

Master's Degree program in Building Engineering Special track in Green Building a.y 2022/2023 March 2023

BACS: energy performance and technical-economic analysis of HVAC technologies

Supervisor: prof. ing. Vincenzo CORRADO Co-supervisor: ing. Simona PADUOS Candidate: Marzia ALBESIANO

Abstract

In Europe, buildings operation causes 40% of energy consumption and 36% of greenhouse gas emissions. For this reason, the European Union's *Energy Performance of Building Directives* (EPBD) provides policies aimed at optimizing the energy efficiency in buildings. To achieve the goal of optimizing the energy performance of buildings, the directive identifies several technological solutions that can be used.

One of these technological solutions and the topic of this thesis are the *Building Automation and Control Systems* (BACS), whose purpose is to adapt the operation of technical building systems on the real behavior of users according to the external environmental conditions. To develop this work the EN ISO 52120 standard has a relevant importance, since it provides the list of BACS functions, the method to define the BACS efficiency classes, and the detailed and simplified methods to assess the effect of BACS on the building energy performance.

This work is the result of a collaboration with C2R Energy Consulting, a consulting company in the energy sector. The goals are twofold.

The first goal is to evaluate the ability to simulate the BACS functions with two different energy modeling tools; *Edilclima EC700*, which uses a simplified dynamic calculation model, and *Energy-Plus/DesignBuilder*, which uses a detailed dynamic calculation model. First, the work illustrates which functions can be simulated and at what relative implementable level. A short guide to the actual simulation of the functions is also provided. A group of classrooms of the *Politecnico di Torino* are modeled with the two software tools to simulate the presence of some of BACS functions used for HVAC and blind control and to evaluate their effects on the energy performances and the energy savings of the building. The thesis provides a comparison of the results of sensible energy needs for heating, sensible energy needs for cooling and ventilation electric energy, obtained from the simulations made with the two software tools. The benefits of having high-energy performance BACS functions are highlighted. As well, the strengths and weaknesses of the two software tools are analyzed. The results show that a high BACS efficiency class allows to reduce the energy consumption both in terms of sensible energy needs for heating and cooling and in terms of ventilation electric energy.

The second goal is to analyze the economic feasibility of installation of BACS devices in the case study and to provide a more realistic evaluation of the cost of these systems. The estimate is done by calculating the payback period based on the real costs of the devices available on the market and on the current cost. The result of the analysis shows that the payback period is lower than the lifespan of BACS devices, which is about 10 years. Therefore, BACS implementation is not only energy effective but also cost effective.

Contents

1	Introduction	1
2	Legislative framework	3
	2.1 European legislative framework	3
	2.2 Italian legislative framework	4
3	Standard EN ISO 52120-1:2022, Energy performance of buildings - Contribution of	
	building automation, controls and building management	7
	3.1 Impacting functions of BACS on the energy performance of buildings	8
	3.2 BACS efficiency classification	8
	3.3 Factor-based method for evaluating BACS contribution to energy performance of buildings	s 9
	3.4 Detailed calculation of BACS contribution in energy performance of buildings	10
4	Simulation of BACS functions in Edilclima EC700 and EnergyPlus/DesignBuilder	11
	4.1 Heating control	12
	4.2 Domestic Hot Water control	24
	4.3 Cooling control	28
	4.4 Ventilation and air-conditioning control	39
	4.5 Lighting control	50
	4.6 Blind control	52
	4.7 Summary of the achievable levels	53
5		55
	5.1 Current status of the building	55
	5.2 Model	
	5.3 Simulation of BACS efficiency class	75
6	Analysis of economic feasibility	115
	6.1 Devices available on the market	115
	6.2 Economic evaluation of the intervention	116
7	Conclusions and future development	119
A	EN ISO 52120: reference tables	Ι
	A.1 List of BAC and TBM functions	Ι
	A.2 BAC and TBM minimum function requirements for class C $\ldots \ldots \ldots \ldots \ldots \ldots$	III
	A.3 Factor-based method	VI
В	EN ISO 52120: calculation method	VII
	B.1 Factor-based method	VII

B.2	Time approach
B.3	Set-point approach
B.4	Correction coefficient approach
Bibliog	xaphy XI
List of	Tables XV
List of	Figures XIX

Chapter 1

Introduction

Buildings are the main consumers of energy in Europe, indeed approximately 40% of all energy consumption and 36% of all greenhouse gas emissions in Europe are due to buildings operations. Moreover, approximately 35% of the building stock is over 50 years old and about 75% of all buildings are not energy efficient [26].

For this reason, the European Union focused on some policies aimed at optimizing the energy efficiency of the existing building stock. These policies are listed in two different directives, *Energy Performance of Buildings Directive* (EPBD) and *Energy Efficiency Directive* (EED), which are part of the wider *Clean energy for all Europeans* package that aims to decarbonize the European energy system in accordance with the European Green Deal objectives.

The main policies recommended to member states in the EPBD and in the EED are [26]:

- to determine a long-term renovation strategy in order to decarbonize their building stock by 2050,
- to set a minimum energy performance requirement for new buildings, for buildings undergoing major renovation and for replacement of building systems; in the case of new buildings the directive requires that they must be nearly zero-energy buildings (NZEB),
- to renovate in an energy efficient way at least 3% of the floor area of buildings owned and occupied by central governments,
- to follow the directives requirements for installation of building automation and control systems.

This last point is the main focus of this work. The EN ISO 52120-1 standard defines *Building* Automation and Controls System (BACS) as a

system, comprising all products, software and engineering services for automatic controls (including interlocks), monitoring, optimization, for operation, human intervention, and management to achieve energy-efficient, economical, and safe operation of building services [19].

In other words, it is the set of systems that allows to control, monitor and automate a building, increasing the energy efficiency and at the same time maintaining thermal comfort. They comprise heating, cooling, domestic hot water production, ventilation and air-conditioning, lighting appliances, blind control and technical building management. All these systems, if correctly designed and automated, allow to increase the energy performance, decrease energy demand for operation and consequently reduce greenhouse gas emissions.

This work is the result of a collaboration with C2R Energy Consulting, which is a company providing technical and scientific consulting services and support for energy-efficiency interventions and energy management.

The goals of this thesis are twofold. The first goal is to evaluate the ability to simulate BACS functions with two different energy modeling tools: *Edilclima EC700*, which uses a simplified dynamic calculation model, and *EnergyPlus/DesignBuilder*, which uses a detailed dynamic calculation model.

The second goal is to provide an economic feasibility assessment for the installation of BACS devices in a case study via a realistic cost-benefits analysis based on an estimate of the payback period.

The work is divided into six main parts. Chapter 2 summarizes the European [23][24][25][27] and Italian [35][36][34][33] legislative frameworks, with a particular focus on BACS efficiency class requirements.

Chapter 3 describes the EN ISO 52120-1:2022 standard [19] providing the list of BACS functions, the method to define the BACS efficiency classes, the detailed methods and the factor-based method to assess the effects of BACS in the building.

Chapter 4 explains which functions can be simulated with the two software tools, *Edilclima EC700* and *EnergyPlus/DesignBuilder*, describing also their relative implementable levels. A short guide to the actual simulation of the functions is provided as well.

Chapter 5 describes the current status of the case study (classroom P of the *Politecnico di Torino*) and its modeling using the two software tools. Some BACS functions used for HVAC and blind control are simulated according to the technical building systems present in the building and the simulation capacities of the software tools. This chapter also provides an analysis of the results obtained from the simulations, highlighting the benefits of having high-energy performance BACS functions.

Chapter 6 provides a market analysis on the availability of the BACS devices considered in the case study. It also provides a cost-benefit evaluation of these systems. The cost estimation is done by calculating the payback period based on the real costs of the devices available on the market and on the current electricity costs.

The conclusions (Chapter 7) highlight the issues of using *Edilclima EC700* and *EnergyPlus/Design-Builder*, and summarize the average annual energy savings in terms of sensible energy needs for heating, sensible energy needs for cooling and ventilation electric energy. It also summarizes the results of the calculation of the payback period, highlighting the total costs saving after the analyzed period obtained from the use of BACS functions. Finally, some possible future developments of this work are descried.

Chapter 2

Legislative framework

This chapter analyses the European legislative framework and the Italian legislative framework that give some prescriptions about the installation of BACS functions in order to highlight their requirements.

2.1 European legislative framework

The *Energy Performance of Buildings Directive* (EPBD) is part of the legislative framework determined by the European Union in order to increase the energy performance of buildings. The EPBD includes requirements for BACS.

The first version of this directive dates back to 16 December 2002 with the directive 2002/91/EC [23]. In this first version, the topic of BACS was not yet developed.

The directive was revised for the first time on 19 May 2010 and was replaced by the directive 2010/31/EU [24]. This version of the EPBD invites all the European Countries to install automation, control and management systems in order to increase energy savings.

The EPBD is revised again in 2018 (Directive (EU) 2018/844)[25], this new version has been implemented according to the new technologies available. Therefore, there are more specifications about BACS.

BACS are defined by the Directive (EU) 2018/844 [25] as a

system, comprising all products, software and engineering services for automatic controls (including interlocks), monitoring, optimization, for operation, human intervention, and management to achieve energy-efficient, economical, and safe operation of building services,

as it is also defined in the standard EN ISO 52120-1 [19].

Article 8 of EPBD [25] defines a series of directives about technical building systems. Those directives are:

- all systems and functions must be sized and installed appropriately manner for both new and renovated buildings,
- depending on whether the building is a new construction or a renovation, the systems to install must meet several requirements, which must be economically and technically feasible,
- new buildings must be equipped with devices that auto-regulate the temperature of a room or of a heated zone. In case of renovations, the building must be equipped with automation devices only when the heat generator is replaced,

• all the changes made to the technical building systems shall be recorded since they change the assessment of the energy performance.

In addition to Article 8, Article 14 Inspection of heating systems and Article 15 Inspection of airconditioning systems [25] provide further requirements for the use of BACS.

These articles require that in non-residential buildings, equipped with heating and/or air-conditioning systems of more than 290 kW, BACS must be installed by 2025. In this case, the installed BACS must:

- continuously control and monitor the data from the installed systems in order to adjust the energy use,
- assess the energy efficiency, control the losses of the technical building systems, and inform the operator in order to improve energy performance as much as possible,
- allow interoperability between systems and devices connected to the BACS even if they belong to different manufacturers.

On the other hand, in the case of residential buildings, the EPBD requires that they must be equipped with:

- a monitoring system that informs building owners or managers if action is needed,
- control features that ensure optimal energy generation, distribution, and utilization.

The European Commission has put forward a proposal for a new EPBD recast on 15 December 2021 [27]. From the point of view of the BACS, the new proposals of the European Commission of the EPBD recast want to lower the power limit of the heating and air-conditioning systems for non-residential buildings for which the installation of BACS is required. The current limit of 290 kW will be reduced to 70 kW by 31 December 2029.

2.2 Italian legislative framework

The directives present in the EPBD of 2018 are introduced in the Italian legislation by the D.lgs 10 June 2020 number 48. D.lgs 48/2020 introduces both the definition of BACS as described in EPBD and all the directives related to BACS [37].

The Italian legislation does not mention the BACS only in the D.lgs 48/2020. Indeed, there are also references to BACS in the following decrees:

- Decree 26 June 2015 Requisiti Minimi [35],
- Decree 8 August 2020 Requisiti tecnici Ecobonus [36],
- Decree 16 February 2016 Conto Termico 2.0 [34],
- Decree 23 June 2022 Criteri ambientali minimi (CAM) [33].

These decrees still refer to the old standard EN 15232-1 [4], which was replaced in November 2022 by EN ISO 52120-1. Therefore, the decrees will be subject to revision.

2.2.1 D.M 26 June 2015 Requisiti minimi

D.M 26 June 2015 *Requisiti minimi* [35] defines the application methods for calculating the energy performance and the minimum requirements that a building must have in terms of energy efficiency.

Regarding BACS, the decree establishes that in order to optimize the energy use, a minimum level of automation, control and management of the technologies and systems present in the building is required in non-residential buildings. This level must be equal to class B^1 of the old EN 15232 standard [4].

2.2.2 D.M. 8 August 2020 Requisiti tecnici Ecobonus

D.M. 26 June 2015 *Requisiti tecnici Ecobonus* [36] identifies the energy efficiency interventions that allow a deduction on the costs. Among the interventions described by the decree, there are those for installation and implementation of BACS devices.

To obtain incentives for BACS, at least class B of the old EN 15232 standard [4] must be installed. Moreover, the automation and control system should guarantee the automatic management of heating, air-conditioning or domestic hot water production, in such a way to:

- monitor and provide energy consumption by periodically updating data,
- display the operating condition and the control temperature of the systems,
- allow the remote management of the systems.

The decree requires that asseveration must be done for systems of more than 100 kW. Otherwise, asseveration can be replaced by an installation declaration.

D.M 8 August 2020 establishes that the applicable deduction is 65% with a maximum expense of \pounds 15.000, and the deduction may be divided in a maximum of 10 years. Moreover, if the installation of BACS systems is a trailed intervention², the applicable deduction will be 110% of the expenses of the intervention. However, this decree refers to Italian Law 208/2015 art.1 c.88 [30] which states that the incentives are valid only for installations in residential units.

In the end, the decree provides a maximum value of expense for each type of intervention. In the case of BACS, this value is $50 \mathfrak{C}/m^2$.

2.2.3 D.M. 16 February 2016 Conto Termico 2.0

D.M. 16 February 2016 *Conto Termico 2.0* [34] identifies the interventions to increase energy efficiency and production of thermal energy from renewable sources in the buildings of the public administration. The decree includes the interventions related to the BACS.

Furthermore, the application rules defined by the *Gestore Servizi Energetici* (GSE) [29] require at least a class B of BACS. In this case, the applicable deduction is 40% with a maximum expense of €50.000 and a maximum allowable parametric cost of $25 €/m^2$.

2.2.4 D.M. 23 June 2022 Criteri ambientali minimi (CAM)

D.M. 23 June 2022 Criteri ambientali minimi (CAM) [33] explains the minimum environmental criteria that must be met for new constructions, renovations and maintenance of public buildings.

¹The class B of standard EN 15232 corresponds to an "advanced" level of automation of the building, the buildings in this class are equipped with advanced functions of control and automation and also specific functions that help the building management. Particularly, room controllers shall be able to communicate with a building automation system.

 $^{^{2}}$ A trailed intervention is an intervention made with an intervention of thermal insulation of the envelope or an intervention of replacement and redevelopment of condominium thermal systems.

The decree includes BACS among the rewarding criteria. Indeed, in the evaluation of the projects, a score is assigned to the projects that involve the installation of BACS. Those systems should be able to control, automate and manage the energy consumption of the thermal systems of the buildings.

In order to obtain the score, the installed systems must meet the requirements of class A^3 of the old EN 15232 standard [4]. Especially, BACS must:

- provide a continuous feedback from the data collected by the installed sensors to provide the end user and the energy manager with data on energy consumption,
- monitor the principal energy use of the building,
- be able to differentiate the energy consumption by thermal zone if the building requires a different management of heating and cooling systems according to the zone,
- allow control and analysis of building energy consumption,
- be accompanied by a measurement and control plan that illustrates the calculation method with the aim of optimizing the energy management of the building.

Moreover, the decree requires a demonstration that the performance achieved by the presence of automatic systems management is as high as possible.

 $^{^{3}}$ Class A "high-energy performance" level, comprising all buildings with a high level of control, automation and management functions. To be in class A, the building must further implement the level of automation and control functions compared to Class B and also the technical building management functions.

Chapter 3

Standard EN ISO 52120-1:2022, Energy performance of buildings -Contribution of building automation, controls and building management

This chapter describes the EN ISO 52120-1 international standard [19], regarding the contribution of automation, control and management systems for energy performance and comfort of buildings. This standard was published in March 2022 and replaced the previous 2017 standard EN 15232-1: *Impact of Building Automation, Controls and Building Management* [4].

The EN ISO 52120 standard defines Building Automation and Control Systems (BACS) as a

system, comprising all products, software and engineering services for automatic controls (including interlocks), monitoring, optimization, for operation, human intervention, and management to achieve energy-efficient, economical, and safe operation of building services.

Therefore, BACS are all the building control systems, building management systems, and building energy management systems that observe the requirements of ISO 16484 standard [17], which explains how these systems must be designed and implemented in a building.

EN ISO 52120 is subdivided into four main parts:

- a list of building automation and control functions, and technical building management functions involved in the energy performance of buildings, categorized according to building disciplines,
- a classification of BACS efficiency classes, identifying the minimum requirements that a building must have to achieve different levels of automation and control,
- a factor-based method for a first assessment of the impact of BACS functions on a building,
- five detailed calculation methods to evaluate the effect of BACS functions on a building.

3.1 Impacting functions of BACS on the energy performance of buildings

The EN ISO 52120 standard describes the functions of *Building Automation and Control* (BAC) and *Technical Building Management* (TBM) that contribute to the energy performance of a building.

BAC are described as

products, software, and engineering services for automatic controls, monitoring and optimization, human intervention and management to achieve energy-efficient, economical, and safe operation of building services equipment.

They enable the control of functions related to energy efficiency, such as heating, cooling, ventilation and air-conditioning, domestic hot water, lighting appliances and blind systems. Moreover, they can be set on the real habits of building users to reduce energy consumption and unnecessary CO_2 emissions, while also ensuring thermal comfort in the indoor environment.

TBM are described as

processes and services related to operation and management of buildings and technical building system through the interrelationships between the different disciplines and trades.

TBM give information about maintenance, operation, service and management of the building, especially on the energy management that supports the building to improve its energy performance.

According to building requirements, BAC and TBM are combined to achieve an optimum level of automation and control of the technical building systems installed. Depending on the BACS functions implemented, the system created can be simple or complex.

EN ISO 52120 specifies 45 different functions, of which 38 are BAC functions and 7 are TBM functions. Each function has at least two levels of implementation. According to the implementation level of each function, the building will have a different level of automation and control. Table A.1 in Appendix A summarizes the list of BAC and TBM functions.

3.2 BACS efficiency classification

The standard defines four different BACS efficiency classes according to the level of functions implemented. The level to be achieved depends on whether the building is residential or not. The BACS efficiency classes are:

- *class D*: "non efficient" level, the lowest level. All buildings equipped with traditional systems that do not have control and automation capabilities are classified in this class,
- class C: "standard" level. It is the minimum level of control and automation that a building must have according to EN ISO 52120 standard. Table A.2 in Appendix A describes the minimum level of each function in order to be categorized as a class C building.
- class B: "advanced" level. It includes all buildings equipped with advanced functions of control and automation and with specific functions that help the building management. In particular, buildings in this class must be equipped with room controllers capable of communicating with a building automation system. For example, the control of supply air flow in rooms must depend on the occupancy of rooms sensed through the use of sensors,

• class A: "high-energy performance" level. It comprises all buildings with a high level of control, automation and management functions. In class A, room controllers contribute to HVAC system regulation according to the information received and facilitate the communication between the HVAC and different building services through additional integrated functions of the room controllers. Indeed, most of the functions implemented for class A work according to a demand-based control that self-regulates the technical building systems. For example, blind control is combined with light and HVAC control to reduce the risk of glare and overheating and to reduce the energy needed for cooling.

To increase the energy efficiency of the building stock, the standard requires that the minimum BACS efficiency class should be at least class C for new buildings and for buildings undergoing major renovations, unless additional requirements are demanded by public authorities (see Chapter 2).

The BACS efficiency class is determined by looking at the functions that contribute significantly to energy efficiency. Therefore, in the assessment of the BACS classification, one considers only the functions that have an impact on energy consumption of more than 5% of the total energy used by the building.

In Italy the BACS efficiency class assessment is defined using the procedure described in the UNI/TS 11651:2023 standard [41]. In order to be classified in a given class, all the functions that are installed in the building must be implemented at a level of automation that is equal or higher than the one required by the class. Table 6 of EN ISO 52120 standard provides the level of implementation that each function must have to achieve the different BACS efficiency classes.

3.3 Factor-based method for evaluating BACS contribution to energy performance of buildings

The *factor-based method* simplifies the calculation of the impact that BACS functions have on the energy efficiency of the buildings. It is used in the preliminary stage of the design when detailed knowledge of control, automation and management functions is still not available.

The impact of each function is calculated over one year. The thermal and electrical energy of class C are taken as reference points of the calculation with factor-based method. These values will be multiplied by a correction factor according to the real BACS class of the building to calculate the thermal and electric energy required.

The correction factors determined by EN ISO 52120 are summarized in Tables A.3, A.4 and A.5 in Appendix A. The tables provide different values depending on the building use destination and BACS efficiency class. These values are 1 for reference class C, between 1 and 1.5 for class D, and between 1 and 0.3 for classes B and A. Moreover, factors used for class B are always greater than those used for class A, as can be seen from Tables A.3, A.4 and A.5.

Since the factors used for class D are higher than one, the values of thermal and electric energy of class D will be higher than the ones of the reference class. On the other hand, since the factors used for class B and A are lower than one, the values of thermal and electric energy of these classes will be lower than of the reference class.

The reference thermal and electric energy values can be calculated with any dedicated algorithm, such as EPB standards, ISO standards, national or local legislation. In any case, in the factor-based method the parameters related to the building type, geometry, building use and climatic conditions must be taken into account in the calculation of the reference values of thermal and electric energy, since the BACS correction factors are independent of these parameters. The standard defines five different efficiency factors:

- thermal energy for space heating and cooling factors $(f_{BAC,H} \text{ and } f_{BAC,C})$,
- thermal energy for domestic hot water generation factor $(f_{BAC,DHW})$,
- electric energy for ventilation, lighting and auxiliary devices factors $(f_{BAC,L})$ and $f_{BAC,aux}$

Equations (B.1), (B.2), (B.3), (B.4) and (B.5) in Appendix B illustrate how to calculate the thermal and electric energy with the factor-based method.

3.4 Detailed calculation of BACS contribution in energy performance of buildings

EN ISO 52120-1 identifies five different detailed methods to evaluate analytically the contribution of the BAC and TBM in the energy performance of a building.

The computations of these detailed methods can be done yearly, seasonally, monthly or hourly. Moreover, in order to take into account the real operation of the building, one can apply the dynamic calculation method for the assessment of the energy performance of the building.

The five different approaches to assess the impact of BACS functions are:

- *Direct approach*: it directly calculates the impact of the functions present in the building using a detailed simulation method or an hourly simulation method based on the standard EN ISO 52016-1 [18]. This method will be used by the two software tools for the energy performance assessment of the case study.
- Operation model approach: it computes the impact on the energy consumption of the automatic control for each operating mode, corresponding to a given state of the control system. Therefore, the total energy consumption is evaluated as the sum of each energy consumption of the different operating modes,
- *Time approach*: it estimates the impact of the automatic control for those systems that have a direct influence on the operating time of a device. The energy consumption is assessed over a given period according to Equation (B.6) in Appendix B,
- Set-point approach: it assesses the impact on energy efficiency of a control system that has a direct effect on the control accuracy. For example, it takes into account the impacts due to emission control of heating and cooling, or due to room controllers. Equation (B.7) in Appendix B calculates the impact on energy consumption,
- Correction coefficient approach: it can be used in the case of a control system that has a complex impact, for example a systems that has an effect both on time and temperature. The impact is calculated by Equation (B.8) in Appendix B.

Chapter 4

Simulation of BACS functions in Edilclima EC700 and EnergyPlus/DesignBuilder

This chapter illustrates how to simulate the presence of BACS functions and their relative levels with two energy modeling software tools: *Edilclima EC700* (EC700) and *EnergyPlus/DesignBuilder* (E+/DB).

By studying the user manuals, it is identified the best procedures to simulate BACS functions and the level of BACS functions.

The chapter focuses on the functions of heating, domestic hot water, cooling, ventilation, and airconditioning, light and blind control. Each function is described in a one-page tab. The tabs are structured in a first part consisting of a summary table and a second part describing how to simulate each level of the function considered.

The summary table provides a short description of the BACS function level, a list of reference standards for the function under consideration and an indication of whether each software tool can implement the function or not.

The second part briefly describes how to simulate with the two software tools the presence of the BACS function for each level that can be simulated.

Figure 4.1: Edilclima EC700 logo (left), EnergyPlus logo (center) and DesignBuilder logo (right)

4.1 Heating control

4.1.1 Emission control

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control of the room temperature		YES	YES
1	Central automatic control: there is only central au- tomatic control acting either on the distribution or on the generation. Function is to be integrated in a system.	-	YES	YES
2	Individual room control: by thermostatic values or electronic controller	EN ISO 52016-1[18] EN 15316-1 [5]	YES	YES
3	Individual modulating room control with com- munication: between controllers and BACS (e.g. scheduler, room temperature set-point)	EN 15316-2 [6]	YES	YES
4	Individual modulating room control with commu- nication and occupancy detection: between con- trollers and BACS; demand control/occupancy de- tection		YES	YES

Table 4.1: Emission control summary

Edilclima EC700[22]

- Level 0 Define the heating system in the Heating systems data-sheet. Set the system working temperature in the General data Default data data-sheet.
- Level 1 Define the heating system in the *Heating systems* data-sheet. Define a unique hourly temperature profile zone in the *Conditioned zone/local Hourly profile* data-sheet. Set the profile in each thermal zone, in this way the central automatic control is simulated.
- Level 2 Define the heating system in the Heating systems data-sheet. In the Heating systems Circuit -General data - Monthly activation time data-sheet select the option From set-point temperature profile to simulate the presence of thermostatic values or electronic controllers.
- Level 3 Define the heating system in the Heating systems data-sheet. For each thermal zone define the hourly temperature profile in the Conditioned zone/local Hourly profile data-sheet. Set the profile according to the needs of the thermal zone. Then, in the Heating systems Circuit General data Monthly activation time data-sheet select the option Hourly needs, to operate the heating system according to the established profile.
- Level 4 Define the heating system in the Heating systems data-sheet. For each thermal zone define the hourly temperature profile in the Conditioned zone/local Hourly profile data-sheet. Set the profile according to the real occupancy of the thermal zone. Then, in the Heating systems Circuit General data Monthly activation time data-sheet select the option Hourly needs, to operate the heating system according to the established profile.

- Level 0 Leave ZoneControl: Thermostat and SetpointManager: Scheduled undefined.
- Level 1 Set the object SetpointManager:Scheduled at the generation level. Define the control temperature profile in the field Schedule Name.
- Level 2 Define the object ZoneControl:Thermostat. In the field Control Type Schedule Name set the control type on Uncontrolled to simulate the presence of thermostatic valves or electronic controllers.
- Level 3 Define the object ZoneControl:Thermostat. In the field Control Type Schedule Name set the control type on Single Heating Setpoint. Then, define the object ThermostatSetpoint:SingleHeating with the set-point temperature schedule based on the given values. In the field Control Object $\langle x \rangle$ Type set the name of the ThermostatSetpoint:SingleHeating as previously defined.
- Level 4 Define the object ZoneControl:Thermostat. In the field Control Type Schedule Name set the control type on Single Heating Setpoint. Then, define the object ThermostatSetpoint:SingleHeating with the set-point temperature schedule based on the real occupancy values. In the field Control Object < x > Type set the name of the ThermostatSetpoint:SingleHeating as previously defined.

4.1.2 Emission control for TABS

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control of the room temperature		YES	YES
1	Central automatic control: the central automatic control for a TABS zone (which comprises all rooms which get the same supply water temperature) typ- ically is a supply water temperature control loop whose set-point is dependent on the filtered out- side temperature, e.g. the average of the previous 24 h	EN ISO 52016-1[18]	NO	YES
2	Advanced central automatic control: this is a cen- tral automatic control of the TABS zone that is designed and tuned to achieve an optimal self- regulating of the room temperature within the re- quired comfort range	EN 15316-1 [5] EN 15316-2 [6]	NO	YES
3	Advanced central automatic control with intermit- tent operation and/or room temperature feedback control		NO	YES

Table 4.2: Emission control for TABS summary

Edilclima EC700[22]

Level 0 Define the heating system in the Heating systems data-sheet. Set the system working temperature in the General data - Default data data-sheet.

- Level 0 Define the object ZoneHVAC:LowTemperatureRadiant:VariableFlow to simulate a TABS system. Leave the Availability Schedule Name undefined.
- Level 1 Define the object ZoneHVAC:LowTemperatureRadiant:VariableFlow. Set the Availability Schedule Name with the temperature profile. In the object ZoneHVAC:LowTemperatureRadiant:Variable-Flow:Design set the field Temperature Control Type on OutdoorDryBulbTemperature or Outdoor-WetBulbTemperature.
- Level 2 Define the object ZoneHVAC:LowTemperatureRadiant:VariableFlow. Set the Availability Schedule Name with the temperature profile. In the object ZoneHVAC:LowTemperatureRadiant:Variable-Flow:Design set the field Temperature Control Type on MeanAirTemperature.
- Level 3 Define the object ZoneHVAC:LowTemperatureRadiant:VariableFlow. Set the Availability Schedule Name with the temperature profile. In the object ZoneHVAC:LowTemperatureRadiant:Variable-Flow:Design set the field Temperature Control Type on MeanAirTemperature. Then, define the heating set-point temperature in the field Heating Control Temperature Schedule Name. Define the field Heating Control Throttling Range: it allows to determine when the system runs and with which flow rate.

4.1.3 Control of distribution network hot water temperature (supply or return)

Table 4.3: Control of distribution network hot water temperature (supply or return) summary

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control		YES	YES
1	Outside temperature compensated control: actions generally lower the mean flow temperature	FN 15216 1 [5]	YES	YES
2	Demand based control: for example. based on in- door temperature control variable, actions gener- ally lower the mean flow temperature	EN 15316-1 [5]	NO	NO

Edilclima EC700 [22]

- Level 0 Define the heating system in the Heating systems data-sheet. In the Heating systems Circuits -Subsystems - Control data-sheet set the control type on Manual: in order to have manual control through a boiler thermostat.
- Level 1 Define the heating system in the Heating systems data-sheet. In the Heating systems Circuits -Subsystems - Control data-sheet set the control type on Climatic only (compensation with external probe): in order to regulate the supply water temperature based on the external temperature.

- Level 0 Leave the object SetpointManager:ReturnTemperature:HotWater undefined.
- Level 1 Define the object SetpointManager:ReturnTemperature:HotWater. Define the object SetpointManager:FollowOutdoorAirTemperature, to regulate the distribution temperature according to the outdoor environmental condition. Set the previously defined object in the field Plant Supply Inlet Node of the object SetpointManager:ReturnTemperature:HotWater.

4.1.4 Control of distribution pumps in network

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control		YES	YES
1	On/off control: switch on and off automatically, pumps run with no control at maximum speed	- EN 15316-1 [5] EN 15316-3 [7]	NO	YES
2	Multi-stage control: speed of pumps is controlled by a multi-step control		NO	YES
3	Variable speed pump control: constant or variable Δp based on pump unit (internal) estimations		NO	YES
4	Variable speed pump control: variable Δp follow- ing an external demand signal, e.g. hydraulic re- quirements.		NO	NO

Table 4.4: Control of distribution pumps in networks summary

Edilclima EC700[22]

Level 0 Define the heating system in the Heating systems data-sheet. In the Heating systems - Circuits -Subsystems - Electrical requirements data-sheet set the pump operation on Always working.

- Level 0 Define the object Pump:ConstantSpeed. Set the field Pump Control Type on Continuous, so that the pump continuously operates at a constant speed.
- Level 1 Define the object Pump:ConstantSpeed. Set the field Pump Control Type on Intermittent, so that the pump runs when a load is detected, otherwise it is turned off.
- Level 2 Define the object *Pump:VariableSpeed.* Set the field *Pump Control Type* on *Intermittent*, so that when there is a load the pump works with a speed between a minimum and a maximum value. The pump is turned off when there is no load.
- Level 3 Define the object Pump: VariableSpeed. Set the field Pump Control Type on Intermittent. Set the field VFD Control Type on PressureSetPointControl to take into account the pressure drop in the definition of the pump speed.

4.1.5 Hydronic balancing heating (including contribution to the balancing to the emission side)

Table 4.5: Hydronic balancing heating (including contribution to the balancing to the emission side) summary

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No balancing		NO	NO
1	Balanced statically per emitter, without group bal-		NO	NO
	ance		110	110
2	Balanced statically per emitter, and a static group	EN 15316-3 [7]	NO	NO
2	balance (e.g. with balancing valve)		NO	NO
	Balanced statically per emitter and dynamic group	EN 15510-5 [7]		NO
3	balance (e.g. with differential pressure control)		NO	NO
4	Balanced dynamically per emitter (e.g. differential		NO	NO
-	pressure controllers)		110	

Edilclima EC700 [22]

It is not possible to find a way to simulate the hydronic balancing heating function for any level of implementation with $Edilclima \ EC700.$

EnergyPlus/DesignBuilder [42][43][21]

It is not possible to find a way to simulate the hydronic balancing heating function for any level of implementation with EnergyPlus/DesignBuilder.

4.1.6 Intermittent control of emission and/or distribution

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control		YES	YES
1	Automatic control with fixed time program: to	EN ISO 52016-1[18]	YES	YES
1	lower the operation time	- EN 15316-1 [5]	115	110
2	Automatic control with optimum start/stop: to	EN 15316-3 [7]	NO	YES
2	lower the operation time	EN 15510-5 [7]	NO	1 120
3	Automatic control with demand evaluation		NO	YES

Table 4.6: Intermittent control of emission and/or distribution summary

Edilclima EC700 [22]

- Level 0 Define the heating system in the Heating systems data-sheet. Set the system working temperature in the General data Default data data-sheet.
- Level 1 Define the heating system in the *Heating systems* data-sheet. Define an hourly profile with operating temperatures and periods in the *Conditioned zone/local Hourly profile*. In this way it is possible to define when the system is on, off or in reduced operation.

- Level 0 Leave the object Availability Manager undefined.
- Level 1 Define the object AvailabilityManager:Scheduled with a fixed time schedule according to which the system works.
- Level 2 Define the object AvailabilityManager:OptimumStart, to set a optimum start operation of the heating systems without compromising the comfort inside the building.
- Level 3 Define the object AvailabilityManager:Scheduled with a time schedule based on the values of the occupancy schedule.

4.1.7 Heat generator control for combustion and district heating

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Constant temperature control		NO	YES
1	Variable temperature control depending on outside temperature	EN 15316-1 [5]	NO	YES
2	Variable temperature control depending on the load: e.g. depending on supply water temperature set-point	EN 15316-4-1 [8] EN 15316-4-5 [9]	NO	NO

Table 4.7: Heat generator control for combustion and district heating summary

Edilclima EC700 [22]

It is not possible to find a way to simulate the heat generator control for combustion and district heating function for any level of implementation with Edilclima EC700.

- Level 0 Define the object Boiler:HotWater. Define the object SetpointManager:Scheduled to set the hourly schedule profile of the fluid temperature. In this case the value is the same for each hour of the day. In the field Boiler Water Outlet Node Name set the name of the the object previously defined. In the field Boiler Flow Mode select LeavingSetpointModulated. This parameter allows to vary the flow rate to meet the temperature set-point defined.
- Level 1 Define the object Boiler:HotWater. Define the object SetpointManager:Scheduled to set the hourly schedule profile of the fluid temperature. In the field Boiler Water Outlet Node Name set the name of the the object previously defined. In the field Boiler Flow Mode select LeavingSetpointModulated. Then, define the object SetpointManager:FollowOutdoorAirTemperature to allow the system to work according to external environmental conditions.

4.1.8 Heat generator control (heat pump)

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Constant temperature control		YES	YES
1	Variable temperature control depending on outside temperature	EN 15316-1 [5] - EN 15316-4-1 [8]	YES	YES
2	Variable temperature control depending on the load: e.g. depending on supply water temperature set-point	EN 15316-4-5 [9]	NO	NO

Table 4.8: Heat generator control (heat pump) summary

Edilclima EC700 [22]

- Level 0 Define the heating system in the Heating systems data-sheet. In the Heating system Generation -Generator - Circuit in central - Generating temperature data-sheet set the heat generator on Fixed discharge temperature heat generator. In this way the discharge temperature of the heat pump is equal to a fixed value.
- Level 1 Define the heating system in the Heating systems data-sheet. Set the Heating systems Circuit - Average water temperature - Calculation criteria data-sheet on Variable delivery temperature, meaning that the discharge temperature depends on the external climatic conditions. In the Heating system - Generation - Generator - Circuit in central - Generating temperature data-sheet set the heat generator on Heat generator with sliding temperature. In this way the supply temperature depends on the setting of the Heating systems - Circuit - Average water temperature - Calculation criteria data-sheet.

- Level 0 Define the object HeatPump:WaterToWater:EquationFit:Heating. In the field Load Side Outlet Node Name set the name of SetpointManager:Scheduled, to control the temperature of the fluid according to a given time schedule. In this case the schedule is set with a constant temperature for each hour of the day.
- Level 1 Define the object HeatPump:WaterToWater:EquationFit:Heating. In the field Load Side Outlet Node Name set the name of SetpointManager:Scheduled, that controls the outlet temperature. In the field Source Side Inlet Node Name set the name of SetpointManager:FollowOutdoorAirTemperature in order to consider also the outside condition in the control of the temperature.

4.1.9 Heat generator control (outdoor unit)

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	On/off-control of heat generator		NO	NO
1	Multi-stage control of heat generator capacity de- pending on the load or demand (e.g. on/off of sev- eral compressors)	EN 15316-1 [5]	NO	NO
2	Variable control of heat generator capacity depend- ing on the load or demand (e.g. hot gas bypass, inverter frequency control)	EN 15316-4-1 [8]	NO	NO

Table 4.9: Heat generator control (outdoor unit) summary

Edilclima EC700 [22]

It is not possible to find a way to simulate the heat generator control for outdoor unit function for any level of implementation with *Edilclima EC700*.

EnergyPlus/DesignBuilder [42][43][21]

It is not possible to find a way to simulate the heat generator control for outdoor unit function for any level of implementation with EnergyPlus/DesignBuilder.

4.1.10 Sequencing of different heat generators

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Priorities are only based on running time		YES	YES
1	Control according to fixed priority list: e.g. heat pump prior to hot water boiler	-	YES	YES
2	Control according to dynamic priority list (based on current efficiency and capacity of generators, e.g. solar, geothermal heat, cogeneration plant, fos- sil fuels)	EN 15316-1 [5] EN 15316-4-1 [8] EN 15316-4-5 [9]	NO	NO
3	Control according to prediction based dynamic pri- ority list (based on current efficiency and capacity of generators, e.g. solar, geothermal heat, cogener- ation plant, fossil fuels)	-	NO	NO

Table 4.10: Sequencing of different heat generators summary

Edilclima EC700[22]

- Level 0 Define the heating system in the Heating systems data-sheet. In the Heating system Generation -Thermal power plant - Multiple generator data-sheet define the different type of generators present in the heating system without a priority list.
- Level 1 Define the heating system in the Heating systems data-sheet. In the Heating system Generation - Thermal power plant - Multiple generator data-sheet define the different type of generators and define a fixed priority list. In this way the heat generator with the highest priority works first, until the nominal load is reached; the residual thermal energy requirement is requested to the heat generator with next priority and so on.

- Level 0 Define the different heat generators. Leave the field *Priority* unset.
- Level 1 Define the different heat generators. In the field *Priority* of each heat generator set the priority list. The first heat generator that operates is the one with priority 1, the following has priority 2 and so on.

4.1.11 Control of thermal energy storage (TES) charging

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Continuous storage operation	EN 15316-1 [5] EN 15316-5 [10]	YES	YES
1	2-sensor charging of storage		NO	NO
2	Load-prediction based storage operation		NO	NO

Table 4.11: Control of thermal energy storage (TES) charging summary

Edilclima EC700 [22]

Level 0 Define the heating system in the Heating systems data-sheet. In the Heating systems - Storage and primary distribution - Storage select the command Storage and define the dimension of the storage tank. The program considers a continuous storage operation.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Define the object WaterHeater:Mixed that simulates a storage tank that works continuously. The heater is on while heating the tank until to the set-point temperature. When the set-point is reached, the heater is turned off. The heater cycles on and off to maintain the tank temperature within the dead-band.

4.2 Domestic Hot Water control

4.2.1 Control of DHW storage charging with direct electric heating or integrated electric heat pump

Table 4.12: Control of DHW storage charging with direct electric heating or integrated electric heat pump summary

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Automatic on/off control	EN 15316-1 [5] EN 15316-5 [10]	NO	YES
1	Automatic on/off control and scheduled charging enable		NO	NO
2	Automatic on/off control and scheduled charging enable and multi-sensor storage management		NO	NO

Edilclima EC700[22]

It is not possible to find a way to simulate the control of DHW storage charging with direct electric heating or integrated electric heat pump function for any level of implementation with *Edilclima EC700*.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Define the object WaterHeater:Mixed to simulate a storage tank that works continuously. The heater is on while heating the tank until to the set-point temperature. When the set-point is reached, the heater is turned off. The heater cycles on and off to maintain the tank temperature within the dead-band.

4.2.2 Control of DHW storage charging using hot water generation

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Automatic on/off control	EN 15316-1 [5] EN 15316-5 [10]	NO	YES
1	Automatic on/off control and scheduled charging enable		NO	NO
2	Automatic on/off control, scheduled charging en- able and demand-based supply temperature con- trol or multi-sensor storage management		NO	NO

Table 4.13: Control of DHW storage charging using hot water generation summary

Edilclima EC700[22]

It is not possible to find a way to simulate the control of DHW storage charging using hot water generation function for any level of implementation with *Edilclima EC700*.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Define the object WaterHeater:Mixed to simulate a storage tank that works continuously. The heater is on while heating the tank until to the set-point temperature. When the set-point is reached, the heater is turned off. The heater cycles on and off to maintain the tank temperature within the dead-band.

4.2.3 Control of DHW storage charging with solar collector and supplementary heat generation

Table 4.14: Control of DHW storage charging with solar collector and supplementary heat generation summary

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Manual control	EN 15316-1 [5]	NO	YES
1	Automatic control of solar storage charge (Prio. 1) and supplementary storage charge (Prio. 2)		NO	NO
2	Automatic control of solar storage charge (Prio. 1) and supplementary storage charge (Prio. 2) plus demand-based supply temperature control or multi-sensor storage management	EN 15316-5 [10]	NO	NO

Edilclima EC700[22]

It is not possible to find a way to simulate the control of DHW storage charging with solar collector and supplementary heat generation function for any level of implementation with *Edilclima EC700*.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Define the object SolarCollector:IntegralCollectorStorage to simulate the domestic hot water storage from the solar collector. This object cannot be automatically controlled.

4.2.4 Control of DHW circulation pump

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No control, continuous operation	EN 15316-1 [5]	YES	YES
1	With time program		NO	NO

Table 4.15: Control of DHW circulation pump summary

Edilclima EC700 [22]

Level 0 Define the DHW system in the DHW systems data-sheet. In the DHW System - Circuits - Subsystems - Electrical requirements data-sheet set on Always working. In this way the pump works continuously.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Define the object Pump:ConstantSpeed. Set the field Pump Control Type on Continuous. In this way the pump continuously operates at a constant speed.

4.3 Cooling control

4.3.1 Emission control

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control of the room temperature		YES	YES
1	Central automatic control: there is only central au- tomatic control acting either on the distribution or on the generation. Function is to be integrated in a system.	EN ISO 52016-1[18] EN 15316-2 [6]	YES	YES
2	Individual room control: by thermostatic valves or electronic controller		YES	YES
3	Individual modulating room control with com- munication: between controllers and BACS (e.g. scheduler, room temperature set-point)		YES	YES
4	Individual modulating room control with commu- nication and occupancy detection: between con- trollers and BACS; demand control/occupancy de- tection		YES	YES

Table 4.16: Emission control summary

Edilclima EC700[22]

- Level 0 Define the cooling system in the Cooling systems data-sheet. Set the system working temperature in the General data Default data data-sheet.
- Level 1 Define the cooling system in the Cooling systems data-sheet. Define a unique hourly temperature profile zone in the Conditioned zone/local Hourly profile data-sheet. Set the profile in each thermal zone, in this way the central automatic control is simulated.
- Level 2 Define the cooling system in the Cooling systems data-sheet. In the Cooling systems Circuit -General data - Monthly activation time data-sheet select the option From set-point temperature profile to simulate the presence of thermostatic values or electronic controllers.
- Level 3 Define the cooling system in the Cooling systems data-sheet. For each thermal zone define the hourly temperature profile in the Conditioned zone/local Hourly profile data-sheet. Set the profile according to the needs of the thermal zone. Then, in the Cooling systems Circuit General data Monthly activation time data-sheet select the option Hourly needs, to operate the heating system according to the established profile.
- Level 4 Define the cooling system in the Cooling systems data-sheet. For each thermal zone define the hourly temperature profile in the Conditioned zone/local Hourly profile data-sheet. Set the profile according to the real occupancy of the thermal zone. Then, in the Cooling systems Circuit General data Monthly activation time data-sheet select the option Hourly needs, to operate the heating system according to the established profile.

- Level 0 Leave ZoneControl: Thermostat and SetpointManager: Scheduled undefined.
- Level 1 Set the object SetpointManager:Scheduled at the generation level. Define the control temperature profile in the field Schedule Name.
- Level 2 Define the object ZoneControl:Thermostat. In the field Control Type Schedule Name set the control type on Uncontrolled to simulate the presence of thermostatic valves or electronic controllers.
- Level 3 Define the object ZoneControl:Thermostat. In the field Control Type Schedule Name set the control type on Single Cooling Setpoint. Then, define the object ThermostatSetpoint:SingleCooling with the set-point temperature schedule based on the given values. In the field Control Object $\langle x \rangle$ Type set the name of the ThermostatSetpoint:SingleCooling as previously defined.
- Level 4 Define the object ZoneControl:Thermostat. In the field Control Type Schedule Name set the control type on Single Cooling Setpoint. Then, define the object ThermostatSetpoint:SingleCooling with the set-point temperature schedule based on the real occupancy values. In the field Control Object < x > Type set the name of the ThermostatSetpoint:SingleCooling as previously defined.

4.3.2 Emission control for TABS

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control of the room temperature		YES	YES
1	Central automatic control: the central automatic control for a TABS zone (which comprises all rooms which get the same supply water temperature) typ- ically is a supply water temperature control loop whose set-point is dependent on the filtered out- side temperature, e.g. the average of the previous 24 h	EN ISO 52016-1[18] EN 15316-2 [6]	NO	YES
2	Advanced central automatic control: this is a cen- tral automatic control of the TABS zone that is designed and tuned to achieve an optimal self- regulating of the room temperature within the re- quired comfort range		NO	YES
3	Advanced central automatic control with intermit- tent operation and/or room temperature feedback control		NO	YES

Table 4.17: Emission control for TABS summary

Edilclima EC700[22]

Level 0 Define the cooling system in the Cooling systems data-sheet. Set the system working temperature in the General data - Default data data-sheet.

- Level 0 Define the object ZoneHVAC:LowTemperatureRadiant:VariableFlow to simulate a TABS system. Leave the Availability Schedule Name undefined.
- Level 1 Define the object ZoneHVAC:LowTemperatureRadiant:VariableFlow. Set the Availability Schedule Name with the temperature profile. In the object ZoneHVAC:LowTemperatureRadiant:Variable-Flow:Design set the field Temperature Control Type on OutdoorDryBulbTemperature or Outdoor-WetBulbTemperature.
- Level 2 Define the object ZoneHVAC:LowTemperatureRadiant:VariableFlow. Set the Availability Schedule Name with the temperature profile. In the object ZoneHVAC:LowTemperatureRadiant:Variable-Flow:Design set the field Temperature Control Type on MeanAirTemperature.
- Level 3 Define the object ZoneHVAC:LowTemperatureRadiant:VariableFlow. Set the Availability Schedule Name with the temperature profile. In the object ZoneHVAC:LowTemperatureRadiant:Variable-Flow:Design set the field Temperature Control Type on MeanAirTemperature. Then, define the heating set-point temperature in the field Cooling Control Temperature Schedule Name. Define the field Cooling Control Throttling Range: it allows to determine when the system runs and with which flow rate.

4.3.3 Control of distribution network chilled water temperature (supply or return)

Table 4.18: Control of distribution network chilled water temperature (supply or return) summary

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Constant temperature control	EN 16798-9 [15] EN 15316-2 [6]	NO	YES
1	Outside-temperature compensated control: actions generally raise the mean flow temperature		NO	YES
2	Demand-based control: e.g. based on indoor tem- perature control variable, actions generally raise the mean flow temperature		NO	NO

Edilclima EC700[22]

It is not possible to find a way to simulate the control of distribution network chilled water temperature function for any level of implementation with $Edilclima \ EC700$.

- Level 0 Define the object SetpointManager:ReturnTemperature:ChilledWater. Set the field Return Temperature Setpoint Input Type on Constant. Set the field Return Temperature Setpoint Constant Value to the value of the return temperature set-point.
- Level 1 Define the object SetpointManager:ReturnTemperature:ChilledWater. In the field Plant Supply Inlet Node define the object SetpointManager:FollowOutdoorAirTemperature, to regulate the distribution temperature according to the outdoor environmental condition.

4.3.4 Control of distribution pumps in hydraulic network

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control		YES	YES
1	On off control: to reduce the auxiliary energy de- mand of the pumps	EN 16798-9 [15] EN 15316-3 [7]	NO	YES
2	Multi-stage control: to reduce the auxiliary energy demand of the pumps		NO	YES
3	Variable speed pump control: constant or variable Δp based on pump unit (internal) estimations to reduce the auxiliary energy demand of the pumps		NO	YES
4	Variable speed pump control: variable Δp follow- ing an external demand signal, e.g. hydraulic re- quirements, ΔT , energy optimization to reduce the auxiliary energy demand of the pumps		NO	NO

 Table 4.19: Control of distribution pumps in hydraulic network summary

Edilclima EC700[22]

Level 0 Define the cooling system in the Cooling systems data-sheet. In the Cooling systems - Circuits -Subsystems - Refrigerated water distribution networks data-sheet set the pump operation on Always working.

- Level 0 Define the object Pump:ConstantSpeed. Set the field Pump Control Type on Continuous, so that the pump continuously operates at a constant speed.
- Level 1 Define the object Pump:ConstantSpeed. Set the field Pump Control Type on Intermittent, so that the pump runs when a load is detected, otherwise it is turned off.
- Level 2 Define the object *Pump:VariableSpeed.* Set the field *Pump Control Type* on *Intermittent*, so that when there is a load the pump works with a speed between a minimum and a maximum value. The pump is turned off when there is no load.
- Level 3 Define the object Pump: VariableSpeed. Set the field Pump Control Type on Intermittent. Set the field VFD Control Type on PressureSetPointControl to take into account the pressure drop in the definition of the pump speed.

4.3.5 Hydronic balancing cooling distribution (including the contribution to the balancing on the emission side)

Table 4.20: Hydronic balancing heating (including contribution to the balancing to the emission side) summary $\left(\frac{1}{2} + \frac$

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No balancing		NO	NO
1	Balanced statically per emitter, without group bal- ance	EN 15316-3 [7]	NO	NO
2	Balanced statically per emitter, and a static group balance (e.g. with balancing valve)		NO	NO
3	Balanced statically per emitter and dynamic group balance (e.g. with differential pressure control)		NO	NO
4	Balanced dynamically per emitter (e.g. differential pressure controllers)		NO	NO

Edilclima EC700 [22]

It is not possible to find a way to simulate the hydronic balancing cooling distribution function for any level of implementation with $Edilclima \ EC700$.

EnergyPlus/DesignBuilder [42][43][21]

It is not possible to find a way to simulate the hydronic balancing cooling distribution function for any level of implementation with EnergyPlus/DesignBuilder.

4.3.6 Intermittent control of emission and/or distribution

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control		YES	YES
1	Automatic control with fixed time program: to	EN ISO 52016-1[18]	YES	YES
1	lower the operation time	EN 150 52010-1[18] EN 15316-3 [7] EN 16798-3 [12]	115	110
2	Automatic control with optimum start/stop: to		NO	YES
2	lower the operation time		110	1115
3	Automatic control with demand evaluation		NO	YES

Table 4.21: Intermittent control of emission and/or distribution summary

Edilclima EC700 [22]

- Level 0 Define the cooling system in the Cooling systems data-sheet. Set the system working temperature in the General data Default data data-sheet.
- Level 1 Define the cooling system in the *Cooling systems* data-sheet. Define an hourly profile with operating temperatures and periods in the *Conditioned zone/local Hourly profile*. In this way it is possible to define when the system is on, off or in reduced operation.

- Level 0 Leave the object Availability Manager undefined.
- Level 1 Define the object AvailabilityManager:Scheduled with a fixed time schedule according to which the system works.
- Level 2 Define the object AvailabilityManager:OptimumStart, to set a optimum start operation of the heating systems without compromising the comfort inside the building.
- Level 3 Define the object AvailabilityManager:Scheduled with a time schedule based on the values of the occupancy schedule.

4.3.7 Interlock between heating and cooling control of emission and/or distribution

Table 4.22: Intermittent control of emission and/or distribution summary $% \left({{{\left[{{{\rm{T}}_{\rm{T}}} \right]}}} \right)$

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No interlock: the two systems are controlled inde- pendently and can provide simultaneously heating and cooling		YES	YES
1	Partial interlock (depending on the HVAC system): the control function is set up in order to minimize the possibility of simultaneous heating and cooling. This is generally done by defining a sliding set- point for the supply temperature of the centrally controlled system	EN 16798-9 [15]	NO	NO
2	Total interlock: the control function enables to guarantee that there will be no simultaneous heat- ing and cooling		NO	NO

Edilclima EC700 [22]

Level 0 Define the heating system in the *Heating system* data-sheet. Define the cooling system in the *Cooling system* data-sheet. The two systems will work independently.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Define the object ThermostatSetpoint:SingleHeating with the heating temperature profile. Define the object ThermostatSetpoint:SingleCooling with the cooling temperature profile.

4.3.8 Generation control for cooling

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Constant temperature control	EN 16798-9 [15] EN 16798-13 [11]	NO	YES
1	Variable temperature control depending on outside temperature		NO	YES
2	Variable temperature control depending on the load: this includes control according to room tem- perature		NO	NO

Table 4.23: Generation control for cooling summary

Edilclima EC700 [22]

It is not possible to find a way to simulate the generation control for cooling function for any level of implementation with $Edilclima \ EC700.$

- Level 0 Define the object Chiller. Define the object SetpointManager:Scheduled to set the hourly schedule profile of the fluid temperature. In this case the value is the same for each hour of the day. In the field Chiller Water Outlet Node Name set the name of the object previously defined. In the field Chiller Flow Mode select LeavingSetpointModulated. This parameter allows to vary the flow rate to meet the temperature set-point defined.
- Level 1 Define the object Chiller. Define the object SetpointManager:Scheduled to set the hourly schedule profile of the fluid temperature. In the field Chiller Water Outlet Node Name set the name of the object previously defined. In the field Chiller Flow Mode select LeavingSetpointModulated. Then, define the object SetpointManager:FollowOutdoorAirTemperature to allow the system to work according to external environmental conditions.

4.3.9 Sequencing of different chillers

	Level of BAC function [19]	Standard [1][19]	<i>EC700</i>	E+/DB
0	Priorities are only based on running time		NO	YES
1	Fixed sequencing based on loads only: for example,			
	depending on the generator's characteristics, e.g.		NO	YES
	absorption chiller vs. centrifugal chiller			
	Priorities based on generator efficiency and char-	EN 16798-9 [15] EN 16798-13 [11]		
	acteristics: the generator operational control is set			
2	individually to available generators so that they op-		NO	NO
2	erate with an overall high degree of efficiency (e.g.		NO	NO
	outside air, river water, geothermic heat, refriger-			
	ation machines)			
	Load prediction-based sequencing: the sequence is			
3	based on, e.g. COP and available power of a device		NO	NO
	and the predicted required power			

Table 4.24: Sequencing of different chillers summary

Edilclima EC700 [22]

It is not possible to find a way to simulate the sequencing of different chillers function for any level of implementation with $Edilclima \ EC700.$

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Define the different chillers. Leave the field *Priority* unset.

Level 1 Define the different chiller. In the field *Priority* of each chiller set the priority list. The first chiller that operates is the one with priority 1, the following has priority 2 and so on.

4.3.10 Control of thermal energy storage (TES) charging

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Continuous storage operation	EN 15316-1 [5]	YES	YES
1	Time-scheduled storage operation	$EN 15316-1 [5] \\EN 15316-5 [10]$	NO	YES
2	Load-prediction based storage operation		NO	NO

 Table 4.25: Control of thermal energy storage (TES) charging summary

Edilclima EC700 [22]

Level 0 Define the cooling system in the Cooling system data-sheet. In the Cooling systems - Storage and primary distribution - Storage select the command Storage and define the dimension of the storage tank. The program consider a continuous storage operation.

- Level 0 Define either the ThermalStorage:ChilledWater:Mixed or the ThermalStorage:ChilledWater:Stratified object to simulate a chiller water tank that works continuously.
- Level 1 Define the object Coil:Cooling:DX:SingleSpeed:ThermalStorage to simulate the thermal storage cooling with the capability of charge and discharge and the Thermal Energy Storage (TES) tank. Set the field Operating Mode Control Method on ScheduledMode.

4.4 Ventilation and air-conditioning control

4.4.1 Supply air flow control at the room level

Table 4.26 :	Supply air	flow:	$\operatorname{control}$	at	the room	level	summary
----------------	------------	-------	--------------------------	---------------------	----------	-------	---------

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control: the system runs constantly (e.g. manual controlled switch)	EN 16798-7 [14] EN 16798-3 [12]	YES	YES
1	Time control: the system runs according to a given time schedule		YES	YES
2	Occupancy based control: the system runs depen- dent on the occupancy (presence, light switch, in- frared sensors etc.)		NO	YES
3	Demand based control: the system runs dependent on the air quality demand (measurement of CO2, VOC, etc.)		NO	YES

Edilclima EC700 [22]

- Level 0 Define the ventilation and air-conditioning system in the Ventilation system data-sheet. In the Ventilation system General data System operation Activation time profile of the system data-sheet set the hourly profile to work continuously.
- Level 1 Define the ventilation and air-conditioning system in the Ventilation system data-sheet. In the Ventilation system General data System operation Activation time profile of the system data-sheet set a fixed a priori hourly profile.
- Level 2 Define the ventilation and air-conditioning system in the Ventilation system data-sheet. In the Ventilation system General data System operation Activation time profile of the system data-sheet set a hourly profile based on the real occupancy schedule.

- Level 0 Define one of the following objects, in order to simulate an air terminal that runs at constant volume: AirTerminal:DualDuct:ConstantVolume, AirTerminal:SingleDuct:ConstantVolume:Reheat, AirTerminal:SingleDuct:ConstantVolume:NoReheat. Set the flow rate in the field Maximum Air Flow Rate. The system runs with the defined constant flow rate.
- Level 1 Define one of the following objecs: AirTerminal:SingleDuct:ConstantVolume, AirTerminal:SingleDuct:VAV, AirTerminal:DualDuct:ConstantVolume, AirTerminal:DualDuct:VAV. In the field Avaiability Schedule Name set a fixed time schedule according to which the air terminal runs.
- Level 2 Define one of the following objecs: AirTerminal:SingleDuct:ConstantVolume, AirTerminal:SingleDuct:VAV, AirTerminal:DualDuct:ConstantVolume, AirTerminal:DualDuct:VAV. In the field Avaiability Schedule Name set a time schedule based on the date of the occupancy schedule according to which the air terminal runs.

Level 3 Define one of the following objecs: AirTerminal:SingleDuct:ConstantVolume, AirTerminal:Single-Duct:VAV, AirTerminal:DualDuct:ConstantVolume, AirTerminal:DualDuct:VAV. In the field Avaiability Schedule Name set a time schedule based on the date of the occupancy schedule according to which the air terminal runs. Then, define the object ZoneControl:ContaminantController to control the air quality and to set a carbon dioxide set-point that is used to calculate the outdoor airflow rate required by HVAC system to reach the air flow set-point.

4.4.2 Room air temperature control by ventilation system (all air system, combination with static system as cooling ceiling, radiators...)

Table 4.27: Room air temperature control by ventilation system (all air system, combination with static system as cooling ceiling, radiators...) summary

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	On-off control: fixed air flow rate and fixed supply air temperature at the room level, room tempera- ture set-points are set individually		YES	YES
1	Continuous control: either air flow rate or supply air temperature at the room level can be varied continuously; room temperature set-point are set individually	EN 16798-5-1 [13]	YES	YES
2	Optimized control: minimum energy demand by optimized control. Both air flow rate as well as supply air temperature at the room level are con- trolled dependent on heating/cooling load		YES	YES

Edilclima EC700 [22]

- Level 0 Define the ventilation and air-conditioning system in the Ventilation system data-sheet. In the case of heating, set the ventilation combined with the heating system. Set the system working temperature in the General data Default data data-sheet.
- Level 1 In the case of heating, set the ventilation combined with the heating system. Then, in the Heating system General data Monthly activation time data-sheet set Operation by hourly profile. In the case of cooling, in the Cooling system Activation Monthly activation time data-sheet set Operation by hourly profile. The hourly temperature profiles are fixed a priori.
- Level 2 In the case of heating, set the ventilation combined with the heating system. Then, in the Heating system General data Monthly activation time data-sheet set Operation by hourly profile. In the case of cooling, in the Cooling system Activation Monthly activation time data-sheet set Operation by hourly profile. The hourly temperature profiles are based on the real occupancy schedule.

- Level 0 Define the object AirTerminal:SingleDuct:ConstantVolume:Reheat associated with a room thermostat. If the temperature in the room is below the set-point temperature, the terminal is turned on and provide a constant flow rate at a fixed supply air temperature, otherwise the terminal is turned off.
- Level 1 Define the object AirTerminal:DualDuct:VAV associated with a room thermostat. The air terminal keeps the required temperature by varying the supply air temperature and the air flow rate.
- Level 2 Define the object AirTerminal:DualDuct:VAV associated with a room thermostat. The air terminal keeps the required temperature by varying the supply air temperature and the air flow rate. In this case the schedule associated to the room thermostat is based on the values of the occupancy schedule.

4.4.3 Coordination of room air temperature control by ventilation and by static system

Table 4.28: Coordination of room air temperature control by ventilation and by static system summary

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Interaction is not coordinated, e.g. closed loop con- trollers are dedicated to each system to maintain the room air temperature independently		NO	YES
1	Interaction is coordinated, i.e. only one system is controlled by a closed loop controller for the room air temperature and the other system conditions the room only to the extent that allows the closed loop controller to benefit from internal and external heat gains	EN 16798-5-1 [13]	NO	NO

Edilclima EC700 [22]

It is not possible to find a way to simulate the coordination of room air temperature control by ventilation and by static system function for any level of implementation with *Edilclima EC700*.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Model the air conditioning systems and the static systems independently one from the other.

4.4.4 Outdoor air (OA) flow control

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Fixed OA ratio or OA flow: the system runs ac- cording to a given OA ratio, e.g. modified manu- ally		NO	YES
1	Staged (low/high) OA ratio or OA flow: depending on a given time schedule		NO	YES
2	Staged (low/high) OA ratio or OA flow: depending on the occupancy, e.g. light switch, infrared sen- sors, etc.	EN 16798-5-1 [13] EN 16798-3 [12]	NO	YES
3	Variable control: the system is controlled by sen- sors which detect the number of people or in- door air parameters or adapted criteria (e.g. CO2, mixed gas or VOC sensors). The used parameters shall be adapted to the kind of activity in the space		NO	YES

Table 4.29: Outdoor air (OA) flow control summary

Edilclima EC700 [22]

It is not possible to find a way to simulate the outdoor air flow control function for any level of implementation with *Edilclima EC700*.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Define the object Controller: Outdoor Air. Set the field Economizer Control Type on NoEconomizer.

- Level 1 Define the object Controller:OutdoorAir. Set the field Economizer Control Type. Set in the field Minimum Outdoor Air Schedule Name a a priori time schedule.
- Level 2 Define the object Controller:OutdoorAir. Set the field Economizer Control Type. Set in the field Minimum Outdoor Air Schedule Name a time schedule based on the real occupancy schedule.
- Level 3 Define the object Controller:OutdoorAir. Set the field Economizer Control Type and the field Minimum Outdoor Air Schedule Name. Define the object Controller:MechanicalVentilation to define a minimum air flow based on the occupancy of the zone and to carry out an evaluation of carbon dioxide(CO_2)-based demand controlled ventilation. In the field Field: Mechanical Ventilation Controller Name of the object Controller:OutdoorAir inserts the name of the previously defined object.

4.4.5 Air flow of pressure control at air handler level

	Level of BAC function [19]	Standard [1][19]	<i>EC700</i>	E+/DB
0	No automatic control: continuously supplies air flow for a maximum load of all rooms		NO	YES
1	On off time control: continuously supplies air flow for a maximum load of all rooms during nominal occupancy time	-	NO	YES
2	Multi-stage control: to reduce the auxiliary energy demand of the fan	EN 16798-3 [12]	NO	YES
3	Automatic flow or pressure control without pres- sure reset: load dependent supplies of air flow for the demand of all connected rooms	EN 16798-7 [14]	NO	NO
4	Automatic flow or pressure control with pressure reset: load dependent supplies of air flow for the demand of all connected rooms (for variable air vol- ume systems with VFD)		NO	NO

Table 4.30: Air flow of pressure control at air handler level summary

Edilclima EC700 [22]

It is not possible to find a way to simulate the air flow of pressure control at air handler level function for any level of implementation with $Edilclima \ EC700$.

- Level 0 Define the object Fan:ConstantVolume to simulate a fan that operates continuously according to a given time schedule. In this case, the time schedule imposes that the system runs each hour of the day.
- Level 1 Define the object Fan:OnOff. Set in the field Availability Schedule Name a time schedule according to which the system runs. In the filed Maximum Flow Rate set the air flow rate of the fan.
- Level 2 Define the object Fan:OnOff and one object between AirLoopHVAC:Unitary:Furnace:HeatCool and ZoneHVAC:PackagedTerminalAirConditioner to simulate a multiple-speed fan.

4.4.6 Heat recovery control: icing protection

	Level of BAC function [19]	Standard [1][19]	<i>EC700</i>	E+/DB
0	Without icing protection control: there is no spe- cific action to avoid icing of the heat exchanger		YES	YES
1	With icing protection control: a control loop en- ables to guarantee that the exhaust air tempera- ture leaving the heat exchanger is not too low, to avoid frosting	EN 16798-5-1 [13]	YES	YES

Table 4.31: Heat recovery control: icing protection summary

Edilclima EC700 [22]

- Level 0 Define the ventilation and air-conditioning system in the Ventilation system data-sheet. In the Ventilation system General data data-sheet select Heat recovery unit and leave the Presence of icing protection unselected.
- Level 1 Define the ventilation and air-conditioning system in the Ventilation system data-sheet. In the Ventilation system General data data-sheet select Heat recovery unit, select Presence of icing protection and define the icing protection temperature.

- Level 0 Define the object HeatExchanger:AirToAir:SensibleAndLatent. Set the field Frost Control Type on None.
- Level 1 Define the object HeatExchanger:AirToAir:SensibleAndLatent. Set the field Frost Control Type on one of the following strategies: ExhaustAirRecirculation, ExhaustOnly or MinimumExhaustTemperature.

4.4.7 Heat recovery control: prevention of overheating

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Without overheating control: there is no specific action to avoid overheating		YES	YES
1	With overheating control: during periods when the effect of the heat exchanger will no longer be positive, a control loop will switch between the "off", "modulation" or bypass states of the heat exchanger	EN 16798-5-1 [13]	YES	YES

 Table 4.32: Heat recovery control: prevention of overheating summary

Edilclima EC700[22]

- Level 0 Define the ventilation and air-conditioning system in the Ventilation system data-sheet. In the Ventilation system General data data-sheet select Heat recovery unit and leave Presence of by-pass unselected.
- Level 1 Define the ventilation and air-conditioning system in the Ventilation system data-sheet. In the Ventilation system General data data-sheet select Heat recovery unit and select Presence of by-pass.

- Level 0 Define the object HeatExchanger:AirToAir:SensibleAndLatent. Set the field Supply Air Outlet Temperature Control on No.
- Level 1 Define the object HeatExchanger:AirToAir:SensibleAndLatent. Set the field Supply Air Outlet Temperature Control on Yes. Define the object SetpointManager:Scheduled to set a threshold value to avoid overheating.

4.4.8 Free mechanical cooling

	Level of BAC function [19]	Standard [1][19]	<i>EC700</i>	E+/DB
0	No automatic control		NO	YES
1	Night cooling: the amount of outside air is set to its maximum during the unoccupied period pro- vided that firstly the room temperature is above the set-point for the comfort period, and secondly the difference between the room temperature and the outside temperature is above a given limit. If free night cooling will be realized by automatically opening windows there is no air flow control	EN 16798-13 [11]	NO	YES
2	Free cooling: both the amount of outside air and recirculation air are modulated during all periods of time to minimize the amount of mechanical cool- ing. Calculation is performed on the basis of tem- peratures		NO	YES
3	Enthalpy based control: the amount of outside air and recirculation air are modulated during all peri- ods of time to minimize the amount of mechanical cooling. Calculation is performed on the basis of temperatures and humidity (enthalpy)		NO	YES

Table 4.33: Free mechanical cooling summary

Edilclima EC700 [22]

It is not possible to find a way to simulate the free mechanical cooling function for any level of implementation with *Edilclima EC700*.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Leave the object Controller: Outdoor Air undefined.

- Level 1 Define the object Controller:OutdoorAir, specify the field Economizer Control Type and the field Time of Day Economizer Control Schedule Name with the schedule which controls the outdoor air flow rate based on a time-of-day economizer. In this case the schedule represent the unoccupied period.
- Level 2 Define the object Controller:OutdoorAir and set the field Economizer Control Type on one of the following options: FixedDryBulb, DifferentialDryBulb or FixedDewPointAndDryBulb. The control is based on the air temperature.
- Level 3 Define the object Controller:OutdoorAir and set the field Economizer Control Type on one of the following options: FixedEnthalpy, DifferentialEnthalpy or ElectronicEnthalpy. The control is based on the value of the enthalpy.

4.4.9 Supply air temperature control at the air handling unit (AHU) level

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control: no control loop enables to act on the supply air temperature	EN 16798-5-1 [13]	NO	YES
1	Constant set-point: a control loop enables to con- trol the supply air temperature, the set-point is constant and can only be modified by a manual ac- tion		NO	YES
2	Variable set-point with outside temperature com- pensation: a control loop enables to control the supply air temperature. The set-point is a sim- ple function of the outside temperature (e.g. linear function)		NO	NO
3	Variable set-point with load dependent compensa- tion: a control loop enables to control the supply air temperature. The set-point is defined as a func- tion of the loads in the room. This can normally only be achieved with an integrated control system enabling to collect the temperatures or actuator position in the different rooms		NO	NO

Table 4.34: Supply air temperature control at the air handling unit (AHU) level summary

Edilclima EC700 [22]

It is not possible to find a way to simulate the supply air temperature control at the air handling unit level function for any level of implementation with Edilclima EC700.

EnergyPlus/DesignBuilder [42][43][21]

Level 0 Leave the object Controller: WaterCoil undefined.

Level 1 Define the object Controller: WaterCoil and the object SetpointManager:Scheduled. The program reads the set-point air temperature and adjusts the water flow rate in order to meet the set-point.

4.4.10 Humidity control

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	No automatic control: no control loop enables to act on the air humidity	EN 16798-5-1 [13] -	YES	YES
1	Dew point control: supply air or room air humidity is expressed with the dew point temperature and reheat of the supply air to bring the relative hu- midity to the set-point		YES	YES
2	Direct humidity control: supply air or room air humidity, a control loop enables the supply air or room air humidity at a given set-point. The set- point is either fixed and predefined by the user or a fluctuating optimal value at a minimum energy but within min./max. limits of room air condition		NO	YES

Table 4.35: Humidity control summary

Edilclima EC700 [22]

Level 0 In the Conditioned zone/local - hourly profile data-sheet leave the Humidity set-point off.

Level 1 In the Conditioned zone/local - hourly profile data-sheet select the Humidity set-point. Then, define the minimum and maximum value of humidification and dehumidification and set the hourly profile for the humidity control.

- Level 0 Leave the following objects undefined: Humidifier:Steam:Electric, Humidifier:Steam:Gas, Dehumidifier:Desiccant:NoFans, Dehumidifier:Desiccant:System.
- Level 1 Define a Humidifier and a Dehumidifier. Connect them the object SetpointManager:Scheduled, to control the humidity ratio at the node.
- Level 2 Define the object ZoneControl:Humidistat to control the relative humidity at room level. Connected it to the objects SetpointManager:SingleZone:Humidity:Minimum and SetpointManager:SingleZone:Humidity:Maximum to define a dual humidity set-point schedule (humidifying and dehumidifying set-points).

4.5 Lighting control

4.5.1 Occupancy control

	Level of BAC function [19]	Standard [1][19]	<i>EC700</i>	E+/DB
0	Manual on/off switch: the luminaire is switched on and off with a manual switch in the room		NO	NO
1	Manual on/off switch plus additional sweeping ex- tinction signal: the luminaire is switched on and off with a manual switch in the room. In addition, an automatic signal automatically switches off the lu- minaire at least once a day, typically in the evening to avoid needless operation during the night		NO	NO
2	Automatic detection Auto on/dimmed off: the control system switches the luminaire(s) automatically on whenever the illuminated area is occupied, and automatically switches them to a state with dimmed status af- ter the last occupancy in the illuminated area. Auto on/auto off: the control system switches the luminaire(s) automatically on whenever the illumi- nated area is occupied, and automatically switches them entirely off.	EN 15193-1 [3]	NO	NO
3	Automatic detection Manual on/ partial auto on /dimmed off: the luminaire(s) can only be switched on by means of a manual switch or automatically by occu- pancy detection sensor located in (or very close to) the area illuminated by the luminaire(s), and, if not switched off manually, is/are automatically switched to a state with dimmed status after the last occupancy in the illuminated area. Manual on/ partial auto on /auto off: the lumi- naire(s) can only be switched on by means of a manual switch or automatically by occupancy de- tection sensor.		NO	NO

 Table 4.36: Occupancy control summary

Edilclima EC700 [22]

It is not possible to find a way to simulate the occupancy control function for any level of implementation with $Edilclima \ EC700$.

EnergyPlus/DesignBuilder [42][43][21]

It is not possible to find a way to simulate the occupancy control function for any level of implementation with EnergyPlus/DesignBuilder.

4.5.2 Light level/Daylight control (Daylight harvesting)

	Level of BAC function [19]	Standard [1][19]	<i>EC700</i>	E+/DB
	Manual central: luminaires are controlled centrally,			
0	there is no manual switch in the room/zone	-	YES	YES
1	Manual: luminaires can be switched off with a	-	YES	YES
	manual switch in the room		I ED	1120
	Automatic switching: the luminaires are automati-			
2	cally switched off when more than enough daylight			
	is present to fully provide minimum illuminance re-		NO	YES
	quired and switched on when there is not enough			
	daylight	EN 15193-1 [3]		
	Automatic dimming: the luminaires are dimmed			
	down and finally fully switched off, e.g. when day-			
	light is available or when scene based light level			
3	control is applied. The luminaires will be switched		NO	YES
	on again and dimmed up if the amount of daylight			
	is decreasing or when scene based light level con-			
	trol is applied			

Table 4.37: Light level/Daylight control (Daylight harvesting) summary

Edilclima EC700[22]

- Level 0 In the Conditioned zone/local Hourly profile Internal gains data-sheet define a value that takes into account the presence of the illuminance.
- Level 1 In the Conditioned zone/local Hourly profile Internal gains data-sheet define a value that takes into account the presence of the illuminance.

- Level 0 Define the object Lights. Set the time schedule according to which the lights are turned on, there is no possibility to manually turn off the lights.
- Level 1 Define the object Lights. Set the time schedule based on the occupancy of the room according to which the lights are turned on.
- Level 2 Define the object Daylighting: Controls. Set the field Lighting Control Type on Stepped. Set the Number of Steps and the Illuminace Setpoint.
- Level 3 Define the object Daylighting: Controls. Set the field Lighting Control Type on Continuous. In this way the lights dim continually and linearly from the maximum to the minimum electric power and light output in function of the daylight illuminance.

4.6 Blind control

4.6.1 Blind control

Table 4.38: Blind control summary

	Level of BAC function [19]	Standard [1][19]	EC700	E+/DB
0	Manual operation: mostly used only for man- ual shadowing, energy saving depends only on the user behaviour		YES	YES
1	Motorized operation with manual control: mostly used only for easiest manual (motor supported) shadowing, energy saving depends only on the user behaviour	EN ISO 52016-1[18]	YES	YES
2	Motorized operation with automatic control: automatic controlled dimming to reduce cool- ing energy		YES	YES
3	Combined light/blind/HVAC control: to opti- mize energy use for HVAC, blind and lighting for occupied and non-occupied rooms		NO	YES

Edilclima EC700 [22]

- Level 0 Leave the blinds unset.
- Level 1 Leave the blinds unset. The electrical gain due to the motorized blind can be considered negligible with respect to other internal gains.
- Level 2 In the Shading data-sheet set the Profile of blinds use. It can be set according to a defined time profile or according to the Automatic control of solar radiation by defining the maximum value of solar irradiation according to which the blinds are closed.

- Level 0 Leave the blinds unset.
- Level 1 Leave the blinds unset. The electrical gain due to the motorized blind can be considered negligible with respect to other internal gains.
- Level 2 Define the object WindowShadingControl. Specify in the field Shading Type the type of shading device. Set the field Shading Control Type on OnIfHighZoneCooling. In this way the shading device is on if zone cooling rate in the previous time-step exceeds power set-point.
- Level 3 Define the object WindowShadingControl. Specify in the field Shading Type the type of shading device. Set the field Shading Control Type on OffNightAndOnDayIfCoolingAndHighSolarOnWindow. In this way the shading devices are off during the night and on during the day if the solar radiation incident on the windows rises above the defined set-point and if the cooling rate in the earlier time-step is higher that zero.

4.7 Summary of the achievable levels

Table 4.39 summarizes the maximum level achievable by each BACS functions with *Edilclima EC700* and *EnergyPlus/DesignBuilder*.

	BACS function		$able \ levels^1$
_		EC700	EnergyPlus
	Heating control		
1.1	Emission control	4	4
1.2	Emission control for TABS	1	3
1.3	Control of distribution network hot water temperature (supply or return)	1	1
1.4	Control of distribution pumps in networks	0	3
1.4a	Hydronic balancing heating distribution	-	-
1.5	Intermittent control of emission and/or distribution	1	3
1.6	Heat generator control for combustion and district heating	-	1
1.7	Heat generator control (heat pump)	1	1
1.8	Heat generator control (outdoor unit)	-	-
1.9	Sequencing of different heat generators	1	1
1.10	Control of thermal energy storage (TES) charging	0	0

Table 4.39: Level of BACS functions achievable by the two software tools

Domestic Hot Water control

2.1	Control DHW storage charging with direct electric heating or		0
2.1	integrated electric heat pump	-	0
2.2	Control DHW storage charging using hot water generation	-	0
2.3	Control DHW storage charging with solar collector and sup-		0
2.0	plementary heat generation	-	0
2.4	Control DHW circulation pump	0	0

Cooling control

3.1	Emission control	4	4
3.2	Emission control for TABS	1	3
3.3	Control of distribution network chilled water temperature (supply/return)		1
3.4	Control of distribution pumps in networks	0	3
3.4a	Hydronic balancing heating		-
3.5	Intermittent control of emission and/or distribution	1	3
3.6	Interlock between heating and cooling control of emission/distribution	0	0
3.7	Generation control for cooling	-	1
3.8	Sequencing of different chillers	-	1
3.9	Control of thermal energy storage (TES) charging	0	1

 $^{1}(\text{-})$ means functions that cannot be simulated for any level of implementation.

4.1	Supply air flow control at the room level, related to the occupancy	1	3
4.2	Room air temperature control by ventilation system, acting on the air flow to regulate the air temperature	2	2
4.3	Coordination of room air temperature control by ventilation and by static system	-	0
4.4	Outdoor air (OA) flow control	-	3
4.5	Air flow of pressure control at air handler level	-	2
4.6	Heat recovery control: icing protection	1	1
4.7	Heat recovery control: prevention of overheating	1	1
4.8	Free mechanical cooling	-	3
4.9	Supply air temperature control at the air handling unit (AHU) level	-	1
4.10	Humidity control	1	2

Ventilation and air-conditioning control

Lighting control

5.1	Occupancy control	-	-
5.2	Light level and daylight control (Daylight harvesting)	1	3

Blind control

6.1	Blind control	2	3

Chapter 5

Case study

This chapter is divided into three parts. The first one analyses the current status of the case study. The second one explains how the two models are implemented with Edilclima EC700 and Energy-Plus/DesignBuilder. The last part shows the results of the simulations of the different BACS efficiency classes.

5.1 Current status of the building

The case study is the building of classrooms P, which is part of the *Cittadella Politecnica* complex of *Politecnico di Torino*. The building is located in the metropolitan city of Turin, more precisely in Corso Peschiera, 84/A. Its geographical coordinates are 45°7' North and 7°43' East and its altitude is 239 m a.s.l. (Figure 5.1).

The building is a single story building made of a prefabricated reinforced concrete structure. The external opaque envelope is made of precast concrete panels with thermal break. The building has a slab directly placed on the ground and a flat roof.

On the ground floor the surface area is subdivided in: four classrooms of about 220 m² positioned in the corners of the building, two restrooms one on the North-East side and the other on the South-West side of the construction and a hallway crossing the building and connecting all the spaces (Figure 5.2). The geometrical characteristics of the building are shown in Table 5.1.

Figure 5.1: Spatial context of the building

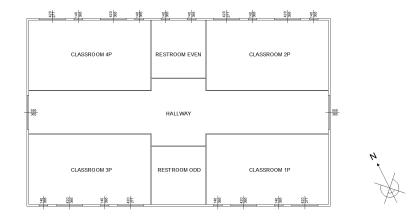


Table 5.1: Geometrical characteristics

Net floor area	1394.57 m^2
Gross floor area	1469.81 m^2
Total envelope area	4066.40 m^2
Net volume	7112.31 m^3
Gross volume	9885.96 m^3
S/V ratio	0.41 m^{-1}

Geometrical characteristics

5.1.1 Climatic data of the site

Table 5.2, 5.3 and 5.4 show the climatic data of Turin according to the standard UNI 10349-1:2016 [40].

Climatic data of the building						
Reference Location	Turin-Bauducchi					
Climatic zone	E					
Degree days	2617 °C d					
Wind Characteristics						
Wind region	А					
Main wind direction	North-East					
Distance from the sea	> 40 km					
Average wind speed	1.4 m/s					
Maximum wind speed	2.8 m/s					
Winter data						
Outdoor design temperature	-8 °C					
Conventional heating season	from 15 October to 15 April					

Outdoor dry bulb temperature	31.0 °C
Outdoor wet bulb temperature	22.7 °C
Indoor relative humidity	50.0 %
Daily thermal excursion	11.0 °C

Summer design day

Table 5.3: Average monthly solar irradiation

			•	0	•			-	, <u> </u>			
Orientation	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	\mathbf{Sep}	Oct	Nov	Dec
Ν	1.7	2.7	3.6	5.1	7.8	9.7	9.6	6.9	4.5	3.0	1.9	1.4
N-E	1.8	3.3	5.3	7.9	10.5	12.5	13.0	10.3	6.9	4.0	2.1	1.5
Е	3.7	5.9	7.9	10.5	12.5	14.7	15.7	13.7	10.4	6.7	3.6	3.2
S-E	6.4	8.5	10.7	11.7	12.0	12.8	13.9	13.6	11.9	9.0	5.6	5.9
S	8.1	10.1	11.2	10.5	9.9	10.2	11.0	11.5	11.6	10.3	6.9	7.6
S-W	6.4	8.5	10.7	11.7	12.0	12.8	13.9	13.6	11.9	9.0	5.6	5.9
W	3.7	5.9	7.9	10.5	12.5	14.7	15.7	13.7	10.4	6.7	3.6	3.2
N-W	1.8	3.3	5.3	7.9	10.5	12.5	13.0	10.3	6.9	4.0	2.1	1.5
Horizontal	4.6	7.7	11.7	16.0	19.7	22.8	24.0	20.2	14.6	9.0	4.8	3.9

Monthly average daily solar irradiation $[MJ/m^2]$

Table 5.4: Average monthly outdoor temperatures

Average monthly	v outdoor	temperatures
-----------------	-----------	--------------

Temp												
°C	1.2	3.1	8.3	11.9	18.0	22.1	23.6	22.6	19.1	12.3	6.8	2.6

5.1.2 Activity and thermal zones

The building is used for university activities. For this reason, the use category is E.7 "Buildings used for school activities at all levels and assimilated", in accordance with DPR 412/93 [31]. It is possible to identify seven different thermal zones: the four classes, the two restrooms and the hallway (Figure 5.3). Table 5.5 shows the main data regarding the thermal zones.

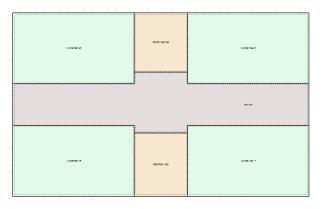


Figure 5.3: Thermal zone subdivision

	${f Classroom}^1$	$Restroom^2$	Hallway		
Net area [m ²]	220.02	79.24	356.01		
Net volume [m ³]	1122.10	404.12	1815.65		
Building category	E.7				
Subcategory	University classroom	Restroom	Common space		
Ventilation flow rate per person $Q_{op} [10^{-3} \text{m}^3/\text{s pers}]$	7.0	Extraction	7.0		
Crowding index n_s [pers/m ²]	1.04	-	0.23		

Table 5.5: Building activity summary

Table 5.6 shows the set-point temperature used for the environmental control into the thermal zones according to the data provided in the technical document of the building.

Table 5.6	Building	set-points	tempera	ture summary	
			aroom	Destroom	

	Classroom	Restroom	Hallway
Heating set-point temperature $[C^{\circ}]$	20.0	20.0	20.0
Cooling set-point temperature $[C^{\circ}]$	27.0	27.0	27.0

Table 5.7 shows the values of the internal heat gains due to the presence of people, appliances and lights as reported in standard ISO 18523-1:2016 [32].

	Classroom	Restroom	Hallway
Internal gains due to people $[W/m^2]$	59.50	3.60	23.80
Internal gains due to appliance [W/m ²]	2.00	0.00	0.00
Internal gains due to lighting $[W/m^2]$	20.00	15.00	35.00

Table 5.7: Building internal heat gains summary

The occupancy values are provided by the technical documents of the building and take into account the opening hours of the building. The maximum number of people in each classroom is 225 and the average number of people in the hallway and restrooms is about 120. Table 5.8 shows the occupancy schedule of the building, in terms of occupancy factor, appliances utilization factor, and lighting utilization factor. The factors are shown as a fraction between 0 and 1, where 0 means no occupancy and 1 means the maximum occupancy.

Table 5.8: Building occupancy schedule

h	1	Veekda	iys	Weekend-Holidays			
	f_{occ}	f_{int_A}	$f_{int,L}$	f_{occ}	f_{int_A}	$f_{int,L}$	
1	0	0	0	0	0	0	

 1 The data in the table refers to only one classroom, because all the classrooms have the same characteristics. 2 The data in the table refers to only one restroom, because the two restrooms have the same characteristics.

 $\mathbf{2}$

 $\mathbf{6}$

0.3

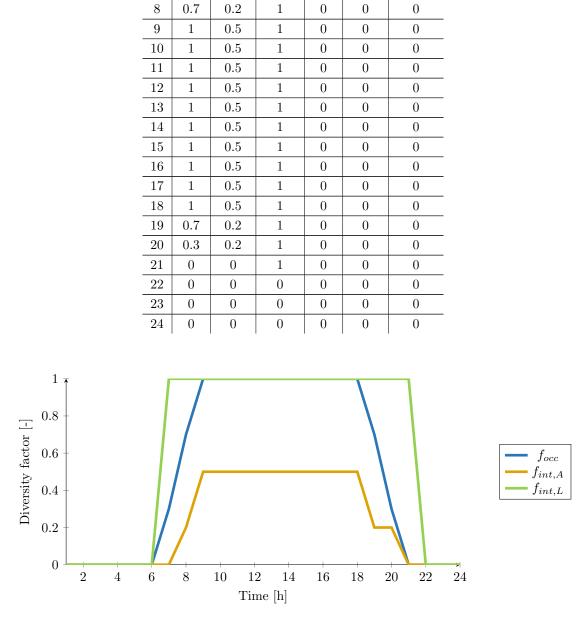


Figure 5.4: Occupancy factor, appliances utilization factor, and lighting utilization factor for the weekdays

5.1.3 Building envelope

Opaque envelope - External wall

The stratigraphy and the thermo-physical characteristics of the external wall are show in Figures 5.5 and 5.6 and Tables 5.9 and 5.10.

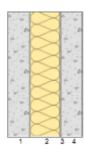


Figure 5.5: External wall stratigraphy

N°	Description	d [cm]	$ig egin{array}{c} \lambda \ [W/mK] \end{array}$	R $[\mathbf{m^2K/W}]$	$ ho \ [kg/m^3]$	$ig egin{array}{c} { m C} \ [{ m kJ/kgK}] \end{array}$	μ [-]
	Internal surface resistance	-	-	0.13	-	-	-
1	Concrete of sand and gravel (internal wall)	9.0	1.910	-	2400	1.00	96
2	Expanded polystyrene syn- thesized (EPS 100)	11.9	0.035	-	15	1.45	60
3	Weakly ventilated cavity $Av=600 \text{mm}^3/\text{m}$	0.1	-	-	-	-	-
4	Concrete of sand and gravel (external wall)	9.0	2.150	-	2400	1.00	96
	External surface resistance	-	-	0.04	-	-	-

Table 5.9: External wall stratigraphy

Table 5.10: External wall thermo-physical characteristic

F5	
Thermal transmittance	$0.271 \text{ W/m}^{2}\text{K}$
Thickness	30 cm
Vapor permeability	$12.674 \ 10^{-12} \text{kg/sm}^2 \text{Pa}$
Areal mass	434 kg/m^2
Periodic thermal transmittance	$0.067 \text{ W/m}^2\text{K}$
Decrement factor	0.248
Time lag	-9.1 h

Thermo-physical charcateristic

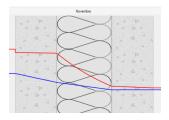


Figure 5.6: External wall interstitial condensation and superficial condensation check in the most critical month (November)

Opaque envelope - Internal wall

The stratigraphy and the thermo-physical characteristic of the internal wall are show in Figures 5.7 and 5.8 and Tables 5.11 and 5.12.

Figure 5.7: Internal wall stratigraphy

N°	Description	$\begin{vmatrix} d \\ [cm] \end{vmatrix}$	$ig egin{array}{c} \lambda \ [{ m W/mK}] \end{array}$	$R \ [\mathbf{m^2K/W}]$	$ ho \ [kg/m^3]$	$f C \\ [kJ/kgK]$	μ [-]
	Internal surface resistance	-	-	0.13	-	-	-
1	Lime and gypsum plaster	1.4	0.700	-	1400	1.00	10
2	Brick mansory for internal wall	17.0	0.430	-	1200	1.00	7
3	Lime mortar	1.5	0.900	-	1400	1.00	22
	External surface resistance	-	-	0.13	-	-	-

Table 5.11: Internal wall stratigraphy

Table 5.12: Internal wall thermo-physical characteristic

$1.442 \mathrm{ W/m^2K}$
20 cm
$119.760 \ 10^{-12} \text{kg/sm}^2 \text{Pa}$
252 kg/m^2
$0.637 { m W/m^2K}$
0.442
-7.379 h

Thermo-physical charcateristic

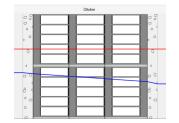


Figure 5.8: Internal wall interstitial condensation and superficial condensation check in the most critical month (October)

Opaque envelope - Slab-on-ground

The stratigraphy and the thermo-physical characteristic of the slab-on-ground are show in Figures 5.9 and 5.10 and Tables 5.13 and 5.14.

- 1. a 4	1. A. S.	14, 14,	1.14	· ·	1.1	
						×.
						-
			1		+ -	1.0
6 . 0	-		а ару	а -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4
A			4 B 4	4		1
-			A	4		-

Figure 5.9: Slab-on-ground stratigraphy

N°	Description	d [cm]	$\lambda \ [W/mK]$	$R \ [\mathbf{m^2 K/W}]$	$ ho \ [kg/m^3]$	$ig egin{array}{c} { m C} \ [{ m kJ/kgK}] \end{array}$	μ [-]
	Internal surface resistance	-	-	0.17	-	-	-
1	Granite tiles	1.0	4.100	-	3000	0.84	10000
2	Lean concrete substrate	10.0	0.700	-	1600	0.88	20
3	Skinless extrude polystyrene foam	5.0	0.034	-	50	1.45	17
4	Concrete of sand and gravel (external wall)	10.0	1.30	-	2000	1.00	96
5	Weakly ventilated cavity $Av=900 \text{mm}^3/\text{m}$	20.0	-	-	-	-	-
6	General concrete	44.0	0.220	-	500	1.0	96
	External surface resistance	-	-	0.04	-	-	-

Table 5.13: Slab-on-ground stratigraphy

Table 5.14: Slab-on-ground thermo-physical characteristic

1 5	
Thermal transmittance	$0.142 \mathrm{ W/m^2K}$
Thickness	90 cm
Vapor permeability	$1.679 \ 10^{-12} \text{kg/sm}^2 \text{Pa}$
Areal mass	612 kg/m^2
Periodic thermal transmittance	$0.001 \text{ W/m}^2\text{K}$
Decrement factor	0.007
Time lag	-1.200 h

Thermo-physical charcateristic

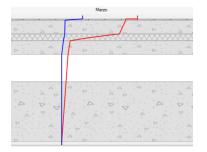


Figure 5.10: Slab-on-ground interstitial condensation and superficial condensation check in the most critical month (March)

Opaque envelope - Flat roof

The stratigraphy and the thermo-physical characteristic of the flat roof are show in Figures 5.11 and 5.12 and Tables 5.15 and 5.16.

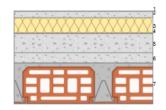


Figure 5.11: Flat roof stratigraphy

Table 5.15: Flat roof stratigraphy	Table	5.15:	Flat	roof	stratigra	phy
------------------------------------	-------	-------	------	------	-----------	-----

N°	Description	d [cm]	$\lambda \ [W/mK]$	$R \ [\mathbf{m^2K/W}]$	$ ho \ [kg/m^3]$	f C [kJ/kgK]	$ $ μ [-]
	External surface resistance	-	-	0.04	-	-	-
1	Waterproofing in roofing felt	0.5	0.500	-	1600	1.00	188000
2	Concrete distribution screed with mesh	5.0	1.490	-	220	0.88	70
3	Extruded polystyrene foam with leather	12.0	0.034	-	30	1.45	60
4	Vapor barrier made of polyethylene sheets	0.1	0.330	-	920	2.20	100000
5	Expanded clay concrete inter- nal walls in a closed structure	15.0	0.910	-	1700	1.00	96
6	Concrete of sand and gravel (external wall)	8.0	1.260	-	2000	1.00	96
7	Predalles type slab	32.0	0.889	-	1394	0.84	9
	External surface resistance	-	-	0.04	-	-	-

Table 5.16: Flat roof thermo-physical characteristic

Thermal transmittance	$0.231 \mathrm{~W/m^2K}$
Thickness	$72.6 \mathrm{~cm}$
Vapor permeability	$0.186 \ 10^{-12} \text{kg/sm}^2 \text{Pa}$
Areal mass	984 kg/m^2
Periodic thermal transmittance	$0.004 \text{ W/m}^2\text{K}$
Decrement factor	0.017
Time lag	-20.195 h

Thermo-physical characteristic

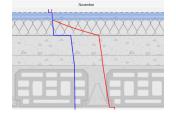


Figure 5.12: Flat roof interstitial condensation and superficial condensation check in the most critical month (November)

Transparent building envelope

The transparent envelope components of the building have all the same type of glass and frame. Therefore, the transparent components are made of a low-e double glazing and a thermal break aluminum frame. The components are characterized by an average thermal transmittance lower than $1.8 \text{ W/m}^2\text{K}$ and air permeability class 4.

5.1.4 Building systems

Five different direct expansion rooftop systems are installed on the roof of the building to provide the required heating and cooling loads and ventilation requirements in the four classrooms, two restrooms and hallway (Figure 5.13 and Figure 5.14). Four of the rooftop systems have the same performance characteristics, each one providing air conditioning to one classroom. The fifth rooftop system provides air conditioning to the hallway and the restrooms. The domestic hot water is provided by electric boilers installed in the restrooms.

Classroom rooftop system

Table 5.17 illustrates the technical characteristics of the system installed in each classroom. Fifteen helical effect diffusers, installed on the ceiling and with a flow rate of 600 m³/h each, supply air into each classroom. Air is extracted from each classroom through four intake grilles installed in the ceiling and two intake grilles installed on the wall.

Cooling performance		
Total cooling power	63.0 kW	
Cooling recovery power	3.69 kW	
Compressor power consumption	15.9 kW	
EER	3.96	
Supply temperature	14.4 °C	
Supply relative humidity	98 %	
External temperature	35 °C	
External relative humidity	50%	
Ambient temperature	27 °C	
Ambient relative humidity	47 %	
Heating performa	nce	
Total heating power	62.7 kW	
Heating recovery power	5.95 kW	
Compressor power consumption	12.8 LW	

Table 5.17: Classroom rooftop system characteristics

Total heating power	$62.7 \mathrm{~kW}$
Heating recovery power	$5.95 \mathrm{~kW}$
Compressor power consumption	12.8 kW
COP	4.89
Supply temperature	36.7 °C
Supply relative humidity	18 %
External temperature	7 °C
External relative humidity	87 %
Ambient temperature	20 °C
Ambient relative humidity	50 %

Supply air flow rate	$9000 \text{ m}^3/\text{h}$
Total power consumption (supply)	3.09 kW
Return air flow rate	$9000 \text{ m}^3/\text{h}$
Total power consumption (return)	1.31 kW

Ventilation performance

Electric resistance for supplementary heating

Rated power

 $18.0~\mathrm{kW}$

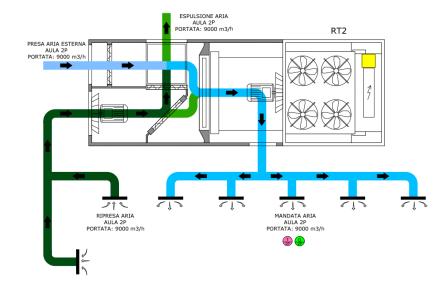


Figure 5.13: Functional diagram of the rooftop system of one class

Hallway and restrooms rooftop system

Table 5.17 illustrates the technical characteristics of the system installed for the hallway and the restrooms. Two linear vents, installed near the entrances, and two helical effect diffusers, installed on the ceiling of the hallway, supply air into the zone. The supply air enter the two restrooms through transit vents. Air is extracted from the zone through intake grilles, installed in the middle of the hallway ceiling and with a total flow rate of 1800 m³/h, and from twenty-four vents installed in the restrooms that extract the remaining flow rate of 3300 m³/h.

Table 5.18: Hallway and restroom rooftop system characteristics

$32.4 \mathrm{~kW}$			
$3.69 \mathrm{~kW}$			
10.8 kW			
2.16			
21 °C			

Cooling pe	eriormance
------------	------------

Supply relative humidity	50~%
External temperature	35 °C
External relative humidity	45%
Ambient temperature	26 °C
Ambient relative humidity	50 %

Heating performance

Total heating power	27.9 kW
Heating recovery power	11.1 kW
Compressor power consumption	2.7 kW
COP	6.19
Supply temperature	22 °C
Supply relative humidity	50 %
External temperature	7 °C
External relative humidity	87 %
Ambient temperature	20 °C
Ambient relative humidity	50 %

Ventilation performance

Supply air flow rate	$5100 \text{ m}^3/\text{h}$
Total power consumption (supply)	1.56 kW
Return air flow rate	$5100 \text{ m}^3/\text{h}$
Total power consumption (return)	1.62 kW

Electric resistance for supplementary heating

Rated power

 $18.0 \mathrm{kW}$

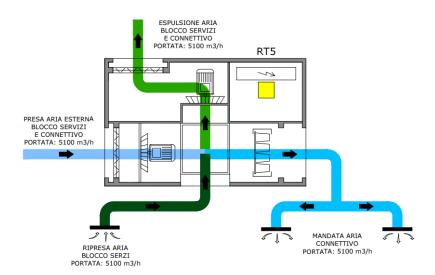


Figure 5.14: Functional diagram of the rooftop system of common spaces

5.2 Model

The building is modeled with two different energy modeling tools: *Edilclima EC700*, that uses a simplified dynamic calculation model, and *EnergyPlus/DesignBuilder*, that uses a detailed dynamic calculation model (Figure 5.15). *Edilclima EC700* allows to model the building graphically and is able to perform the calculation of the energetic performance in accordance with the technical specifications.

EnergyPlus/DesignBuilder are two different software tools with the same computing capabilities and the same calculation model. Indeed, *DesignBuilder* represents the graphical interface of *EnergyPlus*, allows to model the building easily with respect to *EnergyPlus*, which is a console-based program that reads input and writes output to text files, and is connected to *EnergyPlus* to perform the calculations.

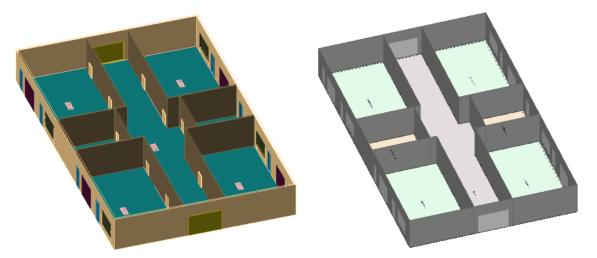


Figure 5.15: Edilclima EC700 model (left) and EnergyPlus/DesignBuilder model (right)

5.2.1 Boundary conditions

The model is set up in the two software tools with the same boundary conditions, i.e., the same climatic conditions and the same type of activity per thermal zone (Figure 5.16 and Figure 5.17). Climatic conditions data are taken from Table 5.2 and from the climatic data provided by *Comitato Termotecnico Italiano* (CTI) which gives the hourly data of a typical climatic year for all the Italian provinces [20]. These data are calculated according to the calculation model of the UNI EN ISO 15927-4:2005 [16]. The activity data are taken from Table 5.5.

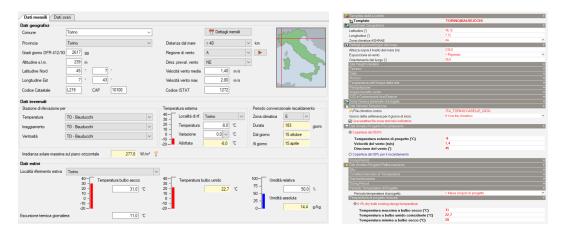


Figure 5.16: Climatic data setting in Edilclima EC700 (left) and EnergyPlus/DesignBuilder (right)

				🔒 Templates attività	¥
Altezza netta	5.10 🜩 m				Classroom
Superficie utile 220.0	•	= 220.02		Jettore 👘	C2 Residential Institutions - Universities and colleges
Superficie utile 220,0	2	= 220,02	m-	Moltiplicatore zona	1
Volume netto	1122,10 m ³			Includi zona nei calcoli termici	
				Includi zona nei calcoli di illuminazione naturale di Radiance	
Temperature interne		Apporti interni aggiuntivi		Superficie a Pavimento Totale Edificio	»
		the second se		Cocupatione Occupied?	÷
Potenza invernale θint.p.H	20.0 V °C				1.0400
Energia invernale θint.e.H	20.0 V °C	Energia invernale 0,0	w	Densità (persone/mq)	Uni ClassRm Occ
		-		Tasso metabolico	ongodaan migoco »
Energia estiva θint,e,C	26,0 v °C E	Energia estiva 0.0	W	Vestti	»
				Mean Radiant Temperature Calculation	»
Ventilazione				Air Velocity	»
				WSetpoint di concentrazione di contaminante generico (ppm)	»
Ventilazione	 Naturale Meccani 	ica 🔄 Ibrida		Vacanze ACS	*
Metodo di calcolo	Calcolo portate secondo U	NI 10339	~	Controllo Ambientale	
				Setpoint di Riscoldamento	*
Categoria edificio	Edifici adibiti ad attività sco	lastiche	\sim	Riscaldamento ("C)	20.0
C	A.L. 1. N.L.		~	Temp. di attenuazione in Riscaldamento ("C)	12,0
Sottocategoria	Aule universitarie		~	Setpoint di Raffrescamento	¥
Portata d'aria esterna Qop	7.0 10 ⁻³ m ³	/ s pers		Raffrescamento (*C)	27,0
				Temp. Di attenuazione in Raffrescamento (*C) Setpoint PMV di Comfort di Riscaldamento	30.0
Indice di affollamento ns	1.04 pers / m	12		Setpoint PMV di Comfort di Riscaldamento Setpoint PMV di Comfort di Raffrescamento	*
fvet	0.51			Controllo Umidità	
				Setpoint di Ventilazione	»
Portate di aria esterna di riferir	nento			Aria minima di rinnovo	»
				Setpoint CO2/Contaminente	»
Potenza invernale qve.0_p.H	5931,04 m³/h	5,29 Vol/h		Illuminazione	»
Energia invernale qve,0_e,H	5931.04 m ³ /h	5.29 Vol/h		Computers	÷.
				□ On Dispositivi d'Utticio	
Energia estiva qve,0_e,C	5931,04 m³/h	5,29 Vol/h		Con	\$
Calcolo orario				Norie	×
Calcolo orano				□ On	· · · · · · · · · · · · · · · · · · ·
Portata d'aria gve,0	5931,04 m³/h	5.29 Vol/h		Preparazione cibi	*
440,0	0001,04	0,25 00011		Macchinari aggiuntivi	

Figure 5.17: Activity data setting in Edilclima EC700 (left) and EnergyPlus/DesignBuilder (right)

5.2.2 Building envelope

The building envelope components of the two models are modeled to have the same thermo-physical characteristics. On one hand, in *Edilclima EC700* the materials are taken from the library, since they had the same thermo-physical characteristic described in the technical document of the building (Figure 5.18 (left)). On the other hand, in *EnergyPlus/DesignBuilder* the materials are created from scratch to set the same thermo-physical characteristics (Figure 5.18 (right)). The information on the thermo-physical data are taken from Subsection 5.1.3.

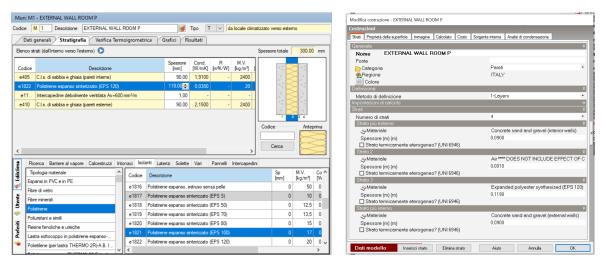


Figure 5.18: Example of stratigraphy settings in *Edilclima EC700* (left) and *EnergyPlus/DesignBuilder* (right)

5.2.3 Building systems

 $Edilclima \ EC700$ allows to model the technical building systems in a simplified way, while Energy-Plus/DesignBuilder allows a more detailed modeling. The following subsection explains how the technical building systems are modeled with the two software tools.

Edilclima EC700

The rooftop systems are created starting from the *General system* data-sheet. Since each classroom has its own rooftop system, the heating and cooling systems are set on *Stand-alone* and the ventilation is set on *Separate production with autonomous system* (Figure 5.19).

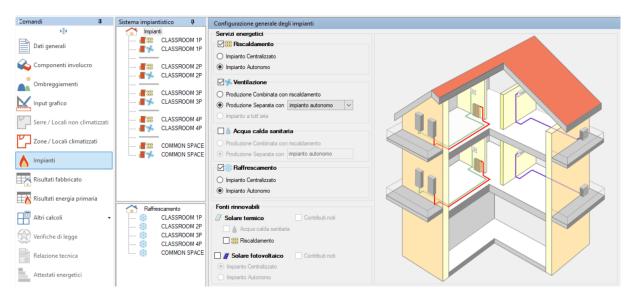


Figure 5.19: Plan tree of the ROOFTOP systems

In the *Heating system* - *Circuit* data-sheet one sets: air as a heat transfer fluid, *Vents in hot-air systems* in the emission subsystem, *Regulation by thermal zone* in the regulation subsystem and 100% efficiency in the distribution subsystem (Figure 5.20). In the *Heating system* - *Generation* data-sheet one sets the heat pump generator, and in *Heating system* - *Generator* one sets the heat pump data according to the heating performance data of Table 5.17 and Table 5.18 (Figure 5.21).

Sistema impiantistico 🛛 🖡	CLASSROOM 1P - Impianto Riscaldamento
Impianti	Circuiti Accumulo e distribuzione primaria Altri carichi Generazione
CLASSROOM 1P	4 4 1 di 1 Circuito Riscaldamento Aula 1P
CLASSROOM 2P	Dati generali Sottosistemi Temperatura media acqua
📲 🤧 CLASSROOM 2P	Emissione
CLASSROOM 3P	Attezza media locali 5,10 🔓 m
CLASSROOM 3P	Tipo di terminale di erogazione Bocchette in sistemi ad aria calda
	Rendimento di emissione nH.em 95.0 👔 %
CLASSROOM 4P	Potenza nominale corpi scaldanti 60658 🚭 60658 W
CLASSROOM 4P	Fabbisogni elettrici 💡 🛛 🛛 W 🗹 Unità con il ventilatore sempre in funzione
COMMON SPACE	Regolazione
E% COMMON SPACE	Tipo Solo per singolo ambiente 🗸 Caratteristiche P banda proporzionale 1 °C 🗸
	Rendim. di regolazione nH.rg 98.0 👔 %
	🗌 Correzione del rendimento di regolazione per sbilanciamenti dell'impianto 🦿
	Imetodo dettagilato Imetodo forfettario
	Scostamento di temperatura per regolazione imperfetta Δθ 0,0 °C
	Distribuzione utenza
	Metodo semplificato
	Tipo di impianto Autonomo, edificio condominiale
	Posizione impianto Impianto a piano intermedio
Raffrescamento	Posizione tubazioni Tubazioni correnti nel cantinato in vista
CLASSROOM 1P	Isolamento tubazioni Secondo DPR 412/93 Nr. piani 1 Fattore di correzione 1.00
CLASSROOM 3P	Rendimento di distribuzione nH,du 100.0 %
CLASSROOM 4P	O Metodo analítico
COMMON ST ACE	Rete di distribuzione (nessuno) Coefficiente di recupero 0,95
	Fabbisogni elettrici
	Potenza elettrica assorbita 0 v W sempre in funzione
	velocità variabile

Figure 5.20: Heating system - Circuit data-sheet settings

ema impiantistico 🛛 🖗	CLASSROOM 1P - Impianto Riscaldamento		CLASSROOM 1P - Impianto Riscaldamento e ventilazione					
Implanti	Circuiti Accumulo e distribuzione primaria Altri carichi Gene	razione	g Circuiti Accumulo e distribuzione primaria Altri carichi Generazione					
CLASSROOM 1P	Centrale termica Generatori Integrazione		Centrale termica Generatori Integrazione					
CLASSROOM 2P	III Pompa di calore	• • • •	Croub Accurate Baltications prints ARG access Deservations Control Prints Part Access Deservations (International Part Prints Control Prints Part Part Prints Part Part Part Part Part Part Part Part					
CLASSROOM 2P CLASSROOM 3P CLASSROOM 4P CLASSROOM 4P CL	Tipo & Grave Science Pretacori dolarate Cutamización Decarination de lacaciónem (Sobiel () Cutamización Decarination () Recarination () Presonanti dolarización () Terresonaria domázación () Presentaria domázación () Sopreto () Terresonaria domázación () Terreson () <td>Metodo di calcolo perconto UNU/TS 11300-4</td> <td colspan="5">Top de generatione Metodo de cadeolo Popular de generatione Presentaria de la pareça de cadore Popular de generatione Presentaria de la pareça de cadore Confliciente di prestazione (COP 4.00 Pare cadore (COP 4.00 Popular cadore (COP 4.00 Popular cadore (COP 4.00 Confliciente di prestazione (COP 4.00 Confliciente correttivi della pareça di cadore (P) Confliciente correttivi della pareça di cadore (P) Cadori correttivi della pareça di cadore (P) Confliciente correttivi della pareça di cadore (P) Cadori correttivi della pareça di cadore (P) Confliciente correttivi della pareça di cadore (P) Cadore correttivi della pareça di cadore (P) Confliciente correttivi della pareça di cadore (P)</td>	Metodo di calcolo perconto UNU/TS 11300-4	Top de generatione Metodo de cadeolo Popular de generatione Presentaria de la pareça de cadore Popular de generatione Presentaria de la pareça de cadore Confliciente di prestazione (COP 4.00 Pare cadore (COP 4.00 Popular cadore (COP 4.00 Popular cadore (COP 4.00 Confliciente di prestazione (COP 4.00 Confliciente correttivi della pareça di cadore (P) Confliciente correttivi della pareça di cadore (P) Cadori correttivi della pareça di cadore (P) Confliciente correttivi della pareça di cadore (P) Cadori correttivi della pareça di cadore (P) Confliciente correttivi della pareça di cadore (P) Cadore correttivi della pareça di cadore (P) Confliciente correttivi della pareça di cadore (P)					
	Vettore energetico Teo (*) Energia elettrica	Temperatura sorgente calda (iscaldamento) Richi 277.0 °C Fattori di convensione in energia primaria former inon rimonalej 1.550 (j)	CRH 00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.3 0.3 1.0 Ferry 0.75 0.77 0.80 0.82 0.85 0.80 0.30					
Raffreecamento CLASSROOM 1P CLASSROOM 2P CLASSROOM 3P CLASSROOM 3P CLASSROOM 4P COMMON SPACE	Poters calorifico Inferiors Ha 1,000 kWh/- Fattore di emissione CO2 0,4600 kgC02/kWh Integrazione Rendmento di generazione 100,0 % Vettore emissione	fo zem (innovable) 0,470 > fo lot 2,420						
	Generative almetato dala nete elettica Tex () Energia elettica Potres colorizationa 1.000 kVM/r/ Fattore di emissione 0002 0.4600 kg/002kVM/ Fattore di emissione 0002 Nettore di emissione 0002 kVM/r/ Franza elettica cualtri () 0	Fattori di conventione in energia primaria fi pren inon movelile 1.590 (i) fipen innovabile 0.470 fipitot 2.420						

Figure 5.21: Heating system - Generation - Generator data-sheet settings

In the Ventilation system data-sheet, one sets the Mechanical ventilation associated with the Heat recovery system according to the data provided in Table 5.17 and Table 5.18 (Figure 5.22). In the Ventilation system - Flow rate, one sets the system type on Return+Supply and the values of supply and return air flow rate according to Table 5.17 and Table 5.18 (Figure 5.23). In the Ventilation system - Pipes data-sheet, one sets the electric power of exhaust fan and supply fan with the values of Table 5.17 and Table 5.18 (Figure 5.24).

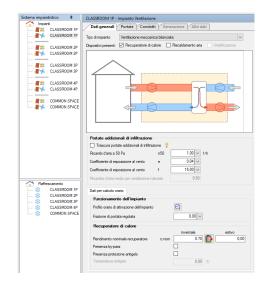


Figure 5.22: Ventilation system data-sheet settings

Dati generali Portate Condotti Generazione Altri dati							
Portate dei locali (🗹 rendi modificabili) 🜔							
				[) ati per calcolo orar	io	
Zona	Locale	Descrizione	Tipologia	qve,sup [m³/h]	qve,ext [m³/h]	qve,0 [m³/h]	
		CLASSROOM 1P	Estrazione + 🗸	9000,00	9000,00	5588,86	Q.

Figure 5.23: Ventilation system - Flow rate data-sheet settings

CLASSROOM 1P - Impianto Ventilazione	CLASSROOM 1P - Impianto Ventilazione
Dati generali Portate Condotti Generazione Altri dati	Dati generali Portate Condotti Generazione Altri dati
Portate condotti Portate di etrasone Portate di etrasone	Potale condotti Potale detazione 9000.00 m/h Potale detazione 9000.00 m/h Potale data idale immessa 9000.00 m/h
Tratto ETA Tratto SUP Tratto ODA Temperatura di estrazione da ambienti 0.0 🖪 °C Pot elettrica ventilatore 1310 🕅 W 💡	Tratto ETA Tratto SUP Tratto ODA Temperatura di minissione in amberit 20.0 °C Pot elettrica ventilatore 3090 m W
Perdite del condotto 🤗	Perdite del condotto 🦿
Primo tratto	Trasmitanza temica Ineica 0.000 W/mK Ambiente Esterno
Trasmitanza terrica lineica 0.000 W/mK Ambiente Estemo Lunghezza 0.00 m Fatore di correzione temperatura bir 0.00	Lunghezza 0.00 m Fattore di correzione temperatura bir 0.00
Secondo tratto Trasmittanza ternica Imécia 0.000 W/mK Ambiente Esterno	Secondo testo 0.000 W/mX Anbiente Esterno Traemitanza temica (meica) 0.000 W/mX Anbiente 0.00 0.00 Lunghezza 0.00 m Fatore di conscione temperatura for 0.00
Lunghezza 0,00 m Fattore di correzione temperatura btr 0,00	

Figure 5.24: Ventilation system - Pipes data-sheet settings, exhaust fan (left) and supply fan (right)

In the *Cooling system* - *Circuit* data-sheet, one sets the *Direct-expansion terminals* in the emission subsystem and the *Regulation by thermal zone* in the regulation subsystem (Figure 5.25). In the *Cooling system* - *Generation* data-sheet, one sets an electric heat pump generator and the heat pump performance data according to the cooling performances of Table 5.17 and Table 5.18 (Figure 5.26).

Sistema impiantistico 🛛 🖡	ASSROOM 1P - Impianto Raffrescamento							
mpianti	Circuito Accumulo e distribuzione primaria Generazione							
CLASSROOM IP	rcuito relativo a Zona 1 - CLASSROOM 1P							
CLASSROOM 2P	Attivazione / Sottosistemi							
CLASSROOM 2P								
- 🚛 CLASSROOM 3P	Tipo di terminale di erogazione Terminali ad espansione diretta, unità interne sistemi split, ecc	~						
— 📲 🤸 CLASSROOM 3P	Rendimento di emissione ne 97,0 👔 %							
CLASSROOM 4P	Fabbisogni elettrici 💡 0 W 🗹 Unità con il ventilatore sempre in funzione							
- E% CLASSROOM 4P	Regolazione							
COMMON SPACE	Tipo Controllo singolo ambiente v Caratteristiche Regolazione modulant	e (banda 1°C) 🗸 🗸						
COMMON SPACE	Rendimento di regolazione nyg 98,0 👔 %							
	Distribuzione							
	Rete di distribuzione - aria trattata							
	Metodo semplificato O Metodo analitico							
	Rete di distribuzione (nessuno)							
	Lunghezza totale rete di distribuzione 0,00 m Temperatura di mandata in condizioni di progetto 15,00 °C							
	Potenza fingorifera di Gen Feb Mar Apr Mag Gu Lug Ago Set Ott Nov Dic scambio della rete 0.0 <) W/m 🗈 🕄						
	Potenza elettrica assorbita 0 W Ventilatore sempre in funzione							
	Rete di distribuzione - acqua refrigerata							
Raffrescamento	O Metodo semplificato 🧣							
🛞 CLASSROOM 1P 🛞 CLASSROOM 2P	Numero di piani 1							
- 🋞 CLASSROOM 3P	Tipo di rete Rete ad anello nel plan terreno e montanti verticali							
🛞 CLASSROOM 4P	Rendimento di distribuzione ndW 97.5 %							
COMMON SPACE								
	Rete di distribuzione (nessuno)							
	Temperatura media dell'acqua 10.0 °C							
	Potenza elettrica assorbita 🛛 🛛 W 🔄 Pompa sempre in funzione 🔄 Velocità variabile							

Figure 5.25: Cooling system - Circuit data-sheet settings

CLASSROOM 1P - Impianto Raffrescamento		CLASSROOM IP - Impianto Raffrescamento Circuito / Accumulo e distribuzione primaria / Generazione							
Circuito Accumulo e distribuzione primaria Generazione									
Tipo di generatore Pompa di calore	Metodo di calcolo secondo UNI/TS 11300-3	Tipo di generatore Pompa di calore	Metodo di calcolo secondo UNI/TS 11300-3						
ati generali Prestazioni dichiarate		Dati generali Prestazioni dichiarate							
Caratteristiche		Prestazioni della pompa di calore							
Marca/Serie/Modello (*) CLIMA VENETA-WSM/HR/P/0182	🥑 (*) = Dati da archivio	Potenza frigorifera nominale (*) Øgn,nom 63.00 kV	w						
Tipo pompa di calore (*) Bettrica	~	Calcolo semplificato Prestazione EER (*) 3.96							
Modalità di funzionamento (") Unità con funzionamento on off	2	Fattori di carico Rk Fi 100 % 75 % 50 % 25 %	20% 15% 10% 5% 2% 1%						
	vrgente unità interna vrgente (1) Aria 🗸 🗸	Prestazione EER (*) 3.96 0.00 0.00 0.00	0 0.00 0.00 0.00 0.00 0						
	emperatura bulbo umido aria 16.0 📊 °C	Dati unità esterna	Dati unità interna						
Valori mensili 🗌 📆		Percentuale portata nei canali 100.0 % 💡	Velocità ventilatore unità interna Alta						
		Setti insonorizzati	Percentuale portata nei canali 100.0 % 🦿						
Vettore energetico	Fattori di conversione in energia primaria	Lunghezza tubazione di mandata 10.00 m 🔮	Lunghezza tubazione di aspirazione 7,50 m 🦿						
Tipo (*) Energia elettrica	fp.nren (non rinnovabile) 1,950 (i)								
Potere calorifico inferiore Hi 1.000 kWh/-	fp.ren (rinnovabile) 0,470 🜔	Condizioni nominali 🤗							
Fattore di emissione CO2 0,4600 kgCO2/kWh	fp.tot 2.420	Coefficiente di prestazione EER 3.96	Temperatura sorgente unità estema 35 🗸 'C						
Fabbisogni elettrici 🤗		Potenza utile Pu 63.00 👔 kW	Temperatura sorgente unità interna 14 V °C						
Potenza elettrica ausiliari (*) 0 W									

Figure 5.26: Cooling system - Generation - Generator data-sheet settings

EnergyPlus/DesignBuilder

The rooftop systems are created using the *Detailed HVAC* setting of *EnergyPlus/DesignBuilder*, allowing to model the HVAC system in a more precise and detailed manner. Figure 5.27 shows the functional scheme of the rooftop systems in the case study. Figure 5.28 and Figure 5.29 show more in detail the two types of rooftop systems installed in the building, the first one for the classrooms and the second one for the hallway and the restrooms.

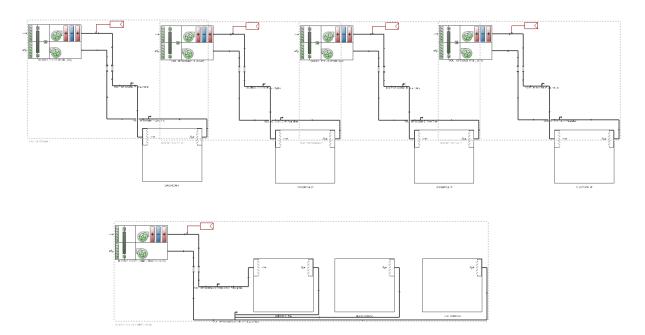


Figure 5.27: Functional scheme of the rooftop systems

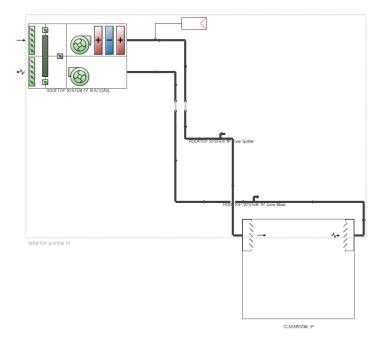


Figure 5.28: Functional scheme of classroom rooftop system

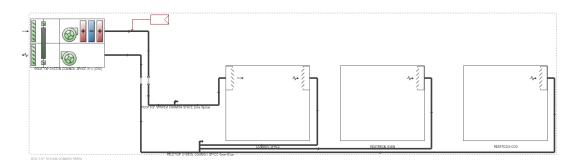


Figure 5.29: Functional scheme of hallway and restrooms rooftop system

To correctly model the rooftop systems, in each thermal zone is added an air distribution terminal and an extraction terminal. The terminals are connected to their respective rooftop air circuits (Figure 5.30 (left)). In the properties of the HVAC of each zone, the supply air temperature and relative humidity in both heating and cooling periods are set according to the information of Tables 5.17 and 5.18 (Figure 5.30 (right)).

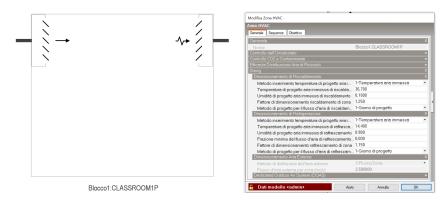


Figure 5.30: HVAC thermal zone graphical representation (left) and settings (right)

The rooftop is modeled starting with a *generic air loop* element comprising a supply and return fan (for air conditioning supply and extraction) and an air-to-air heat exchanger. Then, a direct expansion heating coil, a direct expansion cooling coil, and an electric heating coil for post-heating or heat supplement during winter are added to the *generic air loop* element. The recirculation option is deactivated for the rooftop system of the common space, since the extracted air also arrives from the restrooms (Figure 5.31). The properties of each component, the external air temperature and the relative humidity are set according to the information of Tables 5.17 and 5.18.

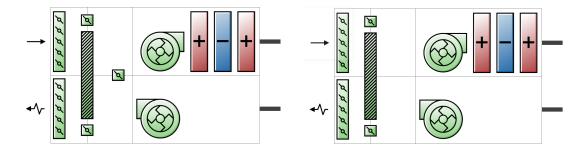


Figure 5.31: Classroom rooftop system diagram (left) and hallway and restrooms rooftop system diagram (right)

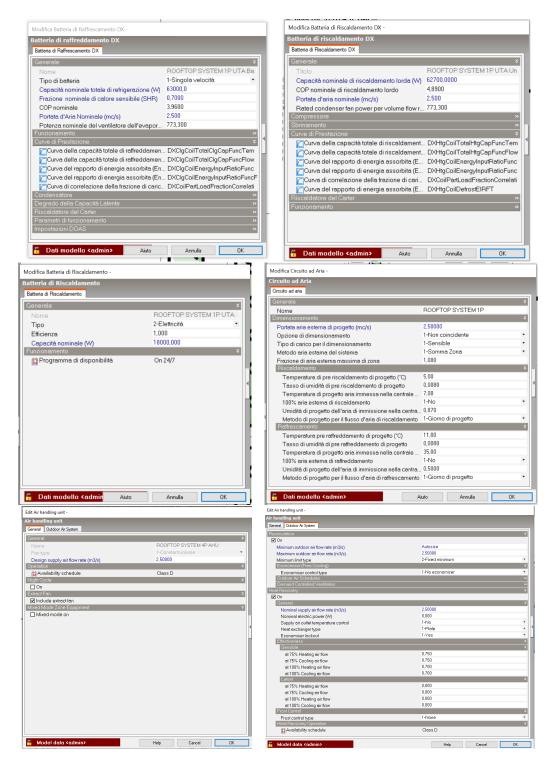


Figure 5.32: rooftop components settings

5.3 Simulation of BACS efficiency class

Given the technical building system present in the building and the functions that can be simulated with the two software tools (Chapter 4), the following BACS functions are implemented in the models:

- Emission control (heating control) (function 1.1 of EN ISO 52120 [19]),
- Intermittent control of emission and/or distribution (heating control) (function 1.5 of EN ISO 52120 [19]),
- Emission control (cooling control) (function 3.1 of EN ISO 52120 [19]),
- Intermittent control of emission and/or distribution (cooling control) (function 3.5 of EN ISO 52120 [19]),
- Supply air flow control at the room level (function 4.1 of EN ISO 52120 [19]),
- Room air temperature control by ventilation system (function 4.2 of EN ISO 52120 [19]),
- Outdoor air (OA) flow control (function 4.4 of EN ISO 52120 [19]),
- Blind control (function 6.1 of EN ISO 52120 [19]).

Table 5.19 summarizes the maximum level of each BACS functions considered for the case study achievable with *Edilclima EC700* and *EnergyPlus/DesignBuilder* (see Chapter 4).

	BACS function	BACS function level achievable				
_		EC700	Energy Plus/Design Builder			
1.1	Emission control (heating control)	4	4			
1.5	Intermittent control of emission and/or distribution (heating control)	1	3			
3.1	Emission control (cooling control)	4	4			
3.5	Intermittent control of emission and/or distribution (cooling control)	1	3			
4.1	Supply air flow control at the room level	1	3			
4.1	Room air temperature control by ventilation system	2	2			
4.4	Outdoor air (OA) flow control	-	3			
6.1	Blind control	2	3			

Table 5.19: Selected BACS function level achievable in the two models

Tables 5.20 and 5.21 show which BACS efficiency classes can be obtained by the considered functions with the two software tools according to Table 5.19 and Table 6 of the standard EN ISO 52120 [19].

Edilclima C700

Table 5.20 shows that the maximum BACS efficiency class achievable with $Edilclima \ EC700$ is class C "standard" level.

		Function level	D	C	В	Α
	0	No automatic control of the room temperature	X			
	1	Central automatic control: there is only central automatic control acting either on the distribution or on the generation. Function is to be integrated in a system.	Х			
	2		X	X		
1.1	3	Individual modulating room control with communication: between con- trollers and BACS (e.g. scheduler, room temperature set-point)	Х	x	X	X*
	0 No automatic control of the room temperature Central automatic control: there is only central automatic control acting 1 either on the distribution or on the generation. Function is to be integrated 2 Individual modulating room control with communication: between controllers and BACS (e.g. scheduler, room temperature set-point) 1 Individual modulating room control with communication and occupancy detection: between controllers and BACS; demand control/occupancy detection 4 tection: between controllers and BACS; demand control/occupancy detection 0 No automatic control 1 Automatic control of the room temperature Central automatic control: there is only central automatic control acting 1 either on the distribution or on the generation. Function is to be integrated 1 asystem. 2 Individual modulating room control with communication: between controllers and BACS (e.g. scheduler, room temperature set-point) 1 Individual modulating room control with communication: between controllers and BACS (e.g. scheduler, room temperature set-point) 2 Individual modulating room control with communication: between controllers and BACS (e.g. scheduler, room temperature set-point) 3 Individual modulating room control with communication: and occupancy detection 4<	Х	x	X	X	
1 5	0	No automatic control	X			
1.5	1	Automatic control with fixed time program: to lower the operation time	Х	Х		
	0	No automatic control of the room temperature	Х			
	1	either on the distribution or on the generation. Function is to be integrated	Х			
0.1	$\begin{array}{c} & & & & \\ & & &$	Individual room control: by thermostatic valves or electronic controller	Х	Х		
3.1	3	_	Х	х	Х	X*
	4	tection: between controllers and BACS; demand control/occupancy detec-	Х	X	X	Х
0.5	0	No automatic control	X			
3.5	1	Automatic control with fixed time program: to lower the operation time	Х	X		
4.1	0	switch)	Х			
	1	Time control: the system runs according to a given time schedule	c control acting so be integratedXXc controllerXXbetween con- int)XXl occupancy de- ccupancy detec-XXXXXeration timeXXxXXc control acting so be integratedXXc controllerXXbetween con- int)XXc controllerXXbetween con- int)XXc controllerXXbetween con- int)XXc controllerXXbetween con- int)XXd occupancy de- scupancy detec-XXx1anual controlledXXperature at the 	X		
	0		х			
4.2	1	room level can be varied continuously; room temperature set-point are set individually	Х	х		
	2	flow rate as well as supply air temperature at the room level are controlled	Х	x	x	Х
	0		Х			
6.1	1	ual (motor supported) shadowing, energy saving depends only on the user behaviour	Х			
	2	Motorized operation with automatic control: automatic controlled dimming to reduce cooling energy	Х	Х		

Table 5.20: Evaluation of BACS class with *Edilclima EC700* software

EnergyPlus/DesignBuilder

Table 5.20 shows that the maximum BACS efficiency class achievable with EnergyPlus/DesignBuilder is class A "high-energy performance" level.

		Function level	D	\mathbf{C}	в	Α
	0	No automatic control of the room temperature	X			
		=				
	1		X			
	2	·	X	Х		
1.1	_					
	3	-	X	X	Х	Х*
	4		X	Х	Х	Х
	0 No automatic control of the room temperature Central automatic control: there is only central aut 1 either on the distribution or on the generation. Funct in a system. 2 2 Individual room control: by thermostatic valves or ele 3 Individual modulating room control with communicat 4 tection: between controllers and BACS; demand contion 4 tection: between controllers and BACS; demand contion 1 Automatic control 1 Automatic control 1 Automatic control with fixed time program: to lower 2 Automatic control with demand evaluation 0 No automatic control of the room temperature Central automatic control: there is only central aut 1 either on the distribution or on the generation. Funct 1 ndividual modulating room control with communicat 1 either on the distribution or on the generatic. Funct 1 Individual modulating room control with communicat 1 either on the distribution or on the generatic. Funct 1 Individual modulating room control with communicat 1 tection: between con					
	0	No automatic control	XXnatic control acting is to be integratedXronic controllerXXion: between con- t-point)XXand occupancy de- d/occupancy detec-XXion: between con- t-point)XXand occupancy detec-XXion: between con- t and occupancy detec-XXion: between con- is to be integratedXXion: between con- t-point)XXion: between con- t-point)XXion: between con- t-point)XXion: between con- t-point)XXion: between con- t-point)XXion: between con- t-point)XXmanual occupancy detec-XXXXXmanual controlled and occupancyXXion the occupancy and in the occupancyXXion the occupancy and occupancyXXion the occupancy and in the occupancyXXion the occupancy a			
1.5	1	Automatic control with fixed time program: to lower the operation time	Х	Х		
1.0	2	Automatic control with optimum start/stop: to lower the operation time	Х	Х	Х	
	3	Automatic control with demand evaluation	m temperatureXre is only central automatic control acting the generation. Function is to be integratedXcmostatic valves or electronic controllerXontrol with communication: between con- er, room temperature set-point)Xtrol with communication and occupancy de- el BACS; demand control/occupancy detec- it backs and control/occupancy detectionXm temperatureXm temperatureXm temperatureXm temperatureXevaluationXm temperatureXre is only central automatic control acting the generation. Function is to be integrated trol with communication: between con- er, room temperature set-point)Xrenostatic valves or electronic controller trol with communication and occupancy de- et BACS; demand control/occupancy detec- trol with communication and occupancy de- dt BACS; demand control/occupancy detec- trol with communication and occupancy de- dt BACS; demand control/occupancy detec-Xm temporam: to lower the operation time trol with communication and occupancy de- dt BACS; demand control/occupancy detec-Xm tuns constantly (e.g. manual controlled to lower the operation time system runs dependent on the occupancy sensors etc.)Xm runs dependent on the occupancy sensors etc.)Xm runs dependent on the air quality demand tc.)Xflow rate or supply air temperature at the uously; room temperature set-point are set individuallyXflow rate or supply air temperature at the uously; room temperature set-point are set individuallyX	Х	Х	Х
	0	No automatic control of the room temperature	X			
	1		X			
	2		X	Х		
3.1		-				
	3		X	Λ	Х	Х*
		Individual modulating room control with communication and occupancy de-				
	4	tection: between controllers and BACS; demand control/occupancy detec-	X	Х	Х	Х
		tion				
	0	No automatic control	X			
25	1	Automatic control with fixed time program: to lower the operation time	Х	Х		
0.0	2	No automatic control of the room temperature Central automatic control: there is only central automatic control acting either on the distribution or on the generation. Function is to be integrated in a system. Individual room control: by thermostatic valves or electronic controller Individual modulating room control with communication: between con- trollers and BACS (e.g. scheduler, room temperature set-point) Individual modulating room control with communication and occupancy de- tection: between controllers and BACS; demand control/occupancy detec- tion No automatic control Automatic control with fixed time program: to lower the operation time Automatic control of the room temperature Central automatic control: there is only central automatic control acting either on the distribution or on the generation. Function is to be integrated in a system. Individual room control: by thermostatic valves or electronic controller Individual modulating room control with communication: between con- trollers and BACS (e.g. scheduler, room temperature set-point) Individual modulating room control with communication and occupancy de- tection: between controllers and BACS; demand control/occupancy detec- tion No automatic control No automatic control with fixed time program: to lower the operation time Automatic control with demand evaluation No automatic control with demand evaluation No automatic control is the system runs constantly (e.	Х	Х	Х	
	3	Automatic control with demand evaluation	Х	Х	Х	Х
		No automatic control: the system runs constantly (e.g. manual controlled				
	$3.5 \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$	switch)				
	1	Time control: the system runs according to a given time schedule	Х	Х	Х	
4.1	2		x	x	Х	
	3		X	Х	х	Х
3 Individual modulating room control with communication: betwee trollers and BACS (e.g. scheduler, room temperature set-point) 4 Individual modulating room control with communication and occupate tection: between controllers and BACS; demand control/occupancy tion 3.5 0 No automatic control 1 Automatic control 2 Automatic control with fixed time program: to lower the operation 3 Automatic control with optimum start/stop: to lower the operation 3 Automatic control: the system runs constantly (e.g. manual conswitch) 1 Time control: the system runs according to a given time schedule 4.1 2 Occupancy based control: the system runs dependent on the occupate (presence, light switch, infrared sensors etc.) 3 Demand based control: the system runs dependent on the air quality (measurement of CO2, VOC, etc.)	(measurement of CO2, VOC, etc.)					
			x			
	0					
4.2	1	room level can be varied continuously; room temperature set-point are set	X	Х		
1.4						
	2		X	X	Х	Х
		dependent on heating/cooling load				

Table 5.21: Evaluation of BACS class with EnergyPlus/DesignBuilder software

	0	Fixed OA ratio or OA flow: the system runs according to a given OA ratio, e.g. modified manually	х	х		
	1	Staged (low/high) OA ratio or OA flow: depending on a given time schedule	Х	Х	Х	
4.4	2	Staged (low/high) OA ratio or OA flow: depending on the occupancy, e.g. light switch, infrared sensors, etc.	х	х	Х	
	3	Variable control: the system is controlled by sensors which detect the number of people or indoor air parameters or adapted criteria (e.g. CO2, mixed gas or VOC sensors). The used parameters shall be adapted to the kind of activity in the space	х	х	х	х
	0	Manual operation: mostly used only for manual shadowing, energy saving depends only on the user behaviour	x			
6.1	1	Motorized operation with manual control: mostly used only for easiest man- ual (motor supported) shadowing, energy saving depends only on the user behaviour	Х			
	2	Motorized operation with automatic control: automatic controlled dimming to reduce cooling energy	х	х		
	3	Combined light/blind/HVAC control: to optimize energy use for HVAC, blind and lighting for occupied and non-occupied rooms	х	х	х	Х

The following subsections illustrate the results of simulating the presence of BACS functions within the models described in Section 5.2 and according to the procedures described in Chapter 4.

5.3.1 Edilclima EC700 simulation results

The results of the simulations are obtained from the hourly dynamic calculation of the energy performance of the building, as required by standard EN ISO 52016 [18]. *Edilclima EC700* does not perform the hourly dynamic calculation by default, so one needs to set the hourly dynamic calculation mode in the *General data - Project data* data-sheet. This software considers year 2022 as reference period for the hourly dynamic calculations.

Figure 5.33 shows the hourly external temperature of the site used for the simulations made with *Edilclima EC700*.

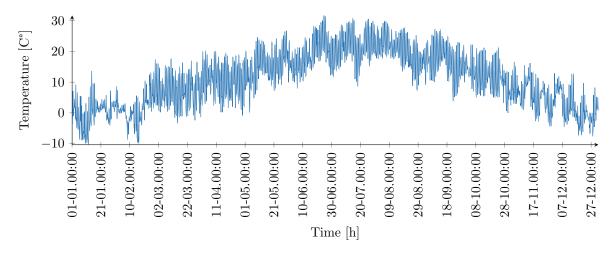


Figure 5.33: Hourly external temperature of the site with Edilclima EC700

The results of the simulations show that the values of the internal gains due to occupancy, appliances and lighting are the same for all BACS efficiency classes simulated (Table 5.22 and Figure 5.34). *Edilclima* EC700 provides as results the total daily internal gains, which is the sum of the occupancy, appliances and lighting internal gains.



Table 5.22: Daily values of total internal gains with Edilclima EC700

Figure 5.34: Total daily internal gains results with Edilclima EC700

BACS efficiency class D

Figure 5.35 shows the hourly values of mean air temperature and set-point temperatures of the whole building in the reference year, obtained from the simulation of class D.

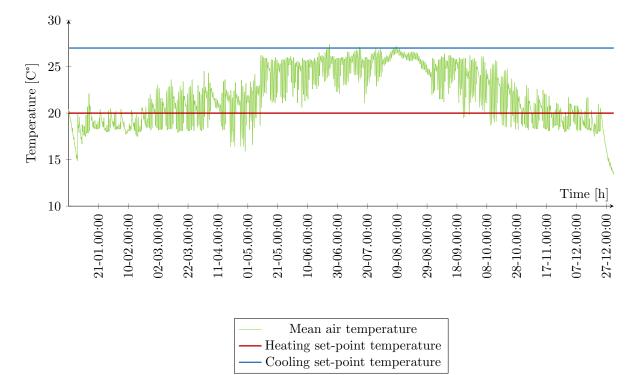


Figure 5.35: Hourly mean air temperature and set-point temperatures of class D with Edilclima EC700

Taking into account the presence of blind control function, the solar gains change according to the level of BACS function implemented. For class D, blinds are manually controlled by the users. Figure 5.36 shows the daily values of the solar gains in the building.

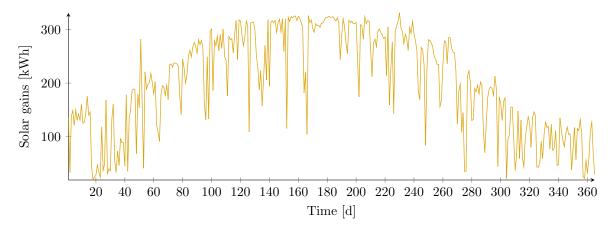


Figure 5.36: Daily solar gains of class D with Edilclima EC700

Tables 5.23, 5.24 and 5.25 show the results obtained from the simulation of class D of sensible energy needs for heating, sensible energy needs for cooling and fan electric energy respectively. Figures 5.37 and 5.38 illustrate graphically the monthly values summarized in Tables 5.23, 5.24 and 5.25.

SENSIBLE ENERGY NEEDS FOR HEATING [kWh]										
Month	1P	2P	3P	4P	Common space	TOTAL				
JAN	3335	4638	3377	4693	2811	18854				
FEB	3222	4145	3294	4204	1915	16780				
MAR	902	1752	957	1792	1	5404				
APR	6	272	51	284	0	613				
MAY	0	0	0	0	0	0				
JUN	0	0	0	0	0	0				
JUL	0	0	0	0	0	0				
AUG	0	0	0	0	0	0				
SEP	0	0	0	0	0	0				
OCT	0	101	0	137	0	238				
NOV	1607	2484	1673	2536	229	8529				
DEC	1997	2788	2069	2861	932	10647				

Table 5.23: Monthly sensible energy needs for heating of class D with Edilclima EC700

SENSIBLE ENERGY NEEDS FOR HEATING [kWb]

Table 5.24: Monthly sensible energy needs for cooling of class D with Edilclima EC700

SENSIBLE ENERGY NEEDS FOR COOLING [KWII]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	0	0	0	0	0	0	
FEB	0	0	0	0	0	0	
MAR	0	0	0	0	0	0	
APR	958	0	0	0	9	967	
MAY	1511	911	1420	882	3043	7767	
JUN	3269	2807	3238	2774	5155	17243	
JUL	4830	4264	4791	4218	6775	24878	
AUG	0	0	0	0	0	0	
SEP	2858	1461	2747	1380	3898	12344	
OCT	296	29	271	24	673	1293	
NOV	0	0	0	0	0	0	
DEC	0	0	0	0	0	0	

SENSIBLE ENERGY NEEDS FOR COOLING [kWh]

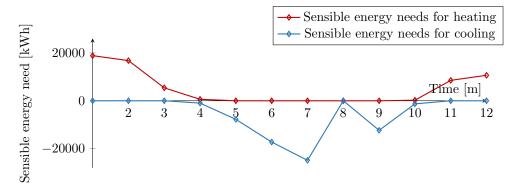


Figure 5.37: Monthly sensible energy needs for heating and cooling of class D with Edilclima EC700

FAN ELECTRIC ENERGY[kWh]								
Month	1P	2P	3P	4P	Common space	TOTAL		
JAN	4344	4344	4344	4344	3140	20516		
FEB	5111	5111	5111	5111	3694	24138		
MAR	5878	5878	5878	5878	4248	27760		
APR	3578	3578	3578	3578	2586	16898		
MAY	5622	5622	5622	5622	4063	26551		
JUN	5367	5367	5367	5367	3879	25347		
JUL	5367	5367	5367	5367	3879	25347		
AUG	0	0	0	0	0	0		
SEP	5622	5622	5622	5622	4063	26551		
OCT	5367	5367	5367	5367	3879	25347		
NOV	5367	5367	5367	5367	3694	25162		
DEC	3833	3833	3833	3833	2770	18102		

Table 5.25: Monthly fan electric energy of class D with $Edilclima\ EC700$

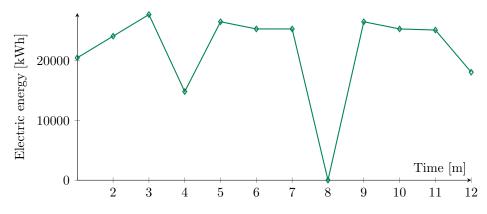


Figure 5.38: Monthly fan electric energy of class D with Edilclima EC700

BACS efficiency class C

In the case of BACS efficiency class C, the simulation is made twice; first with the mechanical ventilation system, and then with hybrid ventilation (meaning that, when the mechanical ventilation system is off, outside air enters the thermal zones through shutters to guarantee the minimum air changes per hour required).

Despite the difference between the two ventilation systems, the two simulations give some common results. Indeed, the simulation of class C with mechanical ventilation and with hybrid ventilation provide the same results for solar gains and fan electric energy. The values of the solar gains are the same in the two ventilation modes because the blind control is the set-up in the same way in the two simulations. For class C, blinds are automatically controlled in order to reduce cooling loads required by the building (Figure 5.39).

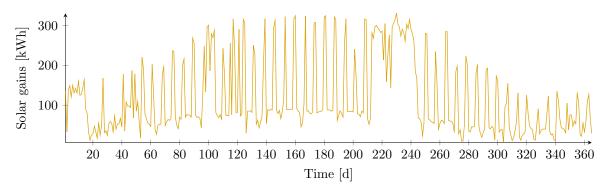


Figure 5.39: Daily solar gains of class C with Edilclima EC700

The values of fan electric energy are the same because in both simulations of class C, the mechanical ventilation systems work for the same period. Indeed, both ventilation modes have mechanical ventilation systems that operate according to the same hourly profile. Table 5.26 and Figure 5.40 show the monthly results obtained for the fan electric energy.

Table 5.26:	Monthly	fan	electric energy	[,] of	class	С	with	Edilclima	EC700

Month	1P	2P	3P	4P	Common space	TOTAL			
JAN	3439	3439	3439	3439	2486	16242			
FEB	4046	4046	4046	4046	2924	19108			
MAR	4653	4653	4653	4653	3363	21975			
APR	2832	2832	2832	2832	2047	13375			
MAY	4451	4451	4451	4451	3217	21021			
JUN	4249	4249	4249	4249	3071	20067			
JUL	4249	4249	4249	4249	3071	20067			
AUG	0	0	0	0	0	0			
SEP	4451	4451	4451	4451	3217	21021			
OCT	4249	4249	4249	4249	3071	20067			
NOV	4249	4249	4249	4249	2924	19920			
DEC	3035	3035	3035	3035	2193	14333			

FAN ELECTRIC ENERGY [kWh]

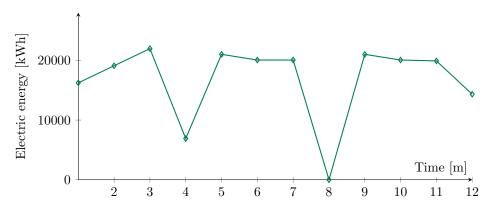


Figure 5.40: Monthly fan electric energy of class C with $Edilclima\ EC700$

The following subsections illustrate the different results of the two simulations of class C.

Mechanical ventilation

Figure 5.41 shows the hourly values of mean air temperature and set-point temperatures of the whole building in the reference year, obtained from the simulation of class C with mechanical ventilation systems.

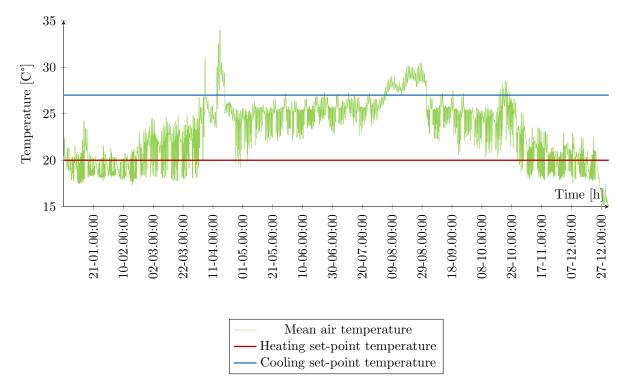


Figure 5.41: Hourly mean air temperature and set-point temperatures of class C with mechanical ventilation systems with $Edilclima\ EC700$

Tables 5.27 and 5.28 show the results obtained from the simulation of class C with mechanical ventilation systems of sensible energy needs for heating and sensible energy needs for cooling respectively. Figures 5.42 illustrates graphically the monthly values summarized in Tables 5.27 and 5.28.

SENSIBLE ENERGY NEEDS FOR HEATING [kWh]								
Month	1P	2P	3P	4P	Common space	TOTAL		
JAN	2215	3496	2257	3547	1952	13467		
FEB	2101	2937	2163	2991	1210	11402		
MAR	120	684	146	716	0	1666		
APR	0	77	0	84	0	161		
MAY	0	0	0	0	0	0		
JUN	0	0	0	0	0	0		
JUL	0	0	0	0	0	0		
AUG	0	0	0	0	0	0		
SEP	0	0	0	0	0	0		
OCT	0	10	0	18	0	28		
NOV	602	1371	647	1424	10	4054		
DEC	1156	1926	1224	1995	408	6709		

Table 5.27: Monthly sensible energy needs for heating of class C with mechanical ventilation systems with Edilclima EC700

Table 5.28: Monthly sensible energy needs for cooling of class C with mechanical ventilation systems with Edilclima EC700

Month	1P	2P	3P	4P	Common space	TOTAL
JAN	0	0	0	0	0	0
FEB	0	0	0	0	0	0
MAR	0	0	0	0	0	0
APR	1039	0	57	0	256	1352
MAY	2175	1543	2100	1510	3846	11174
JUN	3794	3387	3764	3354	5727	20026
JUL	5277	4775	5238	4728	7281	27299
AUG	0	0	0	0	0	0
SEP	3390	1991	3278	1905	4491	15055
OCT	558	173	528	152	970	2381
NOV	0	0	0	0	0	0
DEC	0	0	0	0	0	0

SENSIBLE ENERGY NEEDS FOR COOLING [kWh]

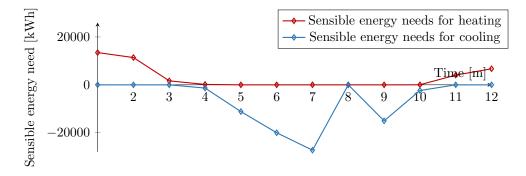


Figure 5.42: Monthly sensible energy needs for heating and cooling of class C with mechanical ventilation systems obtained with $Edilclima \ EC700$

Hybrid ventilation

Figure 5.43 shows the hourly values of mean air temperature and set-point temperatures of the whole building in the reference year, obtained from the simulation of class C with hybrid ventilation systems.

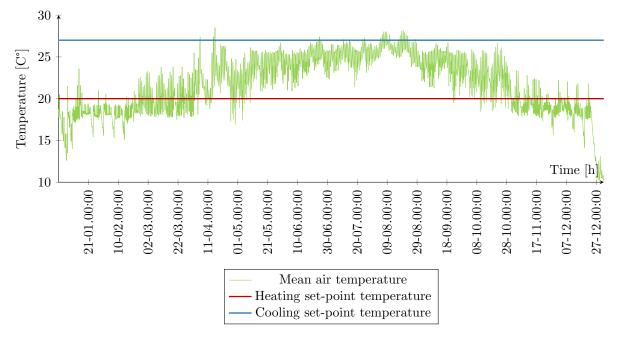


Figure 5.43: Hourly mean air temperature and set-point temperatures of class C with hybrid ventilation systems with Edilclima EC700

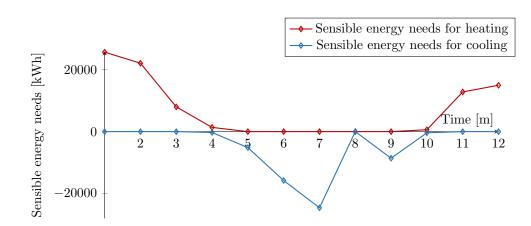

Tables 5.29 and 5.30 show the results obtained from the simulation of class C with hybrid ventilation systems of sensible energy needs for heating and sensible energy needs for cooling respectively. Figure 5.42 illustrates graphically the monthly values summarized in Tables 5.29 and 5.30.

Table 5.29: Monthly sensible energy needs for heating of class C with hybrid ventilation systems with Edilclima EC700

SENSIBLE ENERGY NEEDS FOR HEATING [kWh]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	4204	5472	4246	5522	6248	25692	
FEB	3735	4648	3805	4706	5230	22124	
MAR	1162	1932	1213	1967	1728	8002	
APR	36	394	195	403	345	1373	
MAY	0	0	0	0	0	0	
JUN	0	0	0	0	0	0	
JUL	0	0	0	0	0	0	
AUG	0	0	0	0	0	0	
SEP	0	0	0	0	0	0	
OCT	37	225	49	269	37	617	
NOV	2082	2895	2138	2941	2777	12833	
DEC	2443	3239	2514	3310	3489	14995	

SENSIBLE ENERGY NEEDS FOR COULING [kwn]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	0	0	0	0	0	0	
FEB	0	0	0	0	0	0	
MAR	0	0	0	0	0	0	
APR	274	0	0	0	0	274	
MAY	1276	803	1208	777	1098	5162	
JUN	3175	2781	3145	2750	3944	15795	
JUL	4874	4379	4835	4334	6196	24618	
AUG	0	0	0	0	0	0	
SEP	2283	1162	2190	1104	1848	8587	
OCT	193	5	171	2	4	375	
NOV	0	0	0	0	0	0	
DEC	0	0	0	0	0	0	

Table 5.30: Monthly sensible energy needs for cooling of class C with hybrid ventilation systems with $Edilclima\ EC700$

SENSIBLE ENERGY NEEDS FOR COOLING [kWh]

Figure 5.44: Monthly sensible energy needs for heating and cooling of class C with hybrid ventilation systems with $Edilclima\ EC700$

5.3.2 Comparison of the results of *Edilclima EC700* simulations

Heating

Table 5.31 and Figure 5.45 show the results of sensible energy needs for heating with *Edilclima EC700*. On one hand, it is possible to see that in the case of class C with mechanical ventilation systems, the sensible energy needs for heating required by the building decrease with respect to the values obtained in class D. On the other hand, in the case of class C with hybrid ventilation systems, the sensible energy needs for heating are higher than the results obtained in class D. This is due to the introduction of cold outside air into the thermal zones through the ventilation dampers that are opened when the mechanical ventilation system is turned off. This behavior causes an increment in the sensible energy needs required for heating.

In the end, it is possible to conclude that in the heating season the hybrid ventilation, as implemented by $Edilclima \ EC700$, does not provide any benefit in the heating sensible energy needs reduction, but it causes an increase of the energy needs required to heat the thermal zones, since the hybrid ventilation is modeled in order to introduce outside air in the environment when the mechanical ventilation systems is turned off.

Table 5.31: BACS efficiency class comparison of monthly sensible energy needs for heating with $Edilclima\ EC700$

			L 1
Month	Class D	Class C (mechanical)	Class C (hybrid)
JAN	18854	13467	25692
FEB	16780	11402	22124
MAR	5404	1666	8002
APR	613	161	1373
MAY	0	0	0
JUN	0	0	0
JUL	0	0	0
AUG	0	0	0
SEP	0	0	0
OCT	238	28	617
NOV	8529	4054	12833
DEC	10647	6709	14995
TOTAL	61065	37487	85636
20000	a l		Class D Class C (mechanical) Class C (hybrid)

SENSIBLE ENERGY NEEDS FOR HEATING [kWh]

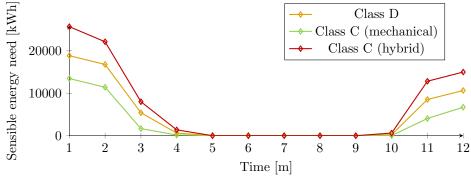


Figure 5.45: BACS efficiency class comparison of monthly sensible energy needs for heating with Edilclima EC700

The results obtained from the simulations of class D and class C with mechanical ventilation systems are compared with the one obtained from the application of the factor-based method of EN ISO 52120 [19]. The results obtained from class C are taken as reference values as required by the standard.

In Table 5.32 it is possible to observe that for the case study, the application of BACS systems produces a higher reduction of the sensible energy needs for heating with respect to the results obtained with the factor-based method of the standard. Table 5.55 reports the values of:

- the heating BACS efficiency factor $(f_{BAC,H})$,
- the total heating sensible energy needs of the considered BACS efficiency class with the factor-based method $(Q_{H,tot,BAC})$,
- the factor to be used to obtain the results of the simulations $(f_{EC,H})$
- the total heating sensible energy needs with *Edilclima EC700* $(Q_{H,tot,EC})$.

Table 5.32: Comparison of heating sensible energy needs results obtained with the factor-based method [19] and the heating sensible energy needs results with *Edilclima EC700*

	Class D	Class C					
FACTOR-BASED METHOD							
$f_{BAC,H}$ [-]	1,20	1					
$Q_{H,tot,BAC}$ [kWh]	44984	37487					
SIMULATI	SIMULATION RESULTS						
$f_{EC,H}$ [-]	1,63	1					
$Q_{H,tot,EC}$ [kWh]	61065	37487					

Cooling

Table 5.33 and Figure 5.46 show the results of the sensible energy needs for cooling obtained with *Edilclima* EC700. On one hand, it is possible to see that in the case of class C with the mechanical ventilation systems, the cooling sensible energy needs required by the building increase with respect to the values obtained in class D. Indeed, the mechanical ventilation, as implemented by *Edilclima* EC700, does not take advantages from the introduction of outside air when the systems are turned off. Therefore, when the rooftop systems are turned on, the energy required to reach the comfort temperature is higher. This not happen with class D since the EN ISO 52120 says the systems should run twenty-four hours a day.

On the other hand, in the case of class C with hybrid ventilation system, the sensible energy needs for cooling are lower than the results obtained in class D. This is due to the introduction of outside air into the thermal zones when the mechanical ventilation systems are turned off, i.e. during the night. Since during night hours the external air temperature is usually lower than the ambient temperature, the introduction of external air allows to reduce the cooling sensible energy needs required when the rooftop systems are turned on.

In the end, it is possible to conclude that the hybrid ventilation, as implemented by *Edilclima EC700* in the cooling season provides a benefit in the reduction of the sensible energy needs for cooling.

Table 5.33: BACS efficiency class comparison of monthly sense	ible energy needs for cooling with <i>Edilclima</i>
EC700	

Month	Class D	Class C (mechanical)	Class C (hybrid)			
JAN	0	0	0			
FEB	0	0	0			
MAR	0	0	0			
APR	967	1352	274			
MAY	7767	11174	5162			
JUN	17243	20026	15795			
JUL	24878	27299	24618			
AUG	0	0	0			
SEP	12344	15055	8587			
OCT	1293	2381	375			
NOV	0	0	0			
DEC	0	0	0			
TOTAL	64492	77287	54811			

SENSIBLE ENERGY NEEDS FOR COOLING [kWh]

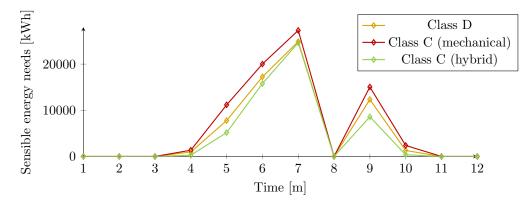


Figure 5.46: BACS efficiency class comparison of monthly sensible energy needs for cooling with Edilclima EC700

In the case of cooling, the factor-based method of EN ISO 52120 does not provide any cooling BACS efficiency factor $(f_{BAC,C})$ for educational buildings. Therefore, it is not possible to make the same comparison as for the heating sensible energy needs. Table 5.34 shows $f_{EC,C}$, which is the factor to be used to obtain the results of the simulations, and $Q_{C,tot,EC}$, which is the total cooling sensible energy needs obtained with the software. In this case, the results of class C with hybrid ventilation system is taken into account to perform the calculation.

Table 5.34: Cooling sensible energy needs factors with Edilclima EC700

	Class D	Class C					
SIMULAT	SIMULATION RESULTS						
$f_{EC,C}$ [-]	1.18	1					
$Q_{C,tot,EC}$ [kWh]	64492	54811					

Ventilation

Table 5.35 and Figure 5.47 show that the electric energy required for the mechanical ventilation obtained from the simulation of class C is lower than the one obtained from the simulation of class D. As expected, the electric energy decreases according to BACS efficiency class implemented.

Table 5.35: BACS efficiency class comparison of monthly fan electric energy with Edilclima EC700

FAN ELI	FAN ELECTRIC ENERGY [kWh]							
Month	Class D	Class C						
JAN	20516	16242						
FEB	24138	19108						
MAR	27760	21975						
APR	16898	13375						
MAY	26551	21021						
JUN	25347	20067						
JUL	25347	20067						
AUG	0	0						
SEP	26551	21021						
OCT	25347	20067						
NOV	25162	19920						
DEC	18102	14333						
TOTAL	261719	207196						

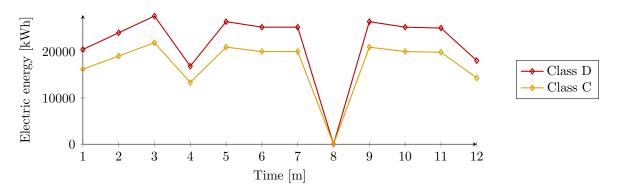


Figure 5.47: BACS efficiency class comparison of monthly fan electric energy with Edilclima EC700

Table 5.36 compares the results of factor-based method of EN ISO 52120 [19] for electric energy with the results obtained from the simulations with Edilclima EC700. As the standard requires, the results of class C are taken as reference values. It is possible to notice that the values obtained with the simplified method and the values obtained with the software are different. Indeed, the electric energy saving in the case of the simulation with Edilclima EC700 is higher than the results obtained with the factor-based method of the standard. Table 5.36 shows the following results:

- the electric energy BACS efficiency factor $(f_{BAC,el})$,
- the total supply fan electric energy of the considered BACS efficiency class obtained with the factor-based method $(W_{V,BAC})$,

- the factor to be used to obtain the results of the simulations $(f_{EC,el})$,
- the total fan electric energy with *Edilclima EC700* ($W_{V,EC}$).

Table 5.36: Comparison of fan electric energy results obtained with the factor-based method [19] and the fan electric energy results with $Edilclima \ EC700$

	Class D	Class C						
FACTOR-BASED METHOD								
$f_{BAC,el}$ [-]	1.12	1						
$W_{V,BAC}$ [kWh]	232060	207196						
SIMULAT	SIMULATION RESULTS							
$f_{EC,el}$ [-]	1.26	1.00						
$W_{V,EC}$ [kWh]	261719	207196						

Temperature

Figures 5.48, 5.49 and 5.50 show the mean air temperature of the whole building. It is possible to observe that during the heating season, the temperature is kept around the set-point temperature of 20°C. Instead, in the cooling season during occupied period, the mean air temperature is slightly lower than the set-point temperature of 27 °C.

Figures 5.49 and 5.50 show that the hybrid ventilation systems affect the building temperature more than the mechanical ventilation systems. Indeed, with hybrid ventilation systems, the temperature difference between day and night is higher than with mechanical ventilation systems. This is due to the introduction of outside air into the environment when the mechanical ventilation systems are turned off (during night, weekend and holidays).

It is also possible to notice that the simulations made with *Edilclima EC700* consider the system on the day before of the starting day of the simulation. Therefore, the results of the first week of the considered year do not reflect the real conditions of the building.

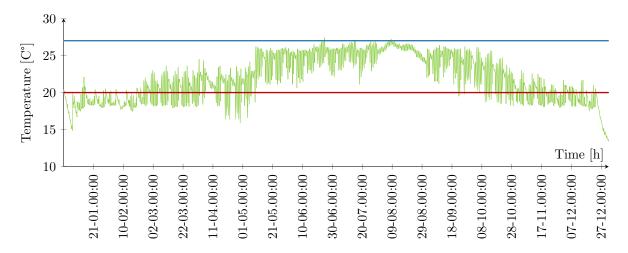


Figure 5.48: Hourly mean air temperature and set-point temperatures of class D with Edilclima EC700

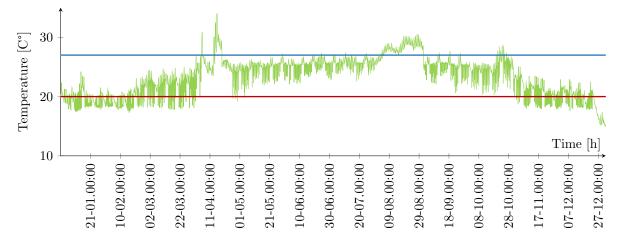


Figure 5.49: Hourly mean air temperature and set-point temperatures of class C with mechanical ventilation systems with $Edilclima \ EC700$

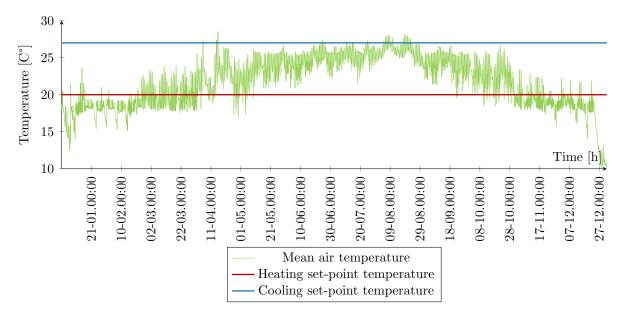


Figure 5.50: Hourly mean air temperature and set-point temperatures of class C with hybrid ventilation systems with $Edilclima\ EC700$

5.3.3 EnergyPlus/DesignBuilder simulation results

The results of the simulations are obtained from the hourly dynamic calculation of the energy performance of the building, as required by EN ISO 52016 standard [18]. *EnergyPlus/DesignBuilder* performs this calculation with the hourly dynamic simulations. This software considers year 2002 as reference period.

Figure 5.51 illustrates the hourly external temperature of the site used for the simulations with EnergyPlus/DesignBuilder.

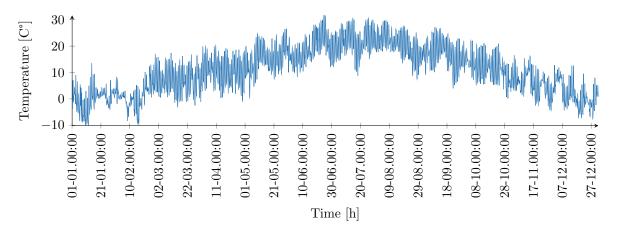


Figure 5.51: Hourly external temperature of the site with EnergyPlus/DesignBuilder

The results of the simulations show that the daily internal gains due to occupancy, appliances and lighting are equal in each BACS efficiency classes simulated (Table 5.37 and Figure 5.52).

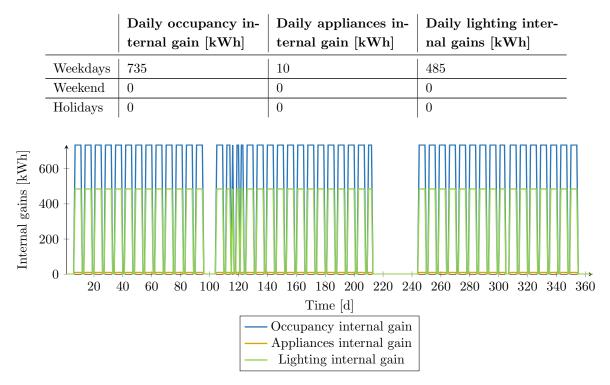


Table 5.37: Daily internal gains with EnergyPlus/DesignBuilder

Figure 5.52: Daily internal gains results with EnergyPlus/DesignBuilder

BACS efficiency class D

Figure 5.53 shows the hourly values of mean air temperature and set-point temperatures of the whole building in the reference year, obtained from the simulation of class D.

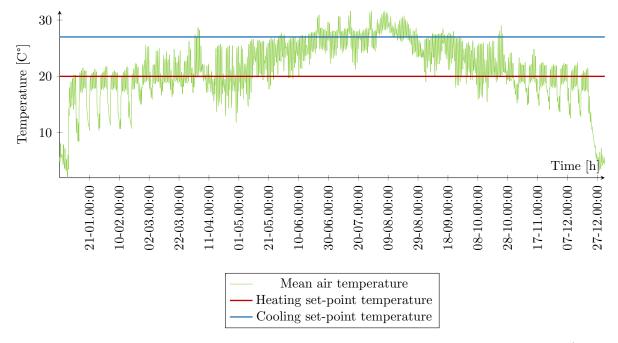


Figure 5.53: Hourly mean air temperature and set-point temperatures of class D with EnergyPlus/Design Builder

Taking into account the presence of blind control function, the solar gains change according to the level of BACS function implemented. For class D, blinds are manually controlled by the users. Figure 5.54 shows the daily values of the solar gains in the building.

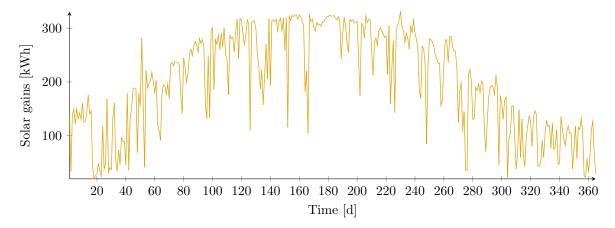


Figure 5.54: Daily solar gains of class D with EnergyPlus/DesignBuilder

Tables 5.38, 5.39, 5.40 and 5.41 show the results of the simulation of class D of sensible energy needs for heating, sensible energy needs for cooling, supply fan electric energy and extract fan electric energy respectively. Figures 5.55 and 5.56 illustrate graphically the monthly values summarized in Tables 5.38, 5.39, 5.40 and 5.41.

SENSIBLE ENERGY NEEDS FOR HEATING [kWh]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	1998	2400	2008	2411	3143	11961	
FEB	1281	1510	1287	1516	2332	7927	
MAR	435	667	441	673	892	3109	
APR	52	107	53	108	186	506	
MAY	0	0	0	0	18	18	
JUN	0	0	0	0	0	0	
JUL	0	0	0	0	0	0	
AUG	0	0	0	0	0	0	
SEP	0	0	0	0	0	0	
OCT	47	137	49	140	176	550	
NOV	740	882	744	887	1318	4570	
DEC	873	989	877	993	1493	5225	

Table 5.38: Monthly sensible energy needs for heating of class D with EnergyPlus/DesignBuilder

Table 5.39: Monthly sensible energy	gy needs for cooling of class	s D with <i>EnergyPlus/DesignBuilder</i>
-------------------------------------	-------------------------------	--

SENS	SENSIBLE ENERGY NEEDS FOR COOLING ³ [kWh]							
Month	1P	2P	3P	4P	Common space	TOTAL		
JAN	270	172	267	170	2	880		
FEB	710	496	705	491	73	2475		
MAR	1784	1496	1777	1490	523	7071		
APR	2173	1814	2165	1806	1095	9053		
MAY	3856	3502	3847	3494	2203	16903		
JUN	4354	4067	4346	4059	2996	19820		
JUL	5763	5316	5750	5304	4269	26402		
AUG	0	0	0	0	0	0		
SEP	4102	3481	4088	3468	2365	17504		
OCT	2939	2538	2927	2528	1460	12392		
NOV	1223	1057	1219	1052	263	4815		
DEC	597	474	593	471	74	2208		

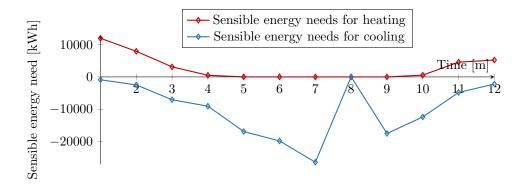


Figure 5.55: Monthly sensible energy needs for heating and cooling of class D with Energy-*Plus/DesignBuilder*

 $^{^{3}}$ Subsection 5.3.4 explains the presence of sensible energy needs for cooling in the heating months.

SUPPLY FAN ELECTRIC ENERGY [kWh]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	570	570	570	570	231	2511	
FEB	600	600	600	600	243	2643	
MAR	630	630	630	630	255	2775	
APR	480	480	480	480	194	2114	
MAY	660	660	660	660	267	2907	
JUN	600	600	600	600	243	2643	
JUL	690	690	690	690	279	3039	
AUG	0	0	0	0	0	0	
SEP	630	630	630	630	255	2775	
OCT	690	690	690	690	279	3039	
NOV	600	600	600	600	243	2643	
DEC	450	450	450	450	182	1982	

Table 5.40: Monthly supply fan electric energy of class D with EnergyPlus/DesignBuilder

SUPPLY FAN ELECTRIC ENERGY [kWb]

Table 5.41: Monthly extract fan electric energy of class D with EnergyPlus/DesignBuilder

EX	EXTRACT FAN ELECTRIC ENERGY [kWh]							
Month	1P	2P	3 P	4P	Common space	TOTAL		
JAN	407	407	407	407	185	1813		
FEB	429	429	429	429	194	1909		
MAR	450	450	450	450	204	2004		
APR	343	343	343	343	155	1527		
MAY	471	471	471	471	214	2099		
JUN	429	429	429	429	194	1909		
JUL	493	493	493	493	223	2195		
AUG	0	0	0	0	0	0		
SEP	450	450	450	450	204	2004		
OCT	493	493	493	493	223	2195		
NOV	429	429	429	429	194	1909		
DEC	321	321	321	321	146	1431		

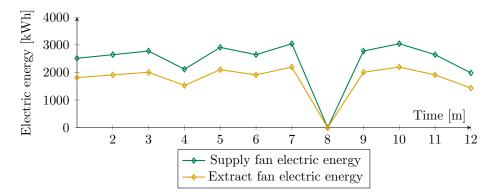


Figure 5.56: Monthly supply and extract fans electric energy of class D with EnergyPlus/DesignBuilder

BACS efficiency class C

Figure 5.57 shows the hourly values of mean air temperature and set-point temperatures of the whole building in the reference year, obtained from the simulation of class C.

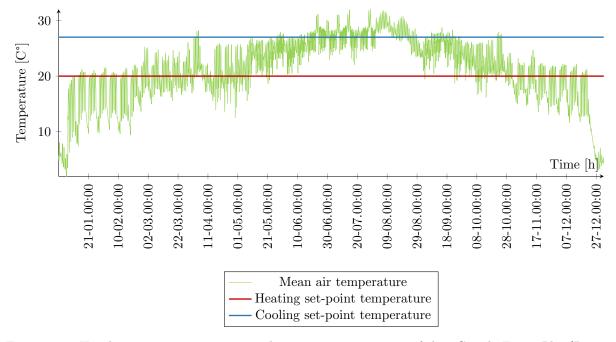


Figure 5.57: Hourly mean air temperature and set-point temperatures of class C with $EnergyPlus/Design\ Builder$

Taking into account the presence of blind control, the solar gains change according to the level of the blind control function implemented. Figure 5.58 shows the solar gains obtained in class C when blinds are automatically controlled in order to reduce the cooling loads required by the building.

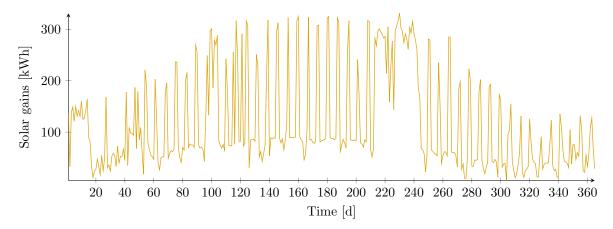


Figure 5.58: Daily solar gains of class C with EnergyPlus/DesignBuilder

Tables 5.42, 5.43, 5.44 and 5.45 show the results of the simulation of class C of sensible energy needs for heating, sensible energy needs for cooling, supply fan electric energy and extract fan electric energy respectively. Figures 5.59 and 5.60 illustrate graphically the monthly values summarized in Tables 5.42, 5.43, 5.44 and 5.45.

SENSIBLE ENERGY NEEDS FOR HEATING [kWh]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	1443	1828	1452	1839	2379	8941	
FEB	914	1061	919	1067	1705	5667	
MAR	334	423	338	427	593	2116	
APR	40	64	40	65	151	359	
MAY	0	0	0	0	16	16	
JUN	0	0	0	0	0	0	
JUL	0	0	0	0	0	0	
AUG	0	0	0	0	0	0	
SEP	0	0	0	0	0	0	
OCT	38	74	40	75	101	327	
NOV	477	537	480	540	828	2861	
DEC	584	660	587	663	1069	3563	

Table 5.42: Monthly sensible energy needs for heating of class C with EnergyPlus/DesignBuilder

Table 5.43: M	Ionthly sensible e	nergy needs for	cooling of class C	with EnergyPlus	/DesignBuilder

- 4 -

SENS	SENSIBLE ENERGY NEEDS FOR COOLING ⁴ [kWh]							
Month	1P	2P	3P	4P	Common space	TOTAL		
JAN	149	75	147	74	0	445		
FEB	512	337	507	332	45	1733		
MAR	1545	1327	1538	1320	407	6135		
APR	1722	1499	1715	1492	643	7071		
MAY	3319	3101	3311	3094	1490	14315		
JUN	3823	3661	3816	3654	2308	17263		
JUL	5078	4821	5067	4811	3490	23268		
AUG	0	0	0	0	0	0		
SEP	3570	3168	3557	3157	1699	15150		
OCT	2633	2376	2623	2367	1027	11025		
NOV	1067	923	1062	918	210	4179		
DEC	456	356	453	353	50	1669		

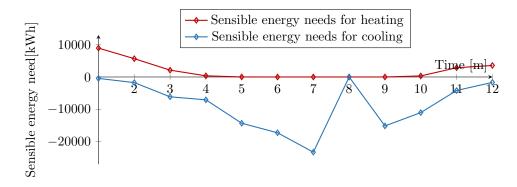


Figure 5.59: Monthly sensible energy needs for heating and cooling of class C with Energy-Plus/DesignBuilder

 $^{^4\}mathrm{Subsection}$ 5.3.4 explains the presence of sensible energy needs for cooling in the heating months.

SUPPLY FAN ELECTRIC ENERGY [kWh]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	447	447	447	447	122	1909	
FEB	470	470	470	470	129	2009	
MAR	494	494	494	494	135	2110	
APR	376	376	376	376	103	1607	
MAY	517	517	517	517	144	2213	
JUN	470	470	470	470	155	2035	
JUL	541	541	541	541	206	2368	
AUG	0	0	0	0	0	0	
SEP	494	494	494	494	137	2112	
OCT	541	541	541	541	148	2310	
NOV	470	470	470	470	129	2009	
DEC	353	353	353	353	96	1507	

Table 5.44: Monthly supply fan electric energy of class C with EnergyPlus/DesignBuilder

SUPPLY FAN ELECTRIC ENERGY [kWb]

Table 5.45: Monthly extract fan electric energy of class C with EnergyPlus/DesignBuilder

EXTRACT FAN ELECTRIC ENERGY [KWN]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	319	319	319	319	98	1374	
FEB	336	336	336	336	103	1446	
MAR	353	353	353	353	108	1518	
APR	269	269	269	269	82	1157	
MAY	369	369	369	369	115	1593	
JUN	336	336	336	336	124	1467	
JUL	386	386	386	386	165	1709	
AUG	0	0	0	0	0	0	
SEP	353	353	353	353	110	1520	
OCT	386	386	386	386	118	1663	
NOV	336	336	336	336	103	1446	
DEC	252	252	252	252	77	1085	

EXTRACT FAN ELECTRIC ENERGY [kWh]

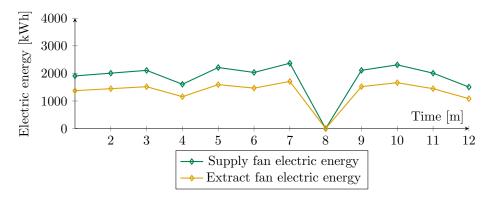


Figure 5.60: Monthly supply and extract fans electric energy of class C with EnergyPlus/DesignBuilder

BACS efficiency class B

Figure 5.61 shows the hourly values of mean air temperature and set-point temperatures of the whole building in the reference year, obtained from the simulation of class B.

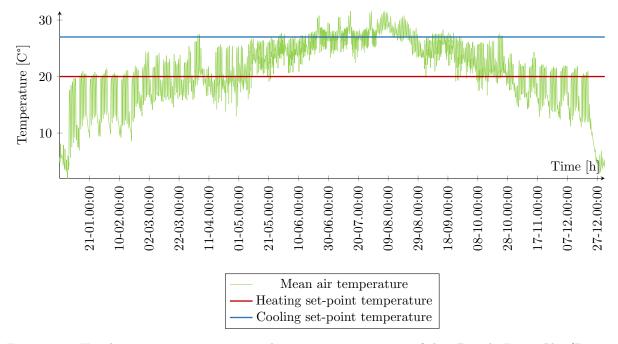


Figure 5.61: Hourly mean air temperature and set-point temperatures of class B with EnergyPlus/Design Builder

Taking into account the presence of blind control, the solar gains change according to the level of the blind control function implemented. Figure 5.62 shows the solar gains obtained in class B when blinds are automatically controlled to reduce cooling loads and to avoid glare during the occupied period.

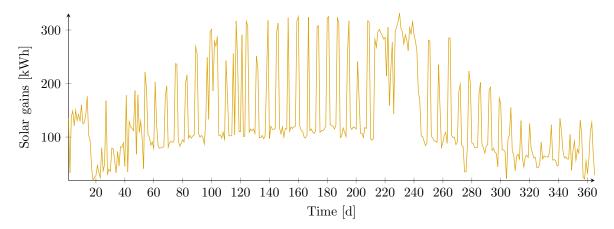


Figure 5.62: Daily solar gains of class B with EnergyPlus/DesignBuilder

Tables 5.46, 5.47, 5.48 and 5.49 show the results of the simulation of class B of sensible energy needs for heating, sensible energy needs for cooling, supply fan electric energy and extract fan electric energy respectively. Figures 5.63 and 5.64 illustrate graphically the monthly values summarized in Tables 5.46, 5.47, 5.48 and 5.49.

SEN	SENSIBLE ENERGY NEEDS FOR HEATING [kWh]							
Month	1P	2P	3P	4P	Common space	TOTAL		
JAN	1222	1575	1231	1586	1814	7428		
FEB	726	843	730	848	1214	4361		
MAR	214	267	217	270	368	1336		
APR	24	38	24	39	130	256		
MAY	0	0	0	0	20	20		
JUN	0	0	0	0	0	0		
JUL	0	0	0	0	0	0		
AUG	0	0	0	0	0	0		
SEP	0	0	0	0	0	0		
OCT	19	37	20	38	85	201		
NOV	320	360	322	362	511	1876		
DEC	436	498	438	501	730	2603		

Table 5.46: Monthly sensible energy needs for heating of Class B with EnergyPlus/DesignBuilder

SENSIBLE ENERGY NEEDS FOR HEATING [kWh]

Table 5.47: Monthly sensible energy	needs for cooling of Class B	with EnergyPlus/DesignBuilder
-------------------------------------	------------------------------	-------------------------------

SENSIBLE ENERGY NEEDS FOR COOLING ⁵ $[kWh]$							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	98	45	96	45	0	284	
FEB	439	287	434	282	36	1479	
MAR	1494	1292	1487	1285	367	5924	
APR	1628	1420	1621	1413	435	6517	
MAY	3216	3004	3209	2997	1274	13701	
JUN	3740	3571	3733	3565	2157	16766	
JUL	4961	4707	4951	4697	3366	22682	
AUG	0	0	0	0	0	0	
SEP	3450	3073	3438	3062	1468	14492	
OCT	2578	2346	2568	2337	804	10633	
NOV	1017	882	1012	877	194	3983	
DEC	404	316	400	313	43	1477	

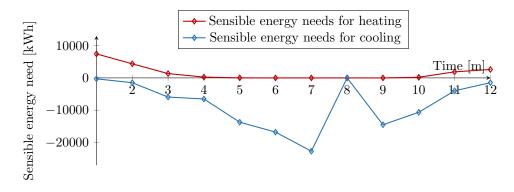


Figure 5.63: Monthly sensible energy needs for heating and cooling of class B with Energy-Plus/DesignBuilder

 $^{{}^{5}}$ Subsection 5.3.4 explains the presence of sensible energy needs for cooling in the heating months.

SUPPLY FAN ELECTRIC ENERGY [kwn]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	400	400	400	400	82	1680	
FEB	421	421	421	421	86	1769	
MAR	442	442	442	442	90	1857	
APR	337	337	336	337	69	1415	
MAY	463	463	463	463	111	1962	
JUN	421	421	421	421	146	1828	
JUL	484	484	484	484	194	2129	
AUG	0	0	0	0	0	0	
SEP	442	442	442	442	122	1888	
OCT	484	484	484	484	99	2034	
NOV	421	421	421	421	86	1769	
DEC	315	315	315	315	65	1326	

Table 5.48: Monthly supply fan electric energy of Class B with EnergyPlus/DesignBuilder

SUPPLY FAN ELECTRIC ENERGY [kWb]

Table 5.49: Monthly extract fan electric energy of Class B with EnergyPlus/DesignBuilder

EATRACT FAN ELECTRIC ENERGY [KWI]							
Month	1P	2 P	3P	4P	Common space	TOTAL	
JAN	285	285	285	285	65	1207	
FEB	300	300	300	300	69	1271	
MAR	315	315	315	315	72	1334	
APR	240	240	240	240	55	1017	
MAY	331	331	330	331	89	1411	
JUN	300	300	300	300	117	1318	
JUL	346	346	346	346	155	1537	
AUG	0	0	0	0	0	0	
SEP	315	315	315	315	97	1359	
OCT	346	346	346	346	79	1461	
NOV	300	300	300	300	69	1271	
DEC	225	225	225	225	52	953	

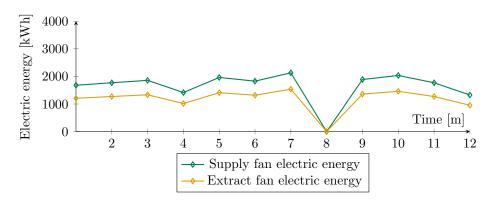


Figure 5.64: Monthly supply and extract fans electric of class B with EnergyPlus/DesignBuilder

BACS efficiency class A

Figure 5.65 shows the hourly values of mean air temperature and set-point temperatures of the whole building in the reference year, obtained from the simulation of class A.

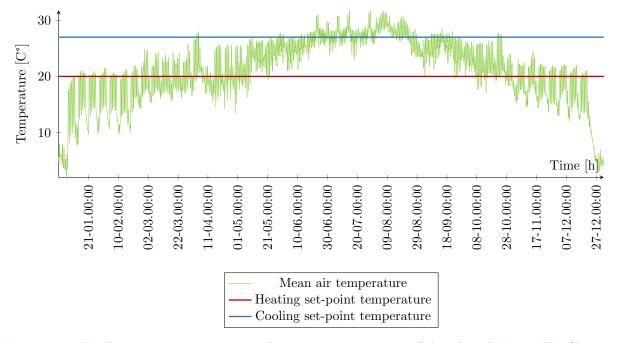


Figure 5.65: Hourly mean air temperature and set-point temperatures of class A with EnergyPlus/Design Builder

Taking into account the presence of blind control, the solar gains change according to the level of the blind control function implemented. Figure 5.62 shows the solar gains obtained in class A when blinds are automatically controlled to reduce cooling loads and to avoid glare during the occupied period.

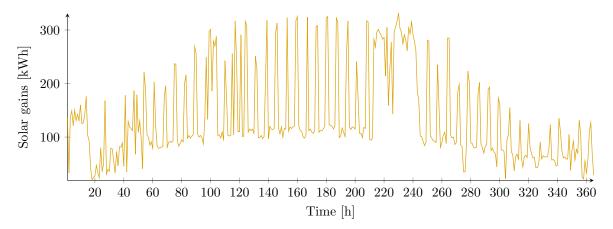


Figure 5.66: Daily solar gains of class A with EnergyPlus/DesignBuilder

Tables 5.50, 5.51, 5.52 and 5.53 show the results of the simulation of class A of sensible energy needs for heating, sensible energy needs for cooling, supply fan electric energy and extract fan electric energy respectively. Figures 5.67 and 5.68 illustrate graphically the monthly values summarized in Tables 5.50, 5.51, 5.52 and 5.53.

SENSIBLE ENERGY NEEDS FOR HEATING [kWh]							
Month	1P	2P	3 P	4P	Common space	TOTAL	
JAN	790	1148	798	1158	1774	5670	
FEB	368	489	371	494	1226	2948	
MAR	36	51	36	51	333	507	
APR	4	9	4	9	105	131	
MAY	0	0	0	0	9	9	
JUN	0	0	0	0	0	0	
JUL	0	0	0	0	0	0	
AUG	0	0	0	0	0	0	
SEP	0	0	0	0	0	0	
OCT	1	3	1	3	45	52	
NOV	76	94	77	95	489	831	
DEC	179	241	181	243	727	1571	

Table 5.50: Monthly sensible energy needs for heating of class A with EnergyPlus/DesignBuilder

Table 5.51: Monthl	v sensible energy	needs for	cooling of	class A with	EnergyPlus	/DesignBuilder

SENSIBLE ENERGY NEEDS FOR COOLING ⁶ [kWh]								
Month	1P	2P	3P	4P	Common space	TOTAL		
JAN	57	19	55	18	0	148		
FEB	372	214	367	209	32	1194		
MAR	1433	1214	1425	1206	361	5637		
APR	1431	1240	1425	1235	482	5814		
MAY	2929	2739	2923	2733	1293	12617		
JUN	3451	3307	3444	3301	2042	15545		
JUL	4590	4367	4581	4358	3089	20984		
AUG	0	0	0	0	0	0		
SEP	3143	2801	3132	2791	1475	13342		
OCT	2389	2183	2381	2176	886	10014		
NOV	961	814	956	809	184	3723		
DEC	350	259	347	257	35	1248		

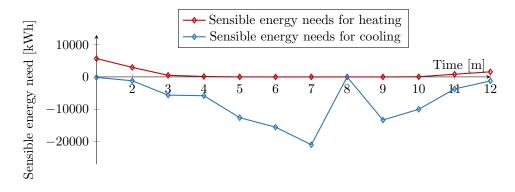


Figure 5.67: Monthly sensible energy needs for heating and cooling of class A with Energy-Plus/DesignBuilder

 $^{^{6}}$ Subsection 5.3.4 explains the presence of sensible energy needs for cooling in the heating months.

SUPPLY FAN ELECTRIC ENERGY [kWh]							
Month	1P	2P	3P	4P	Common space	TOTAL	
JAN	317	317	317	317	87	1356	
FEB	334	334	334	334	91	1428	
MAR	351	351	351	351	96	1499	
APR	267	267	267	267	73	1142	
MAY	367	367	367	367	113	1583	
JUN	334	334	334	334	127	1463	
JUL	384	384	384	384	156	1692	
AUG	0	0	0	0	0	0	
SEP	351	351	351	351	116	1519	
OCT	384	384	384	384	105	1642	
NOV	334	334	334	334	91	1428	
DEC	251	251	251	251	69	1071	

Table 5.52: Monthly supply fan electric energy of class A with EnergyPlus/DesignBuilder

SUPPLY FAN ELECTRIC ENERGY [kWb]

Table 5.53: Monthly extract fan electric energy of class A with EnergyPlus/DesignBuilder

EATRACI FAN ELECTRIC ENERGY [KWN]							
Month	1P	2 P	3P	4P	Common space	TOTAL	
JAN	227	227	227	227	69	976	
FEB	239	239	239	239	73	1028	
MAR	251	251	251	251	77	1079	
APR	191	191	191	191	59	822	
MAY	262	262	262	262	90	1140	
JUN	239	239	239	239	101	1056	
JUL	274	274	274	274	124	1222	
AUG	0	0	0	0	0	0	
SEP	251	251	251	251	93	1095	
OCT	274	274	274	274	84	1182	
NOV	239	239	239	239	73	1028	
DEC	179	179	179	179	55	771	

EXTRACT FAN ELECTRIC ENERGY [kWh]

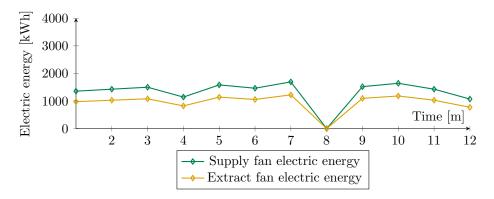


Figure 5.68: Monthly supply and extract fans electric energy of class A with EnergyPlus/DesignBuilder

5.3.4 Comparison of the results of *EnergyPlus/DesignBuilder* simulations

Heating

Table 5.54 and Figure 5.69 show that the highest sensible energy needs for heating are obtained with class C and the lowest sensible energy needs for heating are achieved by class A. Therefore, it is possible to say that higher is the BACS class lower are the sensible energy needs required to heat the thermal zones.

Table 5.54: Class comparison of monthly sensible energy needs for heating with Energy-Plus/DesignBuilder

Month	Class D	Class C	Class B	Class A
JAN	11961	8941	7428	5670
FEB	7927	5667	4361	2948
MAR	3109	2116	1336	507
APR	506	359	256	131
MAY	18	16	20	9
JUN	0	0	0	0
JUL	0	0	0	0
AUG	0	0	0	0
SEP	0	0	0	0
OCT	550	327	201	52
NOV	4570	2861	1876	831
DEC	5225	3563	2603	1571
TOTAL	33865	23851	18080	11719

SENSIBLE ENERGY NEEDS FOR HEATING [kWh]

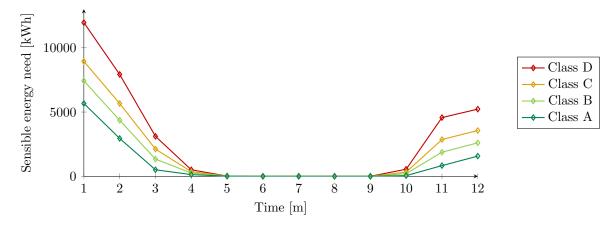


Figure 5.69: Class comparison of monthly sensible energy needs for heating with Energy-Plus/DesignBuilder

Taking into account the annual sensible energy needs for heating, it is possible to compare the results of the simulations with *EnergyPlus/DesignBuilder* and the results obtained from the application of the factor-based method of EN ISO 52120 [19]. The results of class C are taken as reference values.

Table 5.55 shows the results of the factor-based method compared with the results with Energy-Plus/DesignBuilder. It is possible to observe that performs the calculations with a dynamic calculation

software provides a higher reduction of the sensible energy needs for heating with respect to the results with the simplified method of the standard. Table 5.55 shows the values of:

- the heating BACS efficiency factor $(f_{BAC,H})$,
- the total heating sensible energy needs of the considered BACS efficiency class obtained with the factor-based method $(Q_{H,tot,BAC})$,
- the factor to be used to obtain the results of the simulations $(f_{DB,H})$,
- the total heating sensible energy needs with EnergyPlus/DesignBuilder ($Q_{H,tot,DB}$).

Table 5.55: Comparison of heating sensible energy needs results with the factor-based method [19] and the heating sensible energy needs with EnergyPlus/DesignBuilder

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									
FACTOR-BASED METHOD									
$f_{BAC,H}$ [-] 1.20 1 0.88 0.80									
$Q_{H,tot,BAC}$ [kWh]	28621	23851	20989	19081					
	SIMULATION RESULTS								
$f_{DB,H}$ [-] 1.42 1 0.76 0.49									
$Q_{H,tot,DB}$ [kWh]	33865	23851	18080	11719					

Cooling

Table 5.56 and Figure 5.70 show that the cooling sensible energy needs required by the building decrease according to the BACS efficiency class, as in the case of the sensible energy needs for cooling. Indeed, class D has the highest values of the sensible energy needs for cooling, instead class A has the lowest values.

Table 5.56: Class comparison of monthly sensible energy needs for cooling with EnergyPlus/DesignBuilder

SENSIBLE ENERGY NEEDS FOR COULING[KWI]						
Month	Class D	Class C	Class B	Class A		
JAN	880	445	284	148		
FEB	2475	1733	1479	1194		
MAR	7071	6135	5924	5637		
APR	9053	7071	6517	5814		
MAY	16903	14315	13701	12617		
JUN	19820	17263	16766	15545		
JUL	26402	23268	22682	20984		
AUG	0	0	0	0		
SEP	17504	15150	14492	13342		
OCT	12392	11025	10633	10014		
NOV	4815	4179	3983	3723		
DEC	2208	1669	1477	1248		
TOTAL	119522	102254	97937	90267		

SENSIBLE ENERGY NEEDS FOR COOLING[kWh]

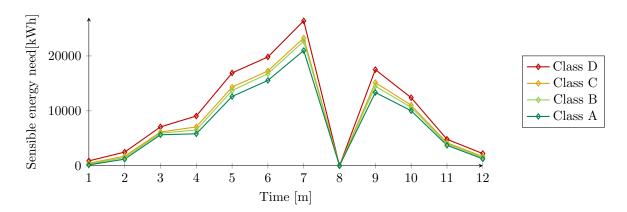


Figure 5.70: Class comparison of monthly sensible energy needs for cooling with Energy-Plus/DesignBuilder

It is possible to notice from Figure 5.70 that in the heating season months the sensible energy needs for cooling are greater than zero; this is due to the way cooling sensible energy needs of the zones are calculated by *EnergyPlus/DesignBuilder*. Indeed, the software in the calculation of cooling sensible energy needs takes into account the effect of any air introduced into the zone through the HVAC systems, including the effect of free cooling. Therefore, even if the cooling coil is turned off, the sensible energy needs for cooling are not zero due to the effect of free cooling, which introduces relatively cooler outside air into the thermal zones through mechanical ventilation to guarantee the air changes per hour required [21]. Figure 5.71 reports the values of the sensible energy needs for cooling compared to the cooling coil energy required by the rooftop systems to cool the building.

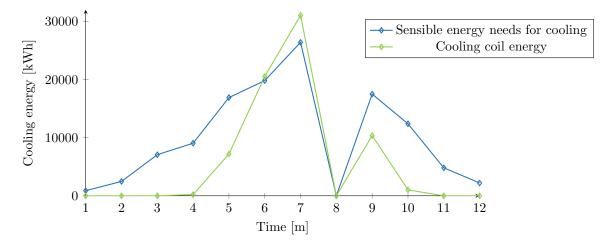


Figure 5.71: Comparison of sensible energy needs for cooling and cooling coil energy with *Energy-Plus/DesignBuilder*

In the case of cooling, the factor-based method of EN ISO 52120 does not provide any cooling BACS efficiency factor ($f_{BAC,C}$) for educational buildings. Therefore, it is not possible to make the same comparison as for the heating sensible energy needs. Table 5.57 shows the factor to be used to obtain the results of the simulations made with *EnergyPlus/DesignBuilder*.

In this case, $f_{DB,C}$ is the factor to be used to obtain the results of the simulations and $Q_{C,tot,DB}$ is the total sensible energy needs for cooling with *EnergyPlus/DesignBuilder*.

	Class D	Class C	Class B	Class A				
SIMULATION RESULTS								
$f_{DB,C}$ [-] 1.17 1 0.96 0.88								
$Q_{C,tot,DB}$ [kWh]	119522	102254	97937	90267				

Table 5.57: Sensible energy needs for cooling results with *EnergyPlus/DesignBuilder*

Ventilation

Tables 5.58 and 5.59 and Figures 5.72 and 5.73 illustrate that also in the case of supply and extract fans, the electric energy required for the mechanical ventilation decreases with the increasing of BACS efficiency class. It is possible to see that the required electric energy achieves the maximum value in class D and the minimum value in class A.

Table 5.58: Class comparison of monthly supply fan electric energy with EnergyPlus/DesignBuilder

Month	Class D	Class C	Class B	Class A			
JAN	2511	1909	1680	1356			
FEB	2643	2009	1769	1428			
MAR	2775	2110	1857	1499			
APR	2114	1607	1415	1142			
MAY	2907	2223	1962	1583			
JUN	2643	2054	1828	1463			
JUL	3039	2380	2129	1692			
AUG	0	0	0	0			
SEP	2775	2129	1888	1519			
OCT	3039	2310	2034	1642			
NOV	2643	2009	1769	1428			
DEC	1982	1507	1326	1071			
TOTAL	29072	22189	19657	15822			

SUPPLY FAN ELECTRIC ENERGY [kWh]

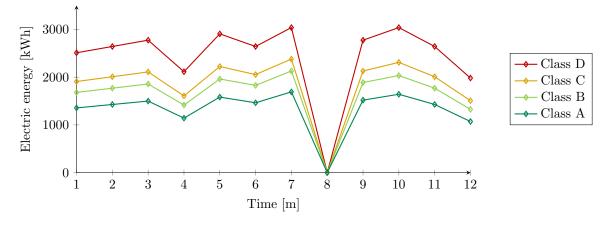
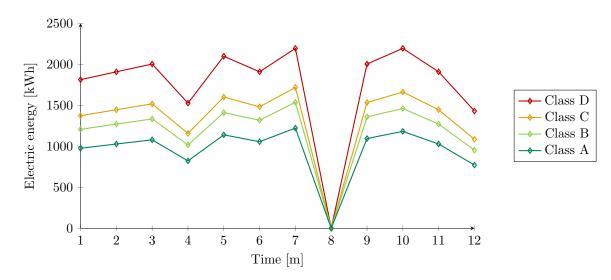



Figure 5.72: Class comparison of monthly supply fan electric energy with EnergyPlus/DesignBuilder

EXTRACT FAN ELECTRIC ENERGY [kWh]								
Month	Class D	Class C	Class B	Class A				
JAN	1813	1374	1207	976				
FEB	1909	1446	1271	1028				
MAR	2004	1518	1334	1079				
APR	1527	1157	1017	822				
MAY	2099	1601	1411	1140				
JUN	1909	1482	1318	1056				
JUL	2195	1718	1537	1222				
AUG	0	0	0	0				
SEP	2004	1534	1359	1095				
OCT	2195	1663	1461	1182				
NOV	1909	1446	1271	1028				
DEC	1431	1085	953	771				
TOTAL	20995	15978	14139	11398				

Table 5.59: Class comparison of monthly extract fan electric energy with EnergyPlus/DesignBuilder

EXTRACT FAN ELECTRIC ENERCY [kWb]

Figure 5.73: Class comparison of monthly extract fan electric energy with EnergyPlus/DesignBuilder

Table 5.60 compares the results of factor-based method of EN ISO 52120 for electric energy with the results with *EnergyPlus/DesignBuilder*. As the standard required, the results of class C are taken as reference values. It is possible to notice that the values obtained with the simplified method and the values obtained with the software for class B and class A are similar. Instead, a difference in the results are obtained with class D. The results of factor-based method are lower than the one with EnergyPlus/DesignBuilder. Table 5.60 shows the results of:

- the electric energyBACS efficiency factor $(f_{BAC,el})$,
- the total supply fan electric energy of the considered BACS efficiency class obtained with the factor-based method $(W_{V,supply,BAC}),$

- the total extract fan electric energy of the considered BACS efficiency class obtained with the factor-based method $(W_{V,extract,BAC})$,
- the factor to be used to obtain the results of the simulations $(f_{DB,el})$,
- the total supply fan electric energy with EnergyPlus/DesignBuilder ($W_{V,supply,DB}$),
- the total extract fan electric energy with EnergyPlus/DesignBuilder ($W_{V,extract,DB}$).

Table 5.60: Comparison of fan electric energy results with the factor-based method [19] and the fan electric energy results with EnergyPlus/DesignBuilder

	Class D	Class C	Class B	Class A					
FACTOR-BASED METHOD									
$f_{BAC,el}$ [-]	1.12	1.00	0.87	0.74					
$W_{V,supply,BAC}$ [kWh]	24851	22189	19304	16420					
$W_{V,extract,BAC}$ [kWh]	17895	15978	13901	11824					
SI	MULATIO	N RESULTS	5						
$f_{DB,el}$ [-]	1.31	1.00	0.88	0.71					
$W_{V,supply,DB}$ [kWh]	29072	22189	19657	15822					
$W_{V,supply,DB}$ [kWh]	20995	15978	14139	11398					

Temperature

Figures 5.74, 5.75, 5.76 and 5.77 show the mean air temperatures of the case study. It is possible to observe that the temperature during occupied periods are maintained around the set-point temperatures (20 °C during winter and 27 °C during summer).

In heating period, it is possible to notice that the temperatures in weekends and holidays decrease more compared to the weekdays. Instead, during the cooling period, it is possible to observe that there are peak values of the temperature during weekends and holidays. This is due to the systems operation.

The results of class C, class B and class A show that during unoccupied periods of weekdays the temperatures decreases more respect to class D. Indeed, the working period of the systems better matches the real behavior of the building users as BACS class changes. Anyway, this trend does not affect the temperatures during the occupied period, that remain around the set-point.

In the end, it is possible to observe that in the first occupied week of the reference year the mean air temperatures do not reach the set-points, likely this is due to the thermal inertia of the building. Indeed, *EnergyPlus/DesignBuilder* consider the rooftop systems off during the period before the simulation year. So, the thermal zones require more time to reach the set-point temperatures.

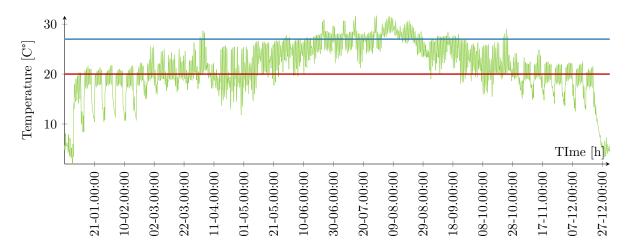


Figure 5.74: Hourly mean air temperature and set-point temperatures of class D with EnergyPlus/Design Builder

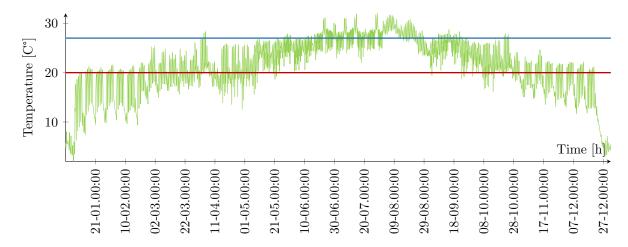


Figure 5.75: Hourly mean air temperature and set-point temperatures of class C with EnergyPlus/Design Builder

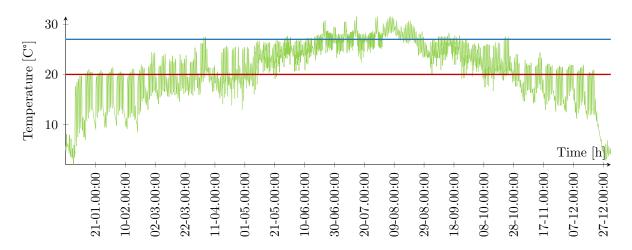


Figure 5.76: Hourly mean air temperature and set-point temperatures of class B with EnergyPlus/Design Builder

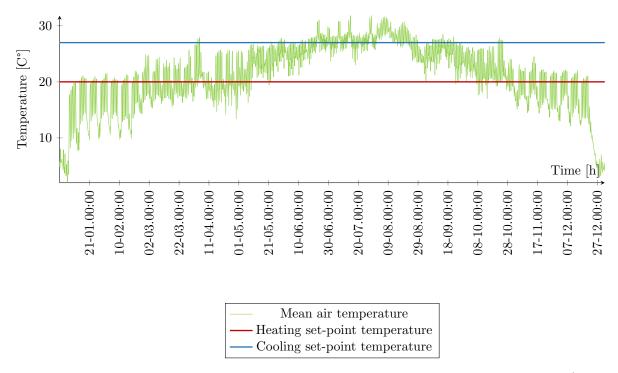


Figure 5.77: Hourly mean air temperature and set-point temperatures of class A with $EnergyPlus/Design\ Builder$

Chapter 6

Analysis of economic feasibility

This chapter analyzes the economic feasibility of the installation of BACS devices simulated in Chapter 5 and provides a cost-benefits analysis.

6.1 Devices available on the market

Only the devices with the control functions simulated in the models are considered. The reference values are taken to be the economic expenses of class D.

Siemens [39] and Schneider Electric SE [38] are the main manufacturers of building automation and control systems. The catalogs of BACS devices of these two companies provide a wide list of devices that can satisfy the simulated functions in the different BACS efficiency classes. Table 6.1 shows which devices satisfy the BACS functions implemented in each class.

BACS class	BACS devices
С	HVAC control unit which allows to control heating, cooling and air conditioning and with incorporated temperature and relative humidity sensors Solar protection actuator for blind control
В	HVAC control unit which allows to control heating, cooling and air conditioning and with incorporated temperature and relative humidity sensors Solar protection actuator for blind control Light and presence sensors connectable with the HVAC control unit and solar protection actuator
А	HVAC control unit which allows to control heating, cooling and air conditioning and with incorporated temperature, relative humidity and CO2 sensorsSolar protection actuator for blind controlLight and presence sensors connectable with the HVAC control unit and solar protection actuator

Table 6.1: Devices that satisfy the BACS functions implemented in each BACS efficiency class

6.2 Economic evaluation of the intervention

First, the electric energy required for the rooftop systems operation is calculated. The estimated annual electric energy are taken from the results of the simulations obtained with EnergyPlus/DesignBuilder as this software also allows to get the results for BACS efficiency classes A and B which is not possible with $Edilclima \ EC700$. Table 6.2 shows the annual electric energy required for each BACS efficiency class by the heating coils, the cooling coils, the supply fans and the extract fans.

ELECTRIC ENERGY [kWh]								
	Class D	Class C	Class B	Class A				
Heating coil	42813	30447	25373	18183				
Cooling coil	17721	14894	14415	13661				
Supply fan	29072	22189	19563	15779				
Extract fan	20995	15978	14064	11364				
TOTAL	110601	83508	73415	58987				

Table 6.2: Annual electric energy for each BACS efficiency class

The electricity costs are assumed to be the average electricity costs by the *Gestore Mercati Energetici* (*GME*), which is $0.15202 \, \text{C/kWh}$ for February 2023 [28]. All the calculation made in this chapter are performed with this value of the electricity cost. Table 6.3 provides the total estimated electricity cost for each BACS efficiency class and gives the achievable cost saving for classes C, B and A compared to class D.

Table 6.3: Annual electric costs and annual electric savings compared with class D

BACS	Electricity	Electricity an-	Electricity		
efficiency	annual cost	nual cost saving	costs saving		
class	[€/year]	[€/year]	[%]		
D	16814	0	0		
С	12695	4119	24		
В	11161	5653	34		
Α	8967	7846	47		

Tables 6.4, 6.5 and 6.6 provide the cost of BACS devices and the costs of installation for class C, B and A. The devices costs are divided into four different classes according to the devices available on the market: HVAC control devices, blind control devices, sensors and building management system (BMS).

BMS is not present among the devices simulated in the models, but it still considered in the economic analysis, since the project of the building establishes its presence.

The cost estimate present in the technical documents of the case study project shows that the BMS costs are evaluated equal to \bigcirc 9751 and installation costs are evaluated equal to \bigcirc 1004. Moreover, the maintenance plan document of the project illustrates the ordinary and extraordinary maintenance interventions, of which the costs are \bigcirc 500 for each year. The devices costs are taken from Siemens and Schneider Electric SE catalogs [39][38].

	n° of devices	Cost per devices $[\mathfrak{C}/n^{\circ}]$	Total cost [€]
HVAC control devices	5	280	1400
Blind control devices ¹	4	780	3120.00
BMS		9751	
Installation		1004	
TOTAL		15275	

Table 6.4: Devices and installation costs of BACS devices used in class C

Table 6.5: Devices and installation costs of BACS devices used in class B

	n° of devices	Cost per devices $[\mathfrak{C}/n^\circ]$	Total cost [€]			
HVAC control devices	5	280	1400			
Blind control devices	4	780	3120			
Light and presence sen-						
sors for HVAC and	16	330	5280			
blind $\operatorname{control}^2$						
BMS	9751					
Installation	1004					
TOTAL	20555					

Table 6.6: Devices and installation costs of BACS devices used in class A

	n° of devices	Cost per devices [€/n°]	Total cost $[\mathbb{C}]$			
HVAC control devices	5	570	2850			
Blind control devices	4	780	3120			
Light and presence sen- sors for HVAC and blind control	16	330.00	5280.00			
BMS	9751					
Installation	1004					
TOTAL	22005					

Tables 6.7, 6.8 and 6.9 illustrate the calculation of the payback period. The initial investment for each class is assumed to be at the end of year T_0 , meaning that the prices of these devices and their installation is paid at time T_0 . According to the manufactures, the lifespan of BACS devices is about 10 years if properly maintained [2]. The first row shows the installation and maintenance costs, the second row shows the saving obtained from the BACS operation, and the last row shows the balance between costs and savings. Tables 6.7, 6.8 and 6.9 also estimate the total savings at the end of ten years.

¹Each classroom is equipped with a solar protection actuator that control all blind devices in the room.

²The considered device range is about 60 m^2 .

	T ₀	T ₁	T_2	T_3	T_4	T_5	T_6	T ₇	T ₈	T 9	T_{10}
Cost [€]	-15275	-500	-500	-500	-500	-500	-500	-500	-500	-500	-500
Saving [€]	0	4119	4119	4119	4119	4119	4119	4119	4119	4119	4119
Tot $[\mathfrak{C}]$	-15275	3619	3619	3619	3619	3619	3619	3619	3619	3619	3619
TOTAL [€]	TAL [€] 20911										
Payback		4 years and 3 months									

Table 6.7: Payback period analysis for class C

Table 6.8: Payback period analysis for class B

	T ₀	T ₁	T_2	T ₃	T_4	T_5	T_6	T7	T ₈	T ₉	T ₁₀
Cost $[\textcircled{e}]$	-20555	-500	-500	-500	-500	-500	-500	-500	-500	-500	-500
Saving [€]	0	5653	5653	5653	5653	5653	5653	5653	5653	5653	5653
Tot $[\mathbb{E}]$	-20555	5153	5153	5153	5153	5153	5153	5153	5153	5153	5153
TOTAL [€]	TOTAL [€] 30974										
Payback		4 years									

Table 6.9: Payback period analysis for class A

	T ₀	T ₁	T_2	T ₃	T_4	T_5	T_6	T ₇	T_8	T ₉	T ₁₀
Cost [€]	-22005	-500	-500	-500	-500	-500	-500	-500	-500	-500	-500
Saving [€]	0	7846	7846	7846	7846	7846	7846	7846	7846	7846	7846
Tot $[\mathbb{E}]$	-22005	7346	7346	7346	7346	7346	7346	7346	7346	7346	7346
TOTAL [€]	TOTAL [C] 51458										
Payback		3 years									

It is possible to see from Tables 6.7, 6.8 and 6.9 that in the worst case the required time to recover the initial investment is four years and three months. Even in the worst case, the payback period is sensibly lower than the expected lifespan of properly maintained BACS devices.

Tables 6.7, 6.8 and 6.9 show that even if the initial investment is higher for BACS efficiency class A, the best performing control and automation systems allows to have a higher savings, therefore the payback period for class A decreases and the initial investment is fully recovered in three years.

Chapter 7

Conclusions and future development

The first goal of this thesis was to evaluate the ability of two software tools to simulate BACS functions and to evaluate the effect of some of BACS functions on the energy performances. The case study regarded classrooms P of the *Politecnico di Torino*.

A guide to the simulation of BACS functions and their relative implementable levels was provided. The guide shows that the simulation capabilities of *Edilclima EC700*, which applies a simplified dynamic calculation method based on the energy performance standard, are lower than the ones of *EnergyPlus/DesignBuilder*, which applies a detailed calculation method. This is likely due to the different calculation methods and to how the technical building systems are modeled. Indeed, according to the energy performance standards, *Edilclima EC700* allows a simplified modeling of the technical building systems, which reduces the ability to simulate BACS functions since BACS are strictly connected to technical building systems.

This issue is noticeable in the results of the simulation of class C with *Edilclima EC700*. Indeed, this simulation had to be performed twice, with mechanical and hybrid ventilation respectively, because *Edilclima EC700* is not able to set an hourly profile combining the two ventilation modes. On the other hand, *EnergyPlus/DesignBuilder* uses a detailed dynamic calculation model, allowing to simulate a larger number of BACS functions with a higher level of implementation.

Nonetheless, despite the better simulation capabilities of *EnergyPlus/DesignBuilder*, neither of the two software tools are able to simulate all BACS functions or all implementation levels.

The results of the simulations made on the case study confirm the observations made previously on the ability to simulate BACS functions. Indeed, the BACS efficiency class achievable by the two software tools are different: class C with *Edilclima EC700* and class A with *EnergyPlus/DesignBuilder*.

Because of the reduced simulation capabilities of Edilclima EC700, only the results of Energy-Plus/DesignBuilder are taken into account for a complete analysis of the energy savings. In any case, even the partial results with Edilclima EC700 show that reaching efficiency class C increases the energy performances of the case study.

The results with *EnergyPlus/DesignBuilder* show, as expected, that high performance devices allow to reduce the energy consumption. Figure 7.1 shows the percentage savings of sensible energy needs for heating, sensible energy needs for cooling and ventilation electric energy respectively. The reference point is BACS efficiency class D.

As shown in Figure 7.1, the highest savings from class upgrades are obtained by moving from class D to class C. Instead, the energy savings obtained from moving from class C to class B and obtained from moving from class B to class A is about one-third of that between class D and class C.

The greatest energy savings are due to the sensible energy needs for heating, up to 65% with respect

to class A. Energy saving from sensible energy needs for cooling is lower, 14% for class C, 18% for class B and 24% for class A, but it still has a sizable impact on the total energy saving. The energy savings due to ventilation electric energy are 24% for class C, 33% for class B and 46% for class A.

From this, it is clear that the use of BACS functions in the building is energy effective. Therefore, the use of these technological solutions provides a huge contribution to the reduction of energy consumption due to building operation.

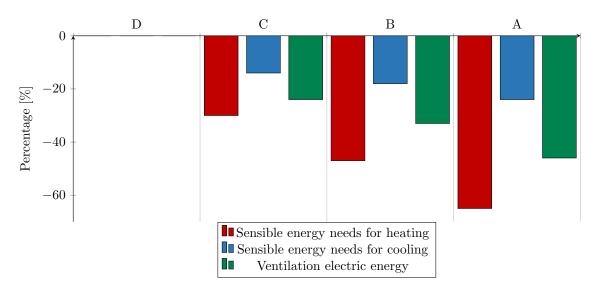


Figure 7.1: Percentage energy savings of classes C,B,A with respect to class D

The second goal was to provide an economical feasibility assessment of the installation of the BACS devices that are simulated in classrooms P of the *Politecnico di Torino*. This evaluation has been done by calculating the payback period of the initial investment.

The results show that the payback period is always significantly lower than the usual lifespan of BACS devices, which is about 10 years if correctly maintained. The payback period is about four years and three months for class C, four years for class B and three years for class A (Figure 7.2).

Figure 7.3 shows the annual electricity cost savings due to the presence of BACS devices in the building. This reduction is about 12% for class C, 18% for class B and 31% for class A. Moreover, the analysis calculates that the average costs savings at the end of the lifespan period is about C 20911 for class C, C 30974 for class B and C 51458 for class A. These cost savings take into account the cost of the devices, the cost of installation and the annual costs for maintenance.

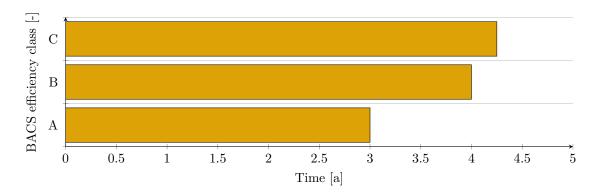


Figure 7.2: Payback period summary

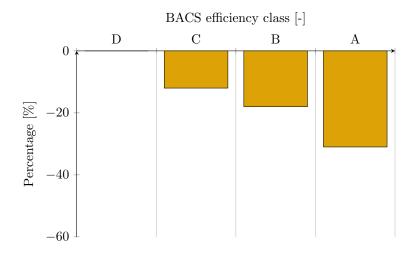


Figure 7.3: Percentage savings of the electricity costs with respect to class D

It is important to highlight that the results obtained are for a specific case study and the simulation of the same devices in a different building or of a different technical building systems could provide different results both in terms of energy saving and cost savings. Moreover, only some BACS functions are simulated in the models and it is important to point out that different BACS functions might have a different impact on the energy performance of the building.

Hence, a possible future development of this work could be the simulation of all BACS functions for different building types and for different technical building systems.

Another possible future development of this thesis is the comparison of the values of sensible energy needs for heating, sensible energy needs for cooling, and ventilation electric energy obtained from the simulation with the actual values measured by sensors installed in the building. This comparison would be useful to evaluate the accuracy of the simulations with respect to the real energy performance of the building.

Appendix A

EN ISO 52120: reference tables

A.1 List of BAC and TBM functions

Table A.1: List of BAC and TBM functions according to standard EN ISO 52120, Table 5 [19]

1	Heating control
1.1	Emission control applied to the heat emitter at room level
1.2	Emission control for Thermal Activated Building Systems (TABS)
1.3	Control of distribution network hot water temperature (supply or return)
1.4	Control of distribution pumps in networks
1.4a	Hydronic balancing heating distribution (including contribution to the balancing to the emis-
	sion side)
1.5	Intermittent control of emission and/or distribution
1.6	Heat generator control for combustion and district heating
1.7	Heat generator control for heat pumps
1.8	Heat generator control for out-door unit
1.9	Sequencing of different heat generators (including renewable energy sources)
1.10	Control of Thermal Energy Storage (TES) charging
2	Domestic Hot Water supply control
2.1	Control of <i>Domestic Hot Water</i> (DHW) storage charging with direct electric heating or
	integrated electric heat pump
2.2	Control of DHW storage charging using hot water generation
2.3	Control of DHW storage charging with solar collector and supplementary heat generation
2.4	Control of DHW circulation pump
3	Cooling control
3.1	Emission control applied to the emitter at room level
3.2	Emission control for TABS
3.3	Control of distribution network chilled water temperature (supply or return)
3.4	Control of distribution pumps in hydraulic networks
3.4a	Hydronic balancing cooling distribution (including contribution to the balancing to the emis-
	sion side)
3.5	

3.6	Interlock between heating and cooling control of emission and/or distribution, to prevent
	heating and cooling systems from operating simultaneously in the same room
3.7	Generator control for cooling
3.8	Sequencing of different chillers (including renewable energy sources)
3.9	Control of TES charging
	Ventilation and air-conditioning control
4	It refers to all systems that bring air into the building, including additional air required for
	heating and cooling
4.1	Supply air flow control at room level, related to the occupancy
4.2	Room air temperature control by the ventilation system, acting on the air flow to regulate
	the air temperature
4.3	Coordination of room air temperature control by ventilation and by static system; in this
	case, the interaction between different systems must be coordinated
4.4	Outside air (OA) flow control
4.5	Air flow or pressure control at the air handler level
4.6	Heat recovery control, to avoid icing in the heat exchanger
4.7	Heat recovery control, to prevent overheating in the heat recovery unit
4.8	Free mechanical cooling control
4.9	Supply air temperature control at the <i>air handling unit</i> (AHU)
4.10	Humidity control, including humidification and dehumidification
5	Lighting control
5.1	Occupancy control
5.2	Light level and daylight control
1	

6 Blind control

6.1 | Blind control, to avoid overheating and glare

7	Technical home and building management Helping to adapt the systems operation to the needs of the building users. Indeed, through sensors the technical building management checks the operation schedule of heating, cooling, ventilation and lighting to correct and adapt the functioning of the systems to user needs
7.1	Set-point management according to the room/zone operating modes
7.2	Run-time management according to a provided time schedule
7.3	Faults detection of technical building systems and support for the diagnosis of these faults
7.4	Reporting on energy consumption given the indoor conditions
7.5	Management of local energy production and energy from renewable resources
7.6	Use of waste energy and heat shifting
7.7	Manage the interaction between the building and a smart grid

A.2 BAC and TBM minimum function requirements for class C

Table A.2: BAC and TBM minimum function requirements for class C according to standard EN ISO 52120, Table B.1 [19]

Heating control	Residential	Non-residential
Emission control		
2 Individual room control	x	Х
Emission control for TABS (heatin	g mode)	
1 Central automatic control	x	х
Control of distribution network hot water temperate	ature (supply or :	return)
1 Outside temperature compensated control	x	х
Control of distribution pumps in n	etworks	
1 On off control	x	х
Hydronic balancing heating distribution (including contribution	to the balancing	to the emission side)
1 Balanced statically per emitter, without group balance	x	
3 Balanced statically per emitter and dynamic group balance		х
Intermittent control of emission and/or	distribution	
1 Automatic control with fixed time program	x	х
Heat generator control (combustion and d	listrict heating)	
1 Variable temperature control depending on outside temper-	x	х
ature		
Heat generator control (heat pu	ump)	
0 On/off control of heat generator	x	х
Heat generator control (outdoor	unit)	
1 Multi-stage control of heat generator	x	Х
Sequencing of different heat gene	erators	
1 Priorities only based on loads	x	х
Control of thermal energy storage (TE	S) charging	
1 2-sensor charging of storage	x	х
Domestic hot water supply system	Residential	Non-residential
Control of DHW storage charging with direct electric heating	g or integrated el	lectric heat pump
1 Automatic on/off control and scheduled charging enable	x	Х
Control of DHW storage charging using heating	ng water generati	ion
1 Automatic on/off control and scheduled charging enable	x	Х
Control of DHW storage charging with solar collector and	supplementary l	neat generation
Automatic control of solar storage charge (Prio. 1) and sup-		
1 plementary storage charge (Prio. 2)	x	х
Control of DHW circulation pr	ımp	
1 With time program	x	х
Cooling control	Residential	Non-residential
Emission control		
2 Individual room control	x	х
Emission control for TABS (cooling	g mode)	

1	Central automatic control	x	x
1	Control of distribution network chilled water tempe		
1	Outside temperature compensated control		x
1	Control of distribution pumps in n		А
1	On off control	x	x
	vdronic balancing cooling distribution (including contribution		
113	Static balancing	x	x
-	Intermittent control of emission and/or		Λ
1	Automatic control with fixed time program	x	x
1	Interlock between heating and cooling control of em		
1	Partial interlock (dependent on the HVAC system)		x
1	Different chiller selection cont		А
	Variable temperature control depending on outside temper-		
1	ature	x	х
	Sequencing of different chille	re	
1	Priorities only based on loads	x	x
1	Control of thermal energy storage (TE		А
1	Time-scheduled storage operation	x	x
T	Time-scheduled storage operation		А
	Ventilation and air-conditioning control	Residential	Non-residential
1	Supply air flow control at the roo		
1	Time control	x	Х
1	Room air temperature control (all-ai		
1	Continuous control	x	х
0	Room air temperature control (air–wa	ter systems)	
0	No coordination		X
1	Coordination	x	
0	Outside air flow control		
0	Fixed OA ratio/OA flow	x	
1	Staged (low/high) OA ratio/OA flow (time scheduled)		Х
	Air flow or pressure control at the air l	nandler level	
1	On off time control	x	Х
	Heat recovery control (icing prote	ection)	
1	With icing protection	x	х
	Heat recovery control (prevention of o	verheating)	
1	With overheating control	x	х
	Free mechanical cooling		
1	Night cooling	x	х
	Supply air temperature contr	col	
1	Constant set-point	x	х
	Humidity control		
1	Dew point control	x	х
	Lighting control	Residential	Non-residential
		1	
0	Occupancy control Manual on/off switch	v	
$\frac{0}{2}$	Automatic detention (auto on)	x	37
			x

	Light level/daylight control		
0	Manual (central)	х	х
	Blind control	Residential	Non-residential
1	Motorized operation with manual control	x	
2	Motorized operation with automatic control		x
	Technical home and building management	Residential	Non-residential
	Set-point management		
0	Manual setting room by room individually	x	
1	Adaptation from distributed/decentralized plant rooms only		х
	Run time management		
0	Manual setting (plant enabling)	x	
1	Individual setting following a predefined time schedule in- cluding fixed preconditioning phases		х
D	betecting faults of technical building systems and providing sup	port to the diag	gnosis of these faults
0	No central indication of detected faults and alarms	x	
1	With central indication of detected faults and alarms		х
	Reporting information regarding energy consumpt	tion, indoor cond	litions
0	Indication of actual values only (e.g. temperatures, meter values)	x	х
	Local energy production and renewab	le energies	
0	Uncontrolled generation depending on the fluctuating avail- ability of RES and or run time of CHP; overproduction will be fed into the grid	x	x
	Waste heat recovery		
0	Instantaneous use of waste heat or heat shifting	х	x
	Smart grid interaction		
0	Building is operated independently from the grid load	x	x

A.3 Factor-based method

NON-	D		C (reference)		В		A	
RESIDENTIAL	$\mathbf{f}_{\mathbf{BAC},\mathbf{H}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{C}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{H}}$	$\mathbf{f}_{\mathbf{BAC,C}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{H}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{C}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{H}}$	$\mathbf{f}_{\mathbf{BAC,C}}$
Offices	1.44	1.57	1	1	0.79	0.80	0.70	0.57
Lecture hall	1.22	1.32	1	1	0.73	0.94	0.30	0.64
Education build- ings	1.20	-	1	1	0.88	-	0.80	-
Hospital	1.31	-	1	1	0.91	-	0.86	-
Hotels	1.17	1.76	1	1	0.85	0.79	0.61	0.76
Restaurants	1.21	1.39	1	1	0.76	0.94	0.69	0.60
Wholesale and re- tail trade service buildings	1.56	1.59	1	1	0.71	0.85	0.46	0.55
Other types	-	-	1	1	-	-	-	-
RESIDENTIAL	1.09	-	1	-	0.88	-	0.81	-

Table A.3: BACS efficiency factors $f_{BAC,H}$ and $f_{BAC,C}$ (Table A.5 and A.6 of EN ISO 52120-1)

Table A.4: BACS efficiency factor $f_{BAC,DHW}$ (Table A.7 and A.8 of EN ISO 52120-1)

	D	C (reference)	В	A
	$\mathbf{f}_{\mathbf{BAC},\mathbf{DHW}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{DHW}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{DHW}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{DHW}}$
NON-RESIDENTIAL	1.11	1	0.9	0.8
RESIDENTIAL	1.11	1	0.9	0.8

Table A.5: BACS efficiency factors $f_{BAC,L}$ and f_{BAC} ,	$_{aux}$ (Table A.9 of EN ISO 52120-1)
--	--

NON-	D		C (reference)		В		A	
RESIDENTIAL	$\mathbf{f}_{\mathbf{BAC},\mathbf{L}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{aux}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{L}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{aux}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{L}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{aux}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{L}}$	$\mathbf{f}_{\mathbf{BAC},\mathbf{aux}}$
Offices	1.10	1.15	1	1	0.85	0.86	0.72	0.72
Lecture hall	1.10	1.11	1	1	0.88	0.86	0.76	0.78
Education build-	1.10	1.12	1	1	0.88	0.87	0.76	0.74
ings								
Hospital	1.20	1.10	1	1	1	0.98	1	0.96
Hotels	1.10	1.12	1	1	0.88	0.89	0.76	0.78
Restaurants	1.10	1.09	1	1	1	0.96	1	0.92
Wholesale and re-			1		1		1	
tail trade service	1.10	1.13	1	1	1	0.95		0.91
buildings								
Other types	-	-	1	1	-	-	-	-

Appendix B

EN ISO 52120: calculation method

B.1 Factor-based method

To evaluate the energy delivered with the factor-based method, EN ISO 52120 standard defines the following formulas for each system involved [19].

For heating and cooling systems, the following formulas are used:

$$Q_{H/C,tot,BAC} = (Q_{H/C,nd,B} + Q_{H/C,ls}) \cdot \frac{f_{BAC,H/C}}{f_{BAC,H/C,ref}}$$
(B.1)

$$W_{H/C,aux,BAC} = W_{H/C,aux} \cdot \frac{f_{BAC,el}}{f_{BAC,el,ref}}$$
(B.2)

where:

- $Q_{H/C,tot,BAC}$ is the total heating (H) or cooling (C) energy of the considered BACS efficiency class,
- $Q_{H/C,nd,B}$ is the heating or cooling energy required by the building,
- $Q_{H/C,ls}$ is the energy loss of the heating or cooling systems,
- $W_{H/C,aux,BAC}$ is the electrical auxiliary energy for heating or cooling related to BACS efficiency class,
- $f_{BAC,H/C}$ is the BACS efficiency factor for thermal energy (heating or cooling),
- $f_{BAC,H/C,ref}$ is the BACS efficiency factor for thermal energy (heating or cooling) of the reference BACS efficiency class C,
- $f_{BAC,el}$ is the BACS efficiency factor for electric energy,
- $f_{BAC,el,ref}$ is the BACS efficiency factor for electric energy of the reference BACS efficiency class.

For the domestic how water production systems, the following formula is used:

$$Q_{DHW,BAC} = Q_{DHW} \cdot \frac{f_{BAC,DHW}}{f_{BAC,DHW,ref}} \tag{B.3}$$

where

• $Q_{DHW,BAC}$ is the energy required for the production of domestic hot water of the considered BACS efficiency class,

- Q_{DHW} is the energy need for domestic hot water production of the building,
- $f_{BAC,DHW}$ is the BACS efficiency factor for thermal energy (domestic hot water production),
- $f_{BAC,DHW,ref}$ is the BACS efficiency factor for thermal energy (domestic hot water production) of the reference BACS efficiency class C.

For the ventilation systems, the following formula is used:

$$W_{V,aux,BAC} = W_{V,aux} \cdot \frac{f_{BAC,el}}{f_{BAC,el,ref}} \tag{B.4}$$

where

- $W_{V,aux,BAC}$ is the electrical auxiliary energy for ventilation system of the considered BACS efficiency class,
- $W_{V,aux}$ is the electrical auxiliary energy for ventilation system of the building,
- $f_{BAC,el}$ is the BACS efficiency factor for electric energy,
- $f_{BAC,el,ref}$ is the BACS efficiency factor for electric energy of the reference BACS efficiency class C.

For the lighting systems, the following formula is used:

$$W_{L,BAC} = W_L \cdot \frac{f_{BAC,el}}{f_{BAC,el,ref}} \tag{B.5}$$

where

- $W_{L,BAC}$ is the electrical energy for the lighting system related to BAC efficiency class,
- W_L is the electrical energy for the lighting system of the building,
- $f_{BAC,el}$ is the BAC efficiency factor for electric energy,
- $f_{BAC,el,ref}$ is the BAC efficiency for electric energy for reference BAC.

B.2 Time approach

The energy consumption assessed for a given period by time approach is calculated by the following formula [19]:

$$E = P \cdot \Delta t \cdot k_{ctr} \tag{B.6}$$

where:

- E is the energy consumption for the given time period,
- *P* is the input power of the controlled system, provided by the producer,
- Δt is the duration of the given time period,
- k_{ctr} is a characteristic coefficient that represents the impact of the control system. It is computed as the ratio between the starting time of the system and the duration of the time period.

B.3 Set-point approach

The impact on energy consumption calculated with set-point approach is estimated as follows [19]:

$$E = k_{trans} \cdot \left[\left(\theta_{set} + \Delta \theta_{ctr} \right) - \theta_{ref} \right] \cdot \Delta t \tag{B.7}$$

where:

- E is the energy consumption for the given time period,
- k_{trans} is the transfer coefficient,
- θ_{set} is the temperature set-point of the control system,
- $\Delta \theta_{ctr}$ is the impact of the actual control system. It is equal to 0 if the system is perfectly balanced, it has negative or positive values in the case of cooling or heating respectively,
- θ_{ref} is the reference temperature, according to the external environmental condition,
- Δt is the duration of the given time period.

B.4 Correction coefficient approach

The impact on the energy consumption calculated with the correction coefficient approach is evaluated as follows [19]:

$$E = E_{ref} \cdot k_{ctr} \tag{B.8}$$

where:

- E is the demanded or consumed energy,
- E_{ref} is the consumed energy in the reference situation,
- k_{ctr} is a correction coefficient that represents the increase or decrease of energy consumption with respect to the reference situation. It depends on the boundary conditions, like the climate.

Bibliography

- F. Bianco Mauthe Degerfeld, G. De Luca, I. Ballarini, and V. Corrado. A comparison between new European technical standards and dynamic simulation tools for chiller modelling. DJournal of Physics: Conference Series, Volume 2385, ATI Annual Congress (ATI 2022) 11/09/2022 -14/09/2022 Bari, Italy.
- [2] BuildingsIOT. Improving the Length Your Building Automaof Useful Life. https://www.buildingsiot.com/blog/ tion System's improving-the-length-of-your-building-automation-systems-useful-life-bd#:~:text= Today%2C%20a%20typical%20building%20automation,does%20not%20become%20obsolete% 20sooner. Online; accessed 02-03-2023.
- [3] CEN European Committee for Standardization. EN 15193-1:2017, Energy performance of buildings. Energy requirements for lighting. Specifications, Module M9.
- [4] CEN European Committee for Standardization. EN 15232-1:2017, Energy performance of buildings - Part 1: Impact of Building Automation, Controls and Building Management Modules M10-4,5,6,7,8,9,10.
- [5] CEN European Committee for Standardization. EN 15316-1:2017, Energy performance of buildings. Method for calculation of system energy requirements and system efficiencies. General and Energy performance expression, Module M3-1, M3-4, M3-9, M8-1, M8-4.
- [6] CEN European Committee for Standardization. EN 15316-2:2017, Energy performance of buildings. Method for calculation of system energy requirements and system efficiencies. Space emission systems (heating and cooling), Module M3-5, M4-5.
- [7] CEN European Committee for Standardization. EN 15316-3:2017, Energy performance of buildings. Method for calculation of system energy requirements and system efficiencies. Space distribution systems (DHW, heating and cooling), Module M3-6, M4-6, M8-6.
- [8] CEN European Committee for Standardization. EN 15316-4-1:2017, Energy performance of buildings. Method for calculation of system energy requirements and system efficiencies. Space heating and DHW generation systems, combustion systems (boilers, biomass), Module M3-8-1, M8-8-1.
- [9] CEN European Committee for Standardization. EN 15316-4-5:2017, Energy performance of buildings. Method for calculation of system energy requirements and system efficiencies. District heating and cooling, Module M3-8-5, M4-8-5, M8-8-5, M11-8-5.
- [10] CEN European Committee for Standardization. EN 15316-5:2017, Energy performance of buildings. Method for calculation of system energy requirements and system efficiencies. Space heating and DHW storage systems (not cooling), Module M3-7, M8-7.

- [11] CEN European Committee for Standardization. EN 16798-13:2017, Energy performance of buildings
 Ventilation for buildings. Part 13: Calculation of cooling systems (Module M4-8) Generation.
- [12] CEN European Committee for Standardization. EN 16798-3:2017, Energy performance of buildings. Ventilation for buildings. For non-residential buildings. Performance requirements for ventilation and room-conditioning systems (Modules M5-1, M5-4).
- [13] CEN European Committee for Standardization. EN 16798-5-1:2017, Energy performance of buildings. Ventilation for buildings. Calculation methods for energy requirements of ventilation and air conditioning systems (Modules M5-6, M5-8, M6-5, M6-8, M7-5, M7-8). Method 1: Distribution and generation.
- [14] CEN European Committee for Standardization. EN 16798-7:2017, Energy performance of buildings. Ventilation for buildings. Calculation methods for the determination of air flow rates in buildings including infiltration (Modules M5-5).
- [15] CEN European Committee for Standardization. EN 16798-9:2017, Energy performance of buildings. Ventilation for buildings. Calculation methods for energy requirements of cooling systems (Modules M4-1, M4-4, M4-9). General.
- [16] CEN European Committee for Standardization. EN ISO 15927-1:2005, Hygrothermal performance of buildings - Calculation and presentation of climatic data - Part 4: Hourly data for assessing the annual energy use for heating and cooling.
- [17] CEN European Committee for Standardization. EN ISO 16484-1:2010, Building automation and control systems (BACS) Part 1: Project specification and implementation.
- [18] CEN European Committee for Standardization. EN ISO 52016-1:2017, Energy performance of buildings – Energy needs for heating and cooling, internal temperatures and sensible and latent heat loads - Part 1: Calculation procedures.
- [19] CEN European Committee for Standardization. EN ISO 52120-1:2022, Energy performance of buildings - Contribution of building automation, controls and building management - Part 1: General framework and procedures.
- [20] Comitato Termotecnico Italiano. Anni tipo climatici d'Italia. https://www.cti2000.it/index. php?controller=news&action=show&newsid=34985. Online; accessed 26-02-2023.
- [21] DesignBuilder Software. $DesignBuilder^{TM}$ Version 6.1.
- [22] Edilclima S.r.l Engineering and Software. EC700 Calcolo prestazioni energetiche degli edifici, EC701 Progetto e verifiche edificio-impianto, EC705 Attestato energetico, EC709 Ponti termici - Manuale d'uso.
- [23] European Commission. Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on energy performance of buildings.
- [24] European Commission. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on energy performance of buildings (recast).
- [25] European Commission. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency.

- [26] European Commission. Energy performance of buildings directive Revised in 2018, the directive will help reach the building and renovation goals set out in the European Green Deal. https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/ energy-performance-buildings-directive_en. Online; accessed 06-02-2023.
- [27] European Commission. Revision of the Energy Performance of Buildings Directive: Fit for 55 package.
- [28] Gestore Mercati Energetici. Statistiche Prezzo medio delibera ARERA 300/05 Febbraio 2023. https://www.mercatoelettrico.org/it/Statistiche/ME/PrezzoMedioAEEG.aspx. Online; accessed 20-03-2023.
- [29] Gestore Servizi Energetici. Regole applicative decreto 16 Febbraio 2016, Incentivazione della produzione di energia termica da impianti a fonti rinnovabili ed interventi di efficienza energetica di piccole dimensioni.
- [30] Governo Italiano. Legge 28 Dicembre 2015 n.208, Disposizioni per la formazione del bilancio annuale e pluriennale dello Stato (legge di stabilità 2016).
- [31] Governo Italiano. Regolamento recante norme per la progettazione, l'installazione, l'esercizio e la manutenzione degli impianti termici degli edifici ai fini del contenimento dei consumi di energia, in attuazione dell'art. 4, comma 4, della L. 9 gennaio 1991, n. 10.
- [32] ISO International Organization for Standardization. ISO 18523-1:2016, Energy performance of buildings — Schedule and condition of building, zone and space usage for energy calculation - Part 1: Non-residential buildings.
- [33] Ministero della Transizione Ecologica. Decreto 23 giugno 2022, Criteri ambientali minimi per l'affidamento del servizio di progettazione di interventi edilizi, per l'affidamento dei lavori per interventi edilizi e per l'affidamento congiunto di progettazione e lavori per interventi edilizi.
- [34] Ministero dello Sviluppo Economico. Decreto 16 Febbraio 2016, Aggiornamento Conto termico.
- [35] Ministero dello Sviluppo Economico. Decreto 26 Giugno 2015, Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici.
- [36] Ministero dello Sviluppo Economico. Decreto 6 Agosto 2020, Requisiti tecnici per l'accesso alle detrazioni fiscali per la riqualificazione energetica degli edifici cd. Ecobonus.
- [37] Presidente della repubblica. Decreto Legislativo 10 Giugno 2020 n°48, Attuazione della direttiva (UE) 2018/844 del Parlamento europeo e del Consiglio, del 30 maggio 2018, che modifica la direttiva 2010/31/UE sulla prestazione energetica nell'edilizia e la direttiva 2012/27/UE sull'efficienza energetica.
- [38] Schneider Electric SE. Sistemi di domotica, Home automation. https://www.se. com/it/it/product-category/2200-sistemi-di-domotica-home-automation/?filter= business-5-residenziale-e-terziario. Online; accessed 06-02-2023.
- [39] Siemens. Building Automation and Control. https://new.siemens.com/it/it/prodotti/ buildingtechnologies/automation.html. Online; accessed 06-02-2023.

- [40] UNI Ente Italiano di Normazione. UNI 10349-1:2016, Riscaldamento e raffrescamento degli edifici - Dati climatici - Parte 1: Medie mensili per la valutazione della prestazione termo-energetica dell'edificio e metodi per ripartire l'irradianza solare nella frazione diretta e diffusa e per calcolare l'irradianza solare su di una superficie inclinata.
- [41] UNI Ente Italiano di Normazione. UNI/TS 11651:2016, Procedura di asseverazione per i sistemi di automazione e regolazione degli edifici in conformità alla UNI EN 15232-1.
- [42] U.S. Department of Energy. Engineering Reference, EnergyPlus[™] Version 22.1.0 Documentation.
- [43] U.S. Department of Energy. Input Output Reference, EnergyPlus[™] Version 22.1.0 Documentation.

List of Tables

4.1	Emission control summary	12
4.2	Emission control for TABS summary	14
4.3	Control of distribution network hot water temperature (supply or return) summary	15
4.4	Control of distribution pumps in networks summary	16
4.5	Hydronic balancing heating (including contribution to the balancing to the emission side)	
	summary	17
4.6	Intermittent control of emission and/or distribution summary	18
4.7	Heat generator control for combustion and district heating summary	19
4.8	Heat generator control (heat pump) summary	20
4.9	Heat generator control (outdoor unit) summary	21
4.10	Sequencing of different heat generators summary	22
4.11	Control of thermal energy storage (TES) charging summary	23
4.12	Control of DHW storage charging with direct electric heating or integrated electric heat	
	pump summary	24
4.13	Control of DHW storage charging using hot water generation summary	25
4.14	Control of DHW storage charging with solar collector and supplementary heat generation	
	summary	26
4.15	Control of DHW circulation pump summary	27
4.16	Emission control summary	28
4.17	Emission control for TABS summary	30
4.18	Control of distribution network chilled water temperature (supply or return) summary	31
4.19	Control of distribution pumps in hydraulic network summary	32
4.20	Hydronic balancing heating (including contribution to the balancing to the emission side)	
	summary	33
4.21	Intermittent control of emission and/or distribution summary	34
4.22	Intermittent control of emission and/or distribution summary	35
4.23	Generation control for cooling summary	36
4.24	Sequencing of different chillers summary	37
4.25	Control of thermal energy storage (TES) charging summary	38
4.26	Supply air flow control at the room level summary	39
4.27	Room air temperature control by ventilation system (all air system, combination with	
	static system as cooling ceiling, radiators) summary	41
4.28	Coordination of room air temperature control by ventilation and by static system summary	42
4.29	Outdoor air (OA) flow control summary	43
4.30	Air flow of pressure control at air handler level summary	44
4.31	Heat recovery control: icing protection summary	45
4.32	Heat recovery control: prevention of overheating summary	46

4.33	Free mechanical cooling summary	47
4.34	Supply air temperature control at the air handling unit (AHU) level summary	48
4.35	Humidity control summary	49
4.36	Occupancy control summary	50
4.37	Light level/Daylight control (Daylight harvesting) summary	51
4.38	Blind control summary	52
	Level of BACS functions achievable by the two software tools	53
5.1	Geometrical characteristics	56
5.2	Climatic data	56
5.3	Average monthly solar irradiation	57
5.4	Average monthly outdoor temperatures	57
5.5	Building activity summary	58
5.6	Building set-points temperature summary	58
5.7	Building internal heat gains summary	58
5.8	Building occupancy schedule	58
5.9	External wall stratigraphy	60
	External wall thermo-physical characteristic	60
5.11	Internal wall stratigraphy	61
5.12	Internal wall thermo-physical characteristic	61
5.13	Slab-on-ground stratigraphy	62
5.14	Slab-on-ground thermo-physical characteristic	62
5.15	Flat roof stratigraphy	63
5.16	Flat roof thermo-physical characteristic	63
5.17	Classroom rooftop system characteristics	64
5.18	Hallway and restroom rooftop system characteristics	65
5.19	Selected BACS function level achievable in the two models	75
5.20	Evaluation of BACS class with <i>Edilclima EC700</i> software	76
5.21	Evaluation of BACS class with <i>EnergyPlus/DesignBuilder</i> software	77
5.22	Daily values of total internal gains with <i>Edilclima EC700</i>	79
5.23	Monthly sensible energy needs for heating of class D with $Edilclima EC700 \ldots \ldots$	81
5.24	Monthly sensible energy needs for cooling of class D with <i>Edilclima EC700</i>	81
5.25	Monthly fan electric energy of class D with <i>Edilclima EC700</i>	82
5.26	Monthly fan electric energy of class C with <i>Edilclima EC700</i>	83
5.27	Monthly sensible energy needs for heating of class C with mechanical ventilation systems	٥ ٣
5 00	with Edilclima EC700	85
5.28	Monthly sensible energy needs for cooling of class C with mechanical ventilation systems	0 r
5 00	with Edilclima EC700	85
5.29	Monthly sensible energy needs for heating of class C with hybrid ventilation systems with	
	Edilclima EC700	86
5.30	Monthly sensible energy needs for cooling of class C with hybrid ventilation systems with <i>Edilclima EC700</i>	87
5.31	BACS efficiency class comparison of monthly sensible energy needs for heating with Edil-	
	clima EC700	88
5.32	Comparison of heating sensible energy needs results obtained with the factor-based method	
	[19] and the heating sensible energy needs results with $Edilclima EC700 \ldots \ldots \ldots$	89

5.33	BACS efficiency class comparison of monthly sensible energy needs for cooling with <i>Edil</i> -	
	<i>clima EC700</i>	90
5.34	Cooling sensible energy needs factors with <i>Edilclima EC700</i>	90
5.35	BACS efficiency class comparison of monthly fan electric energy with $Edilclima\ EC700$.	91
5.36	Comparison of fan electric energy results obtained with the factor-based method [19] and	
	the fan electric energy results with <i>Edilclima EC700</i>	92
5.37	Daily internal gains with <i>EnergyPlus/DesignBuilder</i>	94
5.38	Monthly sensible energy needs for heating of class D with $EnergyPlus/DesignBuilder$	96
5.39	Monthly sensible energy needs for cooling of class D with $EnergyPlus/DesignBuilder$	96
5.40	Monthly supply fan electric energy of class D with <i>EnergyPlus/DesignBuilder</i>	97
5.41	Monthly extract fan electric energy of class D with <i>EnergyPlus/DesignBuilder</i>	97
5.42	Monthly sensible energy needs for heating of class C with ${\it EnergyPlus/DesignBuilder}$	99
5.43	Monthly sensible energy needs for cooling of class C with $EnergyPlus/DesignBuilder$	99
5.44	Monthly supply fan electric energy of class C with <i>EnergyPlus/DesignBuilder</i>	100
5.45	Monthly extract fan electric energy of class C with <i>EnergyPlus/DesignBuilder</i>	100
5.46	Monthly sensible energy needs for heating of Class B with $EnergyPlus/DesignBuilder$	102
5.47	Monthly sensible energy needs for cooling of Class B with $EnergyPlus/DesignBuilder$	102
5.48	Monthly supply fan electric energy of Class B with <i>EnergyPlus/DesignBuilder</i>	103
5.49	Monthly extract fan electric energy of Class B with $EnergyPlus/DesignBuilder$	103
5.50	Monthly sensible energy needs for heating of class A with ${\it EnergyPlus/DesignBuilder}$	105
5.51	Monthly sensible energy needs for cooling of class A with ${\it EnergyPlus/DesignBuilder}$	105
5.52	Monthly supply fan electric energy of class A with <i>EnergyPlus/DesignBuilder</i>	106
5.53	Monthly extract fan electric energy of class A with <i>EnergyPlus/DesignBuilder</i>	106
5.54	$Class \ comparison \ of \ monthly \ sensible \ energy \ needs \ for \ heating \ with \ Energy Plus/DesignBuildence \ and \ and \ begin{tabular}{lllllllllllllllllllllllllllllllllll$	r107
5.55	Comparison of heating sensible energy needs results with the factor-based method [19] and	
	the heating sensible energy needs with <i>EnergyPlus/DesignBuilder</i>	108
5.56	$Class \ comparison \ of \ monthly \ sensible \ energy \ needs \ for \ cooling \ with \ Energy Plus/DesignBuilded \ and \ and$	r108
5.57	Sensible energy needs for cooling results with <i>EnergyPlus/DesignBuilder</i>	110
5.58	Class comparison of monthly supply fan electric energy with ${\it EnergyPlus/DesignBuilder}$.	110
5.59	Class comparison of monthly extract fan electric energy with ${\it EnergyPlus/DesignBuilder}$.	111
5.60	Comparison of fan electric energy results with the factor-based method [19] and the fan	
	electric energy results with <i>EnergyPlus/DesignBuilder</i>	112
6.1	Devices that satisfy the BACS functions implemented in each BACS efficiency class	115
6.2	Annual electric energy for each BACS efficiency class	
6.2	Annual electric costs and annual electric savings compared with class D	
6.4	Devices and installation costs of BACS devices used in class C	
6.5	Devices and installation costs of BACS devices used in class B	
0.5 6.6	Devices and installation costs of BACS devices used in class B	
6.7	Payback period analysis for class C	
6.8	Payback period analysis for class B	
6.9	Payback period analysis for class A	
0.0		110
A.1	List of BAC and TBM functions according to standard EN ISO 52120, Table 5 [19]	Ι
A.2	BAC and TBM minimum function requirements for class C according to standard EN ISO	
	52120, Table B.1 [19]	III
A.3	BACS efficiency factors $f_{BAC,H}$ and $f_{BAC,C}$ (Table A.5 and A.6 of EN ISO 52120-1)	\mathbf{VI}

A.4	BACS efficiency factor $f_{BAC,DHW}$ (Table A.7 and A.8 of EN ISO 52120-1)	VI
A.5	BACS efficiency factors $f_{BAC,L}$ and $f_{BAC,aux}$ (Table A.9 of EN ISO 52120-1)	VI

List of Figures

4.1	Edilclima EC700 logo (left), EnergyPlus logo (center) and DesignBuilder logo (right)	11
5.1	Spatial context of the building	55
5.2	Building planimetry (out of scale)	56
5.3	Thermal zone subdivision	57
5.4	Occupancy factor, appliances utilization factor, and lighting utilization factor for the week-	
	days	59
5.5	External wall stratigraphy	60
5.6	External wall interstitial condensation and superficial condensation check in the most crit-	
	ical month (November)	60
5.7	Internal wall stratigraphy	61
5.8	Internal wall interstitial condensation and superficial condensation check in the most crit-	
	ical month (October)	61
5.9	Slab-on-ground stratigraphy	62
5.10	Slab-on-ground interstitial condensation and superficial condensation check in the most	
	critical month (March)	62
5.11	Flat roof stratigraphy	63
5.12	Flat roof interstitial condensation and superficial condensation check in the most critical	
	month (November) \ldots	63
5.13	Functional diagram of the rooftop system of one class	65
5.14	Functional diagram of the rooftop system of common spaces	66
5.15	Edilclima EC700 model (left) and EnergyPlus/DesignBuilder model (right)	67
5.16	Climatic data setting in $Edilclima\ EC700\ (left)$ and $EnergyPlus/DesignBuilder\ (right)$	67
5.17	Activity data setting in $Edilclima\ EC700\ (left)$ and $EnergyPlus/DesignBuilder\ (right)$	68
5.18	Example of stratigraphy settings in $Edilclima \ EC700$ (left) and $EnergyPlus/DesignBuilder$	
	(right)	68
5.19	Plan tree of the ROOFTOP systems	69
5.20	Heating system - Circuit data-sheet settings	69
5.21	Heating system - Generation - Generator data-sheet settings	70
5.22	Ventilation system data-sheet settings	70
5.23	Ventilation system - Flow rate data-sheet settings	70
5.24	$V\!entilation\ system$ - $Pipes\ data-sheet\ settings,\ exhaust\ fan\ (left)\ and\ supply\ fan\ (right)$	71
5.25	Cooling system - Circuit data-sheet settings	71
5.26	Cooling system - Generation - Generator data-sheet settings	71
5.27	Functional scheme of the rooftop systems	72
5.28	Functional scheme of classroom rooftop system	72
5.29	Functional scheme of hallway and restrooms rooftop system	73

5.30	HVAC thermal zone graphical representation (left) and settings (right)	73
5.31	Classroom rooftop system diagram (left) and hallway and restrooms rooftop system dia-	
	gram (right)	73
5.32	rooftop components settings	74
5.33	Hourly external temperature of the site with <i>Edilclima EC700</i>	79
5.34	Total daily internal gains results with <i>Edilclima EC700</i>	79
5.35	Hourly mean air temperature and set-point temperatures of class D with <i>Edilclima EC700</i>	80
5.36	Daily solar gains of class D with <i>Edilclima EC700</i>	80
5.37	Monthly sensible energy needs for heating and cooling of class D with $Edilclima\ EC700$.	81
5.38	Monthly fan electric energy of class D with <i>Edilclima EC700</i>	82
5.39	Daily solar gains of class C with <i>Edilclima EC700</i>	83
5.40	Monthly fan electric energy of class C with <i>Edilclima EC700</i>	84
5.41	Hourly mean air temperature and set-point temperatures of class C with mechanical ven-	
5.42	tilation systems with <i>Edilclima EC700</i>	84
	tion systems obtained with <i>Edilclima EC700</i>	85
5.43	Hourly mean air temperature and set-point temperatures of class C with hybrid ventilation	
	systems with Edilclima EC700	86
5.44	Monthly sensible energy needs for heating and cooling of class C with hybrid ventilation	
	systems with Edilclima EC700	87
5.45	BACS efficiency class comparison of monthly sensible energy needs for heating with <i>Edil</i> -	
	<i>clima EC700</i>	88
5.46	BACS efficiency class comparison of monthly sensible energy needs for cooling with <i>Edil</i> -	
	<i>clima EC700</i>	90
5.47	BACS efficiency class comparison of monthly fan electric energy with $Edilclima \ EC700$.	91
5.48	Hourly mean air temperature and set-point temperatures of class D with <i>Edilclima EC700</i>	92
5.49	Hourly mean air temperature and set-point temperatures of class C with mechanical ven-	
	tilation systems with <i>Edilclima EC700</i>	93
5.50	Hourly mean air temperature and set-point temperatures of class C with hybrid ventilation	
	systems with Edilclima EC700	93
5.51	Hourly external temperature of the site with <i>EnergyPlus/DesignBuilder</i>	94
5.52	Daily internal gains results with <i>EnergyPlus/DesignBuilder</i>	94
5.53	Hourly mean air temperature and set-point temperatures of class D with EnergyPlus/Design	
	Builder	95
5.54	Daily solar gains of class D with EnergyPlus/DesignBuilder	95
5.55	Monthly sensible energy needs for heating and cooling of class D with EnergyPlus/DesignBuild	er 96
5.56	Monthly supply and extract fans electric energy of class D with EnergyPlus/DesignBuilder	97
5.57	Hourly mean air temperature and set-point temperatures of class C with EnergyPlus/Design	
	Builder	98
5.58	Daily solar gains of class C with EnergyPlus/DesignBuilder	98
5.59	Monthly sensible energy needs for heating and cooling of class C with $EnergyPlus/DesignBuild$	er 99
5.60	Monthly supply and extract fans electric energy of class C with EnergyPlus/DesignBuilder	100
5.61	Hourly mean air temperature and set-point temperatures of class B with $EnergyPlus/Design$	
	Builder	101
5.62	Daily solar gains of class B with EnergyPlus/DesignBuilder	101
5.63	Monthly sensible energy needs for heating and cooling of class B with $EnergyPlus/DesignBuildes$	er102

5.64	Monthly supply and extract fans electric of class B with <i>EnergyPlus/DesignBuilder</i>	103
5.65	Hourly mean air temperature and set-point temperatures of class A with ${\it EnergyPlus/Design}$	
	Builder	104
5.66	Daily solar gains of class A with EnergyPlus/DesignBuilder	104
5.67	$Monthly\ sensible\ energy\ needs\ for\ heating\ and\ cooling\ of\ class\ A\ with\ EnergyPlus/DesignBuilder and and and and and and and and and and$	der 105
5.68	Monthly supply and extract fans electric energy of class A with ${\it EnergyPlus/DesignBuilder}$	106
5.69	$Class \ comparison \ of \ monthly \ sensible \ energy \ needs \ for \ heating \ with \ Energy Plus/DesignBuilden \ and \ and \ begin{tabular}{lllllllllllllllllllllllllllllllllll$	r107
5.70	$Class \ comparison \ of \ monthly \ sensible \ energy \ needs \ for \ cooling \ with \ Energy Plus/DesignBuilded \ and \ and$	r109
5.71	Comparison of sensible energy needs for cooling and cooling coil energy with Energy-	
	Plus/DesignBuilder	109
5.72	Class comparison of monthly supply fan electric energy with ${\it EnergyPlus/DesignBuilder}$.	110
5.73	Class comparison of monthly extract fan electric energy with ${\it EnergyPlus/DesignBuilder}$.	111
5.74	Hourly mean air temperature and set-point temperatures of class D with $EnergyPlus/Design$	
	Builder	113
5.75	Hourly mean air temperature and set-point temperatures of class C with $EnergyPlus/Design$	
	Builder	113
5.76	Hourly mean air temperature and set-point temperatures of class B with $EnergyPlus/Design$	
	Builder	113
5.77	Hourly mean air temperature and set-point temperatures of class A with <i>EnergyPlus/Design</i>	
	Builder	114
7.1	Percentage energy savings of classes C,B,A with respect to class D	120
7.2	Payback period summary	120
7.3	Percentage savings of the electricity costs with respect to class D \hdots	121