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Abstract

For the past few years, insects and hummingbirds are inspiring a new generation of
drones called Flapping Wing Micro Air Vehicles (FWMAVs). Flapping wings show
excellent aerodynamic performance, adapt to very different wind conditions and allow
unmatched aerobic maneuvers. These features could be valuable for flapping drones in
various applications including rescue, military and civil missions.
In the design of optimal flapping motions, simplified simulation tools are often used.
Quasi-steady models estimate the aerodynamic performance of the wings and 6 degrees
of freedom equations predict the resulting motion of the drone. While fast, those
models result in different trajectories compared to real experiments. In addition, the
models don’t provide details on flow physics. The present thesis aims to develop a
high-fidelity, multi-physics environment that couples CFD to accurately compute the
wing forces and a multibody dynamics system (MBS) to accurately predict drone
trajectories.
Different coupling strategies between CFD and MBS are first evaluated in light of
recent publications. The rigid body dynamics libraries already implemented in the
CFD software OpenFOAM are used.
The rigid multibody system is defined with the forward dynamics formalism and solved
with the projection method. The dynamics is time-integrated and subsequently, the
CFD solves the laminar flow around the flapping drone to compute the generated
aerodynamic forces. The CFD uses the overset meshing technique to move the grid
according to the wing motion. The latter is imposed either through a direct approach,
which drives the dynamics of the wings within the projection method or an indirect
approach, which restraints the wing torques according to a PID controller. To evaluate
the two strategies, a 2D system is defined with a flapping and pitching airfoil combined
with a two degrees of freedom body (vertical and horizontal translations). The results
demonstrate that the direct approach provides an efficient and flexible way to impose the
flapping motion. The simulations allow to capture complex unsteady flow mechanisms
and reveals the aerodynamic interaction between the body and the wing. The multibody
environment is then extended to a 3D, six degrees of freedom point drone with elliptical
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wings. Simulations are performed for a few flapping motions in order to evaluate their
influence on the drone trajectory.
The present work provides an accurate environment to simulate the flight of flapping
drones and investigate the complex flow phenomena manipulated by flapping wings.
The presented work could then serve as a benchmark to highlight the limits of simplified
aerodynamic models in different flight scenarios.
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Chapter 1

Introduction

The capacity to effectively move across space of birds, bats, and insects represent one
of nature’s best experiments in locomotion. While aviation technology has grown fast
over the last century, the evolution of nature’s flyer over the previous 150 million years
is still astounding. Natural flyers outperform the most latest generation of aircraft
both in terms of performance and efficiency. They routinely endure G-forces of over 10
G, with some experiencing up to 14 G, achieve a roll rate of more than 5000 degrees
per second, and reach velocities of 75 body lengths per second - feats that are currently
impossible with existing technology. A supersonic aircraft travels around 32 body
lengths per second, a highly aerobatic aircraft rolls at approximately 720 degrees per
second, and the highest permissible positive G-force in most general aviation aircraft
is 4-5 G.
Flapping-wing micro air vehicles (FWMAVs) are a type of drone that imitates the
flapping-wing flight of birds, bats, and insects. The usage of micro air vehicles (MAVs)
for both commercial and military purposes has increased in recent years. However,
conventional fixed wing aircraft are not well-suited for MAV applications due to their
poor aerodynamic performance at low Reynolds numbers (Re) and their inability to
hover. Rotary-wing aircraft are also not ideal for MAVs due to their noise emission,
vulnerability to wall-proximity effects, and inefficiency at low Reynolds numbers. In
contrast, flying insects perform very well at low Reynolds numbers, typically from
10 to 5000. Biofluiddynamicists have attempted to explain the underlying physical
phenomena both in the quasi-steady limit and the fully unsteady regime. The quasi-
steady limit primarily applies to large birds that soar and glide, such as eagles and
osprey. During the flight, the wings are rigid and static, similar to those of conventional
aeroplanes. With these flyers, flapping is confined to certain functions, such as take-off,
landing, and stabilisation. Smaller birds and insects that continually flap occupy the
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opposite, unstable flying, extreme of the aerodynamic range. According to empirical
correlations, the transition between quasi-steady and unsteady flying occurs at around
15 cm of wing span, which is also the arbitrary design limit for micro air vehicles
(MAVs).
FWMAVs have the ability to fly in restricted spaces and access regions inaccessible to
larger drones or other aerial vehicles, making them ideal for search and rescue, envi-
ronmental monitoring, and military reconnaissance. These performance characteristics
are derived from those of small birds and insects.
Bird and insect flight is characterised by the cyclic flapping of the wings, which gener-
ates sufficient lift and thrust to support the body in forward or hovering flight. Sudden
acceleration and deceleration of the wings and large amplitude motion and result in
strong inertial forces, unsteady mechanisms, and major differences from traditional
linear aerodynamic and aeroelastic theories.
Efficient and accurate aerodynamic modelling of flapping drones is an unanswered
question in the current literature. Frequent variations in direction, velocity, and wing
shape result in a highly complex problem. The resulting coupled and nonlinear aero-
dynamics is caused by the unsteady flow around the wings. The unpredictability of
its governing characteristics causes a challenging interaction between the wings and
the surrounding flow. Sudden changes in the angle of attack or speed result in rapid
variations, instabilities and fluctuations in the generated forces and moments. These
peaks can lead to incorrect predictions. One of the issues posed by this high level of
complexity is the difficulty in generating precise and fast models that can be used for
control or design purposes.
In the discussion of flapping aerodynamics, simplified models are often used due to the
difficulty of modelling the complex interactions between the wings and the surrounding
flow. However, stationary or quasi-stationary models may not necessarily yield accurate
findings. Stationary models assume that the flow conditions above the wings remain
constant across time. Nevertheless, its low fidelity findings make this method seldom
used to research flapping aerodynamics. Quasi-steady (QS) aerodynamics theory is
often employed instead. It is regarded as an appropriate balance between simplicity
and accuracy, particularly in control applications. This method links the instantaneous
forces acting on the wing with its instantaneous states of wing kinematics and flow
field. Nevertheless, the QS model does not account for historical effects. The reliance
of forces and moments on the recent history of wing motion and flow field is neglected.
Frequently, the QS aerodynamic model and the six degrees of freedom (6DOF) dynamic
model are used together. The 6DOf model describes the relationship between the
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dynamics of a rigid body and aerodynamic forces acting on it. It is a mathematical
model that defines the motion of a rigid body in a three-dimensional domain, assuming
it has six degrees of freedom - three translations and three rotations. The 6DOF
model accounts for rigid translations and rotations, it keeps into consideration the
body inertia and external forces. However, the wing’s inertia is often neglected and the
body dynamics is averaged over time. Moreover, it does not consider body deformation.
In addition, the accuracy of the 6DOF model is also limited by the reliability of the
aerodynamic forces computed by the QS model.
One kind of QS model [7] was developed in the frame of Romain Poletti’s PhD thesis
to which this work contributes.
To overcome the limitations of existing QS methods, a high-fidelity, multi-physics
environment has been proposed to combine computational fluid dynamics (CFD) and
a multibody dynamics system (MBS) to predict drone trajectories more reliably and
to provide a more detailed understanding of the flow physics. Based on the solution of
the Navier-Stokes equations, the CFD model can calculate the forces acting on the
wings and be used to drive the MBS in predicting the drone’s motion. The high-fidelity
environment presented provides significant advantages over the QS model. The forces’s
computation is no longer linked to empirical correlations or simple analytical models.
Additionally, the Navier-Stokes equations take into account history effects, which are
not considered in the QS model, further increasing the degree of accuracy in the
calculations. A high level of accuracy is strongly advantageous for analysing the flow
field during complex manoeuvres or in extremely unsteady flows.
In addition, this method enables the dynamic and aerodynamic interaction between
the wing and the body to be considered. This interaction significantly affects the
flying characteristics of the drone, and taking it into account constitutes a substantial
improvement.

The proposed high-fidelity, multi-physics environment has the potential to provide
new insights into the aerodynamics of drones and their flight characteristics. Fur-
thermore, it can be used to optimise the wing’s flapping motion as a function of the
resulting drone motion, thereby identifying the characteristic parameters of maximum
efficiency flight.

To achieve these results, the research is structured into six chapters, including
the present introduction. The second chapter introduces flapping aerodynamics by
describing the principal characteristics and evaluating the existing literature on low
and high-fidelity aerodynamic and dynamic models.
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Chapter 3 delves into the modelling theory of dynamic and aerodynamic systems,
providing detailed explanations of the concepts involved.
The fourth chapter explains the coupling devised techniques between CFD and the
dynamic solver, with a detailed overview of the CFD environment in which these
strategies were developed and tested.
The findings produced by applying the specified technique to an increasingly sophisti-
cated 3D simulation are then shown and debated in the fifth chapter.
The paper ends with some concluding remarks on the work performed, the results
obtained and a brief introduction to future work.



Chapter 2

State-of-the-art of flapping flight
dynamics simulation

This chapter begins by introducing the main characteristics of flapping aerodynamics.
This presents complex properties are often estimated using mathematical approaches
that permit obtaining findings of varying reliability. In the chapter, aero and dynamics
mathematical models for the study of FWMAVs are explored. A comparison of these
methods with high-fidelity techniques is provided at the end of the chapter.

2.1 Preamble

2.1.1 Notation and basics of flapping aerodynamics

Insect wings have two translational stages, downstroke and upstroke, and two rotating
phases, pronation and supination. Rotating the wing during stroke reversals keeps
the leading edge leading. Three motion angles are used to explain the kinematics of a
flapping wing (see Fig.2.1): the flapping/translation angle (ϕ) along the stroke plane,
the pitching angle (α ) and the elevation angle (θ) of the stroke plane. The full stroke
amplitude is represented by Φ. This research concentrates on hovering conditions, and
the elevation angle is set to θ = 0° since it is recognised that this angle is of minor
contribution to force production.

Furthermore, the flapping flight is described by some dimensionless parameters.
The reduced frequency k is a measure of the degree of unsteadiness, it is given by

k = 2πfc
2Uref

.
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Fig. 2.1 Parameters involved in the flapping of an ellipsoid wing [7].

It represents the ratio between the flapping velocity and the forward velocity. As there
is no forward speed in hovering flight, the reference speed Uref is defined as the mean
wingtip velocity 2ΦfR, and the reduced frequency can be reformed as

k = 2πfLref

2Uref
= π

ΦAR

in which the aspect ratio (AR) is a relation between the wingspan b and the wing area
S,

AR = b2

S

The Reynolds number (Re) is an additional important dimensionless variable. It
represents the ratio between inertial and viscous forces and governs the transition from
laminar to turbulent flow. Its definition is:

Re = UrefLref

v

where v is the fluid’s kinematic viscosity and the reference velocity Uref is the free-
stream velocity during forward flight. In hovering condition, Uref is defined by the
distance spanned by the radius of the second moment of area R2 =

ñ
1
S

s R
0 cr2dr over

a flapping period, where r is the local spanwise coordinate. At θ = 0◦, the Reynolds
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number for a 3D flapping wing in hovering flights is defined as:

Re = Urc̄

v
= 2fΦR2c̄

v

The Reynolds number for a 2D hovering wing is computed using the mean plunging
velocity and it is given by

Re = UrelLref

v
= 4fha(c)

v

Where the mean chord length is c̄ and ha is the plunging amplitude.
The low Reynolds numbers that characterise the aerodynamics of MAVs result in
laminar flow. Despite its laminar behaviour, the flow field is very complex owing to
the severe unsteady state.
Many different unsteady aerodynamic mechanisms for force generation about flapping
wing aerodynamics have been identified in the literature. Chin and Lentink (2016)
[9] outline five important aerodynamic processes that are involved in the generation
of aerodynamic forces – added mass, absence of stall, rotational circulation, clap and
fling and wing wake interactions.
As the wing accelerates and decelerates during stroke reversal, it must likewise accelerate
and decelerate the surrounding air. The air nearest to the wing has the greatest
acceleration and deceleration, resulting in a pressure force acting on the wing. This
impact is felt as an increase in wing mass and it is often described theoretically as
a time-dependent rise in the wing’s inertia. This contribution increases the forces
associated with the wing’s acceleration, hence enhancing the production of aerodynamic
forces.
When the wing translates during the downstroke and upstroke at a high angle of attack,
air flow separates around the leading edge, and the separated boundary layer rolls
up to form a stable vortex (Leading edge vortex - LEV) that stays attached to the
translating wing. Behind this vortex, the flow reattaches to the wing, preventing the
wing from stalling and allowing it to impart a higher downward momentum to the fluid.
Centripetal and Coriolis accelerations, which result from the wing’s rotation around
its base, drive axial flow over the wing span contributing to the LEV stabilisation.
This mechanism is absent in fixed wings translating at high angles of attack; the LEV
continues to increase until the flow can no longer reattach and the flow detaches from
the wing. During the mid-downstroke and mid-upstroke, the principal mechanism for
enhancing lift is stall avoidance through LEV stabilisation.
Rotation circulation refers to the circulation produced by the wing’s rotation during
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pronation or supination. The duration and timing of the rotation concerning the
wing stroke contribute to the increase or decrease in the forces generated by the wing
movement. Rapid symmetrical rotation (the wing flips during stroke reversal) has the
maximum performance since it takes the least amount of power per unit lift and drag
increases monotonically with rotation duration ([23], [22]).
Finally, the Clap and fling and wing wake interaction mechanisms also increase flying
performances. The former happens when the leading edges of the wings are in a tight
position at the conclusion of the upstroke. The opposite circulation of the two wings is
cancelled, reducing the vorticity shed from the trailing edge during the next stroke.
Furthermore, the contact with its wake, after stroke reversal, enables the wing to collect
vorticity lost during the preceding stroke. This increases the overall efficiency of force
generation by recovering a portion of the energy lost.

2.2 Low Fidelity approach

The essence of aerodynamic modelling is to provide a mathematical framework, consis-
tent with flow physics, for characterising the most important flow phenomena. These
models describe the physics of the phenomenon while eschewing mathematical oversim-
plifications. Aerodynamic modelling advances from first principles, but incorporates
several simplifications to the fundamental equations of fluid mechanics, which are
justified by the known flow phenomenology and/or geometric and kinematic sym-
metries. The resulting mathematical model must have useful predictive capabilities,
and experimental data validation is essential for determining whether the simplifica-
tions are acceptable. In aerodynamic modelling, rather than explicitly applying the
Navier–Stokes equations, the flow to be modelled is first experimentally investigated,
and the observed phenomena and symmetries are then used to simplify the modelling
process.

2.2.1 Aero model

To calculate the aerodynamic forces and moments on a flapping wing for varied wing
kinematics and flight regimes, several simplified aerodynamic models have been devised.
These models are crucial for making quick predictions, which are necessary for real-time
model-based control and design optimisation. These approaches assume an incom-
pressible and laminar flow in which only the most important unsteady mechanisms are
examined - the bound LEV, the vortex sheet shed from the trailing edge and the at-
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tached part of the flow following the wing motion. Moreover, the kinematics considered
are periodic, with spatial and temporal symmetry. Even with these simplifications, the
resultant issue is non-trivial due to the vortical and unsteady flow.
The aerodynamic modelling techniques can be classified as steady, quasi-steady, semi-
empirical and unsteady methods. Ansari et al. (2006) [3] provides a literature
assessment of modelling techniques.

2.2.1.1 Steady models

Steady models usually involve actuator disk or vortex-based approaches. An actuator
disk is an idealised surface that continually transfers momentum to a fluid by sustaining
a pressure differential across itself. This momentum theory accounts for both axial
and rotational changes in the velocities at the disk but does not explain how these
changes occur. The wings’ beat frequency is considered high enough so that the forces
appear constant, the stroke plane of the wings is approximate to actuator disks and
the momentum-based theory may be applied.
Steady models based on vortex-based approach are a bit more evolved. Sunada and
Ellington (2001) [25] used a grid of miniature vortex rings to model the wake’s vortex
sheets. At the centres of these grid cells, the Laplace equation was satisfied by requiring
that the induced velocity due to the circulation of all vortex rings equals that due to
wake convection.
These techniques are seldom employed in the study of flapping flight because of their
inability to assess temporal or spatial fluctuations during a wingbeat. For the first case
provided, the stroke-plane angle and disc loading are the only significant parameters
and it is not possible to estimate lift forces given wing kinematics or wing shape. While
the vortex-wake approach is more sophisticated, it has comparable drawbacks since it
disregards the generation of vortex sheets, which is vital to any wing-design research.

2.2.1.2 Quasi-steady models

Quasi-steady models allow for estimating aerodynamic forces assuming that only instan-
taneous wing kinematics such as velocities and accelerations, influence fluid dynamic
forces; time history is therefore neglected. Since A quasi-steady model simplifies the
majority of aerodynamic mechanisms, it is of special interest. However, this model
excludes wake capture forces since they are poorly understood and intrinsically reliant
on flow history.
Osborne (1951) [21] is credited for pioneering quasisteady approaches. The moment
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theory discussed above is the base of Osborne’s theory. It compares the flap power
needed by the wing with the rate of change of kinetic energy entering the slipstream.
Blade-element analysis discretized the wing into chordwise sections, and quasi-steady
aerodynamics calculated forces and power. Fast forward flight was usually examined
because unsteady effects decreased as flight velocity rose and the quasi-steady assump-
tion is appropriate. Yet, this strategy has been proven to be relatively inaccurate also
under these situations.
Recently, Ansari (2004) [4] enhanced quasisteady models for insect-like flapping flying.
Its approach is based on a blade-element method. For modelling the tip vortex a
coupling between a quasi-steady aerodynamic model and a Glauert-type analysis [14]
has been performed. Each wing element was exposed to the standard quasi-steady
treatment, with the addition of downwash caused by the tip vortex. This reduces the
local angle of attack (and, thus, lift) and gives an estimate of induced drag. Following
the Glauert study, circulation was represented by a Fourier series but adjusted to
account for the radially variable character of flapping-wing flow. The resulting formulae
obtained for downwash is

wi(θ) = −ϕ̇R
C ∞Ø

n=1

A
nAn

cos θ sinnθ
sin θ

B
+

∞Ø
n=1

(An cosnθ)
D

where θ is a parametric variable of a general point along the wing. The downwash
equation may be integrated into the total lift L and (induced) drag Di formulation,

L =
Ú R

−R
ρUΓdr Di =

Ú R

−R
ρwiΓdr

The circulation Γ has been changed to account for the influence of downwash wi.

Although being a quasi-steady model, the technique has great potential, partic-
ularly as a way of comparing and evaluating the various geometric and kinematic
factors associated with insect-like flapping wings. Over time, support for quasi-steady
approaches has diminished, particularly when explaining the hovering flying of insects.
This is the consequence of excessive simplification and the omission of critical unsta-
ble aerodynamic effects. The widespread reliance of small-angle approximations (e.g.
CL = 2πα) is a shortcoming shared by a vast majority of quasi-steady approaches. The
angle of attack of the insect wing is seldom less than 35 degrees, making the application
of these estimates inappropriate.
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2.2.1.3 Semi-empirical model

Semiempirical models utilize coefficients that are derived either from experimental
data or Computational Fluid Dynamics (CFD) simulations. Although simplified
aerodynamic models such as quasisteady methods provide a good approximation of the
forces generated during an insect’s flapping cycle, they are unable to predict nonlinear
forces with high accuracy. To remedy this, empirical corrections are introduced to
improve the accuracy of predictions. These models are constrained to the conditions
on which they are developed by the use of empirical coefficients. Such models are
not suitable for predicting other flow conditions or extending beyond the range of
kinematics and conditions of the flow included in the calibration. A major drawback
of semiempirical models is their questionable predictive power. As they rely on data
points, they fail to reflect the relevant flow physics properly. Interpolating between the
data points or extrapolating beyond

2.2.1.4 Unsteady models

The most important quality of this class of methods is modelling the wake. Two
separations are included, one from the leading edge for the LEV and one from the
trailing edge to represent the typical wake. In all of these methods, the Kutta–Joukowski
condition at both wake-inception locations is necessary to pair the twin separations.
Unsteady models introduce functional dependence on the flapping kinematics and
flow history. They are developed from aerodynamic theory and do not depend on the
approximation of small pitch angles. However, the flow separation resulting from the
stroke reversal compromises the validity of the Kutta-Joukowski condition, undermining
the validity of these models.
These models are computationally more costly and still struggle with the span-wise
motion of the LEV and other three-dimensional phenomena. They are consequently
seldom used in the research on flapping flight.

2.2.2 Dynamics model

Commonplace assumptions in the literature of dynamics and control of flapping MAVs
are extensively discussed in Taha et al. (2012) [26]. The dynamics models are based
on the two key concepts of neglecting wing inertia and averaging. From a dynamics
perspective, using the cycle-average aerodynamic loads transforms the system from a
non-autonomous, time-variant, system to an autonomous system. Non-autonomous
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dynamical systems are expressed as

χ̇ = ϵ · f(t, χ, ϵ) (2.1)

Assuming that f is T -periodic in t, the averaged dynamical system corresponding to
Eq.2.1 is written as

˙̄χ = ϵ · f(χ̄)

where f(χ) = 1
T

s T
0 f(τ, χ, 0)dτ .

In the case of flapping MAVs, the flapping period T is represented by ϵ. The faster the
flapping is, the smaller the average error is, and vice versa. The central concern is the
distance between the flapping frequency and the body’s own resonant frequencies. In
cases when the flapping frequency is much higher than the body’s natural frequencies,
the body will be influenced mostly by average forces. In this instance, neither the
short-period mode nor the phugoid would be influenced by the oscillations of the
aerodynamic forces. As long as the average is correct, the effects of wing inertia may be
ignored on an average basis. By neglecting the wing’s inertia, the forces and moments
caused by the weight of the wings are substituted with their cycle average and an
additional perturbation component. Furthermore, the inertia forces and moments of
the wings due to flapping are disregarded, it is noteworthy that this latter contribution
is almost zero when considering symmetric upstroke-downstroke flapping [24].
Making use of these simplifications the dynamic equations of motion are identical to
those employed for conventional aircraft [20]; that is,

m(u̇+ qw − rv) = −mg sin θ +X

m(v̇ + ru− pw) = mg sinϕ cos θ + Y

m(ẇ + pv − qu) = mg cosϕ cos θ + Z

Ixṗ− Ixz ṙ + (Iz − Iy) qr − Ixzpq = L

Iy q̇ + (Ix − Iz) rp+ Ixz

1
p2 − r2

2
= M

Iz ṙ − Ixzṗ+ (Iy − Ix) pq + Ixzrq = N

ψ̇ = (q sinϕ+ r cosϕ)/ cos θ
θ̇ = q cosϕ− r sinϕ
ϕ̇ = p+ (q sinϕ+ r cosϕ) tan θ

(2.2)

Equation 2.2 comprises nine dynamic equations for the body Euler angles ( ψ, θ, ϕ
), the body velocities (u, v, w) and the angular velocities (p, q, r). Furthermore, these
equations are dependent on the inertia of the body (Ix, Iy, Iz) and the aerodynamic
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moments in the body frame (L, M N).

It is important to note that not all flapping insects exhibit the characteristics
described above. In cases of relatively low flapping frequency (10 Hz), applying these
approximations may not be reasonable or justifiable.

2.3 High fidelity approach

The counterpart to the mathematical models presented in the preceding section are
high-fidelity techniques. In contrast to an aerodynamic model that dismisses wake and
historical effects, a high-fidelity method involves solving the Navier-Stokes equations.
This enables precise fluid flow predictions throughout the system. While computation-
ally intensive and requiring numerical methods for resolving the equations, this method
gives a comprehensive description of the complex fluid dynamics of flapping flight.
From the standpoint of system dynamics, it is also feasible to overcome the mentioned
approximations. Utilizing equations derived from the Newton-Euler equations makes
it possible to account for the inertia and mass of the wings while avoiding the need of
averaging.
A high-fidelity approach applied to the study of flight flapping was realised by Bakhshaei
et al. (2020) [6]. This approach is applied to both a simplified and a complex bee
model. Wing’s pitching and flapping angles are prescribed and the dynamics of the
system is studied in the three directions.
The aerodynamic loads of the wings and main body are computed by solving the
Navier-Stokes equations within the FLUENT software. Furthermore, the research con-
tains an additional software with a distinct solver for resolving the dynamic equations
of the system. The output of this solver is the system’s characteristic translational and
angular velocities.
The data from the two software must be combined such that the motion of the system
is a function of the aerodynamic forces and the aerodynamic forces are calculated
according to the motion of the system. Therefore an intermediate algorithm is used to
transfer the data with also the responsibility of synchronising time-steps of the two
different software.
The simulation’s time step plays an important role in the resulting accuracy of the
numerical resolution of the Navier-Stokes equations. In Bakhshaei’s study, a constant
time step is implemented to facilitate the synchronization of the two software. How-
ever, in unsteady flows that involve flow separation, vortices shedding, and other flow
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instabilities, the time scales associated with these events can be much shorter than the
overall flow time scale. In such cases, using a constant time step may not be able to
capture the fast transients and small scales, and the simulation may be under-resolved.



Chapter 3

Theory of rigid body dynamics in
CFD

Rigid body and multi-body dynamics refers to the study of single or multiple rigid
bodies in motion and their interactions with each other and with a surrounding fluid.
The interaction that occurs between CFD and the dynamics solver may be understood
by looking at the simplified graph 3.1.

Fig. 3.1 Simplified diagram of the interaction between CFD and dynamics solver.

This chapter focuses on the theory of rigid body dynamics in CFD simulations.
This chapter describes the theory behind the modelling of dynamical system (Section
3.1) and then CFD (Section 3.2). It provides an overview of the fundamental principles
of rigid body dynamics and their application to simulate complex fluid fields.
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The rigid body dynamics theory was described in detail by Featherstone (2007) [12].
This chapter is based on Featherstone’s research. A useful insight is also chapter 4 of
Mirtich’s doctoral thesis [18], where the theory proposed by Feartstone is taken up and
described.

3.1 Rigid-body dynamics

Rigid body dynamics refers to the study of the motion of an object in three-dimensional
space with respect to a fixed reference frame, without considering the deformations
that may occur in the object. This approach is widely used in CFD simulations to
predict the motion of a single body or multiple bodies in a fluid.
This section of the chapter focuses on the principles of rigid body dynamics, it covers
the equations of motion for a rigid body, including translation and rotation, and their
interactions with the surrounding fluid.

3.1.1 Spatial Vector Algebra

Spatial vector algebra is a mathematical tool that is commonly used to describe the
motion and forces acting on a rigid body in three-dimensional space.
Generally, two vector equations are needed to express the equation of motion for a
rigid body:

f = maC and nC = Iω̇ + ω × Iω. (3.1)

The relationship between the force exerted on the body and the linear acceleration of its
centre of mass is expressed in the first equation. The second expresses the relationship
between the body’s angular acceleration and the moment applied to it, referred to its
centre of mass.
Using spatial vector notation the linear and angular components of rigid-body motion
are combined in a 6D vector. Therefore, the equation of motion for a rigid body can
be rewritten as

f = Ia + v ×∗ Iv, (3.2)

where f̂ is the spatial force acting on the body, v̂ and â are the body’s spatial velocity
and acceleration, and Î is the body’s spatial inertia tensor. The symbol ×∗ denotes a
spatial vector cross product.
Equations of motion may be developed quickly using the spatial vector notation.
Considering a rigid body in motion with a frame F attached to it, let v, ω, a, and
α be the linear and angular velocity, and linear and angular acceleration of frame F
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relative to an inertial frame O. Then the spatial velocity v̂ and spatial acceleration â

of the body, expressed in frame F , are given by

v̂ =
 ω

v

 â =
 α

a

 (3.3)

Now considering a rigid body moving through space with two frames F and G attached
to it, where G is not rotated but only displaced relative to F . The linear velocities
of the origins of these frames are vF and vG, the common angular velocity of the
frames is ω and r is the offset vector from the origin of F to the origin of G. Then
vG = vF + ω × r, and so

v̂G =
 ω

vG

 =
 ω

vF − ω × r

 =
 1 0

−r̃ 1

  ω

vF

 . (3.4)

The spatial matrix on the right-hand side is of dimensions 6 × 6 because 1 is the
3 × 3 identity matrix and r̃ is:

r̃ =


0 −rz ry

rz 0 −rx

−ry rx 0


If G is also rotated relative to F , a rotation matrix R that transforms vector coordinates
in F to vector coordinates in G is needed. Premultiplied the vector on the right-hand
side by this spatial matrix, the rotation of G relative to F is considered. R 0

0 R


Based on the concepts outlined up to this point, it is possible to state that the 6 × 6
spatial transformation matrix from F to G is written as follows,

GX̂F =
 1 0

−r̃ 1

 R 0
0 R

 =
 R 0

−r̃R R

 (3.5)

Therefore 3.4 can be written
v̂G =G X̂F v̂F (3.6)
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A spatial transformation matrix converts a spatial vector’s coordinates from one
reference frame to another. The matrix GX̂F transforms spatial accelerations from
frame F to frame G in the same way as it transforms velocities.
When 3.4 is applied to the case of a spatial force, the following equations are obtained:

f̂G =
 f

τG

 =
 f

τF − r × f

 =
 1 0

−r̃ 1

 f

τF

 . (3.7)

3.1.2 Modelling Rigid Body Systems

Fig. 3.2 Connectivity graphs of a crank-slider linkage[12]

A rigid-body system is a collection of component parts that may contain rigid bodies,
joints, and other force elements. The system’s joints supply the required kinematic
restrictions. Joint refers to any potential kinematic link between two rigid bodies. This
section discusses the components of the rigid-body system. This description is referred
to as the system model; it pertains to the system itself and is supplied as an input to a
model-based automated equation generator.
The system model consists of several elements, including nodes and arcs. Nodes in this
context represent bodies, whereas arcs indicate the connections between bodies. One
node represents the base, which is a stationary body, whereas the rest nodes represent
moving bodies.
In addition, the graph representing the system model is both undirected and connected,
guaranteeing that all bodies are connected by joints and that there is a continuous path
between each body. Figure 3.2 depicts a graphical illustration of connection graphs.

When two bodies are connected at a joint, their relative motion is restricted. A
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Fig. 3.3 Geometric model of a rigid-body system [12]

comprehensive description of the restriction involves two pieces of information: the
range of motion permitted by the joint and the position of the joint in relation to each
body. The model describes the initial. The latter is characterized by the geometry of
the system. A geometric model of a rigid-body system describes the relative location of
every joint on every rigid body. Figure 3.3 depicts a geometric model for a rigid-body
system consisting of a fixed base, B0, three moving bodies, B1 to B3, three tree joints,
J1 to J3, and one loop joint, J4. Each moving body is integrated with a coordinate
frame that determines its local coordinate system. These frames are labeled F1 through
F3, and the coordinate systems that they establish are called body coordinates, or link
coordinates.
Embedded in the base is a frame F0 that defines the absolute, or base coordinate
system for the whole rigid-body system. The position of body Bi is given by the
position of frame Fi with respect to F0, and it can be represented by the coordinate
transform iX̂0.

The frames in the diagram with names Fi,j indicate the location of the joints on
each body, where i denotes a body and j a joint. The frame Fi,j’s position relative to
Fi is determined by the constant transform i,jX̂i. These transforms, or a set of data
from which they may be derived, define the rigid-body system’s geometric model.
An array of tree transformations, XT , is also provided using the formula X̂T (i) =λ(i),i
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X̂λ(i). These are the locating transforms for the tree joints, and this array contains a
comprehensive description of the spanning tree’s geometry.

3.1.3 Equations of Motion

A rigid body system is a collection of rigid bodies that may be connected by joints and
subject to forces. A joint introduces a constraining force into the system, imposing
a motion constraint on the two bodies it connects. This force’s value is unknown,
it assumes whatever value is necessary for the resultant motion to comply with the
motion restriction.

The equation of motion for a general rigid-body system has the following canoni-
cal form:

H(model, q)q̈ + C(model, q, q̇) = f (3.8)

In this equation, q, q̇ and q̈ are vectors representing the generalized position, velocity
and acceleration variables, whereas f is a vector of generalized forces. H is the
generalized inertia matrix, and its notation H(model, q) indicates its dependence on
q and model. The symbol model is a collection of data describing a rigid-body system
in terms of its component parts as the number of bodies and joints, how they are
linked, and the inertia characteristics of the bodies. This is called system model to
differentiate it from a mathematical model. C is the generalized bias force, and its
notation C(model, q, q̇) indicates that it is dependent on model and both q and q̇.
Once these dependencies are recognized, the symbols H and C are used. The bias
force is the value of f that results in zero acceleration. It takes into consideration the
Coriolis and centrifugal forces, as well as gravity and any additional forces operating on
the system outside those in f . The coefficients of the motion equation are H and C ,
and the variables are f and q̈. Typically, one of the variables is supplied and the other
is unknown; the objective is to compute the numeric values of the quantities in Eq. 3.8.
This might be accomplished using either the forward dynamics or inverse dynamics
method. The first involves calculating q̈ given f , whereas the second does the inverse.

q̈ = FD( model , q, q̇,f) (3.9)

f = ID( model , q, q̇, q̈) (3.10)

FD and ID are functions representing the forward and inverse dynamics calculations.
The symbols Mn and Fn represent the spaces of n-dimensional motion and force vectors,
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respectively, while n is the degree of freedom of the system given by Eq.3.8. These
spaces are crucial for understanding what kind of object the terms of Eq.3.8 represent.
The velocity and position q̇, q rapresent elements of Mn, whereas f and C represent
elements of Fn, and H is a mapping from Mn to Fn.

3.1.4 Dynamics of a Constrained Rigid Body

A joint is a kinematic constraint between two bodies in a rigid-body system. The joint
connects the predecessor body to the successor body.
The joint velocity, vJ , is therefore defined as the relative velocity of the successor to
the predecessor:

v̂J = v̂s − v̂p (3.11)

where vp and vs are the corresponding velocities of the predecessor and successor
bodies. The typical form of a joint constraint is

v̂J = Ŝ(q, t)q̇ + σ̂(q, t) (3.12)

where S is the joint’s motion subspace matrix, σ is the bias velocity, q and q̇ are the
joint’s position and velocity variables, t is time.
Equation 3.12 has the effect of confining the velocity vJ −σ to the subspace S ⊆ M6. In
the event when nf degrees of freedom of relative motion are allowed at the joint, then
dim(S) = nf and Ŝ is a 6 × nf matrix. The number of joint constraints is nc = 6 − nf

, and the constraint force must lie in the nc-dimensional subspace S⊥ ⊆ F6.
It is feasible to easily build the equation of motion for a limited rigid body by beginning
with a basic instance. Considering the rigid body illustrated in Figure 3.4, the body is
attached to a fixed base through a joint whose motion subspace is S ⊆ M6. The joint
restricts the motion of the body by nc degrees, leaving it with nf degrees of freedom,
where nf = dim(S) and nc = 6 − nf = dim(S⊥). This body is subject to three forces:
the applied force f , a constraint force, fc, and a gravity force, fg, which is not shown.
Thus, the equation of motion for this body is

f̂ + f̂c + f̂g = Îâ + v̂ × ∗Îv̂
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Fig. 3.4 constrained rigid body [12]

where Î, â and v̂ are the body’s inertia, acceleration and velocity. The single bias-force
term collects f̂g and v̂ × ∗Îv̂ as

p̂ = v̂ ×∗ Îv̂ − f̂g

For the constrained rigid body, the equation of motion is

f̂ + f̂c = Îâ + p̂ (3.13)

subject to the constraints
v̂ ∈ S and f̂c ∈ S⊥.

3.1.5 Dynamics of a Multibody System

The theoretical background discussed up to this point, concludes with the construction
of a motion equation for a system with multiple bodies and joints. For this purpose, it
is important to consider a rigid-body system containing a fixed base, which is the body
number zero, NB moving rigid bodies, numbered 1 to NB and NJ joints, numbered
1 to NJ . For each joint j, p(j) and s(j) are defined to be the body numbers of the
predecessor and successor bodies of each joint i. This set of 2NJ numbers specifies the
system’s connection.
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In this subsection, the only forces operating on body i are the force of gravity, fgi,
and forces from its associated joints. The motion equation for body i may then be
formulated.

f̂i = Îiâi + p̂i,

where f̂i is the sum of the joint forces acting on body i, and p̂i = v̂i ×∗ Îiv̂i − f̂gi
is the

bias force. The equations for all NB bodies may be combined into a single equation,
f̂1

f̂2
...

f̂NB

 =


Î1 0 · · · 0
0 Î2 · · · 0
... ... . . . ...
0 0 · · · ÎNB




â1

â2
...

âNB

+


p̂1

p̂2
...

p̂NB

 (3.14)

More compactly,
f̂ = Îâ + p̂ (3.15)

where f̂ , â and p̂ are 6NB-dimensional vectors, and Î is a 6NB × 6NB blockdiagonal
matrix.
The vector â represents body accelerations. Joint velocities and accelerations are used
to express joint constraints; hence, a formula is required to express joint motion in
terms of body motion. By definition, v̂Jj

and âJj
are the velocity and acceleration of

the joint’s successor body relative to its predecessor, so

v̂Jj = v̂s(j) − v̂p(j)

and
âJj = âs(j) − âp(j).

We generalise to the whole system and assume the standard notation and spatial vector
notation are identical. This allows for the notation to be made lighter.

vJ =


vJ1
...

vJNJ

 =


vs(1) − vp(1)

...
vs(NJ ) − vp(NJ )

 = PTv (3.16)

and

aJ =


aJ1

...
aJNJ

 =


as(1) − ap(1)

...
as(NJ ) − ap(NJ )

 = P Ta (3.17)
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where

Pij =


16×6 if i = s(j)

−16×6 if i = p(j)
06×6 otherwise

(3.18)

P is a 6NB × 6NJ matrix, which is structured as an NB ×NJ block matrix of 6 × 6
blocks, and it maps the collected body velocity and acceleration vectors to the collected
joint velocity and acceleration vectors. Each row in P represents a body, whereas each
column represents a joint. If a joint joins two moving bodies, then its column will
contain precisely two non-zero blocks.

fJ is the 6NJ -dimensional vector created by joining the vectors fJ1 · · ·fJNJ
, fJj is the

force delivered across joint j. By definition, fJj is the force transferred via joint j from
body p(j) to body s(j). If we were to define s−1(i) and p−1(i) as the sets of all joints
with body i as their successor or predecessor, respectively, then the vector fi may be
written as follows:

fi =
Ø

j∈s−1(i)
fJj −

Ø
j∈p−1(i)

fJj.

Comparing this formulation to the description of the row i of P , it is evident that fi

might also be expressed as follows:

fi =
NJØ
j=1

PijfJj.

Therefore
f = PfJ. (3.19)

Let Tj represent the 6 × ncj matrix that covers the subspace S⊥
j , where Sj is the

motion subspace for joint j and the number of constraints it imposes is ncj. The
velocity constraint equation may therefore be defined for joint j.

T T
j vJj = 0

and the acceleration constraint is

T T
j aJj + Ṫ T

j vJj = 0
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Collecting together the acceleration constraints gives

T TaJ + Ṫ TvJ = 0 (3.20)

T is the 6NJ × nc block-diagonal matrix that contains Tj in its jth diagonal block. nc

is the total number of constraints imposed by the joints and is given by nc = qNJ
j=1 ncj.

Combining Eq. 3.20 with Eqs. 3.17 and 3.16 yields the following acceleration constraint
for the body:

T TP Ta + Ṫ TP Tv = 0. (3.21)

fJj is the sum of a constraint force and an active force , and it can be expressed in the
form

fJj = Tjλj + Tajτj

In this equation, Taj is the 6 ×nfj matrix that spans the active force subspace for joint
j, τj is the nfj-dimensional vector of generalized forces at joint j, the ncj-dimensional
vector of constraint-force variables is instead λj, and the number of motion freedoms
allowed by joint j is nfj = 6 − ncj. Collecting the equations for every joint, we have

fJ = Taτ + Tλ (3.22)

where τ and λ are the vectors formed by concatenating τ1 · · · τNJ
and λ1 · · ·λNJ

,
respectively, and Ta is the block-diagonal matrix having Taj on its jth diagonal block.

Substituting Eqs. 3.22 and 3.19 into 3.15 produces the following equation of motion:

P (Taτ + Tλ) = Ia+ p

and combining this with Eq. 3.21 produces I PT

T TP T 0

 a

−λ

 =
 PTaτ − p

−Ṫ TP Tv

 (3.23)

This is the equation of motion for the original rigid-body system. The two unknowns
are a and λ, and the equation can be solved uniquely for a. If the coefficient matrix is
nonsingular, then λ is also unique.
Equation 3.23 is a feasible starting point for a dynamic algorithm, although various
aspects would need to be addressed throughout the algorithm’s creation.



26 Theory of rigid body dynamics in CFD

3.1.6 Forward Dynamics — Articulated-Body Algorithm

Forward dynamics is one of the central challenges of rigid-body simulation in CFD
applications. Predicting the motion of a rigid-body system under the influence of
external forces and torques is the objective of this topic. The articulated-body algorithm
is a popular method for addressing the forward dynamics issue.
This subsection offers a comprehensive introduction to the articulated-body algorithm,
explaining the algorithm’s fundamental concepts. In addition, we will study the
algorithm’s major components, including the calculation of joint forces and torques
and the updating of velocities and positions.
The forward dynamics for a kinematic tree may be solved using two primary methods:

1. build an equation of motion for the whole system and solve for the acceleration
variables; or

2. propagate constraints from one body to the next such that accelerations may be
determined at each joint.

The second method includes traversing the tree a defined number of times, with each
traversal executing a specified amount of computations per body. This technique yields
algorithms with O(n) complexity.
The forward dynamics problem has two sets of unknown quantities: the joint accelera-
tions and the joint constraint forces. Often, none of these unknowns can be resolved
locally at a single body. Propagation techniques function by computing the coefficients
of such equations locally and propagating them to adjacent bodies until solving the
dynamics locally at a single body is possible. Having the solution at one body makes
it feasible to solve the dynamics at adjacent bodies, and so on, until the whole issue is
solved. Analytically the process solves a linear equation by first triangularizing the
coefficient matrix, and then solving by back-substitution.
The articulated-body algorithm is the most efficient approach for computing the forward
dynamics of a kinematic tree and is the best example of a propagation algorithm. This
algorithm considers successive articulated bodies of the original connection, starting
with the basic situation of link n alone and adding inboard links sequentially. The
articulated body is a subchain of the entire serial linkage, where the linked subchain
consists of links i, ..., n in isolation, detached from the fixed base. The key concept
is to establish a relationship between the spatial acceleration of the handle and the
spatial force applied at its inboard joint. The links outboard to the handle will affect
this relation.
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Fig. 3.5 The link and joint indexing conventions for serial linkages[18]

The table below offers a comprehensive list of all the terminology that will be used,
including previously defined terms and new ones.
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n number of links of serial linkage
vi linear velocity of link i
ωi angular velocity of link i
ai linear acceleration of link i
αi angular acceleration of link i
vrel relative linear velocity of link i
ωrel relative angular velocity of link i
mi mass of link i
Mi metricized mass of link i
Ii diagonalized (body frame) inertia tensor of link i
di vector from link i inboard joint to link i c.o.m.
ri vector from link i− 1 c.o.m. to link i c.o.m.
ui unit vector in direction of joint i axis
Îi spatial isolated inertia of link i
ÎA

i spatial articulated inertia of link i
p̂i spatial isolated zero-acceleration (z.a.) force of link i
p̂A

i spatial articulated zero-acceleration (z.a.) force of link i
f̂ I

i spatial force applied by inboard joint to link i
f̂O

i spatial force applied by outboard joint to link i
v̂i spatial velocity of link i
âi spatial acceleration of link i
ŝi spatial joint axis of joint i
ĉi spatial Coriolis force for link i
qi scalar position of joint i
q̇i scalar velocity of joint i
q̈i scalar acceleration of joint i
νi vector velocity of joint i
ξi vector acceleration of joint i
O inertial reference frame
Fi body frame of link i

GX̂F spatial transformation from frame F to frame G
X̂i spatial transformation from frame Fi to frame Fj

Table 3.1 Notation used in Chapter 4. [18]
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Considering the articulated body of a serial linkage that has link i as a handle
(1 ≤ i ≤ n). There exists a spatial matrix ÎA

i and a spatial vector
p̂A

i such that
f̂ I

i = ÎA
i âi + p̂A

i (3.24)

ÎA
i is called the spatial articulated inertia of link i, and is independent of the joint

velocities and accelerations. The spatial articulated zero-acceleration (z.a.) force, or
bias force, of link i is denoted by p̂A

i and is independent of the joint accelerations. The
term articulated implies that the complete subchain starting with the handle is under
consideration.
The Eq.3.24’s proof is the whole algorithm. The proof is by induction on i and it
will be shown below, starting with the trivial subchain comprising only the outermost
link and then adding links on the inboard side one by one until the entire linkage is
considered.

3.1.6.1 Base case

As illustrated in Figure 3.6 for the base case of the induction, i = n and the subchain
under consideration is merely the last link of the chain.

Fig. 3.6 The free body diagram of the last link of the serial linkage.[18]

The Newton-Euler equations describe the body’s motion, in link coordinates,

f I
n +mng = mnan

τ I
n = Inαn + ωn × Inωn,

(3.25)
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where the inertia tensor in link coordinates is In, and the mass of the link n is mn.
These equations can be written as a single spatial equation. If

Mn = mn1

then
 f I

n

τ I
n

 =
 0 Mn

In 0

 αn

an

+
 −mng

ωn × Inωn

 (3.26)

or more compactly this system could be written as 3.24,

f̂n = Înân + p̂n (3.27)

Notice that for this single base case, spatial inertia and the spatial bias force are
isolated and not articulated. Thus, in the particular situation of i = n, the following
definitions coincide: ÎA

i = Îi and p̂A
i = p̂i.

In this level of the algorithm, it is assumed that the last link’s attributes (inertia
and bias force) are independent of those of the previous connections. In a broader
sense, it is stated that the attributes of the general link i rely only on its successors
and not on its predecessors. Keeping in mind that the purpose of this method is to
determine the acceleration of each link, this initial assumption would have a substantial
impact. Nevertheless, the contribution of the predecessors to link i is not ignored but
is evaluated afterwards.

3.1.6.2 Inductive case

The equation 3.27 is valid for i = n, however, it must be adapted for i = n − 1. In
addition to gravity, and the force and torque applied through the inboard joint, fO

i−1

and τO
i−1 are the force and torque applied through the outboard joint.

Using the Newton-Euler equations, the equations of motion for link i− 1 are: f I
i−1

τ I
i−1

+
 fO

i−1

τO
i−1

 =
 0 Mi−1

Ii−1 0

 αi−1

ai−1

+
 −mi−1g

ωi−1 × Ii−1ωi−1

 (3.28)

Using spatial notation,
f̂ I

i−1 = Îi−1âi−1 + p̂i−1 − f̂O
i−1.
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The force applied through the outboard joint is the equal but opposite reaction force
to f̂ I

i

f̂O
i−1 = −i−1X̂if̂

I
i

where i−1X̂i is the spatial transformation matrix from the frame relative to the link i
to the link i− 1.
Combining the two equations above,

f̂ I
i−1 = Îi−1âi−1 + p̂i−1 + i−1X̂if̂I

i .

Using the inductive hypothesis 3.12 for link i and generalizing,

f̂ I
i−1 = Îi−1âi−1 + p̂i−1 + i−1X̂i

1
ÎA

i âi + p̂A
i

2
. (3.29)

Nevertheless, this expression does not include the same terms as Equation 3.12, thus
the acceleration âi must be removed from the right-hand side. This is accomplished by
stating âi as a function of âi−1. The acceleration propagation formula may be utilized
for this purpose.
The acceleration propagation formula specifies the acceleration of link i as a function
of the transformed spatial acceleration of the predecessor, the joint acceleration and
the spatial Coriolis force of the current link:

âi = iX̂i−1âi−1 + q̈iŝi + ĉi (3.30)

Substituting this last equation in eq. 3.29

f̂ I
i−1 =

1
Îi−1 + i−1X̂iÎ

A
i iX̂i−1

2
âi−1 + p̂i−1 + i−1X̂i

è
p̂A

i + ÎA
i ĉi +

1
ÎA

i ŝi

2
q̈i

é
. (3.31)

The last stage is computing the term q̈i. This may be accomplished using the acceleration
propagation formula (3.30) in eq. 3.24,

f̂ I
i = ÎA

i

1
iX̂i−1âi−1 + q̈iŝi + ĉi

2
+ p̂A

i .

Multipling both sides by ŝ′
i and introducing the term magnitude of force/torque of the

joint Qi , defined as,
Qi = ŝ′

if̂
I
i

it gives,
Qi = ŝ′

iÎ
A
i

1
iX̂i−1âi−1 + q̈iŝi + ĉi

2
+ ŝ′

ip̂
A
i . (3.32)
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This equation has to be reorganised to explicit q̈i:

q̈i =
Qi − ŝ′

iî
A
i X̂i−1âi−1 − ŝ′

i

1
p̂A

i + ÎA
i ĉi

2
ŝ′

iÎ
A
i ŝi

(3.33)

Substituting this expression for q̈i into (3.31) and rearranging gives

f̂ I
i−1 =

C
Îi−1 + i−1X̂i

A
ÎA

i − ÎA
i ŝ

′
iŝ

′
iÎ

A
i

ŝ′
iÎ

A
i ŝi

B
iX̂i−1

D
âi−1

+ p̂i−1 + i−1X̂i

p̂A
i + ÎA

i ĉi +
ÎA

i ŝi

è
Qi − ŝ′

i

1
p̂A

i + ÎA
i ĉi

2é
ŝ′

iÎ
A
i ŝi

 .
(3.34)

Comparing this to the desired form 3.24,

ÎA
i−1 = Îi−1 + i−1X̂i

A
ÎA

i − ÎA
i ŝiŝ

′
iÎ

A
i

ŝ′
iÎ

A
i ŝi

B
iX̂i−1

p̂A
i−1 = p̂i−1 + i−1X̂i

p̂A
i + ÎA

i ĉi +
ÎA

i ŝi

è
Qi − ŝ′

i

1
p̂A

i + ÎA
i ĉi

2é
ŝ′

iÎ
A
i ŝi

 (3.35)

These equations compute the articulated inertia and articulated bias force for link
i − 1 of the chain, given those same quantities for link i. Îi−1 and ŝi are constants,
i−1X̂i and iX̂i−1 are only dependent on joint positions, while ĉi is dependent on both
joint positions and velocities. It follows that if ÎA

i is independent of joint velocities and
accelerations, then so is ÎA

i−1. Also, if p̂A
i is independent of joint accelerations, then so

is p̂A
i−1. Thus, if Eq. 3.24 is true for a handle at link i, the same holds true for a handle

located at link i− 1. By induction, the initial equation is true for a handle at any link.

3.1.6.3 Forward dynamics algorithm

The proof of Equation 3.24 provides an algorithm to solve the forward dynamics of a
serial linkage. The algorithm comprises three primary steps:

• The initial pass is responsible for calculating the Coriolis accelerations, ci, and
the rigid-body bias forces, pi, for subsequent passes. Both are functions of the
body velocities, vi, so it is necessary to calculate these as well. Here are the
equations of the first pass:
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v0 = 0

for i = 1 to NB do
[XJ, ŝ

′
i,vJ, cJ] = jcalc (jtype(i), qi, q̇i)

iXλ(i) = XJXT(i)
if λ(i) ̸= 0 then

iX0 = iXλ(i)
λ(i)X0

end
vi = iXλ(i)vλ(i) + vJ

ci = cJ + vi × vJ

IA
i = Ii

pA
i = vi × Iivi − iX∗

0f
x
i

end

(3.36)

It is important to recall that the algorithm describes a serial linkage, between
two bodies there is always a joint and vice versa. Each iteration of the for loop
describes a specific body and a specific joint.
The properties of the joint are obtained through the jcalc function in the first
part of this loop. Before assigning values to inertia and bias force, the spatial
transformation matrices are defined. These matrices are defined as the product
of transformations of neighbouring frames, where λ(i) represents the predecessor
of the link i. Velocity and Coriolis acceleration are defined and used to initialise
the spatial articulated inertia and spatial articulated bias force.
In this part, the algorithm and the CFD interact. On the last line of this block of
code, the contribution of external forces is accounted for inside the bias force term.
These external forces are those originally designated as fO

i−1 and transmitted
between joints. Aerodynamic forces are included in external forces. When the
aerodynamic forces are calculated by CFD, the term fx

i accounts for them inside
the algorithm.

• The next step is to determine the inertia and bias forces of the articulated body,
IA

i and pA
i . This is accomplished using the assembly formulas in Eqs. 3.35, which

appears deconstructed in the code.
This part of the code is based on the principle of computing IA

i and pA
i of the

predecessor of the link i depending on the attributes of the link i.
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for i = NB to 1 do
Ui = IA

i Si

Di = ST
i Ui

ui = τi − ST
i p

A
i

if λ(i) ̸= 0 then
Ia = IA

i − UiD
−1
i UT

i

pa = pA
i + Iaci + UiD

−1
i ui

IA
λ(i) = IA

λ(i) + λ(i)X∗
i I

aiXλ(i)

pA
λ(i) = pA

λ(i) + λ(i)X∗
i p

a

end
end

These computations are carried out for each value of i from NB down to 1. This
implies that Ia

j and pa
j are computed solely for those j values satisfying λ(j) ̸= 0.

If body i has no children then IA
i = Ii and pA

i = pi.

• Lastly, the accelerations are calculated using Equations 3.31 and 3.33,

a0 = −ag

for i = 1 to NB

a′ = iXλ(i)aλ(i) + ci

q̈i = D−1
i

1
ui − UT

i a
′
2

ai = a′ + Siq̈i

end

The iteration order of joints and bodies is determinant. In the middle cycle, the
contribution of the predecessors is neglected. Articulated inertia and articulated bias
force depend only on the successor links and not on the predecessors.
In the last loop, this process reverses. A link’s acceleration is dictated by the acceleration
of its predecessors. Each link is therefore impacted by its predecessors and successors.
Successors influence the articulated inertia and articulated bias force of the link, while
predecessors influence its acceleration.

Hence, the output of the forward dynamics algorithm is the body and joint accelerations.
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They are numerically integrated to get the velocity and position that characterise each
joint. The velocity and position of the bodies are therefore obtained and utilised as
input by the forward dynamics algorithm to compute the accelerations in the following
time step.

3.2 Computational Fluid Dynamics

CFD is used in the field of rigid-body dynamics to estimate the forces and moments
that are imposed on the bodies by the fluid flow. Combined simulations of rigid-body
dynamics and CFD are utilised to provide a thorough understanding of the behaviour
of the system.
For this purpose, the CFD software used is OpenFOAMv2206. A key component of a
CFD simulation is the numerical solver, which solves the fluid flow governing equations
given a set of boundary conditions.
The overPimpleDymFoam solver is commonly used in OpenFOAM to model fluid flows
around moving bodies using a dynamic grid technique, the overset mesh method. The
solver implements the PIMPLE algorithm, a pressure-implicit, semi-implicit approach
for pressure-linked equations.
The Navier-Stokes equations, used to characterise the motion of viscous fluids, are
the governing equations solved by the overPimpleDymFoam solver. The solver solves
both the continuity equation, which describes mass conservation, and the momentum
conservation. In addition, the solver can account for turbulence effects utilising a variety
of turbulence models, such as the Spalart-Allmaras and k-omega SST models. However,
at low Reynolds numbers, the flow surrounding a flapping wing may be considered
laminar, the turbulence effect will not be investigated in the current research.
In this part, the continuity equation and momentum equations will be discussed in
detail. In addition, we will investigate the implementation of the equations in the
solver and the fundamentals of the overset grid technique.

3.2.1 Theory of Fluid Flows

The mathematical description of a fluid flow is briefly discussed. The continuity,
momentum, and energy equations, which respectively characterise the conservation
of mass, momentum, and total energy, are used to describe the fluid flow. These
four-variable, second-order, highly nonlinear partial differential equations are known
collectively as the Navier-Stokes equations.
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The energy equation is not described as it is not involved in this study.
An introduction to the arguments set out below can be found in Merkel (2019) [17].

3.2.1.1 Continuity Equation

The continuity equation describes the conservation of mass, meaning without sources
the system’s mass cannot change. Consequently, the quantity of mass is conserved
through time. In the Eulerian system, in which the fluid flows through a fixed volume
element over time, this can be written as

∂ρ

∂t
+ ∇ · (ρv) = 0 (3.37)

For an incompressible fluid, the density ρ does not change over time, therefore Eq.3.37
can be simplified to

∇ · v = 0

3.2.1.2 Momentum Equation

According to the principle of momentum conservation, the amount of momentum
remains constant. Momentum is defined as the product of an object’s mass and its
velocity. Momentum can only be changed through the action of forces as described by
Newton’s laws of motion. Additionally, since the momentum is a vector quantity, the
directional components will also be conserved. For a material volume in the Eulerian
system, this can be written as

∂

∂t
(ρv) + ∇ · (ρvv) = f (3.38)

where f represents the sum of the external forces affecting the material volume with
mass m, density ρ, and velocity v. The external forces f consist of the surface forces
−→
fS and the body forces fb so that

f = fS + fb

3.2.2 OpenFOAM

OpenFOAM is the CFD software used in this research. It is a C++ toolbox for solving
continuum mechanics problems, including computational fluid dynamics (CFD) in
particular. The most recent version is used in this study, v2206.



3.2 Computational Fluid Dynamics 37

3.2.3 OverPimpleDyMFoam

OverPimpleDyMFoam is a PIMPLE-based transient solution for the incompressible
flow of Newtonian fluids over a moving mesh. The PIMPLE algorithm is one of the
most widely used for transient problems because it includes the PISO and the SIMPLE
ones.

3.2.3.1 SIMPLE

SIMPLE is a pressure-based segregated method used to solve steady flows. The
momentum equations are solved, using an initial guess for the pressure and velocity
field, for the relative velocity corrections. The discrete form of the momentum equation
is then substituted into the discrete form of the continuity equation, resulting in an
equation for discrete relative pressures called pressure corrections [17]. This is solved
iteratively. Using the found correction terms, the initial guess for the pressure and
velocities is updated with

u = u∗ + u′

v = v∗ + v′

w = w∗ + w′

p = p∗ + p′

where u∗, v∗, w∗ and p∗ are the guesses and u′, v′, w′ and p′ are the calculated corrections
[2]. Using the corrected velocities and pressure, additional transport equations can be
solved and the density field is updated.
Under-relaxation factors have to be added to the correction equations for the SIMPLE
algorithm to converge. These factors are typically in the range of 0.1 − 0.3 for the
pressure and 0.7 for the velocities [2].

3.2.3.2 PISO

PISO is a pressure-based method used to solve unsteady flows. As with SIMPLE,
an initial guess of the pressure and velocity field is required. The velocity correction
terms are calculated from the momentum equations and the pressure correction term
is calculated using the Poisson equation. The pressure and velocity guesses are correct
using these correction terms. After calculating a second pressure correction term, the
pressure and velocities are revised once more. These pressure and velocity values
are utilised to solve all other transport equations. The entire procedure is repeated
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until convergence occurs, after which the solver moves to the next time step [17]. The
Courant number limits the calculation in the time step. This dimensionless number
defines the velocity of information propagation between cells. The Courant number has
to be smaller than one, so that information can only propagate between first neighbours
cells.

Co = U∆t
∆x

The Courant number id function of the local cell velocity U, the time step ∆t and the
distance between the cells ∆x. In OpenFOAM , the calculation is based on the cell
volume and not on the distance ∆x [16].

3.2.3.3 PIMPLE

The PIMPLE algorithm combines the SIMPLE algorithm and the PISO algorithm.
For each time step, a steady-state solution that converges is sought after, using a
specified number of correction loops. Then, all remaining transport equations are
solved. This would be equivalent to the PISO algorithms with the specified number
of correction loops. [17]. The algorithm then iterates over the entire time step and
re-solves the PISO algorithm with a new initial guess [19]. A simplified flow diagram
of the algorithm is shown in figure 3.7.

For the PIMPLE algorithm, no under-relaxation is required for a stable solution.

3.2.3.4 Introduction to OverPimpleDyMFoam

OverPimpleDyMFoam follows a segregated solution strategy. This signifies that the
equations for each variable defining the system are solved successively and the solution
of the preceding equations is inserted in the subsequent equation. The non-linearity in
the momentum equation (the face flux ϕf which is a function of the velocity) is resolved
by computing it using the velocity and pressure values of the previous iteration. The
pressure dependence is incorporated to prevent a decoupling between the momentum
and pressure equations and, consequently, the appearance of high-frequency oscillation
in the solution. The momentum equation is the first equation to be solved. It produces
a velocity field u∗ that does not, in general, satisfy the continuity equation. After that,
the momentum and continuity equations are used to formulate a pressure equation.
The goal is to identify a pressure field pn, that, when inserted into the momentum
equation, yields a divergence-free velocity field u. The iterative solution procedure
described is repeated until convergence. The overset method allows us to solve the
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Fig. 3.7 Simplified flow chart of the PIMPLE algorithm [17]

governing equation on a set of disjoint meshes. The meshes are not connected over
faces, an implicit interpolation performs the coupling between the different meshes.

3.2.3.5 Equations

For moving meshes, the equation of motion used is written in the Arbitrary-Euler-
Lagrange (ALE) formulation. This formulation is one of the most popular if morphing
meshes are used to describe the solid body deformation or displacement. If the overset
method is used, this formulation avoids to formulate the equation of motion in multiple
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frames of reference. The continuity and momentum equations are read in this form:

d

dt

Ú
ρdV +

j
ρn · (U − Ug) dS = 0

d

dt

Ú
ρUdV +

Ú
ρω × UdV +

j
ρn · (U − Ug)UdS −

j
ρνn · ∇UdS +

j
pndS = 0.

(3.39)
In the above equations, U is the fluid velocity, p the pressure, ν the molecular

viscosity and ρ the density. The only difference to the equation of motion in a fixed
mesh is the introduction of the new grid velocity Ug variable.
Owing to the movement of the co-ordinate system, an additional equation results which
has to be satisfied simultaneously with the other conservation equations [10]. This
equation relates the change of the elementary control volume to the co-ordinate frame
velocity and is hence called by Trulio and Trigger’ [27] the ‘space conservation law’
(SCL).

d

dt

Ú
dV −

j
n · UgdS = 0

In order to not introduce additional mass conservation errors, the temporal discretisation
of the SCL should be the same as used in the other conservation equation.
OpenFOAM uses a slightly different continuity equation (which is used to derive the
equation for the pressure). By inserting the space conservation law into the continuity
equation we get the spatial case of the incompressible case:

d

dt

Ú
ρdV +

j
ρn · (U)dS = 0

It is the same as the one for fixed grids. Note this transformation is valid only for
incompressible flows.

About the momentum equation, ϕ = ρn · (U − Ug) is the mass flux over the surface dS,
ω is the angular velocity of the rotating frame of reference. We see that the momentum
equation is essentially the same as the one in the fixed control volume. For the overset
mesh the difference between the velocity in the inertial coordinate system U and the
grid velocity Ug is used to calculate it.
OverPimpleDyMFoam performs the pressure-velocity coupling through the Pressure-
Implicit with Splitting of Operators (PISO) algorithm. The pressure equation solved
by the PISO algorithm in overPimpleDyMFoam is given by:

∇ · (1
ρ

∇p) = ∇ · u′. (3.40)
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p is the pressure, ρ the density and u′ is the velocity correction term. The velocity field
is decomposed into a predicted and a corrected part. The predicted part is computed
from the momentum equation, the corrected is a velocity useful to respect the continuity
equation. The pressure field is therefore based on this mismatch between the predicted
and corrected velocities.
The Overset mesh case differs from the standard case by a correction on the mass flux
imbalance produced by the overset interpolation. This correction factor is applied to
all faces which are at the border of calculated and interpolated cells. In this way, the
global mass balance over a mesh zone is enforced.

3.2.4 Overset mesh technique

In CFD simulations involving overset grid approaches, the computational domain is
spanned by several grids that arbitrarily overlap each other. This technique was a
constraint of this research as it was already previously used in the frame of Romain
Poletti’s PhD thesis to which this work contributes.
This method offers several benefits for the calculation of multiple-body and moving-
body problems. In order to appropriately tackle such issues with single domain-fitted
grids, the grid must flex to accommodate the changing domain borders caused by
body motion. If the motion of bodies is significant, the grid deformation becomes
severe, and either a portion of the computational grid or the whole grid must be
regenerated. Yet, overlapping grid approaches provide considerably greater leeway in
dealing with difficulties involving many bodies in relative motion. In this scenario, when
the component grids shift relative to one another, only the position of interpolation-
affected boundary points at overlapping interfaces changes. It is not necessary to renew
the grid points, and the grids keep their topology and geometrical features.
Two key components of the current overlapping grid technique include:

• subdivision of computational domain into sub-domains and construction of an
appropriate grid in each sub-domain

• development of a coupling approach for an accurate and unique solution to the
governing equations on the grids that overlap.

Each subdomain is encompassed by a grid that is simpler and faster to construct
than the domain-wide grid. The component grids corresponding to sub-domains must
overlap enough to allow the coupling of the solutions between the grid components.
Figure 3.8 is an illustration of the notion of the overlapping grid technique. The grids
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attached to bodies are integrated into the background grid. The cells that cover the
bodies are deactivated.
Based on their function in the solution process of the governing equations, the cells in
an overlapping grid system can be classified as discretization (active), interpolation,
and inactive (hole) cells. Discretization cells are utilised to discretize the governing
equations, interpolation cells get the solution information through interpolation, and
inactive cells are not used [15].

Fig. 3.8 View of the overlap area with definitions and notations [15].

3.2.4.1 Inter-grid communication

Inter-grid communication is required to achieve a unique solution for the whole domain.
Two significant phases are needed to establish inter-grid communication:

• Hole cutting, which entails the identification of cells outside of the computational
area,

• Identification of interpolation stencils, which are utilised to generate the interpo-
lation formulae for grid coupling.

In the first stage, all cells are separated into active and passive groups. After that,
active cells having shared faces with passive cells are classified as inter-grid border cells.
The background grid cells that are covered by the body must be designated as inactive.
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The outside border C0 of the body grid is utilised as a point of reference for choosing
the deactivated areas during the generation of holes. All cells located outside the
C0 curve remain active. The cells inside the curve C0 are evaluated to see whether
they are within the overlapping area or if they must be deactivated. A mesh point
is deemed to be within the curve C0 if the dot product between r (a vector from the
C0 curve’s closest boundary point to the mesh point) and n (the normal vector on
the curve C0 at the nearest boundary point) is negative. In case of cells within the
curve C0, the distance δ = |n · r| is employed to determine whether the cell is within
the overlapping zone, δ < δ0, in which case it should remain active, or outside the
overlapping region, in which case it should be deactivated. If there is more than one
body grid, the aforementioned technique is done to each body, resulting in the same
number of hole areas in the background grid as there are bodies [15].

Fig. 3.9 Hole cutting [15].

3.2.4.2 Overset interpolation

To perform the overset interpolation it is necessary to identify donor cells on the grid
that overlap each interpolation cell.
The number of required cells and the permitted relationship between them depend on
the interpolation strategy. The simplest way needs identifying simply the cell whose
centroid is closest to the interpolation cell’s centroid. Here, this cell is referred to as
the host cell. Any extra nodes contributing to the interpolation formula must be in
close proximity to the host cell. In addition to the kind of interpolation at overlapping
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interfaces, the sequence of the accuracy of interpolation formulae might impact the
precision of the solution on overlapping grids. In this study, linear interpolation was
determined to be a suitable balance between simplicity and accuracy. When the sizes
of grid cells on two grids that overlap in width are considerably varied, the accuracy of
the calculation may also be compromised. This is owing to the unequal ability of a
coarse grid and a narrow grid to resolve flow characteristics.
After all donors are identified, an interpolation formula for each interpolation point
can be derived that, regardless of the shape function employed, is written as follows,

ϕPi
=

NDØ
k=1

αwk
ϕDk

.

This formula expresses the interpolated function value at node Pi, ϕP1 , regarding
function values at donor points Dk, ϕDk

, with αwk
being the interpolation weights [15].



Chapter 4

Dynamic simulation of a flapping
foil

This chapter aims to describe the tools developed to couple the study of the dynamics
of the drone with CFD. A drone consists of a body and two wings, within the elaborate
simplified versions are taken into account. The tools designed are evaluated using
bidimensional simulations.
At the beginning of the chapter, the definition of the test cases and the setup of the flow
solver are provided. In the last part, the dynamic solver and the techniques applied to
it are presented.

4.1 Test case definition

A two-dimensional simulation of an airfoil with the overset technique is performed to
study the coupling between the study of the dynamics of the system and CFD.
The CFD domain is based on the accessible online 2D flapping wing by Michael Alletto
OpenFOAM tutorial [mic]. The simulation involves a rectangular airfoil with chord
c=64 mm and thickness s=3.4 mm to which a component mesh is attached. The
component mesh spans a chord length normal to the surface in all directions with
inflating cell size. The background domain is a square with boundaries approximately
five chords away from the wing (Figure 4.1). The background mesh is gradually refined
such that the cell size in the domain’s centre is comparable to that of the component
mesh. Furthermore, with gradual refinement, the simulation does not suffer numerical
issues if the wing moves from the central region.

The wing has three degrees of freedom, two of which are constrained to confer
the flapping (ϕ) and pitching (α) motions (see Figure 4.2). The vertical translation
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Fig. 4.1 CFD domain

(Py) is free and is function of aerodynamic forces. The coupling between the dynamic
solver and CFD is required so that the aerodynamic forces derived from the flapping
and pitching motion imposed may be utilised as input by the dynamic solver to deter-
mine the vertical displacement of the wing. In the two-dimensional domain, horizontal
translation Px coincides with flapping motion ϕ and rotation Rz with pitching motion α.

Fig. 4.2 (left) DOFs of the simulation - free DOF in green, (right) component mesh.

Due to the presence of the overset mesh, the two different grids, i.e. the component
grid and the background grid, should be differentiated by the scalar field zoneID. The
overset method implemented in OpenFOAM detects itself the different cell types.
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Fig. 4.3 ZoneID (left) and cells type (right) [mic].

The cells adjacent to the patch denominated as overset are chosen as interpolated.
The cells which are inside the wing are flagged as hole cells and excluded from the
calculation, the other cells are treated as calculated. Cells adjacent to the holes are
called interpolated cells. The interpolation method used is inverseDistance, in which
the interpolated value ul is computed from the donors uD as follows [8]:

ul =
Ø
D

wDuD

wD = 1/dp
Dq

Dk

1
1/dp

Dk

2
where the suffix Dk represents the donor stencil (cell neighbors), and dD represents the
distance between the donor and receiver.

Fig. 4.4 (left) DOFs of the simulation - free DOFs in green, (right) component mesh.
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The techniques designed to achieve the coupling between the study of the dynamics
of the system and CFD are also tested in a 2D multibody simulation. This simulation
is an improvement of the simulation previously described. Two-dimensional wing and
body are modelled. The body is represented by a circle of radius rb = 8 mm and joined
to a component mesh that spans about five radii in all directions (see Figure4.4). The
background mesh characteristics remained unchanged.
The body adds three degrees of freedom to the system. Including the three degrees of
freedom of the wing, the simulation provides a total of six potential degrees of freedom.
However, for physical consistency not all degrees of freedom are used.
The coupling techniques will be evaluated using a simulation with four degrees of
freedom: the two degrees of freedom of the wing (i.e. flapping Px and pitching Rz) and
the vertical and horizontal translation of the wing-body system Py, Px.

The scalar field zoneID differentiates three different mesh zones. The overset mesh
data must be connected to each other and to the background mesh.

Fig. 4.5 ZoneID

For both simulations the wing motion is defined from a customized version of
the parametrization of Berman and Wang [28], without any pitching offset or phase
difference. The flapping and pitching angles are given as a function of time respectively
as:

ϕ(t) = − Aϕ

arcsin (Kϕ) arcsin [Kϕ cos(2πft)] + Aϕ

α(t) = − Aα

tanh (Kα) tanh [Kα sin(2πft)]
(4.1)
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Therefore, the wing motion is described by a total of five independent parameters:
the amplitudes (Aϕ, Aα) and shape factors (Kϕ, Kα) for both the flapping and pitching
angles, and the flapping frequency f . By adjusting the shape parameters, the transition
speed at the stroke reversal or of the pitching angle may be altered.
The lift force L is defined as the vertical component of the total aerodynamic force,
and drag force D is defined as the horizontal component. The wing mass was given as
a function of the aerodynamic forces such that the lift and weight were nearly balanced
and the hovering condition is reached. Hence, a mass of m = 3 · 10−3 kg was assigned
(spit as mbody = 2.5 · 10−4 kg and mwing = 0.5 · 10−4 kg in the wing-body system).
Moreover, the Reynold number was computed using the formula outlined in section 2.1.
The value is dependent on the wing’s kinematics, although the order rarely exceeds
104.

4.2 Flow solver set-up

The simulations are 2D, incompressible, unsteady, and laminar and use the overPim-
pleDyMFoam solver described in the previous chapter.
The background grid’s boundary conditions included zero gauge pressure on all faces
and and zero gradient for velocity. The initial conditions presume fluid at rest. In terms
of numerical schemes, the time discretization uses the Euler implicit scheme, with a
maximum Courant number of 1 and variable time-stepping. The spatial discretization is
performed with a second-order linear Gauss scheme, with a limiter for divergence terms.
The pre-conditioned conjugate gradient (PCG) iterative solver and the pre-conditioned
bi-stable conjugate gradient (Pre-BiCG) solver are used for cell displacement and for
pressure respectively. Finally, the symmetric Gauss-Seidel is used for velocity.

4.3 Dynamic solver

This section discusses the different possibilities through which the CFD OpenFOAM
simulation can be integrated with a study on the dynamics of the considered system.
This section describes the coupling techniques used to provide flapping motion to the
drone. The first part presents the proposed but not thoroughly investigated techniques.
Afterwards, the strategies actually used are described in depth.
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4.3.1 Underdeveloped strategies

Although these strategies were not ultimately used in the simulations, they provide
insight into the complexity of studying the dynamics of rigid bodies in CFD multi-body
simulations.
For each excluded solution, a detailed explanation of the reason for exclusion will be
supplied.

4.3.1.1 Two software strategies

This solution is based on the coupling of two different software. The link between the
CFD software OpenFOAM and the high-level, general-purpose programming language
Python was expected. In this coupling, the aerodynamic forces would be computed by
solving the Navier-Stokes equations inside the OpenFOAM software and then used by
Python as input. It would have been able to code the equations of rigid-body dynamics
to compute the position of the drone at the new time step according to the dynamics
of the wings.
The simulation would consist of a loop that, at each iteration, would consult Open-
FOAM, then Python, and then proceed to the next time step.
Some specifics of this loop are as follows:

Fig. 4.6 Explicit coupling scheme of the OpenFOAM-Python coupling

• Starting from OpenFOAM, a dynamic solver such as multiSolidBodyMotionSolver
is required. It is an OpenFOAM solver that allows for the simulation of multiple
rigid bodies in motion with the overset mesh technique. It can be used to simulate
the motion of the wings and compute the aerodynamic forces. The output must
be written in a file that is readable by Python.
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• The forces, for example in a CSV file, are extracted from Python to calculate the
new position of the drone based on the equations of motion. An algorithm based
on the Newton-Euler equations can be implemented for solving the equations
characterising the dynamics of the drone.
Now the output must be written in an OpenFOAM-readable format.

• Finally a specific script in OpenFOAM is required to read and update the new
position of the bodies in the simulation.

All these steps have to be repeated until the end of the simulation. A summary diagram
is shown in Figure 4.6.

While it is true that this strategy has certain benefits, such as flexibility and
computational efficiency, it was not investigated in detail due to its implementation
complexity. The addition of other software would have increased the simulation’s flexi-
bility by allowing the use of methods not yet available in OpenFOAM. Unfortunately,
the implementation is quite complicated and the risk of data interchange failures is
significant.
To simplify these issues, a constant time step should have been used. This would not be
the optimum strategy, however, since a constant time step in an unsteady simulation
may not resolve smaller-scale phenomena (too large time step case) or incur a high
computational cost (too small time step).

4.3.1.2 6-DOF solver strategy

In a three-dimensional system, a body has six degrees of freedom (6-DoF) - it may
translate and rotate along all three axes. Figure 4.7 shows the possible translations
and rotations in three-dimensional space.
In OpenFOAM, the six-Dof approach is applied through the built-in sixDoFRigidBody-
Motion library. The application’s task is to apply Newton’s second law of dynamics,
integrating all the forces acting on the body surface to calculate and update both
linear and rotational acceleration, velocity and position. Furthermore, constraints are
analytically imposed directly setting to zero the displacement in the blocked degree of
freedom [13].
This dynamics solver is designed to determine the dynamics of single bodies.

When solving the Navier-Stokes Equations and the continuity equation for a flow
it results in forces and these can be calculated by integrating over the body. Forces
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Fig. 4.7 Axises describing the 6 degrees of freedom [11]

comprise normal pressure
Fp =

Ø
i

ρisf,i (pi − pref )

and tangential viscous contributions:

Fv =
Ø

i

sf,i · (µRdev)

Where ρ is the density, sf,i the face area vector, p the pressure µ the dynamic viscosity
and Rdev the deviatoric stress tensor, a subset of the total stress tensor.
In order to calculate the motion of the body we need to know the acceleration a and
the angular acceleration α. A system of six equations generated from the Euler-Newton
equations 4.2 is then solved. Ø

F = maØ
M = αI

(4.2)

here m denotes the mass and I denotes the inertia of the body considered. By
integrating the angular and translational acceleration over the time step as

ωnew =
Ú t

told

αdt = ωold + α∆t

vnew =
Ú t

told

adt = vold + a∆t,

we get the current angular velocity ωnew and velocity vnew . From ωnew and vnew we
can get the angle rotated and the distance travelled from the last time step.
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Constrain strategy

Using this solver the flapping motion might be imposed through constraints. A
constraint is a condition imposed on the motion or behaviour of a rigid body or
another object in a fluid domain. Many OpenFOAM constraints are already included
in the source code. Two constraints have been identified that properly fulfil the
requirements. oscillatinRotatingMotion and oscillatinLinearMotion are useful for
imposing a periodic rotational or linear motion characterised by a certain frequency
and amplitude. Sinusoidal functions are applied using quaternions and septernions.
Quaternions are four-component vectors used to describe the rotation of an object
in space. A septernion adds three translational components to the quaternion, so
concurrently describing translation and rotation.
Nonetheless, the solver does not support the multi-body resolution. The solution may
be applied to many bodies separately, but not to a single rigid multi-body.
This kind of configuration has never been realised using the sixDofRigidBodyMotion
Solver in the published literature. This approach failed to fulfil requirements. To
perform a multi-body simulation with this dynamic solver would have required complex
changes.

4.3.2 Followed strategies

Each of the solutions shown in this part has been developed entirely in OpenFOAMv2206
using the previously implemented rigidBodyDynamics library and the rigidBodyMotion
solver. This solver uses the analytical algorithm outlined in Chapter 3 to solve the
dynamics of multi-body rigid systems.
The proposed solutions include both indirect and direct approaches. In indirect
solutions, motion is controlled by the application of an external force. In direct
solutions, the desired acceleration or position is applied directly.
All designed solutions can be selected from the dynamicMeshDict file, inside the
constant folder of the simulation. This folder provides important informations, especially
regarding the mesh. From the dynamicMeshDict file it is also possible to vary the
parameters characterising each solution.

4.3.2.1 Restraint strategy

The restraint strategy is an indirect solution. Restraints are a form of restriction that
limits the motion of an object by applying a force.
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Let’s recall the rigid body dynamics equation covered in the previous chapter.

H(model, q)q̈ + C(model, q, q̇) = f (4.3)

With this approach, we are acting on the term f . All external forces — including
CFD-calculated aerodynamic forces and restraints forces — are included in f .
In order to use this tool, all types of restraints already implemented in the rigid-
BodyDynamics library of OpenFOAMv2206 were consulted. None of the restraints
suggested had the requisite qualities. The intended motion of a flapping wing is a
periodic motion with a specified amplitude and frequency. The solution was therefore
to generate customised restraints according to the requirements. Two restraints are
generated, MyPrescribedTranslation and MyPrescribedRotation. The first is used to
constrain a linear degree of freedom and the second a rotational degree of freedom.
The operation of the restraints is integrated into the system dynamics solving algorithm
via equation 3.37. The restraints set on the n-joint apply a force that serves as the
inboard force for link n. In this way, the contribution of the restraint is considered,
and the related degree of freedom is restricted. When several restraints are associated
with a given degree of freedom, the force contributions of each restraint add up. This
procedure is repeated for every degree of freedom.
The value of the force is set using a PID controller.

PID controller

A PID (Proportional-Integral-Derivative) controller is a kind of feedback controller
that is widely used in process control. The controller continuously determines the error
signal resulting from the comparison between the desired setpoint and the measurement
of the process variable. This error is used to generate a corrective action that brings
the process variable closer to the setpoint.
The behaviour of the PID controller can be described as:

u(t) = K

A
e(t) + 1

Ti

Ú t

0
e(τ)dτ + Td

de(t)
dt

B
(4.4)

where u is the control variable and e is the control error

(e = ysp − y) ,
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where ysp is the desired setpoint and y the measurement of the process variable.

The control variable is thus a sum of three terms: the P-term, the I -term and the
D-term. The first is proportional to the error, the second to the integral of the error,
and the third to the derivative of the error. The controller parameters are proportional
gain K, integral time Ti, and derivative time Td [5].
In a discrete-time system the I -term and D-term of the Equation 4.4 may be approxi-
mated as:

i =
Ú t

0
e(τ)dτ ≈ i + e(t) ·∆T de(t)

dt
≈ e(t) − e(t− 1)

∆T

where ∆T is the sample time.
The control action of the proportional term is simply proportional to the control error,
it adjusts the output in proportion to the size of the error. This makes proportional
control particularly effective in systems where the process variable responds linearly to
the control input.
The proportional control alone, however, is not sufficient to eliminate steady-state
errors, which occur when the process variable does not reach the setpoint even after
the control input has been applied for a long time. This error decreases with increasing
controller gain, but the response becomes more oscillatory.
This issue is handled with the introduction of integral control. The main function of
the integral action is to make sure that the process output agrees with the setpoint in
a steady state.
Assume that the system is in a steady state with a constant control signal (u0) and a
constant error (e0). It follows from Equation 4.4 that the control signal is then given
by

u0 = K
3
e0 + e0

Ti

t
4

As long as e0 ̸= 0, this contradicts the assumption that the control signal u0 is constant
[5]. A properly tuned controller with integral action will always give zero steady-state
error. The integral term can also improve the response of the controller to sudden
changes in the setpoint.
However, this control can lead to overshoot and instability if not properly tuned. This
is because the accumulated error can continue to increase even after the process variable
has reached the setpoint.
The last control gain is the derivative gain. The purpose of the derivative action is to
improve closed-loop stability. The control system will be late in correcting for an error
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because of the process dynamics. Therefore it will take some time before a change in
the control variable is noticeable in the process output.
In a controller having proportional and derivative action, the control is made propor-
tional to the predicted process output. The tangent of the error curve (Figure 4.8) is
employed to make this prediction.
This can improve the transient response of the system by providing a damping effect
on any sudden changes in the process variable. The derivative control can also reduce
overshoot and improve stability by reducing the control action as the error signal
approaches zero. The derivative control, however, can amplify noise and lead to a
chattering effect if not properly tuned [5]. Tuning is the process of determining the

Fig. 4.8 Interpretation of derivative action as predictive control [5].

ideal gains for the P, I, and D values in order to get a satisfactory response from the
control system. A good design should permit parameter adjustments to enhance system
performance. The process of tuning can be based on experimentation and simulation
or analytical.
An excessively aggressive controller may result in instability and oscillations, while a
controller that is too cautious can result in sluggish reactions and steady-state mistakes.
In this paper, the trial and error method was used by applying corrections to the PID
terms as a function of the pitching and flapping motion produced by the wing.

MyPrescribedTranslation

This first restraint is in charge of controlling the body’s translation.
The reference position is set via a user-defined time dependent function. This function
may be assigned based on the needs of the project. In this case, reference is made to
the second equation of 4.1 of which the amplitude, shape and frequency may change
according to the specified parameters in the dynamicMeshDict file. This file specifies
also the gains of the PID controller.
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The current position of the body to which the restrain is linked is obtained from the
status function of the rigidBodyMotion class. The difference between this position
and the position defined by the user-defined function serves as the PID controller’s
input. The output of the PID controller is a force in the desired direction; this value
is allocated to a force spatial vector variable and used as an input in the forward
dynamics algorithm.

MyPrescribedRotation

The MyPrescribedRotation’s operation and member functions are quite similar
to those of MyPrescribedTranslation. As previously explained for the early restraint,
the PID controller uses a calculated error. Nevertheless, the error in this restraint is
the difference between the target and present angular velocity. The present angular
velocity is obtained from the status function, the target angular velocity is defined
by a user-defined function. The parameters characterising the function and the PID
controller may be adjusted in the dynamicMeshDict file. Moreover, the axis around
which the selected body will be rotated must be chosen.
In this instance, the speed is regulated rather than the position since the PID controller
turned out to be more accurate.
The output of the PID is a torque, which is subsequently assigned to a force spatial
vector variable and utilised by the forward dynamics algorithm.

4.3.2.2 q̈ Strategy

The q̈ Strategy is based on the direct application of accelerations to controlled joints.
This assignment occurs at the end of the forward dynamics procedure’s articulated-body
algorithm.
This strategy differs significantly from the one characterised by restraints. The dynam-
ics was controlled indirectly by acting on the forces term f of the equation 4.3.

For this strategy, not all of the system of equations is solved. The accelerations
related to the controlled degrees of freedom are not solved but are assigned directly
and used to compute the accelerations of free degrees of freedom.
In particular, the equation 3.34 performed in the last pass of the articulated body
algorithm is not solved for every degree of freedom.
The last pass is split into two parts. The first part is devoted to the classical solution
of the system, the accelerations of the free joints are determined using the standard
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method described earlier. In the second part, however, the accelerations of the joints
for which the motion is known (i.e. the flapping and pitching) are imposed through
an analytical function saved in a spatial vector variable. This variable is an input
parameter of the forward dynamics algorithm.
A class within the rigidBodyMotion library is specially created to assign the desired
analytical function to the spatial vector variable responsible for assignment within the
forward dynamics algorithm. This class was linked to the whole resolution procedure
to control the features of the selected analytical function from the dynamicMeshDict file.

Finally, in order to prevent numerical integration issues, the positions of the known
joints are also allocated. This assignment is made inside the numerical solver responsible
for the integration of the joints’ accelerations, after the articulated-body algorithm.

4.3.2.3 q Strategy

The q Strategy closely resembles the preceding one. This technique is distinguished by
the location of the assignment inside the global resolution process and the assigned
quantity. Earlier the accelerations assignment was performed at the end of the articu-
lated body algorithm. In this instance, the positions of the joints for which the motion
is known are assigned within the numerical solver for integration.
In this part of the resolution procedure, the numerical integral of the accelerations is
computed in order to determine the velocities and positions of all the degrees of freedom
under consideration. Since these data are utilised as input by the articulated-body
algorithm, the assignment is performed before calculating the accelerations.
The positions of the known joint are constrained using an analytical function, in the
same way as before. Since this function is known by points, the numerical derivative is
determined to further automate the algorithm and avoid double assignment of positions
and velocities. The backward differentiation formula (BDF) of order 1 is used:

f ′(tn, fn) = ft − ft−1

∆T
(4.5)

where f ′ is the derivative of f .
Finally, a small modification is made to the articulated-body algorithm. The motion is
imposed in the numerical solver through positions and the accelerations of degrees of
freedom constrained are no longer necessary. The accelerations merely serve to deter-
mine the positions, which for the constrained degrees of freedom are already known. In
this sense, the computational cost of the method is decreased by only iterating the last
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pass of the articulated-body algorithm between the free degrees of freedom. The final
acceleration vector will include finite values for free DOFs and zeros for restricted DOFs.

4.3.2.4 Remarks

The primary objective of these strategies is to have as minimal impact as possible
on the resolution process. Our initiative does not try to enhance this procedure,
but rather to tailor it to our needs. The assignment of known positions, velocities,
and accelerations is separated into two distinct techniques to prevent simultaneously
impacting the articulated-body algorithm and numerical solver. Hence avoiding the
imposition of several parties on the resolution process. Acceleration is controlled by
the q̈ Strategy, enabling it to be integrated from the numerical solver. In contrast, the
q Strategy regulates position, enabling it to be differentiated from the articulated-body
algorithm.

4.4 Methodology testing

The just-mentioned strategies designed to impose the flapping motion are applied to
the wing simulation outlined at the beginning of the chapter. The aim is to determine
the most effective. At the end of the chapter, the strategy that best applies the flapping
motion and best enables the resulting dynamics of the system to be studied will be
identified.
In the next part, a comparison is done based purely on the reliability of the flapping
kinematics imposed on the wing. Afterwards, an aerodynamic analysis is conducted.

4.4.1 Methodology comparison for the numerical definition of
the flapping motion

This part focuses on the analysis of the imposed wing flapping kinematics.
We recall that the wing motion is defined from a customized version of the parametriza-
tion of Berman and Wang [28], without any pitching offset or phase difference. The
flapping and pitching angles are given as a function of time respectively as:

ϕ(t) = − Aϕ

arcsin (Kϕ) arcsin [Kϕ cos(2πft)] + Aϕ

α(t) = − Aα

tanh (Kα) tanh [Kα sin(2πft)] .
(4.6)
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The method’s reliability is evaluated by varying the five parameters characterising
the motion (i.e. Kϕ, Kα, Aϕ, Aα, f) to apply alternative flight kinematics to the wing
and so assess the reliability of the method.

4.4.1.1 Restraints strategy

The restraints strategy may be selected from the dynamicMeshDict file, in the constant
folder of the simulation.
The operation of this method is based on a PID controller and its gains have to be
tuned. To this end, the first parameters tested are as follows:

• Aϕ = 0.7 m, Aα = 45°, f = 1Hz, Kϕ = 0.01, Kα = 0.01, 1.2 · 104

The following PID gains are obtained using the iterative trial and error method:

Kp = 2.4, Kd = 0.3, Ki = 0. (4.7)

Using these gains the following results are reached:

Fig. 4.9 Imposed pitching (Rz) and flapping (Px)

This graph demonstrates that appropriately tuning the gains of the PID controller,
to achieve the required wing motion is feasible. In red, the pitching motion is
illustrated, and in blue, the flapping motion. The dashed lines, showing the
desired motion, are close to the curves depicting the obtained kinematics (solid
lines).
The same PID gains are employed to apply different kinematics to the wing.
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• Aϕ = 0.25m, Aα = 20°, f = 2 Hz, Kϕ = 0.01, Kα = 0.01, → Re = 9 · 103

Fig. 4.10 Imposed pitching (α) and flapping (ϕ)

• Aϕ = 0.1, Aα = 45°, f = 1 Hz, Kϕ = 0.9, Kα = 7, → Re = 1.8 · 103

Fig. 4.11 Imposed pitching (α) and flapping (ϕ)

Studying the PID controller’s robustness, it was discovered that the PID controller
can handle different inputs in amplitude and frequency, but not in shape. In particular,
applying a more rigid motion, the restrain responsible for controlling rotational degrees
of freedom does not reach the target value but oscillates around a lower value than
desired (see Figure 4.21).
These tests are carried out on a simpler test case than the full three-dimensional simu-
lation. Considering that the approach performs badly even under simplified conditions,
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it cannot be further considered and is consequently discarded.

4.4.1.2 q strategy

The results of the imposed kinematics with the q Strategy are shown in this part. The
parameterization 4.6 is used to apply motion to constrained degrees of freedom (i.e.
flapping and pitching). Through this approach, the analytical functions associated
with the positions of the two constrained degrees of freedom are directly assigned to
the wing and used as input for the articulated-body algorithm.
The following kinematics are evaluated as a function of the five parameters characterising
the used parameterisation:

• Aϕ = 0.1 m, Aα = 45°, f = 2 Hz, Kϕ = 0.01, Kα = 0.01, → Re = 3.6 · 103

Fig. 4.12 Pitching (Rz) and flapping (Px) postions

• Aϕ = 0.1, Aα = 45°, f = 3 Hz, Kϕ = 0.99, Kα = 9, → Re = 5.4 · 103

Fig. 4.13 (a) Positions for the constrained DOFs (Rz,Px)
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• Aϕ = 0.1, Aα = 30°, f = 5 Hz, Kϕ = 0.8, Kα = 5, → Re = 9 · 103

Fig. 4.14 (a) Positions for the constrained DOFs (Rz,Px)

In all these graphs, the red curve represents flapping motion and the blue curve
represents pitching motion. In each configuration tested, the strategy was able to
impose the correct flapping motions for different kinematics. In conclusion, the method’s
effectiveness is confirmed.
In the next section, the aerodynamic results obtained with this strategy will be
discussed.

4.4.1.3 q̈ Strategy

Lastly, the third technique is also tested. The parameterization 4.6 is used to apply
motion to constrained degrees of freedom (i.e. flapping and pitching) as before. In
this strategy, the analytical functions associated with the accelerations of the two
constrained degrees of freedom are directly assigned to the wing at the end of the
articulated-body algorithm.
To facilitate comparison with the previous strategy, the same flapping and pitching
kinematics are imposed:

• Aϕ = 0.1 m, Aα = 45°, f = 2 Hz, Kϕ = 0.01, Kα = 0.01, → Re = 3.6 · 103
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Fig. 4.15 Pitching (Rz) and flapping (Px) postions

• Aϕ = 0.1, Aα = 45°, f = 3 Hz, Kϕ = 0.99, Kα = 9, → Re = 5.4 · 103

Fig. 4.16 (a) Positions for the constrained DOFs (Rz,Px)

• Aϕ = 0.1, Aα = 30°, f = 5 Hz, Kϕ = 0.8, Kα = 5, → Re = 9 · 103

Fig. 4.17 (a) Positions for the constrained DOFs (Rz,Px)

The graphs describe the same variables described before.
The results obtained between this and the preceding technique are perfectly identical.
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This is a predictable result since this strategy not only imposes the acceleration of the
constrained DOFs in the articulated-body algorithm but also imposes the positions of
the same DOFs in the solver for numerical integration. Direct position assignment, as
done for the previous strategy, imposes the correct kinematics results.

4.4.1.4 Conclusions

In this subsection, the strategies developed were tested on a simple two-dimensional
wing simulation. These strategies have different approaches but the same aim. They
must apply flapping motion to the wing in the most efficient way.
Through the results of this section, the first pros and cons of each strategy can be
drawn up:

• While the restraints strategy was simple to implement, it required a significant
amount of work to reach the best PID controller gains. The trial-and-error method
required a large number of erroneous simulations before the best configuration
could be determined. This configuration, however, is specific to the motion on
which it was implemented. The same gains did not react well to different motion
dynamics. One of the primary goals of this work is to investigate the system’s
dynamics under various input kinematics. As a result of the significance of this
flaw, no more research employing this method is conducted.

• The q̈-Strategy appears as a repetitive and less practical version of q Strategy. q̈
Strategy assigns both accelerations at the end of the articulated-body algorithm
and positions in the numerical solver. Also, the q Strategy assigns the positions
but neglects the accelerations.
The results obtained with this strategy are therefore necessarily identical to those
obtained with the q strategy; it is a less optimised version.
This method will no longer be used since it is deemed less practicable and effective
than the q Strategy.

• The results obtained with the q Strategiy are good. The method is therefore
highly reliable. It is less intrusive and simpler to implement than the q̈ Strategy.
It is sufficient to assign a function to the position vector in order to describe
the motion of the system. This approach will be used to study the resulting
aerodynamics in the wing and wing-body simulations.



66 Dynamic simulation of a flapping foil

4.4.2 Aerodynamics analysis

In this part, the effective coupling between the body dynamics solver and CFD is
verified both in the wing and wing-body 2D simulations. In addition, aerodynamic
analysis of the forces and motion of the wing is performed.
In the shown results the q Strategy is used to apply the desired flapping kinematics
via the parametrization 4.1.
The results are obtained by applying the same kinematics shown above. To avoid the
initial transition period, only the second flapping cycle is considered.

2D wing simulations

• Aϕ = 0.1 m, Aα = 45°, f = 2 Hz, Kϕ = 0.01, Kα = 0.01, → Re = 3.6 · 103

(a) (b)

(c)

Fig. 4.18 (a) Lift distribution, (b) Acceleration for the free DOF (Py), (c) Position for
the free DOF (Py)

Figure 4.18a illustrates the lift distribution over the period. Figure 4.18b shows
the acceleration in the free degree of freedom (Py) resulting from the imposed
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flapping and pitching motion. The coupling between CFD and the dynamics
solver may be validated by verifying the vertical component of Newton’s second
law:

ay−CF D = L

m
− g (4.8)

where m is the mass of the wing, g = 9.81 m/s2 the magnitude of the gravitational
acceleration and L the lift. The vertical acceleration derived using equation 4.8
from the CFD-estimated lift must match the acceleration predicted by the
dynamics solver. The acceleration derived from equation 4.8 was determined in
post-production using MATLAB/Python. The pairing of the two accelerations is
shown in Figure 4.18b.
The resulting vertical position is shown in Figure 4.18c. To maintain consistency
between the acceleration graph and the position graph, the positions do not
indicate the total displacement of the wing over the entire simulation (i.e. two
periods), but instead the displacement relative to the acceleration shown in
Figure 4.18b. This also applies to all subsequent cases shown.

• Aϕ = 0.1, Aα = 45°, f = 3 Hz, Kϕ = 0.99, Kα = 9, → Re = 5.4 · 103

(a) (b)

Fig. 4.19 (a) Acceleration for free DOF (Py), (b) position for free DOF (Py)

• Aϕ = 0.1, Aα = 30°, f = 5 Hz, Kϕ = 0.8, Kα = 5, → Re = 9 · 103
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(a) (b)

Fig. 4.20 (a) Acceleration for free DOF (Py), (b) position for free DOF (Py)

These results demonstrate the actual coupling between CFD and dynamic solver.

In the continuation of the treatment, It is discussed in detail the presence of the
LEV on the trailing edge of an airfoil and its effects on the lift curve during the upstroke
phase. To carry out this insight the following motion parameters have been used:

Aϕ = 0.1, Aα = 45°, f = 5 Hz, Kϕ = 0.01, Kα = 0.01, → Re = 9 · 103
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Fig. 4.21 Preassure field at five consecutive times for a 2D-wing.

Figure 4.21 illustrates seven successive phases of the LEV’s development and
separation from the wing. Each phase corresponds to a point on the curve of Figure
4.22 depicting the lift produced.

• Figure (a) shows the formation of the leading edge vortex (LEV) on the wing.
Many elements, including the dynamic pressure gradient between the top and
lower surface of the wing, contribute to its formation and expansion.
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The lift produced by the wings is the consequence of the low-pressure zone created
by the streamline curvature associated with the vortex.

• In Figure (b) the vortex has grown in size, this results in a significant lift gain.

• Figure (c) depicts the maximum size of a vortex, this point corresponds to the
maximum lift produced. At this stage, the vortex is nearing separation from the
wing.

• The breakdown of the vortex is shown in Figure (d). When the vortex starts
to decay, the lift it generates decreases and the wing loses its effectiveness in
producing lift.

• In Figure (e) the vortex is completely decayed. The lift generated is extremely
small.

• (f) The rotation of the airfoil to reach the vertical position provides a transitory
low-pressure region, resulting in a brief lift peak.

• In the last figure (g) the airfoil has become vertical and no longer produces lift.
There is even a tiny negative lift.

Fig. 4.22 Seven instants localised on the lift curve over the upstroke.

2D wing-body simulations

The q Strategy is used to apply pitching and flapping motion to the wing. The
system has four degrees of freedom in total, the q Strategy is tested in a simulation of
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increasing complexity.
As expected, the results show how the drone moves in accordance with the aerodynamic
forces:

• Aϕ = 0.1, Aα = 45°, f = 2Hz, Kϕ = 0.01, Kα = 0.01, → Re = 3.6 · 103

The coupling between the dynamics solver and CFD is validated using the
horizontal and vertical components of Newton’s second law.

(a) (b)

Fig. 4.23 (a) Acceleration for the DOF Px (b) acceleration for the DOF Py

(a) (b)

Fig. 4.24 (a) Position for the DOF Px (b) position for the DOF Py

• Aϕ = 0.1, Aα = 45°, f = 3Hz, Kϕ = 0.99, Kα = 9, → Re = 3.6 · 103
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(a) (b)

Fig. 4.25 (a) Acceleration for the DOF Px (b) acceleration for the DOF Py

(a) (b)

Fig. 4.26 (a) Position for the DOF Px (b) position for the DOF Py

Through this technique, it was then possible to study the dynamics of a multi-
body system. The next stages include applying this method to a three-dimensional
simulation.



Chapter 5

3D Multibody Dynamics Simulation

This chapter presents the conclusive findings of this research. The work reported in
earlier chapters is applied to two three-dimensional simulations. Section 5.1 shows
the results obtained concerning a simulation of an elliptical wing. Two cases with
different numbers of degrees of freedom of the wing are studied. Section 5.2 describes
the coupling between the dynamics solver and CFD for a multi-body system involving
an elliptical wing and a spherical body. Again, the system is investigated as the degrees
of freedom vary.
Recalling what has been written in the previous chapter, the q Strategy is applied to
prescribe the motion imposed (i.e.flapping and pitching) to the wing and couple CFD
with the dynamics solver. This coupling is useful to study the motion of the system in
the free degrees of freedom as a function of aerodynamic forces.
This chapter’s purpose is to provide an aerodynamically and dynamically accurate
explanation of the findings. In order to do this, the CFD model is provided at the
beginning of each section, followed by a discussion of the findings.

5.1 Wing system

This section describes the research undertaken on a three-dimensional wing in hovering
conditions. The wing studied has an elliptical shape with pitching axis centred at the
chord. The wing span is 50 mm and AR = 3.25. The thickness equal to 1% of span
and the mass m = 0.3 · 10−4 kg.

The same customized version of the parametrization of Berman and Wang [28] of
the previous chapter is employed to prescribe the motion, flapping ϕ and pitching α to
the wing. Pitching offset or phase difference are not considered. The parameterization
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is recalled in Eq 5.1

ϕ(t) = − Aϕ

arcsin (Kϕ) arcsin [Kϕ cos(2πft)] + Aϕ

α(t) = − Aα

tanh (Kα) tanh [Kα sin(2πft)] .
(5.1)

The motion imposed on the wing depends on five parameters (i.e. Kϕ, Kα, Aϕ, Aα, f).
The behaviour of the wing as a function of the forces due to the imposed motion is
studied first in one degree of freedom (vertical translation Py) and then in two degrees
of freedom to include the translation in the stroke plane Px in the simulation.

5.1.1 CFD Model

These simulations use the same three-dimensional domain described in the work of
Calado and Poletti (2022) [7]. The geometry and the domain are a constraint of the
research as it was already previously used in the frame of Romain Poletti’s PhD thesis
to which this work contribute.
These simulations are 3D, incompressible, laminar, and unsteady, and use the overset
mesh technique (overPimpleDyMFoam solver).

(a) (b)

Fig. 5.1 (a) Background mesh, (b) component mesh.

The wing has a structured component mesh fitted. As depicted in Figure 5.1b, the
component mesh extends two chord lengths normal to the surface in all directions with
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expanding cell size. To avoid potential boundary effects, the background grid is a cube
whose boundaries are at least ten chords from the wing Figure (see 5.1b). Along the
wing path and wake, the background grid is locally refined to match the cell sizes at
the interface between the background and component grids. Picture 5.1a depicts the
background and component meshes merged.
The component cell size has been the subject of a sensitivity study. This was accom-
plished by assessing the convergence of the mean lift and drag magnitudes. The cell
size utilised in this investigation was determined to be optimal [7].

(a) (b)

Fig. 5.2 (a) Degrees of freedom, (b) wing centre of gravity.

Constrained degrees of freedom (ϕ, α) are shown in blue in figure 5.2a, while free
ones are shown in green. The fourth degree of freedom Px, not always investigated,
is represented as a dashed line. The centre of mass of the wing coincides with the
centre of rotation and is located 25 mm away from the wing along its longitudinal axis,
Figure 5.2b.

The background grid’s boundary conditions included zero gauge pressure on all
faces and and zero gradient for velocity. Initial conditions assume that the fluid is at
rest. In order to prevent the first transitory period, all simulations are performed for
two flapping periods and only the last period is used for post-processing.
Regarding numerical techniques, the backward second-order implicit scheme with
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variable time-stepping and a maximum Courant number of 1 is utilised for the tem-
poral discretization. For spatial discretization, a second-order linear Gauss scheme
with a limiter for divergence terms is used. The pre-conditioned conjugate gradient
(PCG) iterative solver and the pre-conditioned bi-stable conjugate gradient (Pre-BiCG)
solver are used for cell displacement and for pressure respectively. The symmetric
Gauss-Seidel is used for the velocity.

In these simulations, the lift force L is defined as the vertical component (along Z)
of the total aerodynamic force. The drag force D is defined as the component on the
stroke plane (XY).
The Reynolds number is computed with the formulae exposed in Section 2.1 and it is
equal to 4.85 · 103 where not otherwise specified.

5.1.2 CFD Results

In this section, the results of the resulting wing dynamics are discussed for both the
3DOFs-simulations and the 4DOFs-simulations.

5.1.2.1 Three degrees of freedom (Rz, Ry, Pz)

These simulations involve three degrees of freedom. Specifically, the dynamics of the
resulting free degree of freedom (Pz) is investigated. Pz reflects the vertical displacement
caused by the equilibrium between weight and lift produced during the flapping motion.
The vertical component of Newton’s second law is employed once more to validate the
accuracy of the RBM solver-calculated acceleration with regard to aerodynamic forces:

ay−CF D = L

m
− g (5.2)

The findings are first displayed as a function of the motion parameters:

• Aϕ = 60°, Aα = 45°, f = 10.2 Hz, Kϕ = 0.99, Kα = 10
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(a) (b)

Fig. 5.3 (a) Positions for the constrained DOFs (Rz,Ry), (b) lift generated

(a) (b)

Fig. 5.4 (a) Acceleration for the free DOF (Pz), (b) resulting Pz position

Figure 5.3a shows the flapping motion imposed on the wing. The amplitude
of the motion is shown in radians, the characteristics of the imposed flapping
kinematics being decisive in producing the aerodynamic forces shown in Figure
5.3b. The acceleration generated by the wing in the free degree of freedom (Pz)
is compared to that obtained in post-production using Equation 5.2. CFD and
MBS are coupled efficiently because the inaccuracy between these accelerations
is minimal. The double integral of the accelerations is used to compare the
displacement generated by the wing with the theoretical one.
After proving the efficient coupling of CFD and dynamic solver, this comparison
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is no longer shown.

• Aϕ = 60°, Aα = 45°, f = 10.2 Hz, Kϕ = 0.99, Kα = 3

(a) (b)

Fig. 5.5 (a) Positions for the constrained DOFs (Rz,Ry), (b) lift generated

(a) (b)

Fig. 5.6 (a) Acceleration for the free DOF (Pz), (b) resulting Pz position
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• Aϕ = 60°, Aα = 45°, f = 10.2 Hz, Kϕ = 0.5, Kα = 5

(a) (b)

Fig. 5.7 (a) Positions for the constrained DOFs (Rz,Ry), (b) lift generated

(a) (b)

Fig. 5.8 (a) Acceleration for the free DOF (Pz), (b) resulting Pz position

The results show that the imposed kinematics have a significant impact on the
resultant dynamics in the free degree of freedom. The aerodynamic performance of a
wing suffers a significant decline when its flapping kinematics is especially sharp. In
both situations, 5.3a and 5.5a, the produced lift is significantly lower than in the other
case. By employing this form of kinematics, the wing cannot exploit the LEV. The
initial peak of the lift curve coincides with the presence of an LEV from the preceding
stroke. This is followed by a precipitous decline caused by the vortex’s separation.
Then, around midway through the stroke, the LEV is re-established and the lift reaches
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its maximum height. These results can be utilised to determine the kinematics of the
wing with the highest performance.

5.1.2.2 Four degrees of freedom (Rz, Ry, Pz, Px)

Compared to the previously analysed case, an additional degree of freedom is added.
The purpose of this section is consequently to investigate the system’s dynamics in its
two free degrees of freedom Pz, Px. Px in body axes represents the direction in which
the drag acts.
The pitching and flapping motion is imposed using the same parametrization as before.
The Px-acceleration is validated using the horizontal component of Newton’s second
law:

ax−CF D = D

m
(5.3)

• Aϕ = 60°, Aα = 45°, f = 10.2 Hz, Kϕ = 0.5, Kα = 5

(a) (b)

Fig. 5.9 (a) Positions for the constrained DOFs (Rz,Ry), (b) lift and drag generated
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(a) (b)

Fig. 5.10 (a) Acceleration for the free DOF (Pz), (b) resulting Pz position

(a) (b)

Fig. 5.11 (a) Acceleration for the free DOF (Px), (b) resulting Px position
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• Aϕ = 70°, Aα = 30°, f = 10.2 Hz, Kϕ = 0.99, Kα = 10, Re = 5.68 · 103

(a) (b)

Fig. 5.12 (a) Positions for the constrained DOFs (Rz,Ry), (b) lift and drag generated

(a) (b)

Fig. 5.13 (a) Acceleration for the free DOF (Pz), (b) resulting Pz position
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(a) (b)

Fig. 5.14 (a) Acceleration for the free DOF (Px), (b) resulting Px position

Fig. 5.15 Wing trajectory

The results obtained appear consistent with previous results and the horizontal
component of Newton’s law testifies to an excellent level of coupling accuracy
even for the additional degree of freedom.
Figure 5.15 highlights the wing’s trajectory with regard to its two free degrees of
freedom. This graph shows the connection between the two degrees of freedom
by demonstrating when horizontal displacement dominates vertical displacement
and vice versa. At the beginning of the upstroke, the lift produced is not sufficient
to prevail over the horizontal displacement, which happens instead towards the
conclusion of the period when the drag contribution is minimised and the wing
experiences a high vertical displacement.
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5.2 Wing-body system

5.2.1 CFD Model

(a) (b)

Fig. 5.16 (a) Wing-body mesh, (b) component mesh.

This section presents the conclusive research findings for a three-dimensional
multibody simulation. The wing-body system is represented in hover condition; the
wing has two degrees of freedom in regard to the body.
The body is represented as a sphere with a radius of r = 14 mm and an 11 mm distance
between the wing and body is present. This prevents the physical inconsistency of the
wing penetrating the body. In addition, in natural flyers, the wing-body interaction
occurs through a very narrow surface. This area of the wing does not generate
a significant aerodynamic contribution, and neglecting it doesn’t represent a large
mistake.

The domain presented in the preceding section is supplemented with a second
overset mesh representing the body. The component mesh of the body is a sphere with
a structured mesh and a radius of r2 = 40 mm. The outer radius is approximately three
times the body’s radius, hence avoiding contour effects. A mesh sensitivity analysis
was conducted by validating the results’ dependability. As a result, a spherical mesh
of 162000 cells is determined to be the best solution.
The background mesh is maintained constant with the preceding section.

Constrained degrees of freedom (ϕ, α) are shown in blue in figure 5.17a, while free
ones are shown in green. The additional free degree of freedom Px is represented as a
dashed line. The centre of mass of the wing coincides with the centre of rotation and
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(a) (b)

Fig. 5.17 (a) Degrees of freedom, (b) wing-body centre of gravity.

is located in the centre of the body, Figure 5.17b.

In comparison to the last simulation, no adjustments were made to the background
mesh’s boundary conditions, numerical schemes, initial conditions, mass and Reynolds
number.
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5.3 CFD Results

5.3.0.1 Three degrees of freedom (Rz, Ry, Pz)

1. Aϕ = 60°, Aα = 45°, f = 10.2 Hz, Kϕ = 0.01, Kα = 0.01

(a) (b)

Fig. 5.18 (a) Positions for the constrained DOFs (Rz,Ry), (b) lift generated

(a) (b)

Fig. 5.19 (a) Acceleration for the free DOF (Pz), (b) resulting Pz position

2. Aϕ = 60°, Aα = 45°, f = 10.2 Hz, Kϕ = 0.01, Kα = 0.01
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(a) (b)

Fig. 5.20 (a) Positions for the constrained DOFs (Rz,Ry), (b) lift generated

(a) (b)

Fig. 5.21 (a) Acceleration for the free DOF (Pz), (b) resulting Pz position

5.3.0.2 Four degrees of freedom (Rz, Ry, Pz, Px)

• Aϕ = 60°, Aα = 45°, f = 10.2 Hz, Kϕ = 0.01, Kα = 0.01
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(a) (b)

Fig. 5.22 (a) Positions for the constrained DOFs (Rz,Ry), (b) lift and drag generated

(a) (b)

Fig. 5.23 (a) Acceleration for the free DOF (Pz), (b) resulting Pz position
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(a) (b)

Fig. 5.24 (a) Acceleration for the free DOF (Px), (b) resulting Px position

Fig. 5.25 Wing trajectory

Figure 5.25 shows the trajectory developed by the wing-body system over the
analysed period. As in the case of the single wing, there is not enough lift at
the beginning of the period to cause a positive vertical displacement. The drag
produced becomes very low during the pronation phase at the end of the period,
thus generating an almost pure vertical displacement of the wing.

The coupling check is only performed at the beginning of the paragraphs through
the corresponding components of Newton’s law. The dynamic solver - CFD coupling
approach looks to be effective also in this scenario. The dynamics of the multibody
system is investigated in terms of the free degrees of freedom and shown to be consistent
with regard to the predicted forces.
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Due to the overset mesh and the existence of an extra component mesh, the aerody-
namics force graphs show the presence of nonphysical noise.
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Conclusions

In the present work a high-fidelity, multi-physics environment that couples computa-
tional fluid dynamics (CFD) and a multibody dynamics system (MBS) is developed
in the frame of flapping drones aerodynamics. CFD is used to accurately compute
the wing forces and the multibody dynamics system is employed to accurately predict
drone trajectories.
Within the paper, this coupling is realised through three different, purpose-built mech-
anisms. These strategies present different characteristics with the common objective
of prescribing the wing motion and studying the resulting system dynamics in uncon-
strained degrees of freedom. In each of these approaches, CFD-MBS coupling occurs
inside the forward dynamics formalism and, more specifically, inside the projection
method articulated-body algorithm. This approach is useful for determining the accel-
erations characterising a multi-body system as a function of external forces. despite
this similarity between all strategies, they differ in prescribing the flapping and pitching
motion to the wing of a flapping drone.
The first technique proposed employs an indirect method based on a PID controller.
With a properly-tuned PID controller, the difference between the desired and measured
wing position is converted into a force proportionate to the input error. The desired
setpoint is reached by applying this force to the system. The q̈ Strategy on the other
hand is defined direct because it modifies the projection method of the forward dy-
namics formalism to directly assign the accelerations of the known degrees of freedom.
This correction is performed at the end of the algorithm. Finally, the q Strategy is also
direct and it assigns the positions of the known degrees of freedom at the beginning of
the projection method.
The different strategies are tested in simulations of increasing complexity in order to
highlight any vulnerabilities and select the most efficient strategy. The analysis of the
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results of two-dimensional simulations of a flapping wing and a wing-body dynamic
system revealed that the q Strategy is the most efficient and optimised. This solution
saves computational cost by avoiding the projection method iterations that characterise
the accelerations of known joints.
The q Strategy was therefore used to investigate the dynamics of a three-dimensional
elliptical wing and a three-dimensional wing-body system. The results demonstrated
an accurate dynamic solver - CFD coupling. It was therefore possible to investigate
the system’s dynamics as a function of the employed kinematics. In addition, the
complex flapping aerodynamics of the wing and wing-body system has been accurately
characterised as a function of the pitching and flapping motion imposed on the wing.
The research provides deep insights into the unsteady mechanisms that occur on the
surface of a flapping wing in both the two- and three-dimensional case.
The findings of this research are utilised to verify a simplified model developed in the
frame of Romain Poletti PhD’s thesis to which this work contributes.

The next steps include the complete characterisation of the flapping aerodynamics
in three dimensions. To this end, the flapping drone may be completed by adding
the second wing and investigating the interaction processes between the two wings in
motion. Slight adjustments to the projection method may be necessary to integrate
this third body.

In conclusion, the success of the presented coupling method provides a valuable
contribution to the understanding of flapping drones dynamics and aerodynamics. This
research provides a solid foundation for future high-fidelity studies and encourages the
advancement and utilization of engineered FWMAVs.
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