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Summary

In the last years, collective motions have fascinated and attracted the attention of
the scientific community. Indeed, this type of phenomena is ubiquitous in nature
and often it is of rare beauty, just think about the dance of a large swarm of
starlings during last hours of the day. It is also impressive how ordered patterns
and coherent behaviour emerge from the interactions among individuals. In this
Thesis, we propose a new microscopic model based on a system of interacting
stochastic differential equations of Langevin-type for describing the collective
dynamics of a self-propelled particle swarm. The concept of self-propelled particles
is of crucial importance in modeling the behaviour of animal groups or of cell
populations. Indeed, agents of biological systems are capable of persistent and
active motion, and they can freely move by virtue of their internal metabolism.
There is a rich literature about swarming behaviour, and we formulated our model
by carefully choosing mathematical tools and assumptions. In many of available
models the swarm dynamics is settled in the overdamped regime. Here we formulate
a stochastic dynamical process by adopting an underdamped approach. In our
model we combined three well known forces. First a Morse-type potential that
accounts for social interactions within the swarm. A friction force that has the role
of a restoration term for the microscopic dynamics. Finally, an alignment term
that stimulates particles to assume the velocity of their neighbours via a weighted
average procedure. This alignment term has been proven to have a central role in
leading the swarm dynamics, as it has been shown in several papers in literature
(see, for example, [1], or [13]). In particular, we first derive the equation of motion
for the center of mass, and later we identify three different dynamical regimes
for the swarm dynamics that correspond to the balancing between the alignment
and friction effects. Moreover, numerical simulations have been performed for
supporting the theoretical results. To conclude, we studied the role and the effect of
the finiteness of the swarm ensemble. We found that such finiteness is responsible
for the emerging of random fluctuations in the motion of the center of mass of the
swarm, which is ruled by a stochastic motion as well: the statistical characterisation
of this stochastic motion has been derived.
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Chapter 1

Introduction on Swarm
Models

1.1 Swarming behaviour in biology
One of the most beautiful and impressive natural phenomena, that has fascinated the
observers since ancient times, is the spontaneous emerging of coherent behaviours
in biological systems composed by a large number of interacting individuals. The
ubiquity of such a phenomenon is an impressive and charming feature. Indeed, the

Figure 1.1: A big flock composed of hundreds of birds.
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Introduction on Swarm Models

appearance of self-organization is observable at any spatial scale and in incredibly
different contexts (see [5]). In this regard, I want to point out that there are several
types of self-organizations. Some of these concern collective motions, while others
appear as ordered structures or patterns.
There are plenty of examples of superficial textures of rare beauty, like the ones
characterizing the leopard fur, butterfly wings or snakes or fish skin, and they
belong also to the plant kingdom, just think about some wonderful flowers. We
can observe similar patterns also at the microscopic scale, for instance in spatial
patterns generated by cells following a chemoattractant, as reported in [29], or
in segregation of two different cell populations, as described in [22]. This kind
of sorting phenomena can be modelled through a continuum approach (diffusion-
driven instability or "Turing instability"), or exploiting agent-based modelling (see
[24]), but their analysis lays beyond the aim of the present work.

Figure 1.2: Examples of swarming behaviour in large groups.

Here I want to focus on collective motions, and in particular on swarming phe-
nomenon. In this case coherent and synchronized behaviours appear in a large
group of similarly sized individuals, and productive motion takes place even without
the guide of leaders. It’s also really interesting to underline that an individual
behaves in a very different manner if it is within the swarm or if it is alone. Conse-
quently, we can state that the individual dynamics is determined by the influence
of the rest of the group. This kind of behaviours can be recognized, for instance,
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1.2 – Different modelling approaches

in human crowds or in animal groups (fish schools, insect swarms, bird flocks or
herds of herbivores), in which coherent behaviour emerges from an initial random
configuration (see [15], [30] and [20]). Surprisingly, swarming behaviour has been
observed also in the plant kingdom, specifically during the root system development,
as shown in [18]. In this case, the system counts thousands of roots tips (which
can be seen as the agents of the system), and swarming behaviour can appear as
an efficient way to optimize resources or to explore the underground environment.

1.2 Different modelling approaches
There are different approaches in swarming modelling, depending on the considered
spatial scale (see [17], "Part III: Human behavior and swarming", "Particle, Kinetic,
and Hydrodynamic Models of Swarming", and [23]). A significant part of models
reported in literature exploits a microscopic and discrete approach (agent-based
modelling). In this case, the rules which define the single particle dynamics are
directly set (for this reason they are also referred as "Lagrangian models", see [9]).
Usually the governing equation is of Langevin-type, and so it has the form

m
dv

dt
= −βv + ξ(t), (1.1)

where ξ(t) is a noise term (Wiener process). Often this equation is solved in the
overdamped (or low-Reynolds-number) regime. In this case, the equation of motion
is reduced to a force-velocity relation, which defines the agent velocity as directly
proportional to the acting forces, and so inertial effects are considered negligible.
This overdamped models are applied to a wide range of biological situations: from
the description of collective dynamics of a bee swarm (see [27], [28]), in which
the information of the common direction is spread among individuals by one or
more leaders (bee scouts), to collective cell migration (see [26] for an example of
cancer cell migration, and [31] for chase-and-run migration in heterogeneous cell
populations modelling), or to phase transition in biological tissues (see [11], in
which the transition to collective movement is related to the cell density, and [25],
that analyzes the jamming transition from a solid-like state to a liquid-like state in
a dense cell environment).
In this kind of models a fundamental aspect is the metric type that governs the
interactions amongst individuals, and so that defines shape and extension of the
action area of a certain force. Most current studies consider an Euclidean metric-
based neighborhood, for which the effect exerted by a neighbour depends only on
the Euclidean distance between two individuals, and in this case, each influence
region will be a circle or an annulus. On the other hand, there are evidences
which suggest that in some natural contexts (for example in the case of a bird
flock, as reported in [14]) the influence region depends on a topological metric,
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Introduction on Swarm Models

and so, in other words, that each agent interacts in a certain manner with the
k-closest neighbours. This metric type seems to guarantee significantly higher
cohesion against external perturbations, typically predation. In Figure (1.3) a
significant example is represented: in this case three different influence regions
are considered depending on the acting force. The current models, as commonly
assumed, counts three force terms, a repulsive, an attractive and an alignment one.
In the topological case, right plot, it’s easy to notice that, even if the repulsion
and attraction regions continue to be defined via the euclidean distance between
neighbours, the alignment area includes only the closest individuals with respect to
the considered particle, and so it has not a predetermined shape. This first discrete

Figure 1.3: Graphic representation of the interaction regions determined by an
euclidean (left) and topological (right) metric.

and microscopic approach is particularly suitable to describe the so called "active
matter": a large particles ensemble, each of which is capable of active movement,
due to some sort of internal metabolism. This peculiar feature makes this systems
category being intrinsically out of thermal equilibrium, indeed, each agent continues
to consume and dissipate energy. Often, for this reason, the system components
are referred to as "self-propelled particles", because they are not merely prone
to the environment-determined dynamics but, instead, they can show directed
and persistent motion. This latter concept, and more generally the microscopic
approach, is really useful in projecting and developing artificial swarms. Indeed, in
the spirit of biomimicry, the understanding of natural collective motions can be
translated into the modelling of the dynamics of drones swarm or micro-swimmer
with many biomedical applications.
The other type of models assume a macroscopic point of view, and they exploits

4



1.2 – Different modelling approaches

a continuum approach (see as examples [17], [9], [16]). They are particularly
useful when the number of individuals that compose the group is significantly
large, as in case of insect swarms, fish schools or bacterial populations. Indeed,
the solution of the resulting system of ordinary differential equations (ODEs),
or of stochastic differential equations (SDEs), if random effects are considered,
can be excessively expensive computationally speaking. These models rely on the
definition of evolution equations, usually partial differential equations (PDEs) of
reaction-advection-diffusion type, which describes macroscopic quantities such as
the population density field ρ(x, t) (they are also known as "Eulerian models",
because they describe the local flux of individuals). Furthermore, they are based
on conservation laws, such as conservation of mass and momentum, and on phe-
nomenological assumptions (constitutive relations), often needed for the closure
problem.
A link between the microscopic and the macroscopic point of view can be found
through kinetic models, which describe how, from individual interactions among
agents of the system, it is possible to derive collective behaviours in terms of overall
quantities. The general idea, developed by Boltzmann during the 1870s in the
context of kinetic theory of gases, consists in substituting the definition of the single
particle dynamics with an aggregate statistical description of the entire system, on
the basis of a single representative interaction between two generic particles.
Starting from the microscopic interaction rules, it is possible to derive an evolution
equation for the probability density function f = f(x, v, t) : Rd ×Rd × [0, +∞] −→
R, in order to describe the system from a mesoscopic point of view (d = 2,3 in
order to observe spatial patterns). The equation takes the following form:1

∂tf + v · ∇f
2
(x, v, t) = Q(f, f)(x, v, t), (1.2)

in which the first term represents a transport operator (distribution function f
transported with velocity v by the freely moving particles), while the second term is
the interaction operator. This latter term, which is a bilinear operator, accounts for
the balance between gain and loss (in a statistical sense) of particles with velocity
v in the unit time as a consequence of interactions ("collisions", indeed it is also
known as collision operator, for the original theoretical context in which it has
been developed). The previous expression is known as Boltzmann-type equation,
and from a weak formulation of it, it’s possible to calculate statistical moments
considering a suitable physical observable (for example, φ(v) = 1, v, v2). In this
way, statistical moments are related to macroscopic local quantities, such as local
density ρ(x, t) and mean velocity field u(x, t), and we can then write continuum-like
equations for the conservation of mass (continuity equation) and momentum (as
reported in [17]).
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Introduction on Swarm Models

1.3 Brief overview on existing particle models
There is a rich literature developed during the last years about modelling collective
motions, which characterize the so called "active matter". In this context, a large
number of agents interact each other and they are capable of self-motion in far from
equilibrium conditions. There have been many different attempts to describe in
mathematical terms these wonderful and surprising phenomena of self-organization,
and in this section I want to briefly report some significant examples. They are
of great interest, since each of them shows different mathematical approaches for
describing a given characteristic of the observed phenomenon, and they focus on
different aspects of the system dynamics (for example, rotating patterns or flocking).
I’m particular interested in the way these models define the alignment mechanism,
which is a fundamental aspect of the collective behaviour.

1.3.1 Vicsek model
One of the first models has been proposed by Tamás Vicsek and co-workers (see [1]),
which attempted to insert this wonderful class of natural phenomena into a mathe-
matical framework. They presented a simple model to investigate the emergence of
self-ordered motion in systems of self-propelled particles, taking into account bio-
logical interactions via mathematical evolution rules. In their model particles have
negligible size, and the point-like units move with constant speed modulus. At each
time step they change their direction of motion in accordance with the average direc-
tion of other particles within a given distance r. Random effects are also taken into
account adding a stochastic perturbation term to the direction evolution equation.

Figure 1.4: Ordered motion
takes place for high density and
small noise, N = 300. Image
from [1].

In a typical simulation, N particles are ran-
domly distributed throughout the domain with
the same absolute velocity v and randomly dis-
tributed directions θ. Velocities {vi} of the
agents are determined simultaneously at each
time step, and the position of the i-th particle
is updated according to

xi(t + 1) = xi(t) + vi(t)∆t. (1.3)

The velocity at the following time step, vi(t+1),
is constructed in order to have modulus equal to
v and a direction given by θ(t + 1). This angle
is obtained as

θi(t + 1) = ⟨θ(t)⟩r + ∆θi, (1.4)

6



1.3 – Brief overview on existing particle models

where ⟨θ(t)⟩r denotes the average direction of particles contained within a circle of
radius r centered in the i-th particle, and the term ∆θi is a random perturbation,
which value is extracted from a uniform probability distribution on the interval
[−η/2, η/2]. It is interesting to note that also the velocity of the i-th particle is
taken into account in the averaging process, while calculating the new direction.
In a way, it is a manner for taking into consideration inertial effects, in the sense
that vi(t) affects vi(t + 1), but the dependence on the previous time step velocity
is lost as the number of neighbours increases.
In this case, there are three parameters governing the dynamics of the system: η,
the noise amplitude, ρ, the density of particles, and v the constant speed modulus,
that expresses the distance covered by a particle during a time step. The authors
emphasize that the most interesting regime is the one characterized by high density
and low noise intensity, and in this condition a kinetic phase transition is observed:
particles begin to move in the same spontaneously selected direction performing
net displacement and so motion becomes ordered on a macroscopic scale.
This simple model is capable of reproducing collective behaviour, as rotation
or flocking, and it provides fundamental insights on a wide range of biological
phenomena involving clustering and migration.

1.3.2 D’Orsogna-Bertozzi model
The model described in the following has been proposed by D’Orsogna and Bertozzi
in 2006 (see [10] for more information), and it considers self-propelled particles sub-
jected to frictional and attractive/repulsive forces due to the presence of neighbours.
These latters, are modelled via a Morse potential, which is a pairwise and radial
function. It’s remarkable that they also provided an analysis of stability and mor-
phology of the swarm starting from the shape of the two-body interaction. In fact,
as they stated, a fundamental aspect of swarming dynamics is the understanding
of how particles rearrange into space when their number increases. The agents can
both organize into a crystalline-like structure with a well defined spacing, or collapse
overlapping one over the other. Considering results from statistical mechanics, they
identified regions of the phase diagram of Morse potential characterized by a stable
or a catastrophic regime. In the present model, the dynamics of the N identical
particles is defined by the following equations of motion:

dxi

dt
= vi

dvi

dt
= (α − β|vi|2)vi − 1

N

Ø
j /=i

∇U(|xi − xj|),
(1.5)

where U : Rd −→ R is the Morse potential, which accounts for short-range repulsion
and long-range attraction. Here all agents have the same size, and so unitary mass
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Introduction on Swarm Models

Figure 1.5: Counterclockwise and double mills generated by the current model.
Images taken from [17].

has been considered. The potential U has the following mathematical expression:

U(x) = k(|x|), k(r) = −CAe
− r

lA + CRe
− r

lR , (1.6)

where CA, CR and lA, lR are respectively the intensities and the typical lengths of
attraction and repulsion. Moreover, α parameter models the self-propulsion of
individuals, while β represents the friction contribution, and the balance between
these two terms leads to the asymptotic speed |v| =

ñ
α/β.

As a result of the chosen microscopic dynamics, the model is capable to simulate
formation of stable particle vortexes with one or two simultaneous directions of
motion. The emergence of this structure, however, can depend also on boundary
conditions and domain shape, as reported in [2].
In the cited article, the authors underline how both the stable and catastrophic
regimes can interestingly have proper applications. The first can describe bacterial
colonies dynamics (see for example Myxococcus xanthus myxobacteria), in which
formation of rotating structures with increasing density and compenetration between
cells has been observed. The second one, instead, can be applied in modelling
artificial swarms for which an adequate spacing amongst system components is
desirable, in order to avoid collisions.

1.3.3 Cucker-Smale model
This model has been proposed by Cucker and Smale (see [12] and [17]) and, as a
fundamental feature, it takes into account only an alignment mechanism in defining
the microscopic dynamics of the single particle. It determines the motion of the
particles averaging the relative velocities of neighbours. In this case, the influence

8



1.3 – Brief overview on existing particle models

of the single individual on the alignment process is weighted by its relative distance,
and so closer neighbours exert greater influence than further ones. I think it is
an important assumption and it deserves particular attention: indeed, assuming
that all individuals contribute in the same way to the average velocity of the i-th
particle (even if only inside a prescribed area, as in the Vicsek model), can be a
too strong approximation, depending on the biological context of interest. Then
we can present the governing equations of the model:



dxi

dt
= vi

dvi

dt
= 1

N

NØ
j=1

H(|xi − xj|)(vj − vi),
(1.7)

where the function H accounts for the weighting process based on mutual distance
between particles. It has the following form

H(x) = a(|x|), a(r) = K

(σ2 + |r|2)γ
, (1.8)

Figure 1.6: Unconditional flocking of a
swarm of a hundred particles.

in which K, σ and γ are positive param-
eters that govern the different model
regimes. The function H it is also de-
fined as communication rate, since it
modulates the intensity of the effect that
a certain individual exerts on another
one. Actually we can state that if the
influence is negligible, the two particles
are not communicating, or interacting.
One of the possible collective behaviours
simulated by the present model is the
so called "unconditional flocking". In
such a situation, particles exhibit the

tendency to align, moving with the same mean velocity, and to arrange into a
group with fixed mutual distances, but not necessarily in a crystalline-type pattern.
This configuration emerges from the internal reorganization of the swarm guided
by the alignment process. This observation allow us to state that the presence of
the alignment term is of crucial importance in determining net motion. Here I
want to highlight that the two last reported models show a deterministic dynamics,
but it can be verified that they are stable also in presence of small intensity noise
fluctuations, as reported by the authors.
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Introduction on Swarm Models

1.3.4 Swarming models with leaders

The three models presented above simulate the spontaneous reorganization of a
swarm into defined patterns, as a result of the microscopic individual dynam-
ics. The emergence of coherent behaviour can be determined by an alignment
mechanism (Vicsek and Cucker-Smale models) or thorough the concurrent pres-
ence of a frictional and a potential term, which accounts for social stimuli of
repulsion and attraction. In these cases all the particles have same size and
same role inside the group, indeed they are interchangeable, and they spon-
taneously organize without any information from the outside. This eventual
external stimulus could model the effect of a chemical gradient (chemotaxis),

Figure 1.7: Small swarm guided by 5
leaders (red particles); the target is repre-
sented by the light blue triangle.

of an electromagnetic field, or of a differ-
ent stiffness of the substrate on which
particles are moving (durotaxis). Be-
cause of this lack of external informa-
tion, the productive movement observ-
able in swarming simulations from the
previous models has random direction.
In other natural phenomena it is ob-
served that the movement of the swarm
is guided by leaders, and they are char-
acterized by a different dynamics from
other group members. In fact, the in-
formation brought by leaders has to be
always available, in order to spread it
to the rest of individuals and to guide them towards a target position. We can
recognize a wide variety of swarming phenomena guided by multiple leaders. For
example, in cellular sheet migration during wound healing, "leader cells" situated
at the front edge guide the collective motion towards the cell-free space (see [22]).
Another interesting case, it’s the migration of bees when a colony splits into two
(or more) independent ensembles because of the birth of a new queen. During
swarming, after have identified a suitable nest site (there is a "democratic" decision
between the explorers, that communicate each other possible locations via the
curious waggle dance), worker-bees with the old queen are guided by scouts towards
the new destination. It is estimated that less than 5% of the bees are informed
about the right direction to follow, but, however, the entire swarm is capable of
net motion and coherent behaviour. There are some mathematical models (see
[19] and [28] as examples) that simulate the honeybee swarming guided by scouts.
Interestingly, It has been studied that the larger the group, the smaller the portion
of informed individuals needed to reach the target destination (see [7]), and that
beyond a certain threshold there is not appreciable benefit in increasing the number

10



1.3 – Brief overview on existing particle models

of leaders. For large groups of social animals, such as honeybee colonies, there
are likely some costs about recruiting more explorers, for example in energetic or
metabolic terms (just think how, if the entire community were considered as a
whole, a greater number of informed individuals would result in an increased global
consumption of natural resources); so, reaching the best trade-off between explorers
number and efficiency of the migration is of fundamental importance, and it can
be seen as the result of an evolutionary adaptation.
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Chapter 2

Mathematical Model

2.1 Introduction to the current model
In this section I want to present the mathematical model we developed to simulate
the collective dynamics of a swarm of self-propelled particles. I studied many dif-
ferent examples, and I constructed the current model taking various "mathematical
ingredients" from different sources (see, for instance, [3] and [8]), on the basis of the
assumptions we made and on biological reasons. Unlike most of cases, we solved
the particle dynamics as a stochastic process. Consequently, our motion equations
assume the form of SDEs, unlike ODEs or PDEs commonly used. This allowed us
to perform a statistical analysis in order to investigate physical quantities describing
the overall behaviour of the swarm, such as the expected value and the variance of
the center of mass velocity and position.
We identify the i-th agent with the couple (xi, vi) ∈ R4, where xi = (xi, yi) and
vi = (vi, ui), and so we represent it as a material point in R2 considering its size
to be negligible. Moreover, each particle of the swarm has the same mass, so that
the total mass of the system is equal to M = Nm, with N number of the swarm
components. In our model the microscopic dynamics of the i-th particle is governed
by the following Langevin-type equation:dxi = vidt

mdvi = −βvidt − ∇Uidt + fA
i dt + σdW i

t

with i = 1,2, . . . , N. (2.1)

The first term on the right side of the second equation represents a frictional force,
proportional to the particle velocity and with damping coefficient [β] = [M ] · [T ]−1;
the second term, that is the gradient of a pairwise radial potential (Morse-type
potential), accounts for social stimuli of repulsion and attraction (as done, for
example, in [3] and [10]); the third one defines the alignment contribution, and the
last one is a stochastic noise whose intensity is modulated by the constant σ (from

12



2.1 – Introduction to the current model

now on we consider σ = 1, without loss of generality). Returning to the potential
term, the repulsive effect ensures a minimum space between particles (avoiding
compenetration and collisions between neighbours), while the attractive one models
the tendency of an individual to maintain a connection with the swarm (it can
simulate the desire of social animals to remain close to the rest of the group, or a
mechanical bond between particles, as in a cell culture). The Morse potential has
the following mathematical expression:

U =
N−1Ø
j /=i

Cae−
|xj −xi|

la − Cre
−

|xj −xi|
lr , (2.2)

in which parameters Ca and Cr determines the strength of the interactions and la
and lr are respectively the attraction and the repulsion typical lengths.
The potential force is given as the negative derivative of the Morse potential, so:

−∇U(x, y) =
N−1Ø
j /=i

A
Ca

e−
|xij |

la

|xij|la
− Cr

e−
|xij |

lr

|xij|lr

B
xij +

A
Ca

e−
|xij |

la

|xij|la
− Cr

e−
|xij |

lr

|xij|lr

B
yij. (2.3)

Figure 2.1: Crystalline pattern generated by 1000 particles, when only potential
and friction terms govern the dynamics of the swarm. The center of mass is
represented with the pink dot.
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Here, xij = xj − xi is the difference between the i-th particle position and the
j-th one, and from now on we will adopt this formalism. It has been observed
that most relevant conditions for biological applications take place in case of
long-range attraction and short-range repulsion, and they are obtained by setting
C = Cr/Ca > 1 and l = lr/la < 1 (see [17]). We can also observe that the
potential term accounts for the internal spacing of the swarm, and so it determines
mutual distances between particles. In our case the potential parameters lead
to a catastrophic regime, as defined in [10], and so the diameter of the swarm
doesn’t depend on the number of particles. Moreover, as reported in [3], nu-
merical simulations revealed that the swarm reaches a constant size increasing
the N value. We can thus state that in our model the swarm diameter is only
a function of the potential parameters, and so d = f(Cr/Ca, lr/la) = f(C, l).

Figure 2.2: Potential function (blue line)
with the two regions of repulsion (red) and
attraction(green).

In Figure (2.1) the crystalline pat-
tern is represented and reached by
the swarm when only −∇U(x, y)
and the friction term are acting on
the system. However, in the follow-
ing simulations, the potential force
is combined with the other terms of
the equation, and so, this defined
configurations doesn’t appear.
The third term fAi in our model
accounts for the alignment effect,
which is of crucial importance in
determining collective swarming be-
haviour. In fact, this term cou-
ples the microscopic dynamics of
the single particles and it is fun-
damental for the emergence of self-
organization in the system.

It has the following mathematical expression:

fAi = α

N − 1

N−1Ø
j /=i

vje−
|xij |

lc (2.4)

where lc is again a characteristic length, and the α parameter modulates the intensity
of the alignment interaction. Moreover, I want to briefly discuss the choice of the
current alignment term. Considering a given particle, the alignment term basically
consists of the average of neighbours velocity weighted by the mutual distances
(which are the argument of the negative exponential function). In our model we
assumed an Euclidean metric for the definition of the alignment mechanism, but
without setting bounded regions of action; this choice is explained by considering
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2.2 – Swarm center of mass equations

the fast decay of the exponential function, which guarantees that far individuals
do not affect the dynamics of the i-th particle, since in this case the velocity
multiplying factor in the average process is near zero. We didn’t implement a
topological metric since it requires that only the k-closest neighbours are involved
in the alignment process (for example, 6 to 7 in case of bird flock, see [14]), and so
it can not account for the influence of several neighbours in case of high density
swarms. The i-th particle definitely perceives strongly the closest neighbours, but,
at the same time, it should also be influenced by the presence of a large number of
group members beyond them.
Finally, the last term is a stochastic fluctuation, that plays the role of a perturbation
of the deterministic dynamics. Indeed, since we are modelling the behaviour of
active particles, capable of self-propulsion, we have to give them some sort of
"free will", in order to allow the possibility of not merely following the social rules
of the system (such as repulsion/attraction effects or the incentive to align with
neighbours). Specifically, the noise term is modelled as a standard Brownian
motion, that is a random process W i(t) that depends continuously on time, and its
increments are normally distributed as dW i

t =
√

dt ξ, where ξ is a vector random
variable with normal distribution. I want to emphasize that the random terms for
each particle are independent of each other.

2.2 Swarm center of mass equations
In the previous section I presented the model we developed, briefly focusing on
each term that appears in the Langevin equation, and describing their main
characteristics and the underlying modelling reasons.
Now we derive the equations for the center of mass velocity and position, which
define the dynamics of the swarm, in a manner similar to the one followed in [8].
Summing the evolution equations for all the particles, we obtain

NØ
i=1

mdvi =
NØ

i=1
−βvidt − ∇Uidt + fA

i dt + dW i
t . (2.5)

Figure 2.3: Representation of po-
tential forces between two particles.

Now, we can notice that qN
i=1 vi = NV ,

where V is the velocity of the swarm center
of mass, and the same observation holds also
for the inertial term on the left. Instead, the
summation of all the potential forces lead
to cancel the corresponding terms, since, as
internal forces of the system, they balance
each other. I want to give a proof of this
result considering two particles, but obvi-
ously it can be extended to an arbitrary
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large number of them. Let’s start considering the potential force acting on the i-th
particle:

−∇Ui(xi, xj) = Cae−
|xij |

la
xij

la|xij|
− Cre

−
|xij |

lr
xij

lr|xij|
, (2.6)

and it’s clear that, if the attractive effect overcomes the repulsive one, the i-th
particle will be affected only by an attractive force directed as xij. We can also
write the potential force acting on the j-th particle, and it is:

−∇Uj(xj , xi) = Cae−
|xij |

la
xji

la|xij|
− Cre

−
|xij |

lr
xji

lr|xij|
. (2.7)

Now, observing that the two potential forces have the same modulus but opposite
direction, since xij = −xji, we obtain

∇Ui(xi, xj) + ∇Uj(xj , xi) = 0. (2.8)

This balance between internal forces of the swarm holds for any number of particles,
since considering the single couple we always observe the balance of potential
interactions.
Then I want to focus on the alignment term. Considering the limit lc −→ ∞,
the exponential factor tends to 1, and so the velocities of all the neighbours are
weighted in the same way. This assumption is justified if lc ≫ max(|xij|), and
it can model some sort of mechanical connection between particles, so that also
the velocity of far agents affects the dynamics of a given particle. In our case
numerical simulations show that the constant diameter reached by the swarm
d = max(|xij|) ≈ 4. So, we get the following expression for the alignment term:

fAi = α

N − 1

NØ
i=1

N−1Ø
j /=i

vj = α

N − 1N(N − 1)V = αNV , (2.9)

where again V is the velocity of the swarm center of mass. Finally we have to
rearrange also the noise term. We know from the probability theory that by
summing two independent and normally distributed random variables, such that

X ∼ N (µx, σ2
x)

Y ∼ N (µy, σ2
y),

we get another random variable, defined as

X + Y
d= Z ∼ N (µx + µy, σ2

x + σ2
y).

In fact the Gaussian distribution is a stable probability density function, and this
means that a linear combination of two random Gaussian variables is again a
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2.2 – Swarm center of mass equations

Figure 2.4: Center of mass velocity trends depending on different values of the
alignment characteristic length. Only in this case the noise has been neglected in
numerical simulations for the sake of clarity.

random Gaussian variable. Therefore, the summation of N noise terms, which are
normally distributed, gives us

NØ
i=1

dW i
t

d=
√

NdW̃t , dW̃t ∼ N (0,1) . (2.10)

Then, collecting these last results, we can write the center of mass velocity evolution
equation as

mNdV = −βNV dt + αNV dt +
√

NdW̃t, (2.11)

and, dividing by N, we finally obtain:

mdV = (α − β)V dt + 1√
N

dW̃t. (2.12)

Hereinafter I will drop the tilde symbol for the sake of clarity. Results of simulations
performed with different alignment characteristic lengths lc are reported in Figure
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(2.4). Numerical results have been compared with the analytical prediction in order
to test the model behaviour. Rather than being a physical quantity of the system,
the parameter lc models the discrepancy between a standard average procedure
and the one weighted by the exponential factor. So, the smaller the value of lc, the
greater the divergence between the standard and the weighted average processes.
In other words, the lower the value of lc, the stronger the influence of the closest
neighbours on the alignment contribution in the dynamics of the i-th particle.

2.3 Statistical analysis of the center of mass equa-
tions

In this section I report the calculations about expected value and variance of the
swarm center of mass velocity and position (here we considered only one dimensional
analysis, but it holds for each of the spatial components). I also emphasize how
different regimes, depending on different parameters configurations, lead to strongly
diverging results. I begin reporting results about the statistical analysis of the
center of mass velocity. Consequently, starting from them, we derive also analogous
results for the center of mass position.

2.3.1 Swarm center of mass velocity equation
Let’s begin writing the one-dimensional form of Langevin equation (2.12) for the
center of mass velocity:

mdV = (α − β)V dt + 1√
N

dWt, (2.13)

in which the last noise term comes from the sum of all the Gaussian noise increments
applied to the dynamics of each single particle, as introduced in the previous section.
We can rearrange the equation in order to obtain an explicit solution for V :

dV − (α − β)
m

V dt = 1
m

√
N

dWt, (2.14)

and, multiplying both sides by the exponential term e− (α−β)
m

t and integrating,

Ú
d(e− (α−β)

m
tV ) =

Ú e− (α−β)
m

t

m
√

N
dWt, (2.15)

we get

e− (α−β)
m

tV = V0 +
Ú t

0

e− (α−β)
m

s

m
√

N
dWs, (2.16)
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and finally,
V = V0e

(α−β)
m

t + 1
m

√
N

Ú t

0
e

(α−β)
m

(t−s)dWs. (2.17)

In this last equation V0 is a random variable with standard Gaussian distribution,
accounting for the initial velocity random configuration of the swarm, and the
last term is a stochastic integral. Because the integrand is smooth in time all
interpretations of the stochastic integral are equivalent to the Itô’s one, and so it is
actually an Itô integral. The next step is to evaluate the expected value for each
term in the equation:

E[V ] = E[V0]e
(α−β)

m
t + E

C
1

m
√

N

Ú t

0
e

(α−β)
m

(t−s)dWs

D
ü ûú ý

=0 for Itô integral properties

. (2.18)

Here we considered Itô integral properties (see [21], chapter 3, section 3.2, Theorem
3.2.1). Now, we can calculate the variance of the swarm center of mass velocity:

E[(V − E[V ])2] = E

A(V0 − E[V0])e
(α−β)

m
t + 1

m
√

N

Ú t

0
e− (α−β)

m
(t−s)dWs

B2


= E
5
(V0 − E[V0])2e

2(α−β)
m

t
6

+ E

A 1
m

√
N

Ú t

0
e

(α−β)
m

(t−s)dWs

B2
+

+ E
C
2(V0 − E[V0])

1
m

√
N

Ú t

0
e

(α−β)
m

(t−s)dWs

D
ü ûú ý

=0 for Itô integral properties and independence between V0 and Wt

.

(2.19)

Exploiting the Itô isometry reported below (see [21]), which is stated for a general
function f(s) which is adapted to the filtration generated by the Wiener process
Ws (i.e. it can not depend on the future)

E
C3Ú t

0
f(s)dWs

42D
=
Ú t

0
(f(s))2dt, (2.20)

we finally obtain

Var(V ) = Var(V0)e
2(α−β)

m
t + 1

m2N

Ú t

0
e

2(α−β)
m

(t−s)ds

= Var(V0)e
2(α−β)

m
t + 1

2mN(α − β)

5
e

2(α−β)
m

t − 1
6

=
C
Var(V0) + 1

2mN(α − β)

3
1 − e

−2(α−β)
m

t
4D

e
2(α−β)

m
t.

(2.21)
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We can now analyze the different regimes depending on combinations of parameters
α and β. Considering the case α > β we observe that, after a transient,

Var(V ) =
C
Var(V0) + 1

2mN(α − β)

D
e

2(α−β)
m

t, (2.22)

and so the variance of the swarm center of mass velocity increases exponentially,
and it means that its values will show a strongly higher dispersion over time. Note
that for increasing particles mass and number of swarm components, the second
terms becomes negligible, and so the only contribution comes from the initial
velocity variance. A similar condition is observable also for the expected value:

E[V ] = E[V0]e
(α−β)

m
t, (2.23)

the mean velocity again grows exponentially, even if the exponent is lower than
the one of the previous case.
In the case α < β, we observe the opposite situation, indeed, for a long time the
variance reaches a constant value and the expected value approaches zero:

Var(V ) = 1
2mN(β − α) , (2.24)

E[V ] = 0. (2.25)
The last case α = β leads to:

E[V ] = E[V0], (2.26)

and so, the expected value of the swarm velocity is equal to the initial expected
value; for what concerns the variance, from the first row of equation (2.21) we have
that it grows linearly in time

Var(V ) = Var(V0) + 1
m2N

t. (2.27)

2.3.2 Swarm center of mass position equation
Here I will follow a similar approach to the one presented above, but I’m interested
in analyzing the different diffusion regimes characterizing the swarm center of
mass dynamics. It’s important to underline that, since we made the assumption
lc ≫ max(|xij|), in order to derive the center of mass velocity equation, all the
particles will move as a whole, and the center of mass motion is representative of
the entire swarm. Let’s consider again the equation for the velocity of the center of
mass:

V = V0e
(α−β)

m
t + 1

m
√

N

Ú t

0
e

(α−β)
m

(t−s)dWs, (2.28)
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and, by integration, we obtain

X = X0 + m

(α − β)V0

5
e

(α−β)
m

t − 1
6

+ 1
m

√
N

Ú t

0

Ú τ

0
e

(α−β)
m

(τ−s)dWs dτü ûú ý
(♣)

. (2.29)

Now, in order to rewrite the last term in a simpler way, we exploit the integration
by parts

s
udv = uv −

s
vdu following the procedure presented in [6]. In our case,

it becomes:

dv = e
(α−β)

m
τ dτ du = e

(α−β)
m

(−τ)dWτ

v =
Ú t

0
e

(α−β)
m

τ̄ dτ̄ u =
Ú t

0
e

(α−β)
m

(−s)dWs,

and so, we get the expression

(♣) = 1
m

√
N

Ú t

0
e

(α−β)
m

(−s)dWs

Ú t

0
e

(α−β)
m

τ̄ dτ̄ü ûú ý
(i)

− 1
m

√
N

Ú t

0

Ú τ

0
e

(α−β)
m

τ̄ e
(α−β)

m
(−τ)dWτ dτ̄ü ûú ý

(ii)

,

(2.30)
in which we can rearrange the two terms (i) and (ii) in the following way:

(i) = m

(α − β)

5
e

(α−β)
m

t − 1
6 1

m
√

N

Ú t

0
e

(α−β)
m

(−s)dWs

= 1
(α − β)

√
N

e
(α−β)

m
t
Ú t

0
e− (α−β)

m
sdWs −

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘1
(α − β)

√
N

Ú t

0
e− (α−β)

m
sdWs

(ii) = − 1
m

√
N

Ú t

0

m

(α − β)

5
e

(α−β)
m

τ − 1
6

e
(α−β)

m
(−τ)dWτ

= − 1√
N(α − β)

Ú t

0

e
(α−β)

m
(τ−τ)ü ûú ý

=1

−e− (α−β)
m

(τ)

 dWτ

(τ→s)=
✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘1√

N(α − β)

Ú t

0
e− (α−β)

m
sdWs − 1√

N(α − β)

Ú t

0
1 dWs.

Finally, after noticing that there are two terms with opposite sign, we can rewrite
the expression (2.30) as

(♣) = 1
(α − β)

√
N

e
(α−β)

m
t
Ú t

0
e− (α−β)

m
sdWs − 1

(α − β)
√

N

Ú t

0
1 dWs. (2.31)
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Therefore the swarm center of mass position equation (2.29) takes the form

X = X0+ m

(α − β)V0[e
(α−β)

m
t−1]+ 1

(α − β)
√

N

5
e

(α−β)
m

t
Ú t

0
e− (α−β)

m
sdWs −

Ú t

0
1dWs

6
.

(2.32)
Now, as we have done in the previous section, the next step will be to calculate
the expected value of the X variable, and so of each term at the right side of the
equals, because of the linearity of the operator. Consequently we have:

E[X] = E[X0] + m

(α − β)

5
e

(α−β)
m

t − 1
6
E[V0], (2.33)

since the last two terms of the above equation has zero expected value because of
Itô integral properties (as reported previously). Then, we have all the elements to
write the variance expression as follow:

Var(X) = E[(X − E[X])2]

= E
CA

(X0 − E[X0]) + m

(α − β) [e
(α−β)

m
t − 1](V0 − E[V0])+

+ 1
(α − β)

√
N

3
e

(α−β)
m

t
Ú t

0
e− (α−β)

m
sdWs −

Ú t

0
1dWs

4B2D
.

(2.34)

Here we observe that all the mixed terms are equal to zero because of the inde-
pendence between X0, V0 and the Wiener process Wt, and again because of the Itô
integral properties. Indeed the covariance of two random variable is defined as:

Cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ], (2.35)

and so, if the two involved random variables are independent from each other
E[XY ] = E[X]E[Y ] and the covariance is equal to zero. Noticing it is properly
the term that appears in the first mixed product between X0 and V0, and they
are clearly two independent quantities, we can draw the same conclusion. Instead,
we can demonstrate that also the second and third mixed products are equal to
zero considering the independence between involved variables and the stochastic
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integral properties. For the second one, for example, it states:

E
C
(X0 − E[X0])

1
(α − β)

√
N

3
e

(α−β)
m

t
Ú t

0
e− (α−β)

m
sdWs −

Ú t

0
1dWs

4D
=

=E[(X0 − E[X0])]
1

(α − β)
√

N
E
53Ú t

0
e− (α−β)

m
sdWs −

Ú t

0
1dWs

46
=

= 1
(α − β)

√
N
E[(X0 − E[X0])]E

53Ú t

0
e− (α−β)

m
sdWs

46
ü ûú ý

=0 for Itô properties

+

− 1
(α − β)

√
N
E[(X0 − E[X0])]E

53Ú t

0
1dWs

46
ü ûú ý
=0 for Itô properties

= 0.

The same result is obtained for the third mixed product between V0 and the
stochastic integrals difference. Then, in order to rewrite the variance of the swarm
center of mass position, what remains is to rearrange the term E[(♣)2], and so:
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At the passage (⋆) we made use of the Itô isometry, and at this point we again
exploit it, but in a generalized form:

E
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and, consequently, we can rewrite the last term as follow
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Now, collecting all these last results, we obtain:
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Finally, we can write the expression for the variance of the swarm center of mass
position, which was our goal:

Var(X) = Var(X0) + 1
(α − β)2N

t+

+ m2

(α − β)2

5
e

(α−β)
m

t − 1
62
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B
.

(2.39)

It’s interesting to notice that at t = 0, Var(X) = Var(X0), and it shows how at
the initial moment the variance depends only on the variance of the initial swarm
configuration.
Considering equation (2.39), we can now analyze different regimes of the system
depending on parameters α and β. The procedure is similar to the one followed in
the previous section, but in this case we can interpret results taking into account
the time dependence of the center of mass position variance (which is related
to the mean squared displacement). The case α > β determines a regime of
extremely rapid diffusion, in which the variance shows an exponential growth in
time. Rearranging equation (2.39), we obtain

Var(X) = Var(X0) + 1
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t+
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(2.40)

In the long time limit (t ≫ m/(α − β)) the term within square brackets with nega-
tive exponent vanishes, and we clearly observe an exponential trend (contributions
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of the initial condition to the position variance and the linearly growing term are
overcome):

Var(X) ∼ Ce
2(α−β)

m
t, (2.41)

where C is a constant depending on initial variance and model parameters. We
can notice that also the expected value of the swarm center of mass position
exhibits an exponential growth. Here it’s interesting to emphasize that, even if
the initial variance of the swarm velocity were equal to zero (it would mean that
we are considering a Dirac delta distribution for the initial velocities, for example
assuming that all particles has zero initial speed), the terms generated by stochastic
noise would lead to exponential trend. So, we can state that the finiteness of the
swarm, since it’s composed by a finite number of units, determines an increasing
uncertainty over time on the swarm center of mass position (and velocity, as shown
in the previous section). In the α < β case, again from equation (2.39) and from
(2.33), we get

Var(X) = K + 1
(α − β)2N

t, (2.42)

and
E[X] = E[X0] + m

(β − α)E[V0], (2.43)

where K is a constant depending on initial conditions and on model parameters.
We can observe that, even if the expected value reaches a constant magnitude,
the variance continues to grow linearly in time. This allows us to recognize a
normal diffusion regime: the center of mass of the swarm wanders around the mean
position because of the stochastic fluctuations affecting the microscopic dynamics
of each particle. I want also to point out that the linear dependence on time is
predicted by the Ornstein-Uhlenbeck model for large times. This is clear if we
rewrite equation (2.13) substituting (β − α) > 0 with a new constant γ. So, the
equation becomes

mdV = −γV dt + 1√
N

dWt, (2.44)

and it is formally equivalent to (A.1) treated in the Appendix. Moreover, writing
the linear Taylor expansion of exponential term in equation (2.39), e− γ

m
t ≈ 1 − γ

m
t,

we obtain:

Var(X) ≈ Var(X0) + 1
γ2N

t +
A

Var(V0) − 1
2mγN

B
t2. (2.45)

We can notice that the variance of the position scales quadratically with time, for
small times (t ≪ m/(α − β)), as expected.
Finally, in order to analyze the case α = β, we have to manipulate equation (2.28),
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because in the following ones the difference between the two coefficients appears as
denominator. Imposing the equality condition, the equation takes the form

V = V0 + 1
m

√
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Ú t

0
dWs, (2.46)

and integrating it, we get the following position equation:

X = X0 + V0t + 1
m

√
N

Ú t

0

Ú τ

0
dWsdτü ûú ý

(†)
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in which there is a double integral with respect to time and Wiener process. Here
we exploit again integration by parts, and, considering
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we obtain the following expression:
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At this point we evaluate the expected value of the swarm center of mass position,
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6
= E[X0] + E[V0]t, (2.49)

in which the last step is again justified by Itô integral properties. Then we can
calculate the variance
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(2.50)
in which again the double products are equal to zero, as demonstrated previously.
Now, focusing on the last term, we can rewrite it as:
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and in this last equality we made use once again of the Itô isometry. Collecting all
these results we obtain a clearer expression for the variance

Var(X) = Var(X0) + Var(V0)t2 + 1
m2N

t3

3 . (2.52)

Now we can easily observe how, in this last case, the expected value of the swarm
center of mass position grows linearly in time, while the variance has a cubic
growth. Considering the form of the variance evolution function, we can recognize
a super-diffusion regime, which takes place when < r2 >∝ tθ, with θ > 1, and so
when the mean squared displacement depends on time more than linearly. This
fact can be explained noticing that, in this last case, the alignment effect balances
the damping force, which usually in Brownian motion has the role of a restoration
term, which tends to bring back the particles towards the average position.
The fundamental and far-reaching result, that emerged from the statistical analysis
of the current mathematical model, is that the finiteness of natural swarm, be they
animal groups or human crowds, determines an increasing uncertainty both on
position and velocity of the swarm center of mass over time. Even if we consider
really numerous ensemble, such as insect swarms, after a certain time interval, the
stochastic fluctuations contribution becomes relevant, and it can not be neglected.
And this observations holds for each of the three parameters regime. Moreover, we
can notice that the noise term is inversely proportional to the number of particles
N , and so a massive swarm results to be more stable. It means that a numerous
ensemble tends to maintain its position and velocity, if it is actively moving, better
than a swarm composed by a small number of individuals. We can find lots of
natural examples in which large groups take advantage from maintaining constant
direction of motion. We can think about birds migration, insect swarms movement
towards a target site for nesting or for searching new resources, or about cell
population collective motion. We can also interpret the present result in light of
evolution theory. In fact, we can notice that, since a large number of individuals
hides or mitigate the effect of noise fluctuations on collective dynamics, the need
to optimize movement has favoured the aggregation in large groups.
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Chapter 3

Numerical simulations

In order to evaluate the goodness of the model predictions, in this section I report
numerical outputs from several simulations performed with different conditions.
In the first part I show how setting lc = 1000 guarantees that equation (2.12)
adequately approximates the swarm center of mass dynamics, even in the case
without noise. It is reasonable since we considered a swarm composed by a large
number of particles. With this in mind, I analysed the behaviour of the current
model in the three regimes we identified on the basis of ratios between the alignment
and friction parameters. Each of them characterizes the evolution over time of
the swarm dynamics, and I describe it in terms of velocity and position referred
to the center of mass and to a single generic particle we named "Alice". Then
I studied the difference in numerical outputs considering different values of the
alignment characteristic length lc, that, as already pointed out, describes how
much the average process deviates from an unweighted average. Moreover, the
simulations of the first part provide a clear representation of the spatial patterns
generated by the collective dynamics. In each section a brief discussion follows the
presentation of results, in order to underline interesting aspects or to propose an
adequate interpretation of them.
In the second part I propose numerical simulations output to verify results from
the 1D statistical analysis of the swarm center of mass dynamics performed in the
previous section. Basically the first part allows to directly compare the statistical
analysis results with numerical outputs from the simulation of the swarm center of
mass equation rather than considering the microscopic dynamics of all the particles.
This choice is justified by the high computational cost that characterizes this
second way, since it is far beyond the capabilities of an average computer. All
the simulations are carried out using the software MATLAB, since our problem is
particular suitable to a matrix formalization. In fact, the vector particle dynamics
equations are solved as two independent scalar equations in each spatial variable.
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3.1 – Methods

3.1 Methods
All the simulation in the first part has been performed initializing a swarm com-
posed by N = 1000 particles, in order to obtain a reasonable averaged stochastic
fluctuations. In fact, if we consider only a bunch of particles, the influence of the
noise term would be too strong to compare numerical and deterministic analytical
results. Moreover, as introduced in the previous section, all particles have a similar
size, and so we model this condition setting unitary mass for each of them.
The initial position and velocity of each particle are considered as random variables.
Here in particular we chose a standard normal distribution as probability density
function (so, a Gaussian with zero mean and unitary variance). Consequently,
we obtain the initial spatial configuration of the swarm extracting the x and y
coordinates for each individual, and the same holds also for the velocity components.
Figure (3.1) graphically represents the positioning process which gives place to the

Figure 3.1: Graphical representation of the random initial placement of two
particles.

initial spatial configuration of the swarm. The value extracted from the normal
distribution, with a certain probability, is then multiplied by a factor of 2.5, in
order to obtain an initial configuration scattered on a wider area, but with most of
particles gathered in the middle. The other parameters of the simulations, which
remain unchanged in all cases, are collected in Table (3.1). Here I want to point out
that all the parameters are dimensionless, and they units of measurement depend
on the specific case study. For each regime I performed two different simulations.
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Simulation parameters
Number of time steps 1.5 · 104

Time steps - dt 10−3

Number of particles - N 1000
Particle mass - m 1
Positioning factor 2.5

Attraction characteristic strength - Ca 0.5
Attraction characteristic length - la 2

Repulsion characteristic strength - Cr 1
Repulsion characteristic length - lr 0.5
Alignment characteristic length - lc 10 − 103

Table 3.1: This table collects the parameters which remain unchanged for all the
simulations of the first part.

In the first one we set lc = 10, so the alignment characteristic length is such that
the alignment process is more affected by closest neighbours velocities. Indeed, in
order to quantify this effect, we can observe that in the current setting conditions
the limit diameter of the swarm is approximately equal to 4 units of length. So, if
we consider the i-th particle, the factor which multiplies the velocity of a neighbour
placed on the other side of the swarm is equal to e−(4/10) ≈ 2/3. Then, we can
notice that a really close individual exerts an alignment effect on the dynamics of

Figure 3.2: Difference between lc = 10 and lc = 103 cases. The plot shows the
alignment factors as distance functions in the weighted average process.
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the i-th particle about 1.5 times greater than the one exerted by another agent
placed on the edge of the swarm. In the second case, instead, we consider lc = 1000,
and consequently the alignment process tends to an unweighted average process.
This second case represents a stronger physical assumption, but it provides output
in better agreement with the analytical model we derived for the swarm center of
mass. Finally, we solved the stochastic differential equation defining the swarm
dynamics (2.1) through the Euler-Maruyama method. It is the analogous of Euler
method for stochastic differential equations. In this method the Wiener process is
approximated as a Markov chain, and such a discretization is used to compute the
stochastic integral (more information about the Euler-Maruyama method in the
Appendix).

3.2 Comparison between microscopic dynamics
and deterministic results

3.2.1 The accelerated regime
As I already pointed out, we identified three different regimes for the current model,
and they depend on the balance between the alignment contribution and the friction
term, which appear in the dynamics equation. In this section I firstly introduce the
regime characterized by the condition α > β, that describes the situation in which
the alignment effect is stronger than the damping. Consequently the swarm shows
collective net motion, and it is the only case in which we can observe an increasing
center of mass velocity over time.
Here I compare numerical results with the analytical function derived from the
deterministic version of equation (2.12). Indeed, neglecting the noise term, since
we can assume that it vanishes for an increasing number of individuals (at least up
to a reasonable time), and integrating it, we obtain

V (t) = V0e
(α−β)

m
t, (3.1)

where it holds for each scalar component of the vector equation (the equation for
the velocity modulus simply has a factor 2 multiplying the exponent, and the initial
modulus as initial value). Integrating again, we get the equation for the position of
the center of mass

X(t) = X0 + m

(α − β)V0

5
e

(α−β)
m

t − 1
6

. (3.2)

I want to emphasize that we neglect the noise term only in deriving the analytical
equations for velocity and position of the swarm center of mass, and that we
consider these analytical functions as reference mean results. In this case I set the
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alignment strength α = 1 and the friction coefficient β = 0.5. Firstly I want to
present numerical outputs from simulations carried out with lc = 10.

Figure 3.3: Center of mass modulus and x-velocity over time.

Figure (3.3) shows the center of mass modulus and x-velocity components trends
over time. The first thing that catches your eye is that numerical result grows
slower than the analytical prediction. This difference is due to the lower value of lc,
which determines a slower alignment process, since each particle perceives majorly
the closest neighbours than the others. Nevertheless the velocity modulus still
shows an exponential trend, and this also holds true for the two scalar components
separately. Even the position (Figure (3.5), left picture), as described by equation
(3.2), presents the same trend. Figure (3.4) collects snapshots at different time, and
they represent the emergence of collective motion during the numerical simulation.
Indeed, we can notice that up to 6000 time steps the swarm is still rearranging,
while the alignment process is well visible in the next snapshot. From this point,
the swarm continues to maintain the same direction (as shown in Figure (3.5), right
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3.2 – Comparison between microscopic dynamics and deterministic results

Figure 3.4: Series of images representing the evolution of the swarm configuration
over time. The time step of each snapshot is reported. The pink dot represents the
center of mass, while the light blue one is the "Alice" particle.

picture), accelerating exponentially over time. In order to point out the difference
between the center of mass and the the single particle behaviour, we numerically
computed also position and velocity evolution for the "Alice" particle. As shown in
Figure (3.6), "Alice" too follows an exponential-like displacement trend, while the
x-velocity component is subjected to stronger fluctuations, due to the effect of the
stochastic noise, which in this case is not averaged on the entire swarm.
The really fascinating phenomenon is the emergence of collective behaviour from an
initial random configuration. Indeed, in this case, particles spontaneously align and
start to migrate with increasing velocity. The direction of motion depends only on
the initial conditions (as defined in equation (3.1)), and so, if we consider the two
scalar spatial components, we can notice that it finally depends on the two values
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Figure 3.5: Center of mass x-displacement (left), and trajectories of the center of
mass and of the "Alice" particle.

Figure 3.6: Numerical output for "Alice" position and x-velocity during the
simulation.

extracted as realizations of normally distributed random variables. Mathematically
speaking, the appearance of self-organization depends on the coupling between
particle microscopic dynamics performed by the alignment term. I find also very
interesting that numerical simulations show how, even if we do not consider a
perfect average process (as done in the Vicsek model, and which could results in
a too strict physical assumption), the collective dynamics still takes place and
develops over time.
Now I want to report numerical results also about the lc = 1000 case, since it
provides the occasion to highlight other important aspects of the current model.
Observing Figure (3.7), we can observe that numerical outputs about the swarm
center of mass velocity well match the analytical results, better than in the previous
case. The residual noise is recognizable in the zoomed area. Figure (3.8), left
picture, compared with the configuration at the same time step in the lc = 10 case,
reveals a stronger alignment between swarm agents. This effect involves both the

34
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Figure 3.7: Swarm center of mass velocity during a simulation. Comparison
between analytical and numerical results in the case lc = 1000.

Figure 3.8: Alignment of the swarm after 9000 time steps. Initial evolution of
center of mass and "Alice" trajectories.

modulus and the direction of particles velocity. In fact, they move faster and also in
a more coherent way, and it is because the unweighted average procedure provides
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a clearer alignment stimulus. The right picture represents the initial evolution
of the "Alice" particle and center of mass trajectories. We can observe that after
a brief rearrangement, "Alice" starts to move in parallel with the center of mass
keeping a constant distance from it.
Finally, I want to emphasize that all those overdamped models (cited in the
introduction), which involve a similar alignment mechanism, and that give net
persistent motion as a result, automatically lay in this parameters regime.

3.2.2 The wandering center of mass regime
In this section I present numerical results about the case α < β. In this condition
the friction effect is stronger than the alignment one.

Figure 3.9: The first two pictures represent the swarm configuration at the
beginning and after 9000 time steps. The latters concern evolution of the x
component of center of mass velocity and position over time.

36



3.2 – Comparison between microscopic dynamics and deterministic results

Figure 3.10: "Alice" x-velocity and trajectories of center of mass and "Alice"
particle.

In particular I set α = 0.5 and β = 1, and all the other parameters have the same
values of the previous simulation. Since we expected a damped dynamics, which
leads to zero mean swarm velocity, I set an initial average x-velocity equal to 2, in
order to observe the evolution of the collective dynamics. Otherwise the swarm
simply maintains its initial mean position, while the particles continue to wonder
around the center of mass. Now we start considering the lc = 10 case, as I have done
before. We can observe from the first two pictures in Figure (3.9) that, even if in
the initial configuration a positive x-velocity component is recognizable, after 9000
time steps it has been lost because of the friction term action. The last two pictures

Figure 3.11: Center of mass velocity and trajectories in case of zero initial mean
velocity.
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show the evolution of the x component of velocity and position of the center of
mass over time. Velocity rapidly decreases towards zero, while the displacement
reaches a constant value depending on initial conditions, as derived in the previous
chapter. I considered here only the x component, since I set non zero center of
mass x-velocity as initial condition, but the dynamics of the velocity modulus is
analogous. Figure (3.10), left picture, represents "Alice" x-velocity over time. We
can observe that after the initial transient, the velocity of the particle continues to
fluctuate around the mean zero value, as a results of the stochastic noise. The right
picture, instead, shows the "Alice" and the center of mass trajectories. After an
initial displacement, the center of mass stops and begins to wander around, while
the "Alice" particle continues to move around it. Here I want to point out that,

Figure 3.12: These pictures refer to the case without noise. The first two represent
"Alice" particle velocity and displacement, while the latters show center of mass
x-velocity and swarm final configuration.

once the swarm center of mass velocity reaches the mean zero value, its wandering
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movement can be described as the result of a Ornstein–Uhlenbeck process. We
showed this mathematical result in chapter 2, in which we derived the position
expected value and variance. It’s interesting that these two quantities show the
expected behaviour for small times and also in the long time limit.
I want also to comment some results about the simulation with zero initial mean
velocity. In this case the transient is very short and the center of mass rapidly
reaches near zero velocity, as shown in the left picture of Figure (3.11). As a
consequence it starts to wander around its initial position without performing
translational movement, as represented in the right snapshot. I also analysed the
case without noise, in order to observe the model response. Numerical results
are reported in Figure (3.12). The "Alice" particle, which represents a generic
particle of the system, reaches zero x-velocity and a constant displacement, without
oscillations after the initial rearrangement, as shown in the first two images. The
latters represent the x-velocity of the center of mass, which also reaches the zero
value, and the final configuration of the swarm. Since there is no noise, particles
don’t wander around the mean position, and the crystalline pattern appears. Finally,

Figure 3.13: Center of mass velocity and displacemnt evolution during the
simulation. Again only the x-component is considered.

in Figure (3.13) I report plots about center of mass velocity and displacement in the
case lc = 1000, with initial positive mean x-velocity. With this setting, numerical
output again are in better agreement with the analytical result, especially in case of
displacement results. It is because the assumption of large alignment characteristic
length is better respected in this case. Moreover, the collective behaviour of the
system is qualitatively similar to the case lc = 10, and there are not differences in
the dynamics of the system.
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3.2.3 The invariant regime

The last parameters regime I analysed corresponds to a balance between the
alignment contribution and the damping effect exerted by the friction term. This
balance refers to the center of mass equation (3.1). Mathematically we have
α = β. Also in this case, since we expected the maintenance of the initial condition
throughout the entire simulation, I set initial x-velocity equal to 2 (dimensionless
unit of measurement). Considering the two parameters, I set α = β = 1, while the
rest of the simulation setting remained unchanged. Figure (3.14) collects snapshots
of the swarm configuration evolution over time in the case lc = 10. We can identify
a positive x-velocity component in the first two picture, and it’s clearly still present
at 6000 time step. However, in the final configuration a collective net movement
is not anymore recognizable, because of the balancing between alignment term
and damping effect. Moreover, we can notice that the weighted average procedure

Figure 3.14: Evolution over time of the swarm configuration.
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Figure 3.15: Center of mass and "Alice" particle x-velocity during a typical
simulation with lc = 10.

which accounts for the alignment contribution, in the case lc = 10, is not sufficient
to guarantee the internal cohesion of the swarm. This results in a progressive loss
of efficiency in terms of translational collective movement. Left picture of Figure
(3.15) compares analytical and numerical trends of the x-velocity of the swarm
center of mass. We can notice a pronounced difference between them, since the
numerical trend is approaching zero value with time. Instead, the right picture
represents the evolution of "Alice" x-velocity. We can observe how, also in this case,
the mean value of the stochastic process is moving towards zero. It is because, even
if the swarm has initial positive x-velocity, at the end of the simulation it almost
stops. Consequently, particles begin to wander around prone to the stochastic

Figure 3.16: Center of mass and "Alice" x-velocity evolution over time (lc = 1000).
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Figure 3.17: Snapshots of the spatial configuration of the swarm taken at different
time steps (lc = 1000).

noise fluctuations. Moreover, since the velocity of the swarm decreases during the
simulation, the center of mass displacement is a non-linear function of time with
decreasing slope and it reaches a constant asymptotic value (see Figure (3.18),
right picture). Figure (3.16) represents the same quantities, but in the case of
lc = 1000. The difference between the two cases is clearly visible. Now, numerical
outputs well approximate the analytical prediction, and the center of mass velocity
maintains an almost constant trend. Obviously it continues to be subjected to
small noise fluctuations, as represented in the left picture. The right picture in
Figure (3.16) shows the "Alice" x-velocity during the simulation. If we compare it
with its analogous in Figure (3.15), we now can notice that the fluctuations take
place around a non-zero mean value, which is the initial x-velocity value of the
swarm center of mass.
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Figure 3.18: Comparison between x-displacement of the center of mass for
lc = 1000 and lc = 10.

Figure (3.18) represents the center of mass x-displacement. Since the velocity is
almost constant during the simulation, the displacement now grows linearly over
time, how we can observe in the left picture. I also report some snapshots of the
evolution of the spatial configuration of the swarm over time in Figure (3.17). The
main difference with the previous case is that we can observe collective net motion
also in the last time step. It is a consequence of the fact that the center of mass
velocity maintains a constant mean value during the simulation. For example, let’s
consider the picture of the swarm configuration after 6000 time steps in the two
cases lc = 10 and lc = 1000. We can notice a strong difference in the two situations.
In the first one the net collective motion is still recognizable, but the behaviour
of the swarm is not coherent as in the other picture. Moreover, if we look at the
left pictures in Figures (3.15) and (3.16), at that time the x-velocity component
in the first graph is about equal to the half of the analogous value in the second
case. The final picture even shows a sharper gap. In the lc = 10 the swarm already
stopped, and the particles are wandering around the center of mass. Instead, in
the lc = 1000 case the swarm continues to move in the positive x-direction with
almost the same initial velocity value.

3.3 Numerical simulations of statistical results
In this last section I want to report numerical outputs that verify analytical results
from the center of mass velocity statistical analysis we carried out in chapter 2. For
each of the three parameters regimes I performed three different simulations, in
order to test the influence of the total number of swarm particles N . As statistical
quantities we considered the expected value and the variance of the center of mass
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velocity. In the previous section I already showed how setting N = 1000 guarantees
that the microscopic dynamics is well approximated by the deterministic center
of mass equation. It is reasonable since such a number of system components is
sufficient to leads the noise average near zero. Now I analysed results setting N
respectively equal to 500, 100 and 10, to check if analytical equations well predict
the system behaviour also in case of a smaller swarm. All the simulations have
been performed setting dt = 0.01 and averaging results of 105 realizations of the
Ornstein–Uhlenbeck process described by the center of mass velocity equation (2.13).
For each realization, the initial velocity value is a normally distributed random
variable .

3.3.1 The accelerated regime
Here I present results about the α > β case that, how we have already seen in the
previous section, determines an exponential acceleration of the swarm. I set α = 1
and β = 0.5 as above. For the center of mass velocity expected value we consider
the equation

E[V ] = E[V0]e
(α−β)

m
t, (3.3)

while for the variance we have

Var(V ) =
C
Var(V0) + 1

2mN(α − β)

3
1 − e

−2(α−β)
m

t
4D

e
2(α−β)

m
t. (3.4)

In Figure (3.19) results about variance and expected value of the swarm center of
mass velocity from numerical simulations and analytical functions are compared.

Figure 3.19: Variance and expected value of the swarm center of mass velocity
from numerical simulations and analytical results. Semi-log plots.
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3.3 – Numerical simulations of statistical results

The variance expression (3.4) depends on the number of particles N , and so each of
the three analytical trends have been compared with the corresponding numerical
case. We can notice that all the numerical outputs well match the analytical results,
exhibiting an exponential growth. Analogous conclusions can be formed also for
the velocity expected value, even if its analytical expression doesn’t depends on N ,
as showed in equation (3.3).

3.3.2 The wandering center of mass regime

In this second case I set α = 0.5 and β = 1, in order to simulate the damped
regime. We can again consider the two previous equations as velocity variance
and expected value analytical functions. Again numerical simulation outputs are

Figure 3.20: Velocity variance (semi-log plot) and expected value of the swarm
center of mass. Comparison between analytical and numerical results.

in good agreement with analytical results (just notice that the expected value is
scaled by a 10−3 factor). However, in this case the variance rapidly decrease to
the constant value (Var(V0) − 1/2mN(β − α)) that depends on initial conditions
and model parameters. The right picture shows the velocity expected value trend
over time. Analytical function exhibits an exponential decay towards E[V0], that
is a near-zero value since it is extracted from a standard normal distribution and
averaged on all the simulations. We can notice that numerical outputs oscillate
around such a mean value, and fluctuations are stronger for a smaller value of N .
This is because the noise term is scaled with the squared root of the number of
particles, as reported in equation (2.13). Consequently a smaller amount of particles
determines an higher noise influence on the swarm center of mass dynamics.
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3.3.3 The invariant regime
Finally I report variance and expected value results for the case α = β = 1. The
expected value equation (3.3) reduces to

E[V ] = E[V0], (3.5)

and so it describes a constant trend for the mean swarm center of mass velocity.
For what concerns the variance, we can’t use equation (3.4), since the difference
(α − β) appears as denominator. Consequently we have to consider equation (2.27):

Var(V ) = Var(V0) + 1
m2N

t, (3.6)

which predicts a linear growth for the velocity variance. We can observe in the
right picture of Figure (3.21) that this trend is well fitted by numerical outputs, in
each of the three cases with different N values. Right picture represents velocity

Figure 3.21: Velocity variance and expected value of the swarm center of mass in
case of invariant regime.

expected value of the center of mass velocity. The analytical function has constant
value, as derived, and numerical results again perform small amplitude fluctuations
around the mean initial value. We can notice that the N = 500 case better fit the
analytical trend, since the noise term is averaged on a greater number of particles.
In conclusion, after this comparison between analytical and numerical results, we
can state that the derived variance and expected value functions of the center of
mass velocity well approximate the collective dynamics (described via Langevin-type
equation (2.13)) even in the case of N < 1000.
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Chapter 4

Conclusions and
perspectives

In this paper I presented some results from my investigation period at BCAM
(Basque Center for Applied Mathematics). In the second chapter I reported the
new mathematical model we derived, which describes the collective dynamics of
a swarm of self-propelled particles. We adopted a microscopic point of view, and
consequently our model consists in a Langevin-type equation. We have chosen the
mathematical terms which appear in it from the available literature on the topic (see
for instance, [3], [8]), adapting them to our modelling assumptions. In particular
in the dynamical equation there is a friction term, that accounts for the viscous
damping force, a potential term, described as a potential gradient and that models
repulsive/attractive social forces inside the swarm, and an alignment contribution,
which is of fundamental importance in giving rise to collective dynamics. In fact,
the alignment term couples the microscopic dynamics of the single particles, and it
results in the emergence of self-organization and coherent behaviour of the entire
swarm. We have chosen to model it as a weighted average of the neighbours
velocity. Finally, our model comprehend a stochastic noise, which we defined as a
Wiener process. It is also a crucial term, since in broad terms it introduces some
randomness in the individual dynamics. For example, it could model the capability
of the single particle to not perfectly obey to the social swarm stimuli, or, since
we are considering active particles, their characteristic of not being completely
prone to inertial effects. Then, summing the Langevin equations of all the particles,
we obtained the stochastic differential equation describing the dynamics of the
swarm center of mass. It predicts an exponential trend over time whose exponent
depends on the difference between α and β, respectively the alignment and friction
coefficients. This has allowed us to identify three different dynamical regimes
depending on the balance between these two model parameters. The first one,
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in which the alignment contribution overcomes the friction effect, describes an
exponential acceleration of the swarm. It takes place once the swarm spontaneously
align and start to move in a random direction depending on initial conditions. The
second one, the α < β regime, predicts that the mean swarm velocity progressively
approaches the zero value, as a results of the damping effect. Finally, the third
one is characterized by a balance, on average, between the alignment term and the
friction force. In this regime the dynamics of the center of mass remains constant
over time and it depends on initial conditions. In the final part of the chapter I
reported mathematical results we obtain performing a statistical analysis of the
swarm center of mass dynamics. In particular we derived the expected value and the
variance of the center of mass position and velocity over time. Since we adopted an
underdamped modelling approach, this allowed us to focus on the stochastic noise
role, and we found pretty interesting results. We observed that since a real swarm
has to be finite, in the sense that it can count only a limited number of particles,
the stochastic fluctuations increase the uncertainty of position and velocity of the
swarm center of mass. We also noticed that a numerous ensemble tends to be less
affected by the noise effect, since the corresponding term is inversely proportional
to the total number of particles. Moreover, we found that in the α < β regime,
the dynamics equation for the center of mass is formally equivalent to the one
describing an Ornstein–Uhlenbeck process. In fact, also in this case, for long times,
the variance of the center of mass position depends linearly on time and so the
stochastic process becomes statistically indistinguishable from a Brownian motion.
In the third chapter I reported results about numerical simulations, in order to
compare them with analytical predictions. Numerical outputs have shown to be
in good agreement. I also analysed the response of the model on the basis of a
relaxation of the modelling assumptions. More specifically, I tested the current
model in case of two different alignment characteristic lengths, observing how the
difference in numerical output depends on the given dynamical regime. Finally I
compared simulations outputs and analytical results about the statistical analysis
numerically solving the swarm center of mass equation (2.13) in case of different
number of particles. We observed that the analytical equations describing the
velocity expected value and variance well approximate the swarm dynamics.
To conclude, I want to introduce a couple of feasible future developments of the
present work:

• The first one concerns a different implementation of the stochastic noise. In
fact, instead of modeling it as an additive noise it can be introduced as a
perturbation of the alignment function argument. So, we get

fAi (x, v) −→ fAi (x, v + ε(x)ηt) =
N−1Ø
i /=j

(vj + ε(x)ηt)e− |x|
lc , (4.1)
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where the stochastic noise models the uncertainty in the perception of neigh-
bours velocities. In an analogous way the noise term can also be thought to
affect the position of other particles.

• The second one consists in developing a kinetic model for the collective swarm
dynamics. When we consider really large swarm, for example in the case of
cell populations, numerically solving the dynamical equations for each particle
can be quite cumbersome. Then, it is possible to change modelling scale, from
a microscopic point of view, to a mesoscopic one. In this way, we can derive a
Boltzmann-type equation which involves the microscopic particle dynamics.
Using an evolution equation for the probability density function of the form
(1.2), it is possible to compute macroscopic quantities, such as the mean
velocity of the swarm as a function of space and time.

I think collective motions are a really fascinating topic, both for their ubiquitous in
nature and for their beauty. I’m also really interested in how simple interaction rules
between particles can determine the emergence of coherent behaviour and ordered
patterns. I think the understanding of collective motion of self-propelled particles
is really important, both as a theoretical explanation of natural phenomena, which
is of great significance, and as a useful tool directly applicable in several fields. For
example, it can help in the developing of artificial swarm, in the spirit of biomimicry
(see [10]). Moreover, these kind of models can reproduce various structures and
behaviours observed in cell populations ([1]), and it can also point out the relative
importance of different factors in determining a given collective dynamics.
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Appendix A

Stochastic Noise

In order to contextualize the noise term of equation (2.1), I want to report one
meaningful example, in which it has a central role (see [23]). As I previously
pointed out, the microscopic description involves a stochastic differential equation
describing individual trajectories, since position and velocity of the single particle
are stochastic processes because of the presence of the noise term. In 1906 Paul
Langevin proposed his own mathematical description of Brownian motion, that
has been firstly observed by the Scottish botanist Robert Brown in 1827, while he
was studying pollen grains suspended in water. The corresponding SDE involves
a friction or viscous term, proportional to the particle velocity, and a stochastic
fluctuation term, which models the effect of collisions with the medium parcels (very
numerous and smaller than the "pollen grain"). Here I consider one dimensional
equations without loss of generality, since results can be easily extended to higher
dimensions. So, the governing equations are:dx = vdt

mdv = −βvdt + σdW (t),
(A.1)

where,
W (t) =

Ú t

0
ξ(s)ds. (A.2)

I wrote the Langevin equation in differential form, since the Brownian motion
is nowhere differentiable with probability 1. The term ξ(t) is a Gaussian white
noise with zero mean, so that ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t′)⟩ = δ(t − t′), while σ is the
noise strength, that accounts for the intensity of the fluctuations (here we have
an additive noise, since the factor multiplying the increment dW (t) is a constant).
Moreover, m is the particle mass, and β is the friction coefficient. This stochastic
process is also referred as Ornstein-Uhlenbeck process, since these two authors
provided a statistical analysis of it.
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Usually these equations are applied in the overdamped limit regime (when m −→ 0),
and so, they reduce to

dx = σ

β
dW (t) =

√
2DdW (t), (A.3)

considering D = σ2

2β2 . This microscopic equation gives rise to the well known
diffusion equation

∂ρ

∂t
= D

∂2ρ

∂x2 , (A.4)

which is its macroscopic analogous. Integrating equation (A.3), we obtain:

x(t) = x0 +
√

2DW (t), (A.5)

where W (t) is a Wiener process. It’s interesting to notice that the well known
Brownian motion, on a microscopic scale, takes place when the position is mathe-
matically expressed as a Wiener process.
Now we can compute mean quantities related to different realizations of the noise
term, so we have:

E[x] = E[x0 +
√

2DW (t)] = E[x0] (A.6)
Var(x) = E[(x − E[x])2] = E[x2] − E[x]2 = 2DE[W 2] = 2Dt. (A.7)

Then, considering this type of stochastic processes, we observe that the expected
value is equal to the initial expected value, while the variance grows linearly over
time. Coming back to the equations describing the Ornstein-Uhlenbeck process
(A.1) we can again compute these two statistical quantities. Integrating the second
equation, we have

v(t) = v0e
− β

m
t + σW (t), (A.8)

and so,

E[v] = E[v0]e− β
m

t, (A.9)

since the expected value of a Wiener process is equal to zero. In this expression
m/β is the persistence time, which describes how long the correlation between
velocities remains appreciable in the Ornstein-Uhlenbeck process. Indeed, for
example, E[vv0]/v2

0 = e− β
m

t is a normalized measure of correlation between velocity
v and its initial value.
Now we can proceed with the calculation of the expected value of the position,
after have inserted the velocity expression (A.8) in the first equation of (A.1), and
it gives us

E[x] = E[x0] +
Ú t

0
E[v]dt = E[x0] + m

β

1
1 − e− β

m
t
2
E[v0]. (A.10)
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Now we have all the ingredients to compute also the variance of the position. I
don’t report here all the calculations, but I want to highlight its behaviour over
time. For small times (t ≪ m/β) we observe

Var(x) ∼ t2, (A.11)

and we can recognize a super-diffusive regime; this comes from the fact that during
initial moments particles cover a distance proportional to time, indeed:

E[x] − E[x0] = E[(x − x0)] = m

β

1
1 − e− β

m
t
2
E[v0] ≈ E[v0]t. (A.12)

In the last equality we expanded the left term via the linear Taylor expansion
ex ≈ 1 + x, for t −→ 0. Instead, in the long time limit (t ≫ m/β) the dependence
on time becomes linear (standard diffusion). This result shows how, at very large
times, the Ornstein-Uhlenbeck process is statistically equivalent to a random walk,
and it’s not possible to distinguish if the particle moved with a certain velocity or
if it jumped randomly around. We can also notice that, unlike the previous case
(A.3), in which the friction term was not considered, now we obtained an expected
value of the position dependent on time, even if the decay is exponential.

Figure A.1: Trajectory of a single particle which dynamics is described by a 2D
Ornstein-Uhlenbeck process. Images obtained after 104 time steps, β = 0.5, m = 1,
σ = 1. The final position of the particle is represented with the light blue circle.
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Appendix B

Numerical simulation of
stochastic processes

In this section I want to briefly present the numerical analysis theory I applied
in order to solve the stochastic equations that govern the dynamics of the single
particle and of the center of mass of the swarm. In the following I will refer to the
article [4], which offers a clear overview of the topic.
We modeled the stochastic fluctuation as a standard Wiener process, that is a
stochastic process W (t) ∈ Rd, with d ∈ N, continuously dependent on time. In
our case d = 2, but hereafter I will consider the one-dimensional case, without loss
generality, since it can be thought as the k-th scalar component of a noise vector.
The Wiener process W (t) has the following properties:

• W (0) = 0, so it is equal to zero at the initial moment;

• dWt = W (t + dt) − W (t) ∼
√

dtN (0,1), so it is a random variable normally
distributed with zero mean and variance equal to dt;

• two different increments dWt and dWs are independent, since they are different
realizations of independent random variables.

Obviously, in our case we consider discrete random variables, and the sum of all
the increments gives place to a discretized Brownian path, as represented in Figure
(B.1). The trajectory is defined as the cumulative sum of increments at any time
step, and here it is plotted in a 2D domain. This process is statistically equivalent
to a Ornstein–Uhlenbeck process for long times, but it is described by an equation
of the type (A.3).
In order to obtain a solution for the system (A.1), we have to solve a stochastic
differential equation of this shape

dX(t) = f(X(t))dt + g(X(t))dW (t), X(0) = X0, (B.1)
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Figure B.1: Discretized Brownian path after 5 · 104 iterations. The final position
is represented with the cyan dot.

where X(t) is a stochastic process (in our case it represents the velocity of the i-th
particle), with initial condition X0. Writing equation (B.1) in integral form, we
obtain

X(t) = X0 +
Ú t

0
f(X(s))ds +

Ú t

0
g(X(s))dW (s) (B.2)

In our model the coefficient g(X(t)) that multiplies the increment dW (t) doesn’t
depend on the stochastic process, and so, having an additive noise, we get that the
Itô and the Stratonovich interpretations of the stochastic integrals in (B.2) coincide.
I want to emphasize that if g = 0 and the initial condition X0 is not a random
variable, we recover a ordinary differential equation describing a deterministic
problem.
For the numerical solution I adopted the Euler-Maruyama method, that is an
extension of Euler method to stochastic differential equations. The considered
numerical method so takes the form

Xi = Xi−1 + f(Xi−1)∆t + g(Wi − Wi−1), i = 1,2, . . . , Nsteps, (B.3)

and we can observe that it is the discretized version of

X(i) = X(i − 1) +
Ú t+∆t

t
f(X(s))ds +

Ú t+∆t

t
gdW (s). (B.4)

For convenience, we always chose the time step size ∆t for the numerical method to
be equal to the increment dt for the Brownian path, but it is not strictly necessary,
since one can consider also an integer multiple of it (this guarantees that the two
sets of points coincide).
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