solid line is the reference DNS heat flux, with the dotted line is represented a
simulation that was in the training set, and with the dash-dotted line is represented
a simulation that was not in the training set. On the top of each figure is plotted
the stream-wise heat flux (uθ) and on the bottom the wall-normal (vθ).

From Figure 5.3 it’s clear that the artificial neural network predictions for the
turbulent heat flux (dotted, dashed-dotted) fit very well with the true DNS heat
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flux (solid lines). In Figure 5.4 can be seen the differences between the previous
model [1] with α = 0 and the new trained one with α = 1.

Figure 5.4: The solid black line is the true DNS turbulent heat flux, with the
green lines is represented the previous network (α = 0) behavior (solid line - DNS
inputs and dotted line - RANS inputs) and with the blue line the new network
(α = 1) behavior (solid line - DNS inputs and dotted line - RANS inputs). On the
top of each figure is plotted the stream-wise heat flux (uθ) and on the bottom the
wall-normal (vθ).

What can be seen from Figure 5.4 is that the new trained network (blue lines)
manages to be faithful to the turbulent heat flux behavior produced by the DNS
simulation (black lines) with both, DNS (solid blue lines) and k− ϵ (RANS) inputs
(dashed blue lines). In contrast to this, the prior network (green lines) behaves
very poorly in the presence of k − ϵ (RANS) input (dashed green lines) but better
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with DNS inputs (solid green lines).

5.1.4 Backward Facing Step 2D with RANS inputs
The validation with RANS inputs was made also in the backward facing step
test case. The geometry related to the backward facing step can be observed in
Figure 3.4 and the analysis was made at Reb = 3200 and Pr = 0.01.

Figure 5.5: Stream-wise and wall-normal turbulent heat flux with DNS inputs
and α = 1 network in the BFS configuration with Reb = 3200 and Pr = 0.01. The
solid black line is the DNS reference heat flux. The blue dotted line is the ANN
heat flux computed with inputs that are in the training set and the red dotted line
is with inputs excluded from the training set.

A similar behavior of Figure 5.2 is observed for the regions close to the step. In
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this case with RANS (k − ϵ) inputs, the performance is worse than with high-
fidelity inputs. In particular, the artificial neural network overestimates the thermal
separation zone more than with DNS inputs. As told before in subsection 5.1.2
this is a problem due to the mathematical formulation of the network.

5.1.5 A Priori validation conclusion
In conclusion, can be stated the following:

• A very good accuracy for the stream-wise and the wall-normal heat flux was
obtained in channel flow with both DNS and RANS inputs;

• Good results were obtained in the backward facing step with both sets of
inputs. A lower accuracy was observed in the area near the wall and the
step. This issue is due to the mathematical structure of the model which is
predominantly local and makes it very difficult to follow the evolution of the
thermal field after the step;

• The fact that the model manages to work well with both inputs proves that
the neural network constructs a kind of internal classifier that leads to different
model behaviors in presence of different inputs. Indeed, it turns out to be
important that it gives good results with both weak (k− ϵ) and more accurate
(EBRSM) momentum turbulence models;

• The fact that the results of this validation are good does not mean that the
model performs well coupled with a CFD solver. This is due to the fact that
in the a priori validation the thermal part for RANS inputs was copied from
high-fidelity simulations. Therefore, it is of paramount importance to proceed
with the a posteriori validation.

5.2 A Posteriori Validation
Having obtained good results through a priori validation, it is necessary to proceed
with the implementation and the validation of the artificial neural network directly
within a CFD solver. OpenFoam 8 has been chosen as the CFD software. A heat
flux problem, in OpenFoam 8, can be solved with the following solvers: [32]:

• buoyantBoussinesqSimpleFoam: solver steady state for buoyant and turbulent
flows in incompressible fluids;

• buoyantBoussinesqPimpleFoam: solver transient state for buoyant and turbu-
lent flows in incompressible fluids;
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• buoyantSimpleFoam: solver steady state for buoyant and turbulent flows in
compressible fluids;

• buoyantPimpleFoam: solver transient state for buoyant and turbulent flows in
compressible fluids;

Referring more specifically to the solver "buoyantSimpleFoam" it solves the steady
state Navier Stokes equations that are shown in Equation 5.1.

∇ · (ρu) = 0

∇ · (ρuu) = −∇p + ρg +∇ · (2µeffS(u))−∇
1

2
3µeff (∇ · u)

2
∇ · (ρuh) +∇ · (ρuK) = ∇ · (αeff∇h) + ρug

(5.1)

where u is the velocity field; ρ is the density field; p the static pressure; g the
gravitational acceleration; µeff is the sum of the turbulent and molecular viscosity;
S(u) is the rate of strain tensor (Equation 2.15); K = |u2|/2 is the kinetic energy; h
is the entalpy per unit mass h = e + p/ρ and e is the energy per unit mass. αeff is
the thermal diffusivity:

αeff = νt

Prt

+ k

ρCp

= αt + α (5.2)

If the Reynolds analogy is applied, Prt would be a constant value and the problem
would be closed. Due to the nature of the problem, the Reynolds analogy cannot be
applied (analyzed in subsection 2.1.2) and the closure goes directly to the turbulent
heat flux with Equation 2.16 applying an artificial neural network.

u′θ′ /= −αt
∂θ

∂xiü ûú ý
Reynolds Analogy

=⇒ u′θ′ = −M(X,W)
=D

∇θ

ü ûú ý
Neural Network

The solver has been modified firstly in order to compute the inputs, as seen in
Table 2.2, and secondly to import the neural network and run the network’s forward
pass calculating the turbulent heat flux.

The network has been trained using the PyTorch framework in Python and it
has to work in OpenFoam which is written in C++. It is therefore necessary to
find a way to allow the PyTorch network to work in OpenFoam. Implementing the
PyTorch APIs in OpenFoam was observed to be a very difficult task and therefore
the same methodology applied in the previous work [1] was followed. To enable
the PyTorch network to work in OpenFoam, the network was first converted to
a standard format for neural networks (ONNX) and then into Tensorflow. Once
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Figure 5.6: PyTorch network implementation in OpenFoam. The network is
firstly converted to ONNX (Open Neural Network Exchange) then into Tensorflow
(a machine learning library) and in the end the Tensorflow APIs implementation in
OpenFoam.

the network was saved in a format readable through the Tensorflow library the
Tensorflow APIs were implemented in OpenFoam. Figure 5.6 shows the workflow
for importing the network into OpenFoam.
To better explain the implementation process, a GitHub repository has been created.
The README file showing the detailed procedure can be found in Appendix C. A
summary of what has been done for this validation is

• The use of the OpenFoam solver "buoyantSimpleFoam";

• The network conversion from PyTorch to Tensorflow (section C.1);

• The creation of a new thermal turbulence model in OpenFoam;

• The implementation of the TensorFlow APIs in the new model (section C.3);

• The validation of the model with two different test cases: the channel flow
(subsection 5.2.1) and the Impinging Jet (subsection 5.2.2).

It is important to note that all the neural network inputs, in this case, are from a
RANS simulation with a momentum turbulence model that applies Boussinesq’s
hypothesis such as the standard k − ϵ.

5.2.1 Channel Flow a posteriori validation
The channel flow is the standard test case since it was used both for training the
neural network and also in the a priori validation.

The simulation setup is the same as the one that has been used for the generation
of the RANS inputs in section 3.1. The simulation conditions were the same as
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the DNS test case of the Kawamura datasets [23] and the OpenFoam outputs were
converted to adimensional quantities. Test case geometry was that of Figure 3.1
with the constant wall heat flux imposed. Since the equations in OpenFoam are
dimensional, the half-width of the channel was chosen as δ = 3.025 cm, the viscosity
as µ = 1.74 × 10−7 Pa s, the density as ρ = 1 kg m−3 and the heat capacity as
Cp = 1 J kg−1 K−1.
The simulation conditions are the following:

• Reτ = 640 defined in section 3.1;

• Pr = 0.025;

• The velocity initial condition is the bulk velocity vb computed reversing
Equation 5.3;

• The velocity boundary conditions are: periodic in the stream-wise direction,
empty in the span-wise direction (no equation solved in this direction), and a
no-slip boundary condition is imposed at the wall;

• The temperature boundary condition imposes a constant heat flux on the wall.
By deriving the dimensionless equation, an averaged turbulent heat flux is
added;

• The mesh is composed by 10 000 cells with 50 cells in the stream-wise direction

• Launder-Sharma k − ϵ momentum as turbulence model which is described in
subsection 2.1.1;

• Neural network model for the turbulent heat flux with α = 1 which is the
weight described in chapter 4.

According to Kawamura [23] for Reτ = 640 the bulk Reynolds number is Reb =
24 428 which is defined as follows:

Reb = 2δvb

ν
(5.3)

which lead to compute the bulk velocity vb = 7.03 cm s−1. For the temperature a
constant heat flux is imposed:

nj
∂T1

∂xj

= −Td

δ
PrReτ (5.4)

where nj is the wall normal vector, Td = 1 is imposed and T1 is modified temperature
defined as follows:

T1 = T0 − T + q

ρCpδvb

x1 = 529 K m−1
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Firstly the solver worked with the Launder-Sharma k− ϵ for the momentum part
coupled with the Reynolds analogy for the thermal closure in order to reach the
convergence in the momentum field. The results for U+, k+ and ϵ+ are represented
in Figure 5.7. The temperature plot is shown in Figure 5.8.

Figure 5.7: U+, k+ and ϵ+ behaviour after convergence reached with Launder-
Sharma k − ϵ and Reynolds analogy.

Figure 5.8: Temperature profile with Reynolds analogy. Can be seen clearly that
the Reynolds analogy cannot be applied with low Prandtl numbers.
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From Figure 5.7 can be stated that the velocity profile, k, and ϵ reached the
convergence. In particular, the velocity profile is very similar to the DNS value,
the turbulent kinetic energy and the turbulent dissipation rate are quite different
in the near wall region. Instead, Figure 5.8 clearly shows that the temperature
profile computed with the Reynolds analogy only matches the DNS temperature
profile if the simulation has a sufficiently high Prandtl number (Pr = 0.71). If the
Prandtl number is low, it’s clear that the two curves don’t match.

The next step was to change the turbulence model from the Reynolds analogy
to the artificial neural network model. In this case, the turbulent heat flux is
predicted with the neural network using the input of the current state, and the
subsequent updating of the parameters kθ and ϵθ after solving their equation with
the predicted turbulent heat flux. The residuals in the kθ and ϵθ equations are
plotted in Figure 5.9.

Figure 5.9: Thermal variance (kθ) and thermal dissipation rate (ϵθ) residuals
with the neural network implemented as thermal closure model.

After reaching the convergence for kθ and ϵθ, the turbulent heat flux can be plotted
to validate the neural network model. The turbulent heat flux is shown in a
Figure 5.10. The turbulent heat flux is very similar to the DNS value this means
that the model works in a good way to achieve the thermal closure for this test
case.
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Figure 5.10: On the top the stream-wise heat flux (uθ) and on the bottom the
wall-normal heat flux (vθ) for Reτ = 640 and Pr = 0.025. With the red line is
shown the reference turbulent heat flux, with the blue line the heat flux computed
with the Launder-Sharma k − ϵ momentum turbulence model and the artificial
neural network.

Figure 5.11: On the top is represented the dispersion tensor, on the bottom the
temperature gradient. It can be noted clearly that since the temperature gradient
in the center line is zero the dispersion tensor tends to be very high.
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Figure 5.12: Stream-wise heat flux (uθ) and wall-normal heat flux (vθ) for
Reτ = 640 and Pr = 0.025. With the red line is shown the reference turbulent heat
flux, with the blue dotted line the heat flux computed with the k − ϵ momentum
turbulence model and the artificial neural network with (α = 1) and with the
dotted green line with (α = 0).

Figure 5.11 shows the dispersion tensor D at the top and the temperature gra-
dient ∇T at the bottom, since the turbulent heat flux is computed according to
Equation 2.16. The cause of the singularity value for D should be sought in the
stream-wise heat flux at y/δ = 1. For example, in Figure 5.10 it is clear that at
y/δ = 1, the predicted stream-wise heat flux, is zero but the DNS reference one
is non-zero. At this point, a singularity for D should exist since the temperature
gradient is vanishing.

In Figure 5.12 is shown the comparison between the turbulent heat flux computed
with the new network (α = 1, blue line) and with the previous network (α = 0,
green line). It can be seen from the above figure that the thermal turbulence model
based on the old artificial neural network (α = 0) was not able to correctly predict
the value of the stream-wise heat flux. The behavior of the a posteriori validation
of the two artificial neural networks is very similar to the a priori validation shown
in Figure 5.4.

In conclusion, it is possible to say that the model trained in chapter 4 behaves
correctly in both a priori and a posteriori validation. It is therefore necessary to
proceed with the validation of the model in a more complex test case to evaluate
its capabilities and applicability in more common cases.
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5.2.2 Impinging Jet a Posteriori validation
The impinging jet is an important benchmark test case used in validating thermal
turbulence models that are solving the Reynolds Averaged Navier Stokes equations.
This is why it involves complex flow physics and the heat transfer mechanism.
These elements are important for many practical engineering applications. In this
thesis work, this test case turns out to be very important since it had not been
used previously in the training set.

In an impinging jet test case, a high-speed jet flow travels straight toward a solid
surface, where it impinges and spreads out with a sort of circular pattern. This
behaviour creates a stagnation point and leads to strong turbulence mixing and
heat transfer. An overview of the behaviour of the velocity field can be observed in
Figure 5.13.

Figure 5.13: The iso-velocity lines in the impinging jet test case. Can be noted
the inlet flow on the top and the impinging with the lower wall cause 2 recirculation
zones.

The impinging jet test case is widely investigated in both experimental and
numerical test cases with Pr ≈ 1 as in [33]. In addition, this test case constitutes
a canonical test case of interaction between a wall and a turbulent flow. On the
other hand, it constitutes also an efficient way to cool a surface that is widely used
in gas turbine blade cooling, electronic cooling and chemical processing. As for
the last one, an impinging jet can be used as a cooling method for nuclear reactor
components such as fuel rods or reactor vessel walls.

There are many configurations of an impinging jet. Most of them depend on
the shape of the jet (round or planar), the ratio between the width of the jet and
its diameter, and the distance between the nozzle and the impinging wall [34].

The DNS simulation used as a reference for this test case for low Prandtl number
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was carried out by M. Duponcheel and Y. Bartosiewicz in [34]. In the previous
paper, the DNS simulations were performed at Re = 4000 and Re = 5700 based on
the jet width and velocity and for Pr = 1, Pr = 0.1, and Pr = 0.01.

Figure 5.14: Impinging jet geometry with developed turbulent flow profile [34].

The geometry is represented in Figure 5.14 and it consists in two infinite parallel
flat plates where the top one is split in order to inject the flow. The distance from
the two flat plates is H and the slit dimension is B. The top and the bottom walls
are isothermal so T = Tw and ui = 0 at y = 0 and when y = H and |x| ≥ B/2 [34].
The setup is purely forced convection and the temperature is treated as a passive
scalar. The flow can be characterized by its Reynolds number computed as follows:

Re = UB

ν
(5.5)

where U is the mean jet velocity. This Reynolds number is also the bulk Reynolds
number of the auxiliary channel flow which can be also characterized by:

Reτ = uτ (B/2)
ν

(5.6)

where uτ =
ñ

τw/ρ is the friction velocity and τw is the mean shear stress. The
turbulent inlet flow is simulated in a parallel, but separate, infinite channel flow with
periodic boundary conditions as seen in subsection 5.2.1. The temperature field
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can be characterized by its Pr number. Another important value to characterize
the impinging jet is the Aspect Ratio (AR = H/B). A higher aspect ratio may be
desirable in order to be closer to a free impinging jet geometry but can be very
computationally expensive since they require a longer domain [34]. A small AR of
2 is considered for the validation.

The RANS simulations were carried out by [35] with different momentum models
(Launder-Sharma k − ϵ, k − ω SST, v2-f) and thermal closure models (Reynolds
analogy, Key’s correlation, Manservisi and the AHFM-NRG). The RANS setup
has a bottom wall length of L = 40B; the domain height is H = 2B and the
domain thickness is W = 3.14B. The inflow temperature is considered as 1 and
the temperature of the walls is 0.

Figure 5.15: Inlet velocity profile normalized with friction velocity on the left
and turbulent kinetic energy normalized with the square of the friction velocity on
the right.

The following validation was done by keeping the exact same setup of [35] but
changing the thermal closure model using the trained artificial neural network with
α = 1. Precisely as it has been done before in the channel flow, the simulation was
made firstly with the Launder-Sharma k − ϵ momentum turbulence model coupled
with the Reynolds analogy (for the thermal part) and secondly, after reaching the
convergence for the momentum part, with the artificial neural network as thermal
closure model. In Figure 5.15 are represented the inlet velocity and turbulent
kinetic energy after the momentum convergence.
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Figure 5.16: On the left are the residuals with the Reynolds analogy and on the
right the residuals with the neural network thermal model.

In Figure 5.16 are represented the residuals achieved coupling the Launder-Sharma
k − ϵ as momentum closure and the Reynolds analogy as thermal closure on the
left. Instead, on the right are shown the residuals for the thermal closure coupling
the Launder-Sharma k − ϵ that already reached the convergence and the artificial
neural network. The residuals in this last case are for kθ, ϵθ, and the temperature.
The DNS data for this test case were provided at some x/B coordinates in according
to [34]. The validation was therefore carried out at these coordinates.
The result achieved with the Launder-Sharma k−ϵ coupled with the artificial neural
network were compared with the DNS reference data and with the Manservisi
and Menghini thermal model (subsection 2.1.2) coupled with the Launder-Sharma
k − ϵ. In Figure 5.17 can be observed the wall-normal turbulent heat flux (v′θ)
and in Figure 5.18 the temperature profile. In these figures, the black lines are
the reference wall-normal heat flux or temperature, the purple lines are the ones
computed with the Launder-Sharma k − ϵ coupled with the Manservisi thermal
model and, the green lines are the ones computed with the Launder-Sharma k − ϵ
coupled with the artificial neural network.
In Figure 5.17 can be seen very clearly that the turbulent heat flux computed with
the neural network model behaves better than the Manservisi model near the slit
(x/B = 1). Away from the slit, the two models (Manservisi and the neural network)
behave more or less in the same way. The neural network still remains closer to
the DNS reference value in most coordinates.
In Figure 5.18 are represented the temperature profiles for Pr = 0.01. The
temperature close to the impingement is quite well-predicted. In the proximity
of the recirculation zone (upper wall), the temperature profile is poorly predicted.
This behavior also occurs downstream as the temperature seems over-predicted.
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This behavior is due to the momentum turbulence model (Launder-Sharma k − ϵ)
that poorly predicts the recirculation zone.

Figure 5.17: Wall normal heat flux at different x/B coordinates. The black line
shows the reference heat flux (DNS), the green line computed with the Launder-
Sharma k − ϵ coupled with the neural network, and the purple line computed with
the Launder-Sharma k − ϵ coupled with the Manservisi model.
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Figure 5.18: Temperature profiles at different x/B coordinates. The black line
shows the reference temperature (DNS), the green line the one computed with the
Launder-Sharma k − ϵ coupled with the neural network, and the purple line the
one computed with the Launder-Sharma k − ϵ coupled with the Manservisi model.
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The temperature results seen in Figure 5.18 are highly dependent on the momentum
part due to the temperature transport with the velocity. In particular, the test
case mentioned is a specific case of fluid cooling. The higher the speed, the more
cooling there is. The velocity profiles are represented in Figure 5.19 in which can
be observed that the velocity is under-predicted by the Launder-Sharma k − ϵ
model on the bottom wall. This behavior slows down the fluid cooling in resulting
a higher temperature.

Figure 5.19: Velocity profiles, on top, in which the green line is the velocity
computed with the Launder-Sharma k − ϵ momentum turbulence model and the
black line is the true DNS velocity. On the bottom, the streamlines that are colored
by the temperature show the recirculation zone.
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5.2.3 A posteriori validation conclusions
In conclusion, what was carried out in this section was to implement the neural
network in a CFD solver and visualize the results. Specifically, it was shown how
to implement the network, which equations are solved, and the results were shown
in two different geometries, one of them not in the training. The network used was
the one trained with both DNS and RANS data (α = 1) and was compared with
the previous one trained only with DNS data (α = 0). This validation made it
possible to verify that indeed, the artifice that had been made to provide a value to
the RANS thermal part in the a priori validation, did not carry an overdependence
on the latter. After this work and having analyzed the results of this validation it
can be deduced:

• Very good results regarding channel flow 1D (geometry used for training) for
Re = 640 and Pr = 0.025 values. The heat flux value remains very close to
the DNS value even using a moment closure model that leaves inaccuracies in
the Reynolds tensor and in the turbulent kinetic energy value;

• The problem of a point of singularity regarding the tensor D at the center of
the channel is observed. This problem was observed in Figure 5.11. However,
the problem also recurs in the impinging jet and can only be solved by a
different input formulation;

• Large improvements in channel flow turbulent heat flux compared with the
model trained before even with inaccurate moment closure models such as the
Launder-Sharma k − ϵ (Figure 5.12);

• The value of heat flux in the impinging jet turns out to be better if the
Launder-Sharma k − ϵ model is coupled with the neural network developed in
this thesis work, which compared then the classical Manservisi thermal model;

• The model developed always remains highly dependent on the model used for
momentum closure. Inaccuracies are observed with the temperature profile
due mainly to this.
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Chapter 6

Interpretability Analysis

One of the main problems concerning artificial intelligence is the fact that all
these algorithms are represented by a black box in the sense that it is difficult to
fully understand what is inside it. A black box algorithm allows the user to see
inputs and produce outputs but does not provide a detailed view either of the
learning process or openly share how and why the model produced that particular
conclusion. Deep learning, the technique that was used to train the model in this
thesis work, in particular, uses a large number of hidden layers that are composed
of a multiplicity of weights and biases leading to a complex network structure and
thus difficulty in understanding. The relationship between input and output is thus
obscured by this complex structure that had to be used to capture the physical
phenomenon [36].

It is difficult to define interpretability, but a definition given by Miller in [37]
is: "Interpretability is the degree to which a human can understand the cause of a
decision".

The purpose of science is to acquire knowledge. Many problems are solved with
large datasets and black-box algorithms. In this way, the model becomes the source
of knowledge as opposed to data. An interpretability analysis allows the extraction
of this knowledge from the model as well.

Interpretability analysis is therefore of paramount importance for multiple
reasons:

• Interpretability analysis makes it possible to build trustworthy and reliable
models. It allows an explanation to be provided to the user of the Machine
learning model. This helps to trust the model and justify the actions that
need to be taken;

• Identifying bias in models. Machine learning models often collect biases in
the training phase. This can lead the model to discriminate certain data that
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do not have that bias. Therefore, it turns out that this type of analysis is
essential for detecting biases;

• Compliance and regulatory requirements. Often industries such as finance
and health care are regulated and therefore need an explanation of the model
to make it more transparent;

• Improved decision-making. It is possible to identify through this analysis,
which features are the most critical and which factors have the greatest impact
on the decision.

In the case of this thesis work, the goal of this analysis is to understand how it is
possible for the model to be trained with both DNS and RANS data to perform
well although its inputs are conflicting.

6.1 Machine Learning Interpretability Methods
The interpretability methods for machine learning can be classified according to [36]
into intrinsically interpretable methods and post hoc/model-agnostic interpretation
methods. The first tends to reduce the complexity of the model, such as creating a
simplified structure, and the second applies methods to analyze the model after
the training (post hoc), such as the features permutation method.

According to [38], model-agnostic explanation systems are preferred for :

• The model flexibility: the interpretation can work with multiple machine
learning models (random forests and deep neural networks);

• The explanation flexibility: not limited by a certain form of explanations. It
can be used both a linear formula or a feature importance plot;

• The representation flexibility: the explanation of the model must be able to
use a different representation of features than the one used by the model.

Model-agnostic interpretation can be further divided into global methods, which
describe how features affect the prediction on average, and local methods which
aim to explain individual predictions. Since only local methods were applied in
this thesis work all the effort will be into explaining this typology. Commonly used
local interpretation methods are the following:

• Feature importance: this method analyzes the importance of each feature to
the final decision of the problem. Techniques such as permutation or ablation
can be used. This category also includes analysis using Shapley values, which
will be the ones primarily used in this thesis work;
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• Partial dependence plot: shows the marginal that one or multiple features have
on the model outcome. It can be useful to identify non-linear relationships
between the feature and the model output;

• Local surrogate models (LIME): explain a prediction by replacing the complex
model with a local surrogate model;

• Scoped rules (anchors): explains individual predictions on any black box model
by finding a decision rule that "anchors" at the decision rule sufficiently. The
decision rule, in this case, should be found i.e. (age>70 and sex = male).

The Shapley value analysis was chosen to perform the interpretability analysis of
the model that will be described in section 6.2 mainly because it makes it possible
to understand each feature’s impact in the model predictions. Also in section 6.2
will be made a list explaining the reasons for this choice in more detail.

6.2 Shapley Value Theory
The Shapley value algorithm is a perturbation-based approach based on a coop-
erative game theory concept which allows the contribution to the outcome to be
fairly distributed among the participants [39]. In the machine learning concept, the
Shapley Value algorithm allows the contribution of the prediction to be distributed
between all the input features. The goal of this analysis is therefore to understand
how to distribute the output of the network in such a way that inputs are rewarded
according to how much they contributed to that prediction.

According to [38] and [39] the Shapley values for the j-feature are ϕj, which
represents the contribution to the outcome, are computed as follows:

ϕj(val) =
Ø

S⊆{1,...,p}\{j}

|S|!(p− |S| − 1)!
p!ü ûú ý

Weights

(val(S ∪ {j})− val(S))ü ûú ý
Marginal Contributions Mj

(6.1)

where val() is the function that can be a neural network model with certain inputs
or a played game; S is a subset of features; p is the total number of features and j
is the single feature of which the Shapley value should be computed. The marginal
contribution is defined as:

Mj = (val(S ∪ {j})− val(S))

To understand better an easy example is formulated below. Imagine a game in
which 3 players (A, B, C) participate and which produces $100 as the outcome.
One wants to determine through Shapley values the contribution of each player to
this value. To compute these values, the game is computed with all the possible
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permutations of players (A, B, C, A+B, B+C, A+C and C+B) which produced
different outcomes listed in Figure 6.1.

No Players = $ 0

A = $ 30

A+B = $ 90

C = $ 60B = $ 50

C+A = $ 30B+C = $ 70

A+B+C = $ 100

3 con.

6 con.

3 con.

Figure 6.1: Shapley value example. It can be seen all the possible inputs permu-
tation and the game outcome with that inputs. The lines represent the possible
connection between the inputs in order to compute the marginal contribution.

The marginal contribution for the feature A can be computed by subtracting the
game outcome with a set that contains A and a set without, as can be seen in
Equation 6.2.

MA1 = val(A)− val(0) = 30− 0 = 30
MA2 = val(A + B)− val(B) = 90− 50 = 40
MA3 = val(A + C)− val(C) = 30− 60 = −30
MA4 = val(A + B + C)− val(B + C) = 100− 70 = 30

(6.2)

The four marginal contributions for A should be summed according to the weights.
The weights are proportional to the number of connections. The number of
connections can be computed in Figure 6.1. In conclusion, the Shapley value for
the feature A is:

ϕA = 1
330 + 1

6(40− 30) + 1
330 = $21.6 (6.3)

the same can be done for B and C:

ϕB = 1
350 + 1

6(0 + 60) + 1
370 = $51.6 (6.4)

ϕC = 1
360 + 1

6(0 + 20) + 1
310 = $26.6 (6.5)

One of the most important properties of the Shapley value is the efficiency for what
the sum of the Shapley value for all the features should be the model output with
all the features inside. In the previous example can be observed that:

ϕA + ϕB + ϕC = val(A+B+C) = $100
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6.2. SHAPLEY VALUE THEORY

Three other properties can be observed: the symmetry which says that if two
features contribute equally in all possible coalitions their Shapley value should be
the same; the dummy which says that if the Shapley value of a feature is zero it
means that adding or subtracting this feature to a coalition doesn’t change the
outcome, and the last one the additivity which means that Shapley value can be
summed.

The efficiency property can be summarized as starting from a point where no
players are playing, in the example is 0, it can arrive at the situation where every
player is in the game just summing the contributions of every single player. What
was previously stated can be seen in Figure 6.2.

ϕB

ϕC

ϕA

Figure 6.2: Shapley value efficiency properties. Starting from the condition that
no player is in the game with outcome 0, the condition that all players are in the
game with outcome 100 is reached by simply summing the Shapley values obtained.

What has been formulated for a cooperative game can also be said for a machine
learning model in which the players turn out to be the features and the game
turns out to be the model. Moving from the collaborative game theory to the
neural network framework, the main problem is removing a feature in the machine
learning model. In fact, feature removal is not possible in a mathematical function.
It is not possible to re-train the network since the new re-trained model will be
not the model to be explained. What is done to overcome this problem is instead
of deleting a value is to replace the value to be deleted with a background value.
This value can be zero, the mean, or the median of the dataset.

Another major problem of the Shapley value algorithm is the computational
cost which requires 2p evaluation of the network where p is the number of features.
There are some algorithms that perform sampling to avoid this problem. Slundberg
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[40] implemented this in the most famous Python library "SHAP"1 and Castro’
methods [41] has been implemented in the Captum2 Python library. It is clear that
if sampling is applied the efficiency property will not be completely respected.

6.3 Shapley Values Results
The Shapley algorithm explained in section 6.2 was applied to the neural network
trained for this thesis work in particular the α = 1 network of chapter 4. This
network it is observed in chapter 5 to produce some very good results with both
DNS and RANS inputs Figure 5.4. The interpretability algorithm was used to
understand how the network manages to perform well with such different inputs.
Specifically, an effort was made to look at how much reliance is placed on features
(DNS and RANS). Furthermore, it was observed which features represent more
importance by varying the Prandtl number in the channel flow simulation.

To recap the structure of the dataset considering only the 1D channel flow is
highlighted in Table 3.2 in which is shown that the number of simulations is 34 (17
DNS + 17 RANS) and the computational points for each of them are 1000. This
led to have 34 000 computational points in the datasets. The 34 simulations differ
in the Reτ and Pr number. By deciding the Reτ and the Pr, 1000 computational
points are selected for the DNS case and 1000 for the RANS one.

1000 1000

10

Given Reτ and Pr

DNS

10

RANS

Figure 6.3: Dataset size for the Shapley Value analysis. In particular given a Reτ

and a Pr there are 1000 computational points for each simulation.

1See: https://github.com/slundberg/shap
2See: https://github.com/pytorch/captum
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The analysis was done by grouping the features since firstly the total number of
features (p) was very high and would have made the Shapley value algorithm too
slow (network evaluations ∝ 2p) and secondly because with all those features it
would have been difficult to interpret the results. Teams of features were created
in according to the results obtained with PCA in Figure 3.11 and can be observed
in Table 6.1. They were divided into 4 groups: features related to the momentum
part; features related to the thermal part; features related to the closure thermal
part and the tensors that play a separate role as they enter in the last part of
the network (Figure 2.3). These four groups are defined in Table 6.1 in all their
features.

Shapley Valus Teams of Features

Momentum Thermal RANS Closure Tensors

π1, π2, π3 Pr, R π5 T1, T2, T3, T4
π4, Reτ , νroot π7, ∇T π6 T5, T6, T7, T8

Table 6.1: Features grouping for the Shapley value analysis. Every feature in the
corresponding group is ablated when the group is ablated. The feature definition
can be found in Table 2.2.
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Figure 6.4: On top are represented the Shapley values for the Reτ = 640 and
Pr = 0.71 simulation. The Shapley values computed with DNS inputs are in
solid lines and the ones computed with RANS inputs are in dashed lines. The
figure on the bottom shows the contribution to the stream-wise heat flux (Shapley
values) in the location of the dashed black line. It can be observed that the sum
of the contribution, starting from the background (E[f(x)]) where all features are
neglected allows reaching the value for the stream-wise turbulent heat flux (f(x)).
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Figure 6.5: On top are represented the Shapley values for the Reτ = 640 and
Pr = 0.025 simulation. The Shapley values computed with DNS inputs are in
solid lines and the ones computed with RANS inputs are in dashed lines. The
figure on the bottom shows the contribution to the stream-wise heat flux (Shapley
values) at the location of the dashed black line. It can be observed that the sum
of the contribution, starting from the background (E[f(x)]) where all features are
neglected allows reaching the value for the stream-wise turbulent heat flux (f(x)).

The Shapley values are represented in Figure 6.4 and 6.5. The first representation
is for Pr = 0.71 and the second one is for Pr = 0.025. Both of the plots are made
with Reτ = 640. In these representations, the Shapley values are computed for both
DNS (solid line) and RANS (dashed line) inputs. In section 6.2 was explained the
efficiency principle of the Shapley values which states that the sum of the Shapley
values is equal to the model prediction. To prove this, on the bottom of Figure 6.4
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and 6.5 is plotted the cumulative sum of the Shapley values at a constant y+. The
final sum at this coordinate represents the stream-wise turbulent heat flux.
From the previous charts it can be stated as follows:

• The thermal part is less important in the lower Prandtl number for two main
reasons: the first concerns the non-normalization of the Shapley values since
are physical values (efficiency property) and the second concerns the increase
in the thermal conductivity with the decrease of the Pr which reduced the
temperature fluctuations and the temperature gradients;

• The Shapley values computed with RANS inputs are always lower than the
DNS ones at the same coordinate y+. This behavior is driven by RANS inputs
being less precise than DNS ones. This has led the network to adapt to these
inaccuracies and trust them less;

• The Shapley values computed with RANS inputs for the features responsible
for the momentum closure (dashed purple line) are always zero. This means
that they are useless for contributing to the heat flux but can serve as a
classifier of the network;

• Comparing the two cases it can be seen that for Pr = 0.71 the part of the
most significant influence of both thermal and momentum is at the same point.
This behavior does not occur for Pr = 0.025. This is due to the fact that
the closer the Prandtl is to one the more similarity between the momentum
and the thermal part is obtained. This behavior seems to reflect the lack of
accuracy between thermal and momentum fields at low Prandtl numbers

• In the Pr = 0.025 thermal Shapley value undergoes a double bending. This
behavior can be explained by the fact that the lower the Prandtl, the smoother
the temperature profile becomes with a delayed maximum slope compared to
high Prandtl values. The gradient, therefore, decreases and shifts slightly. The
result of this is that near the wall the thermal part does not bring a positive
contribution to the heat flux (negative Shapley values) and the peak shifts
slightly;

• For the Pr = 0.025 all the Shapley values seem more confusing, a sign that the
network is having more trouble predicting a correct heat flux value anyway.

It is also interesting to observe the behavior of the wall-normal component in the
heat flux which is represented in Figure 6.6 and 6.7.
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Figure 6.6: On top are represented the Shapley values for the Reτ = 640 and
Pr = 0.71 simulation. The Shapley values computed with DNS inputs are in
solid lines and the ones computed with RANS inputs are in dashed lines. The
figure on the bottom shows the contribution to the wall-normal heat flux (Shapley
values) at the location of the dashed black line. It can be observed that the sum
of the contribution, starting from the background (E[f(x)]) where all features are
neglected allows reaching the value for the wall-normal turbulent heat flux (f(x)).
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Figure 6.7: On top are represented the Shapley values for the Reτ = 640 and
Pr = 0.71 simulation. The Shapley values computed with DNS inputs are in
solid lines and the ones computed with RANS inputs are in dashed lines. The
figure on the bottom shows the contribution to the wall-normal heat flux (Shapley
values) at the location of the dashed black line. It can be observed that the sum
of the contribution, starting from the background (E[f(x)]) where all features are
neglected allows reaching the value for the wall-normal turbulent heat flux (f(x)).

Figure 6.6 and 6.7 represents the wall-normal heat flux. From these figures can be
stated as follows:

• For high Prandtl values always the thermal part is of paramount importance.
This is due to the reason explained above;
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• The RANS part always remains more damped than the DNS part as had also
happened with the stream-wise heat flux. This is due to the greater inaccuracy
of these inputs;

• The zone of greatest momentum and thermal importance for high Pr remains
confined around the same point while for low Prandtl values, it occurs in two
different zones as had also been seen for the stream-wise heat flux;

• The greater importance of the tensor group is to be investigated more. To
carry this out they should be divided by making the computation time increase
exponentially;

• Also for these cases, the network has more difficulty predicting the wall-normal
heat flux for low Pr than for higher Pr. It can be seen that the Shapley values
are much more oscillatory at low Prandtl.

This analysis was very useful in understanding the importance of the inputs at
different channel flow coordinates but especially at different Prandtl numbers.
Future work could be to partition the inputs at the origin to actually calculate
the importance of k, ϵ, U , etc... This will definitely require higher computational
capacity as the number of permutations will increase exponentially. Another
possibility may be to proceed through the calculation of Shapley values in a
simplified manner as proposed in [41].

6.4 Layer Attribution Analysis
Layer activation analysis is a method used to interpret predictions made by a
machine learning model (very commonly used in deep learning). This procedure
allows the analysis of the activation pattern of one or more layers.

What has been done in this section is to analyze the last layer of the network
to evaluate how it changes given DNS and RANS inputs. To accomplish this, the
Captum library was used.

In Figure 6.8 is represented the network chart to remind the structure and to
display the location of the analyzed layer. Specifically, as can be seen in Figure 6.8
and previously mentioned in subsection 2.2.2; the network is composed of two
branches: the first with all the πi and Re; the second with the Pr input. The
two branches are subsequently multiplied in order to produce the neural network
output (blue box in Figure 6.8).

The first analysis carried out is on the red box of Figure 6.8 which is the output
of the Prandtl branch. The chart is expected to be only one, since between DNS and
RANS the Prandtl number value does not change. This can be seen in Figure 6.9.
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The second analysis carried out is on the blue box of Figure 6.8 which is the mul-
tiplication of the two branches’ output. In this case, there are two representations
since it varies between DNS and RANS.

...

ReLu

ReLu

Tanh

Tanh

...... ...

...

ReLu

ReLu

Tanh

Tanh

...... ...

...

Input
Layers

Hidden Layers
Output Layers

Merge Layer

eq. (12)eq. (15)Eq. (3.21)

Figure 6.9
Figure 6.10

Figure 6.8: Network visualization to understand which layers were analyzed. The
red box is the Prandtl batch output and the blue box is representing the neural
network output.

Figure 6.9: Layer output at the Prandtl branch (red box of Figure 6.8). It is the
same with both DNS and RANS inputs.
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Figure 6.10: Neural network output (blue box of Figure 6.8). On top the output
with DNS inputs and, on the bottom, with RANS inputs.

It can be said from Figure 6.9 that the Prandtl branch sets firstly to zero all the
ai coefficients except for a1, a2 and a6 and secondly it leaves for the W tensor
(defined in Equation 2.22) the components w4, w5, w6, w7 and w8. Thus, the role
of the Prandtl number is to eliminate, dampen or amplify the output of the other
branch of the network.

In Figure 6.10 it is possible to observe the components responsible for the
symmetric part of the tensor D which are ai and the ones responsible for the
asymmetric part which are wi. The following can be stated from this last figure:

• It is quite clear that a1 and a2 are the most important components which
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bring high importance to the tensors T1 and T2;

• In the near-wall region a1 is less precise with RANS inputs than with DNS
inputs for the reason that is linked to T1 and, T1, is highly dependent on the
RANS momentum turbulence model;

• The asymmetric part of D represented by the coefficients wi is mostly related
to the rotation. This can be observed by looking at the most important wi

component that is w4 which is connected to T4 composed by the vorticity
tensor Ω. It is also noted that all the non-zero wi components are the ones
related to a Ti which contains Ω except for w5;

• The output of the network computed with RANS inputs has the wi components
not present in the near-wall region. This behavior is due to the momentum
turbulence model. This can be the biggest difference in computing the two
types of inputs in the output layer.
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Conclusions and
Perspectives

This thesis study introduced and presented a new data-driven model to study and
model the turbulent heat flux, with special emphasis on low Prandtl number fluids.
The model previously trained in Fiore et al. [1], which was used as a starting point,
seemed to be too sensitive to the defects of the momentum modelling, especially
all the models that apply the Boussinesq hypothesis like the k − ϵ. This behavior
was mainly brought by the fact that the model was trained on high-fidelity (DNS)
data only.

Therefore, while keeping the same input formulation as the previous work, a
database of inputs from Reynolds Averaged Navier Stokes (RANS) simulations
using the Boussinesq hypothesis, was added to the database. It was found that
the two databases were not identical, but differed mainly in certain inputs, i.e. π3,
π5 and π6 that are functions, as expected, of the anisotropic part of the Reynolds
stresses. Thus, due to the conflicting nature of certain inputs, it was necessary to
reformulate the loss function to take into account both DNS and RANS inputs,
thereby adjusting a hyperparameter, called α, that weighs the importance of the
two sub-losses.

To tune this parameter, a Pareto front was created and it was found that the
best trade-off is obtained for α = 1, which means using an equal weight between
the DNS and RANS losses.

One- and two-dimensional flow configurations in the low Prandtl number regime
were validated a priori and a posteriori. The achieved results showed that the new
data-driven model (α = 1) performs well both inside and outside of the training
conditions range. Moreover, it is very important to point out that the model was
able to overcome the obstacles encountered by the previous network (α = 0) like
the applicability of the network with Boussinesq based momentum models. In
fact, as can be seen in the chart below (Figure 7.11), very satisfactory results were
obtained for the different heat flux components with both DNS and RANS (k − ϵ)
inputs.

Finally, a model interpretability analysis with Shapley values was performed to
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Figure 7.11: Stream-wise heat flux (uθ) on the top, and wall-normal heat flux
(vθ) on the bottom for Reτ = 640 and Pr = 0.025. The black line is the DNS
reference value, the blue line is the value with model trained in this thesis work
(α = 1), the green line is the value with the previous model (α = 0), and, the pink
line, is the value with the Reynolds analogy. It is clear that the α = 1 model (blue
lines) manages to work well with both DNS (solid line) and RANS (dashed line)
inputs.

understand how the model behaved and which features were found to be the most
important with DNS and RANS inputs. Indeed, as expected, it was found that the
thermal part (temperature, thermal variance, and thermal dissipation rate) becomes
less important as the Prandtl number decreases, since thermal conductivity and
diffusivity increase, mitigating temperature fluctuations and damping gradients.
This analysis also showed that the model relies less on RANS inputs than DNS
ones. This can be explained by the fact that the model has learned to trust them
less as they are less accurate.

Hence, further efforts and future research may be directed towards:

• A different formulation of the inputs for the presence of singularities in some
of them. Indeed, this new formulation should prevent them from tending to
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very high values at the wall, as could be observed with the present formulation.
Therefore, this behavior caused the dataset to have outliers and high skewness,
which affected the performance of the model;

• Increasing the dataset size with more two-dimensional and three-dimensional
flows. This can actually lead to a greater generalization of the model;

• The implementation of a new Robust Principal Component Analysis (RPCA),
which may be able to reduce the spatial size of the dataset by losing less
variance and allowing a new network to be trained with a reduced number of
components. In fact, with the current algorithm, 22.5% of the total variance
is lost;

• A new interpretability analysis that considers not only features (πi) or team
of features but directly the outputs of CFD simulations such as U , k, ϵ, and
so on. This will be very instructive as it will allow to really understand which
physical quantity induces certain heat flux values and how the model makes
use of them.
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Appendix A

Boussinesq’s hypothesis
effect in input calculation

A.1 Effect on π6

The neural network scalars inputs are shown in Table 2.2. Only π6 was taken as
an example to demonstrate that the application of the Boussinesq hypothesis leads
to values that are always zero in the case of RANS inputs in a 1D test case.

Assuming a 2D flow the tensors b, S and Ω that represent respectively the
turbulence tensor, the strain-rate tensor, and the vorticity tensor have the following
definition:

b =

b11 b12 0
b12 b22 0
0 0 b33



S =

S11 S12 0
S12 S22 0
0 0 0



Ω =

 0 Ω12 0
−Ω12 0 0

0 0 0


It can be proved that π6 can be written as:

π6 = {bSΩ} k2

ϵ2 (A.1)

π6 = Ω12(b12S11 + b22S12 − b11S12 − b12S22)
k2

ϵ2 (A.2)
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Isolating only the tensors trace and applying the definition of the tensor:

{bSΩ} = 1
2

A
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∂y
− ∂v
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Buv
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Grouping:

{bSΩ} = 1
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− ∂v
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Buv
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The third term is equal to zero since in the 2D flow case for the Boussinesq’s
hypotheses implies that vv − uu = 0

The trace equation for π6 can be reduced in this way:

{bSΩ} = 1
2

A
∂u

∂y
− ∂v

∂x

Buv

k

A
∂u

∂x
− ∂v

∂y

B (A.3)

• If the flow is 1D in the channel flow case, the only derivative of the velocity
that is non-zero is the ∂u

∂y
and, as a consequence of this, it can be observed

that Equation A.3 is always zero. It can be noted that in this situation the
DNS value is different from zero since vv− uu /= 0 and the π6 value computed
with a momentum closure that applies the Boussinesq’s hypotheses such as
k − ϵ will always be zero (Figure A.1);

• If the flow is 2D the term in Equation A.3 is not always zero but differs
greatly from the DNS. In particular with a momentum closure that applies
the Boussinesq hypotheses such as k − ϵ will be much lower than the DNS
value (Figure A.2).
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Figure A.1: The figure on the left shows the difference between π6 in the DNS
case and the RANS with k − ϵ turbulence model. The right figure shows the
Boussinesq’s hypothesis effect on the Reynolds stress (uu− vv) = 0

Figure A.2: A representation of π6 in case of a 2D flow with k − ϵ turbulence
model. As we see the value is not zero as mentioned in Equation A.3. The chart
was made in the backward facing step at a constant value x = 2

107



A.2. EFFECT ON π1 AND π2 IN THE 1D FLOW

A.2 Effect on π1 and π2 in the 1D flow
In this section, it is shown that π1 and π2 have the same values (in both DNS and
RANS datasets) if the 1D flow hypothesis is applied.

Starting from the definition seen in Table 2.2 of π1 and π2 :
π1 =

k2

ϵ2{S
2}

π2 =
k2

ϵ2{Ω
2}

it is necessary to prove that in this case:

{S2} != {Ω2} (A.4)

where {S} and {Ω} are defined in Equation 2.15.
The following can be obtained:

{S2} = S2
11 + 2S2

12 + S2
22

{Ω2} = −2Ω2
12

applying the definition of S and Ω and the fact that only ∂u
∂y

/= 0:

{S2} =
A

∂u

∂x

B2

+ 21
4

A
∂u

∂y
+ ∂v

∂x

B2

+
A

∂v

∂y

B2

= 1
2

A
∂u

∂y

B2

{Ω2} = −21
4

A
∂u

∂y
− ∂v

∂x

B2

= −1
2

A
∂u

∂y

B2

since at π1 and π2 is applied the absolute value before the logarithmic function the
same value of π1 and π2 will be obtained in case of 1D inputs.
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Appendix B

Pareto Front Algorithm

Algorithm 1 Pareto Front algorithm made to obtain the best α value
1: procedure ParetoFront(α,M, X)
2: ▷ α is a vector containing all the possible α
3: ▷ α = [0.001, 0.01, 0.1, 1, 10, 100, 1000]
4: ▷ M is the neural network structure
5: ▷ X is the input matrix
6: tf ← max epochs number
7: for αk in α do
8: X1DNS ← get_1D_dns(X)
9: X2DNS ← get_2D_dns(X)

10: X1RANS ← get_1D_rans(X)
11: X2RANS ← get_2D_rans(X)
12: while t not tk do
13: t← t + 1
14: L1DNS ← loss_fnc(M(X1DNS))
15: L2DNS ← loss_fnc(M(X2DNS))
16: L1RANS ← loss_fnc(M(X1RANS))
17: L2RANS ← loss_fnc(M(X2RANS))
18: L ← L1DNS + L2DNS + α(L1RANS + L2RANS)
19: end while
20: end for
21: return best αk

22: end procedure
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Appendix C

OpenFoam Network
Implementation

This appendix explains in detail how to implement a network written through the
PyTorch library in the OpenFoam framework.

As explained in section 5.2, the network was coded with Python language
and OpenFoam is written in C/C++. Since the Tensorflow APIs were already
implemented in OpenFoam the network was previously converted from Pytorch to
Tensorflow and implemented into the OpenFoam solver. The implementation steps
are the following:

1. Conversion of the PyTorch network to a Tensorflow network passing through
Onnx as can be seen in Figure 5.6;

2. Validation of the Tensorflow model;

3. Installing the Tensorflow APIs and compiling them into OpenFoam.

C.1 Neural Network conversion
In this section is explained how to convert the PyTorch network structure file to
the Tensorflow one. There is no direct conversion from PyTorch to Tensorflow but
it is necessary to pass through Onnx.

C.1.1 Installing the Python Environment
The first step is the python environment installing. It can be installed with the
following command and the requirements file shown below.
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C.1. NEURAL NETWORK CONVERSION

Terminal window
1 pip i n s t a l l −r /path/ to / requ i rements . txt

File: requirements.txt
1 abs l−py==1.0.0
2 a s t o r ==0.8.1
3 captum==0.5.0
4 c e r t i f i ==2021.5.30
5 charset −normal i ze r ==2.0.12
6 c l o u d p i c k l e ==2.0.0
7 coverage ==4.0.3
8 c y c l e r ==0.11.0
9 Cython==0.29.24

10 cy too l z ==0.11.0
11 dask ==2021.3.0
12 d a t a c l a s s e s ==0.8
13 decorato r ==5.1.1
14 docopt ==0.6.2
15 gast ==0.5.3
16 google−pasta ==0.2.0
17 grpc i o ==1.35.0
18 h5py==2.10.0
19 idna==3.4
20 imagecodecs ==2020.5.30
21 imageio ==2.9.0
22 Keras−App l i ca t i ons ==1.0.8
23 Keras−Preproce s s ing ==1.1.2
24 k i w i s o l v e r ==1.3.1
25 Markdown==2.6.9
26 matp lo t l i b ==3.3.4
27 mkl− f f t ==1.3.0
28 mkl−random==1.1.1
29 mkl−s e r v i c e ==2.3.0
30 networkx==2.5
31 numpy==1.19.2
32 o l e f i l e ==0.46
33 onnx==1.10.1
34 onnx−t f ==1.1.2
35 Pi l low ==8.3.1
36 pip ==21.2.2
37 p ip req s ==0.4.11
38 protobuf ==3.18.0
39 pypars ing ==3.0.4
40 pyread l i ne ==2.1
41 python−d a t e u t i l ==2.8.2
42 PyWavelets ==1.1.1
43 PyYAML==5.4.1
44 r eque s t s ==2.27.1
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45 s c i k i t −image ==0.17.2
46 s c ipy ==1.5.3
47 s e t u p t o o l s ==58.0.4
48 s i x ==1.16.0
49 tensorboard ==1.14.0
50 t en so r f l ow ==1.14.0
51 t ensor f l ow −e s t imator ==1.14.0
52 te rmco lor ==1.1.0
53 t i f f f i l e ==2021.3.17
54 t o o l z ==0.11.2
55 torch ==1.8.2
56 torchaudio ==0.8.2
57 t o r c h v i s i o n ==0.9.2
58 tornado==6.1
59 typ ing_extens ions ==4.1.1
60 u r l l i b 3 ==1.26.14
61 Werkzeug==1.0.1
62 wheel ==0.37.1
63 w i n c e r t s t o r e ==0.2
64 wrapt ==1.11.2
65 yarg ==0.1.9

After creating the environment one can proceed to the conversion of the network.

C.1.2 PyTorch to Tensorflow network
The first thing is to initialize an empty PyTorch model, for example in this way
recalling the THFNet is a class based on the torch.nn.Module and the input variables
represent the network layers’ sizes and dimensions:

1 model_pytorch = THFNet (D_in , D_in_pr , H, H_pr , D_out , D_out_pr )

The network must be fed by the weights and biases found in the training phase
with load_state_dict function on the torch.nn.Module class:

1 model_pytorch . load_state_dict (torch.load(os.path.join(os. getcwd (), '
Net_50_1 .0. pt'), map_location =torch. device ('cpu ')))

The next step is the creation of some dummy inputs used to check the network
dimensions. It is strongly recommended to create an input and output name vector.
After that, the PyTorch model can be converted into an Onnx model with the
function torch.onnx.export.

1 input_names = ['input_1 '] + ['input_2 '] + ['input_3 ']
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2 output_name = ['out1 '] + ... + ['out16 ']
3 torch.onnx. export ( model_pytorch , dummy_input , " torch_noise1_Exported .onnx

", verbose =True , input_names = input_names , output_names = output_names ,
export_params =True)

The Onnx model should be loaded and the chunk dimensions should be modified
in order to receive any dimension on the computational domain. This is made to
allow the model to work with every mesh size. The new model is now saved as an
".onnx" model.

1 model_onnx .graph.input [0]. type. tensor_type .shape.dim [0]. dim_param = '?'
2 model_onnx .graph.input [1]. type. tensor_type .shape.dim [0]. dim_param = '?'
3 model_onnx .graph.input [2]. type. tensor_type .shape.dim [0]. dim_param = '?'
4

5 onnx.save(model_onnx , " torch_noise1_Onnx .onnx")
6 onnx_model_2 = onnx.load(" torch_noise1_Onnx .onnx")

The last thing is the conversion from Onnx to Tensoflow which can be done as
follows:

1 tf_rep = prepare ( onnx_model_2 , 'cpu ')
2 tf_rep . export_graph ('Alpha1Noise .pb')

The Tensorflow (".pb") is now exported and ready to be implemented into the
OpenFoam framework.

C.2 Validation of the Tensoflow model

It is strongly recommended to check the exported Tensorflow model in order to see
if all the dimensions and the structure has been correctly converted. To make this
validation the Netron website can be used. On this website, it is possible to upload
the ".pb" file and see the network structure. It is important to check:

• The network structure;

• The network inputs/outputs names;

• The inputs dimensions in particular if there is a "?" otherwise the network
wont go with different mesh sizes.
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Figure C.1: A section of the Tensorflow exported network view in Netron. It’s
important to notice the "?" in the input size

C.3 Compiling the Tensorflow APIs in Open-
Foam

To enable the network to work in OpenFoam the Tensorflow C-APIs should be
compiled in OpenFoam. Firstly the APIs should be downloaded from the Tensorflow
website tensorflow.org/install/lang_c. An easy way to test the APIs is to create a
"TensorfloC" folder in which the previously downloaded folders are extracted inside,
create a ".cpp" test script that can be found in Listing C.3, open a terminal window
in the "TensorflowC" folder, and run the following bash command:

Terminal window
1 g++ −I /path/ to / ext rac t ed /TensorflowC/ inc lude −L/path/ to / ext rac t ed /

TensorflowC/ l i b t e s t . cpp − l t e n s o r f l o w
2

3 . / a . out

"Hello from TensorFlow C library version XXXX" should appear in the terminal
view.
The test file can be the following:
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test.cpp
1 #inc lude <s t d i o . h>
2 #inc lude <ten so r f l ow /c/c_api . h>
3

4 i n t main ( ) {
5 p r i n t f ( " He l lo from TensorFlow C l i b r a r y ve r s i on %s \n" , TF_Version ( )

) ;
6 re turn 0 ;
7 }

The last step remains to edit the .bashrc file and to implement the APIs in
OpenFoam. In the .bashrc file add the following lines:

/.bashrc
1 export LIBRARY_PATH=$LIBRARY_PATH: path/ to /TensorflowC/ l i b
2 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH: path/ to /TensorflowC/ l i b
3

4 u l i m i t −s un l imited

In the Make/options file add the following lines:

.../Make/options
1 EXE_INC = \
2 −I path/ to /TensorflowC/ inc lude \
3 −I path/ to /TensorflowC/ inc lude / t en so r f l ow /c \
4 . . .
5 LIB_LIBS = \
6 − l t e n s o r f l o w \
7 − l s t d c++ \
8 . . .

Now a turbulence thermal model can be created in the OpenFoam source folder:

Terminal window
1 cd ~/OpenFOAM/xx−8/ s r c / ThermophysicalTransportModels / turbu lence /

Name_OF_Your_Model
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