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“We are not going in circles, we are going upwards.
The path is a spiral; we have already climbed many steps.”

-HERMANN HESSE, SIDDHARTHA





Abstract

Recently, the concept of controlling a large group of spacecraft has been studied exten-
sively in literature for different applications. Swarms of microsatellites are an attractive
alternative to traditional large spacecraft due to the resulting enhancement in robustness of
the overall mission architecture while reducing the cost of each platform. The Guidance,
Navigation & Control (GNC) subsystem of the space system is required to drive and keep
the satellites formation towards multiple different configurations, which are imposed by
the mission objectives. It is relevant to investigate low computational effort algorithms
enabling spacecrafts to achieve and keep a formation by ensuring obstacle avoidance.

The Artificial Potential Field (APF) method provides simple and effective collision-free
path planning for practical terrestrial robotics control. This thesis objective is the de-
sign of an APF based method to guarantee the creation of a spacecrafts swarm formation,
where each spacecraft is equidistant from each other.

The performance of the proposed method are evaluated combining the APF with a Propor-
tional Derivative (PD) controller, and by means of extensive simulations. Each spacecraft,
starting from a random initial position, moves to achieve the formation centered in the de-
sired position. These simulations were conducted both considering the spacecrafts as the
only entities in orbit and also considering both fixed and moving obstacles. The capability
of the swarm to rearrange the formation according to spacecrafts number is also analyzed.
In this case, once the formation has been created, one of the spacecrafts is considered in-
operative and the remaining ones should rearrange themselves in a different configuration
whose mean position is driven to the desired one. Finally, a proximity operation scenario
was considered to evaluate the maximum dimension of the obstacle that the swarm of
spacecrafts is able to avoid during the formation acquisition maneuver.

The results verify the effectiveness of the algorithm to guide the spacecrafts towards the
desired configuration while avoiding obstacles using minimum computational effort.
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Chapter 1
Introduction

The objective of this chapter is to provide the reader with a general overview of space-
craft formation flying and its increasing relevance in the space field. Subsequently, the
motivations and contributions for this thesis work are presented.

1.1 Spacecraft Formation Flying
The definition of spacecraft formation flying is not very accurate or globally accepted.
However, most of the space community agrees upon the definition proposed by NASA’s
Goddard Space Flight Center (GSFC): The tracking or maintenance of a desired relative
separation, orientation or position between or among spacecraft. Therefore, spacecraft
formation flying are a particular case of a more wide category, named distributed space
systems, defined by NASA GSFC as follows: An end-to-end system including two or
more space vehicles and a cooperative infrastructure for science measurement, data ac-
quisition, processing, analysis and distribution [2]. Spacecraft formation flying can be
developed following distinct approaches, that differ from each other by the kind of rela-
tionship existing among the various spacecrafts that constitute the formation.

1.1.1 Orbit tracking
Considering single satellite missions, they are commonly designed to remain in a specific
orbit. However, due to the orbital perturbations, some station-keeping maneuvers are
periodically performed. Therefore, this approach can be extended to formations in which
each satellite is supposed to occupy a fixed desired orbit. This is a basic concept since
each spacecraft is controlled separately and there is no real cooperation among them.

1.1.2 Leader/Follower
In the leader/follower approach two categories of spacecrafts can be identified: a leader
spacecraft is controlled to a specific orbit and the follower spacecraft in the formation
control their relative position and attitude with respect to the leader. This method has the
advantage to permit most spacecrafts in the formation to follow the orbital dynamics of
the leader, as a consequence only a periodic control on the relatives states of the formation
have to be performed. However, since the leader spacecraft is by definition at its correct
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Chapter 1. Introduction

state, the main disadvantage is that the amount of fuel required by the leader is not as much
as the one required by the followers. To fix this issue and equalize the fuel consumption
a possible solution is to regularly interchanging the roles of leader and followers.

1.1.3 Virtual structure
The virtual structure approach treats the whole formation as a single structure. It allows
to minimize the overall state error of the formation. The main advantage with respect
to the leader/follower approach is that the state error will concern all the spacecrafts in
the formation. In addition, it is possible to balance the fuel consumption among the
spacecrafts in the formation. The realization of such an approach involves coordinated
inter-spacecraft communication.

1.1.4 Swarming
In the swarming approach the number of spacecrafts is usually greater and there is not a
specific spacecraft playing a leading role. These methods have the advantage that they
easily scale increasing the number of spacecrafts without arousing large communication
or computation burdens. Recently, several researchers have proposed different control
laws to arrange a large group of spacecrafts into a regular formation based on local in-
formation. However, these approaches are generally not optimized in terms of fuel con-
sumption and typically do not contemplate collision avoidance.

1.2 Motivations and contributions
From the start of the manned space program, concepts for spacecraft formation flying
have been investigated. At that time, the challenge was to have two spacecraft perform-
ing a rendez-vous maneuver and dock together. During the Apollo space program, when
the final lunar spacecraft was assembled in orbit, this was extremely important. During
this maneuver, orbit corrections are made to control and change the relative orbits of two
spacecraft rather than the Earth’s orbit itself. The relative distance is slowly and carefully
reduced to zero for the docking procedure.

The current emphasis of spacecraft formation flying has now expanded to include the
formation keeping of many spacecraft. For example, the U.S. Air Force is investigating
the possibility of forming a sparse aperture radar dish in space using a cluster of similar
spacecraft. The use of many satellites flying at a fixed geometry avoids the considerable
technological and cost challenges of attempting to build an equivalent-sized radar dish.
The sizes of these satellite structures can range from a few tens of meters to several kilo-
meters. Attempting to build, control, and navigate a lightweight radar dish structure that
could span several kilometers would be extremely difficult and inefficient. Instead, having
a swarm of satellites forming a virtual radar dish offers the advantage of eliminating the
structural flexing issues of the large dish structure and the related aiming difficulties.

If the objective of the navigated spacecrafts is to perform a rendez-vous maneuver, the
formation flying period of the two vehicles is much smaller than the lifetime of the vehi-
cle itself, since this kind of maneuver generally occurs in one or two orbits. Therefore,
as far as the control is concerned, if the description of the relative orbit contains some
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Chapter 1. Introduction

minor simplifying assumptions, since the feedback control laws are robust enough, there
will be just a small impact on the control performance and the spacecraft will be guided
safely to perform the dock maneuver. Moreover, as the two spacecrafts get closer to each
other, the relative distance decreases. Thus, the errors introduced into the relative motion
description can be neglected during the final instants of this phase.

However, the spacecraft formation flying problem of maintaining the relative orbit of a
cluster of satellites is way more sensitive to relative orbit modeling errors than the for-
mation flying problem where two or more vehicles are docking. Making linearizing as-
sumptions can potentially lead to a considerable increase in the fuel consumption. This
is caused by the fact that this formation is supposed to be maintained over the whole life-
time of the spacecrafts. Therefore, if a relative orbit is designed using a very simple orbit
model, then the formation control laws have to constantly offset these modeling errors
burning fuel, that depending on the severity of the modeling errors could dramatically
shorten the lifetime of the spacecraft formation. This extreme sensitivity to the orbital
dynamics makes this specific kind of formation flying problem very intriguing from the
celestial mechanics standpoint [3].

The type of spacecraft formations contemplated in the present research are mostly a clus-
ter of equal satellites. The focus of formation flying is to allow satellites to fly in formation
using advanced positioning and control loop technology. Multiple spacecraft flying in a
specific geometry enable the formation to reconfigure, adapt baselines, acquire targets and
avoids the technical and financial challenge of building one satellite of equivalent size [4].
Moreover, in case of failure of one satellite, it is easier to replace one of the spacecrafts
during the mission instead of repairing a subsystem of a big assembly in space [5].

1.2.1 Formation Flying Missions
In recent years, swarms of microsatellites became an attractive alternative to traditional
large spacecrafts and several formation flying missions have been conceived, some of
which have remained just a concept or a study case, while others have reached the de-
velopment and operational phase. The main goals of these missions are scientific and
programmatic, such us sparse-aperture imaging of extra-solar planets or lunar gravitom-
etry. Spacecraft formation flying have given an increasing scientific return creating new
opportunities because of their adaptability to the change of mission objectives. Never-
theless, the current state-of-the-art in control, measurement and modeling of spacecraft
formation flying have made some of the proposed missions too expensive. Therefore,
in the past few years several proposed formation flying missions have been canceled or
transformed into technology-demonstration missions. Currently, there are not so many
operational missions involving a large number of spacecrafts in formation, but some op-
erational missions require some technologies and methods to maintain the spacecrafts in
formation. Thus, they can be considered spacecrafts formation flying missions. Hereafter
some examples of past, present, and future formation flying mission are provided.

TechSat-21

A revolutionary space architecture of collaborating similar spacecrafts was the TechSat-
21 (Technology Satellite of the 21st century) concept developed by the U.S. Air Force
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Research Laboratory’s Space Vehicles Directorate to test technology for formation flight
of spacecrafts which can rapidly change formation based on mission requirements. It
was supposed to fly three satellites in a near circular orbit at an altitude of approximately
550 km. During the mission lifetime the cluster of satellites will fly in various configu-
rations with relative separation distances of approximately 100 m to 5 km. One of the
objectives of TechSat-21 is to assess the utility of the space-based, sparse-array aperture
formed by the satellite cluster. For TechSat-21, the sparse array will be used to synthesize
a large radar antenna [6]. The main advantage was the reliability of the system, since
a possible loss of one of the spacecrafts could be compensated by the remaining ones
preventing the end of the mission. However, the project was canceled in 2003 due to
numerous cost overruns.

Cluster

The Cluster mission was first proposed in November 1982 and was ready for launch in
1996. It is a constellation of four spacecraft flying in formation around the Earth into
large and highly elliptical polar orbits with perigee and apogee altitudes of respectively
19 000 km and 119 000 km [7]. The main goal of the mission is to study the small-
scale plasma structures in three dimensions in key plasma regions, such as the solar wind,
bow shock, magnetopause, polar cusps, magnetotail and the auroral zones [8]. These
spacecrafts fly in a tetrahedral formation carrying identical sets of eleven instruments to
investigate charged particles, electrical and magnetic fields.

GRACE

Another mission that implements a formation flying technology is the GRACE (Grav-
ity Recovery And Climate Experiment) mission. It was a joint mission of NASA and
the German Aerospace Center (DLR). The mission consisted of two identical satellites
GRACE-A and GRACE-B in a leader/follower formation and they were launched to-
gether on 17 March 2002 and finished on 27 October 2017 when the spacecrafts ran out
of fuel [9]. The objective of the mission was to generate high-fidelity modeling of Earth’s
gravitational field. A secondary experiment that the GRACE mission performed was in-
vestigating how the atmosphere affects GPS signals [2]. The initial altitude of GRACE-A
and GRACE-B above the Earth’s surface was close to 500 km and it decreased to about
300 km towards the end of the mission because of the atmospheric drag.

PRISMA

The first real mission designed to study spacecraft formation flying was PRISMA (Pro-
totype Research Instruments and Space Mission technology Advancement). It was a
technology mission primarily aiming at the demonstration of different sensor technolo-
gies and guidance navigation strategies for rendez-vous and formation flying in space.
The mission consisted of two spacecraft, one advanced and highly maneuverable called
Mango, and one called Tango. Mango was equipped with several sensor systems for for-
mation flying and rendezvous purposes such as GPS, a vision based camera and a radio
frequency based navigation instrument together with advanced guidance, navigation and
control algorithms. Several high level demonstrations were performed successfully [10].
The satellites were launched from Yasny in Russia on 15 June 2010 to a sun-synchronous
orbit at 700 km altitude by a Russian Dnepr rocket.
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Proba-3

The Proba-3 mission will provide an opportunity to validate metrology and actuation tech-
niques and technologies, as well as develop and dynamically verify the guidance strategies
and navigation and control algorithms required for formation flying during future science,
astronomy, and Earth observation missions. It will also test a variety of command and
control methodologies and provide development and verification tools and facilities [11].
It consists of two small spacecrafts, launched together in 2024 into a highly elliptical or-
bit, that will separate apart to fly in tandem, to prepare for future multi-satellite missions
flying as one virtual structure [12]. The relative positions of the two craft are determined
by S-band radio metrology, which functions for separations between 5 m and 8 km, with
an accuracy of a few centimeters. Increased accuracy for separations up to 500 m will be
obtained using optical laser techniques having both coarse and fine sensors to refine the
relative position measurements to an accuracy of hundreds of microns [11].

LISA

The LISA (Laser Interferometer Space Antenna) mission will consist of three spacecrafts
separated by 2.5 millions of kilometers in a equilateral triangular formation, following
Earth in its orbit around the Sun [13]. These three spacecraft relay laser beams back
and forth between the different spacecraft and the signals are combined to search for
gravitational wave signatures that come from distortions of spacetime. A giant detector
bigger than the size of Earth is necessary to catch gravitational waves from orbiting black
holes millions of times more massive than our Sun [14]. The launch of LISA is expected
in 2037. The spacecrafts are designed by ESA while NASA will provide the launcher
to put them into orbit. LISA Pathfinder spacecrafts were launched in 2015 to help test
technologies that will be used in the three LISA spacecrafts.

Swarm

The first constellation mission for Earth observation by ESA is Swarm. The mission con-
sists of three identical satellites named Alpha, Bravo, and Charlie, which were launched
on 22 November 2013 into a near-polar orbit, two of which fly side-by-side in identical
circular orbits and a third in a higher circular orbit. The objective of the mission is to
make the most precise measurements of the Earth’s magnetic field ever taken resulting
in a survey of the overall geomagnetic field and how it evolves over time [15], as well
as the electric field in the atmosphere, by using a satellite constellation that carries so-
phisticated magnetometers and other instruments. The initial constellation of the mission
was achieved on 17 April 2014. Swarm A and C form the lower pair of satellites flying
side-by-side (1.40 separation in longitude at the equator) at an altitude of 462 km and at
87.350 inclination angle, whereas Swarm B is cruising at a higher orbit of 511 km and
at 87.750 inclination angle. Due to the subtle difference in altitude and inclination, the
Swarm B orbit drifts slowly away from the Swarm A and the Swarm C orbits at a rate of
about 240{year [16]. The mission is still operating.

SunRISE

The SunRISE (Sun Radio Interferometer Space Experiment) mission consists of six iden-
tical spacecrafts with a 6U CubeSat form factor forming an observatory in a 25-hour
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circular orbit slightly above GEO to study solar activity [17]. The mission will observe
low radio frequency emissions so scientists can understand better how the Sun is able to
generate intense space weather storms, known as solar particle storms, that can be haz-
ardous to spacecrafts and astronauts. The SunRISE spacecrafts will orbit within 10 km of
one another well above Earth’s atmosphere to act like a giant single-aperture radio tele-
scope [18]. The constellation of small spacecraft uses a method known as interferometry,
in which many smaller radio telescopes can be combined to mimic a single, much larger
observatory with a very high resolving power.

1.2.2 Guidance, Navigation & Control algorithm
The Guidance, Navigation & Control (GNC) subsystem plays a fundamental role since
it allows the spacecrafts in the swarm to achieve and keep a given formation imposed
by the mission objectives. In such a mission concept, in which the spacecrafts have to
react autonomously to unexpected events, a high-level of autonomy and thus an increased
complexity is essential. In particular, the collision avoidance task is critical in formation
reconfiguration especially when the number of spacecrafts in the swarm increases.

The GNC algorithms can be developed following a centralized, decentralized or dis-
tributed architecture. In the centralized architecture there is a master spacecraft processing
the information coming from all the other spacecrafts, evaluates the guidance and control
results and sends back commands to each spacecraft in the swarm. In the decentralized ar-
chitecture each spacecraft is capable of computing its own action based solely on on-board
information, and the same algorithm is implemented on-board each spacecraft. Finally,
the distributed architecture employs inter-satellite links, in fact each spacecraft processes
its own information and at least one is coming from another agent of the swarm [19].

The centralized architecture has two main drawbacks: the presence of the master space-
craft indicates a single point failure that will compromise the entire mission, in addition,
since the results of the central on-board computation have to be sent to the other agents of
the swarm, a further complexity in the communication link between the master spacecraft
and all the other spacecrafts is introduced. The decentralized architecture fixes the single
failure point aspect, but each spacecraft is limited to its own information. As a conse-
quence, the chosen architecture in this thesis work is the distributed one.

It is important to have an algorithm that can be implemented in a distributed architecture
with low computational power, that can handle the collision avoidance actively between
more than two spacecrafts and obstacle not related to the swarm. The intended contribu-
tion of this thesis work is therefore to propose an autonomous formation reconfiguration
GNC algorithm based on Artificial Potential Field, including a distributed active collision
avoidance appropriate for microsatellite applications. A feedback controller guarantees
that the artificial potential dynamics is followed. A numerical tool in a Matlab-Simulink
environment is developed to validate the performance of the algorithm.

The algorithm workflow is the following:

• Acquisition of states measurement by each spacecraft;

• Determination of the relative neighboring states (position and velocity);
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• Calculation of the Artificial Potential Field and the corresponding gradient to de-
termine the forced reconfiguration dynamics on-board each spacecraft based on the
relative measurements;

• Evaluation of the control effort, subject to thrust constraints, on-board each satellite;

• Determination of the new states using the spacecraft dynamics.

A more detailed description of the algorithm is presented in Section 4.1 supported by a
schematic block diagram representing the Simulink model.

1.3 Thesis overview
This thesis work is presented as reported by the following chapters:

Chapter 2: introduces the necessary theoretical background for the implementation of
an orbital simulator. It gives a description of the reference frames involved
for the development of position dynamics equations which are subsequently
derived. Lastly, the most common disturbing forces are presented.

Chapter 3: provides the theory behind the implementation of both the guidance algo-
rithm and the control algorithm. In particular, for the guidance algorithm the
Artificial Potential Field method is presented. On the other hand, as far as
the control algorithm is concerned the PID family controllers are introduced.

Chapter 4: presents the model developed on a Matlab-Simulink environment and shows
the final results of the simulations. Initially, the simulation setup are dis-
cussed, which is the desired formation at which the swarm of spacecrafts
should aim and the initial conditions for the spacecrafts. Then, five different
scenarios are analyzed considering also the presence of fixed and moving
obstacles in the space environment that the spacecrafts should avoid, a re-
configuration scenario and a proximity operation scenario. Each simulation
is supported by appropriate diagrams showing if the goal was reached and
some comments and engineering considerations are made.

Chapter 5: draws the conclusions. Some possible enhancements fixing some of the is-
sues of the proposed approach are also discussed.
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Chapter 2
Spacecraft dynamics

To test and demonstrate the effectiveness of the guidance algorithm, spacecraft dynamics
has to be taken into account to simulate the motion of the spacecrafts around the Earth.
Hence, before the actual design of the Guidance Navigation & Control subsystem, an
orbital simulator must be implemented. For the description of the orbital motion is nec-
essary to define some reference frames and to employ the proper differential equations.

In general, the motion of a rigid spacecraft in space is completely defined by four quan-
tities: position, velocity, attitude and angular velocity. However, in this thesis work the
last two quantities, describing the rotational motion of the spacecraft about the center of
mass, are not taken into account. Therefore, the focus will be on the first two quantities,
describing the translational motion of the center of mass of the spacecraft, as a conse-
quence the spacecrafts will be considered as point masses.

In this chapter, the theoretical basis for the realization of the orbital simulator that is been
developed on Matlab and Simulink are shown.

2.1 Reference frames

The purpose of this section is to define the reference frames that have been used to de-
scribe the orbital motion, for absolute and relative trajectories. Each frame Fi is defined
by its origin Oi and a set of three orthogonal vectors a1, a2, a3. In [20] it is shown that in
general three types of coordinate frames are needed:

• Orbit reference frames: to describe the orientation of the orbit relative to inertial
space to the Earth and to describe the motion of a spacecraft within an orbit;

• Spacecraft local orbital reference frames: to describe the motion relative to a par-
ticular point in orbit or to another spacecraft;

• Spacecraft attitude and body frames: to describe dynamics and kinematic processes
of the spacecraft relative to its center of mass and to describe features relative to the
geometry and to a particular point of the spacecraft.
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2.1.1 Earth-Centered Inertial Frame
The Earth-Centered Inertial Frame (FECI) is an Earth centered frame whose orientation
is fixed in space, thus it is not fixed to the Earth. However, it revolves around the Sun but
not around the fixed stars, neglecting the precession of the equinoxes.

In Figure 2.1 the reference frame is illustrated and it is defined as follow:

• The XECI axis, with unit vector given by Î , lies in the equatorial plane and points
toward the vernal equinox;

• The ZECI axis, with unit vector given by K̂, normal to the equatorial plane and
pointing north;

• The YECI axis, with unit vector given by Ĵ , lies in the equatorial plane, such that
ZECI � XECI �YECI ;

• The origin OECI is the center of the Earth.

Figure 2.1: Earth-Centered Inertial Frame

This reference frame will be used hereafter to apply Newton’s second law of motion since
it is an inertial reference frame.

2.1.2 Orbital Plane Frame
The Orbital Plane Frame (Fop) is an Earth centered frame and it is used when the only
motion to be described is the one within the orbital plane.

In Figure 2.2 the reference frame is illustrated and it is defined as follow:

• The xop axis lies in the orbital plane and points toward the ascending node;

• The zop axis is normal to the orbital plane and inclined to the north direction by the
angle i representing the inclination of the orbit;

• The yop axis lies in the orbital plane and defined such that complete the right-handed
system (zop � xop � yop);
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• The origin Oop is the center of the Earth.

Figure 2.2: Orbital Plane Frame

2.1.3 Spacecraft Local Orbital Frame
The Spacecraft Local Orbital Frame (Fo) is used to describe the motion with respect to
the moving position and direction towards the center of the Earth of an orbiting body.

In Figure 2.3 the reference frame is illustrated and it is defined as follow:

• The yo axis is normal to the orbital plane and points in the opposite direction of the
angular momentum of the orbit;

• The zo axis points to nadir (from the center of mass of the spacecraft to the center
of the Earth), thus in the opposite direction of the orbit radius measured in the
Earth-Centered Inertial Frame;

• The xo axis is defined such that complete the right-handed system (zo � xo � yo);

• The origin Oo is the center of mass of the spacecraft.

Figure 2.3: Spacecraft Local Orbital Frame

10
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This reference frame may be used to describe the orientation of a spacecraft in relation to
the Earth surface.

2.1.4 Local-Vertical-Local-Horizontal Frame
The Local-Vertical-Local-Horizontal Frame (FLV LH) is a spacecraft local orbital frame
for circular orbits. In this instance the xo axis is aligned with the orbital velocity vector.

The reference frame is defined as follow:

• The YLV LH axis, also known as Hbar, is normal to the orbital plane and points in
the opposite direction of the angular momentum of the orbit;

• The ZLV LH axis, also known as Rbar, points to nadir, thus in the opposite direction
of the orbit radius measured in the Earth-Centered Inertial Frame;

• The XLV LH axis, also known as Vbar, is defined such that complete the right-
handed system and points to the same direction of the orbital velocity vector;

• The origin Oo is the center of mass of the spacecraft.

Figure 2.4: Local-Vertical-Local-Horizontal Frame

This reference frame will be used to describe the relative motion between the spacecrafts
and the target position employing the Hill’s equations.

2.2 Position dynamics
In this section the fundamentals of position dynamics are introduced and the Hill’s equa-
tions will be derived for the description of the orbital motion.

2.2.1 The two-body problem
The problem of determining the motion of two bodies as a result of their own mutual
gravitational attraction is defined by the Newton’s Law of Universal Gravitation, which

11
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states that any two bodies attract one another with a force proportional to the product of
their masses and inversely proportional to the square of the distance between them. This
law can be expressed mathematically in vector notation as:

F̄g � �
Gm1m2

r2
r̄

r
(2.1)

where G � 6.67 �10�11 m3kg�1s�2 is the universal gravitational constant, m1 and m2 are
the masses of the two bodies, and r̄ is a vector whose magnitude r is given by the distance
between the two bodies.

To determine the equation of relative motion of these two bodies, two simplifying as-
sumptions will be made with regard to the model:

1. The bodies are spherically symmetric. This way the two bodies may be treated as
though their masses were concentrated at their centers;

2. There are neither external nor internal forces acting on the system except for the
gravitational forces acting along the line joining the centers of the two bodies.

Before applying the Newton’s second law, as suggested by [21] and [22], an inertial ref-
erence frame must be found in order to measure the motion or the lack of it. For this
purpose the Earth-Centered Inertial Frame can be chosen.

Through some straightforward steps the vector differential equation of the relative motion
for the two-body problem can be derived:

:r̄ � �
Gpm1 �m2q

r2
r̄

r
(2.2)

Assuming thatm1 �M is the mass of the Earth andm2 � m is the mass of the spacecraft
and neglecting the mass of the spacecraft with respect to the one of the Earth follows that:

GpM �mq � GM (2.3)

It is convenient to define a parameter given by the product of the universal gravitational
constant and the mass of the main body, called gravitational parameter. For the Earth:

µ � GM � 3.986 � 105 km3s�2 (2.4)

As a consequence Equation 2.2 can be written as:

:r̄ � �
µ

r2
r̄

r
(2.5)

This equation will be used hereafter to describe the relative dynamics and derive Hill’s
equation. Also, it is common to define a state vector containing six elements, the first three
of them represent the position and the last three of them the velocity of the spacecraft.
Deriving in time the state vector it is possible to obtain the velocity and the acceleration
of the spacecraft given by Equation 2.5. Conversely, by integrating the components of
this vector the position and the velocity of the spacecraft can be obtained.
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2.2.2 Hill’s equations

Let us consider two bodies, the target (T) and the chaser (C). For each of the two bodies
it is possible to define a vector representing the position of the body with respect to the
origin of the chosen reference frame. If the Orbital Plane Frame is used for this purpose,
then the magnitude of this vector represents also the distance between the body and the
center of the Earth.

Since it is convenient to describe the relative dynamics of the chaser with respect to the
target a new vector s̄ is defined, representing the relative dynamics vector. An illustration
of the above is shown in Figure 2.5.

Figure 2.5: Relative dynamics vector representation

This can be expressed mathematically in vector notation as:

s̄ � r̄c � r̄t (2.6)

As far as the target is concerned the free restricted two body (FR2B) problem is consid-
ered, hence, the only force acting on the target is the gravitational force of the Earth.

F̄gpr̄tq � mt:r̄t � �mt
µ

r3t
r̄t (2.7)

From which the acceleration measured in the inertial reference frame can be derived:

f̄gpr̄tq � :r̄t � �
µ

r3t
r̄t (2.8)

Where rt is a vector identifying the position of the target given by the sum of the radius
of the Earth and the altitude of the target orbit:

rt � r` � ht (2.9)

On the other hand, as far as the chaser is concerned the restricted two body (R2B) problem
is considered, hence, in addition to the gravitational force also a generic force, taking into
account external perturbation, is contemplated.
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F̄gpr̄cq � F̄ � mc:r̄c � �mc
µ

r3c
r̄c � F̄ (2.10)

From which the acceleration measured in the inertial reference frame can be derived:

f̄gpr̄cq � f̄pr̄cq � :r̄c � �
µ

r3c
r̄c �

F̄

mc

(2.11)

Once both the accelerations of target and chaser are defined, it is possible to obtain the
relative acceleration of the chaser w.r.t. the target deriving in time Equation 2.6 twice.

:s̄ � :r̄c � :r̄t (2.12)

Therefore, substituting Equation 2.8 and Equation 2.11 into Equation 2.12 one has that:

:s̄ � f̄gpr̄cq � f̄gpr̄tq �
F̄

mc

(2.13)

To develop the difference between the gravitational acceleration of chaser and target the
acceleration of the chaser must be linearized using a first order Taylor expansion centered
on the radius of the target:

f̄gpr̄cq � f̄pr̄cq �
df̄gpr̄q

dr̄

����
r̄�r̄t

pr̄c � r̄tq (2.14)

Where r̄ is a vector whose components are:

r̄ � rrx , ry , rzs
T (2.15)

Whose magnitude is:

r � |r̄| �
b
pr2x � r2y � r2zq (2.16)

The derivative of the vector function f̄g with respect to the vector r̄ can be defined through
the Jacobian matrix M. The form of the vector function f̄g is given by:

f̄gpr̄q � �
µ

r3
r̄ �

�
�
µ

r3
rx , �

µ

r3
ry , �

µ

r3
rz

�
(2.17)

The diagonal elements of the Jacobian matrix, with i � j are:

Bf̄gpriq

Bri
� �µ rr�3 � 3 r�5r2i s � �

µ

r3

�
1� 3

r2i
r2

�
(2.18)

The extra-diagonal elements of the Jacobian matrix, with i � j are:

Bf̄gpriq

Bri
� �µ r�3 r�5rirjs � �

µ

r3

�
3
rirj
r2

�
(2.19)

Thus, considering the difference between the vector functions f̄gpr̄cq and f̄gpr̄cq one has:
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f̄gpr̄cq � f̄gpr̄tq �
df̄gpr̄q

dr̄

����
r̄�r̄t

pr̄c � r̄tq � �
µ

r3
M s̄ (2.20)

Where the Jacobian matrix M is given by:

M �

�
�����������

1� 3
r2x
r2t

3
rxry
r2t

3
rxrz
r2t

3
ryrx
r2t

1� 3
r2y
r2t

3
ryrz
r2t

3
rzrx
r2t

3
rzry
r2t

1� 3
r2z
r2t

�
�����������

(2.21)

Ultimately, the relative acceleration vector become:

:s̄ � �
µ

r3
M s̄�

F̄

mc

(2.22)

Equation 2.22 represents the relative motion of the chaser with respect to the target in the
Orbital Plane Frame, which is an inertial frame. Now the goal is to represent this motion
in a different reference frame that is the Spacecraft Local Orbital Frame, that considering
circular orbits is the Local-Vertical-Local-Horizontal Frame.

The second derivative of the vector s̄ in the Orbital Plane Frame is given by:

d2s̄

dt2
�
d2s̄�

dt2
�
d2ω̄

dt2
� s̄� � ω̄ � pω̄ � s̄�q � 2 ω̄ �

ds̄�

dt
� �

µ

r3
M s̄�

F̄

mc

(2.23)

Where s̄ is measured in the Orbital Plane Frame and its components are:

s̄ � rxop , yop , zops
T (2.24)

While s̄� is measured in the LVLH Frame and its components are:

s̄� � rx , y , zsT (2.25)

In Equation 2.23 considering the terms on the second member, the first term represents
the acceleration measured in the LVLH Frame, namely the relative acceleration, the sec-
ond and the third terms represent respectively the tangential and normal acceleration of
the LVLH Frame with respect to the Orbital Plane Frame and the fourth term represents
the Coriolis acceleration.

Also, in the Local-Vertical-Local-Horizontal Frame one has that:

ω̄ � r0 , �ω , 0sT (2.26)

r̄t � r0 , 0 , �rts
T (2.27)

15



Chapter 2. Spacecraft dynamics

Developing the terms in Equation 2.23 one has that:

$&
%

:x
:y
:z

,.
-�

$&
%
� 9ωz
0
9ωx

,.
-�

$&
%
�ω2x
0

�ω2z

,.
-�

$&
%
�2ω 9z
0

2ω 9x

,.
- � �

$&
%

ω2x
ω2y

�2ω2z

,.
-�

F̄

mc

(2.28)

It can be demonstrated that the angular velocity ω coincides with the orbital angular ve-
locity in a circular orbit, thus, it is a constant equal to:

ω �

c
µ

r3t
(2.29)

Since the angular velocity ω is a constant, its derivative in time is equal to zero. Therefore,
the following scalar equations can be obtained:

$''''''''''&
''''''''''%

:x �
Fx

mc

� 2ω 9z

:y �
Fy

mc

� ω2y

:z �
Fz

mc

� 2ω 9x� 3ω2z

(2.30)

They are the so-called Hill’s equations describing the position dynamics for circular orbits
in the Local-Vertical-Local-Horizontal Frame. They can be employed when the distance
between chaser and target is much smaller than the radius of the orbit.

The components of the vector F̄ are given by a term that takes into account the forces
applied to the chaser by the actuation system, for example the thrusters, and a term that
includes all the other external disturbances or perturbations:

$'&
'%
Fx � Fx,th � Fx,ex

Fy � Fy,th � Fy,ex

Fz � Fz,th � Fz,ex

(2.31)

2.3 Perturbations
Studying and modeling perturbations are key disciplines in astrodynamics. It is crucial to
have some mathematical models for each perturbing force. These can be analytical for-
mulas, or even tabular representations (e.g. tables of atmospheric density). In this section
the most common disturbing forces are presented. In general, external perturbations act
both on the position and on the attitude of the spacecraft, however, in this thesis work just
the ones acting on the position are taken into account.

External disturbances usually have a small magnitude with respect to internal distur-
bances, for this reason they do not have a great impact on the motion of the spacecraft in
the short term. However, these perturbations are persistent, so they can’t be neglected in
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the long term. Furthermore, these perturbations depends on the altitude of the orbit. In
the simulations are analyzed both scenarios in Geostationary Earth Orbit (GEO) and Low
Earth Orbit (LEO). In GEO it is assumed that there are not external perturbations, while
in LEO the only perturbing forces considered are the atmospheric drag and the J2 effect.

2.3.1 Atmospheric drag
Drag is caused by atmospheric particles, which interacting with the satellite decelerate its
motion. In LEO there is still some trace of atmospheric particles, however, the atmosphere
is so rarefied that the conventional fluid mechanics theories based on a continuum model
of the atmosphere are not applicable. Therefore, the interaction between the spacecraft
and the atmosphere must be treated at the molecular level.

Let us consider the following assumption:

• The momentum of molecules impacting the spacecraft is totally lost to its surface;

• The thermal motion of the atmosphere is much smaller than the spacecraft speed;

• The spacecraft is nominally non-spinning.

The basic equation for aerodynamic drag is given by the following equation:

f̄d � �
1

2
ρ v2rel

�
CD A

m



v̄rel
vrel

(2.32)

where ρ is the atmospheric density at the satellite altitude and it is perhaps the most dif-
ficult parameter to determine. It was evaluated using the exponential atmospheric model
which assumes that the density of the atmosphere decays exponentially with increasing
altitude. It also assumes a spherically symmetrical distribution of particles. According to
this model the density is given by:

ρ � ρ0 exp

�
�
hellp � h0

H

�
(2.33)

where ρ0 is the reference density, h0 is the reference altitude, hellp is the actual altitude
above the ellipsoid and H is the scale height. In Figure 2.6 the values of the atmospheric
density from 100 to 1000 km are shown. These values are taken from [23] and are calcu-
lated considering the U.S. Standard Atmosphere (1976) [24].

Considering again Equation 2.32, vrel is the relative velocity of the spacecraft with respect
to the atmosphere. CD is the coefficient of drag and it is a dimensionless quantity which
reflects the susceptibility of the spacecraft to drag forces. For spacecrafts in the upper
atmosphere it is often considered constant and equal to 2.2 (using a flat plate model).

Finally, A is the cross-sectional area of the spacecraft and m represents its mass. To-
gether with the coefficient of drag these three terms inside the brackets in Equation 2.33
represents the inverse of the ballistic coefficient which measures the ability of a body to
overcome air resistance in flight. With this definition, a low ballistic coefficient means the
spacecraft will be affected by drag a lot - and vice versa.
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Figure 2.6: Exponential Atmospheric Model

2.3.2 J2 effect
The term J2 comes from an infinite series mathematical equation that describes the pertur-
bational effects of oblation on the gravity of a planet. The coefficients of each term in this
series is described as Jk, of which J2, J3 and J4 are called zonal coefficients. However,
J2 is over 1000 times larger than the rest and has the strongest perturbing factor on orbits.

A formulation of the perturbation force for the J2 effect is given by:

F̄J2 � �m
3 J2 µ r`

2 r4

�
� 1� 3 sin2 i sin ν
2 sin2 i sin ν cos ν
2 sin i cos i sin ν

�
� (2.34)

where m is the mass of the spacecraft, J2 is a constant, µ is the gravitational parameter of
the Earth, r` is the radius of the Earth, r is the radius of the orbit, i is the inclination of
the orbit and ν is the true anomaly.

In general the force related to this perturbation is not a constant since the true anomaly is
a parameter that varies in time. To simplify the evaluation the terms into the square paren-
thesis are not taken into account since these terms do not affect the order of magnitude
of this orbital disturbance. Then, this perturbation is evaluated as a force acting along the
three axes with the same intensity. In vector notation:

F̄J2 � �m
3 J2 µ r`

2 r4

�
�11
1

�
� (2.35)

Such force perturbs just the position of the spacecraft without affecting its attitude.
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Guidance and control algorithm

This thesis work draws inspiration from a navigation scheme to perform the acquisition
maneuvers and the formation keeping of the swarm of spacecrafts called Equilibrium
Shaping (ES) technique. Such a decentralized navigation scheme is characterized by an
extreme simplicity, as a consequence it is very suitable for the path planning and control
for a complex and coupled system such as a swarm of spacecrafts. The resulting naviga-
tion scheme seem particularly flexible since the ES technique can be considered as a two
level approach decoupling the path planning and the control feedback definition.

The objective is therefore to build a real time navigation scheme giving to each agent of
the swarm the capability to decide autonomously what final target to acquire knowing just
the position of all the members of the swarm, and to safely navigate towards it without
conflicting with the other spacecrafts.

A two-step approach is considered: first, a method is developed that for the desired for-
mation defines for each member of the swarm the desired velocity vector as a sum of
different weighted contributions named behaviors, then, a control technique is considered
allowing each agent of the swarm to track the desired kinematical field. In this way the
control design is totally independent from the design of the desired velocity field, for that
reason it will be faced separately.

3.1 Equilibrium Shaping Technique
In this section a brief introduction to the mathematical modeling used for the ES technique
is presented following closely what shown in [25], [26] and [27]. This approach draws
inspiration from past published works on robot path planning and artificial intelligence.
This technique consists in building a dynamical system that has as equilibrium points all
the possible agents permutations in the final target formation, this dynamical system is
then used to derive the desired velocities for all the agents in the swarm.

The dynamic is designed as a sum of three different behavior named: gather, avoid and
dock. The mathematical expression of each kind of behavior along with a brief description
of its meaning are listed below:

• Gather Behavior: This behavior introduces N different global attractors towards
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the N targets. The analytical expression of the i th agent desired velocity given by
this behavior contribution can be written in the following form:

9x̄ gather
i �

Ņ

j�1 , j�i

cj ψGp}ξ̄j � x̄i}qpξ̄j � x̄iq (3.1)

where ψG is a mapping from positive reals to positive reals that introduces some
non linear dependency from the target distance. Letting the cj coefficient to depend
solely on the targets position and not on the specific member it is possible to make
sure that each agent of the swarm is identical to the others so that the behavior is not
affected by the agent permutations. The function ψG depends only on the distance.

• Dock Behavior: This behavior introduces N different local attractors towards the
N targets. The analytical expression of the i th agent desired velocity given by this
behavior contribution can be written in the following form:

9x̄ dock
i �

Ņ

j�1 , j�i

dj ψDp}ξ̄j � x̄i} , kDqpξ̄j � x̄iq (3.2)

The component of this desired velocity field has a non-negligible value only if the
agent of the swarm is in the neighborhood of the sink. The parameter kD is related
to the radius of the sphere of influence of the dock behavior. The function ψD is
a mapping from positive reals to positive reals that goes to zero outside a given
radius from the target. What has been said for the cj coefficient is true also for the
dj coefficient since the dock behavior is similar to the gather behavior except that it
is a local attractor and not a global one, thus it rules the final docking procedure.

• Avoid Behavior: This behavior settle a relationship between two different members
of the swarm that are relatively close to each other. The analytical expression of the
i th agent desired velocity given by this behavior contribution can be written in the
following form:

9x̄ avoid
i �

Ņ

j�1 , j�i

b ψAp}x̄i � x̄j} , kAqpx̄i � x̄jq (3.3)

The component of this desired velocity represents a repulsive force. The function
ψA is a mapping from positive reals to positive reals that goes to zero whenever the
distance between the two agents of the swarm is considered not dangerous accord-
ing to the kA parameter. Since a symmetry between all the members of the swarm
has to be maintained the b parameter is independent by the particular agent.

As stated before, the desired velocity field for a swarm of N agents and for a desired
formation is therefore defined by the following expression:

9x̄i � 9x̄ gather
i � 9x̄ dock

i � 9x̄ avoid
i (3.4)

This builds a dynamical system defined by the weighted sum of different behaviors.
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3.2 Artificial Potential Field
In this section some of the results relevant to this study for the autonomous path planning
technology using APF method developed in [1] and [28] are summarized.

3.2.1 Path planning using APF
Let us consider a continuous time synchronous swarm model consisting of N individuals
(members) in the n dimensional Euclidean space. The position in space of the i th individ-
ual is defined by xi P Rn. It is assumed that synchronous motion exists, so all the agents
of the swarm can change their position in space at the same time, and there is no time
delay.

Under these assumptions the motion dynamics of each of the swarm members is ruled by
the following law:

9x̄i �
Ņ

j�1 , j�i

ḡpx̄i � x̄jq i � 1, . . . , N (3.5)

where ḡ : Rn Ñ Rn is an odd function given by the sum of the attraction and repulsion
functions between the agents of the swarm. The function ḡ can be expressed as:

ḡpȳq � ȳ rgap}ȳ}q � grp}ȳ}qs (3.6)

where ȳ P Rn is an arbitrary vector and }ȳ} is its Euclidean norm given by:

}ȳ} �
a
ȳ T ȳ (3.7)

Another way to represents Equation 3.5 is the following:

9x̄i � �∇x̄i
Jpx̄q i � 1, . . . , N (3.8)

where J : RnN Ñ R is an artificial potential function determining the attraction/repul-
sion relationship between the swarm members, while x̄ represents the position vector of
all the individuals in the swarm. The potential function Jpx̄q is not static and depends
solely on the relative positions of the agents in the swarm.

Let us consider an artificial potential function of the form:

Jpx̄q �
N�1̧

i�1

Ņ

i�i�1

Jijp}x̄i � x̄j}q (3.9)

where Jijp}x̄i � x̄j}q is the value of the potential between the agent i th and the agent j th

and can be different for different pairs. Furthermore, it is assumed that it satisfies the
following conditions:

1. The potentials Jijp}x̄i � x̄j}q are symmetric and satisfy:

Jijp}x̄i � x̄j}q � �Jijp}x̄i � x̄j}q (3.10)
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2. There exist functions J ij
a : R� Ñ R� and J ij

r : R� Ñ R� such that:

Jijp.q � J ij
a p.q � J ij

r p.q (3.11)

∇yJap}ȳ}q � ȳ g ij
a p}ȳ}q (3.12)

∇yJrp}ȳ}q � ȳ g ij
r p}ȳ}q (3.13)

where Jap}ȳ}q and Jrp}ȳ}q are respectively the attractive potential function that
dominates on long distances and the repulsive potential function that dominates
on short distances. The two just mentioned assumptions restrict the motion of the
individuals toward each other along the gradient of these potentials (i.e. along the
combined gradient field of these potentials).

3. There exists unique distance δij at which:

g ij
arpδijq � g ij

a pδijq � g ij
r pδijq � 0 (3.14)

g ij
arp}ȳ} ¡ δijq ¡ 0 (3.15)

g ij
arp}ȳ}   δijq   0 (3.16)

Then, δij is the unique distance at which attraction and repulsion balance each other,
as a consequence:

g ij
a pδijq � g ij

r pδijq (3.17)

Any function satisfying the above assumptions results in aggregating swarm behavior.
Assuming that the motion of the agents of the swarm is given by Equation 3.5 it can be
demonstrated that the following assumptions are true.

1. The center of the swarm is stationary for all time:

x̄mean �
1

N

Ņ

i�1

x̄i � const. (3.18)

2. If Jpx̄q is bounded from below, i.e. Jpx̄q ¡ a for some a P R, then for any initial
conditions x̄p0q P RnN , as tÑ 8 we have x̄ptq Ñ Ωe, where Ωe � tx̄ : 9x̄ � 0u.
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3. The size of the swarm will be bounded and the position i th of each individual of
the swarm will converge asymptotically to a small region around its center x̄mean,
which is an hyperball of size ε:

Bεpx̄q � tȳ : }ȳ � x̄mean} ¤ εu (3.19)

Moreover, the convergence to Bε will occur in a finite time.

Despite given the initial positions of the members of the swarm, the final configuration to
which the individuals will converge is unique, a direct relation between x̄p0q and x̄p8q is
difficult to find, therefore this is a shortcoming of this approach.

Under the just mentioned assumptions about the potential function Equation 3.5 with the
pair dependent attraction/repulsion becomes:

9x̄i �
Ņ

j�1 , j�i

ḡijpx̄i � x̄jq i � 1, . . . , N (3.20)

where ḡij : Rn Ñ Rn is the attraction/repulsion function that for all pairs pi , jq satisfies:

ḡijpx̄i � x̄jq � �ḡijpx̄j � x̄iq (3.21)

For formation control the attraction and repulsion functions and with them the equilib-
rium distance δij for different pairs of individuals can be different.

To specify the desired formation uniquely with respect to translation and rotation for all
the pairs pi , jq with j � i the formation constraints }x̄i � x̄j} � dij can be used, choos-
ing each of the attraction/repulsion functions ḡijp.q such that for every pair of individuals
pi , jq one has that δij � dij .

The generalized Lyapunov function is given by:

Jpx̄q �
N�1̧

i�1

Ņ

i�i�1

rJ ij
a p}x̄i � x̄j}q � J ij

r p}x̄i � x̄j}qs (3.22)

It has its minimum at the desired formation and once the formation is achieved x̄i � 0 for
all i. If Jpx̄q is chosen as a formation function, with the just mentioned characteristics,
then the desired configuration will be achieved asymptotically.

The potential function considered for formation control that satisfies these assumptions
is the function with linear attraction and exponential repulsion terms shown in Figure 3.1
whose mathematical expression is given by:

ḡpȳq � �ȳ ra� b exp p�}ȳ2}{cqs (3.23)

where a, b and c are positive constants such that b ¡ a. The constant a represents the
magnitude of the attraction, b represents the magnitude of the repulsion and c represents
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Figure 3.1: Attraction/Repulsion function

its spread or repulsion range. However, the actual repulsion is given by some combination
from effects of both. In particular a is defined by:

a � b exp p�d2{cq (3.24)

This parameter is evaluated so that a balance of attraction and repulsion between any two
agents is achieved at the desired distance d in the final tetrahedron formation. The colli-
sion avoidance can be guaranteed by increasing the parameter b that in turn increases the
repulsive force.

By equating Equation 3.23 to zero, it is clear that the potential function switches sign at
the set of points defined by Ψ � t}ȳ} � 0Y }ȳ} � δ � sqrtpc{ ln pb{aqqu. From the plot
of the potential function in Figure 3.1 can be seen that it crosses the horizontal axis at the
desired formation separation that is the distance at which attraction balance the repulsion.

3.2.2 Spacecraft navigation using APF

The schematic diagram of path planning and control architecture used in this thesis work
is shown in Figure 3.2. The purpose of the path planning module is to avoid obstacles and
to provide a goal-oriented navigation in an optimal time period. In the Artificial Potential
Field (APF) method, the dynamic environment in which the spacecraft exists is described
by a scalar potential function. This function is shaped so that the minimum potential,
representing the sink, is placed at the desired terminal state of the vehicle dynamics and
the maximum potential, representing the source, is placed in the path constrains, such us
obstacles or other spacecrafts. Therefore, each spacecraft in the swarm represents a region
of high potential. Letting the repulsive force be in the opposite direction of the gradient
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Figure 3.2: Schematic diagram of path planning and control, adapted from [1]

of the potential field, the collision between the neighboring spacecrafts is avoided.

The Artificial Potential Field method guides the spacecraft towards the desired terminal
state without violating the defined path constraints. This is guaranteed by the fact that the
rate of descent of the potential function is rendered negative definite. The final formation
is achieved only if every member of the swarm is in a sink corresponding to the target
configuration. If compared to deliberative techniques carrying out extensive map build-
ing from raw sensory data, this approach has a way less computational load.

In Figure 3.3 it is shown how the Artificial Potential Field method works, in particular
which are the forces experienced by a spacecraft belonging to the swarm. In this example
three spacecrafts are considered (Swarm Agent 1, Swarm Agent 2 and Swarm Agent 3)
and it is desired that the Swarm Agent 2 moves starting from its current position towards
the target position avoiding the collision with the other members of the swarm. In the first
step Swarm Agent 1 exerts a repulsive force (F̄rep1) on Swarm Agent 2, while the target
exerts an attractive force (F̄att1). As a result Swarm Agent 2 moves in a new location in
the direction of the resulting force (F̄t1). In this new position, Swarm Agent 3 exerts a
repulsive force (F̄rep2) on Swarm Agent 2, and once again the target exerts an attractive
force (F̄att2). The vector sum of the two forces (F̄t2) guides Swarm Agent 2 towards the
next new location. This procedure is repeated until Swarm Agent 2 reaches its target po-
sition, thereby achieving the final desired configuration.

In this proposed approach the next location of the Swarm Agent is therefore determined
by assuming that all the other agents in the swarm are obstacles and exert repulsive forces
on it, while the target position (desired terminal state) asserts an attractive force. As a
consequence, the spacecraft is driven towards the goal or the desired terminal state by
a generalized force given by the negative of the total potential gradient. Therefore, the
Artificial Potential Field method provides a constantly active navigation that allows the
spacecrafts in a swarm to achieve the desired formation with a collision free trajectory.

In this thesis work the above mentioned theory is used to allow the spacecraft swarm to
achieve the desired formation. However, after the occurrence of the PD controller the
center of the formation x̄mean is expected to be almost stationary. As a consequence,
the position of the final configuration on orbit will depend on the initial position of each
member in the swarm. Therefore, if the desired center of the formation is not the initial
one, the desired velocity field must be modified to drive the whole formation towards a
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Figure 3.3: Schematic diagram of path planning using APF, adapted from [1]

specific point on orbit. In addition, the repulsion considered in this approach is purely
between the members of the swarm, thus an interaction with an object not belonging
to the swarm is not contemplated. Hence, a further component in the desired velocity
field is introduced to take into account a possible collision with such an obstacle. The
mathematical expression of the desired velocity field is thus given by:

9x̄i � 9x̄ swarm
i � 9x̄ cos

i � 9x̄ obs
i (3.25)

The first term in Equation 3.25 represents the desired velocity developed in Equation 3.5,
the expressions of the second and the third terms will be developed in the next sections,
following closely the approach developed in [29], [30] and [31].

3.2.3 Attractive Potential Field
To guide the whole swarm towards the desired location on orbit a paraboloid artificial po-
tential field is considered. It is a stabilizing function since the desired velocity decrease as
the spacecraft approach the target position. The mathematical expression of the attractive
potential field is given by:

Uattpx̄meanq �
1

2
katt }x̄mean � x̄ des

mean}
2 (3.26)

where katt is the proportional positive gain of the attractive gradient, while x̄mean is the
center of the swarm defined by Equation 3.18. It can be noticed that the attractive poten-
tial field depends solely on the position of the center of the swarm and not on the position
of each member of the swarm since it can be demonstrated that the center of the swarm
is stationary for all time during the maneuver should this additional attractive potential
field not be applied. Therefore, the value of the attractive potential field is the same for
all the members of the swarm as if they should move towards the desired location rigidly
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without moving w.r.t. each other. Thus, a rigid translation is expected for all the agents.

The gradient of the attractive potential field is given by the following expression:

∇Uattpx̄meanq � katt px̄mean � x̄ des
meanq (3.27)

where the term inside the parenthesis represents the vector that points from the desired
position of the center of the swarm to its current position. The component of the desired
velocity that attracts the whole swarm towards the desired position on orbit is given by
the negative gradient of the attractive potential field as follows:

9x̄ cos
i � �∇Uattpx̄meanq (3.28)

In Equation 3.28 there is a negative sign due to the fact that the spacecrafts should move
towards the areas with a lower potential.

3.2.4 Repulsive Potential Field
In order to assure collision avoidance with obstacles an hyperbolic artificial potential field
is built around each obstacle. The mathematical expression of the repulsive potential field
is given by:

Urep,ipx̄iq �

$'&
'%
1

2
krep

�
1

ρpx̄iq
�

1

ρ0


2

: ρpx̄iq ¤ ρ0

0 : ρpx̄iq ¥ ρ0

(3.29)

where krep is the proportional positive gain of the repulsive gradient, while ρpx̄iq is a
scalar parameter whose value is given by the magnitude of the vector pointing from the
center of the obstacle to the spacecraft subtracted by the radius of the obstacle as shown
in the following expression:

ρpx̄iq � }x̄i � x̄obs} � robs (3.30)

where x̄i is a vector defining the position of the i th agent of the swarm, x̄obs is a vec-
tor defining the position of the obstacle, both measured in the Local-Vertical-Local-
Horizontal Frame, while robs is a scalar parameter representing the radius of the obstacle.

Lastly, ρ0 is a scalar parameter representing the distance from the surface of the obsta-
cle, on which the repulsive potential field tends to infinity, to the surface of an imaginary
sphere, on which the repulsive potential field goes to zero. It can be seen also as the max-
imum distance at which a sensor on the spacecraft is able to recognize the presence of an
obstacle. Therefore, it is also known as the distance of influence of the obstacle. In Figure
3.4 is shown a graphic representation of the parameters introduced in this section.

As can be seen in Equation 3.29 the repulsive potential field has a non-zero value if the
distance from the surface of the obstacle is less than ρ0, otherwise its value is zero. This
means that if the spacecraft is far enough from the surface of the obstacle the presence
of the obstacle can be neglected, since knowing the position of obstacles that are too far
away from the spacecraft would be unrealistic because their presence is stated by sensors
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Figure 3.4: Vectors for defining the repulsive potential

on board of the spacecraft that have a limited range. The fact that the value of the repul-
sive potential field goes to zero at a ρ0 distance from the surface of the obstacle guarantees
a continuity of the potential field.

The gradient of the repulsive potential field is given by the following expression:

∇Urep,ipx̄iq �

$&
%
�krep

�
1

ρpx̄iq
�

1

ρ0



∇ρpx̄iq
ρpx̄iq2

: ρpx̄iq ¤ ρ0

0 : ρpx̄iq ¥ ρ0

(3.31)

where the gradient of the ρpx̄iq parameter is given by:

∇ρpx̄iq �
x̄i � x̄obs
}x̄i � x̄obs}

(3.32)

The component of the desired velocity that pushes away the single spacecraft of the swarm
from the obstacle to guarantee collision avoidance is given by the negative gradient of the
repulsive potential field as follows:

9x̄ obs
i � �∇Urep,ipx̄iq (3.33)

As stated before, in Equation 3.33 there is a negative sign due to the fact that the space-
crafts should move towards the areas with a lower potential.

3.3 Control system design
In the previous sections the guidance algorithm used in this thesis work has been ex-
tensively discussed. At this point it is necessary to introduce a control algorithm whose
purpose is to generate an input for the actuation system on board of the spacecraft to per-
form maneuvers and reach the desired position. Fundamentally, in control theory there
are two types of control loop: open-loop control (feedforward) and closed-loop control
(feedback). They give an elegant and robust solution to many control design problems.
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In open-loop control the control action from the controller is independent of the controlled
output variable. Therefore, an open-loop controller is used in simple processes because of
its simplicity and low cost, especially in systems where feedback is not critical. However,
if the system is not so easy to model or some unexpected external perturbations are acting
on the system this type of controller is not appropriate to control the system.

In closed-loop control the control action from the controller depends on the controlled
output variable. A closed-loop controller is designed to automatically achieve and main-
tain the desired output condition by comparing it with the actual condition. It does this
by generating an error signal which is the difference between the output and the reference
input. Their main characteristics are the capability to: reduce the errors by automatically
adjusting the input for the system, improve the stability of an unstable system, increase or
reduce the system sensitivity, enhance the robustness against external perturbations to the
process and produce a reliable and repeatable performance. Whilst a good closed-loop
system can have many advantages over an open-loop control system, its main disadvan-
tage is that in order to provide the required amount of control, a closed-loop system must
be more complex by having one or more feedback paths. Also, if the gain of the controller
is too sensitive to changes in its input commands or signals it can become unstable and
start to oscillate as the controller tries to over-correct itself.

3.3.1 PID Controller Structure
A particular control structure that has become almost universally used in industrial con-
trol is based on a particular fixed structure controller family, the so-called PID controller
family. They have proven to be robust in the control of many important applications
[32]. There are four types of controllers that belong to the PID controller family: the
proportional controller (P), the proportional plus integral controller (PI), the proportional
plus derivative controller (PD) and the proportional plus integral plus derivative controller
(PID) [33]. The basic idea of PID control systems is discussed hereafter.

In Figure 3.5 a generic error defined as the difference between the desired output variable
and the actual variable is considered. The error is a time dependent signal, so it is possible
to evaluate this parameter over time. Furthermore, it is possible to see the time history
of the error, measured in terms of integral of the error (highlighted area in the image).
The bigger the highlighted area, the bigger the error made in the past. This information
can be used to modify the command given to the plant. Another information that can be
exploited is the derivative of the error at time t. According to the derivative of the error
it is possible to understand if the error is decreasing, increasing or remaining constant
depending on whether the derivative is less than zero, greater than zero or equal to zero.

The PID controller can generate a command for the plant based on the value of the error,
its integral or its derivative. Their impact on the closed loop is far from independent of
each other, their effect was thought as follows:

• Proportional action: produces a contribution to the command depending on the
instantaneous value of the control error. A proportional controller can control easily
any stable plant, but it provides limited performance and nonzero steady state errors.

• Integral action: gives a controller output that is proportional to the accumulated
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Figure 3.5: Error in time, idea behind PID controller

error, which implies that it is a slow reaction control mode. The integral mode plays
a fundamental role in achieving perfect plant inversion. This forces the steady state
error to zero in the presence of a step reference and disturbance. The integral mode,
viewed in isolation, has two major shortcomings: its pole at the origin is detrimental
to loop stability and it also gives rise to the undesirable effect (in the presence of
actuator saturation) known as wind-up.

• Derivative action: acts on the rate of change of the control error. Consequently,
it is a fast mode which ultimately disappears in the presence of constant errors.
It is sometimes referred to as a predictive mode because of its dependence on the
error trend. The main limitation of the derivative mode, viewed in isolation, is its
tendency to yield large control signals in response to high frequency control errors,
such as errors induced by setpoint changes or measurement noise.

Proportional Controller

The simplest controller is the proportional controller. In this kind of controller the feed-
back control signal ūptq is evaluated in proportion to the feedback error ēptq as follows:

ūptq � KP ēptq (3.34)

where KP is the proportional gain, while the feedback error is the difference between the
reference signal and the output signal as shown in the following expression:

ēptq � x̄i{desptq � x̄iptq (3.35)

Due to its simplicity, the proportional controller is often used in all those cases when not
so much information about the system are available and the required control performance
in steady-state operation is not so demanding.

One of the limitations of such a simple controller is that the steady-state error of the
closed-loop control system will not be completely eliminated. The controller involves
only one parameter to be determined, as a consequence it is possible to chooseKP without
too many information about the plant.
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Proportional plus Derivative Controller

Most of the time, a proportional controller is not adequate to achieve a specific control
purpose such as stabilization or producing damping for the closed-loop system. In these
instances, the derivative of the feedback error signal can be taken into account into the
control signal calculation as shown in the following expression:

ūptq � KP ēptq �KD 9ēptq (3.36)

whereKD is the derivative gain, while the derivative of the feedback error is the difference
between the derivative of the reference signal and the derivative of the output signal as
shown in the following expression:

9ēptq � 9x̄i{desptq � 9x̄iptq (3.37)

The proportional plus derivative controller permits to decrease the overshoot but it re-
quires more time to reach the desired state.

Proportional plus Integral Controller

Another commonly used controller among the PID family controllers is the proportional
plus integral controller. Because of the integral action, the steady-state error existing with
the proportional controller alone is totally eliminated. The output of the controller is
given by the sum of two terms, one from the proportional action and the other one from
the integral action as follows:

ūptq � KP ēptq �KI

» t

0

ēptq dt (3.38)

where KI is the integral gain which multiply the integral of the error signal. The output
of a proportional integral control system is usually characterized by an overshoot to a step
reference signal. On the one hand, a fast control system response is achieved, on the other
hand, the percentage of overshoot increases.

Proportional plus Integral plus Derivative Controller

Lastly, the proportional plus integral plus derivative controller consists of three terms: the
proportional term, the integral term and the derivative term. The output of the controller
is given by the sum of three terms as in the following expression:

ūptq � KP ēptq �KI

» t

0

ēptq dt�KD 9ēptq (3.39)

This controller brings together the characteristics of the previous ones. It can be said that
increasing the value of the KP parameter degrades the stability of the system, decreases
the steady-state error, but increases the overshoot. Increasing the value of the KI param-
eter degrades the stability of the system, significantly decreases the steady-state error, but
increases the overshoot. Finally, increasing the value of the KD parameter improves the
stability of the system and decreases the overshoot.
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Chapter 4
Simulations and results

In this chapter the results obtained from the simulations are presented. The simulations
where conducted using a three-degree-of-freedom orbital simulator built in a Matlab-
Simulink environment. In the first section of this chapter the design of the orbital simula-
tor is briefly presented, while in the following sections the studied scenarios are analyzed.

4.1 Orbital simulator design

Figure 4.1: Representative diagram of the orbital simulator
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The representative diagram of the orbital simulator is shown in Figure 4.1. The orbital
simulator is constituted by four main elements: the guidance, the controller, the actuators
and the plant. Each element is described hereafter.

The guidance is a Matlab function whose inputs are the positions x̄i of each spacecraft in
the swarm measured in the Local-Vertical-Local-Horizontal Frame, hence, it is a twelve-
element column vector. It uses these inputs to generate the desired velocity field as ex-
plained in section 3.2. The desired velocity 9x̄i{des of each spacecraft in the swarm is
then integrated in time to obtain the desired position x̄i{des in that time step. The desired
positions and the desired velocities are then compared with the actual ones to obtain re-
spectively the error in the position x̄i{err and the error in velocity 9x̄i{err that serve as inputs
for the controller.

The controller is simply a proportional plus derivative (PD) controller that multiplies each
of the inputs for a given constant and adds up the results to obtain the theoretical force F̄i

to apply along each of the three axes.

The actuators are modeled by a saturation block on Simulink to take into account the fact
that it is not possible to provide any value of thrust, but this is bounded.

Finally, the plant is represented by the Hill’s equations which describe the position dy-
namic of the spacecrafts on orbit measured in the Local-Vertical-Local-Horizontal Frame.
Also, in this block, the perturbations given by the atmospheric drag and the J2 effect act-
ing on the plant are taken into account simply adding the disturbing forces to the control
forces provided by the actuators. The output from this block is the state vector given by:

x̄
S{C
i � rx̄i , 9x̄is

T (4.1)

where x̄i and 9x̄i are respectively the position and the velocity of the i th spacecraft. The
state vector, in particular, the positions of each of the members in the swarm are used to
evaluate the desired velocity field through the Artificial Potential Field method in the next
time step and so on until the end of the simulation. The current velocity field is instead
compared with new desired one to obtain a new input for the controller.

4.2 Simulations setup
In order to verify the effectiveness of the algorithm to guide the spacecrafts towards the
desired configuration while avoiding obstacles and to evaluate its performance a certain
number of simulations were conducted. Five different scenarios were analyzed: in the
first one the spacecrafts in the swarm are the only entities in orbit, in the second one a
fixed obstacle was also considered, in the third one the obstacle has a certain velocity
with respect to the Local-Vertical-Local-Horizontal Frame, in the fourth one the possibil-
ity by the swarm to rearrange the formation was evaluated, finally, a proximity operation
scenario was taken into account to estimate the maximum dimension of the obstacle that
the swarm of spacecrafts can avoid during the formation acquisition maneuver.

In each of the scenarios the initial conditions are evaluated as follows. The initial positions
are chosen randomly, the only criteria is that the magnitude of the distance from each
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Simulation Parameter Value

Spacecraft mass, m 14 kg

Number of S/C for tetrahedron formation, N 4

Repulsion constant in APF, b 0.0015

Repulsion range constant in APF, c 2500

Final inter spacecraft formation separation, d 50 m

Attraction constant global APF, katt 0.001

Repulsive constant global APF, krep 1000

Distance of influence of the obstacle, ρ0 200 m

Proportional gain PD controller, Kp 0.01

Derivative gain PD controller, Kd 1000

Maximum thrust, Tmax 0.05 N

Orbit radius, r 42164 km

Table 4.1: Simulation parameters

spacecraft to the target position should be the same for all the spacecrafts in the swarm,
as shown in the following expression:

x̄ 0
i � λ

ᾱi

}ᾱi}
(4.2)

where λ is a constant scalar parameter whose value is equal to the desired distance and
it is the same for all the spacecrafts, while ᾱi is a three-component vector whose compo-
nents are random real numbers between zero and one. In this way it possible to locate the
spacecrafts at the proper distance but the direction is chosen randomly.

With regard to the initial velocity, it is imposed to be the one of the free drift motion since
the orbit of the target and the one of each spacecraft in the swarm is different:

$'&
'%

9x 0
i � 3{2ω z 0

i

9y 0
i � 0

9z 0
i � 0

(4.3)

where ω is the orbital angular velocity in the circular orbit of the target and it is evaluated
as shown in Equation 2.29, while z 0

i is simply the third component of the initial position
vector shown in Equation 4.2. The other two components of the initial velocity are set
equal to zero.

In Table 4.1 the simulation parameters are shown with the respective values. As can be
seen the orbit chosen to run the simulations is a Geostationary Earth Orbit.
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4.3 No obstacle simulation

The first scenario is the simplest one because the spacecrafts of the swarm are the only
entities in orbit, therefore, there is an interaction between them but not with other ob-
jects external to the swarm. The objective of the guidance algorithm in this case is to
achieve the desired formation in the target position on orbit. The desired formation is
a tetrahedron formation, which is a regular three-dimensional shape, and the spacecrafts
representing the vertexes of the tetrahedron are equidistant from from each other.

In Figure 4.2 the trajectories of the four spacecrafts are represented in the Local-Vertical-
Local-Horizontal Frame. The initial positions are illustrated by black circles, the trajec-
tories by a black line, while the red dots represent the final position.
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Figure 4.2: Trajectories of the spacecrafts (no obstacle)

As can be seen the spacecrafts move towards the target position on orbit and at the same
time they attract each other to achieve the desired formation. How much one effect dom-
inates the other can be regulated changing the parameters b and katt. In particular, the
b parameter is the repulsion constant in the Artificial Potential Field method concerning
the term of the desired velocity that permits the formation to be acquired, so decreasing
this term will permit to achieve the formation faster, on the other hand, increasing the katt
parameter will allow the center of the formation to reach the target position faster.

In Figure 4.3 a zoom of the tetrahedron formation in shown. Using this approach the
final orientation of the tetrahedron in space can’t be decided but it depends on the initial
condition. In other words, each spacecraft is not attracted towards a specific position
since the beginning of the simulation but the desired position changes at each time step
depending on how the spacecrafts interact with each other. The center of the swarm is
illustrated using the asterisk symbol and it is located in the origin of the axes.
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Figure 4.3: Tetrahedron formation (no obstacle)

In Figure 4.4 the coordinates of the spacecrafts over time are shown, where each row
represents a different spacecraft. In particular, the actual positions are illustrated with a
continuous line, while the desired positions with a dashed line. It can be seen that the two
lines are basically overlapped, this means that the controller is able to provide the proper
command allowing the spacecrafts to follow the desired path.
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Figure 4.4: Coordinates of the spacecrafts over time (no obstacle)
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Figure 4.5: Velocity field of the spacecrafts over time (no obstacle)

In Figure 4.5 the velocity field of the spacecrafts over time is shown. Both the actual
velocities, with a continuous line, and the desired velocities, with a dashed line, are illus-
trated. As can be seen, in the first few instants of the maneuver the actual velocities are
close to zero and not equal to the desired ones because there is a certain delay due to the
inertia of the spacecrafts that at the beginning have different velocities from the desired
ones. Initially both the actual and the desired velocities increase in magnitude and at the
end of the maneuver they approach zero, as they should, to keep the formation.
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Figure 4.6: Center of the swarm position over time (no obstacle)
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In Figure 4.6 the center of the swarm position over time is shown. It can be seen that it
moves from the initial random position to the origin of the axes. The simulation time is
12000 s but the final configuration is reached in less time in this simple scenario.
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Figure 4.7: Actuators forces of the spacecrafts over time (no obstacle)

In Figure 4.7 the actuators forces of the spacecrafts over time are shown. It is noticeable
that in the first few instants some of the actuators are using the maximum thrust available.
These are the axes where the desired velocities are not equal to the actual velocities.
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Figure 4.8: Intermember distance (no obstacle)
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Finally, in Figure 4.8 the intermember distances between the different spacecrafts in the
swarm over time are shown. Since the formation is constituted by four spacecrafts, six
intermember distances exist. The term xij in the legend represents the distance between
the swarm agent i and the swarm agent j. It appears that each of the intermember distances
tends to the final inter spacecraft formation separation value equal to 50 m.

4.4 Fixed obstacle simulation

The second scenario contemplates the presence of an obstacle. The objective of the guid-
ance algorithm in this case is to achieve the desired formation in the target position on
orbit while avoiding the obstacle. First of all, a simulation without the obstacle was run to
predict the trajectories of the spacecrafts if the obstacle wasn’t taken into account. After
that, the center of the swarm is evaluated over time and the obstacle is placed where the
center of the swarm is distant 300 m from the target position. At this point the spacecrafts
in the swarm are already close to each other and they are all interacting with the obstacle
that will repulse them. The radius of the obstacle is equal to 50 m.

In Figure 4.9 the trajectories of the four spacecrafts are represented in the Local-Vertical-
Local-Horizontal Frame. The initial positions are illustrated by black circles, the trajec-
tories by a black line, while the red dots represent the final position.
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Figure 4.9: Trajectories of the spacecrafts (fixed obstacle)

It is noticeable that in this scenario, even if the formation was almost achieved and the
spacecrafts in the swarm already close to each other, at a certain point they have to sep-
arate each other to avoid the obstacle. Then, they acquire the desired formation in the
desired target position as performed in the previous scenario. However, the position of
each spacecraft in the formation is not the same as before.
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Figure 4.10: Tetrahedron formation (fixed obstacle)

In Figure 4.10 a zoom of the tetrahedron formation in shown. As mentioned before,
using this approach the final orientation of the tetrahedron in space can’t be decided but it
depends on the initial condition and on the interaction of the spacecrafts with the external
environment. Therefore, since there was an interaction with the obstacle the achieved
formation in this scenario is clearly different from the previous one.
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Figure 4.11: Coordinates of the spacecrafts over time (fixed obstacle)
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In Figure 4.11 the coordinates of the spacecrafts over time are shown. Even on this sce-
nario there is no difference between the desired positions and the actual positions since
the continuous line and the dashed line are overlapped.
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Figure 4.12: Velocity field of the spacecrafts over time (fixed obstacle)

In Figure 4.12 the velocity field of the spacecrafts over time is shown. The major changes
with respect to the previous scenario are observable within 2000 s from the beginning of
the simulation because of the interaction with the obstacle.
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Figure 4.13: Center of the swarm position over time (fixed obstacle)

41



Chapter 4. Simulations and results

In Figure 4.13 the center of the swarm position over time is shown. It can be seen how all
the coordinates decrease to reach the desired target position in the origin of the axes.
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Figure 4.14: Actuators forces of the spacecrafts over time (fixed obstacle)

In Figure 4.14 the actuators forces of the spacecrafts over time are shown. It is evident
how in this scenario the actuators are used more within the first 2000 s of the simulation
because the spacecrafts find themselves to deal with an obstacle that wasn’t expected
along the way to the target position.
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Figure 4.15: Intermember distance (fixed obstacle)
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In Figure 4.15 the intermember distances between the different spacecrafts in the swarm
over time are shown. It can be clearly identified the moment when the spacecrafts interact
with the obstacle since the intermember distance among all the spacecrafts increases.
After that, the intermember distance tends to 50 m for all of them.
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Figure 4.16: Distance from the obstacle surface (fixed obstacle)

Lastly, in Figure 4.16 the distance from the obstacle surface for all the spacecrafts in the
swarm is shown. It can be seen how the spacecrafts get closer to the obstacle but once they
enter the region of influence of the obstacle their trajectories are altered and finally they
avoid the obstacle and reach the target location. Since the obstacle is fixed with respect
to the origin of the axes, once the formation is achieved the distance from the obstacle is
constant over time for all the spacecrafts in the swarm.

4.5 Moving obstacle simulation
The third scenario investigates the presence of a moving obstacle. Once again, a sim-
ulation without the obstacle was run to predict the trajectories of the spacecrafts if the
obstacle wasn’t taken into account.

As for the second scenario, the instant when the center of the swarm is 300 m away from
the target position is consider. The aim is to make sure that the center of the obstacle
would be in this position simultaneously to the center of the swarm, but now the obstacle
has a certain velocity that is not equal to zero. A uniform linear motion is considered for
the obstacle, so its position changes over time following the following expression:

x̄obs � x̄ 0
obs � vobs pt� tobsq

ᾱobs

}ᾱobs}
(4.4)
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where t is the current time, tobs is the time when the center of the swarm is 300 m away
from the target position in the first scenario, vobs is a constant parameter representing
the magnitude of the velocity of the obstacle, ᾱobs is a three-component vector whose
components are random real numbers from zero to one. This allows to choose a random
direction for the obstacle and consider multiple circumstances in the different simulations.

When t � tobs the second term is equal to zero, as a consequence x̄obs � x̄ 0
obs. This is the

same position of the obstacle in the second scenario. The vobs parameter has been chosen
of the same order of magnitude of the spacecrafts velocities, thus 0.1 m{s.

In Figure 4.17 the trajectories of the four spacecrafts in the Local-Vertical-Local-Horizontal
Frame are shown. The initial positions are illustrated by black circles, the trajectories by
a black line, while the red dots represent the final position.

0

100

800

200

1000

300

600

400

800

500

600

600400

700

800

400
200

200

0
0

Figure 4.17: Trajectories of the spacecrafts (moving obstacle)

In the diagram is shown the obstacle in the moment when t � tobs. In this third sce-
nario the trajectories are slightly different because the obstacle is not always in the same
position in space but it is moving altering the potential field in which the spacecrafts exist.

In Figure 4.18 the achieved tetrahedron formation is shown. Once again, it is noticeable
that the acquired formation is different from the previous ones. In particular, the center of
the swarm is always in the origin of the axes but the precise position of each spacecraft in
the swarm is different from the previous scenarios.
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Figure 4.18: Tetrahedron formation (moving obstacle)

In Figure 4.19 the coordinates of the spacecrafts over time are shown. The continuous
lines, representing the actual positions, and the dashed lines, representing the desired
ones, are overlapped, so the controller is guiding the spacecrafts on the desired path. The
main difference with the other scenarios is when the spacecrafts interact with the obstacle.
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Figure 4.19: Coordinates of the spacecrafts over time (moving obstacle)
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In Figure 4.20 the velocity field of the spacecrafts over time is shown. As in the previ-
ous scenario, at the beginning of the simulation the actual velocities are not equal to the
desired ones. However, in this case a non-correspondence between the two velocities can
be noticed when the spacecrafts interact with the obstacle. Since the obstacle is moving
there is a more drastic change in the potential field.
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Figure 4.20: Velocity field of the spacecrafts over time (moving obstacle)

In Figure 4.21 it can be seen that the center of the swarm reaches the origin of the axes.
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Figure 4.21: Center of the swarm position over time (moving obstacle)
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In Figure 4.22 the actuators forces of the spacecrafts over time are shown. The highest
values of thrust are required at the beginning of the maneuver. In particular, the maximum
value available is required at the very beginning and when the spacecrafts reach the region
of influence of the obstacle.
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Figure 4.22: Actuators forces of the spacecrafts over time (moving obstacle)

In Figure 4.23 the intermember distances between the spacecrafts over time are shown. It
can be definitely recognized the moment when the spacecrafts interact with the obstacle.
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Figure 4.23: Intermember distance (moving obstacle)
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In this scenario the intermember distances with with one of the spacecrafts are slightly
higher in comparison to the third scenario because the obstacle is moving towards the
swarm so the spacecrafts have to perform a more drastic maneuver to avoid the obstacle.
After that, the intermember distance tends to 50 m for all of them.
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Figure 4.24: Distance from the obstacle surface (moving obstacle)

Lastly, in Figure 4.24 the distance from the obstacle surface is shown. It is evident how
spacecrafts and obstacle get closer to each other but once the spacecrafts enter the region
of influence of the obstacle they are pushed away from it and finally reach the target
location. In this scenario the minimum distance from the surface of the obstacle is smaller
than the second scenario where the obstacle was fixed in space. In addition, since the
obstacle is moving this distance keeps increasing until the end of the simulation.

4.6 Rearranging formation simulation
The fourth scenario tests the capacity of the guidance algorithm to handle a situation
where one of the spacecraft in the swarm is no longer operative. The initial condition for
this scenario are given by the final configuration of the third scenario, i.e. the one where a
moving obstacle was considered. The idea behind the algorithm is that it should check if
all the members of the swarm are operative and if one or more are not they can still achieve
a different configuration. In the case considered where one spacecraft is inoperative the
configuration that they can achieve is an equilateral triangle. Since at the beginning the
spacecrafts were arranged in a tetrahedron formation, the remaining three spacecrafts are
already forming an equilateral triangle. Therefore, the only thing the algorithm should do
is guiding the spacecrafts so that the new center of the swarm is in the origin of the axes.

In Figure 4.25 the trajectories of the remaining three spacecrafts in the Local-Vertical-
Local-Horizontal Frame are shown. The center of the swarm is in the origin of the axes.
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Figure 4.25: Triangle formation

In Figure 4.26 the coordinates of the remaining three spacecrafts over time are shown.
There is a correspondence between the actual positions and the desired position since the
continuous lines and the dashed lines are overlapped. The simulation was run for 8000 s
and at the end the center of the swarm reaches the target position.
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Figure 4.26: Coordinates of the spacecrafts over time (triangle formation)
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In Figure 4.27 the velocity field of the spacecrafts over time is shown. It can be noticed
that the initial velocities are already small because the initial conditions consider a situ-
ation where the formation is almost stationary. After that, the velocities keep decreasing
since the center of the swarm gets closer to the target position.
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Figure 4.27: Velocity field of the spacecrafts over time (triangle formation)

Lastly, in Figure 4.28 the new center of the swarm position over time is shown. Starting
from the old position, it moves towards the origin of the axes as expected.
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Figure 4.28: Center of the swarm position over time (triangle formation)
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4.7 Proximity operation simulation
The fifth scenario has the aim to evaluate the maximum dimension of a spherical obstacle
that the swarm of spacecrafts can avoid during the formation acquisition maneuver. To do
so a proximity operation is considered. In this scenario the initial conditions are different
from the previous ones, in fact the magnitude of the distance from each spacecraft to the
target position is no longer 1000 m but 50 m instead. The initial positions are evaluated
using Equation 4.2 and the initial velocities using Equation 4.3. Moreover, even if the
final configuration is always a tetrahedron formation, this time the final inter spacecraft
formation separation is reduced to 10 m.

As for the previous scenarios a simulation without any obstacles is conducted. This allows
to evaluate the trajectories of the four spacecrafts in the swarm that in turn permit to cal-
culate the center of the swarm position over time. The center of the obstacle is placed in
the coordinates of the center of the swarm when it is 28 m away from the target position.
This value has been chosen to avoid the possibility that one of the spacecrafts is inside
the region of influence of the obstacle once the formation is achieved, and at the same
time to make this region as big as possible to give more time to the guidance algorithm to
perform the collision avoidance maneuver and drive the swarm in the target position.

Figure 4.29: Representation of a possible initial condition

Different simulations have been run contemplating distinctive initial conditions and for
each of them the radius of the obstacle is ranging from 1 m to 10 m. The value of the
distance of influence of the obstacle is determined by the following expression:

ρ0 � 21� robs (4.5)

In Figure 4.29 can be seen how the region of influence of the obstacle and the region where
the spacecrafts can stay once the formation is achieved do not intersect. The results of the
simulations are shown in the following diagrams.
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Figure 4.30: Distance from the obstacle surface (proximity operation)
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Figure 4.31: Intermember distance (proximity operation)
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Figure 4.32: Center of the swarm position over time (proximity operation)
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Chapter 4. Simulations and results

robs rms λmin
obs rms λmin

int rms λfin
cos rms

1 6.4349 2.2554 0

2 6.0936 2.2676 0

3 5.7635 2.2818 0

4 5.4556 2.2977 0

5 5.0695 2.3143 0

6 4.6429 2.3255 0

7 4.2407 2.3007 0

8 4.6096 2.2651 0

9 2.7371 0.0004 35.3271

10 0.7546 0.0001 34.1566

Table 4.2: Proximity operation simulation results

In Figure 4.30 the distance from the obstacle surface for the ten cases is shown. It can be
noticed that for values of the radius of the obstacle less or equal to 8 m the spacecrafts
get closer to the obstacle and then avoid it because then this distance increase again. Con-
versely, in the last two cases at some point this distance oscillates around a certain value
but do not increase anymore. This is a symptom that something is not working the way it
should even if there is not a collision with the obstacle.

In Figure 4.31 the intermember distance for the ten cases is shown. Once again, consid-
ering the first eight cases the intermember distance tends to 10 m for all the spacecrafts
in the swarm, but in the last two cases they are all different. In particular, the minimum
distance between the swarm agent 1 and the swarm agent 3 goes to zero because the two
spacecrafts collide with each other. This is caused by the fact that there is a region with
a local minimum created by the combination of the attractive potential and the repulsive
potential in which the spacecrafts sink.

In Figure 4.32 the center of the swarm position over time for the ten cases is shown. Each
diagram represents the three coordinates in the Local-Vertical-Local-Horizontal Frame
and they are expected to go to zero since the target position corresponds to the origin of
the axes. As foreseen, this is the case for the first eight cases, but not for the last two cases
since the formation is not achieved.

In Table 4.2 the main results from the proximity operation simulation are presented. In
particular, for the different values of the radius of the obstacle the values of the minimum
distance from the obstacle (λmin

obs ), the minimum intermember distance (λmin
int ) and the

final distance of the center of the swarm (λ fin
cos ) are summarized. It is clear that in the

last two cases the algorithm is not able to guide the spacecrafts in the target position and
achieve the desired formation avoiding the obstacle.
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Chapter 5
Conclusions

Distributed space systems are expected to be the new tendency for space missions. This
kind of mission will require GNC algorithms that are more flexible and less computation-
ally demanding than the ones already available in literature. This thesis work answers this
need by proposing a GNC algorithm architecture for formation flying spacecraft recon-
figuration. The guidance algorithm is based on the APF method, which implements an
active collision avoidance based on a repulsive field.

The GNC algorithm has been validated through numerical simulations after building a
model in a Matlab-Simulink environment. Different scenarios have been analyzed to test
the performance of the algorithm. The first scenario is designed to demonstrate the ef-
fectiveness of the algorithm to guide the spacecrafts in the swarm from a random initial
configuration to the desired one whose center is located at a specific position in orbit
while avoiding the collision only with other members of the swarm. The second scenario
contemplates the presence of a fixed obstacle, while the third scenario a moving obstacle,
in both cases the spacecrafts should reach the desired configuration while avoiding the
obstacle. The fourth scenario analyzes the ability of the swarm to rearrange the formation
based on the number of spacecrafts, in particular, the reconfiguration from the tetrahedron
formation to the equilateral triangle formation has been considered. The last scenario
evaluates the maximum dimension of a spherical obstacle that the swarm of spacecrafts
is able to avoid in a proximity operation situation during the maneuver.

In some simulations regarding the proximity operation scenario the agents could not reach
the final desired formation and got stuck in an undesired equilibrium position. From the
Equilibrium Shaping it is known that the final relative geometry is an equilibrium point for
the system but the global stability is not guaranteed. In fact, depending on the choice of
the potential function, other equilibrium points may exist and be stable as well, driving the
swarm towards an undesired configuration. This problem is commonly referred to as local
minima problem and there are several ways it can be dealt with. A very effective approach
consists in activating a procedure when the spacecraft evaluates its desired velocity to be
zero [25]. Then, the agent should check if its current position allows the desired final
configuration to be achieved. If this is not the case, a possibility would be to change the
value of the constant parameters in the potential function just for the interested agent.
Consequently, the presence of these local minima increase the fuel consumption for the
spacecrafts that get stuck in one of them. Future work to improve the reliability of the
algorithm should focus on the implementation of this procedure.
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